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Abstract  13 

Background. The DNA methylation landscape is shaped by genetic and environmental factors 14 

and is modulate by aging. Here we evaluate the “aging methylome” in 12 recombinant inbred 15 

mouse strains from the BXD family that have more than two-fold variation in longevity. We 16 

examine relations among body weight, diet, lifespan, and DNA methylation-based rate of 17 

biological aging. We used affinity capture with the methyl-CpG binding domain (MBD) protein, 18 

followed by deep sequencing (MBD-seq), to assay DNA methylation in 70 mostly female liver 19 

samples, ranging in age from 6 to 25 months from mice maintained either on low fat chow or 20 

high fat diet (HFD).  21 

Results. Genetic background among strains is a major source of variation in genome-wide DNA 22 

methylation patterns.  Surprisingly, body weight at young adulthood had a stronger association 23 

with the methylome than age itself. Nonetheless, age also had a strong effect on methylation at 24 

well-defined CpG regions largely located within genes. We used subsets of age-informative 25 

CpGs to build versions of the epigenetic clock and as expected, these were strongly correlated 26 

with chronological age. Both high initial body weight and the HFD were associated with 27 

accelerated epigenetic aging. A DNA methylation clock model built using CpGs associated with 28 

body weight correlated with longevity of strains rather than chronological age, implying an 29 

underlying lifespan clock. Complementary mRNA clocks were also informative of chronological 30 

age. Conclusion. Our results support the known association between body mass and lifespan, 31 

and indicate that the methylome provides a mechanistic link to accelerated aging.  32 

Keywords: Epigenetic clock, DNA methylation, aging, lifespan, longevity, age acceleration 33 

 34 
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Background 35 

In the past few years, the “epigenetic clock” has emerged as a robust and widely used 36 

biomarker of aging that perhaps surpasses telomere length assays in its accuracy and utility [1-37 

3]. Also referred to as the DNA methylation age (DNAmAge), the CpG based estimator of 38 

biological age comes in a few different versions for both humans and mice [4-11]. All these 39 

clocks share a common feature—they rely on the methylation status of preselected subsets of 40 

CpGs that are each assigned weights and are used collectively to estimate age. A critical 41 

question has been: are these DNAmAge clocks detecting changes that are purely a function of 42 

time and, therefore, correlates of chronological age? Or are they providing a measure of the 43 

intrinsic pace of biological aging that can be related to health, fitness, and life expectancy? 44 

Evidence from retrospective human epidemiological studies indicates that certain versions of 45 

the clock perform better at predicting life expectancy. In general, a younger DNAmAge relative 46 

to chronological age is associated with lower risk of disease and mortality [6, 12-18]. The age-47 

dependent CpGs have also been studied in the context of lifespan variation among mammalian 48 

species [19], as well as variation within species, for example when lifespan is shifted by caloric 49 

restriction, treatment with rapamycin, or single gene mutations [7, 9, 10, 20-22]. 50 

As is the case with humans, aging trajectories vary considerably among mouse genotypes, and 51 

common DNA variants contribute to the pace of normal aging [23]. The BXD family has a long 52 

history in model organism aging and longevity research with median longevities of females 53 

ranging from at least 400 to 900 days [24-28]. Genomes of the BXDs are randomly recombinant 54 

versions of genomes of their two parents—strains C57BL/6J (B6) and DBA/2J (D2). On average, 55 
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D2 has a shorter lifespan than B6 [29, 30]. The more “accelerated aging” profile of D2 is 56 

consistent with other age-associated parameters such as more rapid thymic involution [31] and 57 

replicative senescence of hematopoietic progenitor cells [25], and increased tail tendon 58 

breakage in D2 compared to B6 [32, 33]. Variation in lifespan is much greater among the 59 

progeny BXD strains due to random assortment of independent gene variants [25].   60 

Here, we have leveraged extensive experimental longevity data generated for the BXD family 61 

[28] to evaluate the associations between body weight, DNA methylation, aging, and lifespan. 62 

We used an affinity-capture enrichment followed by deep sequencing (MBD-seq) to profile the 63 

liver methylome in 12 members of the BXD family [34-36].  To evaluate the impact of a 64 

common metabolic stressor on aging, we also quantified the methylome of a subset of cases 65 

maintained on a high fat diet (HFD), which is known to decrease the longevity by as much as 66 

~13% in the BXDs [28]. The main question we posed was: can we define DNA methylation clocks 67 

that are predictive of strain and diet dependent variation in lifespan? And how do these relate 68 

to strain characteristics such as body weight? Lastly, we tested whether age or lifespan 69 

predicted by methylome patterns can be carried over to the transcriptome, and whether 70 

transcripts can also be assembled into age-informative, and lifespan-predictive mRNA clocks.   71 

Overall, the results reveal interdependence among body mass, the aging methylome, and 72 

lifespan. In particular, body weight of young adults (ca. 100 days) has a pronounced effect of 73 

DNA methylation. We were able to compute reasonably accurate DNAmAge estimates using 74 

subsets of age-informative CpG regions. A similar clock using CpG regions associated with body 75 

weight did not correlate with age, but was strongly correlated with strain lifespan. The clocks 76 
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highlight accelerated aging associated with higher initial body weight, and one version of the 77 

DNAmAge estimator also showed accelerate aging on HFD. While mRNA-based clocks are a 78 

feasible alternative, the methylome remains a more robust biomarker for aging and life 79 

expectancy. 80 

Results 81 

Characteristics of the study sample 82 

The longevity data was collected from a cohort of females that were allowed to age until 83 

mortality. (Details on this cohort in Roy et al., 2019 [28] and full data can be accessed from 84 

GeneNetwork 2 [37].) A parallel cohort was used for biospecimen collection at different ages. 85 

For the 12 selected strains and F1 hybrids, lifespans on ad libitum standard chow (control diet 86 

or CD) ranged from an average of 417 ± 155 days (mean ± SD) to 933 ± 86 days (Table 1). HFD 87 

generally reduces longevity, but with marked differences among strains [28]. Matched samples 88 

from cases on HFD were included for five strains and sub-strains (Table 1). Each strain-by-diet 89 

group was classified as short-lived (mean lifespan < 600 days), medium-lived (between 600 and 90 

750 days), and long-lived (>800 days). A strain classified as long-lived on CD may also be 91 

classified as short-lived on HFD, e.g., BXD65 (Table 1).  92 

We performed methylome-wide assays in 70 liver samples collected from the strain and diet 93 

groups at different ages. Since age and lifespan are the main variables of interest, liver 94 

specimens were chosen so that distribution of age across the three lifespan groups are closely 95 

matched (Fig. 1a; individual level sample information in Table S1). We note that aside from 96 
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three male cases for BXD102, B6D2F1, and B6D2F1 (Table 1), all specimens were from females. 97 

While the samples were not chosen on the basis of body or organ weight, there was significant 98 

variation in body weight when the mice were initially weighed before introduction to HFD (Fig. 99 

1b). The F1s had higher body weights compared to BXDs on CD, and this hybrid vigor was 100 

apparent with or without the male cases. The final weight of mice (i.e., weight on day of sample 101 

collection) continued to show significant strain variation (Fig. 1b). The weight of the liver 102 

appeared fairly consistent across the strains (Fig. 1b). There was no group difference in body 103 

weight at baseline between the two diets (CD = 25 ± 7 g vs. HFD = 23 ± 5 g; n = 70). By final 104 

weighing, the group on HFD had become significantly heavier when compared to the full set of 105 

mice on CD (HFD = 41 ± 12 vs. CD = 29 ± 8 g, p < 0.0001; n = 70), or when compared only to the 106 

matched strains on CD (HFD = 41 ± 12 vs. CD = 26 ± 6 g, p < 0.0001; n = 34). The weight of the 107 

liver on HFD was slightly heavier but the effect was not statistically significant, likely due to the 108 

modest sampling of cases on HFD (HFD = 1.29 ± 0.23 g vs. CD = 1.22 ± 0.23 g; p = 0.37, n = 34). 109 

The baseline weight was measured at young adulthood (mean age of 134 ± 81 days) and at this 110 

point, age was a significant predictor of body weight with lower body weight for the younger 111 

mice (Fig. 1c). The age of mice at time of sample collection was, however, not correlated with 112 

final body weight (r = 0.01) or with weight of liver (r = 0.12). Instead, the baseline body weight 113 

remained a significant predictor of the final body weight (Fig. 1d) and liver weight (Fig. 1e). 114 

When restricted to only the few HFD mice, baseline weight was still a significant correlate of 115 

final body weight (r = 0.53, p = 0.05, n = 15), but not liver weight (r = 0.28, p = 0.30). 116 

 117 
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Table 1. Characteristics of selected strains from the BXD panel 118 

 Longevity trait  Biospecimen 

Strain/line 

Mean 

lifespan 

(days)
 1

 

Median 

lifespan 

(days)
 1

 

Lifespan 

Group
2
 

Diet
3
 N

3
 

Age Range 

(days)
 3

 

