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Abstract

The motion dazzle hypothesis posits that high contrast geometric patterns can cause difficulties in
tracking a moving target, and has been argued to explain the patterning of animals such as zebras.
Research to date has only tested a small number of patterns, offering equivocal support for the
hypothesis. Here, we take a genetic programming approach to allow patterns to evolve based on
their fitness (time taken to capture) and thus find the optimal strategy for providing protection when
moving. Our ‘Dazzle Bug’ citizen science game tested over 1.5 million targets in a touch screen game
at a popular visitor attraction. Surprisingly, we found that targets lost pattern elements during
evolution and became closely background matching. Modelling results suggested that targets with
lower motion energy were harder to catch. Our results indicate that low contrast, featureless targets
offer the greatest protection against capture when in motion, challenging the motion dazzle

hypothesis.
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Introduction

The high contrast, conspicuous patterns seen on animals such as zebra, snakes and fishes have
attracted a range of evolutionary explanations, including camouflage, thermoregulation,
communication and the avoidance of biting flies [1-7]. One hypothesis that has received attention in
recent years is the ‘motion dazzle’ hypothesis, which proposes that these patterns may act to cause
confusion when the animal is in motion, causing illusions in the visual system of the viewer that may

lead to misjudgements of speed and direction [8].

There have been a number of studies that have provided support for the motion dazzle hypothesis.
For example, it has been shown that putative dazzle patterns are relatively difficult for humans to
‘catch’ in a computer based touch screen game [9-11], and may also interfere with speed [12-14]
and direction [15] perception. There is also evidence that some orientations of stripes can interfere
with the ability to track one target within a larger group [16—18]. Finally, modelling work has
suggested that striped patterns may be particularly prone to creating erroneous motion signals in

the visual system, which may underlie these types of behavioural effects [19].

Despite these findings, not all research has supported the motion dazzle hypothesis. Some studies
on humans have found that striped targets are easier to capture than non-patterned targets [20,21],
and moving cuttlefish have been shown to preferentially display low contrast patterns [22]. Similarly,
a recent study using natural predators hunting patterned prey found no evidence for a benefit of
motion dazzle patterning compared to uniform coloration [23]. Even studies which have argued for
an effect of motion dazzle patterning have normally shown that there is no benefit in terms of
capture success of striped patterning over a luminance matched non-patterned target, suggesting

that the benefit of stripes may not be unique [9,11,14,21].

One limitation of previous studies is that they have tested a relatively small range of patterns, often

chosen arbitrarily. This means that it is not yet clear whether we have truly discovered the optimal
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62 patterning type to provide protection when in motion; it may be that there are more effective

63 options than those tested so far. However, the small-scale psychophysics-style experiments used to
64  date make it difficult to test large numbers of patterns. We therefore took a novel approach, using
65  genetic programming to allow the patterning of targets to ‘evolve’ across generations in response to
66  capture success [24-26]. In this way, we can ask which patterning strategy is optimal, given the

67  almost infinite number of possible patterns that can be generated. To obtain the large amount of
68  data required for this approach, we ran our experiment as a citizen science game (‘Dazzle Bug’) in a
69  popular visitor attraction. Participants played the game by tapping on the moving targets (‘bugs’)

70  with their finger as quickly as possible in order to ‘catch’ them (Figure 1). We ran a number of

71 replicates of the evolutionary process for three populations of different speeds, to assess whether

72  the optimal patterning changes as a function of the target movement speed.

Can you catch the camouflage Agame by
/@]

Try to catch the dazzlebugs as quickly as you can. These bugs
evolve over time to be harder to catch!

73 Figure 1: Figure showing screenshots from the game. Left: title screen. Middle: instructions presented to the participant.
74 Right: the game in progress. Participants could see the time remaining on the trial via the countdown clock in the top left
75 hand corner.

