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Abstract 24 

The motion dazzle hypothesis posits that high contrast geometric patterns can cause difficulties in 25 

tracking a moving target, and has been argued to explain the patterning of animals such as zebras. 26 

Research to date has only tested a small number of patterns, offering equivocal support for the 27 

hypothesis. Here, we take a genetic programming approach to allow patterns to evolve based on 28 

their fitness (time taken to capture) and thus find the optimal strategy for providing protection when 29 

moving. Our ‘Dazzle Bug’ citizen science game tested over 1.5 million targets in a touch screen game 30 

at a popular visitor attraction. Surprisingly, we found that targets lost pattern elements during 31 

evolution and became closely background matching. Modelling results suggested that targets with 32 

lower motion energy were harder to catch. Our results indicate that low contrast, featureless targets 33 

offer the greatest protection against capture when in motion, challenging the motion dazzle 34 

hypothesis. 35 

Keywords: motion dazzle, evolution, motion perception, citizen science, genetic algorithms 36 
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Introduction 38 

The high contrast, conspicuous patterns seen on animals such as zebra, snakes and fishes have 39 

attracted a range of evolutionary explanations, including camouflage, thermoregulation, 40 

communication and the avoidance of biting flies [1–7]. One hypothesis that has received attention in 41 

recent years is the ‘motion dazzle’ hypothesis, which proposes that these patterns may act to cause 42 

confusion when the animal is in motion, causing illusions in the visual system of the viewer that may 43 

lead to misjudgements of speed and direction [8].  44 

There have been a number of studies that have provided support for the motion dazzle hypothesis. 45 

For example, it has been shown that putative dazzle patterns are relatively difficult for humans to 46 

‘catch’ in a computer based touch screen game [9–11], and may also interfere with speed [12–14] 47 

and direction [15] perception. There is also evidence that some orientations of stripes can interfere 48 

with the ability to track one target within a larger group [16–18]. Finally, modelling work has 49 

suggested that striped patterns may be particularly prone to creating erroneous motion signals in 50 

the visual system, which may underlie these types of behavioural effects [19]. 51 

Despite these findings, not all research has supported the motion dazzle hypothesis. Some studies 52 

on humans have found that striped targets are easier to capture than non-patterned targets [20,21], 53 

and moving cuttlefish have been shown to preferentially display low contrast patterns [22]. Similarly, 54 

a recent study using natural predators hunting patterned prey found no evidence for a benefit of 55 

motion dazzle patterning compared to uniform coloration [23]. Even studies which have argued for 56 

an effect of motion dazzle patterning have normally shown that there is no benefit in terms of 57 

capture success of striped patterning over a luminance matched non-patterned target, suggesting 58 

that the benefit of stripes may not be unique [9,11,14,21]. 59 

One limitation of previous studies is that they have tested a relatively small range of patterns, often 60 

chosen arbitrarily. This means that it is not yet clear whether we have truly discovered the optimal 61 
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patterning type to provide protection when in motion; it may be that there are more effective 62 

options than those tested so far. However, the small-scale psychophysics-style experiments used to 63 

date make it difficult to test large numbers of patterns. We therefore took a novel approach, using 64 

genetic programming to allow the patterning of targets to ‘evolve’ across generations in response to 65 

capture success [24–26]. In this way, we can ask which patterning strategy is optimal, given the 66 

almost infinite number of possible patterns that can be generated. To obtain the large amount of 67 

data required for this approach, we ran our experiment as a citizen science game (‘Dazzle Bug’) in a 68 

popular visitor attraction. Participants played the game by tapping on the moving targets (‘bugs’) 69 

with their finger as quickly as possible in order to ‘catch’ them (Figure 1). We ran a number of 70 

replicates of the evolutionary process for three populations of different speeds, to assess whether 71 

the optimal patterning changes as a function of the target movement speed. 72 

Figure 1: Figure showing screenshots from the game. Left: title screen. Middle: instructions presented to the participant. 73 

Right: the game in progress. Participants could see the time remaining on the trial via the countdown clock in the top left 74 

hand corner. 75 

Our first aim was to demonstrate a fitness increase in our experimental populations, which we 76 

defined as an increase in the average capture time across generations. We did this by comparing to a 77 

simulation run of the evolutionary algorithm, using randomised capture times. We then investigated 78 

how the target patterning changed across generations for different speed populations, using image 79 

analysis to measure contrast and the presence of stripes at different orientations. We also looked at 80 

whether selection rates differed for the different speed populations, using the Land, Arnold and 81 
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Wade framework [27–29], allowing us to consider how selection pressure might vary across the 82 

generations. Finally, we asked whether motion perception modelling can help to explain our 83 

experimental results. 84 

Results 85 

Is there a fitness increase for the experimental populations, and does this differ from the null 86 

population? 87 

 88 

Figure 2: Experimental data (shown as a smoothed GAM) from all four replicates, showing how log fitness changes as a 89 

function of generation number and speed population. 90 

Figure 2 shows there were clearly large differences in fitness (capture speed) among populations, 91 

with the fast bugs being hardest to catch, followed by the medium bugs and then finally the slow 92 
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bugs (χ2 = 50892.85, p < 0.001). There was a considerable level of noise in the data, which is to be 93 

expected given the wide range of participants and fast reactions required. Nevertheless, there was 94 

also a significant increase in fitness across generations (χ2 = 208.72, p < 0.001). Increases were often 95 

particularly obvious in the early generations of the game. 96 

 97 

 98 

Figure 3: Experimental data (left) and control data (right) compared across 40 generations and for the three different speed 99 

populations. Experimental data has been collapsed across all 4 replicates. All raw data points are plotted and the curves are 100 

fit using splines with two degrees of freedom. 101 

The experimental data also show a significant difference in fitness change compared to the null data 102 