B6D2F1 933±86 896 long CD 5
4
 216–726 

BXD102 861±222 891 long CD 5
4
 183–714 

BXD40 585±239 577 short CD 8 284–719 

BXD48 695±124 684 med CD 3 188–731 

BXD48 523±152 517 short HFD 3 189–595 

BXD48a 617±196 670 med CD 3 233–604 

BXD48a 635±113 650 med HFD 3 233–543 

BXD65 824±199 896 long CD 6 181–711 

BXD65 534±128 551 short HFD 3
5
 230–541 

BXD65b 726±91 751 med CD 4 187–748 

BXD73 702±116 687 med CD 4 206–759 

BXD73 699±112 715 med HFD 3 206–694 

BXD73b 820±129 807 long CD 3 237–743 

BXD73b 742±193 790 med HFD 3 237–729 

BXD79 417±155 330 short CD 7 217–570 

BXD9 507±135 462 short CD 3 245–548 

D2B6F1 771±143 791 long CD 4
4
 210–744 

1 
Average and median lifespans for strains under standard or high fat diet estimated from an aging cohort of mice 119 

co-housed with mice used for biospecimen collection and methylome assays 120 
2 

Groups based on phenotypic lifespan: short = average lifespan < 600 days; med = average 640–750 days, and long 121 
= average lifespan > 800 days 122 
3 

Diet, sample size, and age range of mice from MBD-seq data was generated. CD = control diet; HFD = high fat diet 123 
4 

One male case; see Table S1 for individual level data 124 
5 

One case excluded due to uncertain identity 125 

 126 

Strain dependent patterns in global features of the methylome 127 

Deep sequencing of the methylome was carried out after samples were enriched for 128 

methylated-CpGs (MBD-seq). After quality checks and filtering by read coverage, we retained a 129 

set of 368,300 regions, each 150 bp in length, with sufficient coverage in the 70 samples. The 130 

majority of the CpG regions (83%) contained no sequence variants (SNPs or small 131 

insertions/deletions) segregating in the BXDs.  For the 17% with sequence variants, there was 132 
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an average of 2 ± 1.6 variants within the 150 bp bin. (Chromosomal coordinates, CpG density, 133 

variant counts, and normalized data will be made available from NCBI GEO upon official 134 

publication.) Consistent with the DNA enrichment and filtering protocols, the 368,300 CpG 135 

regions were enriched in annotated gene features and CpG islands and depleted in intergenic 136 

regions when compared to the genome-wide background (Table S2). Our first goal was to gain a 137 

global perspective, and for this, we performed two analyses: (1) dimension reduction with 138 

principal component analysis (PCA), and (2) analysis of genome-wide mean methylation and 139 

variance. 140 

PC1 and PC2 captured 19% and 13% of the variance, respectively. A plot of the top two 141 

principal components (PCs) showed clustering of samples by strain identity, irrespective of diet 142 

(Fig. 2a). The one exception was a BXD65 on HFD; this case plotted away from the BXD65 143 

cluster and, as this was of questionable identity, this sample was excluded from downstream 144 

analyses. Sub-strains (e.g., BXD73/BXD73b; BXD65/BXD65b) also clustered in close proximity 145 

with only slight separation. Unsupervised hierarchical clustering confirmed the clustering of 146 

samples by strain identity rather than age or diet groups (QC plots in Fig. S1). The top five PCs 147 

collectively explained 58% of the variance (PC1–PC5 in Table S1). We found no correlation 148 

between these five PCs and the age of mice. For strains with matched CD and HFD cases, the 149 

PCs did not differentiate between the two diets. 150 

Next, we computed the within-individual genome-wide average methylation and variance. 151 

Global average methylation was inversely correlated with within-individual variance and 152 

showed extensive strain variability. When we divided the CpG regions into genic (i.e., CpG 153 
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regions that overlap annotated gene features) and intergenic sets, we found that the inverse 154 

correlation between global methylation and variance was significant for both sets but 155 

particularly pronounced for the intergenic set (Fig. 2b, c; and Table S1 for individual level data 156 

on methylome means and variance). This reveals that for CpGs in intergenic regions, mice that 157 

have a hypermethylated profile have lower within-individual variance. There is extensive strain 158 

variation in this global methylation and variance patterns (Fig. 2b, c). For the intergenic set, the 159 

BXD73 sub-strains showed the lowest methylation scores and highest variance while the F1s 160 

had the highest methylation and lowest variance. Age was not a significant correlate of the 161 

genic and intergenic features. We evaluated if the top 5 PCs relate to the methylation averages 162 

and variance. The average methylation and variance at intergenic CpG regions were 163 

significantly correlated with PC1 (Fig. 2d), and PC3 (11% of variance) (Fig. 2e). PC4 (8% of 164 

variance) showed a significant negative correlation with mean methylation at genic CpG regions 165 

(Fig. 2f).  166 

To summarize, the global analyses show that the clustering by strains in the PC plot, to a large 167 

extent, can be explained by the strain-dependent methylation averages. We did not detect any 168 

effect of age or diet on these large-scale methylome features. 169 

Intercorrelations between body weight, methylome, and strain-level lifespan 170 

We next examined whether the body weight measures could be associated with the large-scale 171 

methylome features. Since the F1s exhibit hybrid vigor both in body weight and mean 172 

methylation, we report the results after excluding the F1s (correlations with and without the 173 

F1s in Table S3). Of the top 5 PCs, only PC1 showed a weak but significant negative correlation 174 
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with baseline weight (Fig 3a), and final weights of body and liver. Body weight at baseline, but 175 

not the final body weight, had a weak but significant negative correlation with mean 176 

methylation (Fig 3b), and significant positive correlation with variance (Fig 3c) at genic CpG 177 

regions that indicates a sustained inter-relatedness between body mass at younger age and the 178 

methylome. Unlike the baseline body weight, the final body weight was not correlated with 179 

methylation means or variance at either the genic or intergenic regions in the BXDs (Table S3). 180 

We considered the possibility that the HFD-induced shifts in body weight may have reduced the 181 

correlation; however, when we restricted the analysis to only the CD BXDs (n = 46), the final 182 

body weight still showed no correlation with the intergenic and genic features. The liver weight 183 

had a significant positive correlation with mean methylation and negative correlation with 184 

variance at intergenic CpGs (Table S3). 185 

The lifespan data is from 17 strain-diet groups (Table 1), and while this is a small sampling of 186 

lifespan variability in the BXD panel, we used this longevity information to explore associations 187 

with the body weight measures and the global methylome features. This analysis was again 188 

performed without the F1s due to the vigor in both methylome features, body weight, and 189 

lifespan. Only PC4, an inverse correlate of genic CpG methylation means (Fig. 2f), showed a 190 

strong correlation with the strain longevity phenotype (Fig 3d). Lifespan showed no direct 191 

correlations with the methylation averages and variance at either the genic or intergenic CpG 192 

regions.  For the weight measures, baseline body weight had a weak but significant negative 193 

correlation with strain mean lifespan (r = -0.27, p = 0.04; Fig 3d). This is in agreement with the 194 

stronger inverse correlation between body weight and lifespan that is seen in the larger BXD 195 

cohort [28].  196 
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Taken together, while the individual correlations are weak (Fig 3), the results suggest that body 197 

weight at younger age is associated with multiple interdependent features of the global 198 

methylome that are also predictive of strain life expectancy. 199 

Effect of age on site specific DNA methylation 200 

Following the global analyses, we next evaluated the effect of age and diet on site-specific DNA 201 

methylation at each of the 368,300 CpG bins. Our goal was to identify age informative CpG 202 

regions that we can then use to estimate the epigenetic age of mice. We applied a multiple 203 

regression model for age and diet with adjustment for other major sources of variance 204 

(methylation ~ age + diet + PC1 + PC2 + PC3 + PC4 + PC5). Although we did not detect a 205 

generalized impact of aging on the global methylation, the distribution of p-values indicated a 206 

strong effect on few CpG regions (Fig. 4a). For the effect of diet, the p-value distribution was 207 

close to the null hypothesis (Fig. 4b), likely because with only 14 samples from the HFD group, 208 

the sampling is underpowered. For the remainder, we focused mainly on age, and considered 209 

diet only in the context of its effect on strain lifespan and potential age-accelerating effect. 210 

At a Bonferroni threshold of 10% (unadjusted p ≤ 2.6 x 10
-7

), there were 26 age-associated 211 

differentially methylation regions (age-DMRs). All of these were genic regions, including 212 

neighboring block of CpGs, and were located within 17 annotated genes (Table S4). While only 213 

a small number of CpG bins were significant at the 10% Bonferroni threshold, given the non-214 

independence of adjacent CpG regions, we used a lenient statistical threshold and selected the 215 

top 500 age-DMRs to define the general characteristics of the aging methylome (unadjusted p ≤ 216 

3.1 x 10
-4

, 23% FDR; Manhattan plot Fig. 4c; Table S4). Of these, 60% (299 of 500) were 217 
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associated with loss of methylation with age (age-hypomethylation), and 40% showed gains in 218 

methylation with age (age-hypermethylation) [38, 39]. This set of 500 age-DMRs collectively 219 

represented differentially methylated CpG regions located in or near 347 unique genes 220 

