

1 A Bayesian Non-parametric Mixed-Effects Model of Microbial 2 Phenotypes

3 Peter D. Tonner^{1,2,†}, Cynthia L. Darnell², Francesca M.L. Bushell³, Peter A. Lund³,
Amy K. Schmid^{1,2,4*}, Scott C. Schmidler^{1,5,6}

¹Program in Computational Biology and Bioinformatics, Duke University, Durham, 27708, USA,

² Biology Department, Duke University, Durham, 27708, USA,

³ School of Biosciences, University of Birmingham, Birmingham, United Kingdom,

⁴ Center for Genomics and Computational Biology, Duke University, Durham, 27708, USA,

⁵ Department of Statistical Science, Duke University, Durham, 27708, USA,

⁶ Department of Computer Science, Duke University, Durham, 27708, USA,

†Current address: National Institute for Standards and Technology, Gaithersburg, MD, 20899, USA,

*To whom correspondence should be addressed; E-mail: amy.schmid@duke.edu.

4 Abstract

5 Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in
6 microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genetics,
7 bioengineering, and food safety. Traditional parametric growth curve models capture the population growth
8 behavior through a set of summarizing parameters. However, estimation of these parameters from data is con-
9 founded by random effects such as experimental variability, batch effects or differences in experimental material.
10 A systematic statistical method to identify and correct for such confounding effects in population growth data
11 is not currently available. Further, our previous work has demonstrated that parametric models are insufficient
12 to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical
13 Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to
14 perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate
15 estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation.
16 Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding
17 effects on measured population growth.

18 1 Introduction

19 Population growth phenotypes inform studies in microbiology, including gene functional discovery, bioengineering
20 process development, and food safety testing^{1–3}. For example, recent advances in microbial functional genomics
21 and phenotyping, or “phenomics”, have enabled transformative insights into gene functions, proving critical for
22 mapping the genotype to phenotype relationship⁴. Methods such as genome-wide CRISPRi⁵ and targeted genome-
23 scale deletion libraries^{6,7} frequently rely upon accurate quantitation of microbial population growth as an assay to
24 identify novel mutants with significant growth phenotypes. Population growth is an aggregate measure of all cellular
25 processes and captures how microbial cells adapt and survive in their environmental niche⁸. Because microbial
26 population culturing is a necessary precursor to many experimental procedures in microbiology⁹, reproducible results
27 require accurate quantification of the variability in culture state measured through growth^{9,10}.

28 Typical analyses of microbial population growth involve estimating parametric models under the assumptions of
29 standard growth conditions comprised of three successive growth phases: (1) lag phase, in which the population adapts
30 to a new environment, typically fresh growth medium at culture inoculation; (2) log phase, when the population
31 grows exponentially at a rate dependent on nutrients in the environment; and (3) stationary phase, where measurable
32 population growth terminates thereby reaching the culture carrying capacity¹¹. Recent studies have shown that the
33 estimates of parameters in these models are highly uncertain^{12–14}. This uncertainty arises both from factors of
34 biological interest, such as differences in genetic background and environment, as well as uncontrolled technical noise
35 from experimental manipulation of microbial cultures. While such sources of variability can be modeled using fixed
36 and random effects^{15–19}, parametric population growth models have additional limitations. Most notably, when
37 population growth deviates from the standard sigmoidal shape assumed in parametric models, secondary models
38 must be developed on a case by case basis for each new experimental perturbation^{20,21}. Additionally, we have shown
39 in previous work that in cases such as extreme stress or strongly deleterious mutations, no parametric growth model
40 accurately represents the growth curve, regardless of secondary model^{19,22,23}.

41 Factors affecting microbial growth measurements include both fixed and random effects²⁴. Fixed effects are
42 assumed to be drawn from a finite set of perturbations of interest, for example the effect of different concentrations
43 of a chemical on growth that are entirely represented in the dataset. Random effects, conversely, can be viewed as a
44 random sample from a larger population of interest. For example, repeating the same design over many experiments
45 corresponds to sampling the random experimental effect from the theoretical population of all possible experiments
46 that could be conducted with this design^{3,25}. Random effects arising from repeated experimental design are typically
47 referred to as *batch effects*^{26,27}. Batch effects are often a significant component of measurement noise in high-
48 throughput genomics experiments²⁸. However, random effects are not always due to experimental noise, and may
49 represent quantities of direct scientific interest; for example, assaying a set of genetic backgrounds may be viewed
50 as sampling from the population of all possible genetic variants^{29–33}. Models which include both fixed and random
51 effects are referred to as mixed effects models.

52 In this study we present *phenom*, a general model for analysis of phenomic growth curve experiments based
53 on a Bayesian non-parametric functional mixed effects model of microbial growth. We demonstrate the utility of
54 *phenom* model to analyze population growth measurements of two microorganisms: the hypersaline adapted archaeon,
55 *Halobacterium salinarum*; and the opportunistic bacterial pathogen, *Pseudomonas aeruginosa*. *H. salinarum* is a
56 model organism for transcriptional regulation of stress response in the third domain of life, the Archaea³⁴⁻³⁶. *H.*
57 *salinarum* is particularly well adapted to resisting oxidative stress (OS), which arises from the buildup of reactive
58 oxygen species and causes damage to many critical cellular components, including DNA, protein, and lipids³⁷⁻⁴³.
59 Population growth measurements of *H. salinarum* under OS have been used previously to quantify these harmful
60 effects on physiology, as well as identify regulatory factors important for OS survival^{22,40-42}. The presence of batch
61 effects in *H. salinarum* OS response was reported (and corrected for) previously¹⁹, but did not model individual batch
62 effects for each term in the model. This motivated the explicit deconstruction of batch effects between different factors
63 (e.g. strain and stress), which we have implemented and reported here in *phenom*.

64 *Pseudomonas aeruginosa* is an opportunistic microbial pathogen and a growing problem in hospital-borne infec-
65 tions. Rising antimicrobial resistance of these organisms has necessitated the development of alternative treatment
66 strategies. For example, topical treatment of infected burn wounds with acetic or organic acids (OAs) has been
67 successful⁴⁴. OA impact on growth depends on external pH levels — in acidic intracellular environments the OA
68 does not dissociate, freely traverses the cellular membrane as an uncharged particle, and dissociates in the neutral
69 cytoplasm inducing acid stress⁴⁵. Here we apply *phenom* to the *P. aeruginosa* dataset, which is foundational for
70 a larger study of *P. aeruginosa* strains responding to pH and OA perturbation as a potential novel treatment of
71 pathogenic bacterial infections²³.

72 Stress occurs constantly in the environment: as conditions change, mild to severe cellular damage occurs, and
73 cells must regulate their molecular components to survive⁴⁶⁻⁴⁹. Population growth measurements are particularly
74 vital to the study of stress response by providing a quantitative measure of growth differences against a non-stressed
75 control¹. Our model recovers fixed effects due to high and low levels of oxidative stress in *H. salinarum* as well as
76 interactions between organic acid concentration and pH in *P. aeruginosa*, while correcting for random effects from
77 multiple sources, thus enabling more accurate estimates of the significance of the stress treatment effect. Notably,
78 in cases where random effect and fixed effect sizes are comparable, we demonstrate that mixed modeling is critical
79 for accurate quantification of model uncertainty. If random effects are not included in the model, the significance of
80 the effect of stress treatments on population growth can be erroneously overestimated. We discuss the implications
81 of these findings for multiple areas of microbiology research.

82 2 Results

83 2.1 Hierarchical batch effects typical in phenomics datasets render parametric models 84 ineffective

85 In the dataset used here, population growth for each of *P. aeruginosa* and *H. salinarum* cultures was monitored
86 under standard (non-stressed) conditions vs. stress conditions (see Materials and Methods and references [22, 23] for
87 precise definition of “standard conditions” for each organism). Specifically, cultures were grown in liquid medium
88 in a high throughput growth plate reader that measured population density at 30 minute intervals over the course
89 of 24 hours (*P. aeruginosa*) or 48 hours (*H. salinarum*); the resulting data are shown in Fig. 1. Experimental
90 designs for each organism included biological replicates (growth curves from different colonies on a plate), technical
91 replicates (multiple growth curves from the same colony), varying conditions (stress vs standard), and are further
92 divided into batches (different runs of the high throughput growth plate reader). *H. salinarum* was grown under
93 high (0.333 mM paraquat (PQ)) and low (0.083 mM PQ) levels of oxidative stress (OS); the data are combined
94 from published^{19,22,41} and unpublished studies (Fig 1A). The OS responses of *H. salinarum* were compared to a
95 control of standard growth in rich medium, representing optimal conditions for the population. The experimental
96 design was replicated in biological quadruplicate and technical triplicate, across nine batches (Fig. 1A, individual
97 curves and axes). *P. aeruginosa* was grown in the presence of increasing concentrations of three different organic
98 acid (OA) chemicals (0 — 20mM; benzoate, citric acid, and malic acid), each combined with a gradient of pH (5.0 —
99 7.0)²³. Each *P. aeruginosa* growth condition was repeated across 3 biological replicates and two batches (Fig 1B).
100 The different *P. aeruginosa* and *H. salinarum* experimental designs with varying numbers of replicates at each level
101 provides a rich testbed for exploring the impact of modeling random effects with *phenom* (Figs. 1B, S1, S2).

102 Figures 1 and 2 demonstrate the two key issues described above and addressed in this paper. First, batch effects
103 are present in both *H. salinarum* and the *P. aeruginosa* datasets. For *H. salinarum*, clear differences in growth under
104 both standard and stress conditions are observed in the raw data across experimental batches (i.e. separate runs
105 of the growth plate reader instrument; Fig. 1). Some batches show a different phenotype, with either a complete
106 cessation of growth or an intermediate effect with decreased growth relative to standard conditions. For example,
107 in some batches, populations stressed with low OS grow at the same rate and reach the same carrying capacity as
108 populations grown under standard conditions. For *P. aeruginosa*, a clear difference between batches grown under
109 10 mM citric acid at pH=5.5 is observed [Fig. 1B (graph in fourth column, third row) and Fig. 2D]. Like with citric
110 acid, batch effects were also found in some of the other conditions considered (e.g. growth under malic acid, Figs. S1,
111 S2).

112 Second, standard parametric growth curve models fail to describe experimental measurements adequately (Fig
113 2A, B), as we have shown previously with both datasets^{19,22,23}. In Fig. 2, we examined the impact of batch and
114 replicate effects on our data by considering how they change parameters estimated from a mixed effects parametric
115 model of population growth³². We focused on calculating μ_{\max} , the maximum instantaneous growth rate attained

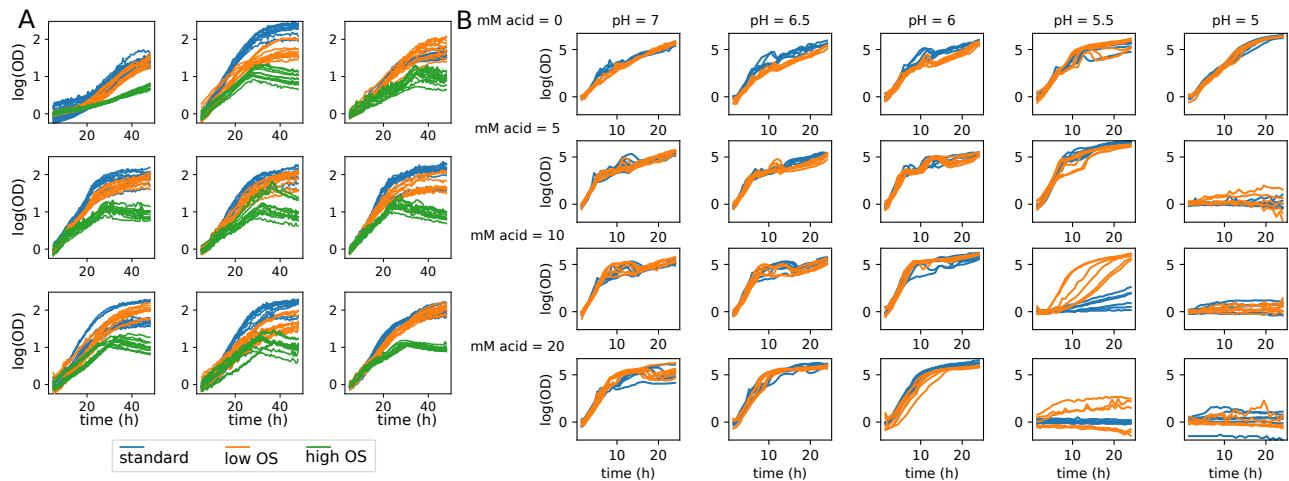


Figure 1: **Batch variation in high throughput phenomics studies.** (A) Population growth measurements of *H. salinarum* under standard conditions (blue), and low (orange) and high (green) levels of OS. Individual measurement curves are replicates and each graph panel is a different batch. (B) Growth of *P. aeruginosa* strain PA01 under gradient of pH (5 — 7) and citric acid (0 — 20 mM). Colors represent different batches.

