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Abstract

The K* algorithm provably approximates partition functions for a set of states (e.g.,
protein, ligand, and protein-ligand complex) to a user-specified accuracy . Often,
reaching an e-approximation for a particular set of partition functions takes a
prohibitive amount of time and space. To alleviate some of this cost, we introduce two
algorithms into the OSPREY suite for protein design: FRIES, a Fast Removal of
Inadequately Energied Sequences, and EWAK*, an Energy Window Approximation to
K*. In combination, these algorithms provably retain calculational accuracy while
limiting the input sequence space and the conformations included in each partition
function calculation to only the most energetically favorable. This combined approach
leads to significant speed-ups compared to the previous state-of-the-art multi-sequence
algorithm, BBK*. As a proof of concept, we used these new algorithms to redesign the
protein-protein interface (PPI) of the c-Raf-RBD:KRas complex. The Ras-binding

domain of the protein kinase c-Raf (c-Raf-RBD) is the tightest known binder of KRas, a
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historically “undruggable” protein implicated in difficult-to-treat cancers including
pancreatic ductal adenocarcinoma (PDAC). FRIES/ EWAK* accurately retrospectively
predicted the effect of 38 out of 41 different sets of mutations in the PPI of the
c-Raf-RBD:KRas complex. Notably, these mutations include mutations whose effect
had previously been incorrectly predicted using other computational methods. Next, we
used FRIES/ EWAK* for prospective design and discovered a novel point mutation that
improves binding of c-Raf-RBD to KRas in its active, GTP-bound state (KRas®TF).
We combined this new mutation with two previously reported mutations (which were
also highly-ranked by OSPREY) to create a new variant of c-Raf-RBD,
c¢-Raf-RBD(RKY). FRIES/ EWAK* in OSPREY computationally predicted that this new
variant would bind even more tightly than the previous best-binding variant,
c-Raf-RBD(RK). We measured the binding affinity of c-Raf-RBD(RKY) using a
bio-layer interferometry (BLI) assay and found that this new variant exhibits

single-digit nanomolar affinity for KRas®TP

, confirming the computational predictions
made with FRIES/ EWAK*. This study steps through the advancement and development
of computational protein design by presenting theory, new algorithms, accurate

retrospective designs, new prospective designs, and biochemical validation.

Author summary

Computational structure-based protein design is an innovative tool for redesigning
proteins to introduce a particular or novel function. One such possible function is
improving the binding of one protein to another, which can increase our understanding
of biomedically important protein systems toward the improvement or development of
novel therapeutics. Herein we introduce two novel, provable algorithms, FRIES and
EWAK*, for more efficient computational structure-based protein design as well as their
application to the redesign of the c-Raf-RBD:KRas protein-protein interface. These new
algorithms speed up computational structure-based protein design while maintaining
accurate calculations, allowing for larger, previously infeasible protein designs. Using
FRIES and FWAK* within the OSPREY suite, we designed the tightest known binder of
KRas, an “undruggable” cancer target. This new variant of a KRas-binding domain,

c-Raf-RBD, should serve as an important tool to probe the protein-protein interface
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between KRas and its effectors as work continues toward an effective therapeutic

targeting KRas.

Introduction

Computational structure-based protein design (CSPD) is an innovative tool that enables
the prediction of protein sequences with desired biochemical properties (such as
improved binding affinity). OSPREY (Open Source Protein Redesign for You) [1] is an
open-source, state-of-the-art software package used for CSPD and is available at
http://www.cs.duke.edu/donaldlab/osprey.php for free. OSPREY’s algorithms focus on
provably returning the optimal sequences and conformations for a given input model. In
contrast, as argued in [2-7], stochastic, non-deterministic approaches [8-10] provide no
guarantees on the quality of conformations, or sequences, and make determining sources
of error in predicted designs very difficult.

When using OSPREY, the input model generally consists of a protein structure, a
flexibility model (e.g., choice of sidechain or backbone flexibility, allowed mutable
residues, etc.), and an all-atom pairwise-decomposable energy function that is used to
evaluate conformations. OSPREY models amino acid sidechains using frequently
observed rotational isomers or “rotamers” [11]. Additionally, OSPREY can also model
continuous sidechain flexibility [12-15] along with discrete and continuous backbone
flexibility [16-19], which allow for a more accurate approximation of protein
behavior [13,16,20-23]. The output produced by CSPD generally consists of a set of
candidate sequences and conformations. Many protein design methods have focused on
computing a global minimum energy conformation (GMEC) [14,18,24-28]. However, a
protein in solution exists not as a single, low-energy structure, but as a thermodynamic
ensemble of conformations. Models that only consider the GMEC may incorrectly
predict biophysical properties such as binding [12,20-23,29-31] because GMEC-based
algorithms underestimate potentially significant entropic contributions. In contrast to
GMEC-based approaches, the K* algorithm [12,29,30] in OSPREY models
thermodynamic ensembles to provably and efficiently approximate the K* score. The
K* score is a ratio of the Boltzmann-weighted partition functions for a protein-ligand

complex that estimates the association constant, K, (further detailed in the Section
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entitled “Computational materials and methods”). BBK* [32] is the most recent
improvement on the traditional K* algorithm that allows for multi-sequence design.
Previous algorithms [12,27,29,30,33-35] that design for binding affinity using ensembles
are linear in the size of the sequence space N, where N is exponential in the number of
simultaneously mutable residue positions. BBK™* is the first provable ensemble-based
algorithm to run in time sublinear in N, making it possible not only to perform K*
designs over large sequence spaces, but also to enumerate a gap-free list of sequences in
order of decreasing K* score.

OSPREY has been used successfully on several empirical, prospective designs
including designing enzymes [12,16,22,29, 36], resistance mutations [2,37, 38|,
protein-protein interaction inhibitors [30,39], epitope-specific antibody probes [40], and
broadly-neutralizing antibodies [41,42]. These successes have been validated
experimentally in vitro and in vivo and are now being tested in several clinical
trials [43-45]. However, while OSPREY has been successful in the past, as the size of
protein design problems grows (e.g., when considering a large protein-protein interface),
enumerating and minimizing the necessary number of conformations and sequences to
satisfy the provable halting criteria in previous K*-based algorithms [12,29,30] becomes
prohibitive (despite recent algorithmic improvements [32]). The entire conformation
space can be monumental in size and heavily populated with energetically unfavorable
sequences and conformations. EWAK*, an Energy Window Approximation to K*, seeks
to alleviate some of this difficulty by restricting the conformations included in each
sequence’s thermodynamic ensemble. FWAK* guarantees that each conformational
ensemble contains all of the lowest energy conformations within an energy window of
the GMEC for each design sequence. FRIES, a Fast Removal of Inadequately Energied
Sequences, also mitigates this complexity problem by limiting the input sequence space
to only the most favorable, low energy sequences. Previous algorithms have focused on
optimizing for sequences whose conformations are similar in energy to that of the
GMEC. In contrast, FRIES focuses on optimizing for sequences with energies better-than
or comparable-to the wild-type sequence. FRIES guarantees that the restricted input
sequence space includes all of the sequences within an energy window of the wild-type
sequence, but excludes any potentially unstable sequences with significantly worse

