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Abstract4

Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in5

microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genet-6

ics, bioengineering, and food safety. Traditional parametric growth curve models capture the population growth7

behavior through a set of summarizing parameters. However, estimation of these parameters from data is con-8

founded by random effects such as experimental variability, batch effects or differences in experimental material.9

A systematic statistical method to identify and correct for such confounding effects in population growth data10

is not currently available. Further, our previous work has demonstrated that parametric models are insufficient11

to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical12

Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to13

perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate14

estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation.15

Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding16

effects on measured population growth.17
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1 Introduction18

Population growth phenotypes inform studies in microbiology, including gene functional discovery, bioengineering19

process development, and food safety testing1–3. For example, recent advances in microbial functional genomics20

and phenotyping, or “phenomics”, have enabled transformative insights into gene functions, proving critical for21

mapping the genotype to phenotype relationship4. Methods such as genome-wide CRISPRi5 and targeted genome-22

scale deletion libraries6,7 frequently rely upon accurate quantitation of microbial population growth as an assay to23

identify novel mutants with significant growth phenotypes. Population growth is an aggregate measure of all cellular24

processes and captures how microbial cells adapt and survive in their environmental niche8. Because microbial25

population culturing is a necessary precursor to many experimental procedures in microbiology9, reproducible results26

require accurate quantification of the variability in culture state measured through growth9,10.27

Typical analyses of microbial population growth involve estimating parametric models under the assumptions of28

standard growth conditions comprised of three successive growth phases: (1) lag phase, in which the population adapts29

to a new environment, typically fresh growth medium at culture inoculation; (2) log phase, when the population30

grows exponentially at a rate dependent on nutrients in the environment; and (3) stationary phase, where measurable31

population growth terminates thereby reaching the culture carrying capacity11. Recent studies have shown that the32

estimates of parameters in these models are highly uncertain12–14. This uncertainty arises both from factors of33

biological interest, such as differences in genetic background and environment, as well as uncontrolled technical noise34

from experimental manipulation of microbial cultures. While such sources of variability can be modeled using fixed35

and random effects15–19, parametric population growth models have additional limitations. Most notably, when36

population growth deviates from the standard sigmoidal shape assumed in parametric models, secondary models37

must be developed on a case by case basis for each new experimental perturbation20,21. Additionally, we have shown38

in previous work that in cases such as extreme stress or strongly deleterious mutations, no parametric growth model39

accurately represents the growth curve, regardless of secondary model19,22,23.40

Factors affecting microbial growth measurements include both fixed and random effects24. Fixed effects are41

assumed to be drawn from a finite set of perturbations of interest, for example the effect of different concentrations42

of a chemical on growth that are entirely represented in the dataset. Random effects, conversely, can be viewed as a43

random sample from a larger population of interest. For example, repeating the same design over many experiments44

corresponds to sampling the random experimental effect from the theoretical population of all possible experiments45

that could be conducted with this design3,25. Random effects arising from repeated experimental design are typically46

referred to as batch effects26,27. Batch effects are often a significant component of measurement noise in high-47

throughput genomics experiments28. However, random effects are not always due to experimental noise, and may48

represent quantities of direct scientific interest; for example, assaying a set of genetic backgrounds may be viewed49

as sampling from the population of all possible genetic variants29–33. Models which include both fixed and random50

effects are referred to as mixed effects models.51
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In this study we present phenom, a general model for analysis of phenomic growth curve experiments based52

on a Bayesian non-parametric functional mixed effects model of microbial growth. We demonstrate the utility of53

phenom model to analyze population growth measurements of two microorganisms: the hypersaline adapted archaeon,54

Halobacterium salinarum; and the opportunistic bacterial pathogen, Pseudomonas aeruginosa. H. salinarum is a55

model organism for transcriptional regulation of stress response in the third domain of life, the Archaea34–36. H.56

salinarum is particularly well adapted to resisting oxidative stress (OS), which arises from the buildup of reactive57

oxygen species and causes damage to many critical cellular components, including DNA, protein, and lipids37–43.58

Population growth measurements of H. salinarum under OS have been used previously to quantify these harmful59

effects on physiology, as well as identify regulatory factors important for OS survival22,40–42. The presence of batch60

effects in H. salinarum OS response was reported (and corrected for) previously19, but did not model individual batch61

effects for each term in the model. This motivated the explicit deconstruction of batch effects between different factors62

(e.g. strain and stress), which we have implemented and reported here in phenom.63

