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Abstract: 

Reusability is part of the FAIR data principle, which aims to make data Findable, Accessible, Interoperable, and 
Reusable. One of the current efforts to increase the reusability of public genomics data has been to focus on the 
inclusion of quality metadata associated with the data. When necessary metadata are missing, most researchers 
will consider the data useless. In this study, we develop a framework to predict the missing metadata of gene 
expression datasets to maximize their reusability. We propose a new metric called Proportion of Cases 
Accurately Predicted (PCAP), which is optimized in our specifically-designed machine learning pipeline. The 
new approach performed better than pipelines using commonly used metrics such as F1-score in terms of 
maximizing the reusability of data with missing values. We also found that different variables might need to be 
predicted using different machine learning methods and/or different data processing protocols. Using 
differential gene expression analysis as an example, we show that when missing variables are accurately 
predicted, the corresponding gene expression data can be reliably used in downstream analyses.

Keywords: Gene expression data, reusability, proportion of cases accurately predicted, PCAP, predicting 
metadata, missing metadata, machine learning.

I. Introduction
Currently, large volumes of high-throughput genomic data are being generated in biomedical research every 

day by laboratories in both academia and industry. For example, as of May 23, 2018, the gene expression 

omnibus (GEO) database [1] consists of a total of 2,498,466 samples in 98,354 series generated by 18,519 

different experimental platforms. Many federally-funded projects and initiatives are also generating 

unprecedented large volumes of genomic data, such as The Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov/), the Genotype-Tissue Expression (GTEx) project [2], and the ENCyclopedia Of 

DNA Elements (ENCODE) project [3]. The availability of so-called biomedical Big Data has allowed new 

scientific discoveries to be made by mining and analyzing such data. As high-throughput datasets are rich in 

information on cellular events, the same dataset can be reanalyzed alone or together with other data to address 

important questions that were previously not studied or not feasible due to limited availability of data [4-6]. 

However, the majority of public genomic data do not contain enough metadata, which severely limits their 

reusability. Overcoming this limited reusability forms part of the FAIR (Findable, Accessible, Interoperable and 

Reusable) data principle [7]. For example, to understand the heterogeneity of breast cancer and to develop 

personalized treatment for breast cancer [4, 8], the biomarker information that determines the subtypes of breast 
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cancer samples, such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth 

factor receptor 2 (HER2) status, are normally required. Information on race is also necessary to study the racial 

disparity of breast cancer [5, 6, 9]. We did an analysis of available breast cancer gene expression data generated 

by platform GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) in the GEO database and found that 

there are 29,631 samples, of which ~85% do not have ER information, ~88% do not have HER2 information, 

and ~95% do not have race information. This high percentage of missing metadata severely limits what can be 

studied using these data. Accurate prediction of the missing metadata will substantially increase the reusability 

of the existing genomic data.

There are two major strategies to predict missing metadata for existing genomic data. First, the traditional 

approach is to fill missing data by imputation, which uses the information of the same variable from other 

subjects in the same dataset to infer the missing data using relatively simple statistics [10]. For example, to fill 

the missing value for variable i for subject j, one can use the mean value of variable i from all the other subjects 

(or subjects similar to subjects j based on other variables). Second, modern approaches based on machine 

learning technology are now widely used for imputing missing data in biomedical sciences with better 

performance than the traditional approach [10-14]. 

It has been shown that gene expression is very informative and highly predictive of various clinical 

outcomes, such as the status of biomarkers [15-21], tumor types/status [22-25], the risks of recurrence [26, 27] 

and survival [27-30], and therapeutic response [4, 31-34]. For gene expression data, the gene expression profiles 

themselves, therefore, are ideally suited for inferring the missing metadata. It may seem quite straightforward to 

infer missing metadata using gene expression profiles, given the abundance of previous research works. 