116 by the population, as this is a commonly used parameter for comparisons between conditions^{19,50}. Variation in μ_{\max}
 117 estimates were observed both on the replicate and batch level, as shown by the kernel density estimates (KDE)
 118 of μ_{\max} for each stress level (Fig. S3). The variance in μ_{\max} is remarkably high: the 95% confidence interval for
 119 μ_{\max} under standard growth is 0.050—0.141, a nearly 3-fold change between the lower and upper interval limits.
 120 Thus, while the t-test conducted on μ_{\max} estimates between standard conditions and each stress level is statistically
 121 significant (Fig S3), it is difficult to conclude: (a) what the true magnitude of the stress effects may be; and (b) to
 122 what degree the variation due to replicate and batch should inform biological conclusions. The error of the logistic
 123 growth model under each PQ condition was also examined. Error increased under high OS (Fig S4). High OS induces
 124 a growth phenotype that deviates heavily from the sigmoidal growth curve assumed in the logistic model as well as
 125 in other commonly used growth models. This leads to a poor fit under the high OS condition as has been shown
 126 previously (Fig S4¹⁹). The residuals under standard, low, and high OS conditions also appear to be dependent. Our
 127 previous work also demonstrated poor fits to the *P. aeruginosa* data using parametric models²³. Taken together, the
 128 initial assessment of these two datasets indicates that: (a) technical variation due to batch and replicate in growth
 129 curve data can be high; and (b) commonly used standard parametric models are not able to adequately capture or
 130 correct for these sources of variability. These sources of error need to be corrected in order to model true growth
 131 behavior and inform biological conclusions from the data.

132 2.2 A hierarchical Bayesian model of functional random effects in microbial growth

133 We previously established the ability of non-parametric Bayesian methods to improve the modeling of growth pheno-
 134 types^{19,22,23}. Here, we describe *phenom*, a fully hierarchical Bayesian non-parametric functional mixed effects model
 135 for population growth data. We highlight the utility of *phenom* to correct for confounding, random effects in growth

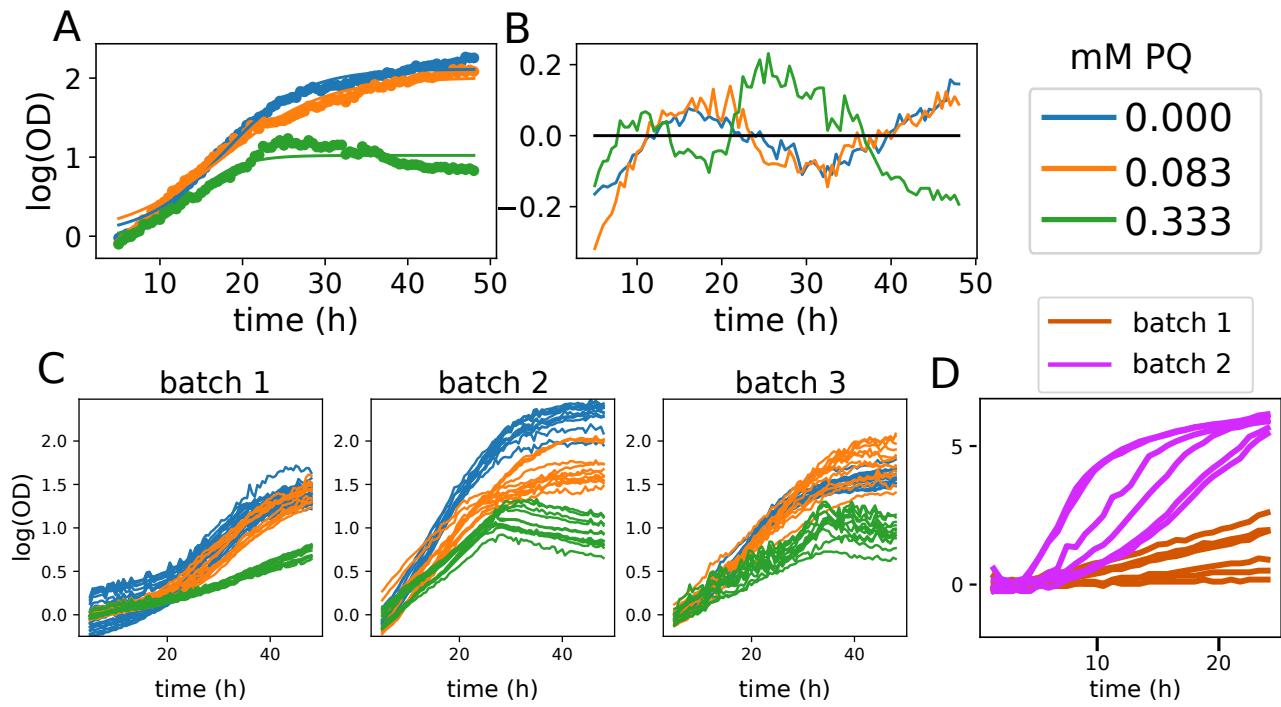


Figure 2: **Batch effects are prevalent in microbial phenomic datasets.** (A) Parametric fits to *H. salinarum* growth curves. (B) Residuals of parametric growth curve fit. (C) Growth of *H. salinarum* under standard conditions (blue), low (orange) and high (green) OS across three batches. (D) Measurement of *P. aeruginosa* growth under 10mM citric acid at 5.5 pH. Measurements for each condition vary significantly with batch.

136 phenotypes.

137 In order to model both biological and technical variation in microbial growth (Fig 3), we first assume that a
 138 set of population growth measurements are driven by an (unobserved) population curve $\mu(t)$ (Fig 3A, blue curve)
 139 of unknown shape. For example, $\mu(t)$ might represent the average growth behavior of an organism under standard
 140 conditions. This mean growth behavior may be altered by a treatment effect, represented by an additional unknown
 141 curve $\delta(t)$ (Fig 3A, orange curve). For example $\delta(t)$ may represent the effects on growth induced by low or high
 142 levels of OS (Fig 2A). The average growth behavior of a population under stress conditions would then be described
 143 by the curve $f(t) = \mu(t) + \delta(t)$.

When considering a combinatorial experimental design, such as that described for *P. aeruginosa* growth (Fig. 1B), we model independent effects of different treatments as well as their interaction via the form:

$$y(t, i, j) = \mu(t) + \alpha_i(t) + \beta_j(t) + (\alpha\beta)_{i,j}(t). \quad (1)$$

144 Here, $y(t, i, j)$ denotes the observed population size at time t with treatments i and j of two independent stress
 145 conditions. Additionally, $\alpha_i(t)$ and $\beta_j(t)$ are the independent effects of each stress condition, and $(\alpha\beta)_{i,j}(t)$ is their
 146 interaction. This model corresponds to a functional analysis of variance⁵¹, which we have previously used to estimate
 147 independent and interaction effects of microbial genetics and stress²². Here, we consider the interaction of the two

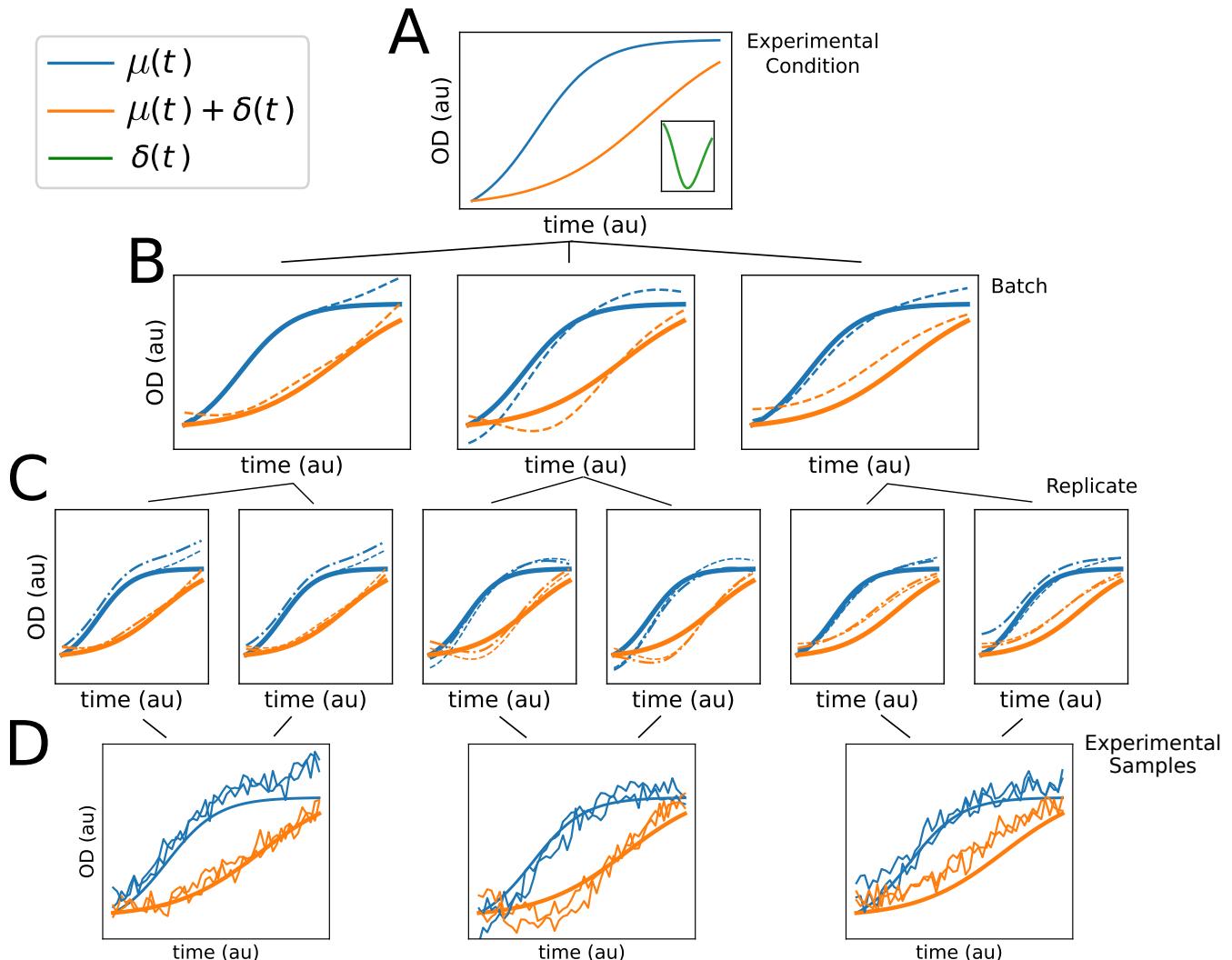


Figure 3: Hierarchical model of functional data. Representative diagram of hierarchical variation present in microbial growth data. Each tier of graphs represents a different variation source, and lines indicate relationship between them: experimental condition is the true growth behavior of interest, with the condition repeated across batches, and replicates repeated within each batch. (A) Functional phenotypes $\mu(t)$ (blue), $\mu(t) + \delta(t)$ (orange), and $\delta(t)$ (green curve in inset). (B) Batch effects on $\mu(t)$ and $\mu(t) + \delta(t)$. Each plot is a different batch, solid lines are the true functions as in (A), and the dashed lines are the observed batch effect of $\mu(t)$ and $\mu(t) + \delta(x)$ for the corresponding batch. (C) Replicate effect within batches. Each axis is a different replicate, solid and dashed lines as in (B), dotted-dashed line is the observed replicate function. (D) Observations from the model described in (A-C). Each curve is sampled with a mean drawn from the global mean, with added batch and replicate effects (dotted-dashed lines in C) and *iid* observation noise. Each axis is a different batch. The smooth solid lines are the true functions $\mu(t)$ and $\mu(t) + \delta(t)$ in (A).