(location within genes or distance to nearest promoter for intergenic CpG regions in Table S4). 221 

Gene set enrichment analysis (GSEA) for the age-DMRs ranked by regression coefficient for age 222 

showed no strong enrichment after FDR correction. However, we note that the most 223 

overrepresented pathway was for signaling genes involved in stem cells pluripotency (KEGG ID 224 

mmu04550; nominal enrichment p = 0.005, FDR = 0.10) and the five genes in this pathway 225 

(Fzd1, Fzd8, Wnt5a, Jak3, Meis1) were associated with increase in DNA methylation with age. 226 

Genes involved in mesenchyme development were also slightly overrepresented (GO ID 227 

0060485; nominal enrichment p = 0.001, FDR = 0.24) and members of this GO (Ptk7, Nrp2, 228 

Sema5b, Zfp703, and Wnt5a) were also associated with age-hypermethylation (Fig. S2).  229 

Compared to the background set of 368,300 CpG bins, the age-DMRs were depleted in 230 

intergenic regions and enriched in genic regions (enrichment and depletion p-values in Table 231 

S2). The majority of the age-DMRs (86%) contained no sequence variants in the BXDs and the 232 

age dependent methylation patterns are unlikely to be confounded by SNP or variant effects. 233 

The age-hypermethylated set was highly enriched in CpG islands, promoters, and exons, and 234 

also slightly enriched in 5’UTRs (Fig. 4d; Table S2). The age-hypomethylated set was enriched in 235 

introns, and 3’UTRs and transcription termination sites (Fig. 4d; Table S2). For each CpG region, 236 

we computed the average methylation and variance across the 69 samples, and compared 237 

these to the age regression coefficients, which convey the change in methylation per unit 238 

change in age. The most pronounced age-hypermethylation (positive regression coefficients for 239 
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age) occurred in bins with high CpG density and lower average methylation, and the magnitude 240 

of the age coefficient showed positive correlation with CpG density and negative correlation 241 

with average methylation (Fig. 4e, f). In contrast, age-hypomethylated regions (negative 242 

regression coefficient for age) featured low CpG density, and higher average methylation (Fig. 243 

4e, f).   244 

Age-DMR based epigenetic clocks and lifespan prediction 245 

We next explored constructing age-informative and potentially lifespan-predictive clocks using 246 

three different approaches: (1) training-based age estimator by applying elastic net regression, 247 

(2) untrained age estimator with the set of 500 age-DMRs, and (3) untrained age estimator 248 

using only a subset of the age-DMRs that are also associated with cross-sectional variation in 249 

lifespan. 250 

First, we implemented the standard clock-building protocol by deriving the clock in a training 251 

cohort, and then testing accuracy in a validation cohort [40, 41]. We are clearly limited in 252 

sample size; nevertheless, as assessment of feasibility, we randomly assigned 36 samples (52% 253 

of the 69 cases) to the training set to model an age-estimator (see Table S1 for sample 254 

assignments). This constructed an age-estimator that was based on 60 “clock CpGs”, i.e., CpG 255 

regions that are collectively used in determining the DNAmAge [5]. These clock CpGs included a 256 

few regions that individually showed no significant association with age; but most had modest 257 

to strong associations with age and included fifteen of the 500 age-DMRs (clock CpG regions 258 

and weighing coefficients in Table S5). In the training set, this age estimates had a near perfect 259 

correlation with chronological age at Pearson r = 0.999 (Fig. 5a; Table 2). In the test set of n = 260 
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33, the correlation between the estimated age and chronological age was 0.74 (p < 0.0001) with 261 

a median absolute error of 90 days (Fig. 5b; Table 2). Due to the small sample size of the test 262 

set, we did not use this clock to examine age acceleration.  263 

For the non-training based estimator, we simply treated the 500 age-DMRs as possible clock 264 

CpGs and used the respective age regression coefficients as weighing factors to compute the 265 

weighted average for each sample (coefficients for each CpG region are in Table S4). The 266 

weighted averages were significantly correlated with chronological age of mice, and for a more 267 

direct comparison, the values were scaled to the age range for the 69 samples. This clock is 268 

therefore study-specific and calibrated to this cohort. The DNAmAge had a near linear 269 

correlation with chronological age at r = 0.90 (p < 0.0001), and with a median absolute error of 270 

96 days (Fig. 6a; Table 2). We then estimated the age acceleration for each mouse (DNAmAge-271 

acc) based on the residuals derived from the linear regression between DNAmAge and 272 

chronological age [9, 12] (individual-level DNAmAge data in Table S1). For this, positive residual 273 

values indicate an accelerated, and negative values a decelerated rate of biological aging. 274 

Unlike the DNAmAge, DNAmAge-acc was not correlated with the final age of mice, indicating 275 

that this measure of age acceleration is independent of chronological age [9]. The DNAmAge-276 

acc derived from this clock did not correlate with the lifespan phenotype but showed a 277 

significant positive correlation with body weight measures that would suggest a more 278 

accelerated clock with increased body mass (Fig. 6b, c; Table S6). For the strains with matched 279 

samples, the DNAmAge-acc did not differentiate between the diet groups (Fig. 6d).  280 
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We then examined if we can build a version of the DNAmAge estimator using only the age-281 

DMRs that were also associated with strain differences in expected lifespan. We limited this 282 

analysis to the top 500 age-DMRs, and to test association with lifespan, we applied a mixed 283 

effects model with strain median lifespan and age as fixed variables and strain-diet as random 284 

variable. At a lenient statistical threshold of p ≤ 0.05, there were 56 age-DMRs associated with 285 

lifespan and we refer to this set as putative lifespan-age-DMRs (Table S4). The majority of these 286 

(84% or 47 of 56) had lower methylation among the long-lived strains regardless of whether 287 

these were age-hypermethylated or age-hypomethylated (Fig. 7a). We illustrate this pattern 288 

using three of the top-ranking lifespan-age-DMRs: age-hypomethylated Casz1 (Fig. 7b), and 289 

age-hypermethylated Cyp46a1 (Fig. 7c) and Abca7 (Fig. 7d). Casz1 was associated with a small 290 

age-hypomethylation (age coefficient of only -0.0007, unadjusted p = 1.6 x 10
-4

) and most 291 

strain-diet groups had slight downward trajectory over time. Cyp46a1 and Abca7, on the other 292 

hand, were associated with stronger age-hypermethylation, and almost all the strain-diet 293 

groups showed an upward trajectory with age. In addition to the change over time, cross-294 

sectional comparison between lifespan groups showed lower average methylation in the long-295 

lived strains relative to the medium and short-lived strain-diet groups. 296 

While most of the CpG regions were only weakly associated with lifespan (for instance, Abca7 in 297 

Fig 7d), we used the 56 lifespan-age-DMRs to calculate the DNAmAge by weighing each CpG by 298 

the respectively age regression coefficients (estimated ages in Table S1). Chronological age 299 

correlated strongly to this version of the DNAmAge (r = 0.83, p < 0.0001), although the trend 300 

appeared to fit a quadratic equation with a greater degree of plateau at older age, an 301 

observation that is consistent with the apparent underestimation or possible decline in aging 302 
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rate with increased chronological age [15, 42, 43]  (Fig. 6e). The DNAmAge-acc derived from 303 

this version of the clock showed a significant negative correlation with the longevity phenotype 304 

(both mean and median lifespan) with more accelerated aging in mice from the short-lived 305 

strain-diet groups (Fig. 6f). This correlation was robust and remained significant after excluding 306 

the F1s (full correlation and probabilities in Table S6). The DNAmAge-acc was also positively 307 

correlated with the body weight measures, again indicating more accelerated aging in mice 308 

with higher body mass (Fig. 6g, Table S6). For the strains with matched samples from CD and 309 

HFD, the group on HFD had a mean age acceleration of 21 ± 36 days compared to the mean 310 

decelerated aging (-26 ± 57 days) for the group on CD (p = 0.01; n = 33; Fig. 6h). Therefore, this 311 

DNAmAge estimator, built from fewer CpG regions, is therefore both age-informative and 312 

lifespan-predictive. 313 

Table 2. Versions of DNA methylation and mRNA clocks 314 

Clock 

versions 

Sample 

N 

Clock 

CpGs/mRNAs 
Age r

1
 

median 

|error|
2 

(days) 

BW0 r
3 

Lifespan r
3
 

DNA 

methylation 

elastic net 

36 

training 
60 

0.99 

(<0.0001) 
4.5 not tested not tested 

33 

testing 

0.74 

(<0.0001) 
90 not tested not tested 

500 age-

DMRs 
69 500 0.9 (<0.0001) 96 0.38 (0.001) 0.004 (ns) 

56 lifespan-

ageDMRs 
69 56 

0.83 

(<0.0001) 
111 0.24 (0.05) 

r = -0.58 

(<0.0001) 

500 BW0-

DMRs 
69 500 0.12 (ns) 

*
66 

*
r = -0.52 

(<0.0001) 