76  Our first aim was to demonstrate a fitness increase in our experimental populations, which we

77 defined as an increase in the average capture time across generations. We did this by comparing to a
78 simulation run of the evolutionary algorithm, using randomised capture times. We then investigated
79 how the target patterning changed across generations for different speed populations, using image
80 analysis to measure contrast and the presence of stripes at different orientations. We also looked at

81  whether selection rates differed for the different speed populations, using the Land, Arnold and
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Wade framework [27-29], allowing us to consider how selection pressure might vary across the
generations. Finally, we asked whether motion perception modelling can help to explain our

experimental results.

Results

Is there a fitness increase for the experimental populations, and does this differ from the null

population?
1 2 3 4

1.00

0.75 4
0

Population

@ 0.50 1 P
2 Fast
= — Medium
o Slow
S

0.25

0.00 7

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
Generation

Figure 2: Experimental data (shown as a smoothed GAM) from all four replicates, showing how log fitness changes as a

function of generation number and speed population.

Figure 2 shows there were clearly large differences in fitness (capture speed) among populations,

with the fast bugs being hardest to catch, followed by the medium bugs and then finally the slow
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93 bugs (x* = 50892.85, p < 0.001). There was a considerable level of noise in the data, which is to be
94  expected given the wide range of participants and fast reactions required. Nevertheless, there was
95 also a significant increase in fitness across generations ()(2 =208.72, p < 0.001). Increases were often

96 particularly obvious in the early generations of the game.

97
Experimental Control
4
O Population
? — Fast
_.QC_). — Medium
iC — Slow
2 -
0 -
6 1I0 2I0 3I0 4.0 0 1I0 2IO 3.0 4.0
98 Generation
99 Figure 3: Experimental data (left) and control data (right) compared across 40 generations and for the three different speed

100 populations. Experimental data has been collapsed across all 4 replicates. All raw data points are plotted and the curves are

101 fit using splines with two degrees of freedom.

102  The experimental data also show a significant difference in fitness change compared to the null data
103 (interaction between dataset and second order effect of generation: x* = 161.985, p < 0.001). The

104  experimental data shows a characteristic quadratic shape, with an initial increase that flattens off
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105 (Figure 3). We therefore have evidence for a fitness increase in our experimental population,

106 suggesting that selection is occurring to optimise patterning types.

107 How does bug patterning change in the experimental and null populations?

Experimental

Fast bugs Slow bugs

=
9
+—
@
(]
(=
()]
(G)
108
Control
=
.0
—
o
()]
=
()]
G
109

110 Figure 4: Top - random bugs from generations 0, 20, 40, 60 and 80 (all from the same replicate) of the experimental data,
111 split into populations (fast, medium and slow). Bottom- random bugs from generations 0, 20, and 40 (all from the same

112 replicate) of the control data, split into populations (fast, medium and slow).

113
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Figure 5: Change in parameters across generations, both for the experimental (left) and control (right) conditions, for five
pattern metrics: from top left, these are the standard deviation of the bug luminance, the pattern energy for the vertical

stripes, horizontal stripes, diagonal stripes and the right edge.

All four populations of evolving bugs demonstrated a loss of pattern information over the
generations — converging on uniform background-matching colours (Figure 4, top) — while the
control populations maintained their pattern diversity (Figure 4, bottom). Quantifying this using our
five most informative pattern metrics (Figure 5) shows that there are always clear differences
between how the pattern metrics change in the experimental condition compared to the control
condition (interaction between experimental/control condition and pattern metric for cumulative
link models - standard deviation of bug luminance: x* = 36207.5, p < 0.001; vertical stripes: x° =
36848.3, p < 0.001; horizontal stripes: x* = 36587.0, p < 0.001; diagonal stripes: X* = 36299.0, p <

0.001; right edge: x* = 36613.3, p < 0.001). Broadly, there always seems to be an overall decrease in
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pattern complexity in the experimental case, whereas there is much more variability in the control

condition.

Are there differences in selection rate for each speed population?
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Figure 6: Normalised linear selection rates (B) for the five most important camouflage metrics across generations.
Polynomial curves are fitted to the raw data up to generation 40. Individual points show the selection rates for each

replicate.

