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Abstract

The K∗ algorithm provably approximates partition functions for a set of states (e.g.,

protein, ligand, and protein-ligand complex) to a user-specified accuracy ε. Often,

reaching an ε-approximation for a particular set of partition functions takes a

prohibitive amount of time and space. To alleviate some of this cost, we introduce two

algorithms into the osprey suite for protein design: fries, a Fast Removal of

Inadequately Energied Sequences, and EWAK∗, an Energy Window Approximation to

K∗. In combination, these algorithms provably retain calculational accuracy while

limiting the input sequence space and the conformations included in each partition

function calculation to only the most energetically favorable. This combined approach

leads to significant speed-ups compared to the previous state-of-the-art multi-sequence

algorithm, BBK∗. As a proof of concept, we used these new algorithms to redesign the

protein-protein interface (PPI) of the c-Raf-RBD:KRas complex. The Ras-binding

domain of the protein kinase c-Raf (c-Raf-RBD) is the tightest known binder of KRas, a
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historically “undruggable” protein implicated in difficult-to-treat cancers including

pancreatic ductal adenocarcinoma (PDAC). fries/EWAK∗ accurately retrospectively

predicted the effect of 38 out of 41 different sets of mutations in the PPI of the

c-Raf-RBD:KRas complex. Notably, these mutations include mutations whose effect

had previously been incorrectly predicted using other computational methods. Next, we

used fries/EWAK∗ for prospective design and discovered a novel point mutation that

improves binding of c-Raf-RBD to KRas in its active, GTP-bound state (KRasGTP).

We combined this new mutation with two previously reported mutations (which were

also highly-ranked by osprey) to create a new variant of c-Raf-RBD,

c-Raf-RBD(RKY). fries/EWAK∗ in osprey computationally predicted that this new

variant would bind even more tightly than the previous best-binding variant,

c-Raf-RBD(RK). We measured the binding affinity of c-Raf-RBD(RKY) using a

bio-layer interferometry (BLI) assay and found that this new variant exhibits

single-digit nanomolar affinity for KRasGTP, confirming the computational predictions

made with fries/EWAK∗. This study steps through the advancement and development

of computational protein design by presenting theory, new algorithms, accurate

retrospective designs, new prospective designs, and biochemical validation.

Author summary

Computational structure-based protein design is an innovative tool for redesigning

proteins to introduce a particular or novel function. One such possible function is

improving the binding of one protein to another, which can increase our understanding

of biomedically important protein systems toward the improvement or development of

novel therapeutics. Herein we introduce two novel, provable algorithms, fries and

EWAK∗, for more efficient computational structure-based protein design as well as their

application to the redesign of the c-Raf-RBD:KRas protein-protein interface. These new

algorithms speed up computational structure-based protein design while maintaining

accurate calculations, allowing for larger, previously infeasible protein designs. Using

fries and EWAK∗ within the osprey suite, we designed the tightest known binder of

KRas, an “undruggable” cancer target. This new variant of a KRas-binding domain,

c-Raf-RBD, should serve as an important tool to probe the protein-protein interface
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between KRas and its effectors as work continues toward an effective therapeutic

targeting KRas.

Introduction 1

Computational structure-based protein design (CSPD) is an innovative tool that enables 2

the prediction of protein sequences with desired biochemical properties (such as 3

improved binding affinity). osprey (Open Source Protein Redesign for You) [1] is an 4

open-source, state-of-the-art software package used for CSPD and is available at 5

http://www.cs.duke.edu/donaldlab/osprey.php for free. osprey’s algorithms focus on 6

provably returning the optimal sequences and conformations for a given input model. In 7

contrast, as argued in [2–7], stochastic, non-deterministic approaches [8–10] provide no 8

guarantees on the quality of conformations, or sequences, and make determining sources 9

of error in predicted designs very difficult. 10

When using osprey, the input model generally consists of a protein structure, a 11

flexibility model (e.g., choice of sidechain or backbone flexibility, allowed mutable 12

residues, etc.), and an all-atom pairwise-decomposable energy function that is used to 13

evaluate conformations. osprey models amino acid sidechains using frequently 14

observed rotational isomers or “rotamers” [11]. Additionally, osprey can also model 15

continuous sidechain flexibility [12–15] along with discrete and continuous backbone 16

flexibility [16–19], which allow for a more accurate approximation of protein 17

behavior [13,16,20–23]. The output produced by CSPD generally consists of a set of 18

candidate sequences and conformations. Many protein design methods have focused on 19

computing a global minimum energy conformation (GMEC) [14,18,24–28]. However, a 20

protein in solution exists not as a single, low-energy structure, but as a thermodynamic 21

ensemble of conformations. Models that only consider the GMEC may incorrectly 22

predict biophysical properties such as binding [12,20–23,29–31] because GMEC-based 23

algorithms underestimate potentially significant entropic contributions. In contrast to 24