However, if our goal is to recover the missing metadata and use such information to perform additional 

analysis, several issues need to be considered. First, we will likely want to exclude the data for which our 

prediction may not be accurate enough since the error will be transferred to downstream analysis. One may 

prefer the accuracy of the prediction to be at least above a certain threshold. Second, as genomic data are being 

generated by many different platforms, transferring models generated from one platform to other platforms is of 

concern. Third, the existing metrics for evaluating machine learning methods, such as area under the curve 

(AUC), F1-score, precision, recall, and accuracy, are not ideal for such tasks as they aim to optimize the 

accuracy for whole datasets. A better objective would be to recover as much data as possible with accuracy 

above the threshold one prefers. Here accuracy can be defined by any proper metrics, such as AUC, F1-score, 

etc.. We believe this objective is better suited to maximize the reusability of public gene expression data when 

predicting missing metadata.

In this study, we investigate the above issues to infer missing metadata using multiple gene expression 

datasets with a wide variety of machine learning methods. We evaluate their performance on a few 

representative clinical variables to assess the accuracy level the current machine learning methods can achieve. 
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We also investigate a robust normalization approach, rank normalization, on prediction performance. Models 

built using data generated by rank normalization are likely more transferable than other commonly used 

normalization methods, such as global normalization and quantile normalization [35, 36]. We introduce a new 

performance measure to evaluate the effectiveness of methods in recovering missing metadata, called 

Proportion of Cases Accurately Predicted (PCAP). PCAP is the percentage of data that can be recovered given a 

desired level of accuracy, where the actual accuracy measure (i.e. overall accuracy, precision, F1-score, etc.) 

can be defined by the researcher. PCAP90 and PCAP95 stand for the proportion of data that can be recovered 

with an accuracy of 90% and 95%, respectively. Through this study, we propose a framework to select the 

optimal pipeline, which includes several components such as data processing, oversampling method, variable 

selection, machine learning model and choice of performance measures, for recovering missing metadata by 

maximizing PCAP90 or PCAP95. 

II. Materials and Methods  
Data 

Gene expression data from both sequencing and microarray platforms were used in this study. The RNA-seq 

data were obtained from TCGA. Each sample contains 20,483 RNA gene expression values and metadata, such 

as race, receptor status, and tumor type. We used data from five cancer types: breast invasive carcinoma 

(BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous 

cystadenocarcinoma (OV), and prostate adenocarcinoma (PRAD). The total number of patient samples from 

TCGA is 2,954. The microarray data were collected from 6 data series in the GEO database [1] generated by the 

GPL570 platform, which contains 879 breast cancer patient samples in total with 22,283 gene expression values 

in each sample. 

    We chose race, ER, PR, and HER2 status in the sequencing data as the four example variables from all the 

variables in the metadata. For each variable, the subset of samples with missing values was not considered in 

the analysis of the corresponding variable, since we cannot evaluate the performance of our method if we use 

these samples. For race, we included only African American (AA) and Caucasian American (CA) samples to 

simplify the analysis and discussions. For ER, PR, and HER2 variables, only samples with positive or negative 

values were included, while samples with “unequivocal”, “unknown”, etc. values were excluded. In TCGA 

data, ER, PR and HER2 status were only available for breast cancer patients. In the microarray data, in addition 

to ER, PR, and HER2 variables, we chose treatment response instead of race because of the unavailability of 

race data. There are two possible values for treatment response: pathological complete response (pCR) and 

residual disease (RD). Figure 1 shows the percentages of each possible value for the clinical variables used in 

this study. We assigned binary values to each clinical variable where we labeled the value with less number of 
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cases as +1 and the value with more number of cases as -1 (or 0 depending on the convention used in a machine 

learning algorithm). For example, for race, we labelled AA as +1 and CA as -1. 

Normalization for gene expression

Three normalization methods were used in this study: read per million (RPM) normalization for next generation 

sequencing (NGS) data, quantile normalization for microarray data and rank normalization (RN) for both NGS 

and microarray data. For RN, each gene expression value was replaced by its rank, ranging from 1 (lowest) to n 

(highest), within a patient. If there was a tie for two or more values, the average of these values was used as the 

rank. The ranks were rescaled by dividing by the sum of total ranks and multiplying by 106.