The data allow us to determine the main selection pressures operating on each population of bugs
within each generation (normalised linear selection rates (B)), so that we can assess whether
pressures change over evolutionary time. Differences in selection rates across generations were
seen for luminance (x° = 12.815, p = 0.002), vertical stripes (x> = 11.593, p = 0.003) and for diagonal
stripes (x* = 6.647, p = 0.036). There was no evidence for difference in selection rates for both the

horizontal stripe (x* = 1.705, p = 0.426) and the right edge metrics (x* = 5.486, p = 0.064).
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The standard deviation of the luminance of the bugs appears to be particularly important for the
‘fast’ population; there is strong selection pressure particularly in early generations, and this differs
from the selection rate seen in the ‘medium’ and ‘slow’ populations (Figure 6; fast-medium
comparison: t =-2.883, p = 0.012; fast-slow comparison: t = -3.138, p = 0.005; medium-slow
comparison: t =-0.249, p = 0.967). For vertical stripes, there is some evidence for stronger selection
pressure for medium compared to slow bugs (t = -2.654, p = 0.022). For all other patterning
parameters, there were no significant differences between the different speed populations
(horizontal stripes — x> = 3.928, p = 0.140, diagonal stripes —x* = 1.783, p = 0.410, right edge — X’

=4.330, p = 0.115).

Can motion modelling help to explain the experimental findings?

According to previous modelling work [19], we would expect targets to produce strong motion
illusions if they are both highly coherent (the motion vectors produced tend to be in a highly similar
direction) and biased (the average trajectory of the motion vectors is quite different from the
‘veridical’ direction of the target). When considering only the most coherent targets, there is a
significant relationship between bias and fitness (Figure 7); the fitness of the targets increased as the
bias increased (interaction between coherence and bias: F = 5.985, p = 0.015), in line with previous
predictions [19]. In addition, the targets with the highest bias also tended to be relatively stripy and
high contrast (bugs with higher bias had both higher standard deviations of luminance F = 10.844, p
=0.001, and levels of vertical stripes F = 35.688, p < 0.001) again suggesting that these “motion

dazzle” type patterns might be expected to create illusory motion signals.

10
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158
159 Figure 7: Data from the generation 0 fast bugs, using only those bugs above the median coherence value (i.e. relatively

160 highly coherent targets) and plotting fitness against the bias. Exemplars on the left are bugs that had low bias values,

161 according to the motion model; exemplars on the right are bugs that had high bias values.

162 However, these results do not seem to explain our evolutionary findings, where we saw a strong

163  tendency for targets to become lower contrast and non-patterned. A second metric from our motion
164  modelling is the motion energy, which can be conceptualised as how salient or visible the motion is.
165 Here, there is a very different relationship with fitness, as can be seen in Figure 8, with low motion
166  energy targets (that tend to be low contrast and have little patterning) having higher fitness than
167  those with higher motion energy (that tend to have high contrast and strong patterning) (F = 4.391,
168 p =0.027; F = 4.989, p = 0.026 if data were not filtered to exclude cases with a circular mean

169  difference of greater than 6 degrees). Bugs with higher mean vector lengths had both higher

170 standard deviations of luminance (F = 1171.8, p < 0.001) and levels of vertical striping (F = 545, p <

171 0.001).

11
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Fitness (s)
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Figure 8: Data from the generation 0 fast bugs, plotting fitness against the mean local vector length (a measure of motion
energy). Exemplars on the left are bugs that had low motion energy values, according to the motion model; exemplars on

the right are bugs that had high motion energy values.

Discussion

Using a large-scale evolutionary citizen science game, we found no evidence that putative ‘motion
dazzle’ patterning can offer protection when in motion; despite predictions that high contrast,
geometric patterning should cause visual illusions that make targets harder to catch, we found that
the targets consistently evolved to become less patterned and lower contrast. This happened for all
speeds tested and all replicates of the experiment, although these changes seemed to occur more
quickly in populations with faster speeds. Motion modelling suggested that these results could be a
consequence of the motion energy of the stimulus, as this correlated with capture time, with lower

motion energy targets being more difficult to catch. Our results have important consequences for

12
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185 our understanding of the evolution of stripes, and for how animals should best protect themselves

186  from capture when in motion.