Pseudomonas aeruginosa is an opportunistic microbial pathogen and a growing problem in hospital-borne infec-64

tions. Rising antimicrobial resistance of these organisms has necessitated the development of alternative treatment65

strategies. For example, topical treatment of infected burn wounds with acetic or organic acids (OAs) has been66

successful44. OA impact on growth depends on external pH levels — in acidic intracellular environments the OA67

does not dissociate, freely traverses the cellular membrane as an uncharged particle, and dissociates in the neutral68

cytoplasm inducing acid stress45. Here we apply phenom to the P. aeruginosa dataset, which is foundational for69

a larger study of P. aeruginosa strains responding to pH and OA perturbation as a potential novel treatment of70

pathogenic bacterial infections23.71

Stress occurs constantly in the environment: as conditions change, mild to severe cellular damage occurs, and72

cells must regulate their molecular components to survive46–49. Population growth measurements are particularly73

vital to the study of stress response by providing a quantitative measure of growth differences against a non-stressed74

control1. Our model recovers fixed effects due to high and low levels of oxidative stress in H. salinarum as well as75

interactions between organic acid concentration and pH in P. aeruginosa, while correcting for random effects from76

multiple sources, thus enabling more accurate estimates of the significance of the stress treatment effect. Notably,77

in cases where random effect and fixed effect sizes are comparable, we demonstrate that mixed modeling is critical78

for accurate quantification of model uncertainty. If random effects are not included in the model, the significance of79

the effect of stress treatments on population growth can be erroneously overestimated. We discuss the implications80

of these findings for multiple areas of microbiology research.81
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2 Results82

2.1 Hierarchical batch effects typical in phenomics datasets render parametric models83

ineffective84

In the dataset used here, population growth for each of P. aeruginosa and H. salinarum cultures was monitored85

under standard (non-stressed) conditions vs. stress conditions (see Materials and Methods and references [22, 23] for86

precise definition of “standard conditions” for each organism). Specifically, cultures were grown in liquid medium87

in a high throughput growth plate reader that measured population density at 30 minute intervals over the course88

of 24 hours (P. aeruginosa) or 48 hours (H. salinarum); the resulting data are shown in Fig. 1. Experimental89

designs for each organism included biological replicates (growth curves from different colonies on a plate), technical90

replicates (multiple growth curves from the same colony), varying conditions (stress vs standard), and are further91

divided into batches (different runs of the high throughput growth plate reader). H. salinarum was grown under92

high (0.333 mM paraquat (PQ)) and low (0.083 mM PQ) levels of oxidative stress (OS); the data are combined93

from published19,22,41 and unpublished studies (Fig 1A). The OS responses of H. salinarum were compared to a94

control of standard growth in rich medium, representing optimal conditions for the population. The experimental95

design was replicated in biological quadruplicate and technical triplicate, across nine batches (Fig. 1A, individual96

curves and axes). P. aeruginosa was grown in the presence of increasing concentrations of three different organic97

acid (OA) chemicals (0 — 20mM; benzoate, citric acid, and malic acid), each combined with a gradient of pH (5.0 —98

7.0)23. Each P. aeruginosa growth condition was repeated across 3 biological replicates and two batches (Fig 1B).99

The different P. aeruginosa and H. salinarum experimental designs with varying numbers of replicates at each level100

provides a rich testbed for exploring the impact of modeling random effects with phenom (Figs. 1B, S1, S2).101

Figures 1 and 2 demonstrate the two key issues described above and addressed in this paper. First, batch effects102

are present in both H. salinarum and the P. aeruginosa datasets. For H. salinarum, clear differences in growth under103

both standard and stress conditions are observed in the raw data across experimental batches (i.e. separate runs104

of the growth plate reader instrument; Fig. 1). Some batches show a different phenotype, with either a complete105

cessation of growth or an intermediate effect with decreased growth relative to standard conditions. For example,106

in some batches, populations stressed with low OS grow at the same rate and reach the same carrying capacity as107

populations grown under standard conditions. For P. aeruginosa, a clear difference between batches grown under108

10 mM citric acid at pH=5.5 is observed [Fig. 1B (graph in fourth column, third row) and Fig. 2D]. Like with citric109

acid, batch effects were also found in some of the other conditions considered (e.g. growth under malic acid, Figs. S1,110

S2).111

Second, standard parametric growth curve models fail to describe experimental measurements adequately (Fig112

