
TITLE: Determinants of telomere length across human tissues 

 

AUTHORS: Kathryn Demanelis1, Farzana Jasmine1, Lin S. Chen1, Meytal Chernoff1, Lin Tong1, Justin 

Shinkle1, Mekala Sabarinathan1, Hannah Lin1, Eduardo Ramirez1, Meritxell Oliva1,2, Sarah Kim-

Hellmuth3,4,5, Barbara E. Stranger2, Kristin G. Ardlie6, François Aguet6, Habibul Ahsan1,7,8,9, GTEx 

Consortium, Jennifer Doherty10, Muhammad G. Kibriya1, and Brandon L. Pierce1,7,8*
 

 

AFFILIATIONS: 
1Department of Public Health Sciences, University of Chicago, Chicago, IL, USA. 

2Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, 

Center for Data Intensive Science, University of Chicago, Chicago, USA. 

3New York Genome Center, New York, NY, USA. 

4Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany. 

5Department of Systems Biology, Columbia University, New York, NY, USA.  

6The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 

USA. 

7Department of Human Genetics, University of Chicago, Chicago, IL, USA. 

8University of Chicago Comprehensive Cancer Center, Chicago, IL, USA. 

9Department of Medicine, University of Chicago, Chicago, IL, USA. 

10Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. 

*Corresponding Author. Email: brandonpierce@uchicago.edu (B.L.P) 

 

ABSTRACT 

Telomere shortening is a hallmark of aging. Telomere length (TL) in blood cells has been studied 

extensively as a biomarker of human aging and disease; however, little is known regarding variability in 

TL in non-blood, disease-relevant tissue types. Here we characterize variability in TL measurements for 

6,391 tissue samples, representing >20 tissue types and 952 individuals from the Genotype-Tissue 

Expression (GTEx) Project.  We describe differences across tissue types, positive correlation among 

tissue types, and associations with age and ancestry. We show that genetic variation impacts TL in 

multiple tissue types, and that TL can mediate the effect of age on gene expression. Our results provide 

the foundational knowledge regarding TL in healthy tissues that is needed to interpret epidemiological 

studies of TL and human health. 

 

ONE SENTENCE SUMMARY  

Telomere length varies by tissue type but is generally correlated among tissue types (positively) and with 

age (negatively). 
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MAIN TEXT 

Telomeres are DNA-protein complexes located at the end of chromosomes that protect 

chromosome ends from degradation and fusion (1). The length of the DNA component of telomeres 

shortens as cells divide (2) with short telomeres eventually triggering cellular senescence (3, 4). In most 

human tissues, TL gradually shortens over the life course, and TL shortening is considered a hallmark 

(and a potential underlying cause) of human aging (5). In human studies, short TL measured in leukocytes 

is associated with increased risk of aging-related diseases including cardiovascular disease (6) and type II 

diabetes (7) as well as all-cause mortality (8). However, long TL may increase risk for some types of 

cancer (9-11). Leukocyte TL is influenced by inherited genetic variation (single nucleotide 

polymorphisms [SNPs]), some of which reside near genes with roles in telomere maintenance (12-15). 

Leukocyte TL is also associated with lifestyle factors (e.g., obesity) and exposures (e.g., cigarette 

smoking) (16, 17).  

Epidemiologic studies of TL predominantly use blood (occasionally saliva) as a DNA source. 

Thus, our understanding of variation in TL, its determinants (e.g., demographic, lifestyle, and genetic 

factors), and its associations with disease phenotypes is based almost entirely on TL measured in 

leukocytes from whole blood. Few prior studies have compared TL in leukocytes to TL in other human 

tissue types; these prior studies are relatively small (<100 participants; <5 tissue types) but provide 

evidence that TL differs across tissue types and that TL measurements from different tissue types are 

correlated (18, 19). However, larger studies of many additional tissue types are needed to gain a 

comprehensive understanding of variation in TL and its determinants within and across a wide range of 

human tissues and cell types. In order to address these gaps in our understanding of TL and its role as a 

biomarker of aging and disease risk, we measured TL in > 6,000 unique tissue samples, representing >20 

distinct tissue types and > 950 individual donors from the Genotype-Tissue Expression (GTEx) Project 

(see Methods) (20). In this paper we (1) characterize sources of variation in TL, (2) evaluate leukocyte 

TL as a proxy for TL in other disease-relevant tissues, (3) describe the relationship between age and TL 

across tissue types, and (4) describe biological determinants and correlates of TL.   