148 stress conditions as well as random functional effects in the model.

149 Variability around these fixed effect growth models is described by additional, random curves associated with two
150 major sources of variation: *batch* and *replicate* (Fig 3B,C). Batches correspond to a single high-throughput growth
151 experiment and replicates are the individual curve observations within a batch. Using *phenom* throughout this study,
152 we only compare replicates that are contained within the same batch. This is due to the nested structure between
153 batch and replicates (Fig 3). Noise due to both replicate and batch do not appear to be independent identically
154 distributed (*iid*), as observed in the correlated residuals around the mean for each experimental variate (Fig. S5A and
155 B). Each observed growth curve is therefore described by a combination of the fixed effects and the corresponding
156 batch and replicate effects (Fig 3D). Both replicate and batch variation are modeled as random effects because the
157 variation due to both sources cannot be replicated, i.e. a specific batch effect cannot be purposefully re-introduced
158 in subsequent experiments. Instead, these variates are assumed to be sampled from a latent super-population⁵².
159 Combining the fixed and random effects, we arrive at a mixed-effects model of microbial phenotypes.

160 We adopted a hierarchical Bayesian framework to model these mixed effects. In this framework, batch effects
161 are described by a shared generative distribution, allowing them to take on distinct values while still pooling across
162 replicates for accurately estimating the generating distribution⁵³. We use Gaussian process (GP) distributions for all
163 groups in the model. GPs are flexible, non-parametric distributions suitable for smooth functions⁵⁴. To assess the
164 impact of incorporating random effects on estimation of the treatment effect of interest, we analyze three models of
165 increasing complexity: M_{null} excludes all hierarchical random effects, M_{batch} incorporates batch variation only, and
166 M_{full} incorporates both batch and replicate variation. These models, collectively called *phenom*, were implemented
167 using the probabilistic programming language Stan⁵⁵, which efficiently traverses the posterior through Hamiltonian
168 Monte Carlo (see Materials and Methods).

169 In order to demonstrate the impact of batch effects on the conclusions drawn from the analysis of microbial
170 growth data, we estimated the latent functions driving both *H. salinarum* and *P. aeruginosa* growth using the M_{null}
171 model of *phenom*, with each batch analyzed separately (Fig 4). This corresponds to the analysis that would be
172 conducted after generating any single set of experiments from a batch, without considering or controlling for batch
173 effects, and therefore provides a test of the impact of ignoring batch effects.

174 For *H. salinarum*, growth data under standard conditions was used to estimate a single mean function, $\mu(t)$
175 (Fig. 4A). Fixed effects for growth under low and high OS was added as $\delta(t)$ (Fig 4B). For the *P. aeruginosa* dataset,
176 batch effects on the interaction between pH and organic acid concentration was represented by a function $(\alpha\beta)_{p,m}(t)$,
177 again estimated non-parametrically (Fig. 4C). However, rather than reporting $(\alpha\beta)_{p,m}(t)$ directly, we report its time
178 derivative, which has the interpretation of instantaneous growth rate rather than absolute amount of growth⁵⁶.

179 Fitting the M_{null} model to each separate batch reveals that the posterior distributions obtained for each function
180 of interest ($\mu(t)$, $\delta(t)$, and $(\alpha\beta)_{p,m}(t)$) are highly variable across batches (Fig. 4). This is observed in both the
181 *H. salinarum* and *P. aeruginosa* datasets, where the experimental conditions, and therefore the underlying true
182 functions, remain constant across batches in each case. Such variability can impact conclusions. For example, in the

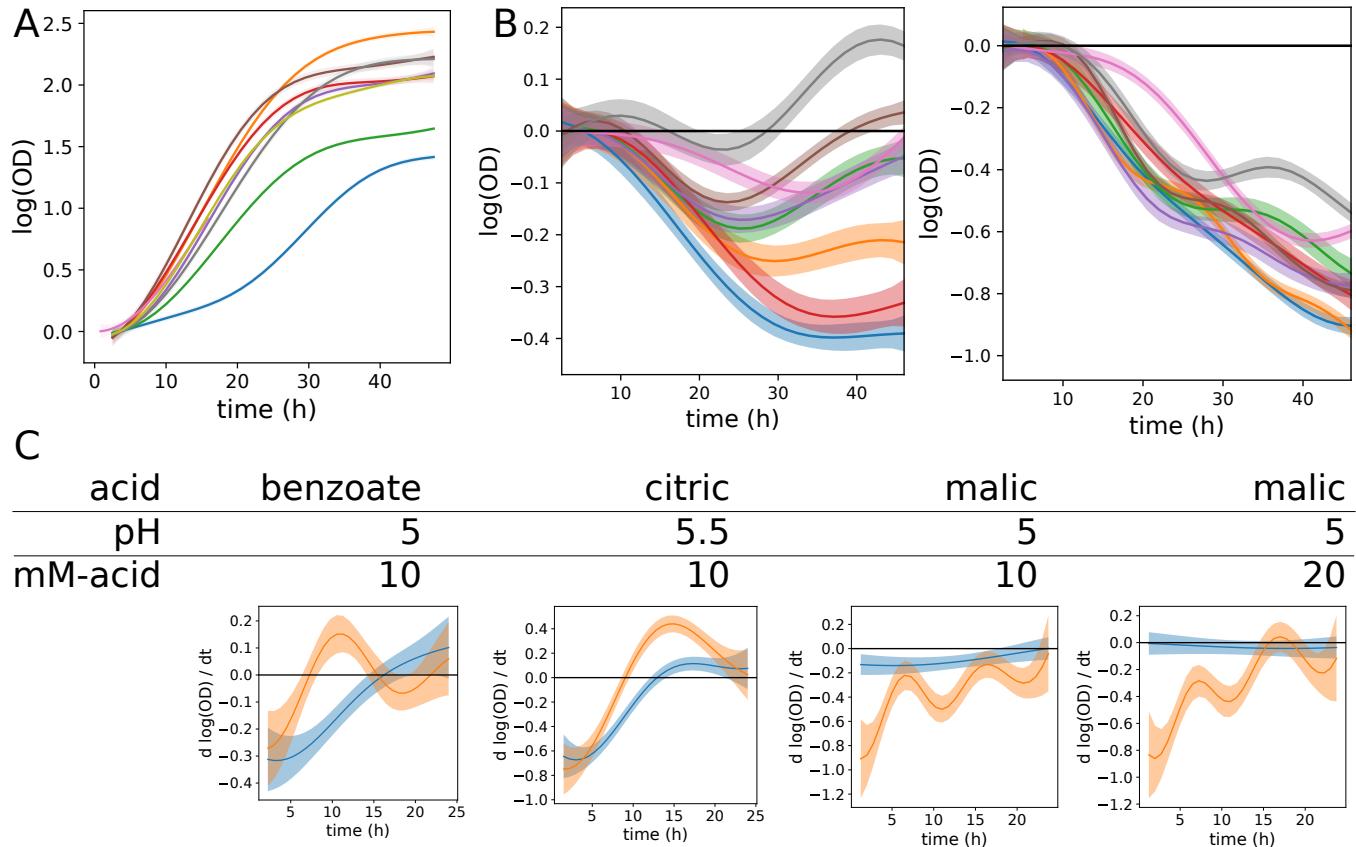


Figure 4: **M_{null} model estimates are confounded by batch effects.** Posterior intervals of functions are shown for different analyses where *phenom* M_{null} was fit using data from each batch separately. In all plots, solid line represents posterior mean, shaded region indicates 95% credible region, and each color corresponds to a different posterior conditioned on data from a single batch. (A) Posterior intervals of $\mu(x)$, the standard growth phenotype of *H. salinarum*. (B) Posterior interval of $\delta(x)$ under low (left) and high (right) OS response of *H. salinarum*. (C) Posterior interval of interaction function $(\alpha\beta)_{p,m}(t)$ for *P. aeruginosa* growth in indicated pH and acid concentration.

183 low OS condition in the *H. salinarum* dataset, both the statistical significance of $\delta(t)$ and the sign (improved vs.
184 impaired growth) differs between batches (Fig 4B, left). A similar batch variability was observed under high OS, but
185 due to the stronger effect of the stress perturbation, estimates of $\delta(t)$ are less affected by batch and replicate variation
186 (Fig 4B, right). Similarly, the batch variability observed in the raw *P. aeruginosa* growth data (Fig. 1B) results
187 in significantly different posterior estimates of the interaction effect $(\alpha\beta)_{p,m}(t)$ across batches (Fig. 4C). Differences
188 observed include the timing and length of negative growth impact (benzoate and citric acid), and completely opposite
189 effects with either strong or no interaction (malic acid). In addition, the posterior variance of each function, which
190 indicates the level of uncertainty remaining, is low for each batch modeled separately. This indicates high confidence
191 in the estimated function despite observed differences across batches. These analyses suggest that use of a single
192 experimental batch leads to overconfidence in explaining the true underlying growth behavior.

193 2.3 Hierarchical models correct for batch effects in growth data

194 To demonstrate the use of *phenom* to combat the impact of batch effects on growth curve analysis, we combined data
195 across all batches and performed the analysis using each of the M_{null} , M_{batch} , and M_{full} models (Fig. 5). Estimates
196 of $\mu(t)$ between each model were largely similar, likely due to the abundance of data present to estimate this variable
197 (Fig. S6). Instead, we focus on the estimates of $\delta(t)$ for low and high OS response of *H. salinarum* (Fig. 5A) and the
198 interaction $(\alpha\beta)_{p,m}$ between pH and OA concentration effects on *P. aeruginosa* growth (Fig. 5C).

199 Growth impairment in the presence of low OS relative to standard conditions (i.e. $\delta(t)$) is estimated to be
200 significant during the time points of $\sim 10 - 40$ hours under M_{null} . In contrast, only time points $\sim 20 - 40$ are
201 significantly non-zero under M_{batch} (Fig. 5A, left). Although M_{full} and M_{null} exhibit similar regions of time where
202 effects are significant, uncertainty is higher (confidence bands wider) when batch and replicate effects are taken
203 into account (M_{full}). Given the stronger stress effect in the high OS condition (Fig. 5A, right), estimates of $\delta(t)$
204 were significantly non-zero under all three models, with only minor differences between the three model estimates.
205 Importantly, we note that the posterior interval of $\delta(t)$ under M_{null} for low OS does not include the best approximation
206 of the true function (the posterior mean of $\delta(t)$ under M_{full}) for greater than 80% of the time course (Fig. 5B). Taken
207 together, these results suggest that certain time points where $\delta(t)$ is concluded to be non-zero under M_{null} may be
208 inaccurate, especially for stress conditions with modest effects on growth phenotype.

