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Abstract

Background. The DNA methylation landscape is shaped by genetic and environmental factors
and is modulate by aging. Here we evaluate the “aging methylome” in 12 recombinant inbred
mouse strains from the BXD family that have more than two-fold variation in longevity. We
examine relations among body weight, diet, lifespan, and DNA methylation-based rate of
biological aging. We used affinity capture with the methyl-CpG binding domain (MBD) protein,
followed by deep sequencing (MBD-seq), to assay DNA methylation in 70 mostly female liver
samples, ranging in age from 6 to 25 months from mice maintained either on low fat chow or
high fat diet (HFD).

Results. Genetic background among strains is a major source of variation in genome-wide DNA
methylation patterns. Surprisingly, body weight at young adulthood had a stronger association
with the methylome than age itself. Nonetheless, age also had a strong effect on methylation at
well-defined CpG regions largely located within genes. We used subsets of age-informative
CpGs to build versions of the epigenetic clock and as expected, these were strongly correlated
with chronological age. Both high initial body weight and the HFD were associated with
accelerated epigenetic aging. A DNA methylation clock model built using CpGs associated with
body weight correlated with longevity of strains rather than chronological age, implying an
underlying lifespan clock. Complementary mRNA clocks were also informative of chronological
age. Conclusion. Our results support the known association between body mass and lifespan,
and indicate that the methylome provides a mechanistic link to accelerated aging.
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Background

In the past few years, the “epigenetic clock” has emerged as a robust and widely used
biomarker of aging that perhaps surpasses telomere length assays in its accuracy and utility [1-
3]. Also referred to as the DNA methylation age (DNAmAge), the CpG based estimator of
biological age comes in a few different versions for both humans and mice [4-11]. All these
clocks share a common feature—they rely on the methylation status of preselected subsets of
CpGs that are each assigned weights and are used collectively to estimate age. A critical
qguestion has been: are these DNAmAge clocks detecting changes that are purely a function of
time and, therefore, correlates of chronological age? Or are they providing a measure of the
intrinsic pace of biological aging that can be related to health, fitness, and life expectancy?
Evidence from retrospective human epidemiological studies indicates that certain versions of
the clock perform better at predicting life expectancy. In general, a younger DNAmAge relative
to chronological age is associated with lower risk of disease and mortality [6, 12-18]. The age-
dependent CpGs have also been studied in the context of lifespan variation among mammalian
species [19], as well as variation within species, for example when lifespan is shifted by caloric

restriction, treatment with rapamycin, or single gene mutations [7, 9, 10, 20-22].

As is the case with humans, aging trajectories vary considerably among mouse genotypes, and
common DNA variants contribute to the pace of normal aging [23]. The BXD family has a long
history in model organism aging and longevity research with median longevities of females
ranging from at least 400 to 900 days [24-28]. Genomes of the BXDs are randomly recombinant

versions of genomes of their two parents—strains C57BL/6J (B6) and DBA/2J (D2). On average,
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D2 has a shorter lifespan than B6 [29, 30]. The more “accelerated aging” profile of D2 is
consistent with other age-associated parameters such as more rapid thymic involution [31] and
replicative senescence of hematopoietic progenitor cells [25], and increased tail tendon
breakage in D2 compared to B6 [32, 33]. Variation in lifespan is much greater among the

progeny BXD strains due to random assortment of independent gene variants [25].

Here, we have leveraged extensive experimental longevity data generated for the BXD family
[28] to evaluate the associations between body weight, DNA methylation, aging, and lifespan.
We used an affinity-capture enrichment followed by deep sequencing (MBD-seq) to profile the
liver methylome in 12 members of the BXD family [34-36]. To evaluate the impact of a

common metabolic stressor on aging, we also quantified the methylome of a subset of cases
maintained on a high fat diet (HFD), which is known to decrease the longevity by as much as
~13% in the BXDs [28]. The main question we posed was: can we define DNA methylation clocks
that are predictive of strain and diet dependent variation in lifespan? And how do these relate
to strain characteristics such as body weight? Lastly, we tested whether age or lifespan
predicted by methylome patterns can be carried over to the transcriptome, and whether

transcripts can also be assembled into age-informative, and lifespan-predictive mRNA clocks.

Overall, the results reveal interdependence among body mass, the aging methylome, and
lifespan. In particular, body weight of young adults (ca. 100 days) has a pronounced effect of
DNA methylation. We were able to compute reasonably accurate DNAmAge estimates using
subsets of age-informative CpG regions. A similar clock using CpG regions associated with body

weight did not correlate with age, but was strongly correlated with strain lifespan. The clocks
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highlight accelerated aging associated with higher initial body weight, and one version of the
DNAmAge estimator also showed accelerate aging on HFD. While mRNA-based clocks are a
feasible alternative, the methylome remains a more robust biomarker for aging and life

expectancy.

Results

Characteristics of the study sample

The longevity data was collected from a cohort of females that were allowed to age until
mortality. (Details on this cohort in Roy et al., 2019 [28] and full data can be accessed from
GeneNetwork 2 [37].) A parallel cohort was used for biospecimen collection at different ages.
For the 12 selected strains and F1 hybrids, lifespans on ad libitum standard chow (control diet
or CD) ranged from an average of 417 £ 155 days (mean = SD) to 933 £ 86 days (Table 1). HFD
generally reduces longevity, but with marked differences among strains [28]. Matched samples
from cases on HFD were included for five strains and sub-strains (Table 1). Each strain-by-diet
group was classified as short-lived (mean lifespan < 600 days), medium-lived (between 600 and
750 days), and long-lived (>800 days). A strain classified as long-lived on CD may also be

classified as short-lived on HFD, e.g., BXD65 (Table 1).

We performed methylome-wide assays in 70 liver samples collected from the strain and diet
groups at different ages. Since age and lifespan are the main variables of interest, liver
specimens were chosen so that distribution of age across the three lifespan groups are closely

matched (Fig. 1a; individual level sample information in Table S1). We note that aside from
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97  three male cases for BXD102, B6D2F1, and B6D2F1 (Table 1), all specimens were from females.

98  While the samples were not chosen on the basis of body or organ weight, there was significant

99 variation in body weight when the mice were initially weighed before introduction to HFD (Fig.
100 1b). The Fis had higher body weights compared to BXDs on CD, and this hybrid vigor was
101  apparent with or without the male cases. The final weight of mice (i.e., weight on day of sample
102  collection) continued to show significant strain variation (Fig. 1b). The weight of the liver
103  appeared fairly consistent across the strains (Fig. 1b). There was no group difference in body
104  weight at baseline between the two diets (CD =25+ 7 gvs. HFD =23 £ 5 g; n = 70). By final
105 weighing, the group on HFD had become significantly heavier when compared to the full set of
106 miceonCD (HFD=41%x12vs.CD=29%8g, p<0.0001; n=70), or when compared only to the
107 matched strainson CD (HFD =41+ 12vs.CD=26%6 g, p <0.0001; n = 34). The weight of the
108 liver on HFD was slightly heavier but the effect was not statistically significant, likely due to the
109 modest sampling of cases on HFD (HFD =1.29+ 0.23 gvs.CD=1.22+0.23 g; p=0.37, n = 34).
110 The baseline weight was measured at young adulthood (mean age of 134 + 81 days) and at this
111  point, age was a significant predictor of body weight with lower body weight for the younger
112  mice (Fig. 1c). The age of mice at time of sample collection was, however, not correlated with
113  final body weight (r = 0.01) or with weight of liver (r =0.12). Instead, the baseline body weight
114  remained a significant predictor of the final body weight (Fig. 1d) and liver weight (Fig. 1e).
115  When restricted to only the few HFD mice, baseline weight was still a significant correlate of

116 final body weight (r =0.53, p = 0.05, n = 15), but not liver weight (r = 0.28, p = 0.30).