2A, B), as we have shown previously with both datasets19,22,23. In Fig. 2, we examined the impact of batch and113

replicate effects on our data by considering how they change parameters estimated from a mixed effects parametric114

model of population growth32. We focused on calculating µmax, the maximum instantaneous growth rate attained115
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Figure 1: Batch variation in high throughput phenomics studies. (A) Population growth measurements of H.
salinarum under standard conditions (blue), and low (orange) and high (green) levels of OS. Individual measurement
curves are replicates and each graph panel is a different batch. (B) Growth of P. aeruginosa strain PA01 under
gradient of pH (5 — 7) and citric acid (0 — 20 mM). Colors represent different batches.

by the population, as this is a commonly used parameter for comparisons between conditions19,50. Variation in µmax116

estimates were observed both on the replicate and batch level, as shown by the kernel density estimates (KDE)117

of µmax for each stress level (Fig. S3). The variance in µmax is remarkably high: the 95% confidence interval for118

µmax under standard growth is 0.050—0.141, a nearly 3-fold change between the lower and upper interval limits.119

Thus, while the t-test conducted on µmax estimates between standard conditions and each stress level is statistically120

significant (Fig S3), it is difficult to conclude: (a) what the true magnitude of the stress effects may be; and (b) to121

what degree the variation due to replicate and batch should inform biological conclusions. The error of the logistic122

growth model under each PQ condition was also examined. Error increased under high OS (Fig S4). High OS induces123

a growth phenotype that deviates heavily from the sigmoidal growth curve assumed in the logistic model as well as124

in other commonly used growth models. This leads to a poor fit under the high OS condition as has been shown125

previously (Fig S419). The residuals under standard, low, and high OS conditions also appear to be dependent. Our126

previous work also demonstrated poor fits to the P. aeruginosa data using parametric models23. Taken together, the127

initial assessment of these two datasets indicates that: (a) technical variation due to batch and replicate in growth128

curve data can be high; and (b) commonly used standard parametric models are not able to adequately capture or129

correct for these sources of variability. These sources of error need to be corrected in order to model true growth130

behavior and inform biological conclusions from the data.131

2.2 A hierarchical Bayesian model of functional random effects in microbial growth132

We previously established the ability of non-parametric Bayesian methods to improve the modeling of growth pheno-133

types19,22,23. Here, we describe phenom, a fully hierarchical Bayesian non-parametric functional mixed effects model134

for population growth data. We highlight the utility of phenom to correct for confounding, random effects in growth135
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Figure 2: Batch effects are prevalent in microbial phenomic datasets. (A) Parametric fits to H. salinarum
growth curves. (B) Residuals of parametric growth curve fit. (C) Growth of H. salinarum under standard conditions
(blue), low (orange) and high (green) OS across three batches. (D) Measurement of P. aeruginosa growth under
10mM citric acid at 5.5 pH. Measurements for each condition vary significantly with batch.

phenotypes.136

In order to model both biological and technical variation in microbial growth (Fig 3), we first assume that a137

set of population growth measurements are driven by an (unobserved) population curve µ(t) (Fig 3A, blue curve)138

of unknown shape. For example, µ(t) might represent the average growth behavior of an organism under standard139

conditions. This mean growth behavior may be altered by a treatment effect, represented by an additional unknown140

curve δ(t) (Fig 3A, orange curve). For example δ(t) may represent the effects on growth induced by low or high141

levels of OS (Fig 2A). The average growth behavior of a population under stress conditions would then be described142

by the curve f(t) = µ(t) + δ(t).143

When considering a combinatorial experimental design, such as that described for P. aeruginosa growth (Fig.

1B), we model independent effects of different treatments as well as their interaction via the form:

y(t, i, j) = µ(t) + αi(t) + βj(t) + (αβ)i,j(t). (1)

Here, y(t, i, j) denotes the observed population size at time t with treatments i and j of two independent stress144

conditions. Additionally, αi(t) and βj(t) are the independent effects of each stress condition, and (αβ)i,j(t) is their145

interaction. This model corresponds to a functional analysis of variance51, which we have previously used to estimate146

independent and interaction effects of microbial genetics and stress22. Here, we consider the interaction of the two147
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Experimental
Samples

Figure 3: Hierarchical model of functional data. Representative diagram of hierarchical variation present in
microbial growth data. Each tier of graphs represents a different variation source, and lines indicate relationship
between them: experimental condition is the true growth behavior of interest, with the condition repeated across
batches, and replicates repeated within each batch. (A) Functional phenotypes µ(t) (blue), µ(t) + δ(t) (orange),
and δ(t) (green curve in inset). (B) Batch effects on µ(t) and µ(t) + δ(t). Each plot is a different batch, solid
lines are the true functions as in (A), and the dashed lines are the observed batch effect of µ(t) and µ(t) + δ(x) for
the corresponding batch. (C) Replicate effect within batches. Each axis is a different replicate, solid and dashed
lines as in (B), dotted-dashed line is the observed replicate function. (D) Observations from the model described
in (A-C). Each curve is sampled with a mean drawn from the global mean, with added batch and replicate effects
(dotted-dashed lines in C) and iid observation noise. Each axis is a different batch. The smooth solid lines are the
true functions µ(t) and µ(t) + δ(t) in (A).
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stress conditions as well as random functional effects in the model.148