209 The impact of modeling hierarchical variation on estimating interaction effects in *P. aeruginosa* growth was
210 condition dependent (Fig. 5C). Across conditions, however, a decrease in posterior certainty on the true shape of
211 the underlying function was again observed under M_{batch} and M_{full} . For example, the interaction between benzoate
212 and pH became less pronounced under M_{full} . Similarly, the models of $(\alpha\beta)_{p,m}(t)$ under citric and malic acid showed
213 shrinkage toward zero under M_{batch} and M_{full} . Such shrinkage is a common observance in hierarchical modeling⁵³.
214 Taken together, these results for *P. aeruginosa* extend those previously published²³, which only included analysis
215 using the M_{null} model.

216 For both *H. salinarum* response to OS and *P. aeruginosa* growth under pH and OA exposure, an increase in

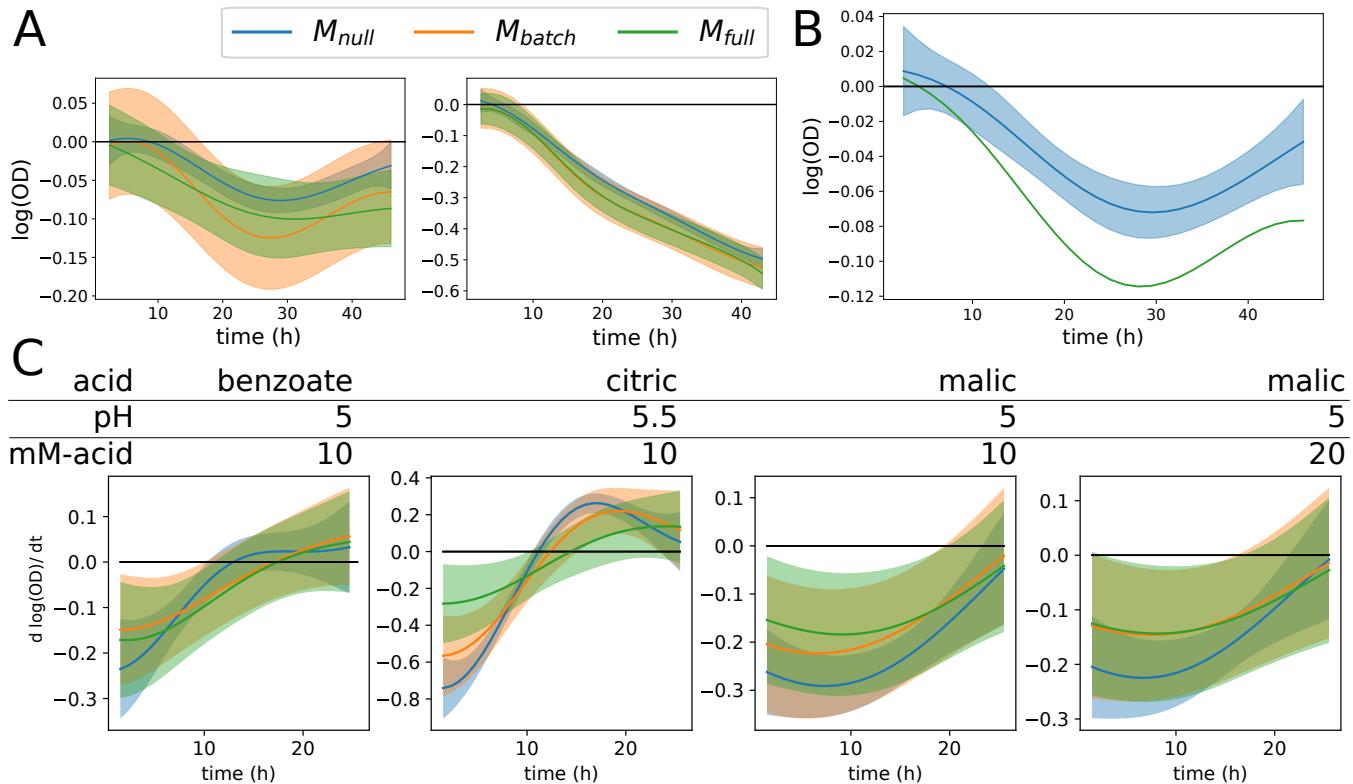


Figure 5: **Hierarchical models of growth control for batch effects.** Posterior intervals of functions estimated by models of increasing hierarchical complexity: M_{null} (blue), M_{batch} (orange), and M_{full} (green). Solid line indicates posterior mean and shaded regions indicate 95% credible regions. (A) Posterior interval of $\delta(x)$ for low (left) and high (right) OS response by *H. salinarum*. (B) Posterior interval of $\delta(x)$ under M_{null} (blue shaded region) compared to the posterior mean of M_{full} (green line). (C) Posterior interval of interaction function $(\alpha\beta)_{p,m}(t)$ for *P. aeruginosa* growth in indicated pH and organic acid concentration.

217 posterior variance was observed under M_{batch} and M_{full} compared to M_{null} (Fig S7). However, posterior variance
218 of $\delta(t)$ in the *H. salinarum* OS response was higher under M_{batch} compared to M_{full} . In this case, controlling for
219 replicate effects appears to increase the signal needed to identify $\delta(t)$. In contrast, these variances are equal in the
220 *P. aeruginosa* data, indicating that the relative improvement in variance afforded by modeling batch vs. replicate
221 effects may be dataset dependent.

222 2.4 Variance components demonstrate the importance of controlling for batch effects.

223 Variance components, which correspond to the estimated variance of each effect in the model, can be used to compare
224 the impact each group has on the process of interest²⁴. To better understand sources of variability in growth curve
225 studies, we used *phenom* to estimate the variance components for each dataset above. In our hierarchical non-
226 parametric setup, these variance components are the variance hyperparameters (e.g. σ^2) of the Gaussian process
227 kernels for each fixed and random effect group. These parameters control the magnitude of function fluctuations
228 modeled by the GP distribution. Larger variance implies higher effect sizes and therefore a larger impact on the
229 observations.

230 We show the value of variance components by considering the effects identified by M_{full} for *H. salinarum* under
231 low OS (Fig. 6). The variance of the data is partitioned between the mean growth ($\mu(t)$), the OS ($\delta(t)$), batch effects
232 (batch curves of $\mu(t)$ and $\delta(t)$), biological noise (e.g. replicate variability) and instrument noise (σ_y^2). This analysis
233 confirms that batch effects, compared to the other sources of experimental variability in the dataset (replicate noise
234 and measurement error), are between 2 to 10 times more impactful on the phenotype measurements. Additionally,
235 variance components enable comparisons between the experimental and treatment factors in the data. Of particular
236 note is that the variance of the treatment of interest, $\delta(t)$, and the batch effects are similar in magnitude, at least
237 in the case of a low-magnitude stress such as 0.083 PQ for *H. salinarum*. This suggests that proper modeling of
238 this treatment requires both sufficient batch replication and accurate modeling of batch effects in those data. Future
239 studies of similar phenotypes can be guided by these estimates in experimental design, choosing an appropriate
240 batch replication for the degree of noise expected⁵⁷. However, the extent of replication required may depend upon
241 the dataset (factorial design, treatment severity, etc). Taken together, variance components provide an aggregated
242 view of the contribution by various factors and guide future experimentation.

243 3 Discussion

244 We have provided a framework to test and control for random effects in microbial growth data using the hierarchical
245 non-parametric Bayesian model, *phenom* (Fig. 3). Analysis with *phenom* indicates that random effects (both batch
246 and replicate) appear in the two microbial population growth datasets studied here, and constitute significant portions
247 of the variability (Fig. 1). Failure to correct for these effects confounds the interpretation of growth phenotypes
248 for factors of interest in a large scale phenotyping analysis (Fig. 4). *phenom* controls for these random effects and

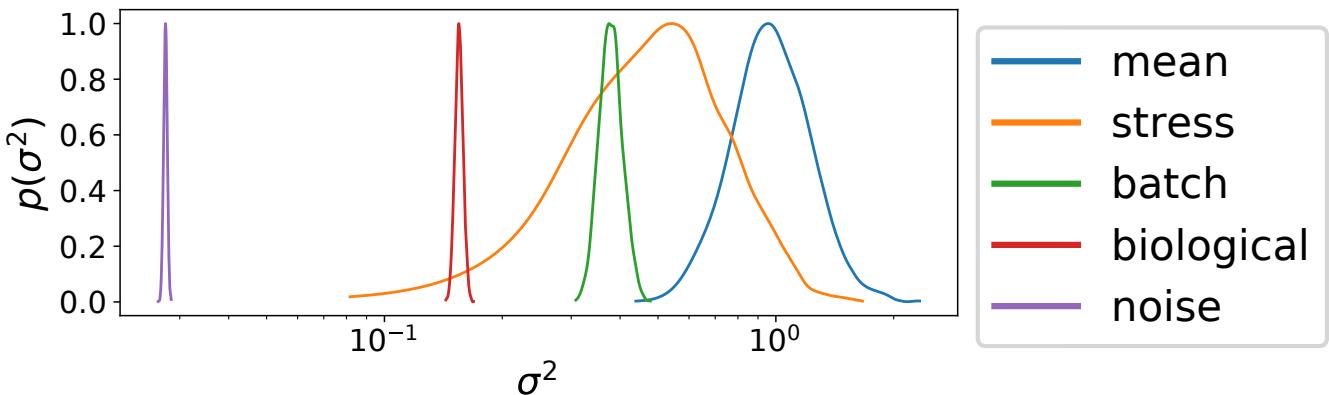


Figure 6: **Posterior variance components in the *phenom* hierarchical phenotype model.** Posterior intervals are shown for the kernel variance hyperparameter for different groups of effects from *phenom* estimated on *H. salinarum* growth under low OS. Groups correspond to $\mu(t)$ (mean), $\delta(t)$ (stress), batch effects (batch), replicate noise (biological), and measurement error (noise).

249 provides accurate estimates of the growth behavior of interest (Fig. 5). Additionally, *phenom* can be used to estimate
 250 variance components, providing information about the relative impact of various sources of noise in the data (Fig. 6).
 251 Controlling for batch effects in these datasets was therefore key to making accurate biological conclusions.

252 Related fields of functional genomics, such as transcriptomics, have seen considerable interest in controlling for
 253 different experimental sources of variation, broadly labeled as batch effects^{28,57–62}. These studies have shown that
 254 differences between batches first need to be corrected to avoid erroneous conclusions⁶³. Here we have shown that,
 255 like in transcriptomics data, controlling for sources of variation in phenomics data - particularly due to batch - are
 256 an important step in making accurate biological conclusions regarding population growth.

257 *phenom* establishes a complete and general method of controlling batch effects in microbial growth phenotypes,
 258 overcoming significant weaknesses of previously developed techniques. In reference [19] we identified and corrected
 259 for batch effects in a single transcription factor mutant's stress response, but this model did not provide an explicit
 260 deconstruction of batch effects between different factors (e.g. strain and stress) and could therefore not determine
 261 which factors were most strongly impacted by batch effects. Moreover, this approach utilized a standard GP regression
 262 framework, but the standard framework has well-established limitations on dataset size, limiting its applicability to
 263 the large datasets we consider here. In reference [22] we described a functional ANOVA model for microbial growth
 264 phenotypes, which corresponds to the M_{null} model in the *phenom* case. Again, a global batch effects term was
 265 included but individual batch effects were not modeled, and the computational approach utilized (Gibbs sampling)
 266 was prohibitively slow for the complete *phenom* model.