*
0.47 

(<0.0001) 

RNA clock 

elastic net 

Ver1 

150 

training 
65 

0.89 

(<0.0001) 
52 not tested not tested 

141 

testing 

0.65 

(<0.0001) 
85 -0.17 (0.05) -0.15 (ns) 

RNA clock 

elastic net 

141 

training 
62 

0.90 

(<0.0001) 
67 not tested not tested 
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Ver2 150 

testing 
 

0.62 

(<0.0001) 
100 0.19 (0.02) 0.08 (ns) 

1 
Pearson correlation between clock estimates and chronological age; significance within parenthesis 315 

2 
Median of the absolute difference between estimated and chronological age as a measure of DNAmAge precision 316 

as defined in [40]. 
*
For the 500 BW0-DMR clock, median of the absolute difference between estimates and mean 317 

lifespan was used as a measure of lifespan clock accuracy. 318 
3 

Pearson correlation between age acceleration residuals and baseline body weight and strain mean lifespan. 
*
For 319 

the 500 BW0-DMR clock, the estimated values instead of the residuals were used. 320 

 321 

Baseline body weight based epigenetic clock and lifespan prediction  322 

Given the strong influence on baseline body weight on the methylome, we then explored the 323 

possibility of deriving lifespan informative estimator from body weight associated CpG regions. 324 

To identify relevant CpG regions, we applied a regression analysis with baseline body weight 325 

(BW0) as predictor with adjustment for age and top 5 PCs as covariates. While age was 326 

associated with only a few strong age-DMRs, BW0 had a more widespread association with the 327 

methylome (Fig. 8a). At a Bonferroni threshold of 10% (unadjusted p ≤ 2.6 x 10
-7

), there were 328 

667 CpG regions associated with body weight. Unlike the age-DMRs, which were depleted in 329 

intergenic regions, 74% of the baseline body weight associated differentially methylated CpG 330 

regions (BW0-DMRs) were intergenic. The vast majority (581 of the 667) had positive regression 331 

estimates for body weight, i.e., higher levels of methylation in heavier mice.  332 

As in the case of the age-DMR based clock, we then took the top 500 BW0-DMRs and weighed 333 

each CpG region by the respective age regression coefficient (weighing coefficients and the list 334 

of CpG regions in Table S7). We note that 27.6% (138 of the 500) of the BW0-DMRs contained 335 

sequence variants, and the differential methylation at these sites could also be capturing the 336 

effect of underlying sequence effects. Using the BW0-DMRs, the weighted averages did not 337 
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correlate with the chronological age of mice. Instead, the values had a significant positive 338 

correlation with strain lifespan. For direct comparison, we rescaled the weighted averages to 339 

the range of median lifespan for the study sample (Fig. 8b; Table S1). The strong positive 340 

correlation with lifespan suggests that this clock is an indicator of the expected age at death 341 

rather than the chronological age of mice. The median absolute error for the predicted lifespan 342 

relative to the known lifespan for the strain-diet groups was at 66 days (Table 2), and we refer 343 

to this as a baseline body weight based lifespan clock (BW0.lifespan). For a few of the long-lived 344 

strains, particularly the robust F1 hybrids that have both higher body weight and longer lifespan 345 

(labelled as groups A and B in Fig. 8b), the BW0.lifespan was much lower than the expected 346 

lifespan. Since the CpGs regions were individually associated with body weight, as expected, the 347 

BW0.lifespan showed a strong correlation with the baseline weight (Fig. 8c) and with liver 348 

weight, but not strongly with final body weight (Table S6). For strains that had both CD and HFD 349 

cases, BW0.lifespan did not differentiate between the diet groups, suggesting that this clock is 350 

not sensitive to lifespan modification by HFD but is mainly dependent on strain differences in 351 

baseline body weight. The age acceleration residuals from the 56 lifespan-age-DMRs had a 352 

strong inverse correlation with the BW0.lifespan estimates indicating convergent information 353 

from both the clocks (Fig. 8d). 354 

Impact on gene expression and mRNA based clocks  355 

To examine age-dependent changes in the liver transcriptome, we made use of available liver 356 

RNA sequencing (RNA-seq) data from a larger cohort of aging BXDs. The data obtained from 357 

GeneNetwork was generated in two batches, and sample and batch information are in Table 358 
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S8.  First, to examine whether the transcripts that correspond to the age-DMRs also show 359 

changes in expression levels with age, the 347 unique genes represented by the 500 age-DMR 360 

CpGs were matched to the corresponding transcripts by gene symbol. This resulted in 265 age-361 

DMRs and transcript pairs. Of these, 110 of the transcripts (42%) were correlated with age at an 362 

unadjusted p ≤ 0.05 (|r| ≥ 0.12 in n = 291) (Table S9). The majority of the age-hypermethylated 363 

CpG regions were associated with increased gene expression with age with only nine age-364 

hypermethylated DMRs (e.g., Fzd8, Cyp46a1, Nfix, Rnf4) associated with decreased gene 365 

expression with age (Table S9). For the age-hypomethylated DMRs, 37 transcripts showed a 366 

decrease in expression and 39 transcripts showed an increase in expression with age. Overall, 367 

this shows that many of the age-DMRs are also associated with gene expression changes with 368 

age.  369 

Finally, we attempted to derive age-informative clocks using the training-based approach. We 370 

first performed the training in batch 1 and then tested in batch 2, and then vice versa using the 371 

liver transcriptome-wide data. The elastic net modeling trained on the 150 samples in batch 1 372 

identified 65 transcripts for mRNA clock estimation (Table S10), and the age estimated from 373 

these transcripts (mRNAage) had a correlation of r = 0.89 with chronological age in the training 374 

set (Fig. 5c; Table 2). In the validation set (i.e., batch 2 with 141 samples), the correlation 375 

between the age estimates and chronological age was 0.65 with median error of 85 days (Fig. 376 

5d; Table 2). The age acceleration, as estimated by the residuals from the regression between 377 

mRNAage and chronological age, showed a weak but significant (p = 0.05) negative correlation 378 

with baseline body weight, which is at odds with the expected age acceleration with higher 379 

body mass, and no significant correlation with strain lifespan (mRNA age estimates and age 380 
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acceleration for individual samples in Table S8). Training in batch 2 identified 62 transcripts for 381 

clock estimation (Table S11). Of these 62 transcripts, only 9 transcripts (Rin3, Adcy3, Cpn1, 382 

Chuk, Rpl41, Rps27a, Serpina3m, Srm, and Ubb) overlapped between the two versions of the 383 

mRNA clocks. Correlation between the mRNAage and chronological age was 0.90 in the training 384 

set, and 0.62 in the testing set (Fig 5e, 5f; Table 2). The age acceleration for this version of the 385 

clock showed a significant positive correlation with baseline body weight and no correlation 386 

with lifespan (Table S8). For strains with samples from both CD and HFD, the age accelerations 387 

derived from the mRNA clocks did not differentiate between diets.    388 

 Discussion  389 

The results we have presented convey deep associations between body mass, DNA 390 

methylation, aging, and lifespan. Somewhat to our surprise, we found that body weight at 391 

young adulthood, more so than age at time of tissue collection, had a stronger influence on the 392 

large-scale methylome. Age, on the other hand, had a strong effect on few discrete CpG 393 

regions. Age and weight appeared to exert effects on largely independent sets of CpGs, with the 394 

age-DMRs mostly located within gene bodies, while the BW0-DMRs included a large proportion 395 

of intergenic loci. Nonetheless, longevity information could be derived from both the age- and 396 

BW0-DMRs. 397 

Consistency in age-dependent DNA methylation changes 398 

In regard to whether genomic characteristics can explain whether a CpG region gains or loses 399 

methylation with time, we found a clear dependence on CpG density and methylation status 400 
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that agreed with previous reports [44, 45]. Since DNA methylation levels were quantified over 401 

150 bp non-overlapping bins, we could directly examine how the local CpG density relates to (1) 402 

average methylation levels and variance across the 69 samples, and (2) the change over time 403 

using the age regression coefficients. The results show that loss of methylation over time occurs 404 

at regions with low CpG density that also generally have higher average methylation. This is 405 

consistent with the general age-dependent hypomethylation at CpG spares regions of the 406 

genome where the few or isolated CpGs exist mostly in a methylated state [46-49]. For age-407 

hypermethylated regions, the gains in methylation was directly correlated with CpG density, 408 

and inversely correlated with methylation, and occurred in regions with lower average 409 

methylation. This too, is consistent with reports that CpG dense regions on the genome, a 410 

feature of CpG islands, which typically remain unmethylated, are the sites that tend to gain 411 

methylation with age [50-53].  412 

For the 347 unique genes that correspond to the 500 age-DMRs, we did not find a particularly 413 

strong functional theme. However, the list included notable members that have previously 414 

been linked to aging related diseases or with longevity and lifespan. For example, Cyp46a1, Lrp1 415 

and Abca7 play roles in lipid shuttle and cholesterol metabolism, and have been associated with 416 