187  Our results are perhaps surprising in the context of most literature on motion dazzle to date, which
188  has suggested that stripes seem to be relatively difficult to catch or can cause illusions of speed or
189  direction perception [9-12,14-18]. However, we note that there has indeed been plenty of evidence
190 in the literature for uniform grey patterns also being relatively difficult to catch, and in some cases
191 perhaps even harder than striped targets. For example, grey targets always survive well in capture
192 studies [9,11,14,21]. Similarly, in tracking tasks, low contrast parallel stripes were found to be more
193 difficult to track than high contrast parallel stripes [18], arguing against a motion dazzle explanation.
194  Recent work has also suggested that in some cases striped patterns are only difficult to catch when
195  the targets are moving sufficiently quickly to blend via the "flicker-fusion" effect into uniform grey
196 [43]. Our results therefore suggest that uniform grey targets had a survival advantage over other
197  types of target patterning, leading them to become fixed as the optimal strategy in all our

198 populations, regardless of speed or replicate number.

199 Motion modelling has previously suggested that stripes should create erroneous motion signals that
200  are both highly coherent and biased [19], implying striped prey should be more difficult to catch.
201 However, to our knowledge, modelling results have not previously been compared to behavioural
202  data. Our large dataset therefore offers a perfect opportunity to study whether the motion

203 modelling results do indeed correlate with capture times. In support of the motion dazzle hypothesis
204  [19], we do indeed find that highly coherent and biased targets tend to be more difficult to catch
205  than less biased coherent targets, and that the most biased and coherent targets are often stripy.
206 However, this clearly does not explain the results we see in the evolutionary game. We thus

207  considered another metric that can be calculated from motion models, namely the motion energy,

208  and found that this also correlated with capture success. Targets with low motion energy (that

13
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209 tended to be uniform grey) were harder to catch than targets with high motion energy (that were

210  much more high contrast and patterned).

211  Why does background-matching (reducing motion energy) seem to be a better predictor of the

212 outcomes in our evolutionary games compared to motion dazzle strategies which maximise the

213 bias/coherence metric? We speculate that motion energy is a very consistent signal; regardless of
214  the trajectory of the bug or the speed, the targets with low visibility will be harder to catch than

215 those that are highly visible. We propose that the effects of stripes may be much more dependent
216 on the particular orientation of the stripes, given that the most effective striped targets appeared to
217 have relatively similar dominant orientations (Figure 7), and previous studies have shown

218  orientation dependence for the effects of striped targets [16—18,21]. Small mutations affecting the
219  rotation of striped patterns could therefore potentially cause large changes in fitness, potentially
220  making striped patterns a relatively unstable evolutionary strategy compared to uniform grey in our
221  experiment. This could suggest that other factors may play a role in maintaining striped patterning in
222 animals, and it would be instructive for future studies to more closely consider the possibility of

223  stripes serving multiple functions.

224 We used three different speed populations in order to assess whether there were differences in the
225 patterns that evolved. As expected, we found that there were strong differences in capture difficulty
226  for different speed populations, with fast targets being the hardest to capture, but we did not find
227  evidence for there being differences in the target patterning that evolved, with all populations

228  becoming uniform grey. This is in agreement with previous work suggesting that there is no

229  interaction between target speed and prey patterning [11], at least for speeds below that needed to
230 create a "flicker-fusion" effect. However, we did find increased selection in “fast” populations,

231 particularly early on in the evolutionary process for the contrast metric and later on for the vertical

232  stripe metric. This may simply reflect the higher difficulty of these targets, which is likely to give a

14
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wider range of capture times and thus offer more variation for selection to operate on, potentially

exaggerating the selection process.