267 Although we focus here on replicate and batch variation, the *phenom* model is easily extended to incorporate
 268 alternative or additional random and fixed effects appropriate for settings with other sources of variation. For exam-
 269 ple, depending on the experimental design, *phenom* could control for variation among labs, experimental material,
 270 culture history, or genetic background^{25,64–70}. *phenom* flexibly incorporates additional sources of variation and/or

271 interaction between design variables, as demonstrated with the two different designs analyzed for *H. salinarum* and
272 *P. aeruginosa* here. This flexibility allows *phenom* to be applied to control for many sources of technical varia-
273 tion within microbial population growth data, thereby improving the analysis and resulting conclusions regarding
274 quantitative microbial phenotypes.

275 4 Materials and Methods

276 4.1 Experimental Growth Data

277 *H. salinarum* growth was performed as described previously²². Briefly, starter cultures of *H. salinarum* NRC-1
278 Δ ura3 control strain⁷¹ were grown at 42°C with shaking at 225 r.p.m. to an optical density at 600 nm (OD₆₀₀)
279 \sim 1.8 – 2.0 in 3 mL of Complete Medium (CM; 250 NaCl, 20 g/l MgSO₄•7H₂O, 3 g/l sodium citrate, 2 g/l KCl, 10
280 g/l peptone) supplemented with uracil (50 μ g/ml). Cultures were then diluted to OD₆₀₀ \sim 0.05 in a high throughput
281 microplate reader (Bioscreen C, Growth Curves USA, Piscataway, NJ), and growth was monitored automatically by
282 OD₆₀₀ every 30 minutes for 48 hours at 42°C. High and low levels of OS were induced by adding 0.333 mM and
283 0.083 mM of paraquat to the media, respectively, at culture inoculation.

284 For *P. aeruginosa*, laboratory strain PAO1 (ATCC 15692) was grown as described in reference [23]. Briefly,
285 cultures were grown in M9 minimal media supplemented with 0.4% (w/v) glucose and 0.2% (w/v) casamino acids
286 and buffered with 100 mM each of MES and MOPS buffers. Population growth was measured with a CLARIOstar
287 automated microplate reader (BMG Labtech) at 37°C with 300 rpm continuous shaking. The OD₆₀₀ was recorded
288 automatically every 15 minutes for a total of 24 hours. A full factorial design of pH and OA concentration was
289 performed for benzoate, citric acid, and malic acid. An experimental batch corresponded to two repetitions of the
290 experiment on separate days with a minimum of three biological replicates of each condition on each day. Two
291 batches for each OA were performed.

292 All data generated or analysed during this study are included in this published article (see supplementary infor-
293 mation files).

294 4.2 Parametric growth curve estimation

295 For comparison with our non-parametric methods, parametric growth curve models were estimated using the grofit
296 package in R with default parameters⁷². The logistic model was used to fit each curve. Kernel density estimates of
297 parameter distributions were calculated with the scipy package with default kernel bandwidth parameters⁷³.

298 **4.3 *phenom*: a hierarchical Gaussian process model of microbial growth**

299 **4.3.1 Gaussian Processes**

A Gaussian process (GP) defines a non-parametric distribution over functions $f(t)$, defined by the property that any finite set of observations of f follow a multivariate normal distribution⁵⁴. A GP is fully defined by a mean function $m(t)$ and a covariance function $\kappa(t, t')$:

$$f(t) \sim GP\left(m(t), \kappa(t, t')\right). \quad (2)$$

GPs are commonly used for non-parametric curve fitting⁵⁴ where $m(t)$ is typically set to 0, which we do here. Similarly, we use a common choice for covariance function defined by a radial basis function (RBF) kernel:

$$\kappa(t, t') = \sigma^2 \cdot \exp\left(\frac{-|t - t'|^2}{\ell}\right), \quad (3)$$

300 where σ^2 is the variance and ℓ is the length-scale. The parameter σ^2 controls the overall magnitude of fluctuation in
 301 the population of functions described in the GP distribution, while ℓ controls the expected smoothness, with larger ℓ
 302 making smoother, slower varying functions more likely. In the process of non-parametric modeling of growth curves,
 303 these parameters are adaptively estimated from the dataset.

304 **4.3.2 Fixed effects**

We first define the fixed effects models used in this study; these will be augmented with random effects in the next section. We consider fixed effects models of increasing complexity: a mean growth phenotype, a single treatment phenotype, and a combinatorial phenotype with interactions between treatments. All of these models fall under the functional analysis of variance (ANOVA) framework^{22,74}. To estimate a mean growth profile, as in the case of measuring a single condition, a mean function $\mu(t)$ is estimated from the data by modeling each replicate $y_r(t)$ for $1 \leq r \leq R$ as consisting of an unknown mean function observed with additive noise:

$$y_r(t) = \mu(t) + \epsilon_r(t), \quad (4)$$

305 where $\mu(t) \sim GP(0, \kappa_\mu(t, t'))$ provides a prior distribution over μ , and κ_μ is an RBF kernel with hyperparameters
 306 $\{\sigma_\mu^2, \ell_\mu\}$. Here $\epsilon_r(t) \sim N(0, \sigma_y^2 I)$ is Gaussian white noise.

When estimating the effect of a perturbation on growth, as in the case of OS, we add a second function $\delta(t)$ that represents the effect of the stress being considered. The model then becomes

$$y_r(t) = \begin{cases} \mu(t) + \epsilon_r(t) & \text{if standard growth} \\ \mu(t) + \delta(t) + \epsilon_r(t) & \text{otherwise,} \end{cases} \quad (5)$$

307 where $\delta(t) \sim GP(0, \kappa_\delta(t, t'))$ also follows a GP prior independently of μ , and κ_δ has hyperparameters $\{\sigma_\delta^2, \ell_\delta\}$.

When incorporating possible interaction effects such as those between pH and organic acids in the *P. aeruginosa* dataset, the model becomes

$$y_r(t, p, m) = \begin{cases} \mu(t) + \epsilon_r(t), & \text{if } p = 7 \text{ and } m = 0 \\ \mu(t) + \alpha_p(t) + \epsilon_r(t), & \text{if } p \neq 7 \text{ and } m = 0 \\ \mu(t) + \beta_m(t) + \epsilon_r(t), & \text{if } p = 7 \text{ and } m \neq 0 \\ \mu(t) + \alpha_p(t) + \beta_m(t) + (\alpha\beta)_{p,m}(t) + \epsilon_r(t), & \text{otherwise,} \end{cases} \quad (6)$$

for pH p and molar acid concentration m , with $\alpha_p(t)$ representing the main effect of pH, $\beta_m(t)$ the main effect of acid concentration, and $(\alpha\beta)_{p,m}(t)$ the interaction between them. Each effect is drawn from a treatment specific GP prior:

$$\alpha_p(t) \sim GP(0, \kappa_\alpha(t, t')) \quad (7)$$

$$\beta_m(t) \sim GP(0, \kappa_\beta(t, t')) \quad (8)$$

$$(\alpha\beta)_{p,m}(t) \sim GP(0, \kappa_{\alpha\beta}(t, t')). \quad (9)$$

308 Again, each covariance function is specified by a RBF kernel with corresponding variance and lengthscale hyperparameters that adapt to the observed data. All models in this section correspond to M_{null} for their respective analyses, 309 as they do not include any random effects.

311 4.3.3 Random effects

The first random effects added to the model were those used to account for batch effects, in the model M_{batch} . Under this model, each fixed functional effect becomes the mean of a GP describing the population of possible batch-specific mean curves. For example, under the model of mean growth behavior (Eq. 4), replicate r from batch i is modeled as

$$y_{i,r}(t) = \mu_i(t) + \epsilon_{i,r}(t), \quad (10)$$

312 where μ_i is the batch mean drawn from $\mu_i(t) \sim GP(\mu(t), \kappa_{\mu, \text{batch}}(t, t'))$ with kernel $\kappa_{\mu, \text{batch}}$ and $\epsilon_{i,r}(t) \sim N(0, \sigma_y^2 I)$.
 313 Other M_{null} models are converted to M_{batch} similarly, with each fixed effect becoming a mean of a GP prior for each
 314 batch effect. M_{full} develops the hierarchy one step deeper by adding replicate effects to M_{batch} . Specifically, the
 315 error model $\epsilon_{i,r}$ is now described by a GP: $\epsilon_{i,r} \sim GP(0, \kappa_y(t, t'))$ with corresponding hyperparameters, accounting
 316 for replicate-specific variability rather than simply white noise.

317 **4.3.4 Inference**

318 As noted above, each group GP prior is specified by its own RBF kernel with corresponding variance and length-scale
319 parameters ($\theta_l = \{\sigma_l^2, \ell_l\}$). For each group, σ_l^2 is assigned a $\text{Gamma}(\alpha, \beta)$ prior and ℓ_l a conjugate inverse-Gamma
320 prior, with user-defined hyperparameters. Noise variance σ_y^2 was also assigned a gamma prior. Bayesian inference
321 was then performed, with the posterior distribution obtained by sampling using Markov chain Monte Carlo (MCMC)
322 implemented with the Stan library, which uses a Hamiltonian Monte-Carlo procedure with No-U-turn sampling⁵⁵.
323 Multiple chains were run to diagnose convergence, with all parameter posterior means confirmed to have converged
324 within $\hat{R} < 1.1$ as recommended⁷⁵.

325 **4.4 Data and Code Availability**

326 All code for this study is available at <https://github.com/ptonner/phenom>. Raw growth data are available for *H.*
327 *salinarum* in reference [22] and at https://github.com/ptonner/hsalinarum_tf_phenotype. Raw growth data are
328 available for *P. aeruginosa* in reference [23] and at <https://github.com/amyschmid/pseudomonas-organic-acids>.

329 **5 Acknowledgements**

330 **5.1 Funding**

331 This study was funded by National Science foundation grants DMS-1407622 to SCS; NSF-MCB-1615685, -1651117,
332 and -1642283 to AKS; NSF Graduate Research Fellowship to PDT. Research on this project in PAL's laboratory was
333 supported by grant number BB/K019171/1 from the UK Biotechnology and Biological Sciences Research Council.

334 **5.2 Author Contributions**

335 PT, AS, PL, and SS conceived of the study. AS, SS, PL directed and provided oversight, training, and funding for
336 the study. PT performed analysis and generated software. CD and FB performed experiments. PT, AS, and SS
337 wrote the manuscript. All authors contributed to the final draft.

338 **References**

- 339 1. Darnell, C. L. & Schmid, A. K. Systems biology approaches to defining transcription regulatory networks in
340 halophilic archaea. *Methods. Bacterial and Archaeal Transcription* **86**, 102–114 (Sept. 2015).
- 341 2. Woodruff, L. B. A., Boyle, N. R. & Gill, R. T. Engineering improved ethanol production in *Escherichia coli*
342 with a genome-wide approach. *Metabolic Engineering* **17**, 1–11 (May 2013).

343 3. Aryani, D. C., den Besten, H. M. W., Hazeleger, W. C. & Zwietering, M. H. Quantifying strain variability
344 in modeling growth of *Listeria monocytogenes*. *International Journal of Food Microbiology* **208**, 19–29 (Sept.
345 2015).

346 4. Gray, A. N. *et al.* High-throughput bacterial functional genomics in the sequencing era. *Curr. Opin. Microbiol.*
347 **27**, 86–95 (2015).

348 5. Peters, J. M. *et al.* A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. *Cell*
349 **165**, 1493–1506 (2016).

350 6. Koo, B. M. *et al.* Construction and Analysis of Two Genome-Scale Deletion Libraries for *Bacillus subtilis*. *Cell*
351 *Syst* **4**, 291–305 (2017).