We attempted measurement of relative TL (telomere repeat abundance relative to a 

standard/reference DNA sample [RTL]) for 7,234 tissue samples from 962 GTEx donors using a 

Luminex-based assay [see Methods]. After removing 836 samples with failed RTL measurements and 

seven RTL measures that were within-tissue outliers, our analytic dataset included 6,391 tissue-specific 

RTL measurements from 952 donors, with 24 different tissue types having ≥ 25 RTL measurements 

(Table S1). On average, each donor had RTL measured in seven different tissue types (range: 1-26 tissue 

types) (Figure S1). The median donor age was 55 (range: 20-70) years, there were more males (67%) 

than females, and participants were primarily white (85%) (Table S1). 

 

TL varies across (and correlates among) human tissues types. We estimated the contribution of tissue 

type to the variation in RTL using linear mixed models (LMMs) that were adjusted for fixed effect 

covariates (age, sex, BMI, race/ethnicity, donor ischemic time, and technical factors [DNA concentration 

and sample plate]) and random effects of tissue type and donor (see Methods and Table S2). On average, 

RTL was the shortest in whole blood (WB) and longest in testis, with testis being a clear outlier (p < 

2x10-16 compared to all other tissues) (Figure 1A). Tissue type explained 24.3% of the variation in RTL 

across all tissues but only 11.5% when testis was excluded. We examined pairwise correlations (Pearson) 

in RTL among tissue types with tissue pairs from same donor, restricting to 20 tissue types with TL data 

for ≥ 75 samples (Figure 1B). Forty tissue-pair correlations passed a Bonferroni p-value threshold (p < 

3x10-4) and all correlations were positive (Data Table S1). All tissue pairs from the same organ were 

among the stronger correlations observed: sun exposed and non-exposed skin (r=0.24, p=9x10-3, n=112), 

transverse and sigmoid colon (r=0.40, p=8x10-7, n=139), and esophagus mucosa (EM) and gastric 

junction (EGJ) (r=0.22, p=3x10-3, n=188). Applying hierarchical clustering to these pairwise correlations 

using average linkage, tissue RTL separated into three clusters (Figure 1B and Figure S2). Two clusters 

were characterized by common developmental origin: 1) mesodermal and ectodermal (e.g., muscle and 

skin) and 2) endodermal origin tissues (e.g., stomach and lung). Thyroid and brain cerebellum formed the 
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third cluster. Similar clustering patterns among tissue types were observed for females (Figure S3) and 

males (Figure S4), where testis was also an outlying tissue type and clustered with thyroid. The positive 

correlations observed among most tissue types are most likely due to the fact that the initial TL in the 

zygote impacts TL in all adult tissues through mitotic inheritance; while differences among tissue types 

are likely attributable to variability in both intrinsic (e.g., cell division rate/history, telomere maintenance) 

and extrinsic (e.g., response to environmental exposures) factors across tissues (Figure 1D).  

 

Whole blood TL is a proxy for TL in other tissues. WB RTL was positively correlated (p < 0.05) with 

tissue-specific RTL measures from 15 out of 23 tissue types (each with n ≥ 25), with Pearson correlations 

ranging from 0.15 to 0.37 (Figure 1C). These results demonstrate that WB RTL can serve as a proxy for 

TL in many tissue types. WB RTL captured between 2% (testis) and 14% (tibial nerve) of the variation in 

RTL measured in other tissue types.  Adjustment for age, sex, body mass index (BMI), and donor 

ischemic time did not have a major impact the associations observed between WB RTL and tissue RTL 

for our 23 tissue types (Figure S5).  

RTL measures have inherent measurement error (21), including our Luminex assay (22), so we 

simulated data to determine the extent to which measurement error (i.e., random, non-differential error) is 

expected to impact the observed correlation (r) estimates. We simulated data representing TL measures 

from two tissue types, and varied the value of the true Pearson correlation (r) between TL measures from 

those tissues and the amount of error present in the RTL measurement (see Methods). An inverse linear 

relationship was observed between the proportion of variation that measurement error accounted for in the 

RTL measure and the observed r value (Figure S6). When measurement error accounted for 50% of the 

variation in both RTL measurements (most extreme scenario tested), the observed r between the two 

tissues decreased by ~50% compared to the true r, and the correlation between an error-prone measure 

and the true TL (in another tissue) decreased by ~25%. Thus, the correlations we observe between WB 

RTL and RTL in other tissue types are likely underestimates of the true correlations.  