Oversampling methods

There are many oversampling methods based on different assumptions and goals [37-39]. We chose the 

Synthetic Minority Oversampling Technique (SMOTE) [37] in our study. Rather than oversampling with 

replacement, SMOTE increases the number of the minority class by creating synthetic samples. These synthetic 

samples are generated from the information of minority samples. With the minority and synthetic samples, 

classifiers will build larger and more general decision regions, which tend to give more accurate predictions. 

SMOTE can be applied from the Imbalanced-learn package in Python [40].

Models

We define a model as a combination of a machine learning algorithm, number of genes selected, oversampling 

choice, and data normalization choice. The machine learning algorithms used in this study, include XGBoost 

[41], random forest (RF) [42], support vector machines (SVM) [43], and LASSO [44]. Tuning parameters were 

optimized from 10 sets of random combinations using 3-fold cross validation. To select the most predictive 

genes, a Welch two-sample t-test was first conducted to find differentially-expressed genes between two classes 

at the significance level of 0.1, where the two classes correspond to the two binary values of the variables to be 

predicted. Next we use recursive feature elimination (RFE) [45] to select an optimal set of genes (smaller than 

100) or a predefined number (10 or 25) of genes using 3-fold cross validation. We restricted the optimal number 

of genes to less than or equal to 100.

Evaluation measures and optimization procedure

To evaluate the prediction performance of each model, three measures were used: Area under the receiver 

operating characteristic curve (AUROC), F1-score, and our proposed new measure PCAP. In this study, PCAPx 

stands for the percentage of cases which can be predicted with x% precision in a model. Other performance 

measures other than precision can also be used in practice, such as accuracy, recall, or F1-score. The PCAPx is 

calculated from a 10-fold cross validation each with 90% of the data as training and 10% as testing. For each of 
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the 10 folds, a k-fold (k=10 in this study) cross validation was further performed resulting in a smaller training 

dataset and a validation dataset in each fold. The predicted probabilities of the validation set were first sorted. 

Each percentile of the predicted probability (from 50 to 99) was used as a cutoff to calculate the precision and 

recall in the validation set. If a percentile results in a precision greater than or equal to x%, than it would be 

labeled as 1 (otherwise 0). The smallest percentile with most 1s (up to k) among the k folds was selected as the 

cutoff and the corresponding average recall was recorded. After the 10-fold cross-validation, the average of the 

selected percentile from each k-fold cross-validation was chosen as the cutoff value for the test dataset, and the 

average recall is used as the estimated PCAPx for the test dataset.

    The 10-fold cross validation in the training data helps to find the cutoff that results in the desired precision. 

The returned value of recall is the PCAPx, which is an estimate of the recall value in the unseen test data given 

x% of precision. In this study, we use PCAP90 for the assessment of different models. 

    Another benefit of performing cross validation in the training data is for model selection. Given various 

models, we select the model that has the best median PCAP, instead of the maximum PCAP, to achieve a more 

robust estimate of the average PCAP value. This selected model is most likely to generalize well when 

recovering missing metadata in future datasets. 

III. Results 
Predictive performance in sequencing data

The performance of models was tested by stratified 10-fold cross validation. Table 1 shows the median of 

AUROC values across 10 folds under each model. The AUROC value reached up to 0.987 when predicting 

race, and reached over 0.9 when predicting ER and PR status. When predicting HER2 status, the AUROC value 

reached 0.797. The F1-scores in Table S1 (Supplementary file) confirm that these clinical variables can be 

predicted with good accuracy. Models with small, pre-defined number of genes can obtain good performance as 

well. Tables S2a and S2b show that using 10 or 25 genes results in satisfactory results. There is no single model 

that performs the best for all four variables. 

Predictive performance in microarray data 

The medians of AUROC values across 10 folds under each model (Table 2) indicate the models can also predict 

clinical variables well using gene expression data generated by microarray experiments. The AUROC values 

obtained are as high as 0.918 for pCR, 0.970 for ER, 0.947 for PR, and 0.938 for HER2. Table S3 

(Supplementary file) shows the F1-scores of different models and settings. For predicting ER, PR, and HER2 

status, it is possible to get comparative performance using fewer number of genes, which are shown in Tables 

S4a and S4b. Again, the results show there is no single model that performs the best for all four variables.
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Effect of rank normalization 

Gene expression data are usually generated by many different experimental platforms. Currently, at the gene 

expression omnibus (GEO) database [46], there are 15 major platforms measuring gene expression (mRNA 

values), each with more than 10,000 samples, together with hundreds of minor platforms with smaller number 

of samples. Using commonly used normalization methods, such as quantile and global normalization, models 

developed using data from one platform may not be generalizable to data produced by other platforms [47]. 

