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Abstract:

Reusability is part of the FAIR data principle, which aims to make data Findable, Accessible, Interoperable, and
Reusable. One of the current efforts to increase the reusability of public genomics data has been to focus on the
inclusion of quality metadata associated with the data. When necessary metadata are missing, most researchers
will consider the data useless. In this study, we develop a framework to predict the missing metadata of gene
expression datasets to maximize their reusability. We propose a new metric called Proportion of Cases
Accurately Predicted (PCAP), which is optimized in our specifically-designed machine learning pipeline. The
new approach performed better than pipelines using commonly used metrics such as Fl-score in terms of
maximizing the reusability of data with missing values. We also found that different variables might need to be
predicted using different machine learning methods and/or different data processing protocols. Using
differential gene expression analysis as an example, we show that when missing variables are accurately
predicted, the corresponding gene expression data can be reliably used in downstream analyses.

Keywords: Gene expression data, reusability, proportion of cases accurately predicted, PCAP, predicting
metadata, missing metadata, machine learning.

I. Introduction
Currently, large volumes of high-throughput genomic data are being generated in biomedical research every

day by laboratories in both academia and industry. For example, as of May 23, 2018, the gene expression
omnibus (GEO) database [1] consists of a total of 2,498,466 samples in 98,354 series generated by 18,519
different experimental platforms. Many federally-funded projects and initiatives are also generating
unprecedented large volumes of genomic data, such as The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/), the Genotype-Tissue Expression (GTEX) project [2], and the ENCyclopedia Of
DNA Elements (ENCODE) project [3]. The availability of so-called biomedical Big Data has allowed new
scientific discoveries to be made by mining and analyzing such data. As high-throughput datasets are rich in
information on cellular events, the same dataset can be reanalyzed alone or together with other data to address
important questions that were previously not studied or not feasible due to limited availability of data [4-6].
However, the majority of public genomic data do not contain enough metadata, which severely limits their
reusability. Overcoming this limited reusability forms part of the FAIR (Findable, Accessible, Interoperable and
Reusable) data principle [7]. For example, to understand the heterogeneity of breast cancer and to develop

personalized treatment for breast cancer [4, 8], the biomarker information that determines the subtypes of breast
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cancer samples, such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER?2) status, are normally required. Information on race is also necessary to study the racial
disparity of breast cancer [5, 6, 9]. We did an analysis of available breast cancer gene expression data generated
by platform GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) in the GEO database and found that
there are 29,631 samples, of which ~85% do not have ER information, ~88% do not have HER2 information,
and ~95% do not have race information. This high percentage of missing metadata severely limits what can be
studied using these data. Accurate prediction of the missing metadata will substantially increase the reusability
of the existing genomic data.

There are two major strategies to predict missing metadata for existing genomic data. First, the traditional
approach is to fill missing data by imputation, which uses the information of the same variable from other
subjects in the same dataset to infer the missing data using relatively simple statistics [10]. For example, to fill
the missing value for variable i for subject j, one can use the mean value of variable i from all the other subjects
(or subjects similar to subjects j based on other variables). Second, modern approaches based on machine
learning technology are now widely used for imputing missing data in biomedical sciences with better
performance than the traditional approach [10-14].

It has been shown that gene expression is very informative and highly predictive of various clinical
outcomes, such as the status of biomarkers [15-21], tumor types/status [22-25], the risks of recurrence [26, 27]
and survival [27-30], and therapeutic response [4, 31-34]. For gene expression data, the gene expression profiles
themselves, therefore, are ideally suited for inferring the missing metadata. It may seem quite straightforward to
infer missing metadata using gene expression profiles, given the abundance of previous research works.
However, if our goal is to recover the missing metadata and use such information to perform additional
analysis, several issues need to be considered. First, we will likely want to exclude the data for which our
prediction may not be accurate enough since the error will be transferred to downstream analysis. One may
prefer the accuracy of the prediction to be at least above a certain threshold. Second, as genomic data are being
generated by many different platforms, transferring models generated from one platform to other platforms is of
concern. Third, the existing metrics for evaluating machine learning methods, such as area under the curve
(AUC), Fl-score, precision, recall, and accuracy, are not ideal for such tasks as they aim to optimize the
accuracy for whole datasets. A better objective would be to recover as much data as possible with accuracy
above the threshold one prefers. Here accuracy can be defined by any proper metrics, such as AUC, Fl-score,
etc.. We believe this objective is better suited to maximize the reusability of public gene expression data when
predicting missing metadata.