partition function values. Wild-type sequences are generally expected to be
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Fig 1. Design example using the structure of the LecB lectin Pseudomonas
aeruginosa strain PA14 (PDB ID: 5A6Y [47]) and the oSsPREY workflow for
FRIES/ EWAK*. In the top panel, the full, 4 domain structure of lectin is shown on the
left-hand side. (A) Zooming in on the region where domains A (green) and D (yellow)
interact, showing the two mutable residues (Q80 and I82) along with the surrounding
flexible shell of residues as lines. There were 11 flexible residues included in this design
with Q80 and I82 allowed to mutate to all other amino acids except for proline. This
design consisted of 8.102 x 10" conformations and 441 sequences. FRIES limited this
space to 5.704 x 10*! conformations and 206 sequences. FRIES/ EWAK* in combination
reduced the amount of time taken by about 75% compared to BBK*. FRIES alone was
responsible for roughly 50% of this speed-up. (B) 10 low-energy conformations included
in the thermodynamic ensemble of the design sequence with mutations Q80I and I82F.
For this particular sequence, BBK* minimized 10,664 conformations while EWAK*
minimized only 4,104 conformations. The bottom panel shows the general workflow for
FRIES/ EWAK*. The workflow begins with the input model (as described in the Section
entitled “Introduction”), which defines the design space for the first algorithm, FRIES.
FRIES proceeds to prune the sequence space as described in the Section entitled “Fast
Removal of Inadequately Energied Sequences (FRIES)” and as illustrated in the Venn
diagram with the unpruned space shown as a yellow disk. Next, the remaining FRIES
sequence space defines the conformation space (which contains multiple sequences as
well as conformations) searched with EWAK*. EWAK* limits the conformations
included in each partition function as described in the Section entitled “Energy Window
Approximation to K* (EWAK*).” EWAK* generally searches over only a subset of the
conformations (green area) that previous K*-based algorithms like BBK* [32] search
(orange area). EWAK* then returns the top sequences based on decreasing K* score.

near-optimal for their corresponding folds [46]. Therefore, limiting the sequence space

to sequences energetically similar to or better than the wild-type sequence is reasonable.

A simplified workflow for FRIES/EWAK* is presented in Fig 1. Compared to the
previous state-of-the-art algorithm BBK*, FRIES and EFWAK* improve runtimes by up
to 2 orders of magnitude, FRIES decreases the size of the sequence space by up to more
than 2 orders of magnitude, and FWAK* decreases the number of conformations
included in partition function calculations by up to almost 2 orders of magnitude.

As a proof of concept to test these algorithms and our design approach, we used
FRIES and EWAK* to study the protein-protein interface (PPI) of KRas®TF in complex
with its tightest-binding effector, c-Raf. As described in the Section entitled
“Computational redesign of the c-Raf-RBD:KRas protein-protein interface,” KRas is an
important cancer target that has historically been considered “undruggable” [48].
Deepening the understanding of the PPI between KRas and its effectors is an important
step toward developing effective new therapeutics. For this study, we focused on the
redesign of the c-Raf Ras-binding domain (c-Raf-RBD) in complex with KRas%™?

(c-Raf-RBD:KRas®TF). First, our new algorithms successfully retrospectively predicted
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the effect on binding of mutations in the c-Raf-RBD:KRas®TP PPI even where other
computational methods previously failed [49]. Next, we used FRIES/ EWAK*
prospectively to predict the effect of novel, previously unreported mutations in the PPI
of the c-Raf-RBD:KRas®TP complex. We then measured the binding of top
OsPREY-predicted c-Raf-RBD variants to KRas using a bio-layer interferometry (BLI)
assay with a single-concentration screen. This screen suggested that one of our new
computationally-predicted c-Raf-RBD variants — c-Raf-RBD(Y), a c-Raf-RBD variant
that includes the mutation V88Y — exhibits improved binding to KRas®TP. Next, we
created a c-Raf-RBD variant, c-Raf-RBD(RKY), that included this new mutation,
V88Y, together with two previously reported mutations [49], N71R and A85K.

FRIES/ EWAK* computationally predicted that c-Raf-RBD(RKY) would bind more
tightly to KRas®TF than any other variant. The single-concentration screen using BLI
also suggested that c-Raf-RBD(RKY) binds more tightly to KRasSTP than the
previously reported best variant [49]. The Ky values for the most promising variants
were measured using a BLI assay with titration which confirmed our computational
predictions and that, to the best of our knowledge, the novel construct
c-Raf-RBD(RKY) is the highest affinity variant ever designed, with single-digit

nanomolar affinity for KRas®TF.

Computational materials and methods

The K* algorithm’s [12,29,30] K* score serves as an estimate of the binding constant,
K, and is calculated by first approximating the Boltzmann-weighted partition function
of each state: unbound protein (P), unbound ligand (L), and the bound protein-ligand
complex (C). Each Boltzmann-weighted partition function Z_(s), x € {P, L,C}, is

defined as:

Z,(s)= Y_ exp(—E,(d)/RT). (1)

deQ(s)
If s is any — generally amino acid — sequence of n residues, then Q(s) is the set of
conformations defined by s, E_(d) is the minimized energy of a conformation d in state

xz, and R and T are the gas constant and temperature, respectively. Many protein
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design algorithms approximate these partition functions for each state using either
stochastic [50-53] or provable [2,12,29-31,33,53] methods.

OSPREY’s K* algorithm provably approximates these partition functions to within a
user-specified e of the full partition function as defined in Eq (1). The binding affinity

for sequence s is defined as:

Ko(s) = =S~ —. (2)

The K* algorithm provably approximates this binding affinity. This is enabled by
the use of A* [4,12,26,54], which allows for the gap-free enumeration of conformations
in order of increasing lower bounds on energy [26]. However, enumerating a sufficient
number of these conformations to obtain a guaranteed e-approximation can be very
time consuming because the set of all conformations Q(s) grows exponentially with the
number of residues n. Also, the K* algorithm was originally [12,29,30] limited to
computing a K* score for every sequence in the sequence space as defined by the input
model for a particular design. However, BBK* [32] builds on K* and provably returns
the top m sequences along with their e-approximate K* scores and runs in time
sublinear in the number of sequences. That is, BBK* does not require calculating
e-approximate K* scores for (or even examining) every sequence in the sequence space
before it returns the top sequences. Nevertheless, BBK* may spend unnecessary time
and resources evaluating unfavorable sequences before deciding to prune them.