Previously we have shown the Luminex-based TL method to have a correlation (r) of ~0.7 (a r2 of 

~0.5) with the Southern blot analysis of terminal restriction fragment lengths method for TL measurement 

(in a blinded comparison study) (22). The Southern blot method is a more expensive and labor-intensive 

approach for TL measurement with much higher DNA input requirements. If we consider Southern blot to 

be the gold standard for TL measurement, thereby assuming that 50% of the variation in our Luminex-

based measure is random error, then the correlations observed in this study are ~50% lower than the true 

correlations (based on Figure S6).   

 

TL varies among individuals and by participant characteristics. TL varied across individuals (donors) 

(Figure 2A [top]), explaining 8.7% of variation in RTL across all tissues and 11.2% with testis excluded 

(based on estimates from adjusted LMM) (Table S2). Adjusting for tissue type and donor (as random 

effects), age explained 3.3% (among all tissues) and 4.4% (excluding testis) of variation in RTL while 

BMI, TL-associated SNPs, and race/ethnicity each explained less than 1% of the variation across all 

tissues (marginal R2, p < 0.001) (Figure 2B [top]). We observed no association between sex and RTL 

across all tissues (Table S2), and sex showed very little evidence of association with RTL in tissue-

specific analyses (Table S3). We conducted a principal component (PC) analysis of RTL from eleven 

non-reproductive tissue types (each with n ≥ 200 samples) from 750 participants (see Methods) and 

generated a composite measure of TL based on the first PC that explains 51% of the variation in TL 

among these tissue types (Figure 2A [bottom]). We observed that age and BMI were associated with 

shorter composite RTL and explained 13.7% and 1.3%, respectively, of the variation in this composite TL 

measure (Figure 2B [bottom]). Race/ethnicity was associated with longer composite TL in African 

Americans compared to white individuals and explained 1.6% of the variation in composite TL. This 

composite TL likely reflects the TL in the zygote (and in tissues during early development) that is 

mitotically inherited by cells in adult tissues. 
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TL is longer in genomes of African Ancestry. To further explore differences in TL by race/ethnicity, we 

first confirmed that PCs derived from genome-wide SNP data (n=831 donors), representing genetic 

ancestry, showed clear clustering by reported race/ethnicity among donors (Figure 2C [upper left]). 

Genetic ancestry (European vs. African) explained 0.6% of the variation in RTL across all tissues 

(marginal R2, p=1x10-5) after adjusting for tissue type and donor as random effects and 2.3% of the 

variation in the composite RTL measure (p=7x10-5). After including adjustments for age, sex, donor 

ischemic time, technical factors (DNA concentration and sample plate) and random effects of tissue type 

and donor, RTL was longer among individuals of African ancestry compared to individuals of European 

ancestry in analyses of all tissue types combined (p=0.007), consistent with prior studies of leukocyte TL 

(23-26). The adjusted association between African ancestry and RTL was positive for 17 out of 20 tissues 

tested, with p-values < 0.05 for brain cerebellum (p=0.03), thyroid (p=0.02), prostate (p=0.03), lung 

(p=0.02), and whole blood (p=0.005) (Figure 2C and Table S4). The observation that individuals of 

African ancestry have longer TL in many tissue types is consistent with the hypothesis that ancestry-

based differences in TL are present early in development (27) and potentially in germ cells (pre-

conception). In other words, our results suggest that offspring (zygotes) inherit telomeres from germ cells 

that vary in TL due to ancestry, and these ancestry-based differences in TL are mitotically transmitted to 

daughter cells, and eventually to cells in many adult tissue types. This “direct transmission” of TL from 

parent to offspring (28) would result in the observed ancestry-based differences across many tissue types 

(summarized in Figure 2D).  One likely cause of this ancestry-based difference is natural section on 

SNPs know to impact TL (29), although selection on TL itself could also contribute.    

 

TL is correlated with age in most tissues. Of 24 tissues with ≥ 25 samples, RTL was negatively 

correlated (r < 0) with age in 21 tissue types (p < 0.05 in 14 tissue types) (Figure 3A, Figure S7), 

supporting the hypothesis that age-related TL shortening occurs in most tissue types. The strongest 

correlations with age were observed for WB (r=-0.35, p=2x10-19, n=637) and stomach (r=-0.37, p=7x10-

15, n=420) (Table S5). Age explained more of the variation in RTL for tissues with shorter mean RTL 

(r2=0.23, p=0.02) (Figure 3B). Among tissue types in which RTLs did not have a clear correlation with 

age (p > 0.05), we examined whether RTL differed among 5-year age groups, but we observed no 

differences in RTL among 5-year age groups for testis, ovary, cerebellum, vagina, skeletal muscle, 

thyroid, and EGJ. While prior studies have observed longer TL in sperm from older men (30), we did not 

observe a clear increasing (or decreasing) trend for testis RTL with increasing age (Figure S8).  