Genetic algorithms are complex and there are many different ways to implement them [24-26]. We
therefore carried out control experiments using simulated reaction time data with similar average
distributions to the real data, helping us to rule out explanations of our results based on algorithmic
biases or genetic drift. Our results show clearly that selection pressures do indeed operate in our
game and that the change towards grey targets does not simply reflect drift. However, while our
set-up allowed us to explore a very wide range of pattern types, it is possible that different
algorithms could produce different targets and thus perhaps different results. For example, our
targets were rarely highly asymmetric (although this was possible). Recent research has suggested
that stripes may be particularly effective at misdirecting capture attempts when they are placed on
the anterior of a target [13], suggesting that an interesting direction for future work could be to
allow the algorithm to specify different genes (and thus different patterning) for different parts of

the target.

Our experiment used human participants, in line with the majority of studies in this area. Of course,
in the natural world, the viewing animals might have very different visual systems to humans. We
removed colour cues from our experiment, as it is well known that different species have very
different colour perception [44,45], although motion vision is generally thought to be predominantly
achromatic [46—48]. However, there is also large variability in the perception of temporal changes
across different species [49] which we could not adequately compensate for in this experimental set
up. Despite this, our main conclusions broadly agree with previous studies carried out on non-
human predators and prey [22,23]. However, it would of course be highly instructive to carry out
similar experiments with non-human animal participants to determine whether the results we

report here are more widely generalizable.

15
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257 Overall, we find limited evidence for motion dazzle effects in a citizen science evolutionary game,
258  which we believe is the most comprehensive test of this hypothesis to date. Stripes were able to
259  cause motion illusions and reduce capture times in some scenarios, meaning that there may still be
260  specific cases where motion dazzle can be at least part of an explanation for the evolution of striped
261 patterns. However, our results suggest that uniform grey targets appear to be a more stable optimal

262 solution.

263 Methods

264  Subjects

265 We did not collect any demographic data from participants. This was to streamline participation in
266  the study (which was conducted in a busy exhibition space) and also because it would be difficult to
267  verify the accuracy of the information presented. To overcome the limitations of being unable to
268  account for participant age, handedness and gender, we collected a large sample size of participants
269  over many generations (1,554,935 targets were caught in total across the whole experiment,

270  involving approximately 75,000 participants). This project was carried out with ethical approval from

271  the University of Cambridge (pre.2014.08).

272 Experimental methods

273  The Dazzle Bug game was installed at the Eden Project (St. Austell, UK) on a touch screen computer
274  as part of an interactive exhibition, and the data used were collected between May 2018 and
275  January 2019. The game was coded in HTML5 canvas (source code is available at

276  https://github.com/nebogeo/dazzlebug, DOI: 10.5281/zenodo.2560935) and is playable online at

277  dazzle-bug.co.uk/exhib.html (the online data are not analysed in this paper). The screen had an area
278  of 478 x 269mm and the screen resolution of the game was 1237 x 820 pixels. The viewing distance

279 of participants to the screen was approximately 60cm.

16
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The game had a similar format to many previous studies testing motion dazzle effects [10,11,21] in
that participants were presented with a small rectangular target (75 x 100 pixels, or 29.0 x 38.6mm;
visual angle 2.76x3.69°) which they had to try to ‘catch’ as quickly as possible after it had appeared
by touching it with their finger (Figure 1). Targets began their movement at a random position on
the screen and moved with a linear trajectory. The angle of movement changed throughout a trial,
both at the edge of the target arena via reflection (to ensure that the target remained visible to the
participant) and randomly throughout movement (once every half a second, and when an
unsuccessful capture attempt was made; the new angle was randomly chosen based on its previous
angle plus or minus 90 degrees). Targets could be presented at one of three speeds, fast, medium or
slow (600, 450 or 300 pixels per second respectively, independent of frame rate, which equated to
231.8, 173.8 and 115.9mm/s), and each participant was presented with a random mix of targets of
all three speeds. Participants had 5 seconds to catch each target. After the target had been caught,
or the time-out limit had been reached, the game would move automatically onto the next target. A
game consisted of 20 trials in total, with the targets presented randomly selected from the current

generation.

