

1 No evidence for motion dazzle in an

2 evolutionary citizen science game

3 Anna E. Hughes^{1,3*}, David Griffiths², Jolyon Troscianko¹, Laura A. Kelley^{1,4*}

4 1 Centre for Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, UK, TR10 9FE

5 2 FoAM Kernow, Penryn, UK, TR10 8AE

6 3 Previous address: Department of Physiology, Development and Neuroscience, University of Cambridge, UK, CB2 3EB

7 4 Previous address: Department of Psychology, University of Cambridge, UK, CB2 3EB

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 Corresponding authors: a.hughes2@exeter.ac.uk, l.a.kelley@exeter.ac.uk

24 **Abstract**

25 The motion dazzle hypothesis posits that high contrast geometric patterns can cause difficulties in
26 tracking a moving target, and has been argued to explain the patterning of animals such as zebras.
27 Research to date has only tested a small number of patterns, offering equivocal support for the
28 hypothesis. Here, we take a genetic programming approach to allow patterns to evolve based on
29 their fitness (time taken to capture) and thus find the optimal strategy for providing protection when
30 moving. Our 'Dazzle Bug' citizen science game tested over 1.5 million targets in a touch screen game
31 at a popular visitor attraction. Surprisingly, we found that targets lost pattern elements during
32 evolution and became closely background matching. Modelling results suggested that targets with
33 lower motion energy were harder to catch. Our results indicate that low contrast, featureless targets
34 offer the greatest protection against capture when in motion, challenging the motion dazzle
35 hypothesis.

36 **Keywords:** motion dazzle, evolution, motion perception, citizen science, genetic algorithms

37

38 **Introduction**

39 The high contrast, conspicuous patterns seen on animals such as zebra, snakes and fishes have
40 attracted a range of evolutionary explanations, including camouflage, thermoregulation,
41 communication and the avoidance of biting flies [1–7]. One hypothesis that has received attention in
42 recent years is the ‘motion dazzle’ hypothesis, which proposes that these patterns may act to cause
43 confusion when the animal is in motion, causing illusions in the visual system of the viewer that may
44 lead to misjudgements of speed and direction [8].

45 There have been a number of studies that have provided support for the motion dazzle hypothesis.
46 For example, it has been shown that putative dazzle patterns are relatively difficult for humans to
47 ‘catch’ in a computer based touch screen game [9–11], and may also interfere with speed [12–14]
48 and direction [15] perception. There is also evidence that some orientations of stripes can interfere
49 with the ability to track one target within a larger group [16–18]. Finally, modelling work has
50 suggested that striped patterns may be particularly prone to creating erroneous motion signals in
51 the visual system, which may underlie these types of behavioural effects [19].

52 Despite these findings, not all research has supported the motion dazzle hypothesis. Some studies
53 on humans have found that striped targets are easier to capture than non-patterned targets [20,21],
54 and moving cuttlefish have been shown to preferentially display low contrast patterns [22]. Similarly,
55 a recent study using natural predators hunting patterned prey found no evidence for a benefit of
56 motion dazzle patterning compared to uniform coloration [23]. Even studies which have argued for
57 an effect of motion dazzle patterning have normally shown that there is no benefit in terms of
58 capture success of striped patterning over a luminance matched non-patterned target, suggesting
59 that the benefit of stripes may not be unique [9,11,14,21].

60 One limitation of previous studies is that they have tested a relatively small range of patterns, often
61 chosen arbitrarily. This means that it is not yet clear whether we have truly discovered the optimal

62 patterning type to provide protection when in motion; it may be that there are more effective
63 options than those tested so far. However, the small-scale psychophysics-style experiments used to
64 date make it difficult to test large numbers of patterns. We therefore took a novel approach, using
65 genetic programming to allow the patterning of targets to 'evolve' across generations in response to
66 capture success [24–26]. In this way, we can ask which patterning strategy is optimal, given the
67 almost infinite number of possible patterns that can be generated. To obtain the large amount of
68 data required for this approach, we ran our experiment as a citizen science game ('Dazzle Bug') in a
69 popular visitor attraction. Participants played the game by tapping on the moving targets ('bugs')
70 with their finger as quickly as possible in order to 'catch' them (Figure 1). We ran a number of
71 replicates of the evolutionary process for three populations of different speeds, to assess whether
72 the optimal patterning changes as a function of the target movement speed.



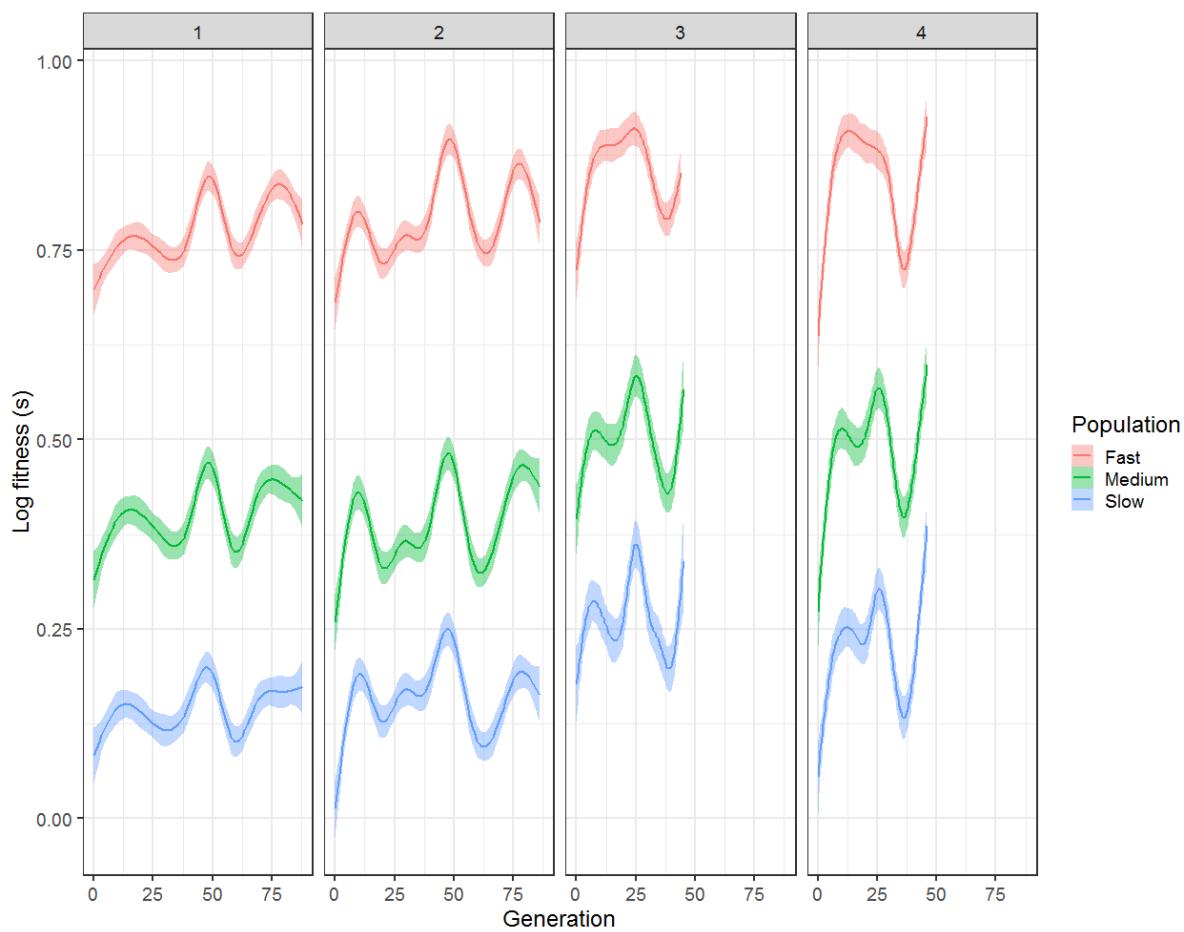
73 Figure 1: Figure showing screenshots from the game. Left: title screen. Middle: instructions presented to the participant.
74 Right: the game in progress. Participants could see the time remaining on the trial via the countdown clock in the top left
75 hand corner.

76 Our first aim was to demonstrate a fitness increase in our experimental populations, which we
77 defined as an increase in the average capture time across generations. We did this by comparing to a
78 simulation run of the evolutionary algorithm, using randomised capture times. We then investigated
79 how the target patterning changed across generations for different speed populations, using image
80 analysis to measure contrast and the presence of stripes at different orientations. We also looked at
81 whether selection rates differed for the different speed populations, using the Land, Arnold and

82 Wade framework [27–29], allowing us to consider how selection pressure might vary across the
83 generations. Finally, we asked whether motion perception modelling can help to explain our
84 experimental results.