Among tissue types for which RTL was associated with age (p < 0.05), the strength of association 

varied across tissue types (Figure 3C and Table S5). To further explore the hypothesis that TL shortens 

at different rates in different tissue types, we calculated the difference in RTL (ΔRTL) between all pairs 

of tissue types available for each donor. We constructed 155 ΔRTL variables restricting to tissues pairs 

with complete data for ≥ 50 donors. The Pearson correlation between ΔRTL and age was estimated for 

each tissue type pair to determine if the ΔRTL varies with age (Figure S9). Forty-two of the 155 ΔRTL 

variables were correlated with age (p < 0.05), and the absolute values of these correlations ranged from 

0.12 to 0.38 (Data Table S2). Four of the ΔRTLs surpassed Bonferroni p-value of 3x10-4: EGJ and 

stomach (r=0.32, p=1x10-5, n=176), WB and thyroid (r=0.30, p=3x10-5, n=182), EM and stomach 

(r=0.25, p=3x10-5, and n=276), and WB and ovary (r=0.33, p=2x10-4, n=120). Our results indicate that 

age explains up to 14% of the variation in the difference in RTL between pairs of tissue types. A prior 

study of 87 adults reported that the age rate of TL shortening  was similar for muscle, leukocytes, fat, and 

skin (i.e. no association between age and ΔRTLs), concluding that age-related TL loss within stem cells is 

consistent across adult tissue types (18). When we examined these tissue types among our ΔRTL pairs (n 

≥ 50), age was correlated with ΔRTL for skeletal muscle and blood (r=0.37, p=2x10-3, n=68) but less for 

skin (unexposed) and blood (r=0.09, p=0.2, n=197) and skin (exposed) and blood (r=0.08, p=0.24, 

n=200).     

 

Leukocyte TL-associated genetic variants and TL in other tissues. Prior genome-wide association 

studies (GWAS) have identified SNPs associated with leukocyte TL (12-15). We constructed a weighted 
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polygenic SNP score for each donor using nine leukocyte TL-associated SNPs, with higher score 

reflecting longer TL (see Methods and Table S6) (31).  We examined the association between this 

polygenic SNP score and RTL for tissue types with ≥ 100 samples. After adjustment for age, sex, 

genotyping PCs, donor ischemic time, and technical factors (DNA concentration and sample plate) as a 

random effect, an association with the SNP score (p < 0.05) was observed for WB RTL (p=0.007) 

(Figure S10), cerebellum RTL (p=0.03), pancreas RTL (p=0.04), and transverse colon RTL (p=0.02) 

(Figure 4A, Figure S11, and Table S7). Among all 18 tissue types, 16 had positive association estimates 

(binomial test [p0=0.5], p=0.001). In analyses of all tissue types, RTL was positively associated with this 

SNP score (p=0.01) after adjustment for age, sex, genotyping PCs, donor ischemic time, and technical 

factors (DNA concentration and sample plate) and random effects of tissue type and donor. These results 

indicate that at least some of the genetic variants (or regions) that impact leukocyte TL also impact TL in 

other tissue types. 

 

TL-associated variants influence local gene expression. Among the nine regions known to harbor SNPs 

associated with leukocyte TL, we examined whether these loci also affected local gene expression in 

GTEx tissue types and cell lines (see Methods). We used co-localization analysis to estimate the 

probability that a common causal variant underlies association signals for leukocyte TL (from GWAS) 

(12-14) and cis-eQTL (expression quantitative trait loci) association signals from GTEx (v8) analyses 

(GTEx Consortium 2019 [GTEx main paper]). Co-localization results indicated that at least six of the 

nine TL-associated regions shared a common causal variant with a cis-eQTL in at least one tissue type, 

based on a posterior probability of co-localization of ≥ 80% across all three sets of priors tested (see 