(interaction between dataset and second order effect of generation: χ2 = 161.985, p < 0.001). The 103 

experimental data shows a characteristic quadratic shape, with an initial increase that flattens off 104 
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(Figure 3). We therefore have evidence for a fitness increase in our experimental population, 105 

suggesting that selection is occurring to optimise patterning types.  106 

How does bug patterning change in the experimental and null populations? 107 

108 

 109 

Figure 4: Top - random bugs from generations 0, 20, 40, 60 and 80 (all from the same replicate) of the experimental data, 110 

split into populations (fast, medium and slow). Bottom- random bugs from generations 0, 20, and 40 (all from the same 111 

replicate) of the control data, split into populations (fast, medium and slow).  112 

 113 

Experimental 

Control 
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Figure 5: Change in parameters across generations, both for the experimental (left) and control (right) conditions, for five 114 

pattern metrics: from top left, these are the standard deviation of the bug luminance, the pattern energy for the vertical 115 

stripes, horizontal stripes, diagonal stripes and the right edge. 116 

All four populations of evolving bugs demonstrated a loss of pattern information over the 117 

generations – converging on uniform background-matching colours (Figure 4, top) – while the 118 

control populations maintained their pattern diversity (Figure 4, bottom). Quantifying this using our 119 

five most informative pattern metrics (Figure 5) shows that there are always clear differences 120 

between how the pattern metrics change in the experimental condition compared to the control 121 

condition (interaction between experimental/control condition and pattern metric for cumulative 122 

link models - standard deviation of bug luminance:  χ2 = 36207.5, p < 0.001; vertical stripes: χ2 = 123 

36848.3, p < 0.001; horizontal stripes: χ2 = 36587.0, p < 0.001; diagonal stripes: χ2 = 36299.0, p < 124 

0.001; right edge: χ2 = 36613.3, p < 0.001). Broadly, there always seems to be an overall decrease in 125 
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pattern complexity in the experimental case, whereas there is much more variability in the control 126 

condition.  127 

Are there differences in selection rate for each speed population? 128 

Figure 6: Normalised linear selection rates (β) for the five most important camouflage metrics across generations. 129 

Polynomial curves are fitted to the raw data up to generation 40. Individual points show the selection rates for each 130 

replicate. 131 

The data allow us to determine the main selection pressures operating on each population of bugs 132 

within each generation (normalised linear selection rates (β)), so that we can assess whether 133 

pressures change over evolutionary time. Differences in selection rates across generations were 134 

seen for luminance (χ2 = 12.815, p = 0.002), vertical stripes (χ2 = 11.593, p = 0.003) and for diagonal 135 

stripes (χ2 = 6.647, p = 0.036). There was no evidence for difference in selection rates for both the 136 

horizontal stripe (χ2 = 1.705, p = 0.426) and the right edge metrics (χ2 = 5.486, p = 0.064).  137 
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The standard deviation of the luminance of the bugs appears to be particularly important for the 138 

‘fast’ population; there is strong selection pressure particularly in early generations, and this differs 139 

from the selection rate seen in the ‘medium’ and ‘slow’ populations (Figure 6; fast-medium 140 

comparison: t = -2.883, p = 0.012; fast-slow comparison: t = -3.138, p = 0.005; medium-slow 141 

comparison: t = -0.249, p = 0.967). For vertical stripes, there is some evidence for stronger selection 142 

pressure for medium compared to slow bugs (t = -2.654, p = 0.022). For all other patterning 143 

parameters, there were no significant differences between the different speed populations 144 

(horizontal stripes – χ2 = 3.928, p = 0.140, diagonal stripes – χ2 = 1.783, p = 0.410, right edge – χ2 145 

=4.330, p = 0.115). 146 

Can motion modelling help to explain the experimental findings? 147 

According to previous modelling work [19], we would expect targets to produce strong motion 148 

illusions if they are both highly coherent (the motion vectors produced tend to be in a highly similar 149 

direction) and biased (the average trajectory of the motion vectors is quite different from the 150 

‘veridical’ direction of the target). When considering only the most coherent targets, there is a 151 

significant relationship between bias and fitness (Figure 7); the fitness of the targets increased as the 152 

bias increased (interaction between coherence and bias: F = 5.985, p = 0.015), in line with previous 153 

predictions [19]. In addition, the targets with the highest bias also tended to be relatively stripy and 154 

high contrast (bugs with higher bias had both higher standard deviations of luminance F = 10.844, p 155 

=0.001, and levels of vertical stripes F = 35.688, p < 0.001) again suggesting that these “motion 156 

dazzle” type patterns might be expected to create illusory motion signals. 157 
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158 
Figure 7: Data from the generation 0 fast bugs, using only those bugs above the median coherence value (i.e. relatively 159 

highly coherent targets) and plotting fitness against the bias. Exemplars on the left are bugs that had low bias values, 160 

according to the motion model; exemplars on the right are bugs that had high bias values. 161 

However, these results do not seem to explain our evolutionary findings, where we saw a strong 162 

tendency for targets to become lower contrast and non-patterned. A second metric from our motion 163 

modelling is the motion energy, which can be conceptualised as how salient or visible the motion is. 164 

Here, there is a very different relationship with fitness, as can be seen in Figure 8, with low motion 165 

energy targets (that tend to be low contrast and have little patterning) having higher fitness than 166 

those with higher motion energy (that tend to have high contrast and strong patterning) (F = 4.391, 167 

p = 0.027; F = 4.989, p = 0.026 if data were not filtered to exclude cases with a circular mean 168 

difference of greater than 6 degrees). Bugs with higher mean vector lengths had both higher 169 

standard deviations of luminance (F = 1171.8, p < 0.001) and levels of vertical striping (F = 545, p < 170 