Background photos

Targets were presented against one of 40 naturalistic background photographs (of e.g. grass, tree
bark or leaf litter). The background was randomly selected on each trial. The photos were calibrated

and converted to greyscale (with an average pixel value of 127).

Pattern generation

The patterns throughout the game were generated through a genetic programming approach [24—
26]. This does not attempt to directly mimic biological evolution, but is instead a method allowing
the exploration of an unbounded parameter space in an efficient manner, using algorithms inspired

by natural selection processes. The key principle is that the evolutionary process acts to modify small
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‘computer programs’ that specify the patterning presented on each target. This allows a great deal
of flexibility in the complexity of target patterning and reduces artificial bounds on the evolutionary

space that can be introduced in more traditional genetic algorithm methods [25].

Targets were generated in a hierarchical manner, as shown in Figure 9. The ‘tree structure’ of the
program determining the target pattering is composed of two different types of node. One type of
node is the ‘terminal node’ that is found on the outer ring of the tree. There were two possible
variants of terminal node (each chosen with a probability of 50%). One variant was a flat image of a
specific RGB colour (always greyscale) and alpha (transparency) value. The second variant of
terminal node consisted of a specific pre-generated image; there were 66 different initial images
from a range of different categories, including striped patterns, spotted patterns and noise patterns,
and with a range of spatial scales (see Figure 10). These base images could also be moved using an x-
offset and a y-offset value (with the patterns wrapping around the target) and rotated (in radians).
The other type of node was the ‘combination node’. Here, two image inputs were combined using

one of the following randomly selected nodes:

- Source-over: the second image was drawn on top of the first image

- Source-atop: the second image was drawn only when it overlapped the first image (i.e. the
second image was not drawn on the transparent parts of the first image)

- Destination-over: the second image was drawn behind the first image

- Lighter: when both images overlapped, the new colour was determined by adding the colour
values

- Xor: the new image was made transparent when both the first and second images

overlapped, and was drawn normally everywhere else

18


https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/792614; this version posted October 4, 2019. The copyright holder for this preprint (which was

326

327

328

329

330

331

332

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 9: Schematic to show how targets are generated (available to view on the online version of the game). Each target
can be thought of as being the top point of a ‘tree’ made up from a range of different images, combined in different ways.
The ‘nodes’ of the tree are combination operations, that each take two images as input. The tree continues until the outer
edge of the circle, where the terminal nodes are made up of the base images. The magnified region shows the combination

operations more clearly.

19


https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/792614; this version posted October 4, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

333

334 Figure 10: Selection of example base pre-generated images, including spots, stripes, noise and gradients.

335 An example displayed target is shown in the centre of the screen in Figure 9, and was formed by the
336  top combination node of the tree. The input to this combination node could either be other

337 combination nodes (as seen in this example) or could include a terminal node as well (with 20%

338  probability). The process can be followed backwards until the input to a combination node is two
339 terminal nodes (with randomly chosen parameter inputs), ending that part of the ‘tree’ and forming

340  an outer edge of base images.

341 Evolutionary process

342 Four replicates of the game were run, with each replicate containing three separate populations for
343  each speed (fast, medium and slow) that each evolved separately. The first generation of each

344  population contained 128 individuals that were completely randomly generated in accordance with
345  the pattern generation process detailed above. These were then presented to players randomly until
346  they had all been played five times. At this point, each one was scored by averaging the time taken
347 to catch them, and the bottom half of the generation based on this measure of fitness was removed
348  from the population. (Normalisation of participant times was not possible due to the design of the
349  evolutionary algorithm). The top 64 targets were copied with no mutation to form one half of the

350 new generation, and then copied again with mutation to form the other half. The mutation process
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351 involved either random changes of a parameter variable (e.g. changing the RGB colour) or selecting a
352 random part of the tree (either a combination node or a terminal node), copying it and pasting it
353 onto another random part of the tree. Pruning then occurred if the mutation process increased the
354  depth of the tree to beyond the maximum permitted (6 layers). This process could lead to both

355 increases and decreases in target complexity. The mutation rate was randomly selected for each

356  target, with there being a 0-10% chance of a mutation occurring, but with the probability being

357  weighted towards 0% (i.e. no mutation was most likely, but up to a 10% chance was possible).