Methods) (Figure 4B, Figure 4C, Figure S12, and Data Table S3). The association signal for TL on 

chromosome 19 (represented by rs8105767) showed strong evidence of co-localization with an eQTL 

affecting expression of ZNF257 in eight tissue types, including skin (sun exposed), transverse colon, and 

stomach (Figure 4B). The association signal for TL on chromosome 10 (represented by rs9420907) co-

localized with an eQTL affecting expression of STN1 in seven tissue types, including skin (sun exposed), 

transverse colon, and EM (Figure 4C). Additional TL-associated loci showed co-localization with GTEx 

eQTLs for NAF1, MYNN, RP11-109N23.6, and TSPYL6 (Figure S12 and Data Table S3). These results 

suggest that TL-associated loci influence TL within human tissues via regulation of the expression of 

genes known to be involved in telomere maintenance (e.g., STN1, NAF1) (12), as well as genes whose 

role in telomere maintenance is unclear (e.g., ZNF257). Notably, we observed very little evidence of co-

localization of the TERT or TERC TL-associated regions with any cis-eQTLs, likely because TERT and 

TERC have low or undetectable expression in a majority of adult GTEx tissue samples (Figure 5A). This 

suggests that eQTL studies of cells from stem and/or developmental tissues may be needed to understand 

the mechanisms underlying genetic regulation of TERT and TERC expression.    

 

TL is associated with telomerase subunit expression across tissues. The telomerase enzyme can extend 

the telomere repeat sequence, typically in stem and/or progenitor cells, to compensate for TL shortening.  

The protein products of TERT, TERC, and DKC1 comprise the telomerase catalytic subunit. We examined 

the association between RTL and expression of these genes using 3,885 GTEx tissue samples with both 

RTL and RNAseq (v8) gene expression data. TERT and TERC expression was detectable (i.e., transcripts 

per million [TPM] > 0.1) in 28% (n=1089) and 20% (n=783) of these samples (Table S8 and Table S9), 

respectively, but DKC1 was ubiquitously expressed (n=3,885) in all samples (Table S10). While DKC1 

showed correlation with both TERT (r=0.30, p < 2x10-16, n=1089) and TERC (r=0.23, p=3x10-11, n=783) 

across all samples, the correlation between TERT and TERC expression across samples was stronger 

(r=0.49, p < 2x10-16, n=364) (Figure S13). Testis had substantially higher mean expression of TERT and 

TERC compared to all other tissues (p < 2x10-16) (Table S8 and Table S9), but there was no association 

between testis RTL and TERT or TERC expression. Across all tissues, RTL was positively correlated with 

TERT (r=0.58, p < 2x10-16, n=1089), TERC (r=0.33, p < 2x10-16, n=783), and DKC1 (r=0.29, p < 2x10-16, 

n=3,885) (Figure 5A). When testis was removed, the correlation decreased substantially for both TERT 

(r=0.14, p=4x10-5, n=890) and DKC1 (r=0.23, p < 2x10-16, n=3,686) and disappeared for TERC (r=0.02, 
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p=0.63, n=617). After adjustment for covariates and random effect of tissue type, RTL showed a positive 

association with increasing quartiles of TERT expression (p=0.005 including testis and p=0.002 

excluding testis) and of DKC1 expression (p=0.001 including testis and p=3x10-4 excluding testis) across 

all tissues. Overall these results support the following: (1) high telomerase activity in testis (i.e., 

spermatocytes) likely contributes to longer TL observed in that tissue and (2) GTEx tissue samples 

consist primarily of differentiated cells, which typically have little to no telomerase activity, resulting in 

minimal detectable association between telomerase activity in those cells and the observed TL (32, 33).  

  

TL mediates the effect of age on gene expression. Aging affects gene expression, and we sought to 

examine whether TL mediates the association between age and expression of age-associated genes. We 

analyzed the association between age and RNAseq-based gene expression levels among tissues with ≥ 

150 samples, and selected three tissue types with >1,000 age-associated genes (FDR of 0.05) (see 

Methods): WB (n=5,153), lung (n=1,355), and EM (n=5,581) (Figure 5B). Using mediation analysis 

(34), we estimated the proportion of the effect of age on expression that was mediated by TL for each 

age-associated gene. For each tissue type, we observed substantially more positive than negative 

estimates of the “proportion mediated” (Figure 5B), as expected under the hypothesis that TL is a 

mediator (an equal number of positive and negative estimates are expected under the hypothesis of no 

mediation). We observed evidence that RTL mediated the effect of age on expression for 598 genes 

(12%) in WB, 224 genes (17%) in lung, and 1,108 (20%) in EM (based on pmediation < 0.05 and proportion 

mediated > 0) (Data Tables 4-6). In these tissue types, RTL mediated between 4-32% of the effect of age 

on expression of individual genes; however, full mediation will be detected as partial mediation in the 

presence of measurement error (for either the mediator or the outcome) (35). We evaluated the 

enrichment of these RTL mediating genes in Gene Ontology (GO) terms (threshold penrichment < 10-3), and 

enriched GO terms were identified for lung (22 terms), WB (147 terms), and EM (104 terms) (Data 

Tables 7-9). Four terms were common to both WB and EM, and these were related to translation 

initiation and cellular adhesion. Six terms were common to lung and EM, and these were related to 

regulation of cell communication, regulation of signaling, calcium ion binding, cell periphery, and 

intrinsic and integral component of membrane. Among the 147 enriched GO-terms in WB, several terms 

related to apoptosis and cell death were identified.   