0.001). 171 
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172 
Figure 8: Data from the generation 0 fast bugs, plotting fitness against the mean local vector length (a measure of motion 173 

energy). Exemplars on the left are bugs that had low motion energy values, according to the motion model; exemplars on 174 

the right are bugs that had high motion energy values. 175 

Discussion 176 

Using a large-scale evolutionary citizen science game, we found no evidence that putative ‘motion 177 

dazzle’ patterning can offer protection when in motion; despite predictions that high contrast, 178 

geometric patterning should cause visual illusions that make targets harder to catch, we found that 179 

the targets consistently evolved to become less patterned and lower contrast. This happened for all 180 

speeds tested and all replicates of the experiment, although these changes seemed to occur more 181 

quickly in populations with faster speeds. Motion modelling suggested that these results could be a 182 

consequence of the motion energy of the stimulus, as this correlated with capture time, with lower 183 

motion energy targets being more difficult to catch. Our results have important consequences for 184 
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our understanding of the evolution of stripes, and for how animals should best protect themselves 185 

from capture when in motion. 186 

Our results are perhaps surprising in the context of most literature on motion dazzle to date, which 187 

has suggested that stripes seem to be relatively difficult to catch or can cause illusions of speed or 188 

direction perception [9–12,14–18]. However, we note that there has indeed been plenty of evidence 189 

in the literature for uniform grey patterns also being relatively difficult to catch, and in some cases 190 

perhaps even harder than striped targets. For example, grey targets always survive well in capture 191 

studies [9,11,14,21]. Similarly, in tracking tasks, low contrast parallel stripes were found to be more 192 

difficult to track than high contrast parallel stripes [18], arguing against a motion dazzle explanation. 193 

Recent work has also suggested that in some cases striped patterns are only difficult to catch when 194 

the targets are moving sufficiently quickly to blend via the "flicker-fusion" effect into uniform grey 195 

[43]. Our results therefore suggest that uniform grey targets had a survival advantage over other 196 

types of target patterning, leading them to become fixed as the optimal strategy in all our 197 

populations, regardless of speed or replicate number. 198 

Motion modelling has previously suggested that stripes should create erroneous motion signals that 199 

are both highly coherent and biased [19], implying striped prey should be more difficult to catch. 200 

However, to our knowledge, modelling results have not previously been compared to behavioural 201 

data. Our large dataset therefore offers a perfect opportunity to study whether the motion 202 

modelling results do indeed correlate with capture times. In support of the motion dazzle hypothesis 203 

[19], we do indeed find that highly coherent and biased targets tend to be more difficult to catch 204 

than less biased coherent targets, and that the most biased and coherent targets are often stripy. 205 

However, this clearly does not explain the results we see in the evolutionary game. We thus 206 

considered another metric that can be calculated from motion models, namely the motion energy, 207 

and found that this also correlated with capture success. Targets with low motion energy (that 208 
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tended to be uniform grey) were harder to catch than targets with high motion energy (that were 209 

much more high contrast and patterned). 210 

Why does background-matching (reducing motion energy) seem to be a better predictor of the 211 

outcomes in our evolutionary games compared to motion dazzle strategies which maximise the 212 

bias/coherence metric? We speculate that motion energy is a very consistent signal; regardless of 213 

the trajectory of the bug or the speed, the targets with low visibility will be harder to catch than 214 

those that are highly visible. We propose that the effects of stripes may be much more dependent 215 

on the particular orientation of the stripes, given that the most effective striped targets appeared to 216 

have relatively similar dominant orientations (Figure 7), and previous studies have shown 217 

orientation dependence for the effects of striped targets [16–18,21]. Small mutations affecting the 218 

rotation of striped patterns could therefore potentially cause large changes in fitness, potentially 219 

making striped patterns a relatively unstable evolutionary strategy compared to uniform grey in our 220 

experiment. This could suggest that other factors may play a role in maintaining striped patterning in 221 

animals, and it would be instructive for future studies to more closely consider the possibility of 222 

stripes serving multiple functions.  223 

We used three different speed populations in order to assess whether there were differences in the 224 

patterns that evolved. As expected, we found that there were strong differences in capture difficulty 225 

for different speed populations, with fast targets being the hardest to capture, but we did not find 226 

evidence for there being differences in the target patterning that evolved, with all populations 227 

becoming uniform grey. This is in agreement with previous work suggesting that there is no 228 

interaction between target speed and prey patterning [11], at least for speeds below that needed to 229 

create a "flicker-fusion" effect. However, we did find increased selection in “fast” populations, 230 

particularly early on in the evolutionary process for the contrast metric and later on for the vertical 231 

stripe metric. This may simply reflect the higher difficulty of these targets, which is likely to give a 232 
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wider range of capture times and thus offer more variation for selection to operate on, potentially 233 

exaggerating the selection process. 234 

Genetic algorithms are complex and there are many different ways to implement them [24–26]. We 235 

therefore carried out control experiments using simulated reaction time data with similar average 236 

distributions to the real data, helping us to rule out explanations of our results based on algorithmic 237 

biases or genetic drift. Our results show clearly that selection pressures do indeed operate in our 238 

game and that the change towards grey targets does not simply reflect drift.  However, while our 239 

set-up allowed us to explore a very wide range of pattern types, it is possible that different 240 

algorithms could produce different targets and thus perhaps different results. For example, our 241 

targets were rarely highly asymmetric (although this was possible). Recent research has suggested 242 

that stripes may be particularly effective at misdirecting capture attempts when they are placed on 243 

the anterior of a target [13], suggesting that an interesting direction for future work could be to 244 

allow the algorithm to specify different genes (and thus different patterning) for different parts of 245 