To overcome the above limitations of BBK* and K*, we introduce FRIES, a Fast
Removal of Inadequately Energied Sequences, and EWAK*, an Energy Window
Approximation to K*. These two algorithms focus on limiting the input sequence space
and the number of conformations included in each partition function estimate when
approximating a sequence’s K* score to provably only the most energetically favorable
options. The FRIES/ EWAK* approach limits the number of conformations that must be
enumerated (see the Section entitled “EWAK* limits the number of minimized
conformations when approximating partition functions while maintaining accurate K*
scores” ), which leads to significant speed-ups (see the Section entitled “FRIES/FEWAK*
is up to 2 orders of magnitude faster than BBK*”) because each enumerated

conformation must undergo an energy minimization step. This minimization step is
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relatively expensive, therefore, anything that reduces the number of minimized
conformations while not sacrificing provable accuracy is desirable. For the importance
of this minimization step to biological accuracy, see the discussions of continuous
flexibility and its comparison to discrete flexibility in [4,5,7,13,14,19]. EWAK* also
maintains the advances made by BBK* including running in time sublinear in the

number of sequences N and returning sequences in order of decreasing K* score. FRIES

and FWAK* are described in further detail in the Section entitled “Algorithms” below.

Algorithms

Fast Removal of Inadequately Energied Sequences (FRIES).Generally in protein
design when optimizing a protein-protein interface (PPI) for affinity, the designer aims
to improve the K* score of a variant sequence relative to the wild-type sequence, and,
when performing a design targeting a similar fold, to minimally perturb the native
structure. To accomplish this, FRIES guarantees to only keep sequences whose partition
function values are not markedly worse than the wild-type sequence’s partition function
values for all of the design states (e.g. protein, ligand, and complex). How many orders
of magnitude worse a particular sequence’s partition function values are allowed to be is
determined by a user-specified value m. The FRIES algorithm prunes sequences that
exhibit massive decreases in partition function values that signal an increased risk of
disturbing the native structure of the states in a given system. However, sequences with
markedly worse, lower partition function values may be required when searching for, for
example, resistance mutations, where positive and negative design are

necessary [2,37,38]. Importantly, FRIES does still allow for sequences that may have
lower, worse partition function values by allowing the user to specify how many orders
of magnitude lower a candidate sequence’s partition function is allowed to be relative to
the wild-type sequence’s partition function.

To prune the input sequence space, FRIES exploits A* over a multi-sequence tree (as
is described and used in COMETS [55]), which enjoys a fast sequence enumeration in
order of lower bound on minimized energy. Each sequence v in this multi-sequence
tree [55] has a corresponding single-sequence conformation tree, viz., a tree that can be

searched for the lowest energy conformations for a sequence v. FRIES first enumerates
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sequences (in order of energy lower bounds) in the multi-sequence tree until the
wild-type sequence is found. Then, FRIES searches the wild-type’s corresponding
single-sequence conformation tree using A*. The first conformation enumerated
according to monotonic lower bound on pairwise minimized energy is then subjected to
a full-atom minimization [30] to calculate the minimized energy of one of the wild-type
sequence’s conformations £, .. FRIES then continues enumerating sequences in the
multi-sequence tree in order of increasing lower bound on minimized energy until the
lower-bound on the energy of a sequence v, E“@, is greater than E,, +w where E . is
as described above and w is a user-specified energy window value (Fig 2). Any variant
sequence v with a lower bound on minimized energy E? not satisfying the following

criterion is pruned:

E° <E,,.+w. (3)

This criterion guarantees that the remaining, unpruned sequence space includes all
sequences within an energy window of the wild-type sequence’s energy. FRIES
enumerates sequences in order of increasing lower bound on minimized energy.
Therefore, it calculates an upper bound qu on the partition function for each sequence v
by Boltzmann-weighting the lower bound on its energy Eve and multiplying it by the

size of the conformation space for that particular sequence |Q(v)|:

q7 =|Q(v)|exp(—E7 /RT). (4)
The lower bound for the wild-type sequence qv%T is calculated by
Boltzmann-weighting the minimized energy of the single conformation found during the
sequence search for the wild-type sequence F,, .

o= exp(_EWT/RT)' (5)

qWT

qVGVT is a lower bound because, in the worst case, at least this one conformation will
contribute to the partition function for the wild-type sequence. FRIES then uses these
bounds to remove all of the sequences whose partition function value is not within some

user-specified m orders of magnitude of the lower bound on the wild-type partition
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function quVT. If the following criterion is not met, the sequence v is pruned from the

space:

Ing® <Ing¢5_+m. (6)

FRIES prunes sequences for the protein, the ligand, and the protein-ligand complex
independently, limiting the input sequence space to exclude unfavorable sequences for
all of the states. The resulting smaller sequence space is subsequently used as input for
EWAK*. The set of sequences remaining is guaranteed to include all of the sequences
within a user-specified energy window w of the wild-type sequence that also satisfy the
partition function criterion given in Eq (4). Importantly, FRIES can be used to limit the
size of the input sequence space in this fashion for any of the protein design algorithms
available within OSPREY.

Fig 2. How FRIES chooses which sequences to keep and which sequences to
prune. The solid curve represents the energy landscape of the conformation space that
spans across, in this example, 7 different sequences (separated by dotted lines). Each
sequence is labeled on the z-axis with an index indicating the order with which it is (or
would be) enumerated with FRIES in order of increasing lower bound on minimized
energy (red dotted curve). FRIES continues to enumerate in this way until it encounters
the wild-type sequence (green), at which point FRIES calculates the minimized energy
E,, .. of the conformation with the lowest lower bound on minimized energy for the
wild-type sequence (marked with a green dot). E,, .. then becomes the baseline from
which FRIES can provably enumerate all remaining sequences within some user-specified
energy window w (yellow lines). Finally, FRIES prunes the sequences with energies
provably higher than F,,,. + w (black) and keeps the sequences that occur within the
shaded yellow region (colored in blue and green). More sequences are also pruned
according to their partition function values as described in the Section entitled “Fast
Removal of Inadequately Energied Sequences (FRIES)” and as defined by Eq (4).

Energy Window Approximation to K* (EWAK*). After reducing the size of the
input sequence space using FRIES, as described in the Section entitled “Fast Removal of
Inadequately Energied Sequences (FRIES),” EWAK* proceeds by using a variation on an
existing algorithm: BBK* (described in [32]). The crucial difference between BBK* and
EWAK* is that with EWAK* the ensemble of conformations used to approximate each
K* score is limited to those within a user-specified energy window of the GMEC for
each sequence. This guarantees to populate the partition function for a particular
sequence and state with all of the provably lowest, most-favorable conformations (that

fall within the user-specified energy window). These conformations often account for the
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majority of the full e-approximate partition function (see the Section entitled
“Computational materials and methods”) in traditional K* calculations [12]. Hence,
EWAK* also empirically enjoys negligible loss in accuracy of K* scores (see the Sections
entitled “EWAK* limits the number of minimized conformations when approximating

partition functions while maintaining accurate K* scores” and “FrRIES/EWAK*

retrospectively predicted the effect mutations in c-Raf-RBD have on binding to KRas”).