 

Tissue-level stem cell features are associated with TL and TERT expression. After extracting tissue-

specific estimates of the number of division per stem cell (per year) and the proportion of stem cells 

(among all cells) for specific tissue types from Tomasetti and Vogelstein et al. (36, 37), we examined 

their relationship with mean RTL and mean TERT expression among non-reproductive GTEx tissue types 

(n=12, Table S11). No associations were identified between mean TERC and DKC1 expression and these 

stem cell features. Mean RTL was positively correlated with estimated proportion of stem cells within a 

tissue type (r2=0.50, p=0.01) (Figure 6 [top, left panel]), and this association persisted after adjustment 

for number of divisions per stem cell (p=0.02) and mean TERT expression (p=0.02). We did not observe 

a clear association between mean TERT expression and the estimated proportion of stem cells within a 

tissue type (Figure 6 [top, right panel]). These results suggest that tissue types with a higher proportion of 

stem cells in their cellular composition may have longer TL measurements in bulk tissues as a 

consequence.  

 We observed a positive correlation between mean TERT expression and the number of divisions 

per stem cell (r2=0.58, p=0.004) (Figure 6 [bottom, right panel]). This association persisted after 

adjustment for the proportion of stem cells within a tissue type (p=0.007) and mean RTL (p=0.01). Mean 

RTL showed suggestive evidence of correlation with the number of divisions per stem cell (r2=0.15, 

p=0.21) (Figure 6 [bottom, left panel]), and when we restricted to non-blood tissue types, mean RTL was 

positively correlated with number of divisions per stem cell (r2=0.42, p=0.03). This finding suggests that 

tissue types that undergo more cellular turnover and replacement, such as colon, may have higher 

telomerase expression in order to maintain TL in the stem cell compartments.  
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Cell type composition is associated with TL within tissues. To determine whether TL varies among the 

cell types within a given tissue sample, we examined the association between RTL and estimated cell type 

enrichment scores (CTES) (generated using RNAseq data and the xCell software (38)). Seven CTES (for 

adipocytes, epithelial cells, hepatocytes, keratinocytes, myocytes, neurons, and neutrophils) were 

benchmarked by the GTEx consortium (Kim-Hellmuth et al 2019 [GTEx cell type paper]), and we 

examined the association between these 7 CTES and RTL in tissue types with ≥ 100 samples (n=16 tissue 

types). After removing cell types that were not detected within a tissue type (n=37 total CTES across 16 

tissue types) and adjusting for age and sex, we identified eight associations (p < 0.05) between CTES and 

RTL among 37 associations tested (Figure S14). In exploratory analyses, we examined all 64 CTES 

provided by xCell that had a detection p-value < 0.05 for >90% samples within a tissue type. Restricting 

to tissue types with ≥ 300 samples that had both CTES and RTL data (WB, lung, and EM), there were 27, 

24, and 17 CTES detected in each tissue, respectively (Figure S15). EM and lung had 13 and 14 CTES 

that were associated with RTL, after adjustment for age and sex (p < 0.05). RTL was positively associated 

with epithelial cell, smooth muscle cell, keratinocyte, and sebocytes CTES in both lung and EM (p < 

0.05). Notably, five CTES were inversely associated with RTL (p < 0.05) in both lung and EM, including 

fibroblasts and endothelial cells. In WB, lymphoid and myeloid cell CTESs accounted for 70% of the 

CTES detected, and eight CTES were associated with RTL, respectively (p < 0.05). Neutrophil CTES 

were positively associated with RTL. Both CD8+ T-cell CTES were inversely associated with RTL, 

consistent with prior work examining cell types and TL in blood (39). These results provide evidence that 

TL varies across cell types within a given tissue, and consequently, cell type composition can affect TL 

measurement in human tissues.    

