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Abstract

Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in
microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genet-
ics, bioengineering, and food safety. Traditional parametric growth curve models capture the population growth
behavior through a set of summarizing parameters. However, estimation of these parameters from data is con-
founded by random effects such as experimental variability, batch effects or differences in experimental material.
A systematic statistical method to identify and correct for such confounding effects in population growth data
is not currently available. Further, our previous work has demonstrated that parametric models are insufficient
to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical
Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to
perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate
estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation.
Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding

effects on measured population growth.
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1 Introduction

Population growth phenotypes inform studies in microbiology, including gene functional discovery, bioengineering
process development, and food safety testingl™®. For example, recent advances in microbial functional genomics
and phenotyping, or “phenomics”, have enabled transformative insights into gene functions, proving critical for
mapping the genotype to phenotype relationship®. Methods such as genome-wide CRISPRi” and targeted genome-
scale deletion libraries®? frequently rely upon accurate quantitation of microbial population growth as an assay to
identify novel mutants with significant growth phenotypes. Population growth is an aggregate measure of all cellular
processes and captures how microbial cells adapt and survive in their environmental niche®. Because microbial
population culturing is a necessary precursor to many experimental procedures in microbiology?, reproducible results
require accurate quantification of the variability in culture state measured through growth?U,

Typical analyses of microbial population growth involve estimating parametric models under the assumptions of
standard growth conditions comprised of three successive growth phases: (1) lag phase, in which the population adapts
to a new environment, typically fresh growth medium at culture inoculation; (2) log phase, when the population
grows exponentially at a rate dependent on nutrients in the environment; and (3) stationary phase, where measurable
population growth terminates thereby reaching the culture carrying capacityl. Recent studies have shown that the

1274 This uncertainty arises both from factors of

estimates of parameters in these models are highly uncertain
biological interest, such as differences in genetic background and environment, as well as uncontrolled technical noise
from experimental manipulation of microbial cultures. While such sources of variability can be modeled using fixed

LHII - parametric population growth models have additional limitations. Most notably, when

and random effects
population growth deviates from the standard sigmoidal shape assumed in parametric models, secondary models
must be developed on a case by case basis for each new experimental perturbation?%2l, Additionally, we have shown
in previous work that in cases such as extreme stress or strongly deleterious mutations, no parametric growth model
accurately represents the growth curve, regardless of secondary model2%:22:23|

Factors affecting microbial growth measurements include both fixed and random effects??. Fixed effects are
assumed to be drawn from a finite set of perturbations of interest, for example the effect of different concentrations
of a chemical on growth that are entirely represented in the dataset. Random effects, conversely, can be viewed as a
random sample from a larger population of interest. For example, repeating the same design over many experiments
corresponds to sampling the random experimental effect from the theoretical population of all possible experiments
that could be conducted with this design®22. Random effects arising from repeated experimental design are typically

2627 Batch effects are often a significant component of measurement noise in high-

referred to as batch effects
throughput genomics experiments<®. However, random effects are not always due to experimental noise, and may
represent quantities of direct scientific interest; for example, assaying a set of genetic backgrounds may be viewed

as sampling from the population of all possible genetic variants??33, Models which include both fixed and random

effects are referred to as mixed effects models.
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In this study we present phenom, a general model for analysis of phenomic growth curve experiments based
on a Bayesian non-parametric functional mixed effects model of microbial growth. We demonstrate the utility of
phenom model to analyze population growth measurements of two microorganisms: the hypersaline adapted archaeon,
Halobacterium salinarum; and the opportunistic bacterial pathogen, Pseudomonas aeruginosa. H. salinarum is a
model organism for transcriptional regulation of stress response in the third domain of life, the Archaea?456, .
salinarum is particularly well adapted to resisting oxidative stress (OS), which arises from the buildup of reactive
oxygen species and causes damage to many critical cellular components, including DNA, protein, and lipids3Z43,
Population growth measurements of H. salinarum under OS have been used previously to quantify these harmful
effects on physiology, as well as identify regulatory factors important for OS survival?222% 22 The presence of batch
effects in H. salinarum OS response was reported (and corrected for) previously', but did not model individual batch
effects for each term in the model. This motivated the explicit deconstruction of batch effects between different factors
(e.g. strain and stress), which we have implemented and reported here in phenom.