358 The exact number of generations tested varied between replicates because each participant was
359 randomly assigned to one replicate, and because not all replicates were run simultaneously.
360 Replicate 1 had 89 generations, replicate 2 had 87 generations, replicate 3 had 45 generations and

361 replicate 4 had 46 generations.

362 Control model

363 We ran a control model to confirm that any systematic patterning changes seen during the real

364  game were due to directional selection, rather than drift or biases within the genetic programming
365  algorithm. This was set up identically to the real experiment, except that instead of participants

366  playing the game, the computer randomly selected a ‘capture time’ for each target in each

367  generation, based on a Gaussian distribution using the mean and standard deviation of each

368  population in the real experiment (as individual clicks were not recorded in our experimental data,
369  we estimated the variance of individual plays by multiplying the variance of the 'bug-level' fitness by

370  the number of plays of each bug e.g. by 5). The null model was run for 40 generations.

371 Quantification and statistical analysis

372  We analysed the patterning of the targets using custom written scripts in ImagelJ (version 1.51k)
373 [30]. This script first calculated the mean, minimum and maximum luminance of each target, and the

374  standard deviation of the luminance. We also calculated the contrast of the target as the coefficient
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of variance in luminance (the standard deviation divided by the mean). We then used Gabor filtering
methods that allow measurement of different angles at different spatial frequencies to determine
the strength of these signals on the targets in a biologically plausible way [31-33]. We analysed four
angles (vertical, horizontal, and two diagonal stripes) each at four different spatial frequencies
(sigma values of 2, 4, 8 and 18 pixels). For each of these conditions, we calculated the standard
deviation of Gabor-convolved pixel values as a measure of the “energy” at that particular angle and
spatial frequency. Finally, we also measured the standard deviation of Gabor-convolved pixel values
for a rectangle covering the edge (with a width equal to sigma) at an angle orthogonal to the edge
for all four edges of the target (top, bottom, left and right). This allowed us to investigate whether
the placement of patterning has an effect on fitness; for example, it has been suggested that stripes

on the leading edge of a target may redirect capture attempts posteriorly [13].

The remaining data analysis was run in R (version 3.5.0) [34] and linear mixed models were fitted
using Ime4 (version 1.1-21) [35]. We expected many of the measures of patterning to be
autocorrelated and therefore we reduced the number of variables by determining which were the
best predictors of capture time using linear mixed modelling. For each metric, we created a model
with the log of fitness (the average capture time) as the dependent variable. Generation was
included as a second order fixed effect to account for non-independence in capture time between
generations, and population (fast, medium or slow) was also included as a fixed effect. Replicate ID
was included as a random effect. Model AIC values were compared to determine which metrics best
predicted capture times, within different categories: for luminance metrics, this was the standard
deviation of the luminance, a sigma value of 4 for vertical stripes, a sigma value of 2 for horizontal
stripes, a sigma value of 2 for diagonal stripes (with both diagonal directions pooled together) and
for edge metrics, a sigma value of 8 for the right hand edge. In all of these cases, the measure was a
highly significant predictor of average fitness (p < 0.001 for all metrics). An example of the model

structure used is as follows:
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Imer(log(Fitness) ~ poly(Generation,2) + Population + scale(SD) + (1| Replicate)

First, we modelled whether there was a change in fitness across generations and populations in our
experimental data. We fit a model with the log of fitness as the dependent variable, and the second
order effect of generation and the first order effect of population as fixed factors. Replicate number
was included as a random slope. We then compared the change in fitness of our targets across
generations for both the Eden project data and the null data, allowing us to test whether fitness
improved in our experimental population compared to a null baseline. To do this, we fit a similar
model as previously, but also included a variable indicating whether the data belonged to a null or
an experimental population (‘control’). The interaction between generation number and the
‘control’ variable was also included as the key interaction determining whether the increase in
fitness was significantly different in the experimental population. Replicate ID was included as a

random effect. This model also included only the first 40 generations.