85 **Results**

86 *Is there a fitness increase for the experimental populations, and does this differ from the null
87 population?*



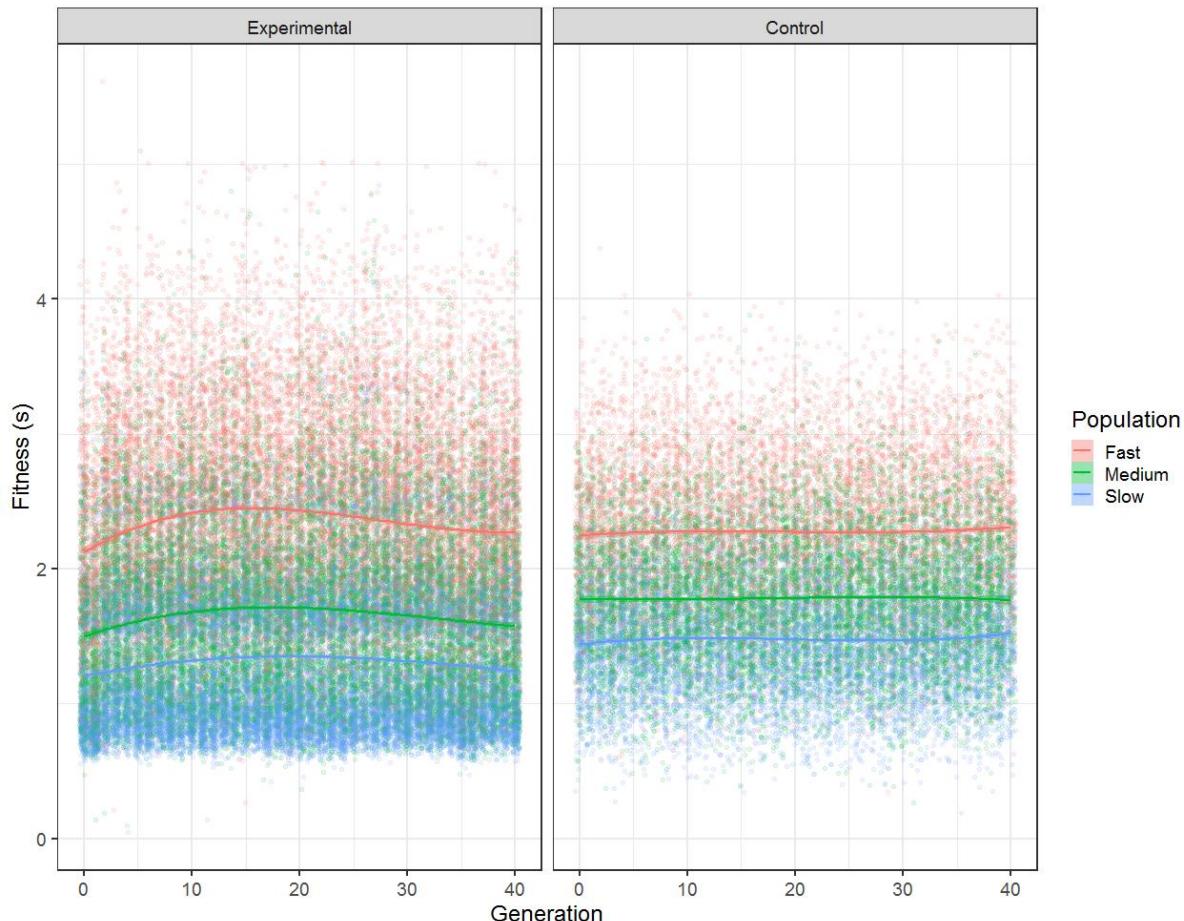
88

89 Figure 2: Experimental data (shown as a smoothed GAM) from all four replicates, showing how log fitness changes as a
90 function of generation number and speed population.

91 Figure 2 shows there were clearly large differences in fitness (capture speed) among populations,
92 with the fast bugs being hardest to catch, followed by the medium bugs and then finally the slow

93 bugs ($\chi^2 = 50892.85$, $p < 0.001$). There was a considerable level of noise in the data, which is to be
94 expected given the wide range of participants and fast reactions required. Nevertheless, there was
95 also a significant increase in fitness across generations ($\chi^2 = 208.72$, $p < 0.001$). Increases were often
96 particularly obvious in the early generations of the game.

97



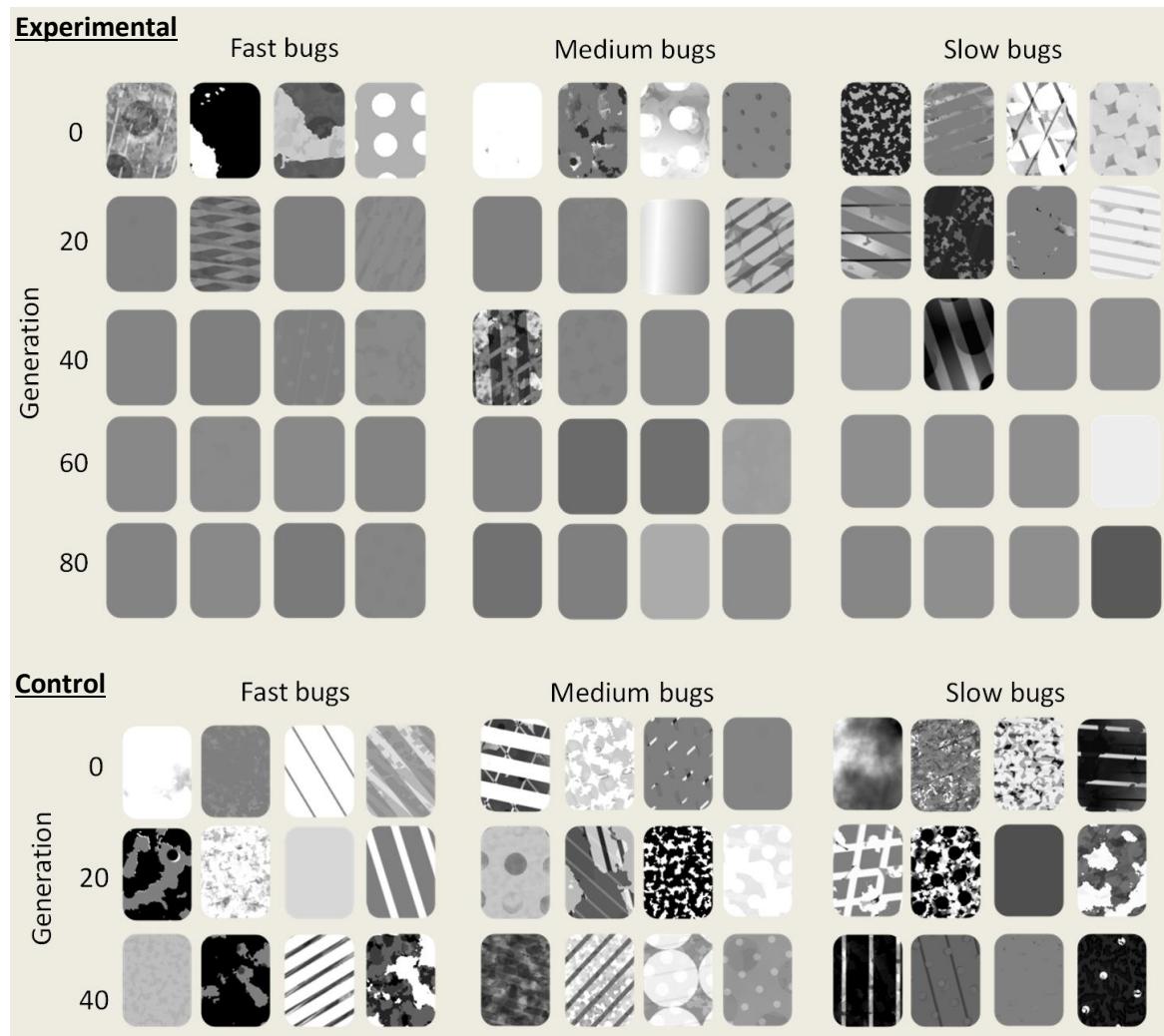
98

99 Figure 3: Experimental data (left) and control data (right) compared across 40 generations and for the three different speed
100 populations. Experimental data has been collapsed across all 4 replicates. All raw data points are plotted and the curves are
101 fit using splines with two degrees of freedom.