 

TL across all tissues is associated with age-related chronic disease status. Using medical history data 

from GTEx donors, we examined the association between common age-related chronic diseases and RTL 

within and across tissues. A history of Type II diabetes (22% of donors) was associated with shorter RTL 

across all tissues (p=0.02), as well as, shorter pancreas RTL (p=0.07) and coronary artery RTL (p=0.01) 

(Figure S16). Among all donors, 50% had no history of any chronic disease, and 30%, 14%, and 6% had 

a history of one, two, and three (or more) chronic diseases, respectively. Chronic disease burden (sum of 

chronic diseases from 0-5) was associated with shorter RTL across all tissues (p=0.008) and in testis 

(p=0.03), coronary artery (p=0.03), kidney cortex (p=0.04), and cerebellum (p=0.009). When we 

excluded cancer from the chronic disease burden, these associations persisted across all tissues (p=0.02) 

and in all tissues listed above except for kidney cortex (p=0.09). These observations suggest that TL may 

capture some aspect of the biologic age-related health decline across tissues.  

We did not observe any associations between RTL and history of cancer; however, to test the 

hypothesis that normal tissues with relatively short (or long) TL are also short (or long) in tumors 

occurring in that tissue, we compared the mean tissue-to-WB TL ratio for each GTEx tissue to the mean 

tumor-to-WB TL ratio in corresponding cancer types from The Cancer Genome Atlas (TCGA) (see 

Methods) (40). Mean cancer TL ratio from TCGA and normal TL ratio from GTEx were positively 

correlated (r=0.44, p=0.03, n=23) (Figure S17), providing support for this hypothesis. 

 

Discussion. This study provides an unprecedented view of the substantial variation in human TL that 

exists across human tissue types and among individuals. We show that TL is generally positively 

correlated across human tissue types, and that whole blood TL can serve as a proxy for tissue-specific TL 

for many tissues, a finding that may support the use of blood TL as a proxy for TL in some tissues in 

large epidemiological studies. TL was negatively associated with age in the majority of tissues studied, 

confirming the hypothesis of pervasive age-related telomere shortening in most human tissues. However, 

the rate of shortening varied across tissues, and age explained more variation in TL in tissues with shorter 

mean TL. TERT and TERC expression were low or undetectable in most tissues and were not associated 

with TL within any tissue, likely because progenitor cells, which express telomerase, are not present in 

large numbers in adult tissues, which consist primarily of differentiated cells. Notably, testicular TL was 

~1.5-2.5-fold longer than TL in any other tissue type, and TERT was expressed in 100% of these samples 
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and at higher levels than any other tissue, consistent with predominance of spermatogenic cells in testis 

(i.e., cells developing from germ cells into spermatozoa) which have high telomerase activity (33).  

RTL measured in a tissue sample is an average of the TL among all chromosomes within a 

heterogeneous population of cell types with different cell division rates/history, stem cell composition, 

and oxidative and inflammatory environments. In order to characterize variation in TL within specific cell 

types, cell type-specific and single-cell TL studies are needed. A large proportion of the variation in RTL 

was unexplained across all tissue types, potentially attributed to sources such as cell type composition 

(e.g., stem and progenitor cells), measurement error, and lifestyle and environmental factors with variable 

effects across tissues. From our simulation-based analysis of the impact of TL measurement error on our 

results, we show that random measurement error biases our estimate of the true correlation in TL between 

two tissues towards zero, suggesting that the correlations presented in this study are attenuated compared 

to the true correlations. We lack detailed monitoring to exposure data (e.g., smoking and alcohol use) for 

GTEx donors; studies that can link human tissue samples to environmental and lifestyle histories are 

needed to better understand environmental determinants of TL across different tissues and cell types. 

Currently, all TL-associated SNPs have been identified in genome-wide association studies of leukocyte 

TL (12-15); our study suggests some of these effects are also present in other tissue types, but larger 

studies of tissue-specific TL measurements are needed to characterize how these effects vary across 

tissues and cell types. Identifying variants that impact TL in all or most cell types (e.g., variants with 

effects on TL that may be present during development or in stem cells in multiple tissue types) may be 

ideal for evaluating the causal impact of TL on risk for a wide array of diseases (occurring in diverse 

tissues or cell types) using Mendelian randomization. Future studies should also evaluate the relationship 

between TL and other biologic and cellular aging processes and biomarkers of aging within and across 

tissues in order to further characterize the role TL in human aging. 
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Figure 1. Telomere lengths differ across human tissue types but are correlated among tissues types. A) Distribution of 