117
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118 Table 1. Characteristics of selected strains from the BXD panel

Longevity trait Biospecimen

Mean Median

Strain/line lifespan lifespan Lifespa? Diet’ N? Age Ran§e
(days)1 (days)l Group (days)
B6D2F1 933186 896 long CD 5 216-726
BXD102 8614222 891 long CD 5! 183-714
BXD40 5851239 577 short ch 8 284-719
BXD48 6951124 684 med CD 3 188-731
BXD48 5231152 517 short HFD 3 189-595
BXD48a 6171196 670 med CD 3 233-604
BXD48a 6351113 650 med HFD 3 233-543
BXD65 8241199 896 long Ch 6 181-711
BXD65 5341128 551 short HFD 3° 230-541
BXD65b 726191 751 med CDh 4 187-748
BXD73 7021116 687 med CD 4 206-759
BXD73 6991112 715 med HFD 3 206—-694
BXD73b 8201129 807 long CD 3 237-743
BXD73b 7421193 790 med HFD 3 237-729
BXD79 417+155 330 short Ch 7 217-570
BXD9 5071135 462 short CD 3 245-548
D2B6F1 7711143 791 long CDh 4" 210-744

119 ! Average and median lifespans for strains under standard or high fat diet estimated from an aging cohort of mice
120 co-housed with mice used for biospecimen collection and methylome assays

121 2Groups based on phenotypic lifespan: short = average lifespan < 600 days; med = average 640—750 days, and long
122 = average lifespan > 800 days

123 * Diet, sample size, and age range of mice from MBD-seq data was generated. CD = control diet; HFD = high fat diet
124 *One male case; see Table S1 for individual level data

125 > One case excluded due to uncertain identity

126

127  Strain dependent patterns in global features of the methylome

128 Deep sequencing of the methylome was carried out after samples were enriched for

129  methylated-CpGs (MBD-seq). After quality checks and filtering by read coverage, we retained a
130 set of 368,300 regions, each 150 bp in length, with sufficient coverage in the 70 samples. The
131  majority of the CpG regions (83%) contained no sequence variants (SNPs or small

132  insertions/deletions) segregating in the BXDs. For the 17% with sequence variants, there was
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an average of 2 £ 1.6 variants within the 150 bp bin. (Chromosomal coordinates, CpG density,
variant counts, and normalized data will be made available from NCBI GEO upon official
publication.) Consistent with the DNA enrichment and filtering protocols, the 368,300 CpG
regions were enriched in annotated gene features and CpG islands and depleted in intergenic
regions when compared to the genome-wide background (Table S2). Our first goal was to gain a
global perspective, and for this, we performed two analyses: (1) dimension reduction with
principal component analysis (PCA), and (2) analysis of genome-wide mean methylation and

variance.

PC1 and PC2 captured 19% and 13% of the variance, respectively. A plot of the top two
principal components (PCs) showed clustering of samples by strain identity, irrespective of diet
(Fig. 2a). The one exception was a BXD65 on HFD; this case plotted away from the BXD65
cluster and, as this was of questionable identity, this sample was excluded from downstream
analyses. Sub-strains (e.g., BXD73/BXD73b; BXD65/BXD65b) also clustered in close proximity
with only slight separation. Unsupervised hierarchical clustering confirmed the clustering of
samples by strain identity rather than age or diet groups (QC plots in Fig. S1). The top five PCs
collectively explained 58% of the variance (PC1-PC5 in Table S1). We found no correlation
between these five PCs and the age of mice. For strains with matched CD and HFD cases, the

PCs did not differentiate between the two diets.

Next, we computed the within-individual genome-wide average methylation and variance.
Global average methylation was inversely correlated with within-individual variance and

showed extensive strain variability. When we divided the CpG regions into genic (i.e., CpG
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regions that overlap annotated gene features) and intergenic sets, we found that the inverse
correlation between global methylation and variance was significant for both sets but
particularly pronounced for the intergenic set (Fig. 2b, c; and Table S1 for individual level data
on methylome means and variance). This reveals that for CpGs in intergenic regions, mice that
have a hypermethylated profile have lower within-individual variance. There is extensive strain
variation in this global methylation and variance patterns (Fig. 2b, c). For the intergenic set, the
BXD73 sub-strains showed the lowest methylation scores and highest variance while the Fls
had the highest methylation and lowest variance. Age was not a significant correlate of the
genic and intergenic features. We evaluated if the top 5 PCs relate to the methylation averages
and variance. The average methylation and variance at intergenic CpG regions were
significantly correlated with PC1 (Fig. 2d), and PC3 (11% of variance) (Fig. 2e). PC4 (8% of
variance) showed a significant negative correlation with mean methylation at genic CpG regions

(Fig. 2f).

To summarize, the global analyses show that the clustering by strains in the PC plot, to a large
extent, can be explained by the strain-dependent methylation averages. We did not detect any

effect of age or diet on these large-scale methylome features.

Intercorrelations between body weight, methylome, and strain-level lifespan

We next examined whether the body weight measures could be associated with the large-scale
methylome features. Since the F1s exhibit hybrid vigor both in body weight and mean
methylation, we report the results after excluding the F1s (correlations with and without the

F1sin Table S3). Of the top 5 PCs, only PC1 showed a weak but significant negative correlation
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175  with baseline weight (Fig 3a), and final weights of body and liver. Body weight at baseline, but
176  not the final body weight, had a weak but significant negative correlation with mean

177  methylation (Fig 3b), and significant positive correlation with variance (Fig 3c) at genic CpG

178 regions that indicates a sustained inter-relatedness between body mass at younger age and the
179 methylome. Unlike the baseline body weight, the final body weight was not correlated with

180 methylation means or variance at either the genic or intergenic regions in the BXDs (Table S3).
181  We considered the possibility that the HFD-induced shifts in body weight may have reduced the
182  correlation; however, when we restricted the analysis to only the CD BXDs (n = 46), the final
183  body weight still showed no correlation with the intergenic and genic features. The liver weight
184  had a significant positive correlation with mean methylation and negative correlation with

185  variance at intergenic CpGs (Table S3).

186  The lifespan data is from 17 strain-diet groups (Table 1), and while this is a small sampling of
187 lifespan variability in the BXD panel, we used this longevity information to explore associations
188  with the body weight measures and the global methylome features. This analysis was again
189  performed without the F1s due to the vigor in both methylome features, body weight, and
190 lifespan. Only PC4, an inverse correlate of genic CpG methylation means (Fig. 2f), showed a
191  strong correlation with the strain longevity phenotype (Fig 3d). Lifespan showed no direct

192  correlations with the methylation averages and variance at either the genic or intergenic CpG
193 regions. For the weight measures, baseline body weight had a weak but significant negative
194  correlation with strain mean lifespan (r =-0.27, p = 0.04; Fig 3d). This is in agreement with the
195 stronger inverse correlation between body weight and lifespan that is seen in the larger BXD

196  cohort [28].

10


https://doi.org/10.1101/791582
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/791582; this version posted October 3, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

aCC-BY-NC-ND 4.0 International license.

Taken together, while the individual correlations are weak (Fig 3), the results suggest that body
weight at younger age is associated with multiple interdependent features of the global

methylome that are also predictive of strain life expectancy.

Effect of age on site specific DNA methylation

Following the global analyses, we next evaluated the effect of age and diet on site-specific DNA
methylation at each of the 368,300 CpG bins. Our goal was to identify age informative CpG
regions that we can then use to estimate the epigenetic age of mice. We applied a multiple
regression model for age and diet with adjustment for other major sources of variance
(methylation ~ age + diet + PC1 + PC2 + PC3 + PC4 + PC5). Although we did not detect a
generalized impact of aging on the global methylation, the distribution of p-values indicated a
strong effect on few CpG regions (Fig. 4a). For the effect of diet, the p-value distribution was
close to the null hypothesis (Fig. 4b), likely because with only 14 samples from the HFD group,
the sampling is underpowered. For the remainder, we focused mainly on age, and considered

diet only in the context of its effect on strain lifespan and potential age-accelerating effect.