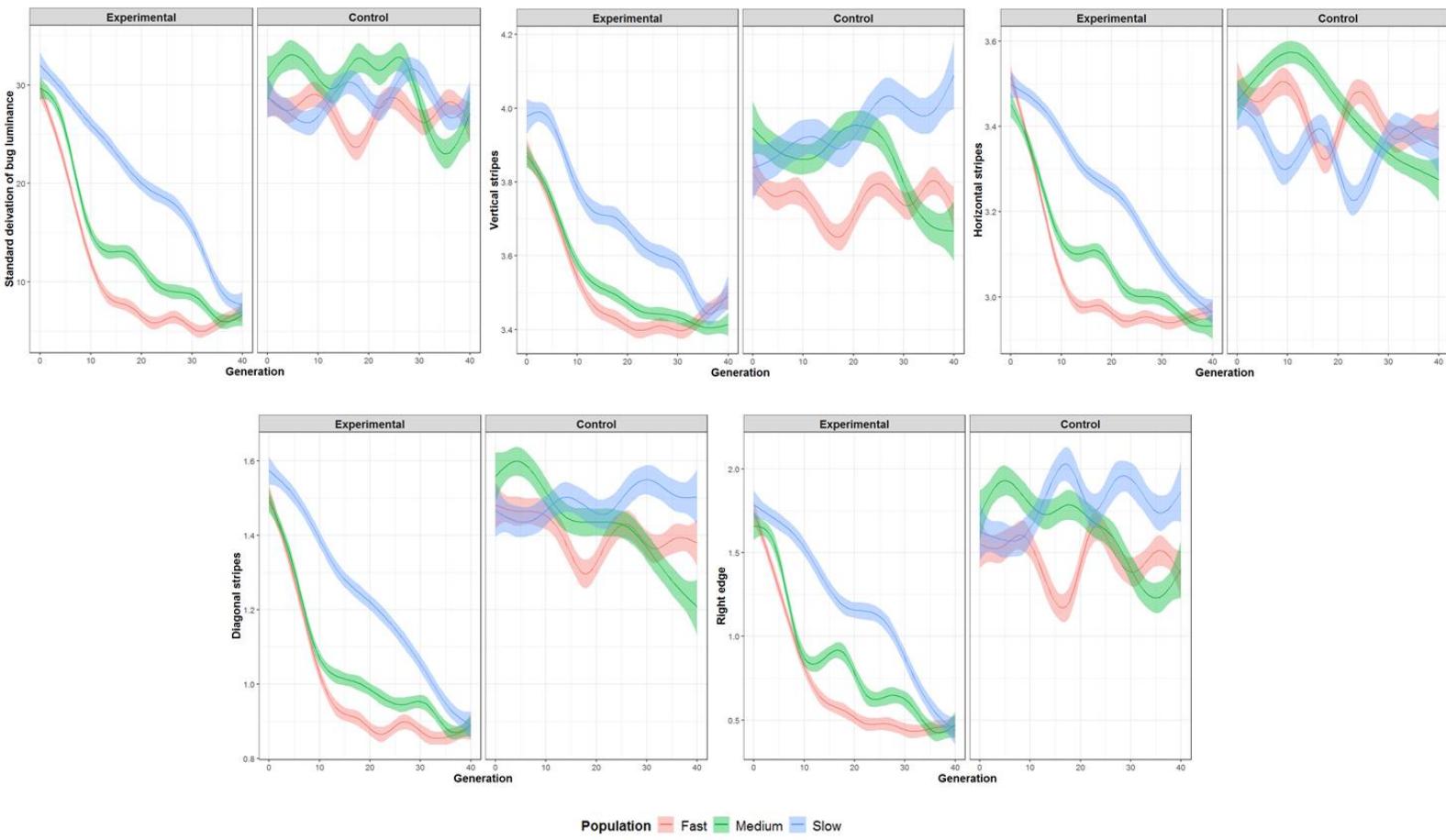
102 The experimental data also show a significant difference in fitness change compared to the null data
103 (interaction between dataset and second order effect of generation: $\chi^2 = 161.985$, $p < 0.001$). The
104 experimental data shows a characteristic quadratic shape, with an initial increase that flattens off

105 (Figure 3). We therefore have evidence for a fitness increase in our experimental population,
106 suggesting that selection is occurring to optimise patterning types.

107 *How does bug patterning change in the experimental and null populations?*



108
109 Figure 4: Top - random bugs from generations 0, 20, 40, 60 and 80 (all from the same replicate) of the experimental data,
110 split into populations (fast, medium and slow). Bottom- random bugs from generations 0, 20, and 40 (all from the same
111 replicate) of the control data, split into populations (fast, medium and slow).
112
113

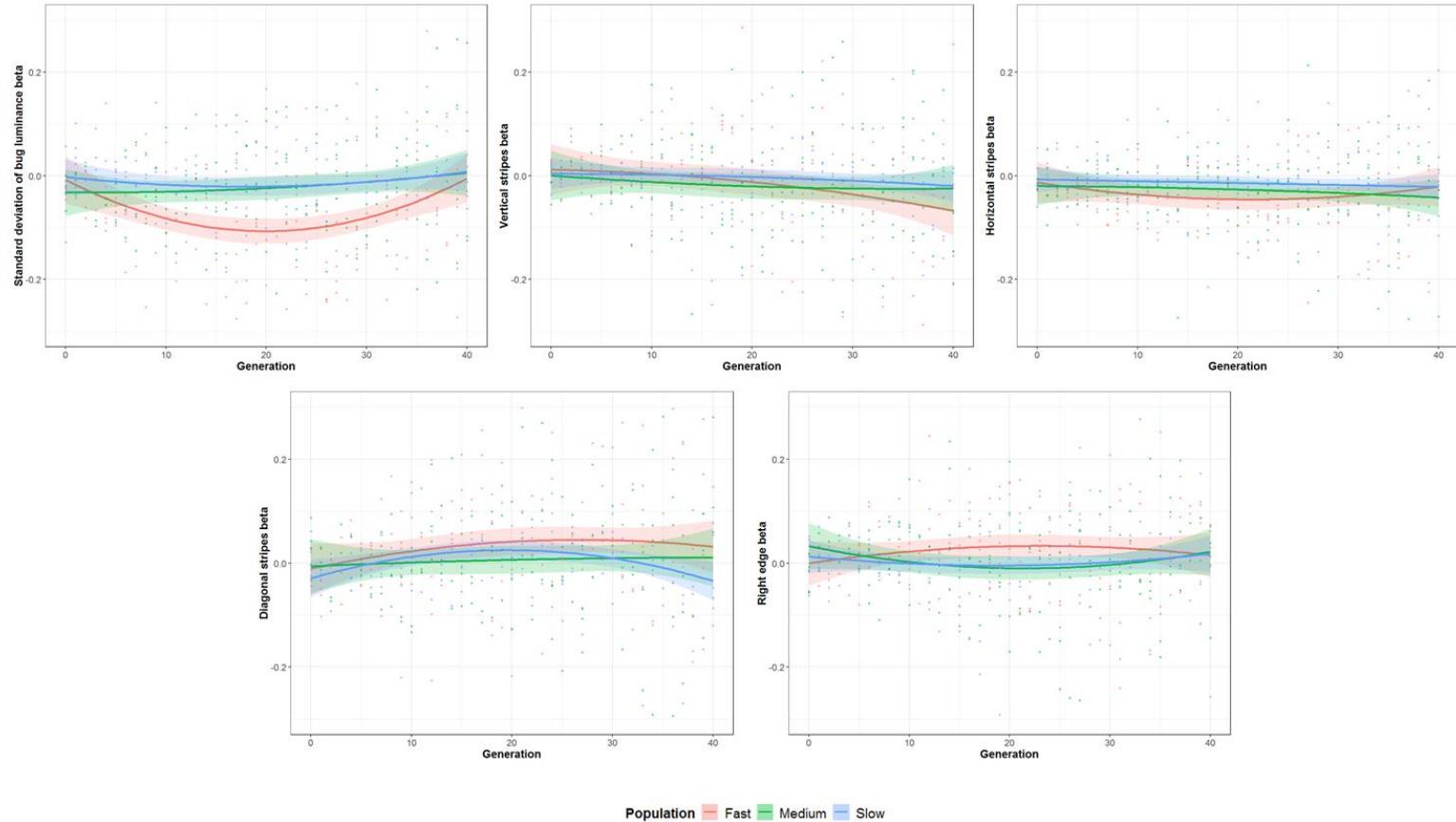


114 Figure 5: Change in parameters across generations, both for the experimental (left) and control (right) conditions, for five
 115 pattern metrics: from top left, these are the standard deviation of the bug luminance, the pattern energy for the vertical
 116 stripes, horizontal stripes, diagonal stripes and the right edge.

117 All four populations of evolving bugs demonstrated a loss of pattern information over the
 118 generations – converging on uniform background-matching colours (Figure 4, top) – while the
 119 control populations maintained their pattern diversity (Figure 4, bottom). Quantifying this using our
 120 five most informative pattern metrics (Figure 5) shows that there are always clear differences
 121 between how the pattern metrics change in the experimental condition compared to the control
 122 condition (interaction between experimental/control condition and pattern metric for cumulative
 123 link models - standard deviation of bug luminance: $\chi^2 = 36207.5$, $p < 0.001$; vertical stripes: $\chi^2 =$
 124 36848.3 , $p < 0.001$; horizontal stripes: $\chi^2 = 36587.0$, $p < 0.001$; diagonal stripes: $\chi^2 = 36299.0$, $p <$
 125 0.001 ; right edge: $\chi^2 = 36613.3$, $p < 0.001$). Broadly, there always seems to be an overall decrease in

126 pattern complexity in the experimental case, whereas there is much more variability in the control
127 condition.