Alzheimer’s disease [54, 55]. Other age-DMR genes that have been previously implicated in 417 

aging and human longevity include Adarb2 [56], Abcc4 [57],  Igf2r [58], Ucp3 [59], Grb2 [60], Il7r 418 

[61], Ikbkb [62]. The current data replicated the CpG islands in C1ql3 and Ptk7, which we 419 

previously reported as age-hypermethylated sites in the BXD parental strains, C57BL/6J and 420 

DBA/2J [63]. We also compared the list of age-DMRs from the present study to a list of 79 421 

genes reported to harbor age-DMRs in a recent study of DNA methylation in aging human liver 422 
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[42], and found only three genes in common: Il4i1, Ildr2 and Nfix. The study by Bacalini et al. 423 

[42] reported an enrichment in mesenchymal and Wnt-signaling pathways, and similarly, we 424 

also find a slight over-representation of genes that are part of signaling pathways and 425 

mesenchyme development (e.g., Fzd1, Fzd8, Wnt5a, Jak3, Ptk7, Nrp2, etc.).  426 

Building clocks from age dependent CpG regions 427 

Currently, there are several different versions of the DNAmAge estimator available for both 428 

mice and humans. Some have multi-tissue application [5, 8, 9], and others are optimized for 429 

specific tissues [4, 7, 10, 11]. The standard protocol for developing DNAmAge clocks starts by 430 

applying a linear regression algorithm in a training dataset, followed by age estimation in 431 

validation cohorts to gauge the accuracy of the clock [5, 40, 41]. The training sessions identify 432 

age informative CpGs, referred to as clock CpGs, that are each assigned predetermined weight 433 

for estimating DNAmAge. This preselected ensemble of clock CpGs can then be used to 434 

estimate age in other independent data sets, under the condition that the same or at least the 435 

majority of the CpGs are also measured. To our knowledge, all these clocks have relied on 436 

bisulfite-based assays that provide single CpG resolution [4-11, 64, 65]. These existing clocks 437 

rarely share CpGs in common. For instance, a comparison of the three mouse clocks showed 438 

only two CpGs in common between the blood-based and multi-tissue clocks [7, 8, 41]. This is 439 

not particularly surprising given that these were constructed from reduced representation 440 

bisulfite sequencing (RRBS) data, a protocol for which CpG coverage can have low overlap 441 

between libraries. But even in the case of the human clocks that were built from microarray 442 

data with fixed and limited number of CpGs to select from, the overlap is still poor. The Horvath 443 
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and Hannum clocks share only about six CpGs in common. This means that DNAmAge can be 444 

defined and calibrated from numerous different subsets of potential clock CpGs [9, 41].  445 

While MBD-sequencing does not provide single CpG resolution, it is nonetheless known to 446 

deliver highly sensitive and reliable quantification of genome-wide methylation [34-36, 39]. 447 

Instead of measuring individual CpGs, MBD-seq quantifies methylation levels within 448 

circumscribed regions containing spatially proximal CpGs that are generally correlated in 449 

methylation patterns [66-68].  To test feasibility, we started by training to chronological age 450 

using linear regression. Despite the extremely humble sample number, the estimated age had a 451 

near perfect correlation with chronological age in the training set (r = 0.99). In the test set of 23 452 

mice, the age correlation was at 0.74 with a fairly high median error of ± 90 days. While not 453 

precise, this DNAmAge estimator, consisting of 60 clock CpG regions, could still be applied to 454 

classify mice into broad age groups (young, middle, old), and may perform just as well as 455 

transcriptomic age-classifiers that have been defined from much larger sample numbers [69, 456 

70]. The constituent clock CpG regions included sites in or near 29 genes that were represented 457 

among the age-DMRs (e.g., Cyp46a1, Fzd8, Gata6), although in terms of the exact CpG regions, 458 

only 15 age-DMRs were present in both lists (see Table S5).  The RRBS-based clock published by 459 

Wang et al. [10] was for the liver tissue, and we compared the genes in their list of 149 clock 460 

CpGs and we found two common genes, Cyp46a1 and Sulf2, represented in both, although 461 

again, the precise CpGs did not overlap. 462 

We also applied a direct weighted averaging method that did not impose a training step. Both 463 

versions of the age-DMR based clocks (i.e., one built using the full set of 500 age-DMRs, and 464 
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another built from a restricted set of only 56 lifespan-age-DMRS) provided fairly close estimates 465 

of chronological ages. Of these two DNAmAge estimators, only the DNAmAge_56 appeared 466 

sensitive to lifespan variability, and the age acceleration derived from this clock was predictive 467 

of strain lifespan, and also accelerated in the HFD group. Using this clock, almost all cases from 468 

strain-diet groups classified as long-lived had negative DNAmAge-acc; the only exceptions were 469 

four F1 samples, including the male B6D2F1, that had positive DNAmAge-acc. For cases 470 

belonging to strain-diet groups classified as short-lived, all had positive DNAmAge-acc with the 471 

exception of one BXD65 kept on HFD that had negative DNAmAge-acc. The strain with the most 472 

decelerated clock, and presumably slowest rate of biological aging, was BXD102 on CD, which is 473 

also the longest lived BXD strain we had in the study (Table 1). For these mice, the DNAmAge-474 

acc for the female were highly decelerated and ranged from –127 to –194 days. Interestingly, 475 

the one male BXD102 had a less decelerated clock with a DNAmAge-acc of –56 days.  476 

The members of the DNAmAge_56 clock were selected because these CpGs were both 477 

correlates of age, and predictive of lifespan. The majority of these (31 of the 56) were age-478 

hypermethylated and had lower methylation among the long-lived strains (lower right box of 479 

Fig. 7a). These CpGs also had the most pronounced association with both age and lifespan and 480 

were CpGs in the introns, exons and promoters of genes such as Jak3, Wnt5a, Abca7 and 481 

Cyp46a1.  The relation between the regression coefficients for age and lifespan would suggest 482 

that for these CpGs that gain methylation with age, the long-lived strains have a more 483 

“youthful” profile, i.e., lower average methylation. However, 16 of the age-lifespan-DMRs were 484 

age-hypomethylated, and yet had lower methylation among the long-lived strains (lower left 485 

box of Fig. 7a). A few epidemiological studies have also attempted to define predictors of all-486 
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cause mortality risk in humans, and these studies paint a very complex picture for humans. 487 

While two of the studies showed that hypomethylation at specific CpGs was prognostic of poor 488 

survival [71, 72], another study found a combination of both hypo- and hyper-methylated CpGs 489 

linked to mortality [73]. A complication with the human studies is that several of the mortality 490 

CpGs were also markers for tobacco use, indicating that a good proportion of the CpGs were 491 

likely capturing the effects of lifestyle and environmental exposures [72, 74, 75]. In the BXDs, 492 

given the controlled environment, the CpG methylation patterns are presumably providing a 493 

closer marker of genetic and epigenetic predisposition to life expectancy.  494 

Body weight, DNA methylation, and lifespan prediction 495 

We also explored a less conventional clock based on the methylation levels at the top 500 BW0-496 

DMRs. This clock does not qualify as a DNAmAge clock since the estimates were uncorrelated 497 

with chronological age. Instead, the estimates were correlated with strain longevity data and 498 

we tentatively refer to this as lifespan clock (BW0.lifespan clock). The main mismatches 499 

between the lifespan predicted by the BW0.lifespan clock versus the recorded strain lifespans 500 

were for the long-lived F1 hybrids and BXD65, members of the BXD panel that, in this particular 501 

cohort, also exhibited higher body weight. For these F1s and strain, recorded median lifespans 502 

are over 790 days; the BW0.lifespan clock incorrectly predicted much shorter lifespans for 503 

these cases (all at under 566 days). We note that the simple averages for the top 500 BW0-504 

DMRs (i.e., not weighed by any variable) were also correlated with lifespan but to a lesser 505 

degree (r = –0.41, p = 0.0004). Incorporating the age information by using the age regression 506 
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coefficients as weighing variables enhanced the predictive power and made it a directly 507 

comparable to the lifespan data.  508 

A key point of distinction between the DNAmAge and BW0.lifespan clocks is that the DNAmAge 509 

is primarily an estimate of chronological age, and the age acceleration is a secondary derivative. 510 

The higher DNAmAge-acc in the HFD group also implied that the rate of the clock, as measured 511 

by the DNAmAge_56 clock, is a modifiable outcome. The BW0.lifespan clock on the other hand, 512 

provided a direct estimate of expected lifespan dependent on a phenotype from a younger age. 513 

One could speculate that the BW0.lifespan clock represents a genotype dependent “lifespan 514 

potential”, while the DNAmAge-acc represents a health-related trait that can be accelerated or 515 

decelerated over the course of life, and is responsive to health promoting interventions. This 516 

distinction aside, the DNAmAge and the BW0.lifespan clocks had consistent associations with 517 

body weight. Specifically, DNAmAge-acc derived from both the 500 and 56 age-DMR clocks 518 

showed positive correlation with baseline body weight indicating more accelerated aging for 519 

mice with higher body mass. For the BW0.lifespan clock, the estimates were negatively 520 

correlated with body weight, also indicating shorter lifespan for mice with higher body mass. 521 