Developing different models for data generated by different platforms may not be an ideal solution for this 

problem. Rank normalization (RN) is a robust normalization method since only normalized rank information is 

kept in the normalization process. Most normalization methods do not change the rank (relative order) of the 

gene expression values within a sample. Here we investigate whether RN can be used as a robust normalization 

method for building machine learning models, which will yield better transferability of the resulting models.

To that end, we subtracted the F1-score of either RPM (sequencing data) or Quantile normalization (microarray 

data) from the F1-score of RN of each fold and took the average of the differences from each fold. As can be 

seen from Figure 2, RN helps to improve the performance of LASSO and SVM in sequencing data while giving 

comparable results in other cases. Predictions using rank-normalized gene expression values got higher F1-

scores than using RPM normalization (Figure 2 and Table S1). It is interesting to note that RN has comparable 

or better performance than commonly used normalization methods (RPM for sequencing data and Quantile 

normalization for microarray data) although it loses some valuable information during the normalization 

process. 

PCAP90 after model selection 

Table 3 shows the predictive performance in terms of PCAP90 as described in Section II. Numbers are the 

average PCAP90 of 10-fold cross validation, where in each fold the model was selected by our model selection 

pipeline. All models were trained by maximizing either the F1-score or PCAP90, respectively. As shown in 

Table 3, models trained by optimizing PCAP90 obtained higher PCAP90 than optimizing F1-score in both 

sequencing and microarray data. 

Using predicted information in statistical inference 

The goal of predicting missing metadata is to use the corresponding gene expression data in other analyses. In 

this section, we investigate the usefulness of the predicted data in downstream analyses. A very common task 

for gene expression data analysis is differential gene expression analysis (DGEA). We performed DGEA 

between Caucasian (CA) and African American (AA) breast cancer patients based on the race information 

provided in TCGA and the race information predicted using our method. Totally we have 2221 patient tissue 

samples who are either CA (1994) or AA (227), which was divided into ten folds with approximately equal 
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number of samples in each fold. The training data (Dataset1) has 8 folds, test data (Dataset2) has 1 fold, and the 

last fold was treated as a newly collected dataset (Dataset3, more details later). We first performed DGEA in 

Dataset1 by randomly sampling 1 fold of data (with the same CA:AA ratio) to generate the list of differentially 

expressed genes (DEGs), called DEG1. We then conducted DGEA for Dataset2 using their true race 

information to obtain another list of DEGs, called DEG2_t. The third DEGA was performed using Dataset2 

again by using predicted race, where the predictive model was built using Dataset1. This gave DEG2_p. The 

fourth DGEA was done using Dataset3 to produce DEG3. In this comparison, we assume that we can collect 

some new gene expression data with race information and perform the same DGEA. The last DGEA was done 

by first randomly permuting the race in Dataset2 to generated DEG2_r. We compute the number of overlapping 

DEGs between DEG1 and DEG2_t, between DEG1 and DEG2_p, between DEG1 and DEG3, and between 

DEG1 and DEG2_r. Computing the number of overlapping DEGs was done iteratively for each of the ten folds, 

then the average number of overlapping DEGs was computed. We repeated the process 50 times and drew the 

box-plot for the average number of overlapping DEGs in Figure 3. 

    The box-plots and significance tests showed that when computing the number of overlapping DEGs, there 

is no significant difference between using true race information and using predicted race. There is no significant 

difference between using predicted race and using the true race of newly collected data, either. This indicates 

that datasets with metadata predicted using our method can be used reliably in other analysis. 