352 7. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection.
353 *Mol. Syst. Biol.* **2**, 2006.0008 (2006).

354 8. Schaechter, M. From growth physiology to systems biology. *International Microbiology: The Official Journal of*
355 *the Spanish Society for Microbiology* **9**, 157–161 (Sept. 2006).

356 9. Egli, T. Microbial growth and physiology: a call for better craftsmanship. *Frontiers in Microbiology* **6** (Apr.
357 2015).

358 10. Neidhardt, F. C. Apples, oranges and unknown fruit. *Nature Reviews Microbiology* **4**, 876–876 (Dec. 2006).

359 11. Zwietering, M. H., Jongenburger, I., Rombouts, F. M. & van 't Riet, K. Modeling of the Bacterial Growth
360 Curve. *Applied and Environmental Microbiology* **56**, 1875–1881 (June 1990).

361 12. Pouillot, R., Albert, I., Cornu, M. & Denis, J.-B. Estimation of uncertainty and variability in bacterial growth
362 using Bayesian inference. Application to *Listeria monocytogenes*. *International Journal of Food Microbiology*
363 **81**, 87–104 (Mar. 2003).

364 13. Nauta, M. J. Separation of uncertainty and variability in quantitative microbial risk assessment models. *International*
365 *Journal of Food Microbiology* **57**, 9–18 (June 2000).

366 14. Aryani, D. C., Besten, H. M. W. d. & Zwietering, M. H. Quantifying Variability in Growth and Thermal
367 Inactivation Kinetics of *Lactobacillus plantarum*. *Applied and Environmental Microbiology* **82**, 4896–4908 (Aug.
368 2016).

369 15. Lianou, A. & Koutsoumanis, K. P. Strain variability of the behavior of foodborne bacterial pathogens: A review.
370 *International Journal of Food Microbiology* **167**, 310–321 (Nov. 2013).

371 16. Arroyo-Lpez, F. N., Orli, S., Querol, A. & Barrio, E. Effects of temperature, pH and sugar concentration on
372 the growth parameters of *Saccharomyces cerevisiae*, *S. kudriavzevii* and their interspecific hybrid. *International*
373 *journal of food microbiology* **131**, 120–127 (May 2009).

374 17. Liu, B., Liu, H., Pan, Y., Xie, J. & Zhao, Y. Comparison of the Effects of Environmental Parameters on the
375 Growth Variability of *Vibrio parahaemolyticus* Coupled with Strain Sources and Genotypes Analyses. *Frontiers*
376 in *Microbiology* **7** (June 2016).

377 18. Carlin, F. *et al.* Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation
378 in the *Bacillus cereus* Group. Consequences for risk assessment. *Food Microbiology* **33**, 69–76 (Feb. 2013).

379 19. Tonner, P. D., Darnell, C. L., Engelhardt, B. E. & Schmid, A. K. Detecting differential growth of microbial
380 populations with Gaussian process regression. *Genome Research* **27**, 320–333 (Nov. 2017).

381 20. Peleg, M. & Corradini, M. Microbial growth curves: what the models tell us and what they cannot. *Critical*
382 *Reviews in Food Science and Nutrition* **51**, 917–945 (Dec. 2011).

383 21. Peleg, M., Normand, M. D. & Corradini, M. G. The Arrhenius Equation Revisited. *Critical Reviews in Food*
384 *Science and Nutrition* **52**, 830–851 (Sept. 2012).

385 22. Darnell, C. L., Tonner, P. D., Schmidler, S. & Schmid, A. K. Systematic discovery of archaeal transcription
386 factor functions in regulatory networks through quantitative phenotyping analysis. *mSystems* **2**, e00032–17
387 (2017).

388 23. Bushell, F. M. L., Tonner, P. D., Jabbari, S., Schmid, A. K. & Lund, P. A. Synergistic Impacts of Organic Acids
389 and pH on Growth of *Pseudomonas aeruginosa*: A Comparison of Parametric and Bayesian Non-parametric
390 Methods to Model Growth. *Frontiers in Microbiology* **9**, 3196 (2019).

391 24. Searle, S., Casella, G. & McCulloch, C. *Variance Components* (Wiley, 1992).

392 25. Van Derlinden, E., Lule, I., Boons, K. & Van Impe, J. On the influence of the experimental set-up on the
393 heterogeneous heat response of *E. coli* K12. *Procedia Food Science. 11th International Congress on Engineering*
394 *and Food (ICEF11)* **1**, 1067–1072 (Jan. 2011).

395 26. Churchill, G. A. Fundamentals of experimental design for cDNA microarrays. *Nature Genetics* **32**, 490–495
396 (Dec. 2002).

397 27. Baryshnikova, A. *et al.* Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. *En.*
398 *Nature Methods* **7**, 1017 (Dec. 2010).

399 28. Leek, J. T. *et al.* Tackling the widespread and critical impact of batch effects in high-throughput data. *Nature*
400 *Reviews Genetics* **11**, 733, 733+ (Oct. 2010).

401 29. Fisher, R. A. XV. The Correlation between Relatives on the Supposition of Mendelian Inheritance. *Transactions*
402 *of the Royal Society of Edinburgh* **52**, 399433 (1919).

403 30. Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large
404 genetic association studies. *Nature Genetics* **36**, 512 (2004).

405 31. Spor, A. *et al.* Hierarchical bayesian modelling for *Saccharomyces cerevisiae* population dynamics. *International*
406 *Journal of Food Microbiology* **142**, 25–35 (2010).

407 32. Heydari, J., Lawless, C., Lydall, D. A. & Wilkinson, D. J. Bayesian hierarchical modelling for inferring genetic
408 interactions in yeast. *Journal of the Royal Statistical Society. Series C, Applied Statistics* **65**, 367–393 (Apr.
409 2016).

410 33. Reimherr, M. & Nicolae, D. Estimating Variance Components in Functional Linear Models With Applications
411 to Genetic Heritability. *Journal of the American Statistical Association* **111**, 407–422 (Jan. 2016).

412 34. Ng, W. V. *et al.* Genome sequence of *Halobacterium* species NRC-1. *Proceedings of the National Academy of
413 Sciences* **97**, 12176–12181 (Oct. 2000).

414 35. Bonneau, R. *et al.* A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell. *Cell*
415 **131**, 1354–1365 (Dec. 2007).

416 36. Brooks, A. N. *et al.* A system-level model for the microbial regulatory genome. *Molecular Systems Biology* **10**,
417 740 (July 2014).

418 37. Imlay, J. A. Pathways of oxidative damage. *Annual Review of Microbiology* **57**, 395–418 (2003).

419 38. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model
420 bacterium. *Nature Reviews Microbiology* **11**, 443–454 (May 2013).

421 39. Wu, Y., Vuli, M., Keren, I. & Lewis, K. Role of oxidative stress in persister tolerance. *Antimicrobial Agents and
422 Chemotherapy* **56**, 4922–4926 (Sept. 2012).

423 40. Tonner, P. D., Pittman, A. M. C., Gulli, J. G., Sharma, K. & Schmid, A. K. A Regulatory Hierarchy Controls
424 the Dynamic Transcriptional Response to Extreme Oxidative Stress in Archaea. *PLoS Genet* **11**, e1004912
425 (Jan. 2015).

426 41. Sharma, K., Gillum, N., Boyd, J. L. & Schmid, A. The RosR transcription factor is required for gene expression
427 dynamics in response to extreme oxidative stress in a hypersaline-adapted archaeon. *BMC genomics* **13**, 351
428 (2012).

429 42. Kaur, A. *et al.* Coordination of frontline defense mechanisms under severe oxidative stress. *Molecular Systems
430 Biology* **6**, 393 (July 2010).

431 43. Soppa, J. From genomes to function: haloarchaea as model organisms. *Microbiology* **152**, 585–590 (Mar. 2006).

432 44. Halstead, F. D. *et al.* The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Rele-
433 vance to Burns Patients. *PLoS ONE* **10**, e0136190 (2015).

434 45. Mira, N. P. & Teixeira, M. C. *Microbial mechanisms of tolerance to weak acids: an overview* Google-Books-ID:
435 jC9RBQAAQBAJ (Frontiers E-books, Nov. 2014).

436 46. Zakrzewska, A. *et al.* Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the
437 central trade-off between growth rate and cellular robustness. *Molecular Biology of the Cell* **22**, 4435–4446
438 (Nov. 2011).

439 47. Altnta, A., Martini, J., Mortensen, U. H. & Workman, C. T. Quantification of oxidative stress phenotypes based
440 on high-throughput growth profiling of protein kinase and phosphatase knockouts. *FEMS yeast research* **16**,
441 fov101 (Feb. 2016).

442 48. Van Derlinden, E., Lule, I., Bernaerts, K. & Van Impe, J. Quantifying the heterogeneous heat response of
443 *Escherichia coli* under dynamic temperatures. *Journal of Applied Microbiology* **108**, 1123–1135 (Apr. 2010).

444 49. Ihssen, J. & Egli, T. Specific growth rate and not cell density controls the general stress response in *Escherichia*
445 *coli*. *Microbiology* **150**, 1637–1648 (June 2004).

446 50. Beer, K. D., Wurtmann, E. J., Pinel, N. & Baliga, N. S. Model organisms retain an “ecological memory” of
447 complex ecologically relevant environmental variation. *Applied and Environmental Microbiology* **80**, 1821–1831
448 (Mar. 2014).

449 51. Ramsay, J. & Silverman, B. W. *Functional Data Analysis (Springer Series in Statistics)* (Springer, 2005).

450 52. Gelman, A. Analysis of variance — why it is more important than ever. *The Annals of Statistics* **33**, 1–53 (Feb.
451 2005).

452 53. Gelman, A. *et al. Bayesian Data Analysis, Third Edition* 3 edition (Chapman and Hall/CRC, Boca Raton,
453 Nov. 2013).

454 54. Rasmussen, C. E. & Williams, C. K. I. *Gaussian Processes for Machine Learning* (University Press Group
455 Limited, Jan. 2006).

456 55. Carpenter, B. *et al. Stan: A Probabilistic Programming Language*. *Journal of Statistical Software, Articles* **76**,
457 1–32 (2017).

458 56. Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D. J. & Rasmussen, C. E. *Derivative Observations in*
459 *Gaussian Process Models of Dynamic Systems* in *Proceedings of the 15th International Conference on Neural*
460 *Information Processing Systems* (MIT Press, Cambridge, MA, USA, 2002), 1057–1064.

461 57. Hu, J., Coombes, K. R., Morris, J. S. & Baggerly, K. A. The importance of experimental design in proteomic
462 mass spectrometry experiments: some cautionary tales. *Briefings in Functional Genomics & Proteomics* **3**,
463 322–331 (Feb. 2005).

464 58. Nicholson, G. & Holmes, C. A note on statistical repeatability and study design for high-throughput assays.
465 *Statistics in Medicine* **36**, 790–798 (Feb. 2017).

466 59. Mecham, B. H., Nelson, P. S. & Storey, J. D. Supervised normalization of microarrays. *Bioinformatics* **26**,
467 1308–1315 (May 2010).

468 60. Leek, J. T. & Storey, J. D. Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis.
469 *PLoS Genetics* **3**, e161 (2007).

470 61. Ioannidis, J. P. A. Microarrays and molecular research: noise discovery? *Lancet (London, England)* **365**, 454–
471 455 (Feb. 2005).

472 62. Teschendorff, A. E., Zhuang, J. & Widschwendter, M. Independent surrogate variable analysis to deconvolve
473 confounding factors in large-scale microarray profiling studies. *Bioinformatics* **27**, 1496–1505 (June 2011).

474 63. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical
475 Bayes methods. *Biostatistics* **8**, 118–127 (Jan. 2007).