Pseudomonas aeruginosa is an opportunistic microbial pathogen and a growing problem in hospital-borne infec-
tions. Rising antimicrobial resistance of these organisms has necessitated the development of alternative treatment
strategies. For example, topical treatment of infected burn wounds with acetic or organic acids (OAs) has been
successful*®., OA impact on growth depends on external pH levels — in acidic intracellular environments the OA
does not dissociate, freely traverses the cellular membrane as an uncharged particle, and dissociates in the neutral

45

cytoplasm inducing acid stress*?. Here we apply phenom to the P. aeruginosa dataset, which is foundational for

a larger study of P. aeruginosa strains responding to pH and OA perturbation as a potential novel treatment of
pathogenic bacterial infections?3.
Stress occurs constantly in the environment: as conditions change, mild to severe cellular damage occurs, and

cells must regulate their molecular components to survivet 4,

Population growth measurements are particularly
vital to the study of stress response by providing a quantitative measure of growth differences against a non-stressed
control. Our model recovers fixed effects due to high and low levels of oxidative stress in H. salinarum as well as
interactions between organic acid concentration and pH in P. aeruginosa, while correcting for random effects from
multiple sources, thus enabling more accurate estimates of the significance of the stress treatment effect. Notably,
in cases where random effect and fixed effect sizes are comparable, we demonstrate that mixed modeling is critical
for accurate quantification of model uncertainty. If random effects are not included in the model, the significance of

the effect of stress treatments on population growth can be erroneously overestimated. We discuss the implications

of these findings for multiple areas of microbiology research.
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2 Results

2.1 Hierarchical batch effects typical in phenomics datasets render parametric models

ineffective

In the dataset used here, population growth for each of P. aeruginosa and H. salinarum cultures was monitored
under standard (non-stressed) conditions vs. stress conditions (see Materials and Methods and references (22} |23] for
precise definition of “standard conditions” for each organism). Specifically, cultures were grown in liquid medium
in a high throughput growth plate reader that measured population density at 30 minute intervals over the course
of 24 hours (P. aeruginosa) or 48 hours (H. salinarum); the resulting data are shown in Fig. Experimental
designs for each organism included biological replicates (growth curves from different colonies on a plate), technical
replicates (multiple growth curves from the same colony), varying conditions (stress vs standard), and are further
divided into batches (different runs of the high throughput growth plate reader). H. salinarum was grown under
high (0.333 mM paraquat (PQ)) and low (0.083 mM PQ) levels of oxidative stress (OS); the data are combined
from published!?*225 and unpublished studies (Fig ) The OS responses of H. salinarum were compared to a
control of standard growth in rich medium, representing optimal conditions for the population. The experimental
design was replicated in biological quadruplicate and technical triplicate, across nine batches (Fig. , individual
curves and axes). P. aeruginosa was grown in the presence of increasing concentrations of three different organic
acid (OA) chemicals (0 — 20mM; benzoate, citric acid, and malic acid), each combined with a gradient of pH (5.0 —
7.0y%%. Each P. aeruginosa growth condition was repeated across 3 biological replicates and two batches (Fig )
The different P. aeruginosa and H. salinarum experimental designs with varying numbers of replicates at each level
provides a rich testbed for exploring the impact of modeling random effects with phenom (Figs. , .

Figures [T] and [2] demonstrate the two key issues described above and addressed in this paper. First, batch effects
are present in both H. salinarum and the P. aeruginosa datasets. For H. salinarum, clear differences in growth under
both standard and stress conditions are observed in the raw data across experimental batches (i.e. separate runs
of the growth plate reader instrument; Fig. . Some batches show a different phenotype, with either a complete
cessation of growth or an intermediate effect with decreased growth relative to standard conditions. For example,
in some batches, populations stressed with low OS grow at the same rate and reach the same carrying capacity as
populations grown under standard conditions. For P. aeruginosa, a clear difference between batches grown under
10 mM citric acid at pH=5.5 is observed [Fig. (graph in fourth column, third row) and Fig. 2D]. Like with citric
acid, batch effects were also found in some of the other conditions considered (e.g. growth under malic acid, Figs.
52).