GMEC-based approaches, the K∗ algorithm [12,29,30] in osprey models 25

thermodynamic ensembles to provably and efficiently approximate the K∗ score. The 26

K∗ score is a ratio of the Boltzmann-weighted partition functions for a protein-ligand 27

complex that estimates the association constant, Ka (further detailed in the Section 28
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entitled “Computational materials and methods”). BBK∗ [32] is the most recent 29

improvement on the traditional K∗ algorithm that allows for multi-sequence design. 30

Previous algorithms [12,27,29,30,33–35] that design for binding affinity using ensembles 31

are linear in the size of the sequence space N , where N is exponential in the number of 32

simultaneously mutable residue positions. BBK∗ is the first provable ensemble-based 33

algorithm to run in time sublinear in N , making it possible not only to perform K∗ 34

designs over large sequence spaces, but also to enumerate a gap-free list of sequences in 35

order of decreasing K∗ score. 36

osprey has been used successfully on several empirical, prospective designs 37

including designing enzymes [12,16,22,29,36], resistance mutations [2, 37,38], 38

protein-protein interaction inhibitors [30, 39], epitope-specific antibody probes [40], and 39

broadly-neutralizing antibodies [41,42]. These successes have been validated 40

experimentally in vitro and in vivo and are now being tested in several clinical 41

trials [43–45]. However, while osprey has been successful in the past, as the size of 42

protein design problems grows (e.g., when considering a large protein-protein interface), 43

enumerating and minimizing the necessary number of conformations and sequences to 44

satisfy the provable halting criteria in previous K∗-based algorithms [12, 29, 30] becomes 45

prohibitive (despite recent algorithmic improvements [32]). The entire conformation 46

space can be monumental in size and heavily populated with energetically unfavorable 47

sequences and conformations. EWAK∗, an Energy Window Approximation to K∗, seeks 48

to alleviate some of this difficulty by restricting the conformations included in each 49

sequence’s thermodynamic ensemble. EWAK∗ guarantees that each conformational 50

ensemble contains all of the lowest energy conformations within an energy window of 51

the GMEC for each design sequence. fries, a Fast Removal of Inadequately Energied 52

Sequences, also mitigates this complexity problem by limiting the input sequence space 53

to only the most favorable, low energy sequences. Previous algorithms have focused on 54

optimizing for sequences whose conformations are similar in energy to that of the 55

GMEC. In contrast, fries focuses on optimizing for sequences with energies better-than 56

or comparable-to the wild-type sequence. fries guarantees that the restricted input 57

sequence space includes all of the sequences within an energy window of the wild-type 58

sequence, but excludes any potentially unstable sequences with significantly worse 59

partition function values. Wild-type sequences are generally expected to be 60
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Fig 1. Design example using the structure of the LecB lectin Pseudomonas
aeruginosa strain PA14 (PDB ID: 5A6Y [47]) and the osprey workflow for
fries/EWAK∗. In the top panel, the full, 4 domain structure of lectin is shown on the
left-hand side. (A) Zooming in on the region where domains A (green) and D (yellow)
interact, showing the two mutable residues (Q80 and I82) along with the surrounding
flexible shell of residues as lines. There were 11 flexible residues included in this design
with Q80 and I82 allowed to mutate to all other amino acids except for proline. This
design consisted of 8.102× 1011 conformations and 441 sequences. fries limited this
space to 5.704× 1011 conformations and 206 sequences. fries/EWAK∗ in combination
reduced the amount of time taken by about 75% compared to BBK∗. fries alone was
responsible for roughly 50% of this speed-up. (B) 10 low-energy conformations included
in the thermodynamic ensemble of the design sequence with mutations Q80I and I82F.
For this particular sequence, BBK∗ minimized 10,664 conformations while EWAK∗

minimized only 4,104 conformations. The bottom panel shows the general workflow for
fries/EWAK∗. The workflow begins with the input model (as described in the Section
entitled “Introduction”), which defines the design space for the first algorithm, fries.
fries proceeds to prune the sequence space as described in the Section entitled “Fast
Removal of Inadequately Energied Sequences (fries)” and as illustrated in the Venn
diagram with the unpruned space shown as a yellow disk. Next, the remaining fries
sequence space defines the conformation space (which contains multiple sequences as
well as conformations) searched with EWAK∗. EWAK∗ limits the conformations
included in each partition function as described in the Section entitled “Energy Window
Approximation to K* (EWAK∗).” EWAK∗ generally searches over only a subset of the
conformations (green area) that previous K∗-based algorithms like BBK∗ [32] search
(orange area). EWAK∗ then returns the top sequences based on decreasing K∗ score.