128 *Are there differences in selection rate for each speed population?*



129 Figure 6: Normalised linear selection rates (β) for the five most important camouflage metrics across generations.

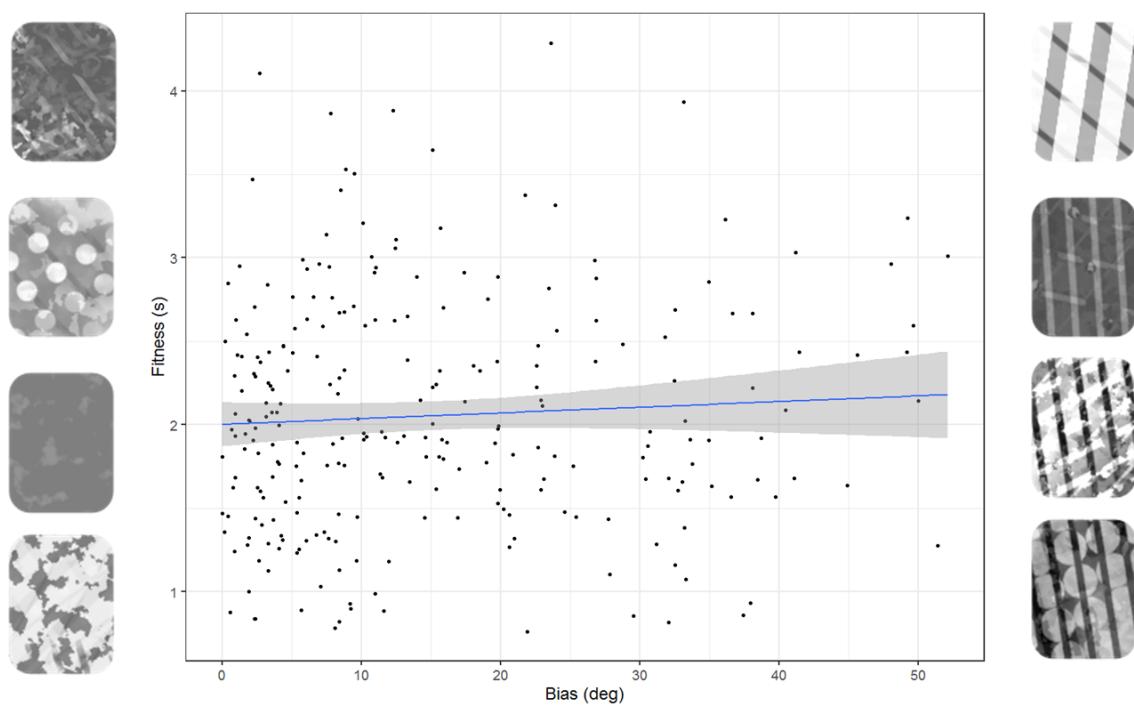
130 Polynomial curves are fitted to the raw data up to generation 40. Individual points show the selection rates for each
131 replicate.

132 The data allow us to determine the main selection pressures operating on each population of bugs
133 within each generation (normalised linear selection rates (β)), so that we can assess whether
134 pressures change over evolutionary time. Differences in selection rates across generations were
135 seen for luminance ($\chi^2 = 12.815$, $p = 0.002$), vertical stripes ($\chi^2 = 11.593$, $p = 0.003$) and for diagonal
136 stripes ($\chi^2 = 6.647$, $p = 0.036$). There was no evidence for difference in selection rates for both the
137 horizontal stripe ($\chi^2 = 1.705$, $p = 0.426$) and the right edge metrics ($\chi^2 = 5.486$, $p = 0.064$).

138 The standard deviation of the luminance of the bugs appears to be particularly important for the
139 ‘fast’ population; there is strong selection pressure particularly in early generations, and this differs
140 from the selection rate seen in the ‘medium’ and ‘slow’ populations (Figure 6; fast-medium
141 comparison: $t = -2.883$, $p = 0.012$; fast-slow comparison: $t = -3.138$, $p = 0.005$; medium-slow
142 comparison: $t = -0.249$, $p = 0.967$). For vertical stripes, there is some evidence for stronger selection
143 pressure for medium compared to slow bugs ($t = -2.654$, $p = 0.022$). For all other patterning
144 parameters, there were no significant differences between the different speed populations
145 (horizontal stripes – $\chi^2 = 3.928$, $p = 0.140$, diagonal stripes – $\chi^2 = 1.783$, $p = 0.410$, right edge – χ^2
146 $=4.330$, $p = 0.115$).

147 *Can motion modelling help to explain the experimental findings?*

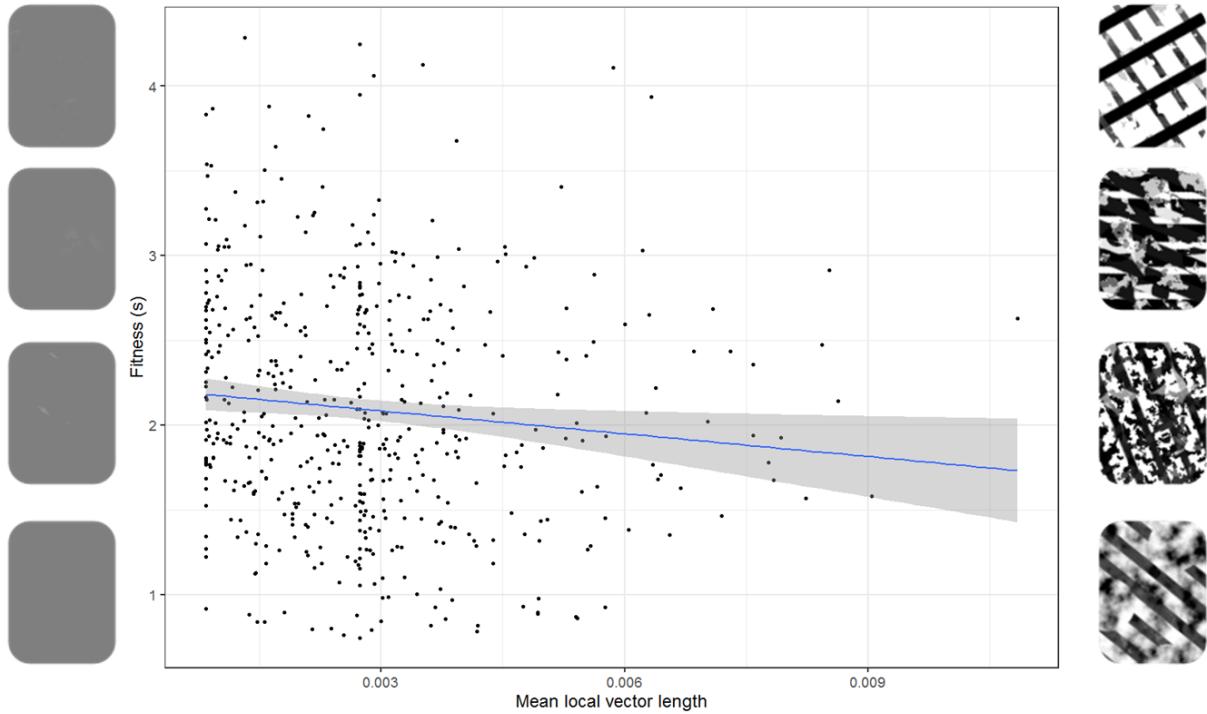
148 According to previous modelling work [19], we would expect targets to produce strong motion
149 illusions if they are both highly coherent (the motion vectors produced tend to be in a highly similar
150 direction) and biased (the average trajectory of the motion vectors is quite different from the
151 ‘veridical’ direction of the target). When considering only the most coherent targets, there is a
152 significant relationship between bias and fitness (Figure 7); the fitness of the targets increased as the
153 bias increased (interaction between coherence and bias: $F = 5.985$, $p = 0.015$), in line with previous
154 predictions [19]. In addition, the targets with the highest bias also tended to be relatively stripy and
155 high contrast (bugs with higher bias had both higher standard deviations of luminance $F = 10.844$, p
156 $=0.001$, and levels of vertical stripes $F = 35.688$, $p < 0.001$) again suggesting that these “motion
157 dazzle” type patterns might be expected to create illusory motion signals.



158
159 Figure 7: Data from the generation 0 fast bugs, using only those bugs above the median coherence value (i.e. relatively
160 highly coherent targets) and plotting fitness against the bias. Exemplars on the left are bugs that had low bias values,
161 according to the motion model; exemplars on the right are bugs that had high bias values.

162 However, these results do not seem to explain our evolutionary findings, where we saw a strong
163 tendency for targets to become lower contrast and non-patterned. A second metric from our motion
164 modelling is the motion energy, which can be conceptualised as how salient or visible the motion is.

165 Here, there is a very different relationship with fitness, as can be seen in Figure 8, with low motion
166 energy targets (that tend to be low contrast and have little patterning) having higher fitness than
167 those with higher motion energy (that tend to have high contrast and strong patterning) ($F = 4.391$,
168 $p = 0.027$; $F = 4.989$, $p = 0.026$ if data were not filtered to exclude cases with a circular mean
169 difference of greater than 6 degrees). Bugs with higher mean vector lengths had both higher
170 standard deviations of luminance ($F = 1171.8$, $p < 0.001$) and levels of vertical striping ($F = 545$, $p <$
171 0.001).



172
173 Figure 8: Data from the generation 0 fast bugs, plotting fitness against the mean local vector length (a measure of motion
174 energy). Exemplars on the left are bugs that had low motion energy values, according to the motion model; exemplars on
175 the right are bugs that had high motion energy values.

176 **Discussion**

177 Using a large-scale evolutionary citizen science game, we found no evidence that putative 'motion
178 dazzle' patterning can offer protection when in motion; despite predictions that high contrast,
179 geometric patterning should cause visual illusions that make targets harder to catch, we found that
180 the targets consistently evolved to become less patterned and lower contrast. This happened for all
181 speeds tested and all replicates of the experiment, although these changes seemed to occur more
182 quickly in populations with faster speeds. Motion modelling suggested that these results could be a
183 consequence of the motion energy of the stimulus, as this correlated with capture time, with lower
184 motion energy targets being more difficult to catch. Our results have important consequences for

185 our understanding of the evolution of stripes, and for how animals should best protect themselves
186 from capture when in motion.