At a Bonferroni threshold of 10% (unadjusted p < 2.6 x 10”), there were 26 age-associated
differentially methylation regions (age-DMRs). All of these were genic regions, including
neighboring block of CpGs, and were located within 17 annotated genes (Table S$4). While only
a small number of CpG bins were significant at the 10% Bonferroni threshold, given the non-
independence of adjacent CpG regions, we used a lenient statistical threshold and selected the
top 500 age-DMRs to define the general characteristics of the aging methylome (unadjusted p <

3.1x 10" 23% FDR; Manhattan plot Fig. 4c; Table S4). Of these, 60% (299 of 500) were

11
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associated with loss of methylation with age (age-hypomethylation), and 40% showed gains in
methylation with age (age-hypermethylation) [38, 39]. This set of 500 age-DMRs collectively
represented differentially methylated CpG regions located in or near 347 unique genes
(location within genes or distance to nearest promoter for intergenic CpG regions in Table S4).
Gene set enrichment analysis (GSEA) for the age-DMRs ranked by regression coefficient for age
showed no strong enrichment after FDR correction. However, we note that the most
overrepresented pathway was for signaling genes involved in stem cells pluripotency (KEGG ID
mmu04550; nominal enrichment p = 0.005, FDR = 0.10) and the five genes in this pathway
(Fzd1, Fzd8, Wnt5a, Jak3, Meis1) were associated with increase in DNA methylation with age.
Genes involved in mesenchyme development were also slightly overrepresented (GO ID
0060485; nominal enrichment p =0.001, FDR = 0.24) and members of this GO (Ptk7, Nrp2,

Semabsb, Zfp703, and Wnt5a) were also associated with age-hypermethylation (Fig. S2).

Compared to the background set of 368,300 CpG bins, the age-DMRs were depleted in
intergenic regions and enriched in genic regions (enrichment and depletion p-values in Table
$2). The majority of the age-DMRs (86%) contained no sequence variants in the BXDs and the
age dependent methylation patterns are unlikely to be confounded by SNP or variant effects.
The age-hypermethylated set was highly enriched in CpG islands, promoters, and exons, and
also slightly enriched in 5’UTRs (Fig. 4d; Table S2). The age-hypomethylated set was enriched in
introns, and 3’UTRs and transcription termination sites (Fig. 4d; Table S$2). For each CpG region,
we computed the average methylation and variance across the 69 samples, and compared
these to the age regression coefficients, which convey the change in methylation per unit

change in age. The most pronounced age-hypermethylation (positive regression coefficients for

12
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age) occurred in bins with high CpG density and lower average methylation, and the magnitude
of the age coefficient showed positive correlation with CpG density and negative correlation
with average methylation (Fig. 4e, f). In contrast, age-hypomethylated regions (negative
regression coefficient for age) featured low CpG density, and higher average methylation (Fig.

4e, f).

Age-DMR based epigenetic clocks and lifespan prediction

We next explored constructing age-informative and potentially lifespan-predictive clocks using
three different approaches: (1) training-based age estimator by applying elastic net regression,
(2) untrained age estimator with the set of 500 age-DMRs, and (3) untrained age estimator
using only a subset of the age-DMRs that are also associated with cross-sectional variation in

lifespan.

First, we implemented the standard clock-building protocol by deriving the clock in a training
cohort, and then testing accuracy in a validation cohort [40, 41]. We are clearly limited in
sample size; nevertheless, as assessment of feasibility, we randomly assigned 36 samples (52%
of the 69 cases) to the training set to model an age-estimator (see Table S1 for sample
assignments). This constructed an age-estimator that was based on 60 “clock CpGs”, i.e., CpG
regions that are collectively used in determining the DNAmAge [5]. These clock CpGs included a
few regions that individually showed no significant association with age; but most had modest
to strong associations with age and included fifteen of the 500 age-DMRs (clock CpG regions
and weighing coefficients in Table $5). In the training set, this age estimates had a near perfect

correlation with chronological age at Pearson r = 0.999 (Fig. 5a; Table 2). In the test set of n =

13
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33, the correlation between the estimated age and chronological age was 0.74 (p < 0.0001) with
a median absolute error of 90 days (Fig. 5b; Table 2). Due to the small sample size of the test

set, we did not use this clock to examine age acceleration.

For the non-training based estimator, we simply treated the 500 age-DMRs as possible clock
CpGs and used the respective age regression coefficients as weighing factors to compute the
weighted average for each sample (coefficients for each CpG region are in Table S$4). The
weighted averages were significantly correlated with chronological age of mice, and for a more
direct comparison, the values were scaled to the age range for the 69 samples. This clock is
therefore study-specific and calibrated to this cohort. The DNAmAge had a near linear
correlation with chronological age at r = 0.90 (p < 0.0001), and with a median absolute error of
96 days (Fig. 6a; Table 2). We then estimated the age acceleration for each mouse (DNAmAge-
acc) based on the residuals derived from the linear regression between DNAmAge and
chronological age [9, 12] (individual-level DNAmAge data in Table S1). For this, positive residual
values indicate an accelerated, and negative values a decelerated rate of biological aging.
Unlike the DNAmAge, DNAmAge-acc was not correlated with the final age of mice, indicating
that this measure of age acceleration is independent of chronological age [9]. The DNAmAge-
acc derived from this clock did not correlate with the lifespan phenotype but showed a
significant positive correlation with body weight measures that would suggest a more
accelerated clock with increased body mass (Fig. 6b, c; Table $6). For the strains with matched

samples, the DNAmAge-acc did not differentiate between the diet groups (Fig. 6d).
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We then examined if we can build a version of the DNAmAge estimator using only the age-
DMRs that were also associated with strain differences in expected lifespan. We limited this
analysis to the top 500 age-DMRs, and to test association with lifespan, we applied a mixed
effects model with strain median lifespan and age as fixed variables and strain-diet as random
variable. At a lenient statistical threshold of p <0.05, there were 56 age-DMRs associated with
lifespan and we refer to this set as putative lifespan-age-DMRs (Table S4). The majority of these
(84% or 47 of 56) had lower methylation among the long-lived strains regardless of whether
these were age-hypermethylated or age-hypomethylated (Fig. 7a). We illustrate this pattern
using three of the top-ranking lifespan-age-DMRs: age-hypomethylated Casz1 (Fig. 7b), and
age-hypermethylated Cyp46al (Fig. 7c) and Abca7 (Fig. 7d). Casz1 was associated with a small
age-hypomethylation (age coefficient of only -0.0007, unadjusted p = 1.6 x 10™*) and most
strain-diet groups had slight downward trajectory over time. Cyp46al and Abca7, on the other
hand, were associated with stronger age-hypermethylation, and almost all the strain-diet
groups showed an upward trajectory with age. In addition to the change over time, cross-
sectional comparison between lifespan groups showed lower average methylation in the long-

lived strains relative to the medium and short-lived strain-diet groups.

While most of the CpG regions were only weakly associated with lifespan (for instance, Abca7 in
Fig 7d), we used the 56 lifespan-age-DMRs to calculate the DNAmAge by weighing each CpG by
the respectively age regression coefficients (estimated ages in Table S1). Chronological age
correlated strongly to this version of the DNAmAge (r = 0.83, p < 0.0001), although the trend
appeared to fit a quadratic equation with a greater degree of plateau at older age, an

observation that is consistent with the apparent underestimation or possible decline in aging
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rate with increased chronological age [15, 42, 43] (Fig. 6e). The DNAmAge-acc derived from
this version of the clock showed a significant negative correlation with the longevity phenotype
(both mean and median lifespan) with more accelerated aging in mice from the short-lived
strain-diet groups (Fig. 6f). This correlation was robust and remained significant after excluding
the F1s (full correlation and probabilities in Table S6). The DNAmAge-acc was also positively
correlated with the body weight measures, again indicating more accelerated aging in mice
with higher body mass (Fig. 6g, Table S6). For the strains with matched samples from CD and
HFD, the group on HFD had a mean age acceleration of 21 + 36 days compared to the mean
decelerated aging (-26 £ 57 days) for the group on CD (p = 0.01; n = 33; Fig. 6h). Therefore, this
DNAmAge estimator, built from fewer CpG regions, is therefore both age-informative and

lifespan-predictive.