IV. Discussion 

    Genomics data are not useful if necessary metadata are not available. Unfortunately, a large amount of such 

important metadata is missing in public genomics datasets. In this study, we proposed a framework for 

maximizing the reusability of public gene expression data by predicting the missing metadata using machine 

learning methods. To develop and validate the framework, we used microarray and sequencing gene expression 

data with a total of 3,833 cancer patient tissue samples to investigate whether we can predict missing metadata, 

such as race, ER, PR, HER2 and treatment response. Our study has shown that gene expression profiles can be 

used to predict metadata accurately. Out of over 20,000 genes, we can select small numbers of genes to obtain 

reliable predictions. For those variables for which reliable predictions cannot be achieved for all the missing 

metadata, we can select a subset of reliable predictions using our pipeline and a new measure designed for 

maximizing the reusability of public gene expression data. We found that different variables require different 

methods and parameter settings to achieve optimal performance. This is consistent with the well-known notion 

that no single method is the best for all kinds of machine learning tasks. 

    In addition to machine learning algorithms, normalization methods can have a substantial effect on the 

performance as well. In this study, we found that the robust rank normalization (RN) [48, 49] can produce better 

or comparable performance than commonly used normalization methods (RPM for sequencing data and 
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quantile normalization for microarray data). Predictions from rank-normalized sequencing data resulted in 

higher F1-scores. In microarray data, RN gave comparable performances. RN is less sensitive to experimental 

noise and outliers. It also allows researchers to conveniently combine several datasets generated from different 

platforms. Our result indicates that RN can be a good choice when building machine learning models either for 

predicting metadata to maximize the reusability of public gene expression data or for general model building 

purposes using gene expression data.

  Successful statistical models depend on the quality of the data used for building the models. The accuracy 

of the predicted values for the missing data needs to be carefully evaluated to ensure the quality of the data to be 

used in downstream applications. While traditional evaluation metrics can be used, they are not ideal because 

they aim for accurate predictions of whole datasets. When researchers try to reuse public genomics data, they do 

not need to use all the data. Additionally, the accuracy for the whole dataset may not reach the desired accuracy 

threshold. They can use only the part of the data for which missing metadata can be reliably predicted. Here, a 

reasonable metric to optimize would be, give a certain accuracy threshold, the proportion of data that can be 

predicted above that threshold. The higher the number, the more data we will have for reuse with desired 

accuracy. 

With the above reasoning, we proposed the metric Proportion of Cases Accurately Predicted (PCAP) for the 

purpose of maximizing reusability of public gene expression data. In addition, we proposed a selection pipeline 

to select a model from various combinations of algorithms, normalization methods, and data balancing 

procedures. Our results showed that we were able to recover a high percentage of samples with the desired 

accuracy. It is also recommended that one should maximize PCAP, instead of traditional performance measures 

for the whole dataset, when building models to obtain higher percentages of usable samples.

We also demonstrated the effectiveness of the predicted metadata in downstream inference tasks. In the 

study, we performed differential gene expression analysis (DGEA) using predicted race and found that the 

effectiveness of the analysis using predicted metadata is similar to that using true metadata. This demonstrated 

that our framework for maximizing the reusability of gene expression data can be reliably used in the future by 

other researchers. 

There is a possibility that the subset of the data that can be predicted with high accuracy is systematically 

different in some way from the whole dataset. In such cases, the conclusion one can draw will be limited to only 

the subset of the data that can be predicted with high accuracy. In real clinical settings, for example biomarker 

discoveries, one can use the predictive model to stratify patient population and only apply the discoveries (i.e. 

identified diagnostic biomarkers) to that population.