the target. 246 

Our experiment used human participants, in line with the majority of studies in this area. Of course, 247 

in the natural world, the viewing animals might have very different visual systems to humans. We 248 

removed colour cues from our experiment, as it is well known that different species have very 249 

different colour perception [44,45], although motion vision is generally thought to be predominantly 250 

achromatic [46–48]. However, there is also large variability in the perception of temporal changes 251 

across different species [49] which we could not adequately compensate for in this experimental set 252 

up. Despite this, our main conclusions broadly agree with previous studies carried out on non-253 

human predators and prey [22,23]. However, it would of course be highly instructive to carry out 254 

similar experiments with non-human animal participants to determine whether the results we 255 

report here are more widely generalizable.  256 
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Overall, we find limited evidence for motion dazzle effects in a citizen science evolutionary game, 257 

which we believe is the most comprehensive test of this hypothesis to date. Stripes were able to 258 

cause motion illusions and reduce capture times in some scenarios, meaning that there may still be 259 

specific cases where motion dazzle can be at least part of an explanation for the evolution of striped 260 

patterns. However, our results suggest that uniform grey targets appear to be a more stable optimal 261 

solution.  262 

Methods 263 

Subjects 264 

We did not collect any demographic data from participants. This was to streamline participation in 265 

the study (which was conducted in a busy exhibition space) and also because it would be difficult to 266 

verify the accuracy of the information presented. To overcome the limitations of being unable to 267 

account for participant age, handedness and gender, we collected a large sample size of participants 268 

over many generations (1,554,935 targets were caught in total across the whole experiment, 269 

involving approximately 75,000 participants). This project was carried out with ethical approval from 270 

the University of Cambridge (pre.2014.08). 271 

Experimental methods 272 

The Dazzle Bug game was installed at the Eden Project (St. Austell, UK) on a touch screen computer 273 

as part of an interactive exhibition, and the data used were collected between May 2018 and 274 

January 2019. The game was coded in HTML5 canvas (source code is available at 275 

https://github.com/nebogeo/dazzlebug, DOI: 10.5281/zenodo.2560935) and is playable online at 276 

dazzle-bug.co.uk/exhib.html (the online data are not analysed in this paper). The screen had an area 277 

of 478 x 269mm and the screen resolution of the game was 1237 x 820 pixels. The viewing distance 278 

of participants to the screen was approximately 60cm. 279 
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The game had a similar format to many previous studies testing motion dazzle effects [10,11,21] in 280 

that participants were presented with a small rectangular target (75 x 100 pixels, or 29.0 x 38.6mm; 281 

visual angle 2.76x3.69) which they had to try to ‘catch’ as quickly as possible after it had appeared 282 

by touching it with their finger (Figure 1). Targets began their movement at a random position on 283 

the screen and moved with a linear trajectory. The angle of movement changed throughout a trial, 284 

both at the edge of the target arena via reflection (to ensure that the target remained visible to the 285 

participant) and randomly throughout movement (once every half a second, and when an 286 

unsuccessful capture attempt was made; the new angle was randomly chosen based on its previous 287 

angle plus or minus 90 degrees).  Targets could be presented at one of three speeds, fast, medium or 288 

slow (600, 450 or 300 pixels per second respectively, independent of frame rate, which equated to 289 

231.8, 173.8 and 115.9mm/s), and each participant was presented with a random mix of targets of 290 

all three speeds. Participants had 5 seconds to catch each target. After the target had been caught, 291 

or the time-out limit had been reached, the game would move automatically onto the next target. A 292 

game consisted of 20 trials in total, with the targets presented randomly selected from the current 293 

generation.  294 

Background photos 295 

Targets were presented against one of 40 naturalistic background photographs (of e.g. grass, tree 296 

bark or leaf litter). The background was randomly selected on each trial. The photos were calibrated 297 

and converted to greyscale (with an average pixel value of 127). 298 

Pattern generation  299 

The patterns throughout the game were generated through a genetic programming approach [24–300 

26]. This does not attempt to directly mimic biological evolution, but is instead a method allowing 301 

the exploration of an unbounded parameter space in an efficient manner, using algorithms inspired 302 

by natural selection processes. The key principle is that the evolutionary process acts to modify small 303 
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‘computer programs’ that specify the patterning presented on each target. This allows a great deal 304 

of flexibility in the complexity of target patterning and reduces artificial bounds on the evolutionary 305 

space that can be introduced in more traditional genetic algorithm methods [25].  306 

Targets were generated in a hierarchical manner, as shown in Figure 9. The ‘tree structure’ of the 307 

program determining the target pattering is composed of two different types of node. One type of 308 

node is the ‘terminal node’ that is found on the outer ring of the tree. There were two possible 309 

variants of terminal node (each chosen with a probability of 50%). One variant was a flat image of a 310 

specific RGB colour (always greyscale) and alpha (transparency) value. The second variant of 311 

terminal node consisted of a specific pre-generated image; there were 66 different initial images 312 

from a range of different categories, including striped patterns, spotted patterns and noise patterns, 313 

and with a range of spatial scales (see Figure 10). These base images could also be moved using an x-314 

offset and a y-offset value (with the patterns wrapping around the target) and rotated (in radians). 315 

The other type of node was the ‘combination node’. Here, two image inputs were combined using 316 

one of the following randomly selected nodes: 317 

- Source-over: the second image was drawn on top of the first image 318 

- Source-atop: the second image was drawn only when it overlapped the first image (i.e. the 319 

second image was not drawn on the transparent parts of the first image) 320 

- Destination-over: the second image was drawn behind the first image 321 

- Lighter: when both images overlapped, the new colour was determined by adding the colour 322 

values 323 

- Xor: the new image was made transparent when both the first and second images 324 

overlapped, and was drawn normally everywhere else 325 
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 326 