Table 2. Versions of DNA methylation and mRNA clocks

median
Clock Sample Clock 1 2 3 . 3
versions N CpGs/mRNAs Ager | error| BWO r Lifespan r
(days)
36 0.99
DNA training (<0.0001) 45 not tested not tested
methylation 60
elastic net 33 0.74 90 nottested  not tested
testing (<0.0001)
200 age- 69 500 0.9 (<0.0001) 96 0.38(0.001)  0.004 (ns)
DMRs
56 lifespan- 0.83 r=-0.58
ageDMRs 69 >6 (<0.0001) 111 0.24 (0.05) (<0.0001)
500 BWO- . “r=-0.52 "0.47
12
DMRs 69 >00 0.12 {ns) 66 (<0.0001)  (<0.0001)
150 0.89
RNA clock training (<0.0001) 52 not tested not tested
elastic net 141 65 0.65
Verl ) - -
testing (<0.0001) 85 0.17 (0.05) 0.15 (ns)
RNA clock 141 0.90
elastic net training 62 (<0.0001) 67 not tested not tested
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Ver2 150 0.62

testing (<0.0001) 100 0.19 (0.02) 0.08 (ns)

! pearson correlation between clock estimates and chronological age; significance within parenthesis

2 Median of the absolute difference between estimated and chronological age as a measure of DNAmAge precision
as defined in [40]. “For the 500 BWO-DMR clock, median of the absolute difference between estimates and mean
lifespan was used as a measure of lifespan clock accuracy.

*pearson correlation between age acceleration residuals and baseline body weight and strain mean lifespan. “For
the 500 BWO-DMR clock, the estimated values instead of the residuals were used.

Baseline body weight based epigenetic clock and lifespan prediction

Given the strong influence on baseline body weight on the methylome, we then explored the
possibility of deriving lifespan informative estimator from body weight associated CpG regions.
To identify relevant CpG regions, we applied a regression analysis with baseline body weight
(BWO) as predictor with adjustment for age and top 5 PCs as covariates. While age was
associated with only a few strong age-DMRs, BWO had a more widespread association with the
methylome (Fig. 8a). At a Bonferroni threshold of 10% (unadjusted p < 2.6 x 10°7), there were
667 CpG regions associated with body weight. Unlike the age-DMRs, which were depleted in
intergenic regions, 74% of the baseline body weight associated differentially methylated CpG
regions (BWO-DMRs) were intergenic. The vast majority (581 of the 667) had positive regression

estimates for body weight, i.e., higher levels of methylation in heavier mice.

As in the case of the age-DMR based clock, we then took the top 500 BWO-DMRs and weighed
each CpG region by the respective age regression coefficient (weighing coefficients and the list
of CpG regions in Table S7). We note that 27.6% (138 of the 500) of the BWO-DMRs contained

sequence variants, and the differential methylation at these sites could also be capturing the

effect of underlying sequence effects. Using the BWO-DMRs, the weighted averages did not
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correlate with the chronological age of mice. Instead, the values had a significant positive
correlation with strain lifespan. For direct comparison, we rescaled the weighted averages to
the range of median lifespan for the study sample (Fig. 8b; Table S1). The strong positive
correlation with lifespan suggests that this clock is an indicator of the expected age at death
rather than the chronological age of mice. The median absolute error for the predicted lifespan
relative to the known lifespan for the strain-diet groups was at 66 days (Table 2), and we refer
to this as a baseline body weight based lifespan clock (BWO.lifespan). For a few of the long-lived
strains, particularly the robust F1 hybrids that have both higher body weight and longer lifespan
(labelled as groups A and B in Fig. 8b), the BWO.lifespan was much lower than the expected
lifespan. Since the CpGs regions were individually associated with body weight, as expected, the
BWO.lifespan showed a strong correlation with the baseline weight (Fig. 8c) and with liver
weight, but not strongly with final body weight (Table S6). For strains that had both CD and HFD
cases, BWO.lifespan did not differentiate between the diet groups, suggesting that this clock is
not sensitive to lifespan modification by HFD but is mainly dependent on strain differences in
baseline body weight. The age acceleration residuals from the 56 lifespan-age-DMRs had a
strong inverse correlation with the BWO.lifespan estimates indicating convergent information

from both the clocks (Fig. 8d).

Impact on gene expression and mRNA based clocks

To examine age-dependent changes in the liver transcriptome, we made use of available liver
RNA sequencing (RNA-seq) data from a larger cohort of aging BXDs. The data obtained from

GeneNetwork was generated in two batches, and sample and batch information are in Table
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$8. First, to examine whether the transcripts that correspond to the age-DMRs also show
changes in expression levels with age, the 347 unique genes represented by the 500 age-DMR
CpGs were matched to the corresponding transcripts by gene symbol. This resulted in 265 age-
DMRs and transcript pairs. Of these, 110 of the transcripts (42%) were correlated with age at an
unadjusted p <0.05 (|r| 20.12 in n = 291) (Table S$9). The majority of the age-hypermethylated
CpG regions were associated with increased gene expression with age with only nine age-
hypermethylated DMRs (e.g., Fzd8, Cyp46al, Nfix, Rnf4) associated with decreased gene
expression with age (Table S9). For the age-hypomethylated DMRs, 37 transcripts showed a
decrease in expression and 39 transcripts showed an increase in expression with age. Overall,
this shows that many of the age-DMRs are also associated with gene expression changes with

age.

Finally, we attempted to derive age-informative clocks using the training-based approach. We
first performed the training in batch 1 and then tested in batch 2, and then vice versa using the
liver transcriptome-wide data. The elastic net modeling trained on the 150 samples in batch 1
identified 65 transcripts for mRNA clock estimation (Table $10), and the age estimated from
these transcripts (mRNAage) had a correlation of r = 0.89 with chronological age in the training
set (Fig. 5¢; Table 2). In the validation set (i.e., batch 2 with 141 samples), the correlation
between the age estimates and chronological age was 0.65 with median error of 85 days (Fig.
5d; Table 2). The age acceleration, as estimated by the residuals from the regression between
mRNAage and chronological age, showed a weak but significant (p = 0.05) negative correlation
with baseline body weight, which is at odds with the expected age acceleration with higher

body mass, and no significant correlation with strain lifespan (mRNA age estimates and age
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acceleration for individual samples in Table S8). Training in batch 2 identified 62 transcripts for
clock estimation (Table S11). Of these 62 transcripts, only 9 transcripts (Rin3, Adcy3, Cpn1,
Chuk, Rpl41, Rps27a, Serpina3m, Srm, and Ubb) overlapped between the two versions of the
MRNA clocks. Correlation between the mRNAage and chronological age was 0.90 in the training
set, and 0.62 in the testing set (Fig 5e, 5f; Table 2). The age acceleration for this version of the
clock showed a significant positive correlation with baseline body weight and no correlation
with lifespan (Table S8). For strains with samples from both CD and HFD, the age accelerations

derived from the mRNA clocks did not differentiate between diets.

Discussion

The results we have presented convey deep associations between body mass, DNA
methylation, aging, and lifespan. Somewhat to our surprise, we found that body weight at
young adulthood, more so than age at time of tissue collection, had a stronger influence on the
large-scale methylome. Age, on the other hand, had a strong effect on few discrete CpG
regions. Age and weight appeared to exert effects on largely independent sets of CpGs, with the
age-DMRs mostly located within gene bodies, while the BWO-DMRs included a large proportion
of intergenic loci. Nonetheless, longevity information could be derived from both the age- and

BWO-DMRs.

Consistency in age-dependent DNA methylation changes

In regard to whether genomic characteristics can explain whether a CpG region gains or loses

methylation with time, we found a clear dependence on CpG density and methylation status
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that agreed with previous reports [44, 45]. Since DNA methylation levels were quantified over
150 bp non-overlapping bins, we could directly examine how the local CpG density relates to (1)
average methylation levels and variance across the 69 samples, and (2) the change over time
using the age regression coefficients. The results show that loss of methylation over time occurs
at regions with low CpG density that also generally have higher average methylation. This is
consistent with the general age-dependent hypomethylation at CpG spares regions of the
genome where the few or isolated CpGs exist mostly in a methylated state [46-49]. For age-
hypermethylated regions, the gains in methylation was directly correlated with CpG density,
and inversely correlated with methylation, and occurred in regions with lower average
methylation. This too, is consistent with reports that CpG dense regions on the genome, a
feature of CpG islands, which typically remain unmethylated, are the sites that tend to gain

methylation with age [50-53].