476 64. Delignette-Muller, M. L. & Rosso, L. Biological variability and exposure assessment. *International Journal of
477 Food Microbiology* **58**, 203–212 (July 2000).

478 65. Koutsoumanis, K. P. & Sofos, J. N. Effect of inoculum size on the combined temperature, pH and A_w limits
479 for growth of *Listeria monocytogenes*. *International Journal of Food Microbiology* **104**, 83–91 (Sept. 2005).

480 66. Ryall, B., Eydallin, G. & Ferenci, T. Culture history and population heterogeneity as determinants of bacterial
481 adaptation: the adaptomics of a single environmental transition. *Microbiology and molecular biology reviews:
482 MMBR* **76**, 597–625 (Sept. 2012).

483 67. Jaloustre, S., Guillier, L., Morelli, E., Nol, V. & Delignette-Muller, M. L. Modeling of *Clostridium perfringens*
484 vegetative cell inactivation in beef-in-sauce products: A meta-analysis using mixed linear models. *International
485 Journal of Food Microbiology* **154**, 44–51 (Mar. 2012).

486 68. Cao, R., Francisco-Fernandez, M. & Quinto, E. J. A random effect multiplicative heteroscedastic model for
487 bacterial growth. *BMC Bioinformatics* **11**, 77 (2010).

488 69. Bradley, M. D., Neu, D., Bahar, F. & Welch, R. D. Inter-laboratory evolution of a model organism and its
489 epistatic effects on mutagenesis screens. *Scientific Reports* **6** (Dec. 2016).

490 70. Draper, J. L. *et al.* Fallacy of the Unique Genome: Sequence Diversity within Single *Helicobacter pylori* Strains.
491 *mBio* **8** (Feb. 2017).

492 71. Peck, R. F., Dassarma, S. & Krebs, M. P. Homologous gene knockout in the archaeon *Halobacterium salinarum*
493 with *ura3* as a counterselectable marker. *Mol Microbiol* **35**, 667–76 (2000).

494 72. Kahm, M., Hasenbrink, G., Lichtenberg-Frat, H., Ludwig, J. & Kschischo, M. grofit: Fitting Biological Growth
495 Curves with R. *Journal of Statistical Software, Articles* **33**, 1–21 (2010).

496 73. Jones, E., Oliphant, T., Peterson, P., *et al.* *SciPy: Open source scientific tools for Python* 2001.

497 74. Kaufman, C. G. & Sain, S. R. Bayesian functional ANOVA modeling using Gaussian process prior distributions.
498 *Bayesian Analysis* **5**, 123–149 (Mar. 2010).

499 75. Brooks, S. P. & Gelman, A. General Methods for Monitoring Convergence of Iterative Simulations. *Journal of
500 Computational and Graphical Statistics* **7**, 434–455 (1998).

501 **6 Supplementary Material**

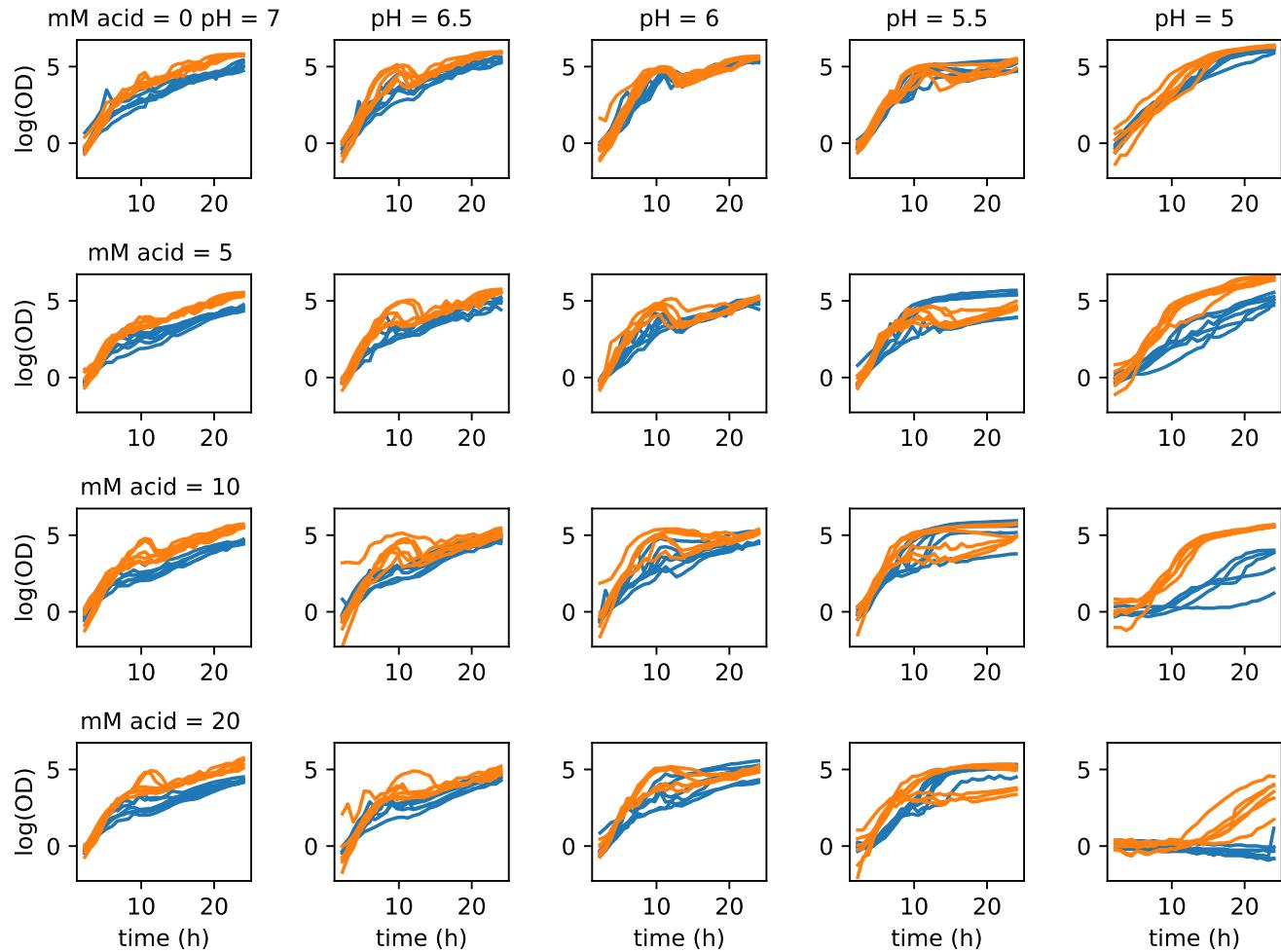


Figure S1: *P. aeruginosa* growth under benzoate and pH gradient. Growth of *P. aeruginosa* strain PA01 under gradient of pH (7 — 5) and benzoate (0 — 20). Colors represent different batches.

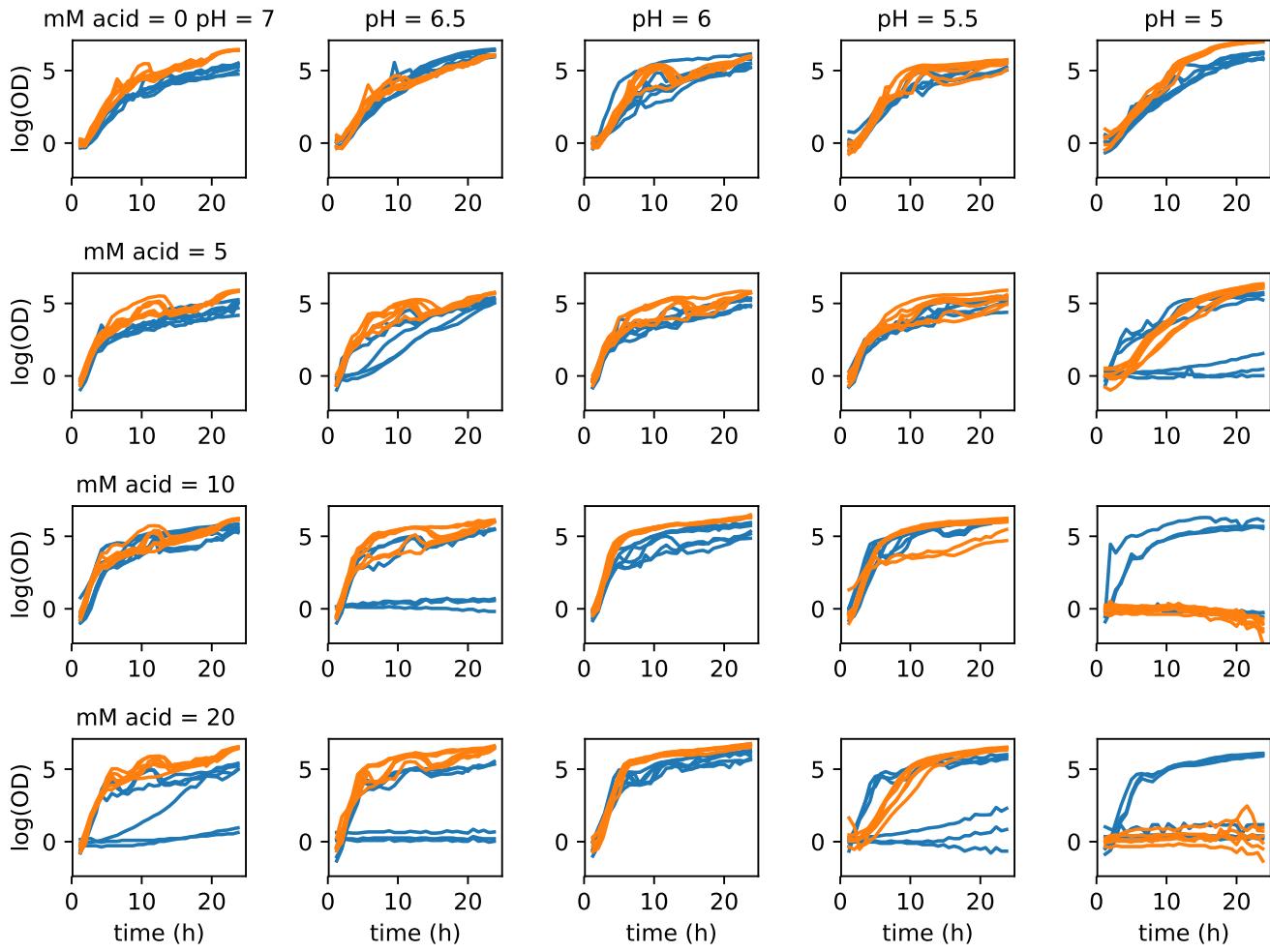


Figure S2: *P. aeruginosa* growth under malic acid and pH gradient. Growth of *P. aeruginosa* strain PA01 under gradient of pH (7 — 5) and malic acid (0 — 20). Colors represent different batches.