Variability around these fixed effect growth models is described by additional, random curves associated with two149

major sources of variation: batch and replicate (Fig 3B,C). Batches correspond to a single high-throughput growth150

experiment and replicates are the individual curve observations within a batch. Using phenom throughout this study,151

we only compare replicates that are contained within the same batch. This is due to the nested structure between152

batch and replicates (Fig 3). Noise due to both replicate and batch do not appear to be independent identically153

distributed (iid), as observed in the correlated residuals around the mean for each experimental variate (Fig. S5A and154

B). Each observed growth curve is therefore described by a combination of the fixed effects and the corresponding155

batch and replicate effects (Fig 3D). Both replicate and batch variation are modeled as random effects because the156

variation due to both sources cannot be replicated, i.e. a specific batch effect cannot be purposefully re-introduced157

in subsequent experiments. Instead, these variates are assumed to be sampled from a latent super-population52.158

Combining the fixed and random effects, we arrive at a mixed-effects model of microbial phenotypes.159

We adopted a hierarchical Bayesian framework to model these mixed effects. In this framework, batch effects160

are described by a shared generative distribution, allowing them to take on distinct values while still pooling across161

replicates for accurately estimating the generating distribution53. We use Gaussian process (GP) distributions for all162

groups in the model. GPs are flexible, non-parametric distributions suitable for smooth functions54. To assess the163

impact of incorporating random effects on estimation of the treatment effect of interest, we analyze three models of164

increasing complexity: Mnull excludes all hierarchical random effects, Mbatch incorporates batch variation only, and165

Mfull incorporates both batch and replicate variation. These models, collectively called phenom, were implemented166

using the probabilistic programming language Stan55, which efficiently traverses the posterior through Hamiltonian167

Monte Carlo (see Materials and Methods).168

In order to demonstrate the impact of batch effects on the conclusions drawn from the analysis of microbial169

growth data, we estimated the latent functions driving both H. salinarum and P. aeruginosa growth using the Mnull170

model of phenom, with each batch analyzed separately (Fig 4). This corresponds to the analysis that would be171

conducted after generating any single set of experiments from a batch, without considering or controlling for batch172

effects, and therefore provides a test of the impact of ignoring batch effects.173

For H. salinarum, growth data under standard conditions was used to estimate a single mean function, µ(t)174

(Fig. 4A). Fixed effects for growth under low and high OS was added as δ(t) (Fig 4B). For the P. aeruginosa dataset,175

batch effects on the interaction between pH and organic acid concentration was represented by a function (αβ)p,m(t),176

again estimated non-parametrically (Fig. 4C). However, rather than reporting (αβ)p,m(t) directly, we report its time177

derivative, which has the interpretation of instantaneous growth rate rather than absolute amount of growth56.178

Fitting the Mnull model to each separate batch reveals that the posterior distributions obtained for each function179

of interest (µ(t), δ(t), and (αβ)p,m(t)) are highly variable across batches (Fig. 4). This is observed in both the180

H. salinarum and P. aeruginosa datasets, where the experimental conditions, and therefore the underlying true181

functions, remain constant across batches in each case. Such variability can impact conclusions. For example, in the182
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Figure 4: Mnull model estimates are confounded by batch effects. Posterior intervals of functions are shown
for different analyses where phenom Mnull was fit using data from each batch separately. In all plots, solid line
represents posterior mean, shaded region indicates 95% credible region, and each color corresponds to a different
posterior conditioned on data from a single batch. (A) Posterior intervals of µ(x), the standard growth phenotype
of H. salinarum. (B) Posterior interval of δ(x) under low (left) and high (right) OS response of H. salinarum. (C)
Posterior interval of interaction function (αβ)p,m(t) for P. aeruginosa growth in indicated pH and acid concentration.
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low OS condition in the H. salinarum dataset, both the statistical significance of δ(t) and the sign (improved vs.183

impaired growth) differs between batches (Fig 4B, left). A similar batch variability was observed under high OS, but184

due to the stronger effect of the stress perturbation, estimates of δ(t) are less affected by batch and replicate variation185