For the 347 unique genes that correspond to the 500 age-DMRs, we did not find a particularly
strong functional theme. However, the list included notable members that have previously
been linked to aging related diseases or with longevity and lifespan. For example, Cyp46al, Lrp1
and Abca7 play roles in lipid shuttle and cholesterol metabolism, and have been associated with
Alzheimer’s disease [54, 55]. Other age-DMR genes that have been previously implicated in
aging and human longevity include Adarb2 [56], Abcc4 [57], Igf2r [58], Ucp3 [59], Grb2 [60], II7r
[61], kbkb [62]. The current data replicated the CpG islands in C1g/3 and Ptk7, which we
previously reported as age-hypermethylated sites in the BXD parental strains, C57BL/6J and
DBA/2) [63]. We also compared the list of age-DMRs from the present study to a list of 79

genes reported to harbor age-DMRs in a recent study of DNA methylation in aging human liver
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[42], and found only three genes in common: //4i1, Ildr2 and Nfix. The study by Bacalini et al.
[42] reported an enrichment in mesenchymal and Wnt-signaling pathways, and similarly, we
also find a slight over-representation of genes that are part of signaling pathways and

mesenchyme development (e.g., Fzd1, Fzd8, Wnt5a, Jak3, Ptk7, Nrp2, etc.).

Building clocks from age dependent CpG regions

Currently, there are several different versions of the DNAmAge estimator available for both
mice and humans. Some have multi-tissue application [5, 8, 9], and others are optimized for
specific tissues [4, 7, 10, 11]. The standard protocol for developing DNAmAge clocks starts by
applying a linear regression algorithm in a training dataset, followed by age estimation in
validation cohorts to gauge the accuracy of the clock [5, 40, 41]. The training sessions identify
age informative CpGs, referred to as clock CpGs, that are each assigned predetermined weight
for estimating DNAmAge. This preselected ensemble of clock CpGs can then be used to
estimate age in other independent data sets, under the condition that the same or at least the
majority of the CpGs are also measured. To our knowledge, all these clocks have relied on
bisulfite-based assays that provide single CpG resolution [4-11, 64, 65]. These existing clocks
rarely share CpGs in common. For instance, a comparison of the three mouse clocks showed
only two CpGs in common between the blood-based and multi-tissue clocks [7, 8, 41]. This is
not particularly surprising given that these were constructed from reduced representation
bisulfite sequencing (RRBS) data, a protocol for which CpG coverage can have low overlap
between libraries. But even in the case of the human clocks that were built from microarray

data with fixed and limited number of CpGs to select from, the overlap is still poor. The Horvath
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and Hannum clocks share only about six CpGs in common. This means that DNAmAge can be

defined and calibrated from numerous different subsets of potential clock CpGs [9, 41].

While MBD-sequencing does not provide single CpG resolution, it is nonetheless known to
deliver highly sensitive and reliable quantification of genome-wide methylation [34-36, 39].
Instead of measuring individual CpGs, MBD-seq quantifies methylation levels within
circumscribed regions containing spatially proximal CpGs that are generally correlated in
methylation patterns [66-68]. To test feasibility, we started by training to chronological age
using linear regression. Despite the extremely humble sample number, the estimated age had a
near perfect correlation with chronological age in the training set (r = 0.99). In the test set of 23
mice, the age correlation was at 0.74 with a fairly high median error of £ 90 days. While not
precise, this DNAmAge estimator, consisting of 60 clock CpG regions, could still be applied to
classify mice into broad age groups (young, middle, old), and may perform just as well as
transcriptomic age-classifiers that have been defined from much larger sample numbers [69,
70]. The constituent clock CpG regions included sites in or near 29 genes that were represented
among the age-DMRs (e.g., Cyp46al, Fzd8, Gatab), although in terms of the exact CpG regions,
only 15 age-DMRs were present in both lists (see Table $5). The RRBS-based clock published by
Wang et al. [10] was for the liver tissue, and we compared the genes in their list of 149 clock
CpGs and we found two common genes, Cyp46al and Sulf2, represented in both, although

again, the precise CpGs did not overlap.

We also applied a direct weighted averaging method that did not impose a training step. Both

versions of the age-DMR based clocks (i.e., one built using the full set of 500 age-DMRs, and
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another built from a restricted set of only 56 lifespan-age-DMRS) provided fairly close estimates
of chronological ages. Of these two DNAmAge estimators, only the DNAmAge_56 appeared
sensitive to lifespan variability, and the age acceleration derived from this clock was predictive
of strain lifespan, and also accelerated in the HFD group. Using this clock, almost all cases from
strain-diet groups classified as long-lived had negative DNAmAge-acc; the only exceptions were
four F1 samples, including the male B6D2F1, that had positive DNAmAge-acc. For cases
belonging to strain-diet groups classified as short-lived, all had positive DNAmAge-acc with the
exception of one BXD65 kept on HFD that had negative DNAmAge-acc. The strain with the most
decelerated clock, and presumably slowest rate of biological aging, was BXD102 on CD, which is
also the longest lived BXD strain we had in the study (Table 1). For these mice, the DNAmAge-
acc for the female were highly decelerated and ranged from —127 to —194 days. Interestingly,

the one male BXD102 had a less decelerated clock with a DNAmAge-acc of —56 days.

The members of the DNAmAge 56 clock were selected because these CpGs were both
correlates of age, and predictive of lifespan. The majority of these (31 of the 56) were age-
hypermethylated and had lower methylation among the long-lived strains (lower right box of
Fig. 7a). These CpGs also had the most pronounced association with both age and lifespan and
were CpGs in the introns, exons and promoters of genes such as Jak3, Wnt5a, Abca7 and
Cyp46al. The relation between the regression coefficients for age and lifespan would suggest
that for these CpGs that gain methylation with age, the long-lived strains have a more

III

“youthful” profile, i.e., lower average methylation. However, 16 of the age-lifespan-DMRs were
age-hypomethylated, and yet had lower methylation among the long-lived strains (lower left

box of Fig. 7a). A few epidemiological studies have also attempted to define predictors of all-
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487  cause mortality risk in humans, and these studies paint a very complex picture for humans.

488  While two of the studies showed that hypomethylation at specific CpGs was prognostic of poor
489  survival [71, 72], another study found a combination of both hypo- and hyper-methylated CpGs
490 linked to mortality [73]. A complication with the human studies is that several of the mortality
491  CpGs were also markers for tobacco use, indicating that a good proportion of the CpGs were
492  likely capturing the effects of lifestyle and environmental exposures [72, 74, 75]. In the BXDs,
493  given the controlled environment, the CpG methylation patterns are presumably providing a

494  closer marker of genetic and epigenetic predisposition to life expectancy.

495 Body weight, DNA methylation, and lifespan prediction

496  We also explored a less conventional clock based on the methylation levels at the top 500 BWO-
497  DMRs. This clock does not qualify as a DNAmAge clock since the estimates were uncorrelated
498  with chronological age. Instead, the estimates were correlated with strain longevity data and
499  we tentatively refer to this as lifespan clock (BWO.lifespan clock). The main mismatches

500 between the lifespan predicted by the BWO.lifespan clock versus the recorded strain lifespans
501 were for the long-lived F1 hybrids and BXD65, members of the BXD panel that, in this particular
502 cohort, also exhibited higher body weight. For these F1s and strain, recorded median lifespans
503 are over 790 days; the BWO.lifespan clock incorrectly predicted much shorter lifespans for

504  these cases (all at under 566 days). We note that the simple averages for the top 500 BWO-

505 DMRs (i.e., not weighed by any variable) were also correlated with lifespan but to a lesser

506 degree (r=-0.41, p = 0.0004). Incorporating the age information by using the age regression
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coefficients as weighing variables enhanced the predictive power and made it a directly

comparable to the lifespan data.