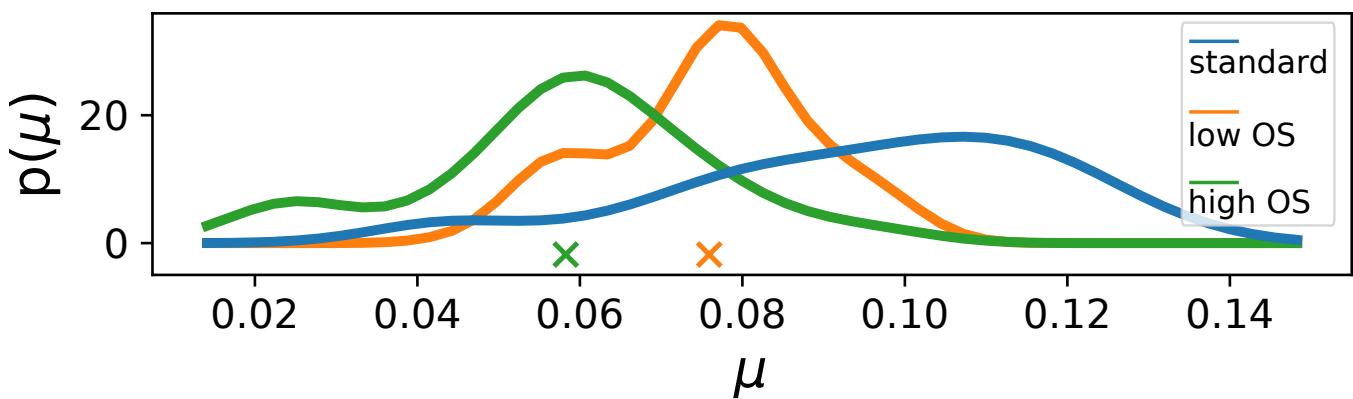


Figure S3: KDE of μ_{max} for *H. salinarum* growth across batches. Crosses indicate significant difference between μ_{max} standard conditions and each OS level (one-sided t-test, $p < 0.05$)

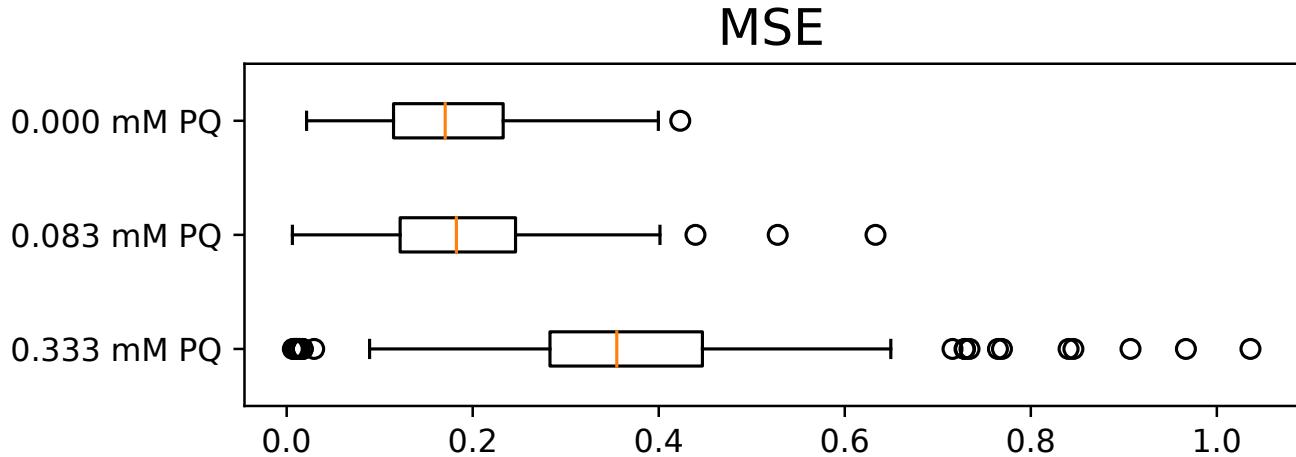


Figure S4: **Error in parametric growth models.** Distribution of error (MSE) for each condition when fit with a logistic growth curve. The box show shows the inter-quartile range, red line is the median, whiskers show the 1.5 inter-quartile range, and the individual points are outliers.

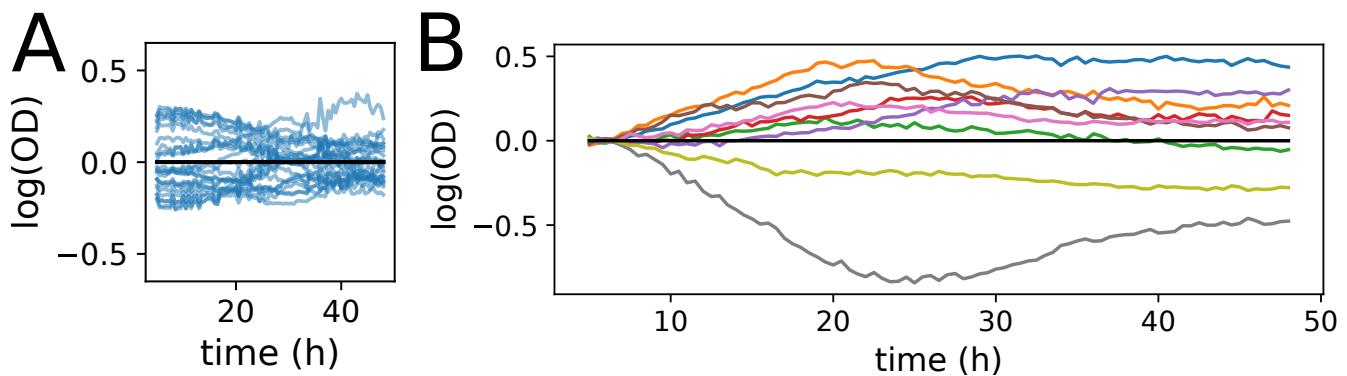


Figure S5: **Residual structure of microbial growth data across batches.** (A) Individual replicate curve residuals around the mean of the respective batch. Only standard conditions are shown. (B) Residual of the mean behavior for each batch around the global mean (standard condition only).

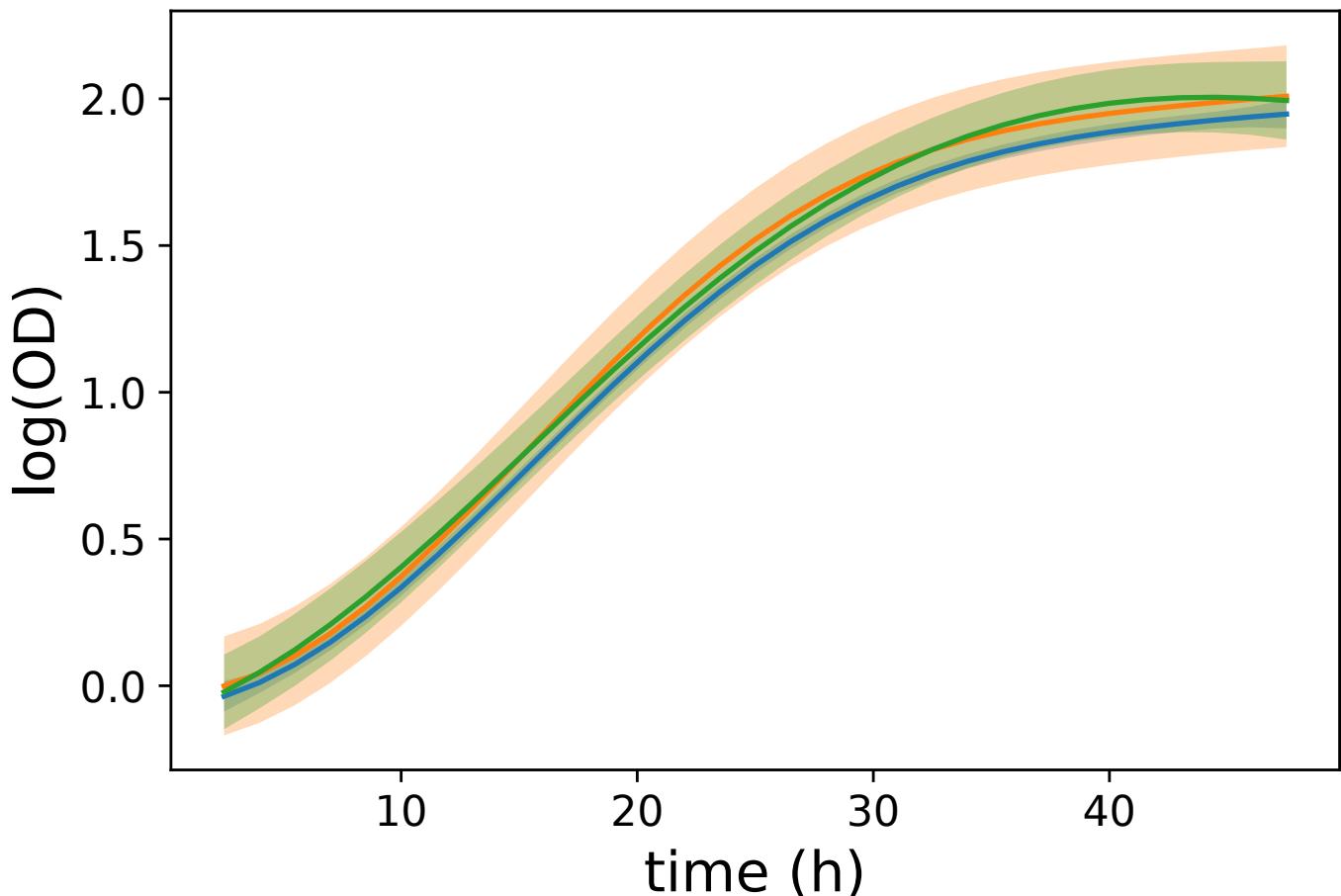


Figure S6: **Posterior comparison of $\mu(t)$ for *H. salinarum* growth across batches.** Posterior interval of $\mu(x)$ for *H. salinarum* standard growth.

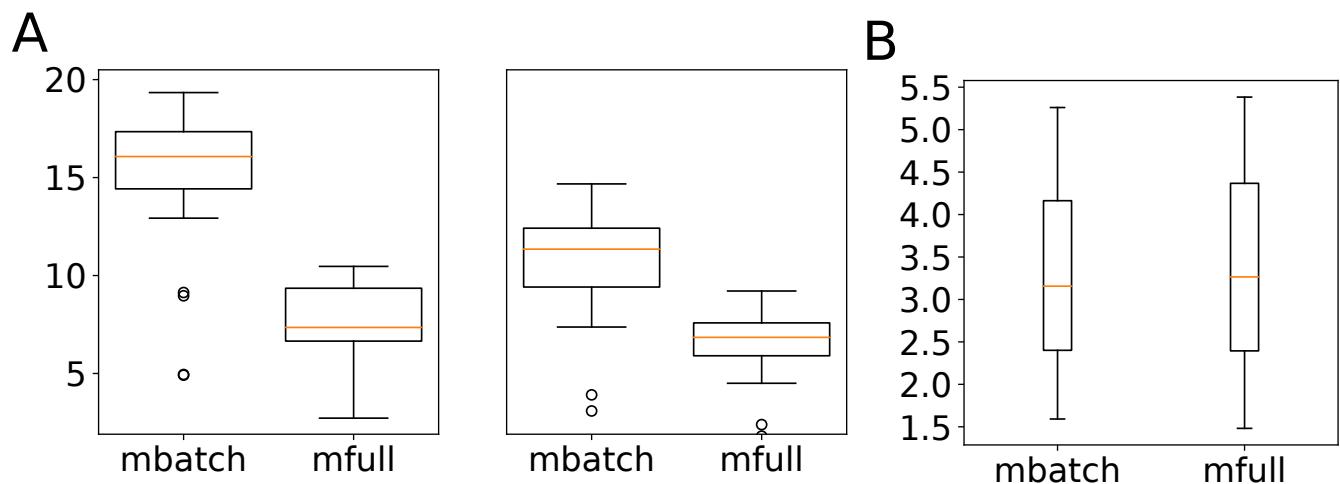


Figure S7: **Posterior variance of function estimates under different models.** Each plot shows the posterior variance of a function at each time point under each of M_{batch} and M_{full} versus M_{null} . (A) $\delta(x)$ estimated for *H. salinarum* growth under low (left) and high (right) OS. (B) $(\alpha\beta)_{p,m}(t)$ at pH = 5, mM malic acid = 10.