Figure 9: Schematic to show how targets are generated (available to view on the online version of the game). Each target 327 

can be thought of as being the top point of a ‘tree’ made up from a range of different images, combined in different ways. 328 

The ‘nodes’ of the tree are combination operations, that each take two images as input. The tree continues until the outer 329 

edge of the circle, where the terminal nodes are made up of the base images. The magnified region shows the combination 330 

operations more clearly. 331 

 332 
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 333 

Figure 10: Selection of example base pre-generated images, including spots, stripes, noise and gradients.  334 

An example displayed target is shown in the centre of the screen in Figure 9, and was formed by the 335 

top combination node of the tree. The input to this combination node could either be other 336 

combination nodes (as seen in this example) or could include a terminal node as well (with 20% 337 

probability). The process can be followed backwards until the input to a combination node is two 338 

terminal nodes (with randomly chosen parameter inputs), ending that part of the ‘tree’ and forming 339 

an outer edge of base images. 340 

Evolutionary process 341 

Four replicates of the game were run, with each replicate containing three separate populations for 342 

each speed (fast, medium and slow) that each evolved separately. The first generation of each 343 

population contained 128 individuals that were completely randomly generated in accordance with 344 

the pattern generation process detailed above. These were then presented to players randomly until 345 

they had all been played five times. At this point, each one was scored by averaging the time taken 346 

to catch them, and the bottom half of the generation based on this measure of fitness was removed 347 

from the population. (Normalisation of participant times was not possible due to the design of the 348 

evolutionary algorithm). The top 64 targets were copied with no mutation to form one half of the 349 

new generation, and then copied again with mutation to form the other half. The mutation process 350 
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involved either random changes of a parameter variable (e.g. changing the RGB colour) or selecting a 351 

random part of the tree (either a combination node or a terminal node), copying it and pasting it 352 

onto another random part of the tree. Pruning then occurred if the mutation process increased the 353 

depth of the tree to beyond the maximum permitted (6 layers). This process could lead to both 354 

increases and decreases in target complexity. The mutation rate was randomly selected for each 355 

target, with there being a 0-10% chance of a mutation occurring, but with the probability being 356 

weighted towards 0% (i.e. no mutation was most likely, but up to a 10% chance was possible). 357 

The exact number of generations tested varied between replicates because each participant was 358 

randomly assigned to one replicate, and because not all replicates were run simultaneously. 359 

Replicate 1 had 89 generations, replicate 2 had 87 generations, replicate 3 had 45 generations and 360 

replicate 4 had 46 generations. 361 

Control model 362 

We ran a control model to confirm that any systematic patterning changes seen during the real 363 

game were due to directional selection, rather than drift or biases within the genetic programming 364 

algorithm. This was set up identically to the real experiment, except that instead of participants 365 

playing the game, the computer randomly selected a ‘capture time’ for each target in each 366 

generation, based on a Gaussian distribution using the mean and standard deviation of each 367 

population in the real experiment (as individual clicks were not recorded in our experimental data, 368 

we estimated the variance of individual plays by multiplying the variance of the 'bug-level' fitness by 369 

the number of plays of each bug e.g. by 5). The null model was run for 40 generations. 370 

Quantification and statistical analysis 371 

We analysed the patterning of the targets using custom written scripts in ImageJ (version 1.51k) 372 

[30]. This script first calculated the mean, minimum and maximum luminance of each target, and the 373 

standard deviation of the luminance. We also calculated the contrast of the target as the coefficient 374 
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of variance in luminance (the standard deviation divided by the mean). We then used Gabor filtering 375 

methods that allow measurement of different angles at different spatial frequencies to determine 376 

the strength of these signals on the targets in a biologically plausible way [31–33]. We analysed four 377 

angles (vertical, horizontal, and two diagonal stripes) each at four different spatial frequencies 378 

(sigma values of 2, 4, 8 and 18 pixels). For each of these conditions, we calculated the standard 379 

deviation of Gabor-convolved pixel values as a measure of the “energy” at that particular angle and 380 

spatial frequency. Finally, we also measured the standard deviation of Gabor-convolved pixel values 381 

for a rectangle covering the edge (with a width equal to sigma) at an angle orthogonal to the edge 382 

for all four edges of the target (top, bottom, left and right). This allowed us to investigate whether 383 

the placement of patterning has an effect on fitness; for example, it has been suggested that stripes 384 

on the leading edge of a target may redirect capture attempts posteriorly [13]. 385 

The remaining data analysis was run in R (version 3.5.0) [34] and linear mixed models were fitted 386 

using lme4 (version 1.1-21) [35]. We expected many of the measures of patterning to be 387 

autocorrelated and therefore we reduced the number of variables by determining which were the 388 

best predictors of capture time using linear mixed modelling. For each metric, we created a model 389 

with the log of fitness (the average capture time) as the dependent variable. Generation was 390 

included as a second order fixed effect to account for non-independence in capture time between 391 

generations, and population (fast, medium or slow) was also included as a fixed effect. Replicate ID 392 

was included as a random effect. Model AIC values were compared to determine which metrics best 393 

predicted capture times, within different categories: for luminance metrics, this was the standard 394 

deviation of the luminance, a sigma value of 4 for vertical stripes, a sigma value of 2 for horizontal 395 

stripes, a sigma value of 2 for diagonal stripes (with both diagonal directions pooled together) and 396 

for edge metrics, a sigma value of 8 for the right hand edge. In all of these cases, the measure was a 397 

highly significant predictor of average fitness (p < 0.001 for all metrics). An example of the model 398 

structure used is as follows: 399 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/792614doi: bioRxiv preprint 

https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/


23 
 

lmer(log(Fitness) ~ poly(Generation,2) + Population + scale(SD) + (1|Replicate) 400 