RTL across 24 GTEx tissue types (ordered by median RTL). B) Pearson (r) correlations between RTL measures from 

different tissue types. Tissues included have ≥ 75 samples and were not sex-specific. Red, yellow, and blue correspond 

r=1, r=0, and r=-1, respectively.  Black boxes are results from hierarchical clustering for k=3 clusters (exact correlations 

are in Data Table S1). C) Pearson correlations between whole blood RTL and tissue-specific RTL measures (with 95% 

confidence intervals). D) Theoretical framework describing determinants of telomere length across human tissue types.  
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Figure 2. Telomere length varies among individuals and by ancestry. A) Distribution of RTL across GTEx donors ranked 

by donors’ mean RTL across all measured tissue types (top panel). Bottom panel shows distribution of a “composite 

RTL” measure, estimated based on the first principal component from an analysis of 11 tissue types (see Methods). 

Colors correspond to GTEx tissue type. B) Contribution of selected covariates to variability in RTL across all tissues (top) 

and composite RTL (bottom).  For the analysis across all tissues, estimates were extracted as marginal R2 values from 

linear mixed models adjusted for tissue type and donor as random effects. C) Distribution of RTL measures for 

individuals of European and African ancestry. Tissue types are ranked by largest difference between median RTL between 

the two ancestry groups. Interior panel shows genotyping principal components (PCs), demonstrating consistent clustering 

of individuals by genetically predicted ancestry. Associations between African ancestry and RTL are presented in Table 

S4. D) Schematic describing the direct inheritance of TL from parental germ cells and expected relationship to TL across 

adult tissue types for individuals of African and European ancestry. Genetic (and reported race/ethnicity) ancestry was 

color coded for African (red) and European (blue) in panels C and D.   
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Figure 3. Age is negatively correlated with telomere length in most tissues, and correlation is strongest in tissues with shorter telomeres.  A) 

Pearson correlations between age and tissue-specific RTL measures. B) Scatterplot of mean RTL for each tissue versus the percent variation 

explained by age (r2) for each tissue. The size of each point is proportional to sample size for that tissue type. C) Relationship between RTL and 

age for five selected tissue types (whole blood, lung, stomach, transverse colon, and skin [exposed]). For all plots, colors correspond to tissue type.   
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Figure 4.  Genetic determinants of leukocyte telomere length impact telomere length in other tissue types and expression of nearby genes. A) 
Associations between a polygenic SNP score for leukocyte TL and tissue-specific RTL measures. Colors correspond to tissue type. B) Leukocyte 
TL association signal co-localizes with a cis-eQTL (expression quantitative trait locus) for ZNF257 (~40 kb upstream of ZNF208). Top plot shows 
results from the ENGAGE consortium GWAS of leukocyte TL, and bottom three plots correspond to cis-eQTL results from GTEx tissues: skin 
sun exposed, colon – transverse, and stomach. C) Leukocyte TL association signal co-localizes with a cis-eQTL for STN1 (a.k.a., OBFC1 in hg19).  
Top plot corresponds to results from the ENGAGE consortium GWAS of leukocyte TL, and bottom three plots correspond to cis-eQTL results 
from GTEx tissues: skin sun exposed, esophagus - mucosa (EM), and colon – transverse. 
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Figure 5. Telomere length is associated with telomerase subunit gene expression and mediates the effect 

of age on gene expression.  A) RTL plotted against TERC, TERT, or DKC1 expression across tissue types. 

Colors correspond to GTEx tissue types. B) Analyses addressing the hypothesis that TL mediates the 

effect of age on expression of specific genes. Scatterplots show estimates of the proportion of the effect of 

age on gene expression mediated by RTL (for each gene) and the -log10(p-value) corresponding to the 

average causal mediation effect of RTL (for each gene). Results are presented for all age-associated genes 

in each of the three selected tissue types (whole blood, lung, and esophagus-mucosa [EM]). The 

mediation p-value was obtained using a nonparametric bootstrapping approach (n=10,000 bootstraps).   
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Figure 6. Telomere length and TERT expression are associated with estimated stem cell features. 

Estimated proportion of stem cells within tissues and its relationship between mean RTL (left) and mean 

TERT expression (right) are presented in top panel. Estimated number of divisions per stem cell (per year) 

within tissues and its relationship between mean RTL (left) and mean TERT expression (right) are 

presented in bottom panel. Colors correspond to GTEx tissue types, and size of points reflects sample size 

of tissue type. Pearson correlations and corresponding p-values are reported. Results are shown for non-

reproductive tissues only.  
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