EWAK* retains the beneficial aspects of BBK*, including returning sequences in order
of decreasing predicted binding affinity and running in time sublinear in the number of

sequences.

Computational experiments

We implemented FRIES/ EWAK* in the OSPREY suite of open source protein design
algorithms [1]. FRIES was tested on 2,662 designs that range from an input sequence
space size of 441 to 10,164 total sequences. The size of the reduced input sequence space
produced by FRIES was compared to the size of the full input sequence space size for
each design. For these tests, FRIES returned every sequence within 8 kcal/mol of the
wild-type sequence and was set to include only those sequences that are at most 2
orders of magnitude worse in partition function value than the wild-type. The results
for these tests are described in the Section entitled “FRIES can reduce the size of the
input sequence space by more than 2 orders of magnitude while retaining the most
favorable sequences.” Computational experiments were also run comparing

FRIES/ EWAK* with the previous state-of-the-art algorithm in OSPREY: BBK* [32].
Using BBK* and FRIES/ EWAK*, we computed the top 5 best binding sequences for 167
different designs to compare the running time of BBK* vs. FRIES/ EWAK*. FRIES was
limited to sequences within 4 kcal/mol of the wild-type sequence that are at most 2
orders of magnitude worse in partition function values than the wild-type. The EWAK*
partition function approximations were limited to conformations within an energy
window of 1 kcal/mol of the GMEC for each sequence. BBK* was set to return the top
5 sequences with an accuracy of € = 0.68 (as was described in [32]). Using these same
EWAK* and BBK* parameters, we also compared the change in the size of the

conformation space necessary to compute an accurate K* score for BBK* vs. EWAK*
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for 661 partition functions from 161 design examples. The results for these tests are
described in Sections entitled “FRIES/EWAK* is up to 2 orders of magnitude faster than
BBK*” and “FRIES can reduce the size of the input sequence space by more than 2
orders of magnitude while retaining the most favorable sequences.” The number of
conformations that undergo minimization (as described in [12-15]) for each partition
function calculation with FWAK* was also compared across different energy window
sizes for 350 partition function calculations from 87 design examples. These partition
function calculations were compared to BBK*’s partition function calculations with a
demanded accuracy of € = 0.10. This smaller ¢ allowed for more accurate
approximations of the K* scores. The results for these tests are described in the Section
entitled “FRIES can reduce the size of the input sequence space by more than 2 orders of
magnitude while retaining the most favorable sequences.”

Every design included a set of mutable residues along with a set of surrounding
flexible residues (Fig 1 for an example). All of these residues were allowed to be
continuously flexible [12-15]. The designs were selected from 40 different protein
structures (listed in S1 Table and also used in [32,56]), and were run on 40-48 core Intel

Xeon nodes with up to 200 GB of memory.

Computational results

FRIES can reduce the size of the input sequence space by more
than 2 orders of magnitude while retaining the most favorable

sequences

The number of remaining sequences after FRIES was compared to the size of the
complete input sequence space. In the best case, when using FRIES, the sequence space
was decreased by more than 2 orders of magnitude and the conformation space was
decreased by just over 4 orders of magnitude. The sequence space was reduced an
average of 49% and the conformation space was reduced an average of 40%. These

results are broken down further in Fig 3.

September 25, 2019

12/34

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262


https://doi.org/10.1101/790949
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/790949; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Fig 3. Reduction in input sequence space size using FRIES. (A) A pie chart

representing the reduction in the sequence space in percentages across all 2,662 designs.

7% of the designs had a reduction in sequence space over 95%, 24% of the designs had a
reduction in sequence space between 66-95%, 31% of the designs had a reduction in

sequence space between 36-65%, 32% of the designs had a reduction in sequence space
between 6-35%, and 6% of the designs had a reduction in sequence space under 5%. (B)
and (C) plot the number of sequences remaining after using FRIES starting with 441 and
9,261 sequences total, respectively. The number of sequences remaining for each design
are sorted in order of decreasing size of the remaining conformation space after FRIES.

FRIES/ EWAK* is up to 2 orders of magnitude faster than BBK*

The overall runtime was compared between BBK* and FRIES/EWAK*. FRIES/ EWAK*
was an average of 62% faster than BBK* on 167 example design problems. FRIES
removed unfavorable sequences (as described in the Section entitled “Fast Removal of
Inadequately Energied Sequences (FRIES)”) from the search space for 156 out of the 167
design problems. For the cases described in the Section entitled “Computational
experiments,” FRIES/ EWAK* performed consistently faster than BBK* (in 92% of the
design examples) as shown in Fig 4, Panel A. The longest running BBK* design
problem took nearly 8 days, whereas FRIES/ EWAK* completed the same example in
just under 2 hours. In contrast, the design problem that took the longest for

FRIES/ EWAK* out of the 167 tested only required about 22 hours (the same design
took BBK* over 178 hours).

EWAK* limits the number of minimized conformations when
approximating partition functions while maintaining accurate

K* scores

We examined 661 K* score calculations, and concluded that the total number of
conformations minimized to approximate the K* score was decreased by an average of
27%. In the best case the number of conformations minimized to approximate the K*
score was decreased by 93%. These results are plotted in Fig 4, Panel B. Even though
the partition function approximations were limited to a smaller conformation space with
EWAK*, the K* scores did not differ by more than 0.2 orders of magnitude between
EWAK* and BBK* for these 661 example K* score calculations.

A total of 350 of these 661 partition functions were subsequently re-estimated using
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Fig 4. Comparing runtimes and the number of minimized conformations
between FRIES/ EWAK* and BBK* for a variety of designs. (A) A plot of the
runtime in seconds (the y-axis is on a log scale) for FRIES/ EWAK* (blue dots) and
BBK* (yellow dots) for 167 design examples. Each point represents one design and is
plotted in increasing order of BBK* running time. FRIES/ EWAK* was faster than BBK*
92% of the time with an average improvement of 62% over BBK* and a maximum
improvement of 2.2 orders of magnitude. This improvement was evident in (A) since the
blue dots (FRIES/ EWAK* times) fall mostly below the yellow dots (BBK* times). (B) A
plot of the number of conformations minimized (y-axis is on a log scale) for 661
partition function calculations from 161 design examples. The number of conformations
minimized by EWAK* (blue dots) was less than the number of conformations minimized
by BBK* (yellow dots) in 68% of these cases, as is evidenced by the blue dots landing
mostly below the yellow dots. In the best case, EWAK* decreased the number of
conformations by 1.1 orders of magnitude. The average percent reduction in the number
of minimized conformations was 27%. (C) Each dot represents a calculated partition
function. Yellow dots are partition functions limited to within a 1.0 kcal/mol window of
the GMEC, red dots are partition functions limited to a 3.0 kcal/mol window of the
GMEC, and green dots are partition functions limited to within a 5.0 kcal/mol window
of the GMEC. These dots are plotted according to the number of minimized
conformations required for each corresponding BBK* partition function calculation.
The solid black line represents the number of BBK* minimized conformations, so dots
that fall below the black line represent examples that required fewer minimized
conformations than with BBK*. As they approach the 5.0 kcal/mol window, the dots
begin to converge with the BBK* line. However, as the number of BBK* minimized
conformations rises beyond ~ 10%, even the green dots drop below the BBK* line.