First, we modelled whether there was a change in fitness across generations and populations in our 401 

experimental data. We fit a model with the log of fitness as the dependent variable, and the second 402 

order effect of generation and the first order effect of population as fixed factors. Replicate number 403 

was included as a random slope. We then compared the change in fitness of our targets across 404 

generations for both the Eden project data and the null data, allowing us to test whether fitness 405 

improved in our experimental population compared to a null baseline. To do this, we fit a similar 406 

model as previously, but also included a variable indicating whether the data belonged to a null or 407 

an experimental population (‘control’). The interaction between generation number and the 408 

‘control’ variable was also included as the key interaction determining whether the increase in 409 

fitness was significantly different in the experimental population. Replicate ID was included as a 410 

random effect. This model also included only the first 40 generations. 411 

We next tested whether there were differences in how our five patterning metrics had changed in 412 

the experimental and the null populations within the first 40 generations. To do this, we fit 413 

cumulative link models using the ordinal package (version 2019.4-25) [36], with generation as an 414 

ordinal dependent variable and the interaction between the metric and the 'control' variable as 415 

independent variables. We did not use the patterning metrics as dependent variables as these were 416 

highly skewed, making it difficult to fit an appropriate model, and we also did not use replicate ID as 417 

a random effect as this led to overfitting. The model included the first 40 generations. An example of 418 

the model structure used is as follows: 419 

clm(Generation ~  control * scale(SD)  420 

Finally, we wanted to analyse whether there were any differences in selection rates for the different 421 

speed populations in the experimental population over the first 40 generations. To do this, we used 422 

the Lande, Arnold and Wade framework [27–29] to calculate linear selection rates (β) for each of the 423 
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five camouflage metrics within each population. For each combination of population, generation and 424 

replicate, we fitted a multiple linear regression between the dependent variable of logged fitness 425 

and the five normalised camouflage metrics as independent variables. Normalising the camouflage 426 

metrics ensured that the selection rates for each could be directly compared. We then took the 427 

linear regression coefficients for each metric as the linear selection rates. We used these to test for 428 

differences in linear selection rates between different speed populations and over evolutionary time 429 

(generations). We fitted linear mixed effect models using the linear regression coefficients for each 430 

metric as the dependent variable, testing against the second order fixed effect of generation and the 431 

fixed effect of population. Replicate ID was included as a random effect. An example of the model 432 

structure used was as follows: 433 

lmer(SD_ β ~ poly(Generation,2) + Population  + (1|Replicate) 434 

Significance tests for all models were carried out using the ‘Anova’ function from package ‘car’ 435 

(version 3.0-2) [37] which was used to calculate Type II ANOVAs. Where relevant, post-hoc 436 

comparisons were carried out with the 'emmeans' (version 1.3.4) package [38]. 437 

Modelling methods 438 

Motion modelling was carried out using a MATLAB implementation of a motion model using a two-439 

dimensional array of correlation-type elementary motion detectors (as described in [39]) [40,41]. For 440 

each “fast” bug in generation 0 (512 bugs in total) we generated a short movie where the bug 441 

initially moved on an upwards trajectory and then rotated to move on a trajectory 15 degrees to the 442 

right (see supplementary material for an example). We used the generation 0 bugs as these should 443 

display a wide range of randomly selected pattern types, and the “fast” population as selection 444 

seemed to be strongest on these targets, suggesting that we should see the largest differences in 445 

fitness for this population. The time constant (tau) used was 3, the size of spacing between receptors 446 
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was 50, the size of the filter was 30 and the standard deviations of the Gaussians (used for 447 

Difference of Gaussians spatial filtering) were 3 and 5. 448 

For each bug, several metrics were calculated from the output of the motion model (after removing 449 

zeros, corresponding to places in the image where no motion signal was observed). Firstly, the mean 450 

resultant length of the circular direction data was calculated to give a measure of motion coherence. 451 

Secondly, the average vector length was calculated as a measure of motion energy. Finally, the bias 452 

was calculated by taking the difference between the circular mean and the “veridical” trajectory of 453 

the target (assumed to be the average of the two directions the target moved in during the trial). All 454 

circular statistics were calculated using CircStat [42]. 455 

Modelling was carried out using linear models, with the log of fitness being used as the dependent 456 

variable, and the coherence (mean resultant), bias (circular mean difference) and the motion energy 457 

(average vector length) were used as fixed factors in the model. The interaction between coherence 458 

and bias was also included, in line with predictions [19]. Finally, the data were filtered to include 459 

only the points with a circular mean difference of less than 60 degrees. The results were not 460 

qualitatively different if these data points were included. To test whether patterning metrics could 461 

predict the motion energy model output variables, we fit linear models with either the bias or the 462 

motion energy as independent variables, and either the standard deviation of the bug luminance or 463 

a metric of "stripy-ness"(the energy for vertical filtering angles with a sigma value of 4). 464 

Acknowledgements 465 

AEH was supported by a PhD studentship from the BBSRC (BB/F016581/1) and is currently 466 

supported by a BBSRC grant (BB/P018319/1). LAK received funding from the People Programme 467 

(Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) 468 

under REA grant agreement n° PIIF-GA-2012-327423 and is currently funded by a Royal Society 469 

Dorothy Hodgkin Fellowship. JT is funded by a NERC Independent Research Fellowship 470 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/792614doi: bioRxiv preprint 

https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/


26 
 

(NE/P018084/1). We would like to thank Amber Griffiths for providing valuable assistance and the 471 