Second, standard parametric growth curve models fail to describe experimental measurements adequately (Fig
, B), as we have shown previously with both datasetst®2223 In Fig. we examined the impact of batch and
replicate effects on our data by considering how they change parameters estimated from a mixed effects parametric

model of population growth®4. We focused on calculating fimayx, the maximum instantaneous growth rate attained
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Figure 1: Batch variation in high throughput phenomics studies. (A) Population growth measurements of H.
salinarum under standard conditions (blue), and low (orange) and high (green) levels of OS. Individual measurement
curves are replicates and each graph panel is a different batch. (B) Growth of P. aeruginosa strain PAO1 under
gradient of pH (5 — 7) and citric acid (0 — 20 mM). Colors represent different batches.

by the population, as this is a commonly used parameter for comparisons between conditions'®59, Variation in fmax
estimates were observed both on the replicate and batch level, as shown by the kernel density estimates (KDE)
of pimax for each stress level (Fig. . The variance in pymay is remarkably high: the 95% confidence interval for
tmax under standard growth is 0.050—0.141, a nearly 3-fold change between the lower and upper interval limits.
Thus, while the t-test conducted on .y estimates between standard conditions and each stress level is statistically
significant (Fig[S3)), it is difficult to conclude: (a) what the true magnitude of the stress effects may be; and (b) to
what degree the variation due to replicate and batch should inform biological conclusions. The error of the logistic
growth model under each PQ condition was also examined. Error increased under high OS (Fig. High OS induces
a growth phenotype that deviates heavily from the sigmoidal growth curve assumed in the logistic model as well as
in other commonly used growth models. This leads to a poor fit under the high OS condition as has been shown
previously (Fig @E) The residuals under standard, low, and high OS conditions also appear to be dependent. Our
previous work also demonstrated poor fits to the P. aeruginosa data using parametric models?3. Taken together, the
initial assessment of these two datasets indicates that: (a) technical variation due to batch and replicate in growth
curve data can be high; and (b) commonly used standard parametric models are not able to adequately capture or
correct for these sources of variability. These sources of error need to be corrected in order to model true growth

behavior and inform biological conclusions from the data.

2.2 A hierarchical Bayesian model of functional random effects in microbial growth

We previously established the ability of non-parametric Bayesian methods to improve the modeling of growth pheno-
typest 22223 Here, we describe phenom, a fully hierarchical Bayesian non-parametric functional mixed effects model

for population growth data. We highlight the utility of phenom to correct for confounding, random effects in growth
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Figure 2: Batch effects are prevalent in microbial phenomic datasets. (A) Parametric fits to H. salinarum
growth curves. (B) Residuals of parametric growth curve fit. (C) Growth of H. salinarum under standard conditions
(blue), low (orange) and high (green) OS across three batches. (D) Measurement of P. aeruginosa growth under
10mM citric acid at 5.5 pH. Measurements for each condition vary significantly with batch.

phenotypes.

In order to model both biological and technical variation in microbial growth (Fig , we first assume that a
set of population growth measurements are driven by an (unobserved) population curve pu(t) (FigBJA, blue curve)
of unknown shape. For example, () might represent the average growth behavior of an organism under standard
conditions. This mean growth behavior may be altered by a treatment effect, represented by an additional unknown
curve 0(t) (Fig[3lA, orange curve). For example §(¢) may represent the effects on growth induced by low or high
levels of OS (Fig ) The average growth behavior of a population under stress conditions would then be described
by the curve f(t) = p(t) + 4(¢).

When considering a combinatorial experimental design, such as that described for P. aeruginosa growth (Fig.

1IB), we model independent effects of different treatments as well as their interaction via the form:

y(t,4,5) = p(t) + ai(t) + B;() + (aB)i; (1) (1)

Here, y(t,4,j) denotes the observed population size at time ¢ with treatments ¢ and j of two independent stress
conditions. Additionally, o;(t) and ;(t) are the independent effects of each stress condition, and (af); ;(t) is their
interaction. This model corresponds to a functional analysis of variancé®, which we have previously used to estimate

independent and interaction effects of microbial genetics and stress?2. Here, we consider the interaction of the two
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Figure 3: Hierarchical model of functional data. Representative diagram of hierarchical variation present in
microbial growth data. Each tier of graphs represents a different variation source, and lines indicate relationship
between them: experimental condition is the true growth behavior of interest, with the condition repeated across
batches, and replicates repeated within each batch. (A) Functional phenotypes u(t) (blue), u(t) + 6(t) (orange),
and 6(t) (green curve in inset). (B) Batch effects on p(t) and u(t) + 6(¢). Each plot is a different batch, solid
lines are the true functions as in (A), and the dashed lines are the observed batch effect of u(¢) and p(t) + 6(x) for
the corresponding batch. (C) Replicate effect within batches. Each axis is a different replicate, solid and dashed
lines as in (B), dotted-dashed line is the observed replicate function. (D) Observations from the model described
in (A-C). Each curve is sampled with a mean drawn from the global mean, with added batch and replicate effects
(dotted-dashed lines in C) and #id observation noise. Each axis is a different batch. The smooth solid lines are the
true functions u(t) and wu(t) + d(¢) in (A).
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stress conditions as well as random functional effects in the model.