BBK* with a more accurate, stringent € value of 0.1 and using EWAK* with varied
energy windows: 1.0 kcal/mol, 3.0 kcal/mol, and 5.0 kcal/mol. We examined the
number of conformations minimized for each complex partition function calculation
across the examples. When using 1.0 kcal /mol, EWAK* minimized up to 1.7 orders of
magnitude fewer conformations (Fig 4, Panel C for more details). Despite this decrease
in the number of included conformations, FWAK"* reported accurate K* scores. The
largest difference in scores between BBK* and EWAK* was 0.3 orders of magnitude.
The accuracy of EWAK* is explored further in the Section entitled “FRIES/EWAK*

retrospectively predicted the effect mutations in c-Raf-RBD have on binding to KRas.”

Computational redesign of the c-Raf-RBD:KRas
protein-protein interface

We previously showed, by investigating 58 mutations across 4 protein systems, that

OSPREY can accurately predict the effect of mutations on PPI binding [1]. Herein, we
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tested the biological accuracy of the new modules FRIES and EWAK™* after adding them
to OSPREY by applying them to a particular system of significant biomedical and
pharmacological importance: c-Raf-RBD in complex with KRas. The c-Raf Ras-binding
domain (c-Raf-RBD) is a small self-folding domain that does not include the kinase
signaling domains normally present in c-Raf. The c-Raf~-RBD normally binds to KRas
when KRas is GTP-bound (KRas®TF). A c-Raf-RBD variant that has high affinity for
KRas®TP could be an important first step toward discovering a tool that disrupts the
KRas:effector interaction. Despite the recent successes with inhibitors targeting mutant
KRas(G12C) by trapping it in the inactive GDP-bound state [57-62] and their recent
move to clinical trials [63], these inhibitors are susceptible to resistance in the form of
up-regulation of guanine nucleotide exchange factors (GEFs) and nucleotide

exchange [60] which both push KRas to remain in its GTP-bound state. An inhibitor of

the interaction between KRasCGTF

and its effectors is hypothesized to have the
advantage of not being susceptible to these mechanisms of resistance because it would
directly interrupt KRas signaling. Hence, to further verify the accuracy and utility of
FRIES/ EWAK*, we focused on this important PPI between KRas“T? and one of its
many effectors, c-Raf. First, in the Section entitled “FRIES/ EWAK* retrospectively
predicted the effect mutations in c-Raf~-RBD have on binding to KRas,” we
retrospectively investigated previously reported mutations in the c-Raf-RBD [49, 64, 65]

and how they affect the binding of c-Raf-RBD to KRas. This retrospective study lays

the groundwork for the prospective study we present that investigates novel mutations.

So, following the retrospective study, we computationally redesigned the PPI using
FRIES/ EWAK* in search of new c-Raf-RBD variants with improved affinity for
KRas®TF (see the Section entitled “Prospective redesign of the c-Raf-RBD:KRas
protein-protein interface toward improved binding” for details). To perform these
computational designs, we first made a homology model of c-Raf-RBD bound to

KRas®™P (see S1 Text for details).
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FRIES/ EWAK* retrospectively predicted the effect mutations in
c-Raf-RBD have on binding to KRas

Each previously reported c-Raf-RBD variant [49, 64, 65] was tested computationally
using FRIES/ EWAK* by calculating a K* score, a computational approximation of K,,
for each variant along with its corresponding wild-type sequence. A percent change in
binding was then calculated by comparing the variant’s K* score to the corresponding
wild-type sequence’s K* score. The log;, of this value was then calculated and
normalized to the wild-type by subtracting 2. A similar procedure was completed using
the reported experimental data in order to easily compare the computationally
predicted effect with the experimentally measured effect. The resulting value, called Ab,
represents the change in binding. If a variant has a Ab less than 0, it is predicted to
decrease binding. If a variant has a Ab greater than 0, it is predicted to increase
binding. Ab values that are roughly equivalent to 0 indicate variants that have little to
no effect on binding since the wild-type sequence was normalized to 0. The Ab values
for the 41 computationally tested variants were plotted and compared to experimental

values in Fig 5.

Fig 5. Predicting the effect of mutations in c-Raf~-RBD on binding with
KRas. Each bar represents either the experimental (red) or computationally predicted
(blue) effect each variant has on binding. The bars are sorted in increasing order of Ab
value (see the Section entitled “FRIES/EWAK* retrospectively predicted the effect
mutations in c-Raf-RBD have on binding to KRas”) of the experimental (red) bars. If
the Ab value is less than 0, binding decreases. If the Ab value is greater than 0, binding
increases. If the Ab value is close to 0, the effect is neutral. Quantitative values of K*
tend to overestimate the biological effects of mutations (leading to the much larger blue
bars) due to the limited nature of the input model compared to a biologically accurate
representation. However, K* in general does a good job ranking variants, as can be seen
here in Fig 6, in [1], and in [38]. Out of the 41 variants listed on the z-axis, only 3 were
predicted incorrectly (marked with black asterisks) by FEWAK*. In terms of accuracy,
BBEK* performed very similarly to EWAK* (data not shown), however, in 2 cases
(marked with green boxes), BBK* ran out of memory and was unable to calculate a
score. BBK* also did not return values for the 2 variants marked with orange boxes.
The variants marked with purple dots were tested in [49] experimentally — not
computationally — and decreased binding of c-Raf-RBD to KRas®TP was observed,
which FWAK* was able to predict correctly. The two variants marked with yellow
triangles were computationally predicted in [49] to improve binding of c-Raf-RBD to
KRas®TP. However, the experimental validation in [49] showed that these variants
exhibit decreased binding, which EWAK* accurately predicted.

Out of the 41 variants tested (see S2 Table), EWAK* predicted the
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experimentally-reported effect (increased vs. decreased binding) correctly in 38 cases.
The three designs where the effect was predicted incorrectly are marked with a star in
Fig 5. To make these predictions, the corresponding computational designs ranged in
size from single point mutations up to 6 simultaneous mutations. Results are outlined in
Fig 5. Furthermore, the Spearman’s p value — a measure of the correlation between two
sets of rankings — when comparing the experimental data to the computational
predictions is 0.81. This p value indicates that not only can EWAK* correctly predict
the effect of a particular set of mutations, but that EWAK* also does a good job ranking
the variants in order according to change in binding upon mutation (Fig 6). This value

is very similar to Spearman’s p values for other PPI systems when using OSPREY [1].