Eden Project for hosting Dazzle Bug. 472 

Author contributions 473 

AEH: conceptualisation, data curation, formal analysis, investigation, methodology, visualisation, 474 

writing (original draft preparation) 475 

DG: data curation, formal analysis, investigation, methodology, software, writing (review and 476 

editing) 477 

JT: data curation, formal analysis, software, writing (review and editing) 478 

LAK: conceptualisation, funding acquisition, investigation, methodology, project administration, 479 

writing (review and editing) 480 

References 481 

1.  Ruxton GD. The possible fitness benefits of striped coat coloration for zebra. Mammal Rev. 482 
2002;32: 237–244.  483 

2.  Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M, Lake J, et al. Benefits of zebra stripes: 484 
Behaviour of tabanid flies around zebras and horses. PLOS ONE. 2019;14: e0210831. 485 
doi:10.1371/journal.pone.0210831 486 

3.  Caro T, Izzo A, Reiner Jr RC, Walker H, Stankowich T. The function of zebra stripes. Nat 487 
Commun. 2014;5. doi:10.1038/ncomms4535 488 

4.  Larison B, Harrigan RJ, Thomassen HA, Rubenstein DI, Chan-Golston AM, Li E, et al. How the 489 
zebra got its stripes: a problem with too many solutions. R Soc Open Sci. 2015;2: 140452. 490 
doi:10.1098/rsos.140452 491 

5.  Ireland HM, Ruxton GD. Zebra stripes: an interspecies signal to facilitate mixed-species 492 
herding? Biol J Linn Soc. 2017;121: 947–952. doi:10.1093/biolinnean/blx037 493 

6.  Kelley JL, Fitzpatrick JL, Merilaita S. Spots and stripes: ecology and colour pattern evolution in 494 
butterflyfishes. Proc R Soc B Biol Sci. 2013;280. doi:10.1098/rspb.2012.2730 495 

7.  Allen WL, Baddeley R, Scott-Samuel NE, Cuthill IC. The evolution and function of pattern 496 
diversity in snakes. Behav Ecol. 2013; art058. doi:10.1093/beheco/art058 497 

8.  Thayer GH, Thayer AH. Concealing-coloration in the animal kingdom; an exposition of the laws 498 
of disguise through color and pattern: being a summary of Abbott H. Thayer’s discoveries 499 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/792614doi: bioRxiv preprint 

https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/


27 
 

[Internet]. New York, The Macmillan Co.; 1909. Available: 500 
http://archive.org/details/cu31924022546406 501 

9.  Hughes AE, Troscianko J, Stevens M. Motion dazzle and the effects of target patterning on 502 
capture success. BMC Evol Biol. 2014;14: 201. doi:10.1186/s12862-014-0201-4 503 

10.  Stevens M, Searle WT, Seymour JE, Marshall KL, Ruxton GD. Motion dazzle and camouflage as 504 
distinct anti-predator defenses. BMC Biol. 2011;9: 81. doi:10.1186/1741-7007-9-81 505 

11.  Stevens M, Yule DH, Ruxton GD. Dazzle coloration and prey movement. Proc R Soc B Biol Sci. 506 
2008;275: 2639–2643. doi:10.1098/rspb.2008.0877 507 

12.  Scott-Samuel NE, Baddeley R, Palmer CE, Cuthill IC. Dazzle camouflage affects speed 508 
perception. PloS One. 2011;6: e20233. doi:10.1371/journal.pone.0020233 509 

13.  Murali G, Kodandaramaiah U. Deceived by stripes: conspicuous patterning on vital anterior 510 
body parts can redirect predatory strikes to expendable posterior organs. R Soc Open Sci. 511 
2016;3: 160057. doi:10.1098/rsos.160057 512 

14.  Kodandaramaiah U, Palathingal S, Bindu Kurup G, Murali G. What makes motion dazzle 513 
markings effective against predation? Behav Ecol. doi:10.1093/beheco/arz154 514 

15.  Hughes AE, Jones C, Joshi K, Tolhurst DJ. Diverted by dazzle: perceived movement direction is 515 
biased by target pattern orientation. Proc R Soc B Biol Sci. 2017;284. 516 
doi:10.1098/rspb.2017.0015 517 

16.  Hogan BG, Cuthill IC, Scott-Samuel NE. Dazzle camouflage and the confusion effect: the 518 
influence of varying speed on target tracking. Anim Behav. 2017;123: 349–353. 519 
doi:10.1016/j.anbehav.2016.11.022 520 

17.  Hogan BG, Cuthill IC, Scott-Samuel NE. Dazzle camouflage, target tracking, and the confusion 521 
effect. Behav Ecol. 2016; arw081. doi:10.1093/beheco/arw081 522 

18.  Hogan BG, Scott-Samuel NE, Cuthill IC. Contrast, contours and the confusion effect in dazzle 523 
camouflage. R Soc Open Sci. 2016;3: 160180. doi:10.1098/rsos.160180 524 

19.  How MJ, Zanker JM. Motion camouflage induced by zebra stripes. Zoology. 2014;117: 163–170. 525 
doi:10.1016/j.zool.2013.10.004 526 

20.  von Helversen B, Schooler LJ, Czienskowski U. Are stripes beneficial? Dazzle camouflage 527 
influences perceived speed and hit rates. PloS One. 2013;8: e61173. 528 
doi:10.1371/journal.pone.0061173 529 

21.  Hughes AE, Magor-Elliott RS, Stevens M. The role of stripe orientation in target capture 530 
success. Front Zool. 2015;12: 17. doi:10.1186/s12983-015-0110-4 531 

22.  Zylinski S, Osorio D, Shohet AJ. Cuttlefish camouflage: context-dependent body pattern use 532 
during motion. Proc R Soc B Biol Sci. 2009;276: 3963–3969. doi:10.1098/rspb.2009.1083 533 