A key point of distinction between the DNAmAge and BWO.lifespan clocks is that the DNAmAge
is primarily an estimate of chronological age, and the age acceleration is a secondary derivative.
The higher DNAmAge-acc in the HFD group also implied that the rate of the clock, as measured
by the DNAmAge_ 56 clock, is a modifiable outcome. The BWO.lifespan clock on the other hand,
provided a direct estimate of expected lifespan dependent on a phenotype from a younger age.
One could speculate that the BWO.lifespan clock represents a genotype dependent “lifespan
potential”, while the DNAmAge-acc represents a health-related trait that can be accelerated or
decelerated over the course of life, and is responsive to health promoting interventions. This
distinction aside, the DNAmAge and the BWO.lifespan clocks had consistent associations with
body weight. Specifically, DNAmAge-acc derived from both the 500 and 56 age-DMR clocks
showed positive correlation with baseline body weight indicating more accelerated aging for
mice with higher body mass. For the BWO.lifespan clock, the estimates were negatively
correlated with body weight, also indicating shorter lifespan for mice with higher body mass.
This conveys remarkably close interrelations among body weight/mass, the aging methylome
and final lifespan. The influence of body mass on longevity and the more favorable health
profile associated with smaller body mass has been known for a long time [76-81]. The results
we present are further evidence that the epigenome plays a mechanistic intermediary role that
links body weight to the rate of biological aging, and the DNA methylation clocks likely capture
the effects of weight and other biological factors that collectively influence the longevity of the

BXDs.
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In terms of the direction of causality (i.e., whether the methylome patterns are due to body
weight, or body weight differences due to DMRs), based on the timeline of data collection, a
simple inference would be that the baseline body weight predicted the methylome patterns
and the epigenetic age acceleration. In humans, differences in DNA methylation also appear to
be more the effect of, rather that the cause for differences in body mass index [82]. However,
both body weight and DNA methylation are genetically regulated phenotypes that are tightly
interlinked. And in these mice, body weight from young adulthood had a sustained or even
lifelong effect of weight measured later in life. This was also true for the few mice that were
introduced to HFD as the mice that were heavier at young age, prior to HFD, continued to be
heavier on HFD, indicating a genetic predisposition to heavier bodies. Given this, we are
inclined to interpret that these three phenotypic domains (body weight, methylome, longevity)
as inter-dependent and are ultimately modulated by underlying DNA sequence variation. A
well-powered genetic dissection of these phenotypes will certainly shed more light on the

nature of this inter-relatedness.

The analysis with the RNA-seq data shows that the aging methylome may have an impact on
gene expression. However, the mRNA clocks, derived from much larger sample sizes, had lower
correlations with chronological age. Furthermore, the age-accelerations from the two versions
of the mRNA clocks had inconsistent associations with body weight, and were not predictive of

lifespan.

Technical considerations and caveats

27


https://doi.org/10.1101/791582
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/791582; this version posted October 3, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

aCC-BY-NC-ND 4.0 International license.

Before concluding, we should address a few caveats. The sequence alignment was done to the
mm10 B6 reference genome, which means that for regions with D2 haplotypes, the sequence
differences could compromise alignment. The strong population stratification in the PC plot is
likely the result of true quantitative variation in methylation, and also due to a portion of the
CpG regions serving as surrogates for underlying genotype [83]. The main methylome-wide
analysis we performed was for age, and then baseline body weight. Since age is independent of
strain and the different BXDs and lifespan groups were represented across the entire age range,
the age-DMRs are expected to be less susceptible to the confounding effect of DNA sequence
variants. For body weight, a phenotype that is closely linked to genotype, differential
quantification due to sequence effects could be more problematic. To partly control for this, we
included the top five PCs in the regression models as these PCs capture a portion of the
genotype effects and also possibly other unmeasured confounder variables (e.g., cryptic batch
effects, cell composition) [39, 84]. For the top 500 age-DMR, only 71 bins (14%) contained at
least one sequence variant and the remaining were monomorphic. This is lower than the 17%
of variant containing bins in the background set of 368,300 regions. For the top 500 BWO-
DMRs, 139 (27.6%) contained sequence variants, and this higher proportion shows that the
BWO-DMRs occur in genomic loci that are variable in the BXD, and some of the differential
methylation estimates may be conflated by sequence variants. Nonetheless, the majority of the
BWO.DMRs used to estimate the clock by weighing on the age coefficients were devoid of

sequence variants.

Another weakness to consider is that the present study made use of DNA from frozen liver

tissue and does not account for cellular composition. This is an issue that is inherent to
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epigenomic and transcriptomic data from bulk tissue [85]. While the liver is relatively

homogeneous in cellular makeup, at least compared to blood or brain, cellular heterogeneity is
still a confounding factor, particularly since this is known to increase with age [53, 85]. For this
issue too, incorporating the top PCs in the statistics is an in silico method to partly mitigate the

confounding effect.

Conclusion

In conclusion, we have provided a comprehensive description of the aging methylome in a
subset of the BXD panel. Our results demonstrate that the DNA methylations based epigenetic
clock is sensitive to subtle differences in natural lifespan that arise from common genetic
variants. The effect of body mass and other biological and environmental variables on lifespan

may also be mechanistically mediated by the methylome.

Materials and Methods

Sample preparation and high throughput sequencing

Liver samples were obtained from the BXD colony maintained at the University of Tennessee
Health Science Center (see Roy et al. [28] for details). All animal procedures were in accordance
to the protocol approved by the Institutional Animal Care and Use Committee (IACUC) at the
University of Tennessee Health Science Center. DNA from liver tissue was extracted using the
DNeasy Blood & Tissue Kit from Qiagen. Nucleic acid purity was inspected using a NanoDrop

spectrophotometer, and quantified using Qubit fluorometer dsDNA BR Assay. Affinity based
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enrichment was carried out using the MethylMiner DNA enrichment kit from ThermoFisher
Scientific according to the standard manufacturer’s protocol. This kit relies on the methyl-CpG
binding domain (MBD) protein to capture methylated CpG fragments. In brief, 1 pg of DNA in
110 pl of low TE buffer was fragmented to ~150 bp using a Covaris S2 ultrasonicator. The
sonication settings were: cycle/burst of 1 for 10 cycles of 60 s, duty cycle of 10%, intensity of
5.0. DNA fragment size and quality were assessed using the Agilent Bioanalyzer 2100. Following
the MBD capture reactions, DNA was eluted in a single step using the high salt (2000 mM NaCl)
elution buffer, and re-concentrated by ethanol precipitation. The final concentration of
methylated-CpG enriched DNA ranged from 1.12 to 5.43 ng per ul (2.46 £ 0.94). The library
construction and sequencing were carried out at Novogene Genomic Services facility.
Sequencing was done to a depth of approximately 50 million reads per sample (150 bp paired-

end) on the Illlumina HiSeq 4000.

Read alignment and data quality

The FASTQ files were first inspected with the FastQC tool (v.0.11.8) [86], and all files passed the
initial quality checks. Alignment was then done to the mouse reference genome
(mm10/GRCmM38) using the Bowtie2 aligner (v.2.3.4.3) [87], and alignment quality was
evaluated with SAMtools (v.1.9) [88], and SAMstat v.1.5.1[89]. Potential PCR duplicates and
reads with mapping quality less than 10 were filtered out, and indexed Bam files were created.
The Bam files were then loaded to the MEDIPS R package (v.1.36.0) [90], for additional quality
control and assessment of read coverage. Saturation analysis (MEDIPS.saturation) showed that

all 70 libraries had sufficient read coverage, and pair-wise correlations (MEDIPS.correlation)
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showed high consistency between samples (Pearson r > 0.90 for all pairs). Given the MBD
enrichment, all the samples were enriched for CpGs (mean CG enrichment score of 2.30 £ 0.19;
using the MEDIPS MEDIPS.CpGenrich function), and on average, 51% of CpGs in the reference
genome was covered by at least one mapped read, with 28% of CpGs covered by > 5 mapped
reads. To quantify DNA methylation, the mouse genome was divided in 150 bp non-overlapping
windows and reads were counted for each bin with normalization to the local CpG density
(referred to as coupling factor or CF) using the function MEDIPS.meth and the following

parameters: ws =150, extend = 150, uniq = 1, shift=0.