187 Our results are perhaps surprising in the context of most literature on motion dazzle to date, which
188 has suggested that stripes seem to be relatively difficult to catch or can cause illusions of speed or
189 direction perception [9–12,14–18]. However, we note that there has indeed been plenty of evidence
190 in the literature for uniform grey patterns also being relatively difficult to catch, and in some cases
191 perhaps even harder than striped targets. For example, grey targets always survive well in capture
192 studies [9,11,14,21]. Similarly, in tracking tasks, low contrast parallel stripes were found to be more
193 difficult to track than high contrast parallel stripes [18], arguing against a motion dazzle explanation.
194 Recent work has also suggested that in some cases striped patterns are only difficult to catch when
195 the targets are moving sufficiently quickly to blend via the "flicker-fusion" effect into uniform grey
196 [43]. Our results therefore suggest that uniform grey targets had a survival advantage over other
197 types of target patterning, leading them to become fixed as the optimal strategy in all our
198 populations, regardless of speed or replicate number.

199 Motion modelling has previously suggested that stripes should create erroneous motion signals that
200 are both highly coherent and biased [19], implying striped prey should be more difficult to catch.
201 However, to our knowledge, modelling results have not previously been compared to behavioural
202 data. Our large dataset therefore offers a perfect opportunity to study whether the motion
203 modelling results do indeed correlate with capture times. In support of the motion dazzle hypothesis
204 [19], we do indeed find that highly coherent and biased targets tend to be more difficult to catch
205 than less biased coherent targets, and that the most biased and coherent targets are often stripy.
206 However, this clearly does not explain the results we see in the evolutionary game. We thus
207 considered another metric that can be calculated from motion models, namely the motion energy,
208 and found that this also correlated with capture success. Targets with low motion energy (that

209 tended to be uniform grey) were harder to catch than targets with high motion energy (that were
210 much more high contrast and patterned).

211 Why does background-matching (reducing motion energy) seem to be a better predictor of the
212 outcomes in our evolutionary games compared to motion dazzle strategies which maximise the
213 bias/coherence metric? We speculate that motion energy is a very consistent signal; regardless of
214 the trajectory of the bug or the speed, the targets with low visibility will be harder to catch than
215 those that are highly visible. We propose that the effects of stripes may be much more dependent
216 on the particular orientation of the stripes, given that the most effective striped targets appeared to
217 have relatively similar dominant orientations (Figure 7), and previous studies have shown
218 orientation dependence for the effects of striped targets [16–18,21]. Small mutations affecting the
219 rotation of striped patterns could therefore potentially cause large changes in fitness, potentially
220 making striped patterns a relatively unstable evolutionary strategy compared to uniform grey in our
221 experiment. This could suggest that other factors may play a role in maintaining striped patterning in
222 animals, and it would be instructive for future studies to more closely consider the possibility of
223 stripes serving multiple functions.

224 We used three different speed populations in order to assess whether there were differences in the
225 patterns that evolved. As expected, we found that there were strong differences in capture difficulty
226 for different speed populations, with fast targets being the hardest to capture, but we did not find
227 evidence for there being differences in the target patterning that evolved, with all populations
228 becoming uniform grey. This is in agreement with previous work suggesting that there is no
229 interaction between target speed and prey patterning [11], at least for speeds below that needed to
230 create a "flicker-fusion" effect. However, we did find increased selection in "fast" populations,
231 particularly early on in the evolutionary process for the contrast metric and later on for the vertical
232 stripe metric. This may simply reflect the higher difficulty of these targets, which is likely to give a

233 wider range of capture times and thus offer more variation for selection to operate on, potentially
234 exaggerating the selection process.

235 Genetic algorithms are complex and there are many different ways to implement them [24–26]. We
236 therefore carried out control experiments using simulated reaction time data with similar average
237 distributions to the real data, helping us to rule out explanations of our results based on algorithmic
238 biases or genetic drift. Our results show clearly that selection pressures do indeed operate in our
239 game and that the change towards grey targets does not simply reflect drift. However, while our
240 set-up allowed us to explore a very wide range of pattern types, it is possible that different
241 algorithms could produce different targets and thus perhaps different results. For example, our
242 targets were rarely highly asymmetric (although this was possible). Recent research has suggested
243 that stripes may be particularly effective at misdirecting capture attempts when they are placed on
244 the anterior of a target [13], suggesting that an interesting direction for future work could be to
245 allow the algorithm to specify different genes (and thus different patterning) for different parts of
246 the target.

247 Our experiment used human participants, in line with the majority of studies in this area. Of course,
248 in the natural world, the viewing animals might have very different visual systems to humans. We
249 removed colour cues from our experiment, as it is well known that different species have very
250 different colour perception [44,45], although motion vision is generally thought to be predominantly
251 achromatic [46–48]. However, there is also large variability in the perception of temporal changes
252 across different species [49] which we could not adequately compensate for in this experimental set
253 up. Despite this, our main conclusions broadly agree with previous studies carried out on non-
254 human predators and prey [22,23]. However, it would of course be highly instructive to carry out
255 similar experiments with non-human animal participants to determine whether the results we
256 report here are more widely generalizable.

257 Overall, we find limited evidence for motion dazzle effects in a citizen science evolutionary game,
258 which we believe is the most comprehensive test of this hypothesis to date. Stripes were able to
259 cause motion illusions and reduce capture times in some scenarios, meaning that there may still be
260 specific cases where motion dazzle can be at least part of an explanation for the evolution of striped
261 patterns. However, our results suggest that uniform grey targets appear to be a more stable optimal
262 solution.

263 **Methods**

264 **Subjects**

265 We did not collect any demographic data from participants. This was to streamline participation in
266 the study (which was conducted in a busy exhibition space) and also because it would be difficult to
267 verify the accuracy of the information presented. To overcome the limitations of being unable to
268 account for participant age, handedness and gender, we collected a large sample size of participants
269 over many generations (1,554,935 targets were caught in total across the whole experiment,
270 involving approximately 75,000 participants). This project was carried out with ethical approval from
271 the University of Cambridge (pre.2014.08).

272 **Experimental methods**

273 The Dazzle Bug game was installed at the Eden Project (St. Austell, UK) on a touch screen computer
274 as part of an interactive exhibition, and the data used were collected between May 2018 and
275 January 2019. The game was coded in HTML5 canvas (source code is available at
276 <https://github.com/nebogeo/dazzlebug>, DOI: 10.5281/zenodo.2560935) and is playable online at
277 dazzle-bug.co.uk/exhib.html (the online data are not analysed in this paper). The screen had an area
278 of 478 x 269mm and the screen resolution of the game was 1237 x 820 pixels. The viewing distance
279 of participants to the screen was approximately 60cm.

280 The game had a similar format to many previous studies testing motion dazzle effects [10,11,21] in
281 that participants were presented with a small rectangular target (75 x 100 pixels, or 29.0 x 38.6mm;
282 visual angle 2.76x3.69°) which they had to try to 'catch' as quickly as possible after it had appeared
283 by touching it with their finger (Figure 1). Targets began their movement at a random position on
284 the screen and moved with a linear trajectory. The angle of movement changed throughout a trial,
285 both at the edge of the target arena via reflection (to ensure that the target remained visible to the
286 participant) and randomly throughout movement (once every half a second, and when an
287 unsuccessful capture attempt was made; the new angle was randomly chosen based on its previous
288 angle plus or minus 90 degrees). Targets could be presented at one of three speeds, fast, medium or
289 slow (600, 450 or 300 pixels per second respectively, independent of frame rate, which equated to
290 231.8, 173.8 and 115.9mm/s), and each participant was presented with a random mix of targets of
291 all three speeds. Participants had 5 seconds to catch each target. After the target had been caught,
292 or the time-out limit had been reached, the game would move automatically onto the next target. A
293 game consisted of 20 trials in total, with the targets presented randomly selected from the current
294 generation.

295 *Background photos*

296 Targets were presented against one of 40 naturalistic background photographs (of e.g. grass, tree
297 bark or leaf litter). The background was randomly selected on each trial. The photos were calibrated
298 and converted to greyscale (with an average pixel value of 127).