In this study, we investigate the above issues to infer missing metadata using multiple gene expression
datasets with a wide variety of machine learning methods. We evaluate their performance on a few

representative clinical variables to assess the accuracy level the current machine learning methods can achieve.
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We also investigate a robust normalization approach, rank normalization, on prediction performance. Models
built using data generated by rank normalization are likely more transferable than other commonly used
normalization methods, such as global normalization and quantile normalization [35, 36]. We introduce a new
performance measure to evaluate the effectiveness of methods in recovering missing metadata, called
Proportion of Cases Accurately Predicted (PCAP). PCAP is the percentage of data that can be recovered given a
desired level of accuracy, where the actual accuracy measure (i.e. overall accuracy, precision, Fl-score, etc.)
can be defined by the researcher. PCAPy, and PCAPys stand for the proportion of data that can be recovered
with an accuracy of 90% and 95%, respectively. Through this study, we propose a framework to select the
optimal pipeline, which includes several components such as data processing, oversampling method, variable
selection, machine learning model and choice of performance measures, for recovering missing metadata by

maximizing PCAPgy, or PCAPys.

II. Materials and Methods
Data

Gene expression data from both sequencing and microarray platforms were used in this study. The RNA-seq
data were obtained from TCGA. Each sample contains 20,483 RNA gene expression values and metadata, such
as race, receptor status, and tumor type. We used data from five cancer types: breast invasive carcinoma
(BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous
cystadenocarcinoma (OV), and prostate adenocarcinoma (PRAD). The total number of patient samples from
TCGA is 2,954. The microarray data were collected from 6 data series in the GEO database [1] generated by the
GPL570 platform, which contains 879 breast cancer patient samples in total with 22,283 gene expression values
in each sample.

We chose race, ER, PR, and HER?2 status in the sequencing data as the four example variables from all the
variables in the metadata. For each variable, the subset of samples with missing values was not considered in
the analysis of the corresponding variable, since we cannot evaluate the performance of our method if we use
these samples. For race, we included only African American (AA) and Caucasian American (CA) samples to
simplify the analysis and discussions. For ER, PR, and HER2 variables, only samples with positive or negative
values were included, while samples with “unequivocal”, “unknown”, etc. values were excluded. In TCGA
data, ER, PR and HER2 status were only available for breast cancer patients. In the microarray data, in addition
to ER, PR, and HER?2 variables, we chose treatment response instead of race because of the unavailability of
race data. There are two possible values for treatment response: pathological complete response (pCR) and
residual disease (RD). Figure 1 shows the percentages of each possible value for the clinical variables used in

this study. We assigned binary values to each clinical variable where we labeled the value with less number of
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cases as +1 and the value with more number of cases as -1 (or 0 depending on the convention used in a machine

learning algorithm). For example, for race, we labelled AA as +1 and CA as -1.

Normalization for gene expression

Three normalization methods were used in this study: read per million (RPM) normalization for next generation
sequencing (NGS) data, quantile normalization for microarray data and rank normalization (RN) for both NGS
and microarray data. For RN, each gene expression value was replaced by its rank, ranging from 1 (lowest) to n
(highest), within a patient. If there was a tie for two or more values, the average of these values was used as the

rank. The ranks were rescaled by dividing by the sum of total ranks and multiplying by 10°.