(Fig 4B, right). Similarly, the batch variability observed in the raw P. aeruginosa growth data (Fig. 1B) results186

in significantly different posterior estimates of the interaction effect (αβ)p,m(t) across batches (Fig. 4C). Differences187

observed include the timing and length of negative growth impact (benzoate and citric acid), and completely opposite188

effects with either strong or no interaction (malic acid). In addition, the posterior variance of each function, which189

indicates the level of uncertainty remaining, is low for each batch modeled separately. This indicates high confidence190

in the estimated function despite observed differences across batches. These analyses suggest that use of a single191

experimental batch leads to overconfidence in explaining the true underlying growth behavior.192

2.3 Hierarchical models correct for batch effects in growth data193

To demonstrate the use of phenom to combat the impact of batch effects on growth curve analysis, we combined data194

across all batches and performed the analysis using each of the Mnull, Mbatch, and Mfull models (Fig. 5). Estimates195

of µ(t) between each model were largely similar, likely due to the abundance of data present to estimate this variable196

(Fig. S6). Instead, we focus on the estimates of δ(t) for low and high OS response of H. salinarum (Fig.5A) and the197

interaction (αβ)p,m between pH and OA concentration effects on P. aeruginosa growth (Fig. 5C).198

Growth impairment in the presence of low OS relative to standard conditions (i.e. δ(t)) is estimated to be199

significant during the time points of ∼ 10 − 40 hours under Mnull. In contrast, only time points ∼ 20 − 40 are200

significantly non-zero under Mbatch (Fig. 5A, left). Although Mfull and Mnull exhibit similar regions of time where201

effects are significant, uncertainty is higher (confidence bands wider) when batch and replicate effects are taken202

into account (Mfull). Given the stronger stress effect in the high OS condition (Fig. 5A, right), estimates of δ(t)203

were significantly non-zero under all three models, with only minor differences between the three model estimates.204

Importantly, we note that the posterior interval of δ(t) under Mnull for low OS does not include the best approximation205

of the true function (the posterior mean of δ(t) under Mfull) for greater than 80% of the time course (Fig. 5B). Taken206

together, these results suggest that certain time points where δ(t) is concluded to be non-zero under Mnull may be207

inaccurate, especially for stress conditions with modest effects on growth phenotype.208

The impact of modeling hierarchical variation on estimating interaction effects in P. aeruginosa growth was209

condition dependent (Fig. 5C). Across conditions, however, a decrease in posterior certainty on the true shape of210

the underlying function was again observed under Mbatch and Mfull. For example, the interaction between benzoate211

and pH became less pronounced under Mfull. Similarly, the models of (αβ)p,m(t) under citric and malic acid showed212

shrinkage toward zero under Mbatch and Mfull. Such shrinkage is a common observance in hierarchical modeling53.213

Taken together, these results for P. aeruginosa extend those previously published23, which only included analysis214

using the Mnull model.215

For both H. salinarum response to OS and P. aeruginosa growth under pH and OA exposure, an increase in216
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Figure 5: Hierarchical models of growth control for batch effects. Posterior intervals of functions estimated
by models of increasing hierarchical complexity: Mnull (blue), Mbatch (orange), and Mfull (green). Solid line indicates
posterior mean and shaded regions indicate 95% credible regions. (A) Posterior interval of δ(x) for low (left) and
high (right) OS response by H. salinarum. (B) Posterior interval of δ(x) under Mnull (blue shaded region) compared
to the posterior mean of Mfull(green line). (C) Posterior interval of interaction function (αβ)p,m(t) for P. aeruginosa
growth in indicated pH and organic acid concentration.
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posterior variance was observed under Mbatch and Mfull compared to Mnull (Fig S7). However, posterior variance217

of δ(t) in the H. salinarum OS response was higher under Mbatch compared to Mfull. In this case, controlling for218

replicate effects appears to increase the signal needed to identify δ(t). In contrast, these variances are equal in the219

P. aeruginosa data, indicating that the relative improvement in variance afforded by modeling batch vs. replicate220

effects may be dataset dependent.221

2.4 Variance components demonstrate the importance of controlling for batch effects.222

Variance components, which correspond to the estimated variance of each effect in the model, can be used to compare223

the impact each group has on the process of interest24. To better understand sources of variability in growth curve224

studies, we used phenom to estimate the variance components for each dataset above. In our hierarchical non-225

parametric setup, these variance components are the variance hyperparameters (e.g. σ2) of the Gaussian process226

kernels for each fixed and random effect group. These parameters control the magnitude of function fluctuations227

modeled by the GP distribution. Larger variance implies higher effect sizes and therefore a larger impact on the228

observations.229

We show the value of variance components by considering the effects identified by Mfull for H. salinarum under230

low OS (Fig. 6). The variance of the data is partitioned between the mean growth (µ(t)), the OS (δ(t)), batch effects231