Fig 6. Comparing the computational EWA K* ranking with the
experimental ranking for 41 c-Raf-RBD variants binding to KRas. Each
green dot represents a variant of c-Raf~-RBD and is plotted according to the
experimental ranking along with the corresponding computational ranking of its binding
to KRas. A least squares fit line is shown in gray. Calculating the Pearson correlation
coefficient between the two sets of rankings yields a Spearman’s p of 0.81.

BBK* produced similarly accurate results, but took up to 10 times longer and failed
to produce results in 4 cases. In particular, in 2 cases (marked in green in Fig 5), BBK*
ran out of memory. These cases serve as examples of large designs where FWAK*
outperforms BBK*. In the 2 other cases (marked in orange in Fig 5), BBK* failed to
return a result for the requested sequence in the top 5 reported sequences. This
illustrates how FWAK* and FRIES are particularly helpful when performing larger

designs that contain more simultaneous mutations and more flexible residues.

Finally, we compared our predictions to the interesting biological predictions in [49].

It is unclear how many mutants were computationally evaluated, but the authors do
report computational predictions for 6 point mutations. Of those, point mutants R67L,
N71R, and V88I were predicted to improve the intermolecular interactions between
c-Raf-RBD and KRas®TP. However, experiments found that R67L and V88I actually
reduced the binding of c-Raf-RBD to KRas®TF [49,64]. In contrast to [49], EWAK*
accurately predicted that these mutations decrease binding of c-Raf-RBD to KRas%TF.
For a more detailed view of one of these designs, V88I, see Fig 7. Additionally, a

number of mutations were combined and experimentally tested in [49]. Unfortunately,

none of these variants improved binding to either KRas®™" or KRas®PP which
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FRIES/ EWAK* correctly predicted computationally (Fig 5). In [49], the authors do not
present any computational predictions for these combined variants, but our results show
that a computational prediction using OSPREY’s EWAK* would have saved the time and

resources taken to experimentally test these variants.

Fig 7. Redesign of c-Raf-RBD residue position 88 from valine to isoleucine.

The left-hand side shows c-Raf-RBD (yellow) in complex with KRas (pink). Panels
(A-D) zoom in on one particular design at residue position 88 and are rotated 180°.
Residue position 88 has a valine in the native, wild-type sequence (panels A & C) which
was redesigned to an isoleucine (panels B & D). A mutation to isoleucine at this
position was computationally predicted by FWAK* to decrease the binding of
c-Raf-RBD to KRas®TF. This was experimentally validated in [49], where the authors
incorrectly computationally predicted the effect of this particular mutation on the
binding of c-Raf-RBD to KRas®TP. (A) The wild-type residue (valine) is shown in
green with dots that indicate molecular interactions [66] with the surrounding residues
(residues allowed to be flexible in the design are shown as lines). (B) The mutant
residue (isoleucine) is shown in blue with dots that indicate molecular interactions [66]
with the surrounding residues (residues allowed to be flexible in the design are shown as
lines). Contacts made by the wild-type valine residue (circled dots in (A)) were lost
upon mutation to isoleucine (circled space in (B)). (C & D) A set of 10 low-energy
conformations that were included in the corresponding partition function calculation are
shown for the wild-type (green) and the variant (blue).

Prospective redesign of the c-Raf-RBD:KRas protein-protein

interface toward improved binding

The ability to accurately predict the effect mutations have on the binding of c-Raf-RBD
to KRas®™™ (see the Section entitled “FRIES/ EWAK* retrospectively predicted the
effect mutations in c-Raf-RBD have on binding to KRas”) gave us confidence in the
EWAK* algorithm’s ability to predict new mutations in this interface toward a
c-Raf-RBD variant that exhibits an even higher affinity for KRas®™™ than previously
reported variants which focused on targeting KRas®PP [49]. Therefore, to do a
prospective study, we computationally redesigned 14 positions in c-Raf-RBD in the
c-Raf-RBD:KRas PPI to identify promising mutations. After extending OSPREY to
include FRIES and EWAK*, 14 different designs were completed where each design
included 1 mutable position that was allowed to mutate to all amino acid types except
for proline. Each design also included a set of surrounding flexible residues within
roughly 4 A of the mutable residue. These designs were run using FRIES and EWAK*

and included continuous flexibility [12-15]. FRIES was first used to limit each design to
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only the most favorable sequences (as described in the Section entitled “Fast Removal of
Inadequately Energied Sequences (FRIES)”) and then EWAK* was used to estimate the
K* scores (as described in the Section entitled “Energy Window Approximation to K*
(EWAK*)”). We report the upper and lower bounds on the EWAK* score for each
design in Table 1 (also see S3 Table), where the listed sequences are those that were not
pruned during the FRIES step. From these results, the predicted binding effect
(increased vs. decreased) was determined based on comparing each variant’s K* score to
its corresponding wild-type K* score. We then selected 5 novel point mutations — that
to our knowledge are not reported in any existing literature — for experimental
validation (Table 1). It is worth noting that these 5 point mutations were selected out
of an initial 294 possible mutations. We limited our experimental validation to only
these 5 new mutations and 2 previously reported mutations. This greatly reduced the
amount of resources necessary for experimental validation compared to testing all 294
possibilities. These mutations were selected based on having a promising K* score and
through examining structures calculated by EWAK*. Of the mutations selected, T57M
was selected to act as a variant that was computationally predicted to be comparable to
wild-type. This variant was included to further verify the accuracy of OSPREY’s
predictions. On the other hand, some of OSPREY’s top predictions were excluded, for
instance, T57R, (included in S3 Table) was not selected for experimental testing because
it has an unsatisfied hydrogen bond as evidenced in the structures calculated by
OSPREY. Therefore, we do not believe that the score accurately represents the effect the
mutation will have. Other excluded top predictions (see S3 Table) displayed similar

characteristics or have been reported and tested previously [49,64,65].