23.  Zlotnik S, Darnell GM, Bernal XE. Anuran predators overcome visual illusion: dazzle coloration 534 
does not protect moving prey. Anim Cogn. 2018;21: 729–733. doi:10.1007/s10071-018-1199-6 535 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/792614doi: bioRxiv preprint 

https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/


28 
 

24.  Reynolds C. Interactive evolution of camouflage. Artif Life. 2011;17: 123–136. 536 
doi:10.1162/artl_a_00023 537 

25.  Sims K. Artificial Evolution for Computer Graphics. Proceedings of the 18th Annual Conference 538 
on Computer Graphics and Interactive Techniques. New York, NY, USA: ACM; 1991. pp. 319–539 
328. doi:10.1145/122718.122752 540 

26.  Koza JR. Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer 541 
Programs to Solve Problems. Stanford, CA, USA: Stanford University; 1990.  542 

27.  Lande R, Arnold SJ. The Measurement of Selection on Correlated Characters. Evolution. 543 
1983;37: 1210–1226. doi:10.2307/2408842 544 

28.  Arnold SJ, Wade MJ. On the Measurement of Natural and Sexual Selection: Applications. 545 
Evolution. 1984;38: 720–734. doi:10.2307/2408384 546 

29.  Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM. Synthetic analyses of phenotypic 547 
selection in natural populations: lessons, limitations and future directions. Evol Ecol. 2012;26: 548 
1101–1118. doi:10.1007/s10682-012-9563-5 549 

30.  Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat 550 
Methods. 2012;9: 671–675.  551 

31.  Marĉelja S. Mathematical description of the responses of simple cortical cells*. JOSA. 1980;70: 552 
1297–1300. doi:10.1364/JOSA.70.001297 553 

32.  Jones JP, Palmer LA. An evaluation of the two-dimensional Gabor filter model of simple 554 
receptive fields in cat striate cortex. J Neurophysiol. 1987;58: 1233.  555 

33.  Gabor D. Theory of communication. Part 1: The analysis of information. J Inst Electr Eng - Part 556 
III Radio Commun Eng. 1946;93: 429–441. doi:10.1049/ji-3-2.1946.0074 557 

34.  Ihaka R, Gentleman R. R: A Language for Data Analysis and Graphics. J Comput Graph Stat. 558 
1996;5: 299. doi:10.2307/1390807 559 

35.  Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models using lme4. 560 
ArXiv14065823 Stat. 2014; Available: http://arxiv.org/abs/1406.5823 561 

36.  Christensen RHB. ordinal---Regression Models for Ordinal Data [Internet]. 2019. Available: 562 
http://www.cran.r-project.org/package=ordinal/ 563 

37.  Fox J, Weisberg H. An R Companion to Applied Regression, Second Edition [Internet]. Thousand 564 
Oaks, CA: Sage Publications; 2011. Available: 565 
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion 566 

38.  Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means [Internet]. 2019. 567 
Available: https://CRAN.R-project.org/package=emmeans 568 

39.  Zanker JM, Zeil J. Movement-induced motion signal distributions in outdoor scenes. Netw 569 
Bristol Engl. 2005;16: 357–376. doi:10.1080/09548980500497758 570 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/792614doi: bioRxiv preprint 

https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/


29 
 

40.  Pallus AC, Fleishman LJ, Castonguay PM. Modeling and measuring the visual detection of 571 
ecologically relevant motion by an Anolis lizard. J Comp Physiol A Neuroethol Sens Neural 572 
Behav Physiol. 2010;196: 1–13. doi:10.1007/s00359-009-0487-7 573 

41.  Fleishman LJ, Pallus AC. Motion perception and visual signal design in Anolis lizards. Proc R Soc 574 
B Biol Sci. 2010;277: 3547–3554. doi:10.1098/rspb.2010.0742 575 

42.  Berens P. CircStat: A MATLAB Toolbox for Circular Statistics. J Stat Softw. 2009;31: 1–21. 576 
doi:10.18637/jss.v031.i10 577 

43.  Umeton D, Tarawneh G, Fezza E, Read JCA, Rowe C. Pattern and Speed Interact to Hide Moving 578 
Prey. Curr Biol. 2019;29: 3109-3113.e3. doi:10.1016/j.cub.2019.07.072 579 

44.  Stevens M. Predator perception and the interrelation between different forms of protective 580 
coloration. Proc R Soc B Biol Sci. 2007;274: 1457–1464. doi:10.1098/rspb.2007.0220 581 

45.  Endler JA. A Predator’s View of Animal Color Patterns. In: Hecht MK, Steere WC, Wallace B, 582 
editors. Evolutionary Biology. Boston, MA: Springer US; 1978. pp. 319–364. doi:10.1007/978-1-583 
4615-6956-5_5 584 

46.  Cropper SJ, Wuerger SM. The Perception of Motion in Chromatic Stimuli. Behav Cogn Neurosci 585 
Rev. 2005;4: 192–217. doi:10.1177/1534582305285120 586 

47.  Yamaguchi S, Wolf R, Desplan C, Heisenberg M. Motion vision is independent of color in 587 
Drosophila. Proc Natl Acad Sci. 2008;105: 4910–4915. doi:10.1073/pnas.0711484105 588 

48.  Schaerer S, Neumeyer C. Motion detection in goldfish investigated with the optomotor 589 
response is “color blind.” Vision Res. 1996;36: 4025–4034. doi:10.1016/s0042-6989(96)00149-590 
6 591 

49.  Healy K, McNally L, Ruxton GD, Cooper N, Jackson AL. Metabolic rate and body size are linked 592 
with perception of temporal information. Anim Behav. 2013;86: 685–696. 593 
doi:10.1016/j.anbehav.2013.06.018 594 

 595 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/792614doi: bioRxiv preprint 

https://doi.org/10.1101/792614
http://creativecommons.org/licenses/by/4.0/