(batch curves of µ(t) and δ(t)), biological noise (e.g. replicate variability) and instrument noise (σ2
y). This analysis232

confirms that batch effects, compared to the other sources of experimental variability in the dataset (replicate noise233

and measurement error), are between 2 to 10 times more impactful on the phenotype measurements. Additionally,234

variance components enable comparisons between the experimental and treatment factors in the data. Of particular235

note is that the variance of the treatment of interest, δ(t), and the batch effects are similar in magnitude, at least236

in the case of a low-magnitude stress such as 0.083 PQ for H. salinarum. This suggests that proper modeling of237

this treatment requires both sufficient batch replication and accurate modeling of batch effects in those data. Future238

studies of similar phenotypes can be guided by these estimates in experimental design, choosing an appropriate239

batch replication for the degree of noise expected57. However, the extent of replication required may depend upon240

the dataset (factorial design, treatment severity, etc). Taken together, variance components provide an aggregated241

view of the contribution by various factors and guide future experimentation.242

3 Discussion243

We have provided a framework to test and control for random effects in microbial growth data using the hierarchical244

non-parametric Bayesian model, phenom (Fig. 3). Analysis with phenom indicates that random effects (both batch245

and replicate) appear in the two microbial population growth datasets studied here, and constitute significant portions246

of the variability (Fig. 1). Failure to correct for these effects confounds the interpretation of growth phenotypes247

for factors of interest in a large scale phenotyping analysis (Fig. 4). phenom controls for these random effects and248
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Figure 6: Posterior variance components in the phenom hierarchical phenotype model. Posterior intervals
are shown for the kernel variance hyperparameter for different groups of effects from phenom estimated on H.
salinarum growth under low OS. Groups correspond to µ(t) (mean), δ(t) (stress), batch effects (batch), replicate
noise (biological), and measurement error (noise).

provides accurate estimates of the growth behavior of interest (Fig. 5). Additionally, phenom can be used to estimate249

variance components, providing information about the relative impact of various sources of noise in the data (Fig. 6).250

Controlling for batch effects in these datasets was therefore key to making accurate biological conclusions.251

Related fields of functional genomics, such as transcriptomics, have seen considerable interest in controlling for252

different experimental sources of variation, broadly labeled as batch effects28,57–62. These studies have shown that253

differences between batches first need to be corrected to avoid erroneous conclusions63. Here we have shown that,254

like in transcriptomics data, controlling for sources of variation in phenomics data - particularly due to batch - are255

an important step in making accurate biological conclusions regarding population growth.256

phenom establishes a complete and general method of controlling batch effects in microbial growth phenotypes,257

overcoming significant weaknesses of previously developed techniques. In reference [19] we identified and corrected258

for batch effects in a single transcription factor mutant’s stress response, but this model did not provide an explicit259

deconstruction of batch effects between different factors (e.g. strain and stress) and could therefore not determine260

which factors were most strongly impacted by batch effects. Moreover, this approach utilized a standard GP regression261

framework, but the standard framework has well-established limitations on dataset size, limiting its applicability to262

the large datasets we consider here. In reference [22] we described a functional ANOVA model for microbial growth263

phenotypes, which corresponds to the Mnull model in the phenom case. Again, a global batch effects term was264

included but individual batch effects were not modeled, and the computational approach utilized (Gibbs sampling)265

was prohibitively slow for the complete phenom model.266

Although we focus here on replicate and batch variation, the phenom model is easily extended to incorporate267

alternative or additional random and fixed effects appropriate for settings with other sources of variation. For exam-268

ple, depending on the experimental design, phenom could control for variation among labs, experimental material,269

culture history, or genetic background25,64–70. phenom flexibly incorporates additional sources of variation and/or270
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interaction between design variables, as demonstrated with the two different designs analyzed for H. salinarum and271

P. aeruginosa here. This flexibility allows phenom to be applied to control for many sources of technical varia-272

tion within microbial population growth data, thereby improving the analysis and resulting conclusions regarding273

quantitative microbial phenotypes.274

4 Materials and Methods275

4.1 Experimental Growth Data276

H. salinarum growth was performed as described previously22. Briefly, starter cultures of H. salinarum NRC-1277

∆ura3 control strain71 were grown at 42◦C with shaking at 225 r.p.m. to an optical density at 600 nm (OD600)278