Global methylome analysis

Read counts generated in MEDIPS were filtered to retain only the 150 bp bins that had
sufficient coverage for reliable quantification and statistical analyses. First, bins with no CpGs
(CF =0) and mean read counts £ 1 were excluded, resulting in 4,286,826 bins. The Y
chromosome was also excluded. Following these filters, the data was loaded to the EdgeR R
package (v3.24) [91] and further filtered on the basis of counts per million (CPM) such than only
reads with more than 1 count per million in 2 or more libraries were retained. This resulted in
368,300 CpG regions with sufficient coverage across the libraries, these were normalized using
the calcNormFactors in EdgeR, and RPKM values extracted using the parameters gene.length =
150, log = TRUE. These 368,300 bins had a mean CpG density of 5.4 = 2.6 and in total cover
2,001,723 CpG sites. The compendium of SNPs and small insertions/deletions segregating in the
BXDs have been catalogued for the BXDs [92, 93], and we used this information to count the

number of variants in each of the 368,300 150 bp bins.
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To evaluate sample clustering and to detect potential outliers, we performed PCA and
hierarchical clustering (Fig. S1a). There were no outlier samples and the DNA methylation
profile was highly consistent across the samples (Fig. S1b) and averaged at 3.8 £ 0.72 logRPKM.
These CpG regions were then annotated for genomic features using the HOMER program
(v4.10) [94] and evaluated for enrichment relative to the genome-wide set using a
hypergeometric test (R codes in Table S2). Based on the annotations, the CpG regions were
then divided into bins that occurred within annotated genes (genic set, 200531 bins), and those
that were in intergenic regions (167769 bins). For each sample, the overall average methylation
and variance for these genic and intergenic sets were computed. The intercorrelations between
the large-scale methylome features, body weight measures, and strain-level lifespan phenotype

were examined using Pearson correlations.

Statistics for differential methylation analyses

To detect age-DMRs, we applied a generalized multiple regression model that included diet and
the top 5 PCs: glm(logRPKM ~ age + diet + PC1 + PC2 + PC3 + PC4 + PC5). The top 5 PCs were
included so that the age-effect can be adjusted for other major sources of variance, including
strain effect and other unmeasured potential confounder variables. The top age-DMRs were
selected at a lenient statistical threshold of unadjusted p < 3.1 x 10 (23% FDR) since our
primary goal was to examine the overall trends and to test if these sites can collectively be used
to estimate chronological age and lifespan prediction. For these, GSEA was carried out using the

WebGestalt platform (http://www.webgestalt.org) with genes ranked by the age regression

coefficients [95, 96]. To test if the top 500 age-DMRs were associated with strain-level lifespan,

32


https://doi.org/10.1101/791582
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/791582; this version posted October 3, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

aCC-BY-NC-ND 4.0 International license.

we applied a mixed effects model using the Ime4 R package (v4_1.1-19) [97]. The lifespan data
are at the level of strain within a diet group (CD or HFD), and to test association between the
individual level DNA methylation and the strain-diet longevity data, we treated strain-diet as a
random variable. The mixed effects model was: Imer(logRPKM ~ age + median.lifespan + (1 +
age|strain.diet)), where age and median lifespan are numeric variables and strain.diet is a
categorical identity. To identify CpG regions that are associated with baseline body weight
variation, we used the regression model: gim(logRPKM ~ BWO + age + PC1 + PC2 + PC3 + PC4 +

PC5), where BWO was baseline body weight as a numeric variable.

Epigenetic clock calculation

For the training-based clock construction, we applied elastic net regression (alpha=0.5 using the
glmnet R package (v2.0-18) [98, 99]. For the DNA methylation data, we randomly selected 36 of
the 69 samples as a training set, and training was done using the log RPKM values for the
368,300 CpG bins. The untransformed chronological age of mice in days was entered as the
training variable. Model parameters were optimized using a 10-fold cross-validation with the
following cv.glmnet parameter: nfolds = 50, alpha = 0,5, family =”gaussian”. The performance of
the age estimator were then tested in the remaining 33 MBD-seq samples. The accuracy of the
predicted age was examined by Pearson correlation with chronological age. As a second
measure of accuracy, we also used the median absolute error as described in Horvath & Raj
[40]. As recommended in Thompson et al. 2018 [9], the “age acceleration” was computed as

the residuals after fitting the predicted age to chronological ages: residuals(Im(DNAmAge ~

Age)).
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674  For non-training DNA methylation clocks, each CpG region was weighed by the age regression
675 coefficient derived from the equation: gim(logRPKM ~ age + diet + PC1 + PC2 + PC3 + PC4 +

676  PC5), which means that each CpG region was weighed by the change in DNA methylation per
677  unit change in age. For the for the 500 age-DMR version, the weighted average was computed
678  for the 500 CpG regions; for the 56 lifespan-age-DMR version, the weighted averages were

679 computed from the restricted set of 56 CpG regions (for each CpG region, the weighing factor is
680 in the Estimate.Age column of Table 54). The DNAmAge_56 and DNAmAge_500 clocks were
681 then derived by scaling the weighted average to the age scale in the 69 samples using the

682  following formula: DNAmAge = (((weighted.average — min.weighted.average) x age.range) /
683  weighted.average.range) + min.age, where min.weighted.average and weighted.average.range
684  are the minimum value and range for the weighted averages in the 69 BXD samples, and

685 age.range =578 days is the range of chronological age in the 69 BXDs, and min.age = 181 days is
686  the minimum age for the 69 BXDs. For the body weighted based clock, we again used the age
687 coefficient from the same regression model as a weighing factor, but the weighted averages
688 were computed for the top 500 CpG regions that were associated significantly with baseline
689  body weight of mice. The same scaling formula was applied to bring the weighted averages to

690 the same scale the median lifespan data.

691 Transcriptomes analyses

692  We used liver gene expression data from a larger cohort of 291 BXDs that is available from
693  GeneNetwork 2 [100]. The RNA sequencing was carried out in two batches, with batch 1

694  generated in 2017 from 150 samples (77 CD and 73 HFD cases), and batch 2 generated in 2018
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from another set of 141 samples (84 CD and 57 HFD). While the liver specimens all came from
the UTHSC Aging BXD Colony, the two batches did not share overlapping samples. Batch 2 had
lower sequencing depth than batch 1, and to make the two batches more comparable, we
excluded all transcripts with no read coverage (i.e., logRPKM values of 0) in 10% or more of the
291 samples, and this retained 25,676 Ensemble transcript IDs. The 347 age-DMR genes were
matched by gene symbol to the corresponding transcripts, and only 265 of the age-DMR genes
paired to one or more transcript variants in the liver transcriptome. We performed a simple
Pearson correlation between the expression of these transcripts and age using data from both
batches. In the case of age-DMR genes that matched to multiple transcript variants (specifically,
different Ensemble transcript variants) from the same gene, we retained only the transcript
with the most significant correlation with age that resulted in 265 unique age-DMR and mRNA

pairs (Table S9).

For mRNA based age estimation, we considered the 25,676 transcripts and applied the same
elastic net regression parameters as described for the DNA methylation clocks. In the case of
the RNA-seq data, the training to age was first carried out in the 150 cases from batch 1,
followed by validation in the 141 cases from batch 2. This was then complemented by

performing the training in the 141 cases from batch 2, followed by validate in batch 1.

Data availability

The normalized MBD-seq data for the 368,300 CpG bins that were considered for statistical

analyses and sample metadata will be available from the NCBI NIH Gene Expression
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Omnibus upon official publication. The full raw alignment files for the MBD-seq data will be

made available from the NCBI NIH Sequence Repository Archive upon official publication.

Abbreviations

age-DMR: age-associated Differentially Methylation Region
bp: base pair

BWO-DMR: Baseline body Weight associated differentially methylated CpG region
BWO: Baseline body Weight

BWO.lifespan: baseline weight-based lifespan clock

CD: Control Diet

CF: Coupling Factor

CPM: Counts Per Million

DNAmAge-acc: DNA methylation age acceleration
DNAmAge: DNA methylation age

GO: Gene Ontology

GSEA: Gene Set Enrichment Analysis

HFD: High Fat Diet

KEGG: Kyoto Encyclopedia of Genes and Genomes
MBD-seq: Methyl-CpG binding domain sequencing
mRNAage: mRNA based age estimates

RRBS: Reduced Representation Bisulfite Sequencing

PC: Principal Component
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Figure legends.

Fig. 1. Age distribution and body weight characteristics.

(a) Each point depicts a mouse used for methylome assay. The purpose of this plot is to show a
near uniform distribution of ages (y-axis) across the three lifespan groups (categorical
classification on x-axis; short-lived with strain mean lifespan < 600 days, medium-lived: 640—
750 days, and long-lived: lifespan > 800 days).