Oversampling methods

There are many oversampling methods based on different assumptions and goals [37-39]. We chose the
Synthetic Minority Oversampling Technique (SMOTE) [37] in our study. Rather than oversampling with
replacement, SMOTE increases the number of the minority class by creating synthetic samples. These synthetic
samples are generated from the information of minority samples. With the minority and synthetic samples,
classifiers will build larger and more general decision regions, which tend to give more accurate predictions.

SMOTE can be applied from the Imbalanced-learn package in Python [40].

Models

We define a model as a combination of a machine learning algorithm, number of genes selected, oversampling
choice, and data normalization choice. The machine learning algorithms used in this study, include XGBoost
[41], random forest (RF) [42], support vector machines (SVM) [43], and LASSO [44]. Tuning parameters were
optimized from 10 sets of random combinations using 3-fold cross validation. To select the most predictive
genes, a Welch two-sample t-test was first conducted to find differentially-expressed genes between two classes
at the significance level of 0.1, where the two classes correspond to the two binary values of the variables to be
predicted. Next we use recursive feature elimination (RFE) [45] to select an optimal set of genes (smaller than
100) or a predefined number (10 or 25) of genes using 3-fold cross validation. We restricted the optimal number

of genes to less than or equal to 100.

Evaluation measures and optimization procedure

To evaluate the prediction performance of each model, three measures were used: Area under the receiver
operating characteristic curve (AUROC), F-score, and our proposed new measure PCAP. In this study, PCAP,
stands for the percentage of cases which can be predicted with x% precision in a model. Other performance
measures other than precision can also be used in practice, such as accuracy, recall, or F1-score. The PCAPy is

calculated from a 10-fold cross validation each with 90% of the data as training and 10% as testing. For each of
4
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the 10 folds, a k-fold (k=10 in this study) cross validation was further performed resulting in a smaller training
dataset and a validation dataset in each fold. The predicted probabilities of the validation set were first sorted.
Each percentile of the predicted probability (from 50 to 99) was used as a cutoff to calculate the precision and
recall in the validation set. If a percentile results in a precision greater than or equal to x%, than it would be
labeled as 1 (otherwise 0). The smallest percentile with most 1s (up to k) among the k folds was selected as the
cutoff and the corresponding average recall was recorded. After the 10-fold cross-validation, the average of the
selected percentile from each k-fold cross-validation was chosen as the cutoff value for the test dataset, and the
average recall is used as the estimated PCAP, for the test dataset.

The 10-fold cross validation in the training data helps to find the cutoff that results in the desired precision.
The returned value of recall is the PCAP,, which is an estimate of the recall value in the unseen test data given
x% of precision. In this study, we use PCAPy, for the assessment of different models.

Another benefit of performing cross validation in the training data is for model selection. Given various
models, we select the model that has the best median PCAP, instead of the maximum PCAP, to achieve a more
robust estimate of the average PCAP value. This selected model is most likely to generalize well when

recovering missing metadata in future datasets.

II1. Results
Predictive performance in sequencing data

The performance of models was tested by stratified 10-fold cross validation. Table 1 shows the median of
AUROC values across 10 folds under each model. The AUROC value reached up to 0.987 when predicting
race, and reached over 0.9 when predicting ER and PR status. When predicting HER2 status, the AUROC value
reached 0.797. The F;-scores in Table S1 (Supplementary file) confirm that these clinical variables can be
predicted with good accuracy. Models with small, pre-defined number of genes can obtain good performance as
well. Tables S2a and S2b show that using 10 or 25 genes results in satisfactory results. There is no single model

that performs the best for all four variables.