∼ 1.8− 2.0 in 3 mL of Complete Medium (CM; 250 NaCl, 20 g/l MgSO4•7H2O, 3 g/l sodium citrate, 2 g/l KCl, 10279

g/l peptone) supplemented with uracil (50 µg/ml). Cultures were then diluted to OD600∼ 0.05 in a high throughput280

microplate reader (Bioscreen C, Growth Curves USA, Piscataway, NJ), and growth was monitored automatically by281

OD600 every 30 minutes for 48 hours at 42◦C. High and low levels of OS were induced by adding 0.333 mM and282

0.083 mM of paraquat to the media, respectively, at culture inoculation.283

For P. aeruginosa, laboratory strain PAO1 (ATCC 15692) was grown as described in reference [23]. Briefly,284

cultures were grown in M9 minimal media supplemented with 0.4% (w/v) glucose and 0.2% (w/v) casamino acids285

and buffered with 100 mM each of MES and MOPS buffers. Population growth was measured with a CLARIOstar286

automated microplate reader (BMG Labtech) at 37◦C with 300 rpm continuous shaking. The OD600 was recorded287

automatically every 15 minutes for a total of 24 hours. A full factorial design of pH and OA concentration was288

performed for benzoate, citric acid, and malic acid. An experimental batch corresponded to two repetitions of the289

experiment on separate days with a minimum of three biological replicates of each condition on each day. Two290

batches for each OA were performed.291

All data generated or analysed during this study are included in this published article (see supplementary infor-292

mation files).293

4.2 Parametric growth curve estimation294

For comparison with our non-parametric methods, parametric growth curve models were estimated using the grofit295

package in R with default parameters72. The logistic model was used to fit each curve. Kernel density estimates of296

parameter distributions were calculated with the scipy package with default kernel bandwidth parameters73.297
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4.3 phenom : a hierarchical Gaussian process model of microbial growth298

4.3.1 Gaussian Processes299

A Gaussian process (GP) defines a non-parametric distribution over functions f(t), defined by the property that any

finite set of observations of f follow a multivariate normal distribution54. A GP is fully defined by a mean function

m(t) and a covariance function κ(t, t′):

f(t) ∼ GP
(
m(t), κ(t, t′)

)
. (2)

GPs are commonly used for non-parametric curve fitting54 where m(t) is typically set to 0, which we do here.

Similarly, we use a common choice for covariance function defined by a radial basis function (RBF) kernel:

κ(t, t′) = σ2 · exp
(−|t− t′|2

`

)
, (3)

where σ2 is the variance and ` is the length-scale. The parameter σ2 controls the overall magnitude of fluctuation in300

the population of functions described in the GP distribution, while ` controls the expected smoothness, with larger `301

making smoother, slower varying functions more likely. In the process of non-parametric modeling of growth curves,302

these parameters are adaptively estimated from the dataset.303

4.3.2 Fixed effects304

We first define the fixed effects models used in this study; these will be augmented with random effects in the next

section. We consider fixed effects models of increasing complexity: a mean growth phenotype, a single treatment

phenotype, and a combinatorial phenotype with interactions between treatments. All of these models fall under

the functional analysis of variance (ANOVA) framework22,74. To estimate a mean growth profile, as in the case of

measuring a single condition, a mean function µ(t) is estimated from the data by modeling each replicate yr(t) for

1 ≤ r ≤ R as consisting of an unknown mean function observed with additive noise:

yr(t) = µ(t) + εr(t), (4)

where µ(t) ∼ GP
(
0, κµ(t, t′)

)
provides a prior distribution over µ, and κµ is an RBF kernel with hyperparameters305

{σ2
µ, `µ}. Here εr(t) ∼ N(0, σ2

yI) is Gaussian white noise.306

When estimating the effect of a perturbation on growth, as in the case of OS, we add a second function δ(t) that

represents the effect of the stress being considered. The model then becomes

yr(t) =


µ(t) + εr(t) if standard growth

µ(t) + δ(t) + εr(t) otherwise,

(5)
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where δ(t) ∼ GP
(
0, κδ(t, t

′)
)

also follows a GP prior independently of µ, and κδ has hyperparameters {σ2
δ , `δ}.307