Variability around these fixed effect growth models is described by additional, random curves associated with two
major sources of variation: batch and replicate (Fig 7C). Batches correspond to a single high-throughput growth
experiment and replicates are the individual curve observations within a batch. Using phenom throughout this study,
we only compare replicates that are contained within the same batch. This is due to the nested structure between
batch and replicates (Fig . Noise due to both replicate and batch do not appear to be independent identically
distributed (iid), as observed in the correlated residuals around the mean for each experimental variate (Fig. and
B). Each observed growth curve is therefore described by a combination of the fixed effects and the corresponding
batch and replicate effects (Fig ) Both replicate and batch variation are modeled as random effects because the
variation due to both sources cannot be replicated, i.e. a specific batch effect cannot be purposefully re-introduced
in subsequent experiments. Instead, these variates are assumed to be sampled from a latent super-population®.
Combining the fixed and random effects, we arrive at a mixed-effects model of microbial phenotypes.

We adopted a hierarchical Bayesian framework to model these mixed effects. In this framework, batch effects
are described by a shared generative distribution, allowing them to take on distinct values while still pooling across
replicates for accurately estimating the generating distribution®. We use Gaussian process (GP) distributions for all
groups in the model. GPs are flexible, non-parametric distributions suitable for smooth functions®®. To assess the
impact of incorporating random effects on estimation of the treatment effect of interest, we analyze three models of
increasing complexity: My, excludes all hierarchical random effects, Myatcn incorporates batch variation only, and
Mgy, incorporates both batch and replicate variation. These models, collectively called phenom, were implemented

using the probabilistic programming language Stan®, which efficiently traverses the posterior through Hamiltonian

Monte Carlo (see [Materials and Methods)).

In order to demonstrate the impact of batch effects on the conclusions drawn from the analysis of microbial
growth data, we estimated the latent functions driving both H. salinarum and P. aeruginosa growth using the My,
model of phenom, with each batch analyzed separately (Fig [4]). This corresponds to the analysis that would be
conducted after generating any single set of experiments from a batch, without considering or controlling for batch
effects, and therefore provides a test of the impact of ignoring batch effects.

For H. salinarum, growth data under standard conditions was used to estimate a single mean function, u(t)
(Fig.[AA). Fixed effects for growth under low and high OS was added as 6(t) (Fig[dB). For the P. aeruginosa dataset,
batch effects on the interaction between pH and organic acid concentration was represented by a function (af)p.m (t),
again estimated non-parametrically (Fig. ) However, rather than reporting (o/5)p.m (t) directly, we report its time
derivative, which has the interpretation of instantaneous growth rate rather than absolute amount of growth?0.

Fitting the My,;1 model to each separate batch reveals that the posterior distributions obtained for each function
of interest (u(t), 6(¢), and (af)pm(t)) are highly variable across batches (Fig. [4]). This is observed in both the
H. salinarum and P. aeruginosa datasets, where the experimental conditions, and therefore the underlying true

functions, remain constant across batches in each case. Such variability can impact conclusions. For example, in the
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Figure 4: M1 model estimates are confounded by batch effects. Posterior intervals of functions are shown
for different analyses where phenom My, was fit using data from each batch separately. In all plots, solid line
represents posterior mean, shaded region indicates 95% credible region, and each color corresponds to a different
posterior conditioned on data from a single batch. (A) Posterior intervals of u(x), the standard growth phenotype
of H. salinarum. (B) Posterior interval of §(x) under low (left) and high (right) OS response of H. salinarum. (C)
Posterior interval of interaction function (a8), m (t) for P. aeruginosa growth in indicated pH and acid concentration.
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low OS condition in the H. salinarum dataset, both the statistical significance of §(¢) and the sign (improved vs.
impaired growth) differs between batches (Fig , left). A similar batch variability was observed under high OS, but
due to the stronger effect of the stress perturbation, estimates of 6(¢) are less affected by batch and replicate variation
(Fig , right). Similarly, the batch variability observed in the raw P. aeruginosa growth data (Fig. ) results
in significantly different posterior estimates of the interaction effect (a)pm(t) across batches (Fig. [4C). Differences
observed include the timing and length of negative growth impact (benzoate and citric acid), and completely opposite
effects with either strong or no interaction (malic acid). In addition, the posterior variance of each function, which
indicates the level of uncertainty remaining, is low for each batch modeled separately. This indicates high confidence
in the estimated function despite observed differences across batches. These analyses suggest that use of a single