This conveys remarkably close interrelations among body weight/mass, the aging methylome 522 

and final lifespan. The influence of body mass on longevity and the more favorable health 523 

profile associated with smaller body mass has been known for a long time [76-81]. The results 524 

we present are further evidence that the epigenome plays a mechanistic intermediary role that 525 

links body weight to the rate of biological aging, and the DNA methylation clocks likely capture 526 

the effects of weight and other biological factors that collectively influence the longevity of the 527 

BXDs.  528 
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In terms of the direction of causality (i.e., whether the methylome patterns are due to body 529 

weight, or body weight differences due to DMRs), based on the timeline of data collection, a 530 

simple inference would be that the baseline body weight predicted the methylome patterns 531 

and the epigenetic age acceleration. In humans, differences in DNA methylation also appear to 532 

be more the effect of, rather that the cause for differences in body mass index [82]. However, 533 

both body weight and DNA methylation are genetically regulated phenotypes that are tightly 534 

interlinked. And in these mice, body weight from young adulthood had a sustained or even 535 

lifelong effect of weight measured later in life. This was also true for the few mice that were 536 

introduced to HFD as the mice that were heavier at young age, prior to HFD, continued to be 537 

heavier on HFD, indicating a genetic predisposition to heavier bodies. Given this, we are 538 

inclined to interpret that these three phenotypic domains (body weight, methylome, longevity) 539 

as inter-dependent and are ultimately modulated by underlying DNA sequence variation. A 540 

well-powered genetic dissection of these phenotypes will certainly shed more light on the 541 

nature of this inter-relatedness. 542 

The analysis with the RNA-seq data shows that the aging methylome may have an impact on 543 

gene expression. However, the mRNA clocks, derived from much larger sample sizes, had lower 544 

correlations with chronological age. Furthermore, the age-accelerations from the two versions 545 

of the mRNA clocks had inconsistent associations with body weight, and were not predictive of 546 

lifespan.  547 

Technical considerations and caveats 548 
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Before concluding, we should address a few caveats. The sequence alignment was done to the 549 

mm10 B6 reference genome, which means that for regions with D2 haplotypes, the sequence 550 

differences could compromise alignment. The strong population stratification in the PC plot is 551 

likely the result of true quantitative variation in methylation, and also due to a portion of the 552 

CpG regions serving as surrogates for underlying genotype [83]. The main methylome-wide 553 

analysis we performed was for age, and then baseline body weight. Since age is independent of 554 

strain and the different BXDs and lifespan groups were represented across the entire age range, 555 

the age-DMRs are expected to be less susceptible to the confounding effect of DNA sequence 556 

variants. For body weight, a phenotype that is closely linked to genotype, differential 557 

quantification due to sequence effects could be more problematic. To partly control for this, we 558 

included the top five PCs in the regression models as these PCs capture a portion of the 559 

genotype effects and also possibly other unmeasured confounder variables (e.g., cryptic batch 560 

effects, cell composition) [39, 84]. For the top 500 age-DMR, only 71 bins (14%) contained at 561 

least one sequence variant and the remaining were monomorphic. This is lower than the 17% 562 

of variant containing bins in the background set of 368,300 regions. For the top 500 BW0-563 

DMRs, 139 (27.6%) contained sequence variants, and this higher proportion shows that the 564 

BW0-DMRs occur in genomic loci that are variable in the BXD, and some of the differential 565 

methylation estimates may be conflated by sequence variants. Nonetheless, the majority of the 566 

BW0.DMRs used to estimate the clock by weighing on the age coefficients were devoid of 567 

sequence variants.  568 

Another weakness to consider is that the present study made use of DNA from frozen liver 569 

tissue and does not account for cellular composition. This is an issue that is inherent to 570 
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epigenomic and transcriptomic data from bulk tissue [85]. While the liver is relatively 571 

homogeneous in cellular makeup, at least compared to blood or brain, cellular heterogeneity is 572 

still a confounding factor, particularly since this is known to increase with age [53, 85]. For this 573 

issue too, incorporating the top PCs in the statistics is an in silico method to partly mitigate the 574 

confounding effect.  575 

Conclusion 576 

In conclusion, we have provided a comprehensive description of the aging methylome in a 577 

subset of the BXD panel. Our results demonstrate that the DNA methylations based epigenetic 578 

clock is sensitive to subtle differences in natural lifespan that arise from common genetic 579 

variants. The effect of body mass and other biological and environmental variables on lifespan 580 

may also be mechanistically mediated by the methylome. 581 

Materials and Methods  582 

Sample preparation and high throughput sequencing 583 

Liver samples were obtained from the BXD colony maintained at the University of Tennessee 584 

Health Science Center (see Roy et al. [28] for details). All animal procedures were in accordance 585 

to the protocol approved by the Institutional Animal Care and Use Committee (IACUC) at the 586 

University of Tennessee Health Science Center. DNA from liver tissue was extracted using the 587 

DNeasy Blood & Tissue Kit from Qiagen. Nucleic acid purity was inspected using a NanoDrop 588 

spectrophotometer, and quantified using Qubit fluorometer dsDNA BR Assay. Affinity based 589 
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enrichment was carried out using the MethylMiner DNA enrichment kit from ThermoFisher 590 

Scientific according to the standard manufacturer’s protocol. This kit relies on the methyl-CpG 591 

binding domain (MBD) protein to capture methylated CpG fragments. In brief, 1 μg of DNA in 592 

110 μl of low TE buffer was fragmented to ~150 bp using a Covaris S2 ultrasonicator. The 593 

sonication settings were: cycle/burst of 1 for 10 cycles of 60 s, duty cycle of 10%, intensity of 594 

5.0. DNA fragment size and quality were assessed using the Agilent Bioanalyzer 2100. Following 595 

the MBD capture reactions, DNA was eluted in a single step using the high salt (2000 mM NaCl) 596 

elution buffer, and re-concentrated by ethanol precipitation. The final concentration of 597 

methylated-CpG enriched DNA ranged from 1.12 to 5.43 ηg per μl (2.46 ± 0.94). The library 598 

construction and sequencing were carried out at Novogene Genomic Services facility. 599 

Sequencing was done to a depth of approximately 50 million reads per sample (150 bp paired-600 

end) on the Illumina HiSeq 4000.  601 

Read alignment and data quality  602 

The FASTQ files were first inspected with the FastQC tool (v.0.11.8) [86], and all files passed the 603 

initial quality checks. Alignment was then done to the mouse reference genome 604 

(mm10/GRCm38) using the Bowtie2 aligner (v.2.3.4.3) [87], and alignment quality was 605 

evaluated with SAMtools (v.1.9) [88], and SAMstat v.1.5.1[89]. Potential PCR duplicates and 606 

reads with mapping quality less than 10 were filtered out, and indexed Bam files were created. 607 

The Bam files were then loaded to the MEDIPS R package (v.1.36.0) [90], for additional quality 608 

control and assessment of read coverage. Saturation analysis (MEDIPS.saturation) showed that 609 

all 70 libraries had sufficient read coverage, and pair-wise correlations (MEDIPS.correlation) 610 
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showed high consistency between samples (Pearson r > 0.90 for all pairs). Given the MBD 611 

enrichment, all the samples were enriched for CpGs (mean CG enrichment score of 2.30 ± 0.19; 612 

using the MEDIPS MEDIPS.CpGenrich function), and on average, 51% of CpGs in the reference 613 

genome was covered by at least one mapped read, with 28% of CpGs covered by > 5 mapped 614 

reads. To quantify DNA methylation, the mouse genome was divided in 150 bp non-overlapping 615 

windows and reads were counted for each bin with normalization to the local CpG density 616 

(referred to as coupling factor or CF) using the function MEDIPS.meth and the following 617 

parameters: ws =150, extend = 150, uniq = 1, shift=0. 618 

Global methylome analysis 619 

Read counts generated in MEDIPS were filtered to retain only the 150 bp bins that had 620 

sufficient coverage for reliable quantification and statistical analyses. First, bins with no CpGs 621 

(CF = 0) and mean read counts ≤ 1 were excluded, resulting in 4,286,826 bins. The Y 622 

chromosome was also excluded. Following these filters, the data was loaded to the EdgeR R 623 

package (v3.24) [91] and further filtered on the basis of counts per million (CPM) such than only 624 

reads with more than 1 count per million in 2 or more libraries were retained. This resulted in 625 

368,300 CpG regions with sufficient coverage across the libraries, these were normalized using 626 

the calcNormFactors in EdgeR, and RPKM values extracted using the parameters gene.length = 627 

150, log = TRUE. These 368,300 bins had a mean CpG density of 5.4 ± 2.6 and in total cover 628 

2,001,723 CpG sites. The compendium of SNPs and small insertions/deletions segregating in the 629 