When incorporating possible interaction effects such as those between pH and organic acids in the P. aeruginosa

dataset, the model becomes

yr(t, p,m) =



µ(t) + εr(t), if p = 7 and m = 0

µ(t) + αp(t) + εr(t), if p 6= 7 and m = 0

µ(t) + βm(t) + εr(t), if p = 7 and m 6= 0

µ(t) + αp(t) + βm(t) + (αβ)p,m(t) + εr(t), otherwise,

(6)

for pH p and molar acid concentration m, with αp(t) representing the main effect of pH, βm(t) the main effect of

acid concentration, and (αβ)p,m(t) the interaction between them. Each effect is drawn from a treatment specific GP

prior:

αp(t) ∼GP
(
0, κα(t, t′)

)
(7)

βm(t) ∼GP
(
0, κβ(t, t′)

)
(8)

(αβ)p,m(t) ∼GP
(
0, καβ(t, t′)

)
. (9)

Again, each covariance function is specified by a RBF kernel with corresponding variance and lengthscale hyperpa-308

rameters that adapt to the observed data. All models in this section correspond to Mnull for their respective analyses,309

as they do not include any random effects.310

4.3.3 Random effects311

The first random effects added to the model were those used to account for batch effects, in the model Mbatch. Under

this model, each fixed functional effect becomes the mean of a GP describing the population of possible batch-specific

mean curves. For example, under the model of mean growth behavior (Eq. 4), replicate r from batch i is modeled as

yi,r(t) = µi(t) + εi,r(t), (10)

where µi is the batch mean drawn from µi(t) ∼ GP
(
µ(t), κµ,batch(t, t′)

)
with kernel κµ,batch and εi,r(t) ∼ N(0, σ2

yI).312

Other Mnull models are converted to Mbatchsimilarly, with each fixed effect becoming a mean of a GP prior for each313

batch effect. Mfull develops the hierarchy one step deeper by adding replicate effects to Mbatch. Specifically, the314

error model εi,r is now described by a GP: εi,r ∼ GP
(
0, κy(t, t′)

)
with corresponding hyperparameters, accounting315

for replicate-specific variability rather than simply white noise.316
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4.3.4 Inference317

As noted above, each group GP prior is specified by its own RBF kernel with corresponding variance and length-scale318

parameters (θl = {σ2
l , `l}). For each group, σ2

l is assigned a Gamma(α, β) prior and `l a conjugate inverse-Gamma319

prior, with user-defined hyperparameters. Noise variance σ2
y was also assigned a gamma prior. Bayesian inference320

was then performed, with the posterior distribution obtained by sampling using Markov chain Monte Carlo (MCMC)321

implemented with the Stan library, which uses a Hamilitonian Monte-Carlo procedure with No-U-turn sampling55.322

Multiple chains were run to diagnose convergence, with all parameter posterior means confirmed to have converged323

within R̂ < 1.1 as recommended75.324

4.4 Data and Code Availability325

All code for this study is available at https://github.com/ptonner/phenom. Raw growth data are available for H.326

salinarum in reference [22] and at https://github.com/ptonner/hsalinarum_tf_phenotype. Raw growth data are327

available for P. aeruginosa in reference [23] and at https://github.com/amyschmid/pseudomonas-organic-acids.328
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Figure S1: P. aeruginosa growth under benzoate and pH gradient. Growth of P. aeruginosa strain PA01
under gradient of pH (7 — 5) and benzoate (0 — 20). Colors represent different batches.
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Figure S2: P. aeruginosa growth under malic acid and pH gradient. Growth of P. aeruginosa strain PA01
under gradient of pH (7 — 5) and malic acid (0 — 20). Colors represent different batches.
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Figure S3: KDE of µmax for H. salinarum growth across batches. Crosses indicate significant difference
between µmax standard conditions and each OS level (one-sided t-test, p < 0.05)
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Figure S4: Error in parametric growth models. Distribution of error (MSE) for each condition when fit with
a logistic growth curve. The box show shows the inter-quartile range, red line is the median, whiskers show the 1.5
inter-quartile range, and the individual points are outliers.
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Figure S5: Residual structure of microbial growth data across batches. (A) Individual replicate curve
residuals around the mean of the respective batch. Only standard conditions are shown. (B) Residual of the mean
behavior for each batch around the global mean (standard condition only).
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Figure S6: Posterior comparison of µ(t) for H. salinarum growth across batches. Posterior interval of µ(x)
for H. salinarum standard growth.
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Figure S7: Posterior variance of function estimates under different models. Each plot shows the posterior
variance of a function at each time point under each of Mbatch and Mfull versus Mnull. (A) δ(x) estimated for H.
salinarum growth under low (left) and high (right) OS. (B) (αβ)p,m(t) at pH = 5, mM malic acid = 10.
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