299 *Pattern generation*

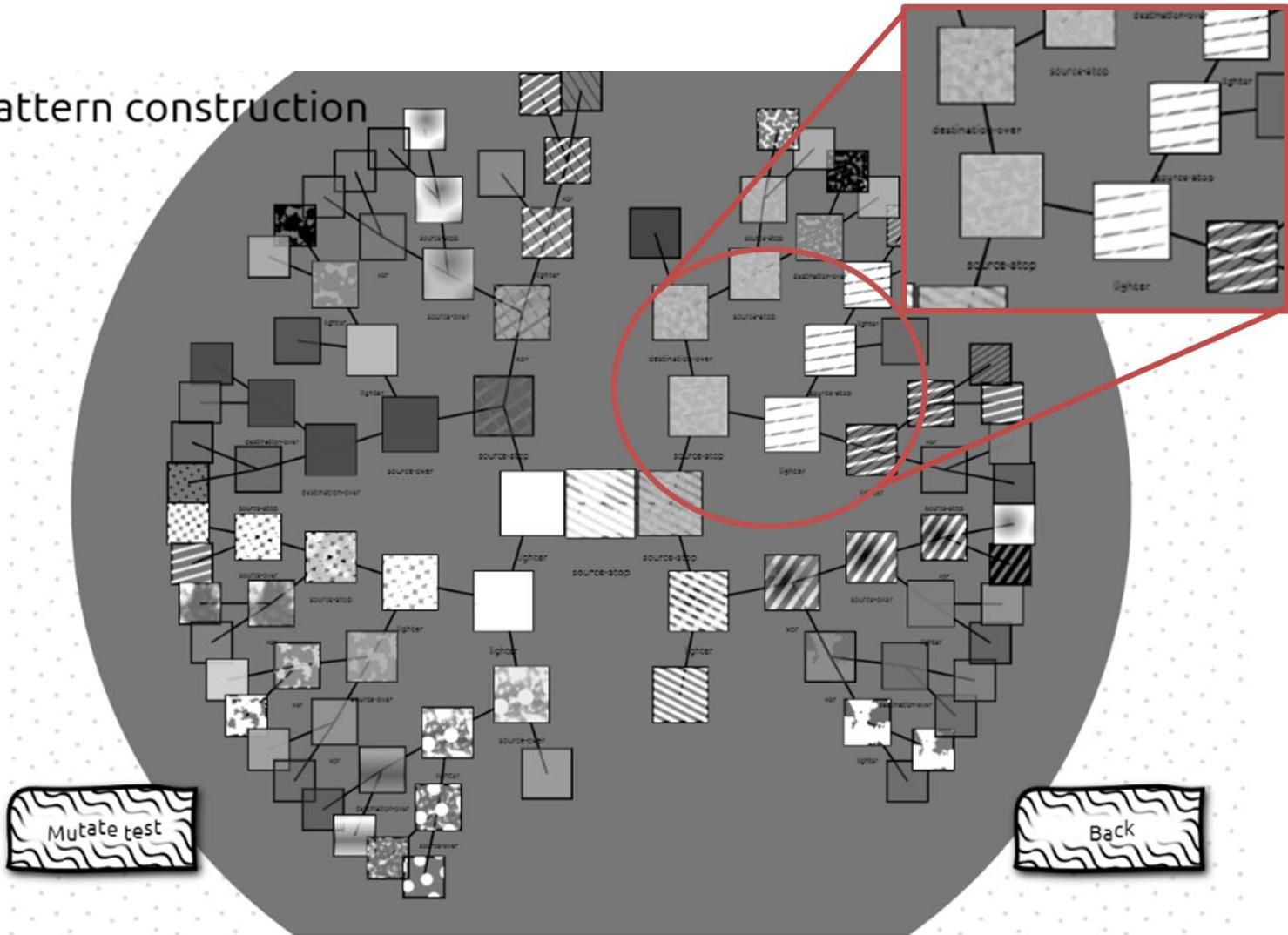
300 The patterns throughout the game were generated through a genetic programming approach [24–
301 26]. This does not attempt to directly mimic biological evolution, but is instead a method allowing
302 the exploration of an unbounded parameter space in an efficient manner, using algorithms inspired
303 by natural selection processes. The key principle is that the evolutionary process acts to modify small

304 ‘computer programs’ that specify the patterning presented on each target. This allows a great deal
305 of flexibility in the complexity of target patterning and reduces artificial bounds on the evolutionary
306 space that can be introduced in more traditional genetic algorithm methods [25].

307 Targets were generated in a hierarchical manner, as shown in Figure 9. The ‘tree structure’ of the
308 program determining the target patterning is composed of two different types of node. One type of
309 node is the ‘terminal node’ that is found on the outer ring of the tree. There were two possible
310 variants of terminal node (each chosen with a probability of 50%). One variant was a flat image of a
311 specific RGB colour (always greyscale) and alpha (transparency) value. The second variant of
312 terminal node consisted of a specific pre-generated image; there were 66 different initial images
313 from a range of different categories, including striped patterns, spotted patterns and noise patterns,
314 and with a range of spatial scales (see Figure 10). These base images could also be moved using an x-
315 offset and a y-offset value (with the patterns wrapping around the target) and rotated (in radians).
316 The other type of node was the ‘combination node’. Here, two image inputs were combined using
317 one of the following randomly selected nodes:

318 - Source-over: the second image was drawn on top of the first image
319 - Source-atop: the second image was drawn only when it overlapped the first image (i.e. the
320 second image was not drawn on the transparent parts of the first image)
321 - Destination-over: the second image was drawn behind the first image
322 - Lighter: when both images overlapped, the new colour was determined by adding the colour
323 values
324 - Xor: the new image was made transparent when both the first and second images
325 overlapped, and was drawn normally everywhere else

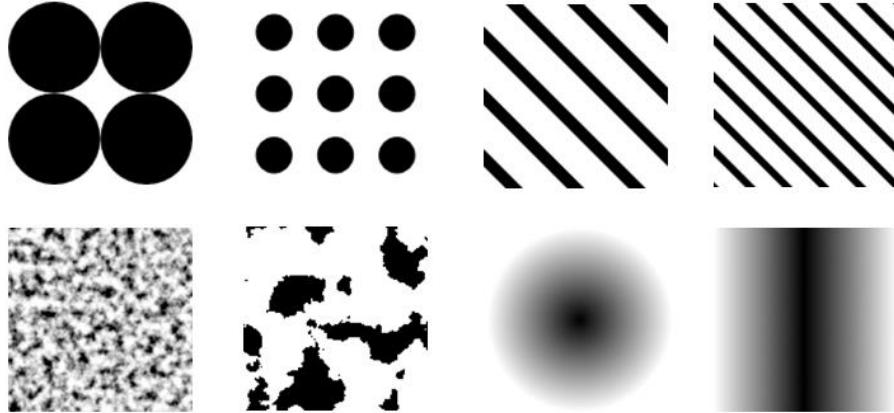
Pattern construction



326

327 Figure 9: Schematic to show how targets are generated (available to view on the online version of the game). Each target
328 can be thought of as being the top point of a ‘tree’ made up from a range of different images, combined in different ways.
329 The ‘nodes’ of the tree are combination operations, that each take two images as input. The tree continues until the outer
330 edge of the circle, where the terminal nodes are made up of the base images. The magnified region shows the combination
331 operations more clearly.

332



333

334 Figure 10: Selection of example base pre-generated images, including spots, stripes, noise and gradients.

335 An example displayed target is shown in the centre of the screen in Figure 9, and was formed by the
336 top combination node of the tree. The input to this combination node could either be other
337 combination nodes (as seen in this example) or could include a terminal node as well (with 20%
338 probability). The process can be followed backwards until the input to a combination node is two
339 terminal nodes (with randomly chosen parameter inputs), ending that part of the ‘tree’ and forming
340 an outer edge of base images.

341 *Evolutionary process*

342 Four replicates of the game were run, with each replicate containing three separate populations for
343 each speed (fast, medium and slow) that each evolved separately. The first generation of each
344 population contained 128 individuals that were completely randomly generated in accordance with
345 the pattern generation process detailed above. These were then presented to players randomly until
346 they had all been played five times. At this point, each one was scored by averaging the time taken
347 to catch them, and the bottom half of the generation based on this measure of fitness was removed
348 from the population. (Normalisation of participant times was not possible due to the design of the
349 evolutionary algorithm). The top 64 targets were copied with no mutation to form one half of the
350 new generation, and then copied again with mutation to form the other half. The mutation process

351 involved either random changes of a parameter variable (e.g. changing the RGB colour) or selecting a
352 random part of the tree (either a combination node or a terminal node), copying it and pasting it
353 onto another random part of the tree. Pruning then occurred if the mutation process increased the
354 depth of the tree to beyond the maximum permitted (6 layers). This process could lead to both
355 increases and decreases in target complexity. The mutation rate was randomly selected for each
356 target, with there being a 0-10% chance of a mutation occurring, but with the probability being
357 weighted towards 0% (i.e. no mutation was most likely, but up to a 10% chance was possible).

358 The exact number of generations tested varied between replicates because each participant was
359 randomly assigned to one replicate, and because not all replicates were run simultaneously.
360 Replicate 1 had 89 generations, replicate 2 had 87 generations, replicate 3 had 45 generations and
361 replicate 4 had 46 generations.

362 *Control model*

363 We ran a control model to confirm that any systematic patterning changes seen during the real
364 game were due to directional selection, rather than drift or biases within the genetic programming
365 algorithm. This was set up identically to the real experiment, except that instead of participants
366 playing the game, the computer randomly selected a 'capture time' for each target in each
367 generation, based on a Gaussian distribution using the mean and standard deviation of each
368 population in the real experiment (as individual clicks were not recorded in our experimental data,
369 we estimated the variance of individual plays by multiplying the variance of the 'bug-level' fitness by
370 the number of plays of each bug e.g. by 5). The null model was run for 40 generations.