We next tested whether there were differences in how our five patterning metrics had changed in
the experimental and the null populations within the first 40 generations. To do this, we fit
cumulative link models using the ordinal package (version 2019.4-25) [36], with generation as an
ordinal dependent variable and the interaction between the metric and the 'control’ variable as
independent variables. We did not use the patterning metrics as dependent variables as these were
highly skewed, making it difficult to fit an appropriate model, and we also did not use replicate ID as
a random effect as this led to overfitting. The model included the first 40 generations. An example of

the model structure used is as follows:

clm(Generation ~ control * scale(SD)

Finally, we wanted to analyse whether there were any differences in selection rates for the different
speed populations in the experimental population over the first 40 generations. To do this, we used

the Lande, Arnold and Wade framework [27—-29] to calculate linear selection rates (B) for each of the
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five camouflage metrics within each population. For each combination of population, generation and
replicate, we fitted a multiple linear regression between the dependent variable of logged fitness
and the five normalised camouflage metrics as independent variables. Normalising the camouflage
metrics ensured that the selection rates for each could be directly compared. We then took the
linear regression coefficients for each metric as the linear selection rates. We used these to test for
differences in linear selection rates between different speed populations and over evolutionary time
(generations). We fitted linear mixed effect models using the linear regression coefficients for each
metric as the dependent variable, testing against the second order fixed effect of generation and the
fixed effect of population. Replicate ID was included as a random effect. An example of the model

structure used was as follows:

Imer(SD_ B ~ poly(Generation,2) + Population + (1|Replicate)

Significance tests for all models were carried out using the ‘Anova’ function from package ‘car’
(version 3.0-2) [37] which was used to calculate Type Il ANOVAs. Where relevant, post-hoc

comparisons were carried out with the 'emmeans' (version 1.3.4) package [38].

Modelling methods

Motion modelling was carried out using a MATLAB implementation of a motion model using a two-
dimensional array of correlation-type elementary motion detectors (as described in [39]) [40,41]. For
each “fast” bug in generation 0 (512 bugs in total) we generated a short movie where the bug
initially moved on an upwards trajectory and then rotated to move on a trajectory 15 degrees to the
right (see supplementary material for an example). We used the generation 0 bugs as these should
display a wide range of randomly selected pattern types, and the “fast” population as selection
seemed to be strongest on these targets, suggesting that we should see the largest differences in

fitness for this population. The time constant (tau) used was 3, the size of spacing between receptors
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was 50, the size of the filter was 30 and the standard deviations of the Gaussians (used for

Difference of Gaussians spatial filtering) were 3 and 5.

For each bug, several metrics were calculated from the output of the motion model (after removing
zeros, corresponding to places in the image where no motion signal was observed). Firstly, the mean
resultant length of the circular direction data was calculated to give a measure of motion coherence.
Secondly, the average vector length was calculated as a measure of motion energy. Finally, the bias
was calculated by taking the difference between the circular mean and the “veridical” trajectory of
the target (assumed to be the average of the two directions the target moved in during the trial). All

circular statistics were calculated using CircStat [42].

Modelling was carried out using linear models, with the log of fitness being used as the dependent
variable, and the coherence (mean resultant), bias (circular mean difference) and the motion energy
(average vector length) were used as fixed factors in the model. The interaction between coherence
and bias was also included, in line with predictions [19]. Finally, the data were filtered to include
only the points with a circular mean difference of less than 60 degrees. The results were not
qualitatively different if these data points were included. To test whether patterning metrics could
predict the motion energy model output variables, we fit linear models with either the bias or the
motion energy as independent variables, and either the standard deviation of the bug luminance or

a metric of "stripy-ness"(the energy for vertical filtering angles with a sigma value of 4).
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