BXDs have been catalogued for the BXDs [92, 93], and we used this information to count the 630 

number of variants in each of the 368,300 150 bp bins. 631 
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To evaluate sample clustering and to detect potential outliers, we performed PCA and 632 

hierarchical clustering (Fig. S1a). There were no outlier samples and the DNA methylation 633 

profile was highly consistent across the samples (Fig. S1b) and averaged at 3.8 ± 0.72 logRPKM. 634 

These CpG regions were then annotated for genomic features using the HOMER program 635 

(v4.10) [94] and evaluated for enrichment relative to the genome-wide set using a 636 

hypergeometric test (R codes in Table S2). Based on the annotations, the CpG regions were 637 

then divided into bins that occurred within annotated genes (genic set, 200531 bins), and those 638 

that were in intergenic regions (167769 bins). For each sample, the overall average methylation 639 

and variance for these genic and intergenic sets were computed. The intercorrelations between 640 

the large-scale methylome features, body weight measures, and strain-level lifespan phenotype 641 

were examined using Pearson correlations.  642 

Statistics for differential methylation analyses  643 

To detect age-DMRs, we applied a generalized multiple regression model that included diet and 644 

the top 5 PCs: glm(logRPKM ~ age + diet + PC1 + PC2 + PC3 + PC4 + PC5). The top 5 PCs were 645 

included so that the age-effect can be adjusted for other major sources of variance, including 646 

strain effect and other unmeasured potential confounder variables. The top age-DMRs were 647 

selected at a lenient statistical threshold of unadjusted p ≤ 3.1 x 10
-4

 (23% FDR) since our 648 

primary goal was to examine the overall trends and to test if these sites can collectively be used 649 

to estimate chronological age and lifespan prediction. For these, GSEA was carried out using the 650 

WebGestalt platform (http://www.webgestalt.org) with genes ranked by the age regression 651 

coefficients [95, 96]. To test if the top 500 age-DMRs were associated with strain-level lifespan, 652 
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we applied a mixed effects model using the lme4 R package (v4_1.1-19) [97]. The lifespan data 653 

are at the level of strain within a diet group (CD or HFD), and to test association between the 654 

individual level DNA methylation and the strain-diet longevity data, we treated strain-diet as a 655 

random variable. The mixed effects model was: lmer(logRPKM ~ age + median.lifespan + (1 + 656 

age|strain.diet)), where age and median lifespan are numeric variables and strain.diet is a 657 

categorical identity. To identify CpG regions that are associated with baseline body weight 658 

variation, we used the regression model: glm(logRPKM ~ BW0 +  age + PC1 + PC2 + PC3 + PC4 + 659 

PC5), where BW0 was baseline body weight as a numeric variable. 660 

Epigenetic clock calculation 661 

For the training-based clock construction, we applied elastic net regression (alpha=0.5 using the 662 

glmnet R package (v2.0-18) [98, 99]. For the DNA methylation data, we randomly selected 36 of 663 

the 69 samples as a training set, and training was done using the log RPKM values for the 664 

368,300 CpG bins. The untransformed chronological age of mice in days was entered as the 665 

training variable. Model parameters were optimized using a 10-fold cross-validation with the 666 

following cv.glmnet parameter: nfolds = 50, alpha = 0,5, family =”gaussian”. The performance of 667 

the age estimator were then tested in the remaining 33 MBD-seq samples. The accuracy of the 668 

predicted age was examined by Pearson correlation with chronological age. As a second 669 

measure of accuracy, we also used the median absolute error as described in Horvath & Raj 670 

[40]. As recommended in Thompson et al. 2018 [9], the “age acceleration” was computed as 671 

the residuals after fitting the predicted age to chronological ages: residuals(lm(DNAmAge ~ 672 

Age)).  673 
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For non-training DNA methylation clocks, each CpG region was weighed by the age regression 674 

coefficient derived from the equation: glm(logRPKM ~ age + diet + PC1 + PC2 + PC3 + PC4 + 675 

PC5), which means that each CpG region was weighed by the change in DNA methylation per 676 

unit change in age. For the for the 500 age-DMR version, the weighted average was computed 677 

for the 500 CpG regions; for the 56 lifespan-age-DMR version, the weighted averages were 678 

computed from the restricted set of 56 CpG regions (for each CpG region, the weighing factor is 679 

in the Estimate.Age column of Table 54). The DNAmAge_56 and DNAmAge_500 clocks were 680 

then derived by scaling the weighted average to the age scale in the 69 samples using the 681 

following formula: DNAmAge = (((weighted.average – min.weighted.average) x age.range) / 682 

weighted.average.range) + min.age, where min.weighted.average and weighted.average.range 683 

are the minimum value and range for the weighted averages in the 69 BXD samples, and 684 

age.range = 578 days is the range of chronological age in the 69 BXDs, and min.age = 181 days is 685 

the minimum age for the 69 BXDs. For the body weighted based clock, we again used the age 686 

coefficient from the same regression model as a weighing factor, but the weighted averages 687 

were computed for the top 500 CpG regions that were associated significantly with baseline 688 

body weight of mice. The same scaling formula was applied to bring the weighted averages to 689 

the same scale the median lifespan data. 690 

Transcriptomes analyses 691 

We used liver gene expression data from a larger cohort of 291 BXDs that is available from 692 

GeneNetwork 2 [100]. The RNA sequencing was carried out in two batches, with batch 1 693 

generated in 2017 from 150 samples (77 CD and 73 HFD cases), and batch 2 generated in 2018 694 
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from another set of 141 samples (84 CD and 57 HFD). While the liver specimens all came from 695 

the UTHSC Aging BXD Colony, the two batches did not share overlapping samples. Batch 2 had 696 

lower sequencing depth than batch 1, and to make the two batches more comparable, we 697 

excluded all transcripts with no read coverage (i.e., logRPKM values of 0) in 10% or more of the 698 

291 samples, and this retained 25,676 Ensemble transcript IDs. The 347 age-DMR genes were 699 

matched by gene symbol to the corresponding transcripts, and only 265 of the age-DMR genes 700 

paired to one or more transcript variants in the liver transcriptome. We performed a simple 701 

Pearson correlation between the expression of these transcripts and age using data from both 702 

batches. In the case of age-DMR genes that matched to multiple transcript variants (specifically, 703 

different Ensemble transcript variants) from the same gene, we retained only the transcript 704 

with the most significant correlation with age that resulted in 265 unique age-DMR and mRNA 705 

pairs (Table S9). 706 

For mRNA based age estimation, we considered the 25,676 transcripts and applied the same 707 

elastic net regression parameters as described for the DNA methylation clocks. In the case of 708 

the RNA-seq data, the training to age was first carried out in the 150 cases from batch 1, 709 

followed by validation in the 141 cases from batch 2. This was then complemented by 710 

performing the training in the 141 cases from batch 2, followed by validate in batch 1.   711 

Data availability 712 

The normalized MBD-seq data for the 368,300 CpG bins that were considered for statistical 713 

analyses and sample metadata will be available from the NCBI NIH Gene Expression 714 
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Omnibus upon official publication. The full raw alignment files for the MBD-seq data will be 715 

made available from the NCBI NIH Sequence Repository Archive upon official publication. 716 

Abbreviations 717 

age-DMR: age-associated Differentially Methylation Region 718 

bp: base pair 719 

BW0-DMR: Baseline body Weight associated differentially methylated CpG region 720 

BW0: Baseline body Weight 721 

BW0.lifespan: baseline weight-based lifespan clock 722 

CD: Control Diet 723 

CF: Coupling Factor 724 

CPM: Counts Per Million 725 

DNAmAge-acc: DNA methylation age acceleration 726 

DNAmAge: DNA methylation age 727 

GO: Gene Ontology 728 

GSEA: Gene Set Enrichment Analysis 729 

HFD: High Fat Diet 730 

KEGG: Kyoto Encyclopedia of Genes and Genomes 731 

MBD-seq: Methyl-CpG binding domain sequencing 732 

mRNAage: mRNA based age estimates 733 

RRBS: Reduced Representation Bisulfite Sequencing 734 

PC: Principal Component 735 
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PCA: Principal Component Analysis 736 

QC: Quality Control 737 

RPKM: Reads Per Kilo base per Million mapped reads 738 

SNP: Single Nucleotide Polymorphism 739 
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Figure legends. 1132 

Fig. 1. Age distribution and body weight characteristics.  1133 

(a) Each point depicts a mouse used for methylome assay. The purpose of this plot is to show a 1134 

near uniform distribution of ages (y-axis) across the three lifespan groups (categorical 1135 

classification on x-axis; short-lived with strain mean lifespan < 600 days, medium-lived: 640–1136 

750 days, and long-lived: lifespan > 800 days). 1137 

(b) The bar plots show significant strain variation in mean body weight at young adulthood 1138 

(baseline weight) and at final weighing. By final weight, mice on high fat diet (HFD) had gained 1139 

significant weight. The weight of the liver did not differ significantly between strains and 1140 

showed only a slight gain for mice on HFD. These graphs were plotted using all 70 samples; 1141 

excluding the three male cases in BXD102, B6D2F1, and D2B6F1, did not alter the strain 1142 

distribution and the F1s still had robust body weights. 1143 

(c) At young adulthood, body weight was significantly correlated with age of mice. The baseline 1144 

body weight was also correlated with final weight of body (d) and liver (e).  1145 