371 **Quantification and statistical analysis**

372 We analysed the patterning of the targets using custom written scripts in ImageJ (version 1.51k)
373 [30]. This script first calculated the mean, minimum and maximum luminance of each target, and the
374 standard deviation of the luminance. We also calculated the contrast of the target as the coefficient

375 of variance in luminance (the standard deviation divided by the mean). We then used Gabor filtering
376 methods that allow measurement of different angles at different spatial frequencies to determine
377 the strength of these signals on the targets in a biologically plausible way [31–33]. We analysed four
378 angles (vertical, horizontal, and two diagonal stripes) each at four different spatial frequencies
379 (sigma values of 2, 4, 8 and 18 pixels). For each of these conditions, we calculated the standard
380 deviation of Gabor-convolved pixel values as a measure of the “energy” at that particular angle and
381 spatial frequency. Finally, we also measured the standard deviation of Gabor-convolved pixel values
382 for a rectangle covering the edge (with a width equal to sigma) at an angle orthogonal to the edge
383 for all four edges of the target (top, bottom, left and right). This allowed us to investigate whether
384 the placement of patterning has an effect on fitness; for example, it has been suggested that stripes
385 on the leading edge of a target may redirect capture attempts posteriorly [13].

386 The remaining data analysis was run in R (version 3.5.0) [34] and linear mixed models were fitted
387 using lme4 (version 1.1-21) [35]. We expected many of the measures of patterning to be
388 autocorrelated and therefore we reduced the number of variables by determining which were the
389 best predictors of capture time using linear mixed modelling. For each metric, we created a model
390 with the log of fitness (the average capture time) as the dependent variable. Generation was
391 included as a second order fixed effect to account for non-independence in capture time between
392 generations, and population (fast, medium or slow) was also included as a fixed effect. Replicate ID
393 was included as a random effect. Model AIC values were compared to determine which metrics best
394 predicted capture times, within different categories: for luminance metrics, this was the standard
395 deviation of the luminance, a sigma value of 4 for vertical stripes, a sigma value of 2 for horizontal
396 stripes, a sigma value of 2 for diagonal stripes (with both diagonal directions pooled together) and
397 for edge metrics, a sigma value of 8 for the right hand edge. In all of these cases, the measure was a
398 highly significant predictor of average fitness ($p < 0.001$ for all metrics). An example of the model
399 structure used is as follows:

400 $\text{Imer}(\log(\text{Fitness}) \sim \text{poly}(\text{Generation}, 2) + \text{Population} + \text{scale}(\text{SD}) + (1 | \text{Replicate}))$

401 First, we modelled whether there was a change in fitness across generations and populations in our
402 experimental data. We fit a model with the log of fitness as the dependent variable, and the second
403 order effect of generation and the first order effect of population as fixed factors. Replicate number
404 was included as a random slope. We then compared the change in fitness of our targets across
405 generations for both the Eden project data and the null data, allowing us to test whether fitness
406 improved in our experimental population compared to a null baseline. To do this, we fit a similar
407 model as previously, but also included a variable indicating whether the data belonged to a null or
408 an experimental population ('control'). The interaction between generation number and the
409 'control' variable was also included as the key interaction determining whether the increase in
410 fitness was significantly different in the experimental population. Replicate ID was included as a
411 random effect. This model also included only the first 40 generations.

412 We next tested whether there were differences in how our five patterning metrics had changed in
413 the experimental and the null populations within the first 40 generations. To do this, we fit
414 cumulative link models using the ordinal package (version 2019.4-25) [36], with generation as an
415 ordinal dependent variable and the interaction between the metric and the 'control' variable as
416 independent variables. We did not use the patterning metrics as dependent variables as these were
417 highly skewed, making it difficult to fit an appropriate model, and we also did not use replicate ID as
418 a random effect as this led to overfitting. The model included the first 40 generations. An example of
419 the model structure used is as follows:

420 $\text{clm}(\text{Generation} \sim \text{control} * \text{scale}(\text{SD}))$

421 Finally, we wanted to analyse whether there were any differences in selection rates for the different
422 speed populations in the experimental population over the first 40 generations. To do this, we used
423 the Lande, Arnold and Wade framework [27–29] to calculate linear selection rates (β) for each of the

424 five camouflage metrics within each population. For each combination of population, generation and
425 replicate, we fitted a multiple linear regression between the dependent variable of logged fitness
426 and the five normalised camouflage metrics as independent variables. Normalising the camouflage
427 metrics ensured that the selection rates for each could be directly compared. We then took the
428 linear regression coefficients for each metric as the linear selection rates. We used these to test for
429 differences in linear selection rates between different speed populations and over evolutionary time
430 (generations). We fitted linear mixed effect models using the linear regression coefficients for each
431 metric as the dependent variable, testing against the second order fixed effect of generation and the
432 fixed effect of population. Replicate ID was included as a random effect. An example of the model
433 structure used was as follows:

434 $\text{lmer}(\text{SD_}\beta \sim \text{poly}(\text{Generation}, 2) + \text{Population} + (1 | \text{Replicate}))$

435 Significance tests for all models were carried out using the 'Anova' function from package 'car'
436 (version 3.0-2) [37] which was used to calculate Type II ANOVAs. Where relevant, post-hoc
437 comparisons were carried out with the 'emmeans' (version 1.3.4) package [38].

438 **Modelling methods**

439 Motion modelling was carried out using a MATLAB implementation of a motion model using a two-
440 dimensional array of correlation-type elementary motion detectors (as described in [39]) [40,41]. For
441 each "fast" bug in generation 0 (512 bugs in total) we generated a short movie where the bug
442 initially moved on an upwards trajectory and then rotated to move on a trajectory 15 degrees to the
443 right (see supplementary material for an example). We used the generation 0 bugs as these should
444 display a wide range of randomly selected pattern types, and the "fast" population as selection
445 seemed to be strongest on these targets, suggesting that we should see the largest differences in
446 fitness for this population. The time constant (τ) used was 3, the size of spacing between receptors

447 was 50, the size of the filter was 30 and the standard deviations of the Gaussians (used for
448 Difference of Gaussians spatial filtering) were 3 and 5.

449 For each bug, several metrics were calculated from the output of the motion model (after removing
450 zeros, corresponding to places in the image where no motion signal was observed). Firstly, the mean
451 resultant length of the circular direction data was calculated to give a measure of motion coherence.
452 Secondly, the average vector length was calculated as a measure of motion energy. Finally, the bias
453 was calculated by taking the difference between the circular mean and the “veridical” trajectory of
454 the target (assumed to be the average of the two directions the target moved in during the trial). All
455 circular statistics were calculated using CircStat [42].

456 Modelling was carried out using linear models, with the log of fitness being used as the dependent
457 variable, and the coherence (mean resultant), bias (circular mean difference) and the motion energy
458 (average vector length) were used as fixed factors in the model. The interaction between coherence
459 and bias was also included, in line with predictions [19]. Finally, the data were filtered to include
460 only the points with a circular mean difference of less than 60 degrees. The results were not
461 qualitatively different if these data points were included. To test whether patterning metrics could
462 predict the motion energy model output variables, we fit linear models with either the bias or the
463 motion energy as independent variables, and either the standard deviation of the bug luminance or
464 a metric of "stripyness"(the energy for vertical filtering angles with a sigma value of 4).

465 **Acknowledgements**

466 AEH was supported by a PhD studentship from the BBSRC (BB/F016581/1) and is currently
467 supported by a BBSRC grant (BB/P018319/1). LAK received funding from the People Programme
468 (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013)
469 under REA grant agreement n° PIIF-GA-2012-327423 and is currently funded by a Royal Society
470 Dorothy Hodgkin Fellowship. JT is funded by a NERC Independent Research Fellowship

471 (NE/P018084/1). We would like to thank Amber Griffiths for providing valuable assistance and the
472 Eden Project for hosting Dazzle Bug.

473 **Author contributions**

474 AEH: conceptualisation, data curation, formal analysis, investigation, methodology, visualisation,
475 writing (original draft preparation)

476 DG: data curation, formal analysis, investigation, methodology, software, writing (review and
477 editing)

478 JT: data curation, formal analysis, software, writing (review and editing)

479 LAK: conceptualisation, funding acquisition, investigation, methodology, project administration,
480 writing (review and editing)

481 **References**

- 482 1. Ruxton GD. The possible fitness benefits of striped coat coloration for zebra. *Mammal Rev.* 483 2002;32: 237–244.
- 484 2. Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M, Lake J, et al. Benefits of zebra stripes: 485 Behaviour of tabanid flies around zebras and horses. *PLOS ONE*. 2019;14: e0210831. 486 doi:10.1371/journal.pone.0210831
- 487 3. Caro T, Izzo A, Reiner Jr RC, Walker H, Stankowich T. The function of zebra stripes. *Nat 488 Commun.* 2014;5. doi:10.1038/ncomms4535
- 489 4. Larison B, Harrigan RJ, Thomassen HA, Rubenstein DI, Chan-Golston AM, Li E, et al. How the 490 zebra got its stripes: a problem with too many solutions. *R Soc Open Sci.* 2015;2: 140452. 491 doi:10.1098/rsos.140452
- 492 5. Ireland HM, Ruxton GD. Zebra stripes: an interspecies signal to facilitate mixed-species 493 herding? *Biol J Linn Soc.* 2017;121: 947–952. doi:10.1093/biolinnean/blx037
- 494 6. Kelley JL, Fitzpatrick JL, Merilaita S. Spots and stripes: ecology and colour pattern evolution in 495 butterflyfishes. *Proc R Soc B Biol Sci.* 2013;280. doi:10.1098/rspb.2012.2730
- 496 7. Allen WL, Baddeley R, Scott-Samuel NE, Cuthill IC. The evolution and function of pattern 497 diversity in snakes. *Behav Ecol.* 2013; art058. doi:10.1093/beheco/art058
- 498 8. Thayer GH, Thayer AH. Concealing-coloration in the animal kingdom; an exposition of the laws 499 of disguise through color and pattern: being a summary of Abbott H. Thayer's discoveries