Predictive performance in microarray data

The medians of AUROC values across 10 folds under each model (Table 2) indicate the models can also predict
clinical variables well using gene expression data generated by microarray experiments. The AUROC values
obtained are as high as 0.918 for pCR, 0.970 for ER, 0.947 for PR, and 0.938 for HER2. Table S3
(Supplementary file) shows the Fl-scores of different models and settings. For predicting ER, PR, and HER2
status, it is possible to get comparative performance using fewer number of genes, which are shown in Tables

S4a and S4b. Again, the results show there is no single model that performs the best for all four variables.
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Effect of rank normalization

Gene expression data are usually generated by many different experimental platforms. Currently, at the gene
expression omnibus (GEO) database [46], there are 15 major platforms measuring gene expression (mRNA
values), each with more than 10,000 samples, together with hundreds of minor platforms with smaller number
of samples. Using commonly used normalization methods, such as quantile and global normalization, models
developed using data from one platform may not be generalizable to data produced by other platforms [47].
Developing different models for data generated by different platforms may not be an ideal solution for this
problem. Rank normalization (RN) is a robust normalization method since only normalized rank information is
kept in the normalization process. Most normalization methods do not change the rank (relative order) of the
gene expression values within a sample. Here we investigate whether RN can be used as a robust normalization
method for building machine learning models, which will yield better transferability of the resulting models.

To that end, we subtracted the F;-score of either RPM (sequencing data) or Quantile normalization (microarray
data) from the F;-score of RN of each fold and took the average of the differences from each fold. As can be
seen from Figure 2, RN helps to improve the performance of LASSO and SVM in sequencing data while giving
comparable results in other cases. Predictions using rank-normalized gene expression values got higher F;-
scores than using RPM normalization (Figure 2 and Table S1). It is interesting to note that RN has comparable
or better performance than commonly used normalization methods (RPM for sequencing data and Quantile
normalization for microarray data) although it loses some valuable information during the normalization

process.

PCAP,, after model selection

Table 3 shows the predictive performance in terms of PCAPy, as described in Section II. Numbers are the
average PCAPy, of 10-fold cross validation, where in each fold the model was selected by our model selection
pipeline. All models were trained by maximizing either the Fi-score or PCAPy, respectively. As shown in
Table 3, models trained by optimizing PCAPy, obtained higher PCAPy, than optimizing Fi-score in both

sequencing and microarray data.

Using predicted information in statistical inference

The goal of predicting missing metadata is to use the corresponding gene expression data in other analyses. In
this section, we investigate the usefulness of the predicted data in downstream analyses. A very common task
for gene expression data analysis is differential gene expression analysis (DGEA). We performed DGEA
between Caucasian (CA) and African American (AA) breast cancer patients based on the race information
provided in TCGA and the race information predicted using our method. Totally we have 2221 patient tissue

samples who are either CA (1994) or AA (227), which was divided into ten folds with approximately equal
6
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number of samples in each fold. The training data (Dataset1) has 8 folds, test data (Dataset2) has 1 fold, and the
last fold was treated as a newly collected dataset (Dataset3, more details later). We first performed DGEA in
Dataset] by randomly sampling 1 fold of data (with the same CA:AA ratio) to generate the list of differentially
expressed genes (DEGs), called DEG1. We then conducted DGEA for Dataset2 using their true race
information to obtain another list of DEGs, called DEG2 t. The third DEGA was performed using Dataset2
again by using predicted race, where the predictive model was built using Datasetl. This gave DEG2 p. The
fourth DGEA was done using Dataset3 to produce DEG3. In this comparison, we assume that we can collect
some new gene expression data with race information and perform the same DGEA. The last DGEA was done
by first randomly permuting the race in Dataset2 to generated DEG2 r. We compute the number of overlapping
DEGs between DEG1 and DEG2 t, between DEG1 and DEG2 p, between DEG1 and DEG3, and between
DEG1 and DEG2_r. Computing the number of overlapping DEGs was done iteratively for each of the ten folds,
then the average number of overlapping DEGs was computed. We repeated the process 50 times and drew the
box-plot for the average number of overlapping DEGs in Figure 3.

The box-plots and significance tests showed that when computing the number of overlapping DEGs, there
is no significant difference between using true race information and using predicted race. There is no significant
difference between using predicted race and using the true race of newly collected data, either. This indicates

that datasets with metadata predicted using our method can be used reliably in other analysis.