experimental batch leads to overconfidence in explaining the true underlying growth behavior.

2.3 Hierarchical models correct for batch effects in growth data

To demonstrate the use of phenom to combat the impact of batch effects on growth curve analysis, we combined data
across all batches and performed the analysis using each of the My, Mpateh, and Mg, models (Fig. [5). Estimates
of p(t) between each model were largely similar, likely due to the abundance of data present to estimate this variable
(Fig. [S6). Instead, we focus on the estimates of §(¢) for low and high OS response of H. salinarum (Fig[JJA) and the
interaction (a8)p,m between pH and OA concentration effects on P. aeruginosa growth (Fig. )

Growth impairment in the presence of low OS relative to standard conditions (i.e. 4(t)) is estimated to be
significant during the time points of ~ 10 — 40 hours under M,;;. In contrast, only time points ~ 20 — 40 are
significantly non-zero under Mpatcn (Fig. , left). Although Mg, and My, exhibit similar regions of time where
effects are significant, uncertainty is higher (confidence bands wider) when batch and replicate effects are taken
into account (Mgu). Given the stronger stress effect in the high OS condition (Fig. [fJA, right), estimates of 6(t)
were significantly non-zero under all three models, with only minor differences between the three model estimates.
Importantly, we note that the posterior interval of §(¢) under My,; for low OS does not include the best approximation
of the true function (the posterior mean of §(¢) under Mg,) for greater than 80% of the time course (Fig. [5B). Taken
together, these results suggest that certain time points where 4(t) is concluded to be non-zero under My, may be
inaccurate, especially for stress conditions with modest effects on growth phenotype.

The impact of modeling hierarchical variation on estimating interaction effects in P. aeruginosa growth was
condition dependent (Fig. ) Across conditions, however, a decrease in posterior certainty on the true shape of
the underlying function was again observed under My,ten, and Mgy For example, the interaction between benzoate
and pH became less pronounced under Mg,y. Similarly, the models of (a8),,m (t) under citric and malic acid showed
shrinkage toward zero under Mpaten and M. Such shrinkage is a common observance in hierarchical modeling®3.
Taken together, these results for P. aeruginosa extend those previously published??, which only included analysis
using the M, model.

For both H. salinarum response to OS and P. aeruginosa growth under pH and OA exposure, an increase in
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Figure 5: Hierarchical models of growth control for batch effects. Posterior intervals of functions estimated
by models of increasing hierarchical complexity: My (blue), Mpatch (orange), and Mgy (green). Solid line indicates
posterior mean and shaded regions indicate 95% credible regions. (A) Posterior interval of §(z) for low (left) and
high (right) OS response by H. salinarum. (B) Posterior interval of §(z) under My, (blue shaded region) compared
to the posterior mean of Mg,y (green line). (C) Posterior interval of interaction function (af)p,m(t) for P. aeruginosa
growth in indicated pH and organic acid concentration.
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posterior variance was observed under Mpaten and My, compared to M, (Fig |S7). However, posterior variance
of §(t) in the H. salinarum OS response was higher under Mpacn compared to Mg,y In this case, controlling for
replicate effects appears to increase the signal needed to identify 4(¢). In contrast, these variances are equal in the
P. aeruginosa data, indicating that the relative improvement in variance afforded by modeling batch vs. replicate

effects may be dataset dependent.

2.4 Variance components demonstrate the importance of controlling for batch effects.

Variance components, which correspond to the estimated variance of each effect in the model, can be used to compare
the impact each group has on the process of interest?d. To better understand sources of variability in growth curve
studies, we used phenom to estimate the variance components for each dataset above. In our hierarchical non-
parametric setup, these variance components are the variance hyperparameters (e.g. o2) of the Gaussian process
kernels for each fixed and random effect group. These parameters control the magnitude of function fluctuations
modeled by the GP distribution. Larger variance implies higher effect sizes and therefore a larger impact on the
observations.