    It is worth noting that the metadata we have used as true information may have some noise in them. For 

example, it is well acknowledged that the self-reported race/ethnicity has high inaccuracy levels [50, 51]. These 

inherent errors will limit the upper bound of the accuracy we can achieve. 
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Figure 1. The number of patients in each class of four clinical variables for both sequencing data from 
TCGA (a) and microarray data from GEO (b). Numbers in parenthesis are the percentages of the 
corresponding class. AA: African American. CA: Caucasian American. pCR: pathological complete 
response. RD: residue disease.
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Figure 2. Comparison of rank normalization (RN). RN_Effect denotes the F1-score from RN minus 
F1-score from RPM of each fold using: (a) LASSO, (b) Random Forest, (c) XGBoost, and (d) SVM. 
For LASSO and SVM, RN gave better performance for sequencing data. For other models, RN gave 
comparable performances.
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Figure 3. Box plot for the overlap of differential expressed genes (DEGs) detected by differential 
gene expression analyses using five different datasets. The numbers are averages of ten runs. True: 
DEGs obtained using the true race information in the original TCGA data; PCAP95: DEGs obtained 
using a dataset where race is predicted by optimizing PCAP95; PCAP90: DEGs obtained using a dataset 
where race is predicted by optimizing PCAP90; CollectNew: DEGs obtained by collecting a new dataset 
with known race information. This dataset is part of the TCGA data which was not used in other 
analyses; Random: DEGs by randomly permuting the race assignments among the patients in the 
dataset.
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Table 1. AUROC values from different algorithms for variables in sequencing data. RN denotes 
that the predictors were rank-normalized. SMOTE denotes that the samples were balanced by Synthetic 
Minority OverSampling Technique. An optimal number of genes were selected by recursive feature 
elimination with cross validation.

Race ERa

RPM RN RN + SMOTE RPM RN RN + SMOTE
LASSO 0.946 0.979 0.982 0.895 0.915 0.906
Random Forest 0.946 0.931 0.975 0.949 0.949 0.957
XGBoost 0.982 0.975 0.985 0.947 0.947 0.948
SVM 0.835 0.987 0.975 0.834 0.908 0.904

PRb HER2c

LASSO 0.836 0.883 0.875 0.701 0.791 0.785
Random Forest 0.909 0.920 0.902 0.788 0.793 0.797
XGBoost 0.899 0.900 0.899 0.793 0.784 0.788
SVM 0.789 0.858 0.863 0.702 0.792 0.790
a: Only ER-positive (833) or ER-negative (243) patients were included.
b: Only PR-positive (726) or PR-negative (347) patients were included.
c: Only HER2-positive (173) or HER2-negative (581) patients were included.
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Table 2. AUROC values from different algorithms for variables in microarray data. 

a: Only ER-positive (833) or ER-negative (243) patients were included.
b: Only PR-positive (726) or PR-negative (347) patients were included.
c: Only HER2-positive (173) or HER2-negative (581) patients were included.

 

Table 3. PCAP90 after model selection (mean). The numbers are the average of 10-fold cross-
validation. By optimizing PCAP90, we can generally achieve better PCAP90 values (and/or better 
precision) compared to optimizing F1-scores. In all cases, by optimizing PCAP90, we can achieve 
the desired precision of 90%. However, by optimizing F1-scores, this cannot be always achieved 
(colored as red). 

Sequencing data
Race ER PR HER2 Average

Optimizing F1-score 0.217(0.863) 0.167(0.858) 0.385(0.903) 0.248(0.983) 0.254 (.902)
Optimizing PCAP90 0.216(0.98) 0.210(0.90) 0.360(0.962) 0.260(0.915) 0.262 (.939)
Microarray data

Response ER PR HER2 Average
Optimizing F1-score 0.056(0.85) 0.686(0.926) 0.570(0.953) 0.220(0.95) 0.383 (0.920)
Optimizing PCAP90 0.09(0.95) 0.695(0.954) 0.553(0.966) 0.250(0.95) 0.397 (0.955)

Response ERa

RPM RN RN + SMOTE RPM RN RN + SMOTE
LASSO 0.910 0.899 0.875 0.954 0.960 0.959
Random Forest 0.918 0.909 0.914 0.968 0.970 0.968
XGBoost 0.884 0.883 0.899 0.968 0.967 0.960
SVM 0.904 0.889 0.892 0.952 0.955 0.960

PRb HER2c

LASSO 0.938 0.939 0.941 0.938 0.924 0.901
Random Forest 0.937 0.936 0.942 0.916 0.906 0.894
XGBoost 0.938 0.938 0.933 0.894 0.880 0.917
SVM 0.947 0.928 0.927 0.931 0.909 0.896
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