 1146 

Fig. 2. Global features of the methylome 1147 

(a) Scatter plot between the top 2 principal components—PC1 (19% of variance) and PC2 (13% 1148 

of variance)—show a strong population structure with mice clustering by strain identity (color 1149 

coded). Members of sub-strains also cluster in close proximity. For strains with animals from 1150 

both standard chow (CD; solid circles) and high fat diet (HFD; squares), mice on HFD co-cluster 1151 

with the CD mice. 1152 
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For each individual mouse, the overall mean methylation and within-individual variance was 1153 

calculated for 200,531 genic CpG regions located with annotated genes (b), and 167,769 CpG 1154 

regions in intergenic sites (c). The intergenic regions have wide variation between strains and 1155 

the F1 hybrids have the highest mean methylation and lowest variance. The genic CpG regions 1156 

are more consistent across strains. Scatter plots on the right show the correlation between 1157 

methylation averages and variance in the 70 samples. Mean methylation is inversely correlated 1158 

with variance, and this is particularly pronounced for the intergenic CpG regions. Average 1159 

methylation at intergenic regions (x-axis) is correlated with PC1 (d), and PC3 (e), and average 1160 

methylation at genic regions is correlated with PC4 (f). 1161 

 1162 

Fig. 3. Intercorrelation between body weight at young adulthood, the methylome, and strain 1163 

longevity  1164 

Body weight at young adulthood has weak but significant correlations with (a) the methylome 1165 

top principal component, PC1, and the (b) mean methylation and (c) variance at genic CpG 1166 

regions. Given the timeline, the results indicate that the body weight at earlier time is 1167 

predictive of DNA methylation (solid arrow). However, since both are genetically modulated 1168 

phenotypes and the methylome may also have had a sustained effect on the body weight of 1169 

mice (dashed arrow), the direction of causality cannot be clearly resolved, and we consider 1170 

these as interdependent phenotypes.  1171 

(d) The methylome in turn may be predictive of lifespan (solid arrow), and PC4, a correlate of 1172 

mean methylation at genic CpG regions, is strongly correlated with lifespan.  1173 
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(e) Baseline body weight is also predictive of strain longevity (solid arrow), and the negative 1174 

correlation conveys reduced lifespan for mice that had heavier body weight at young 1175 

adulthood.  1176 

 1177 

Fig. 4. Features of age dependent differentially methylated CpGs regions (age-DMRs) 1178 

(a) Histogram of observed p-values for age dependent methylation shows that aging has a 1179 

strong effect on few CpG regions. (b) The p-values for the effect of diet showed a null 1180 

distribution, likely because of the small number of samples from mice kept on high fat diet  1181 

(c) Each point in the Manhattan plot depicts the location of a CpG region (x-axis: autosomal 1182 

chromosomes 1 to 19; and chromosome X as 20), and the -log10p for age effect (y-axis). The 1183 

genome-wide significant threshold was set at -log10(2.6e-7) (red line; 10% Bonferroni threshold 1184 

for 368,300 tests) and the suggestive threshold at -log10(3.6e-4) (blue line). (d) The top 500 age-1185 

DMRs consisted of 206 regions that gained methylation with age (age-hypermethylated; 1186 

positive regression coefficient for age), and 294 regions that were age-hypomethylated 1187 

(negative regression coefficient for age). The bar-plots display the percent total of genomic 1188 

features in the age-hypermethylated (burgundy) and age-hypomethylated (sandy brown) sets, 1189 

relative to the set of 369,300 MBD-seq bins (grey), and the full genome-wide background set 1190 

(black). Within the bins, the regression coefficients for age (i.e., change in DNA methylation per 1191 

unit change in age in days, log10 scale) were dependent on the (e) CpG density, and (f) mean 1192 

methylation.  1193 

 1194 

Fig. 5. Elastic net regression DNA methylation and mRNA clocks 1195 
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The y-axis shows the chronological age of mice, and the x-axis shows the DNAmAges predicted 1196 

by the 60 clock CpG regions in the (a) training set of 36 samples, and (b) the testing set of 33 1197 

samples. 1198 

For the transcriptomic data, the training in 150 RNA-seq samples (batch 1) identified 65 1199 

transcripts for age estimation. The plots compare the chronological ages to the predicted ages 1200 

in the (c) training set of 150 samples, and (d) in the testing testing of 140 samples (batch 2). To 1201 

complement this, the training was also carried out in the 140 samples (batch 2) and this 1202 

identified 62 transcripts for age estimation. Correlations between chronological age and 1203 

estimated age in the batch 2 training set (e), and batch 1 testing set (f) are shown. 1204 

 1205 

Fig. 6. DNA methylation based epigenetic clocks derived from age-DMRs 1206 

The epigenetic age of mice was estimated from DNA methylation levels at the 500 age-DMRs. 1207 

(a) The estimated DNAmAge (y-axis) was correlated with chronological age (x-axis) of mice. The 1208 

age acceleration residuals (DNAmAge-acc) derived from this clock (b) did not correlate with 1209 

strain lifespan, (c) but was positively correlated with body weight. (d) For strains with samples 1210 

from both standard chow (control diet or CD) and high fat diet (HFD), the DNAmAge-acc did not 1211 

differentiate between the diet groups. 1212 

A second version of the clock was made using 56 age-DMRs that were also associated with 1213 

lifespan variation. (e) The DNAmAge derived for the 56 age-lifespan-DMRs correlated with 1214 

chronological age on mice; however, the relation deviated from linearity and appeared to 1215 

plateau for the older mice. The DNAmAge-acc from this clock was (f) inversely correlated with 1216 

strain lifespan that indicates decelerated aging in long-lived strains, and (g) positively correlated 1217 
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with baseline body weight that suggests a more accelerated clock for mice with higher body 1218 

weight at younger age. (h) This clock also indicates greater age acceleration for the HFD group 1219 

compared to the CD group (mean of 21 ± 36 for HFD, -26 ± 57 for CD; p = 0.01; n = 33). 1220 

 1221 

Fig. 7. Lifespan predictive age-DMRs 1222 

(a) Comparison between the regression coefficients for age (x-axis) vs. the regression 1223 

coefficient for strain median lifespan (y-axis) shows that most of the age-DMRs that are also 1224 

associated with lifespan have generally lower methylation levels in strains with longer median 1225 

lifespan, as indicated by the negative regression coefficient for lifespan. As examples of age and 1226 

lifespan associated CpG regions, the change in methylation over time along with cross-sectional 1227 

variation is illustrated by the age-hypomethylated CpG region in (b) Casz1, and by the age-1228 

hypermethylated CpG regions in (c) Cyp46a1 and (d) Abca7. Each point represents a mouse 1229 

plotted by age (x-axis) and methylation level (y-axis, logRPKM). The lines represent linear 1230 

regression lines for each strain-by-diet, classified by strain lifespan phenotype as short- (red), 1231 

medium (yellow) or long-lived (blue). In all three CpG regions, cross-sectional comparisons 1232 

show that mice belonging to short-lived groups have higher average methylation relative to 1233 

mice belong to medium and long-lived groups (box plots). Casz1 mean methylation log RPKM in 1234 

short-lived = 3.96 ± 0.28, medium-lived = 3.62 ± 0.39, long-lived = 3.28 ± 0.42 (ANOVA p < 1235 

0.0001. Cyp46a1 mean methylation log RPKM in short-lived = 3.34 ± 0.69, medium-lived = 3.08 1236 

± 0.85, long-lived = 2.51 ± 0.83 (p = 0.0025. Abca7 mean methylation log RPKM in short-lived = 1237 

3.85 ± 0.41, medium-lived = 3.75 ± 0.33, long-lived = 3.58 ± 0.32 (p = 0.04). 1238 

 1239 
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Fig. 8. Epigenetic clock derived from body weight associated CpG regions 1240 

(a) The Manhattan plot for baseline body weight (BW0) shows widespread association with 1241 

DNA methylation. The genome-wide significant threshold is set at -log10(2.6e-7) (red line; 10% 1242 

Bonferroni threshold for 368,300 tests).  1243 

The epigenetic clock was estimated from DNA methylation levels at the top 500 BW0 associated 1244 

CpG regions. (b) We refer to this version of the clock as BW0.lifespan as the estimates (y-axis) 1245 

has a significant positive correlation with the expected lifespan of strains (x-axis). However, for 1246 

the long-lived F1 hybrids and BXD65 cases that also had higher body weight, the estimates were 1247 

shorter than the recorded lifespans (cluster A has B6D2F1 and BXD65, cluster B has D2B6F1). (c) 1248 

Baseline body weight (x-axis) is negatively correlated with the BW0.lifespan estimates. (d) Age-1249 

acceleration from the 56 lifespan-age-DMR clock (x-axis) was negatively correlated with the 1250 

BW0.lifespan estimated with more accelerated epigenetic aging for shorter-lived BXDs. 1251 

 1252 
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