Experimental validation of mutations in the c-Raf-RBD:KRas

protein-protein interface

The mutations selected (highlighted in Table 1) from computational design were
experimentally validated using a bio-layer interferometry (BLI) assay. Results from an
initial single-concentration BLI screen (Fig 8) suggested that, contrary to the
computational predictions, the TH57K and V88F variants decrease binding, whereas the

T57M and K87Y mutations both have a roughly neutral effect on binding, which is
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Table 1. Computational predictions by OSPREY/FRIES/EWAK"* that were
selected for experimental validation. Each row of the table shows the results of
the redesign of a residue position in c-Raf-RBD in the c-Raf-RBD:KRas PPI that were
also selected for experimental validation (all of the computational results are listed in S3
Table). The table contains the values for upper and lower bounds on log(K™*) values
(the calculation of these bounds is described in detail in [32]). Mutations highlighted in
yellow, blue, and pink were selected for experimental testing and validation. The two
residues highlighted in blue are the best previously discovered [49] mutations that
improve binding (independently and additively) and are included in our tightest binding
variant, c-Raf-RBD(RKY) (Figs 9, 8, and 10). The variants highlighted in yellow are, to
the best of our knowledge, never-before-tested variants that are predicted to increase
the binding of c-Raf-RBD to KRas®TP. The variant highlighted in pink was selected for
experimental testing to act as a mutation predicted to be comparable to wild-type to
test how accurately OSPREY predicted the effects of these mutations.

Mutation | Lower Bound log (K™*) | Upper Bound log (K™)
T57TM 3.43 3.46
Th7 3.82 3.92
TH7K 5.01 5.07
N71 7.25 7.49
NT71R 9.66 10.10
A85 26.3 26.9
A85K 30.7 32.3
K87 13.4 14.1
K87Y 14.1 14.2
V88 16.5 16.6
V88Y 17.3 17.6
V88F 18.0 18.2

consistent with the computational predictions. The final computationally predicted
point mutant, V88Y, improves binding a comparable amount to the improvement seen
with A85K or N71R, two previously reported variants also predicted by OSPREY and
experimentally tested herein that improve binding. With the discovery of this new
variant containing the point mutant V88Y (referred to herein as c-Raf-RBD(Y)) the
next natural step was to combine it with the mutations found in the best reported
variant, N71R and A85K (referred to herein as c-Raf-RBD(RK)). Therefore, we also
included the double-mutant, c-Raf-RBD(RK), and the new triple-mutant — which
contains N71R, A85K, and V88Y and is referred to herein as c-Raf-RBD(RKY) — in our
initial BLI screen. Additionally, the c-Raf-RBD(RKY) variant was computationally
predicted by FRIES/EWAK* to bind to KRas®™ more tightly than the previous best
known binder, c-Raf-RBD(RK) (results are detailed in Fig 9). Given the promising
screening and computational results for the c-Raf-RBD(Y) and c-Raf-RBD(RKY)

variants, we measured K4 values for each variant by titrating the analyte over the
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Fig 8. Single-concentration experimental screening of c-Raf-RBD variants
binding to KRas using BLI. (A) Binding curves are shown for each variant (labeled
on the plot) tested at a concentration of 250 nM. The colors and labels in panel (A)
correspond to those in panel (B). (B) Plot of estimated K, values for each tested
variant from a single-concentration screen (plotted in panel (A)). The c-Raf-RBD(RKY)
variant (in green on the far left) is a novel, newly discovered variant of c-Raf-RBD. Top
variants were further validated and had their K, values calculated more accurately
using BLI titration experiments (Fig 10).

Fig 9. Computational predictions in the protein-protein interface of the
c-Raf-RBD:KRas complex for c-Raf~-RBD(RK) and the novel variant
c-Raf-RBD(RKY). Shown on the left is only the relevant protein-protein interface
between c-Raf-RBD and KRas. Each panel zooms in on this interface and details a
different c-Raf-RBD variant and its corresponding computational predictions. The
upper and lower bounds on the log(K*) score for each design variant (wild-type,
c-Raf-RBD(RK), and c-Raf-RBD(RKY)) are given in the bottom table. These
computational predictions correspond with and are supported by the experimental
results presented in the Section entitled “Experimental validation of mutations in the
c-Raf-RBD:KRas protein-protein interface.” Panels (A) and (B) show the wild-type
sequence, panels (C) and (D) show the variant c-Raf-RBD(RK), and panels (E) and (F)
show the novel computationally predicted variant c-Raf-RBD(RKY). Panels (A), (C),
and (E) show the wild-type, c-Raf-RBD(RK), and c-Raf-RBD(RKY), respectively,
along with probe dots [66] that represent the molecular interactions within each
structure calculated by OSPREY. These probe dots were selected to only show
interactions between the residues included in the computational designs (shown as green
and blue lines) with their surrounding residues. Panels (B), (D), and (F) show 10
low-energy structures from each conformational ensemble calculated by
OSPREY/EWAK*. Panel (G) shows a zoomed-in overlay of the wild-type variant with
the c-Raf-RBD variant that includes only the V88Y mutation. Purple arrows indicate
the change in positioning of the lysine at residue position 84 upon mutation of residue
position 88 from valine to tyrosine. When valine is present at position 88, the lysine

residue (shown in green) primarily hydrogen bonds with an aspartate (labeled) in KRas.

When valine is mutated to tyrosine (shown in cyan), the lysine at position 84 moves to
make room for the tyrosine and positions itself to hydrogen bond with both the
aspartate and the glutamate (labeled) in KRas.

ligand in a BLI-based assay (Fig 10). Excitingly, c-Raf-RBD(RKY) is calculated by the
data from the BLI assay (Figs 8 and 10) to bind KRas®TT roughly 5 times better than
the previous best known binder, c-Raf-RBD(RK), and approximately 36 times better
than wild-type c-Raf~-RBD. Given how heavily studied the KRas system is, with several
reported mutational and structural studies [49,64,64,65,65,67,67—-73,73,74,74-79], this
is a discovery of some significance.

Bio-layer interferometry (BLI) assay Binding of wild-type and variants of

c-Raf-RBD were experimentally measured using a bio-layer interferometry (BLI) assay.

Each variant of c-Raf-RBD was expressed and purified (S2 Text) with cysteine residues

at positions 81 and 96 substituted for isoleucine and methionine, respectively. These
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Fig 10. BLI titration experiments to calculate K, values for select
c-Raf-RBD variants. The plots shown here are representative and the data from
replicate experiments are presented in S4 Table. Each plot shows the data collected
from a titration BLI experiment where the concentration of the c-Raf-RBD variant is
incrementally increased. The concentrations for the wild-type variant were 10, 50, 150,
200, and 300 nM. The concentrations for all of the other variants were 10, 25, 25, 75, 75,
125, and 200 nM. Repeat intermediate concentrations were used as loading controls.
These curves were then fit using a mass transport model within the Octet Data Analysis
HT software provided by FortéBio in order to calculate the K value for each variant’s
binding to KRas. The values in the table here (bottom right) are average K4 values
shown with 2 standard deviations calculated from replicate experiments (S4 Table). The
values presented here for Wild-Type, A85K, and c-Raf-RBD(RK) agree well with
previously reported Ky values [49]. The best binding variant, c-Raf-RBD(RKY), binds
to KRas about 5 times better than the previous tightest-known binder, c-Raf-RBD(RK),
and about 36 times better than wild-type c-Raf-RBD.