IV.  Discussion

Genomics data are not useful if necessary metadata are not available. Unfortunately, a large amount of such
important metadata is missing in public genomics datasets. In this study, we proposed a framework for
maximizing the reusability of public gene expression data by predicting the missing metadata using machine
learning methods. To develop and validate the framework, we used microarray and sequencing gene expression
data with a total of 3,833 cancer patient tissue samples to investigate whether we can predict missing metadata,
such as race, ER, PR, HER2 and treatment response. Our study has shown that gene expression profiles can be
used to predict metadata accurately. Out of over 20,000 genes, we can select small numbers of genes to obtain
reliable predictions. For those variables for which reliable predictions cannot be achieved for all the missing
metadata, we can select a subset of reliable predictions using our pipeline and a new measure designed for
maximizing the reusability of public gene expression data. We found that different variables require different
methods and parameter settings to achieve optimal performance. This is consistent with the well-known notion
that no single method is the best for all kinds of machine learning tasks.

In addition to machine learning algorithms, normalization methods can have a substantial effect on the
performance as well. In this study, we found that the robust rank normalization (RN) [48, 49] can produce better

or comparable performance than commonly used normalization methods (RPM for sequencing data and
7
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quantile normalization for microarray data). Predictions from rank-normalized sequencing data resulted in
higher F;-scores. In microarray data, RN gave comparable performances. RN is less sensitive to experimental
noise and outliers. It also allows researchers to conveniently combine several datasets generated from different
platforms. Our result indicates that RN can be a good choice when building machine learning models either for
predicting metadata to maximize the reusability of public gene expression data or for general model building
purposes using gene expression data.

Successful statistical models depend on the quality of the data used for building the models. The accuracy
of the predicted values for the missing data needs to be carefully evaluated to ensure the quality of the data to be
used in downstream applications. While traditional evaluation metrics can be used, they are not ideal because
they aim for accurate predictions of whole datasets. When researchers try to reuse public genomics data, they do
not need to use all the data. Additionally, the accuracy for the whole dataset may not reach the desired accuracy
threshold. They can use only the part of the data for which missing metadata can be reliably predicted. Here, a
reasonable metric to optimize would be, give a certain accuracy threshold, the proportion of data that can be
predicted above that threshold. The higher the number, the more data we will have for reuse with desired
accuracy.

With the above reasoning, we proposed the metric Proportion of Cases Accurately Predicted (PCAP) for the
purpose of maximizing reusability of public gene expression data. In addition, we proposed a selection pipeline
to select a model from various combinations of algorithms, normalization methods, and data balancing
procedures. Our results showed that we were able to recover a high percentage of samples with the desired
accuracy. It is also recommended that one should maximize PCAP, instead of traditional performance measures
for the whole dataset, when building models to obtain higher percentages of usable samples.

We also demonstrated the effectiveness of the predicted metadata in downstream inference tasks. In the
study, we performed differential gene expression analysis (DGEA) using predicted race and found that the
effectiveness of the analysis using predicted metadata is similar to that using true metadata. This demonstrated
that our framework for maximizing the reusability of gene expression data can be reliably used in the future by
other researchers.

There is a possibility that the subset of the data that can be predicted with high accuracy is systematically
different in some way from the whole dataset. In such cases, the conclusion one can draw will be limited to only
the subset of the data that can be predicted with high accuracy. In real clinical settings, for example biomarker
discoveries, one can use the predictive model to stratify patient population and only apply the discoveries (i.e.
identified diagnostic biomarkers) to that population.