500 501 [Internet]. New York, The Macmillan Co.; 1909. Available:
<http://archive.org/details/cu31924022546406>

502 9. Hughes AE, Troscianko J, Stevens M. Motion dazzle and the effects of target patterning on
503 capture success. *BMC Evol Biol.* 2014;14: 201. doi:10.1186/s12862-014-0201-4

504 10. Stevens M, Searle WT, Seymour JE, Marshall KL, Ruxton GD. Motion dazzle and camouflage as
505 distinct anti-predator defenses. *BMC Biol.* 2011;9: 81. doi:10.1186/1741-7007-9-81

506 11. Stevens M, Yule DH, Ruxton GD. Dazzle coloration and prey movement. *Proc R Soc B Biol Sci.*
507 2008;275: 2639–2643. doi:10.1098/rspb.2008.0877

508 12. Scott-Samuel NE, Baddeley R, Palmer CE, Cuthill IC. Dazzle camouflage affects speed
509 perception. *PloS One.* 2011;6: e20233. doi:10.1371/journal.pone.0020233

510 13. Murali G, Kodandaramaiah U. Deceived by stripes: conspicuous patterning on vital anterior
511 body parts can redirect predatory strikes to expendable posterior organs. *R Soc Open Sci.*
512 2016;3: 160057. doi:10.1098/rsos.160057

513 14. Kodandaramaiah U, Palathingal S, Bindu Kurup G, Murali G. What makes motion dazzle
514 markings effective against predation? *Behav Ecol.* doi:10.1093/beheco/azr154

515 15. Hughes AE, Jones C, Joshi K, Tolhurst DJ. Diverted by dazzle: perceived movement direction is
516 biased by target pattern orientation. *Proc R Soc B Biol Sci.* 2017;284.
517 doi:10.1098/rspb.2017.0015

518 16. Hogan BG, Cuthill IC, Scott-Samuel NE. Dazzle camouflage and the confusion effect: the
519 influence of varying speed on target tracking. *Anim Behav.* 2017;123: 349–353.
520 doi:10.1016/j.anbehav.2016.11.022

521 17. Hogan BG, Cuthill IC, Scott-Samuel NE. Dazzle camouflage, target tracking, and the confusion
522 effect. *Behav Ecol.* 2016; arw081. doi:10.1093/beheco/arw081

523 18. Hogan BG, Scott-Samuel NE, Cuthill IC. Contrast, contours and the confusion effect in dazzle
524 camouflage. *R Soc Open Sci.* 2016;3: 160180. doi:10.1098/rsos.160180

525 19. How MJ, Zanker JM. Motion camouflage induced by zebra stripes. *Zoology.* 2014;117: 163–170.
526 doi:10.1016/j.zool.2013.10.004

527 20. von Helversen B, Schooler LJ, Czienkowski U. Are stripes beneficial? Dazzle camouflage
528 influences perceived speed and hit rates. *PloS One.* 2013;8: e61173.
529 doi:10.1371/journal.pone.0061173

530 21. Hughes AE, Magor-Elliott RS, Stevens M. The role of stripe orientation in target capture
531 success. *Front Zool.* 2015;12: 17. doi:10.1186/s12983-015-0110-4

532 22. Zylinski S, Osorio D, Shohet AJ. Cuttlefish camouflage: context-dependent body pattern use
533 during motion. *Proc R Soc B Biol Sci.* 2009;276: 3963–3969. doi:10.1098/rspb.2009.1083

534 23. Zlotnik S, Darnell GM, Bernal XE. Anuran predators overcome visual illusion: dazzle coloration
535 does not protect moving prey. *Anim Cogn.* 2018;21: 729–733. doi:10.1007/s10071-018-1199-6

536 24. Reynolds C. Interactive evolution of camouflage. *Artif Life*. 2011;17: 123–136.
537 doi:10.1162/artl_a_00023

538 25. Sims K. Artificial Evolution for Computer Graphics. *Proceedings of the 18th Annual Conference*
539 *on Computer Graphics and Interactive Techniques*. New York, NY, USA: ACM; 1991. pp. 319–
540 328. doi:10.1145/122718.122752

541 26. Koza JR. *Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer*
542 *Programs to Solve Problems*. Stanford, CA, USA: Stanford University; 1990.

543 27. Lande R, Arnold SJ. The Measurement of Selection on Correlated Characters. *Evolution*.
544 1983;37: 1210–1226. doi:10.2307/2408842

545 28. Arnold SJ, Wade MJ. On the Measurement of Natural and Sexual Selection: Applications.
546 *Evolution*. 1984;38: 720–734. doi:10.2307/2408384

547 29. Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM. Synthetic analyses of phenotypic
548 selection in natural populations: lessons, limitations and future directions. *Evol Ecol*. 2012;26:
549 1101–1118. doi:10.1007/s10682-012-9563-5

550 30. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. *Nat*
551 *Methods*. 2012;9: 671–675.

552 31. Marćelja S. Mathematical description of the responses of simple cortical cells*. *JOSA*. 1980;70:
553 1297–1300. doi:10.1364/JOSA.70.001297

554 32. Jones JP, Palmer LA. An evaluation of the two-dimensional Gabor filter model of simple
555 receptive fields in cat striate cortex. *J Neurophysiol*. 1987;58: 1233.

556 33. Gabor D. Theory of communication. Part 1: The analysis of information. *J Inst Electr Eng - Part*
557 *III Radio Commun Eng*. 1946;93: 429–441. doi:10.1049/ji-3-2.1946.0074

558 34. Ihaka R, Gentleman R. R: A Language for Data Analysis and Graphics. *J Comput Graph Stat*.
559 1996;5: 299. doi:10.2307/1390807

560 35. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models using lme4.
561 *ArXiv14065823 Stat*. 2014; Available: <http://arxiv.org/abs/1406.5823>

562 36. Christensen RHB. ordinal---Regression Models for Ordinal Data [Internet]. 2019. Available:
563 <http://www.cran.r-project.org/package=ordinal/>

564 37. Fox J, Weisberg H. An R Companion to Applied Regression, Second Edition [Internet]. Thousand
565 Oaks, CA: Sage Publications; 2011. Available:
566 <http://socserv.socsci.mcmaster.ca/jfox/Books/Companion>

567 38. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means [Internet]. 2019.
568 Available: <https://CRAN.R-project.org/package=emmeans>

569 39. Zanker JM, Zeil J. Movement-induced motion signal distributions in outdoor scenes. *Netw*
570 *Bristol Engl*. 2005;16: 357–376. doi:10.1080/09548980500497758

571 40. Pallus AC, Fleishman LJ, Castonguay PM. Modeling and measuring the visual detection of
572 ecologically relevant motion by an *Anolis* lizard. *J Comp Physiol A Neuroethol Sens Neural*
573 *Behav Physiol*. 2010;196: 1–13. doi:10.1007/s00359-009-0487-7

574 41. Fleishman LJ, Pallus AC. Motion perception and visual signal design in *Anolis* lizards. *Proc R Soc*
575 *B Biol Sci*. 2010;277: 3547–3554. doi:10.1098/rspb.2010.0742

576 42. Berens P. CircStat: A MATLAB Toolbox for Circular Statistics. *J Stat Softw*. 2009;31: 1–21.
577 doi:10.18637/jss.v031.i10

578 43. Umeton D, Tarawneh G, Fezza E, Read JCA, Rowe C. Pattern and Speed Interact to Hide Moving
579 Prey. *Curr Biol*. 2019;29: 3109–3113.e3. doi:10.1016/j.cub.2019.07.072

580 44. Stevens M. Predator perception and the interrelation between different forms of protective
581 coloration. *Proc R Soc B Biol Sci*. 2007;274: 1457–1464. doi:10.1098/rspb.2007.0220

582 45. Endler JA. A Predator’s View of Animal Color Patterns. In: Hecht MK, Steere WC, Wallace B,
583 editors. *Evolutionary Biology*. Boston, MA: Springer US; 1978. pp. 319–364. doi:10.1007/978-1-
584 4615-6956-5_5

585 46. Cropper SJ, Wuerger SM. The Perception of Motion in Chromatic Stimuli. *Behav Cogn Neurosci*
586 *Rev*. 2005;4: 192–217. doi:10.1177/1534582305285120

587 47. Yamaguchi S, Wolf R, Desplan C, Heisenberg M. Motion vision is independent of color in
588 *Drosophila*. *Proc Natl Acad Sci*. 2008;105: 4910–4915. doi:10.1073/pnas.0711484105

589 48. Schaerer S, Neumeyer C. Motion detection in goldfish investigated with the optomotor
590 response is “color blind.” *Vision Res*. 1996;36: 4025–4034. doi:10.1016/s0042-6989(96)00149-
591 6

592 49. Healy K, McNally L, Ruxton GD, Cooper N, Jackson AL. Metabolic rate and body size are linked
593 with perception of temporal information. *Anim Behav*. 2013;86: 685–696.
594 doi:10.1016/j.anbehav.2013.06.018

595