mutations were previously reported to minimally affect on the stability of

c-Raf-RBD [73] and their substitution allows for the use of the c-Raf-RBD constructs in
other assays (not mentioned herein). Additionally, we do not believe these residue
substitutions have a large effect since the K, values determined herein align with
previously reported K, values [49] (Fig 10). KRas was expressed and purified (S3 Text)
with a poly-histidine protein tag (His-tag) and loaded with a non-hydrolyzable GTP
analog, GppNHp. KRas was also made to include a substitution at position 118 from
cysteine to serine in order to increase expression and stability [80]. Ni-NTA tips were
then used to perform the BLI experiments to determine binding of the c-Raf~-RBD
variants to KRas“PPNHP (results are shown in Figs 8 and 10 and S4 Table). All
experiments were carried out in 30 mM phosphate pH 7.4, 327 mM NaCl, 2.7 mM KClI,
5 mM MgCly, 1.5 mM TCEP, 0.1% BSA, and 0.02% Tween-20 + Kathon at 25°C with
1000 RPM shaking and a KRas loading concentration of 20 pg/ml. Each curve
presented (Figs 8 and 10) was fit using the built-in mass transport model within the
Octet Data Analysis HT software provided by FortéBio. We only accepted fits with a
sum of square deviations x? less than 1 (FortéBio recommends a value less than 3) and

a coefficient of determination R? greater than 0.98.

Discussion

FRIES and FWAK* are new, provable algorithms for more efficient ensemble-based

computational protein design. Efficiency and efficacy were tested and shown across a
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total of 2,826 different design problems. An implementation of FRIES/EWAK* is
available in the open-source protein design software OSPREY [1] and all of the data has
been made available (see “Data availability statement”). FRIES/EWAK* in combination
achieved a significant runtime improvement over the previous state-of-the-art, BBK*,
with runtimes up to 2 orders of magnitude faster. EWAK* also limits the number of
minimized conformations used in each K* score approximation by up to about 2 orders
of magnitude while maintaining provable guarantees (see the Section entitled “Energy
Window Approximation to K* (EWAK*)”). FRIES alone is capable of reducing the
input sequence space while provably keeping all of the most energetically favorable
sequences (see the Section entitled “Fast Removal of Inadequately Energied Sequences
(FRIES)”), decreasing the size of the sequence space by more than 2 orders of magnitude,
and leading to more efficient design given the smaller search space.

To further validate OSPREY with FRIES/ EWAK*, we applied these algorithms to a
biomedically significant design problem: the c-Raf-RBD:KRas PPI. First, we performed
a series of retrospective designs where FRIES/ EWAK* accurately predicted how a variety
of mutations affect the binding of c-Raf-RBD to KRas®™" that previous computational
methods had failed to accurately predict [49]. This success supports the use of OSPREY
and FRIES/ EWAK* to evaluate the effect mutations in the protein-protein interface of
c-Raf-RBD:KRas have on binding (more, similar successes of the K* algorithm are
presented and discussed in [1]). FRIES/ EWAK* also prospectively predicted the effect of
new mutations in the c-Raf~-RBD:KRas PPI and discovered a novel c-Raf-RBD
mutation V88Y with improved affinity for KRas. We went on to combine this new
mutation with two previously reported mutations, N71R and A85K [49], to create
c-Raf-RBD(RKY), an even stronger binding c-Raf-RBD variant, which FRIES/ EWAK*
accurately predicted. We biochemically screened top predicted variants using an initial
bio-layer interferometry (BLI) single-concentration assay. Only a promising subset of
the computationally predicted and initially screened variants were then evaluated using
a BLI titration assay to calculate K4 values for individual c-Raf-RBD variants. We
determined that c-Raf-RBD(RKY) binds to KRas®™™ roughly 36 times more tightly
than wild-type c-Raf-RBD, making it the tightest known c-Raf-RBD variant binding
partner of KRasGTP,

Given that numerous groups have explored this protein-protein
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interaction [64,65,67—77] and performed mutagenesis on c-Raf-RBD either, through
rational means [64,67,74,78], computational methods [49,65] or high-throughput
evolutionary methods [73,79] and that none identified V88Y, this discovery validates
our computational approach and the use of computational algorithms such as FRIES and
EWAK* to redesign protein-protein interfaces toward improved binding. Finally,
previous mutations that enhanced the affinity of c-Raf-RBD binding to KRas did so by
supercharging c-Raf-RBD [49, 64, 65]. In contrast, our mutation V88Y introduces a
novel, aromatic residue. The discovery that such a mutation can improve the binding of
c-Raf-RBD to KRas®TF is of considerable significance. These new c-Raf-RBD variants
serve as an important step toward better understanding the KRas:effector interface and
eventually developing successful therapeutics to directly target and block the aberrant

behavior of mutant KRas.

Supporting information

S1 Text. Homology model of c-Raf-RBD in complex with KRas.

S2 Text. Details of the expression and purification of c-Raf-RBD variants.

S3 Text. Details of the expression and purification of KRas.

S1 Table. Protein structures used in computational experiments as
described in the Section entitled “Computational materials and methods.”
Each protein structure has its PDB ID listed along with its molecule names as
presented in the Protein Database entry for each structure. Individual designs are not
listed or described here, but the necessary code and data is provided for the interested

reader (see Data availability statement).

S2 Table. Experimental and computational percent change in binding and
rankings. For each listed variant, we give the experimental percent change in binding
relative to wild-type as reported in [64] and as calculated from reported binding values
in [65] and [49], the EWAK* computationally predicted percent change in binding (as

described in the Section entitled “FRIES/ EWAK™* retrospectively predicted the effect
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mutations in c-Raf-RBD have on binding to KRas”) and the rankings that correspond

to these values. The rankings have a Pearson correlation of 0.81.

S3 Table. Table of computational predictions for point mutants in
c-Raf-RBD. Each section of the table shows the results of the redesign of a residue
position in c-Raf-RBD in the c-Raf-RBD:KRas PPI in order of increasing upper bound
on log(K™*). The table contains the values for upper and lower bounds on log(K*)
values (these bounds are described in detail in [32]). “Design results for the wild-type
amino acid identity for each position. TMutations that were selected for experimental

testing and validation.

S4 Table. K, values for each tested variant for all replicates of BLI
titration experiments. For each listed variant, we give the dissociation constant Ky
for each BLI titration experiment calculated from the fit done using the built-in mass
transport model within the Octet Data Analysis HT software provided by FortéBio. We
only accepted fits with a sum of square deviations x? less than 1 (FortéBio recommends
a value less than 3) and a coefficient of determination R? greater than 0.98. Presented

in the table in Fig 10 are averages of these Ky values.
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c-Raf-RBD Variant

Lower Bound log (K™)

Upper Bound log (K *)

Wild-Type 30.67 30.77
c-Raf-RBD(RK) 38.80 39.12
c-Raf-RBD(RKY) 39.29 39.80
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