(b) The bar plots show significant strain variation in mean body weight at young adulthood
(baseline weight) and at final weighing. By final weight, mice on high fat diet (HFD) had gained
significant weight. The weight of the liver did not differ significantly between strains and
showed only a slight gain for mice on HFD. These graphs were plotted using all 70 samples;
excluding the three male cases in BXD102, B6D2F1, and D2B6F1, did not alter the strain
distribution and the F1s still had robust body weights.

(c) At young adulthood, body weight was significantly correlated with age of mice. The baseline

body weight was also correlated with final weight of body (d) and liver (e).

Fig. 2. Global features of the methylome

(a) Scatter plot between the top 2 principal components—PC1 (19% of variance) and PC2 (13%
of variance)—show a strong population structure with mice clustering by strain identity (color
coded). Members of sub-strains also cluster in close proximity. For strains with animals from
both standard chow (CD; solid circles) and high fat diet (HFD; squares), mice on HFD co-cluster

with the CD mice.
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For each individual mouse, the overall mean methylation and within-individual variance was
calculated for 200,531 genic CpG regions located with annotated genes (b), and 167,769 CpG
regions in intergenic sites (c). The intergenic regions have wide variation between strains and
the F1 hybrids have the highest mean methylation and lowest variance. The genic CpG regions
are more consistent across strains. Scatter plots on the right show the correlation between
methylation averages and variance in the 70 samples. Mean methylation is inversely correlated
with variance, and this is particularly pronounced for the intergenic CpG regions. Average
methylation at intergenic regions (x-axis) is correlated with PC1 (d), and PC3 (e), and average

methylation at genic regions is correlated with PC4 (f).

Fig. 3. Intercorrelation between body weight at young adulthood, the methylome, and strain
longevity

Body weight at young adulthood has weak but significant correlations with (a) the methylome
top principal component, PC1, and the (b) mean methylation and (c) variance at genic CpG
regions. Given the timeline, the results indicate that the body weight at earlier time is
predictive of DNA methylation (solid arrow). However, since both are genetically modulated
phenotypes and the methylome may also have had a sustained effect on the body weight of
mice (dashed arrow), the direction of causality cannot be clearly resolved, and we consider
these as interdependent phenotypes.

(d) The methylome in turn may be predictive of lifespan (solid arrow), and PC4, a correlate of

mean methylation at genic CpG regions, is strongly correlated with lifespan.
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(e) Baseline body weight is also predictive of strain longevity (solid arrow), and the negative
correlation conveys reduced lifespan for mice that had heavier body weight at young

adulthood.

Fig. 4. Features of age dependent differentially methylated CpGs regions (age-DMRs)

(a) Histogram of observed p-values for age dependent methylation shows that aging has a
strong effect on few CpG regions. (b) The p-values for the effect of diet showed a null
distribution, likely because of the small number of samples from mice kept on high fat diet

(c) Each point in the Manhattan plot depicts the location of a CpG region (x-axis: autosomal
chromosomes 1 to 19; and chromosome X as 20), and the -logiop for age effect (y-axis). The
genome-wide significant threshold was set at -log10(2.6e-7) (red line; 10% Bonferroni threshold
for 368,300 tests) and the suggestive threshold at -logio(3.6e-4) (blue line). (d) The top 500 age-
DMRs consisted of 206 regions that gained methylation with age (age-hypermethylated;
positive regression coefficient for age), and 294 regions that were age-hypomethylated
(negative regression coefficient for age). The bar-plots display the percent total of genomic
features in the age-hypermethylated (burgundy) and age-hypomethylated (sandy brown) sets,
relative to the set of 369,300 MBD-seq bins (grey), and the full genome-wide background set
(black). Within the bins, the regression coefficients for age (i.e., change in DNA methylation per
unit change in age in days, logio scale) were dependent on the (e) CpG density, and (f) mean

methylation.

Fig. 5. Elastic net regression DNA methylation and mRNA clocks
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The y-axis shows the chronological age of mice, and the x-axis shows the DNAmAges predicted
by the 60 clock CpG regions in the (a) training set of 36 samples, and (b) the testing set of 33
samples.

For the transcriptomic data, the training in 150 RNA-seq samples (batch 1) identified 65
transcripts for age estimation. The plots compare the chronological ages to the predicted ages
in the (c) training set of 150 samples, and (d) in the testing testing of 140 samples (batch 2). To
complement this, the training was also carried out in the 140 samples (batch 2) and this
identified 62 transcripts for age estimation. Correlations between chronological age and

estimated age in the batch 2 training set (e), and batch 1 testing set (f) are shown.

Fig. 6. DNA methylation based epigenetic clocks derived from age-DMRs

The epigenetic age of mice was estimated from DNA methylation levels at the 500 age-DMRs.
(a) The estimated DNAmAge (y-axis) was correlated with chronological age (x-axis) of mice. The
age acceleration residuals (DNAmAge-acc) derived from this clock (b) did not correlate with
strain lifespan, (c) but was positively correlated with body weight. (d) For strains with samples
from both standard chow (control diet or CD) and high fat diet (HFD), the DNAmAge-acc did not
differentiate between the diet groups.

A second version of the clock was made using 56 age-DMRs that were also associated with
lifespan variation. (e) The DNAmAge derived for the 56 age-lifespan-DMRs correlated with
chronological age on mice; however, the relation deviated from linearity and appeared to
plateau for the older mice. The DNAmAge-acc from this clock was (f) inversely correlated with

strain lifespan that indicates decelerated aging in long-lived strains, and (g) positively correlated
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with baseline body weight that suggests a more accelerated clock for mice with higher body
weight at younger age. (h) This clock also indicates greater age acceleration for the HFD group

compared to the CD group (mean of 21 £+ 36 for HFD, -26 £ 57 for CD; p = 0.01; n = 33).

Fig. 7. Lifespan predictive age-DMRs

(a) Comparison between the regression coefficients for age (x-axis) vs. the regression
coefficient for strain median lifespan (y-axis) shows that most of the age-DMRs that are also
associated with lifespan have generally lower methylation levels in strains with longer median
lifespan, as indicated by the negative regression coefficient for lifespan. As examples of age and
lifespan associated CpG regions, the change in methylation over time along with cross-sectional
variation is illustrated by the age-hypomethylated CpG region in (b) Casz1, and by the age-
hypermethylated CpG regions in (c) Cyp46al and (d) Abca7. Each point represents a mouse
plotted by age (x-axis) and methylation level (y-axis, logRPKM). The lines represent linear
regression lines for each strain-by-diet, classified by strain lifespan phenotype as short- (red),
medium (yellow) or long-lived (blue). In all three CpG regions, cross-sectional comparisons
show that mice belonging to short-lived groups have higher average methylation relative to
mice belong to medium and long-lived groups (box plots). Casz1 mean methylation log RPKM in
short-lived = 3.96 £ 0.28, medium-lived = 3.62 * 0.39, long-lived = 3.28 £ 0.42 (ANOVA p <
0.0001. Cyp46al1 mean methylation log RPKM in short-lived = 3.34 + 0.69, medium-lived = 3.08
+0.85, long-lived = 2.51 + 0.83 (p = 0.0025. Abca7 mean methylation log RPKM in short-lived =

3.85 £ 0.41, medium-lived = 3.75 £ 0.33, long-lived = 3.58 £ 0.32 (p = 0.04).
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Fig. 8. Epigenetic clock derived from body weight associated CpG regions

(a) The Manhattan plot for baseline body weight (BWO0) shows widespread association with
DNA methylation. The genome-wide significant threshold is set at -logio(2.6e-7) (red line; 10%
Bonferroni threshold for 368,300 tests).

The epigenetic clock was estimated from DNA methylation levels at the top 500 BWO associated
CpG regions. (b) We refer to this version of the clock as BWO.lifespan as the estimates (y-axis)
has a significant positive correlation with the expected lifespan of strains (x-axis). However, for
the long-lived F1 hybrids and BXD65 cases that also had higher body weight, the estimates were
shorter than the recorded lifespans (cluster A has B6D2F1 and BXD65, cluster B has D2B6F1). (c)
Baseline body weight (x-axis) is negatively correlated with the BWO.lifespan estimates. (d) Age-
acceleration from the 56 lifespan-age-DMR clock (x-axis) was negatively correlated with the

BWO.lifespan estimated with more accelerated epigenetic aging for shorter-lived BXDs.
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