It is worth noting that the metadata we have used as true information may have some noise in them. For
example, it is well acknowledged that the self-reported race/ethnicity has high inaccuracy levels [50, 51]. These

inherent errors will limit the upper bound of the accuracy we can achieve.
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Figure 1. The number of patients in each class of four clinical variables for both sequencing data from
TCGA (a) and microarray data from GEO (b). Numbers in parenthesis are the percentages of the
corresponding class. AA: African American. CA: Caucasian American. pCR: pathological complete
response. RD: residue disease.
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For LASSO and SVM, RN gave better performance for sequencing data. For other models, RN gave
comparable performances.
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Figure 3. Box plot for the overlap of differential expressed genes (DEGs) detected by differential
gene expression analyses using five different datasets. The numbers are averages of ten runs. True:
DEGs obtained using the true race information in the original TCGA data; PCAPys: DEGs obtained
using a dataset where race is predicted by optimizing PCAPys; PCAPg,: DEGs obtained using a dataset
where race is predicted by optimizing PCAPy; CollectNew: DEGs obtained by collecting a new dataset
with known race information. This dataset is part of the TCGA data which was not used in other
analyses; Random: DEGs by randomly permuting the race assignments among the patients in the
dataset.
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Table 1. AUROC values from different algorithms for variables in sequencing data. RN denotes
that the predictors were rank-normalized. SMOTE denotes that the samples were balanced by Synthetic
Minority OverSampling Technique. An optimal number of genes were selected by recursive feature
elimination with cross validation.

Race ER?
RPM RN RN + SMOTE RPM RN RN + SMOTE

LASSO 0.946 0.979 0.982 0.895 0.915 0.906
Random Forest 0.946 0.931 0.975 0.949 0.949 0.957
XGBoost 0.982 0.975 0.985 0.947 0.947 0.948
SVM 0.835 0.987 0.975 0.834 0.908 0.904

PR® HER2¢
LASSO 0.836 0.883 0.875 0.701 0.791 0.785
Random Forest 0.909 0.920 0.902 0.788 0.793 0.797
XGBoost 0.899 0.900 0.899 0.793 0.784 0.788
SVM 0.789 0.858 0.863 0.702 0.792 0.790

a: Only ER-positive (833) or ER-negative (243) patients were included.
b: Only PR-positive (726) or PR-negative (347) patients were included.
c: Only HER2-positive (173) or HER2-negative (581) patients were included.
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Table 2. AUROC values from different algorithms for variables in microarray data.

aCC-BY 4.0 International license.

Response ER®
RPM RN RN+ SMOTE RPM RN RN+ SMOTE
LASSO 0.910 0.899 0.875 0.954 0.960 0.959
Random Forest 0.918 0.909 0.914 0.968 0.970 0.968
XGBoost 0.884 0.883 0.899 0.968 0.967 0.960
SVM 0.904 0.889 0.892 0.952 0.955 0.960
PR HER2¢
LASSO 0.938 0.939 0.941 0.938 0.924 0.901
Random Forest 0.937 0.936 0.942 0.916 0.906 0.894
XGBoost 0.938 0.938 0.933 0.894 0.880 0.917
SVM 0.947 0.928 0.927 0.931 0.909 0.896

a: Only ER-positive (833) or ER-negative (243) patients were included.
b: Only PR-positive (726) or PR-negative (347) patients were included.
c¢: Only HER2-positive (173) or HER2-negative (581) patients were included.

Table 3. PCAPy, after model selection (mean). The numbers are the average of 10-fold cross-

validation. By optimizing PCAP,,, we can generally achieve better PCAPy, values (and/or better
precision) compared to optimizing F1-scores. In all cases, by optimizing PCAPy), we can achieve
the desired precision of 90%. However, by optimizing F1-scores, this cannot be always achieved

(colored as red).

Sequencing data

Race ER PR HER2 Average
Optimizing F;-score 0.217(0.863) | 0.167(0.858) | 0.385(0.903) | 0.248(0.983) | 0.254 (.902)
Optimizing PCAPy, 0.216(0.98) 0.210(0.90) 0.360(0.962) | 0.260(0.915) | 0.262 (.939)
Microarray data

Response ER PR HER2 Average
Optimizing F;-score 0.056(0.85) 0.686(0.926) | 0.570(0.953) | 0.220(0.95) 0.383 (0.920)
Optimizing PCAPy, 0.09(0.95) 0.695(0.954) | 0.553(0.966) | 0.250(0.95) 0.397 (0.955)
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