We show the value of variance components by considering the effects identified by Mgy for H. salinarum under
low OS (Fig.[6). The variance of the data is partitioned between the mean growth (u(t)), the OS (§(¢)), batch effects
(batch curves of u(t) and §(t)), biological noise (e.g. replicate variability) and instrument noise (¢7). This analysis
confirms that batch effects, compared to the other sources of experimental variability in the dataset (replicate noise
and measurement error), are between 2 to 10 times more impactful on the phenotype measurements. Additionally,
variance components enable comparisons between the experimental and treatment factors in the data. Of particular
note is that the variance of the treatment of interest, §(¢), and the batch effects are similar in magnitude, at least
in the case of a low-magnitude stress such as 0.083 PQ for H. salinarum. This suggests that proper modeling of
this treatment requires both sufficient batch replication and accurate modeling of batch effects in those data. Future
studies of similar phenotypes can be guided by these estimates in experimental design, choosing an appropriate
batch replication for the degree of noise expected®. However, the extent of replication required may depend upon
the dataset (factorial design, treatment severity, etc). Taken together, variance components provide an aggregated

view of the contribution by various factors and guide future experimentation.

3 Discussion

We have provided a framework to test and control for random effects in microbial growth data using the hierarchical
non-parametric Bayesian model, phenom (Fig. . Analysis with phenom indicates that random effects (both batch
and replicate) appear in the two microbial population growth datasets studied here, and constitute significant portions
of the variability (Fig. . Failure to correct for these effects confounds the interpretation of growth phenotypes

for factors of interest in a large scale phenotyping analysis (Fig. . phenom controls for these random effects and
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Figure 6: Posterior variance components in the phenom hierarchical phenotype model. Posterior intervals
are shown for the kernel variance hyperparameter for different groups of effects from phenom estimated on H.
salinarum growth under low OS. Groups correspond to u(t) (mean), §(¢) (stress), batch effects (batch), replicate
noise (biological), and measurement error (noise).

provides accurate estimates of the growth behavior of interest (Fig. . Additionally, phenom can be used to estimate
variance components, providing information about the relative impact of various sources of noise in the data (Fig. @
Controlling for batch effects in these datasets was therefore key to making accurate biological conclusions.

Related fields of functional genomics, such as transcriptomics, have seen considerable interest in controlling for
different experimental sources of variation, broadly labeled as batch effects2#27162 These studies have shown that
differences between batches first need to be corrected to avoid erroneous conclusions®. Here we have shown that,
like in transcriptomics data, controlling for sources of variation in phenomics data - particularly due to batch - are
an important step in making accurate biological conclusions regarding population growth.

phenom establishes a complete and general method of controlling batch effects in microbial growth phenotypes,
overcoming significant weaknesses of previously developed techniques. In reference |19] we identified and corrected
for batch effects in a single transcription factor mutant’s stress response, but this model did not provide an explicit
deconstruction of batch effects between different factors (e.g. strain and stress) and could therefore not determine
which factors were most strongly impacted by batch effects. Moreover, this approach utilized a standard GP regression
framework, but the standard framework has well-established limitations on dataset size, limiting its applicability to
the large datasets we consider here. In reference |22] we described a functional ANOVA model for microbial growth
phenotypes, which corresponds to the M, model in the phenom case. Again, a global batch effects term was
included but individual batch effects were not modeled, and the computational approach utilized (Gibbs sampling)
was prohibitively slow for the complete phenom model.

Although we focus here on replicate and batch variation, the phenom model is easily extended to incorporate
alternative or additional random and fixed effects appropriate for settings with other sources of variation. For exam-
ple, depending on the experimental design, phenom could control for variation among labs, experimental material,

256470

culture history, or genetic backgroun . phenom flexibly incorporates additional sources of variation and/or
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interaction between design variables, as demonstrated with the two different designs analyzed for H. salinarum and
P. aeruginosa here. This flexibility allows phenom to be applied to control for many sources of technical varia-
tion within microbial population growth data, thereby improving the analysis and resulting conclusions regarding

quantitative microbial phenotypes.

4 Materials and Methods

4.1 Experimental Growth Data

H. salinarum growth was performed as described previously??. Briefly, starter cultures of H. salinarum NRC-1

Aura3 control strain™

were grown at 42°C with shaking at 225 r.p.m. to an optical density at 600 nm (ODggp)
~ 1.8 — 2.0 in 3 mL of Complete Medium (CM; 250 NaCl, 20 g/1 MgSO4e7H20, 3 g/l sodium citrate, 2 g/1 KCl, 10
g/1 peptone) supplemented with uracil (50 pg/ml). Cultures were then diluted to ODggg~ 0.05 in a high throughput
microplate reader (Bioscreen C, Growth Curves USA, Piscataway, NJ), and growth was monitored automatically by
ODggp every 30 minutes for 48 hours at 42°C. High and low levels of OS were induced by adding 0.333 mM and
0.083 mM of paraquat to the media, respectively, at culture inoculation.

For P. aeruginosa, laboratory strain PAO1 (ATCC 15692) was grown as described in reference [23]. Briefly,
cultures were grown in M9 minimal media supplemented with 0.4% (w/v) glucose and 0.2% (w/v) casamino acids
and buffered with 100 mM each of MES and MOPS buffers. Population growth was measured with a CLARIOstar
automated microplate reader (BMG Labtech) at 37°C with 300 rpm continuous shaking. The ODggy was recorded
automatically every 15 minutes for a total of 24 hours. A full factorial design of pH and OA concentration was
performed for benzoate, citric acid, and malic acid. An experimental batch corresponded to two repetitions of the
experiment on separate days with a minimum of three biological replicates of each condition on each day. Two
batches for each OA were performed.

All data generated or analysed during this study are included in this published article (see supplementary infor-

mation files).

4.2 Parametric growth curve estimation

For comparison with our non-parametric methods, parametric growth curve models were estimated using the grofit
package in R with default parameters”®. The logistic model was used to fit each curve. Kernel density estimates of

parameter distributions were calculated with the scipy package with default kernel bandwidth parameters®.
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4.3 phenom: a hierarchical Gaussian process model of microbial growth
4.3.1 Gaussian Processes

A Gaussian process (GP) defines a non-parametric distribution over functions f(¢), defined by the property that any
finite set of observations of f follow a multivariate normal distribution®®. A GP is fully defined by a mean function

m(t) and a covariance function x(t,t'):

F(t) ~ GP(m(t), w(t,1)). (2)

GPs are commonly used for non-parametric curve fitting®* where m(t) is typically set to 0, which we do here.
Similarly, we use a common choice for covariance function defined by a radial basis function (RBF) kernel:

k(t, ) = o 'exp(i‘%tw), (3)

where o2 is the variance and £ is the length-scale. The parameter o2 controls the overall magnitude of fluctuation in
the population of functions described in the GP distribution, while ¢ controls the expected smoothness, with larger ¢
making smoother, slower varying functions more likely. In the process of non-parametric modeling of growth curves,

these parameters are adaptively estimated from the dataset.

4.3.2 Fixed effects

We first define the fixed effects models used in this study; these will be augmented with random effects in the next
section. We consider fixed effects models of increasing complexity: a mean growth phenotype, a single treatment
phenotype, and a combinatorial phenotype with interactions between treatments. All of these models fall under
the functional analysis of variance (ANOVA) framework?#™, To estimate a mean growth profile, as in the case of
measuring a single condition, a mean function u(t) is estimated from the data by modeling each replicate y..(¢) for

1 <r < R as consisting of an unknown mean function observed with additive noise:

yr(t) = :u(t) + 67-(t)a (4)

where p(t) ~ GP(0, k,(t,t')) provides a prior distribution over u, and , is an RBF kernel with hyperparameters
{o2,4,}. Here €.(t) ~ N(0,021) is Gaussian white noise.
When estimating the effect of a perturbation on growth, as in the case of OS, we add a second function d6(¢) that

represents the effect of the stress being considered. The model then becomes

w(t) + €-(t) if standard growth
yr(t) = (5)
w(t) +0(t) + €-(t) otherwise,
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where §(t) ~ GP(0,r4(t,t')) also follows a GP prior independently of 11, and x5 has hyperparameters {7, (5}
When incorporating possible interaction effects such as those between pH and organic acids in the P. aeruginosa

dataset, the model becomes

w(t) + e-(¢), ifp=Tand m=0
p(t) + ap(t) + e(t), ifp£A7and m=0
yr(t,p,m) = (6)
w(t) + Bm(t) + € (1), ifp=Tand m#0
w(t) + ap(t) + Bm(t) + (@B)p.m(t) + €-(t), otherwise,

for pH p and molar acid concentration m, with o, (f) representing the main effect of pH, §,,(t) the main effect of
acid concentration, and (af),.(t) the interaction between them. Each effect is drawn from a treatment specific GP

prior:

ap(t) ~GP(0,Kq(t,t")) (7)
B (t) NGP(O, ka(t, t’)) (8)
(@B)p,m (t) ~GP(0, kag(t,t')). (9)

Again, each covariance function is specified by a RBF kernel with corresponding variance and lengthscale hyperpa-
rameters that adapt to the observed data. All models in this section correspond to My for their respective analyses,

as they do not include any random effects.

4.3.3 Random effects

The first random effects added to the model were those used to account for batch effects, in the model My,tcn. Under
this model, each fixed functional effect becomes the mean of a GP describing the population of possible batch-specific

mean curves. For example, under the model of mean growth behavior (Eq. , replicate r from batch 7 is modeled as

Yir(t) = pi(t) + €0 (1), (10)

where y; is the batch mean drawn from p;(t) ~ GP (u(t), £ paten (t, 1)) with kernel r,, paten and €, (t) ~ N(0,021).
Other M,,,;; models are converted to Myaicnsimilarly, with each fixed effect becoming a mean of a GP prior for each
batch effect. My, develops the hierarchy one step deeper by adding replicate effects to Mpaten- Specifically, the
error model ¢; . is now described by a GP: ¢, ~ GP(O7 Hy(t,t/)) with corresponding hyperparameters, accounting

for replicate-specific variability rather than simply white noise.
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4.3.4 Inference

As noted above, each group GP prior is specified by its own RBF kernel with corresponding variance and length-scale

parameters (0, = {o?,£,}). For each group, o} is assigned a Gamma(c, 3) prior and ¢, a conjugate inverse-Gamma

2

, Was also assigned a gamma prior. Bayesian inference

prior, with user-defined hyperparameters. Noise variance o
was then performed, with the posterior distribution obtained by sampling using Markov chain Monte Carlo (MCMC)
implemented with the Stan library, which uses a Hamilitonian Monte-Carlo procedure with No-U-turn sampling®®.
Multiple chains were run to diagnose convergence, with all parameter posterior means confirmed to have converged

within R < 1.1 as recommended?®.

4.4 Data and Code Availability

All code for this study is available at https://github.com/ptonner/phenom. Raw growth data are available for H.
salinarum in reference [22] and at https://github.com/ptonner/hsalinarum_tf_phenotype. Raw growth data are

available for P. aeruginosa in reference [23] and at https://github. com/amyschmid/pseudomonas-organic-acids.
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Figure S1: P. aeruginosa growth under benzoate and pH gradient. Growth of P. aeruginosa strain PAQ1
under gradient of pH (7 — 5) and benzoate (0 — 20). Colors represent different batches.
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Figure S2: P. aeruginosa growth under malic acid and pH gradient. Growth of P. aeruginosa strain PA01
under gradient of pH (7 — 5) and malic acid (0 — 20). Colors represent different batches.
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Figure S3: KDE of pmax for H. salinarum growth across batches. Crosses indicate significant difference
between pimax standard conditions and each OS level (one-sided t-test, p < 0.05)
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Figure S4: Error in parametric growth models. Distribution of error (MSE) for each condition when fit with
a logistic growth curve. The box show shows the inter-quartile range, red line is the median, whiskers show the 1.5
inter-quartile range, and the individual points are outliers.
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Figure S5: Residual structure of microbial growth data across batches. (A) Individual replicate curve
residuals around the mean of the respective batch. Only standard conditions are shown. (B) Residual of the mean
behavior for each batch around the global mean (standard condition only).
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Figure S6: Posterior comparison of ;(t) for H. salinarum growth across batches. Posterior interval of p(x)
for H. salinarum standard growth.
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Figure S7: Posterior variance of function estimates under different models. Each plot shows the posterior
variance of a function at each time point under each of Mpaten and My, versus M. (A) 0(z) estimated for H.
salinarum growth under low (left) and high (right) OS. (B) (af8)p,m(t) at pH = 5, mM malic acid = 10.
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