near-optimal for their corresponding folds [46]. Therefore, limiting the sequence space 61

to sequences energetically similar to or better than the wild-type sequence is reasonable. 62

A simplified workflow for fries/EWAK∗ is presented in Fig 1. Compared to the 63

previous state-of-the-art algorithm BBK∗, fries and EWAK∗ improve runtimes by up 64

to 2 orders of magnitude, fries decreases the size of the sequence space by up to more 65

than 2 orders of magnitude, and EWAK∗ decreases the number of conformations 66

included in partition function calculations by up to almost 2 orders of magnitude. 67

As a proof of concept to test these algorithms and our design approach, we used 68

fries and EWAK∗ to study the protein-protein interface (PPI) of KRasGTP in complex 69

with its tightest-binding effector, c-Raf. As described in the Section entitled 70

“Computational redesign of the c-Raf-RBD:KRas protein-protein interface,” KRas is an 71

important cancer target that has historically been considered “undruggable” [48]. 72

Deepening the understanding of the PPI between KRas and its effectors is an important 73

step toward developing effective new therapeutics. For this study, we focused on the 74

redesign of the c-Raf Ras-binding domain (c-Raf-RBD) in complex with KRasGTP
75

(c-Raf-RBD:KRasGTP). First, our new algorithms successfully retrospectively predicted 76
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the effect on binding of mutations in the c-Raf-RBD:KRasGTP PPI even where other 77

computational methods previously failed [49]. Next, we used fries/EWAK∗ 78

prospectively to predict the effect of novel, previously unreported mutations in the PPI 79

of the c-Raf-RBD:KRasGTP complex. We then measured the binding of top 80

osprey-predicted c-Raf-RBD variants to KRas using a bio-layer interferometry (BLI) 81

assay with a single-concentration screen. This screen suggested that one of our new 82

computationally-predicted c-Raf-RBD variants – c-Raf-RBD(Y), a c-Raf-RBD variant 83

that includes the mutation V88Y – exhibits improved binding to KRasGTP. Next, we 84

created a c-Raf-RBD variant, c-Raf-RBD(RKY), that included this new mutation, 85

V88Y, together with two previously reported mutations [49], N71R and A85K. 86

fries/EWAK∗ computationally predicted that c-Raf-RBD(RKY) would bind more 87

tightly to KRasGTP than any other variant. The single-concentration screen using BLI 88

also suggested that c-Raf-RBD(RKY) binds more tightly to KRasGTP than the 89

previously reported best variant [49]. The Kd values for the most promising variants 90

were measured using a BLI assay with titration which confirmed our computational 91

predictions and that, to the best of our knowledge, the novel construct 92

c-Raf-RBD(RKY) is the highest affinity variant ever designed, with single-digit 93

nanomolar affinity for KRasGTP. 94

Computational materials and methods 95

The K∗ algorithm’s [12,29,30] K∗ score serves as an estimate of the binding constant, 96

Ka, and is calculated by first approximating the Boltzmann-weighted partition function 97

of each state: unbound protein (P ), unbound ligand (L), and the bound protein-ligand 98

complex (C). Each Boltzmann-weighted partition function Z
x
(s), x ∈ {P,L,C}, is 99

defined as: 100

Z
x
(s) =

∑
d∈Q(s)

exp(−E
x
(d)/RT ). (1)

If s is any – generally amino acid – sequence of n residues, then Q(s) is the set of 101

conformations defined by s, Ex(d) is the minimized energy of a conformation d in state 102

x, and R and T are the gas constant and temperature, respectively. Many protein 103
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design algorithms approximate these partition functions for each state using either 104

stochastic [50–53] or provable [2, 12,29–31,33,53] methods. 105

osprey’s K∗ algorithm provably approximates these partition functions to within a 106

user-specified ε of the full partition function as defined in Eq (1). The binding affinity 107

for sequence s is defined as: 108

Ka(s) =
Z

C
(s)

Z
P

(s)Z
L

(s)
. (2)

The K∗ algorithm provably approximates this binding affinity. This is enabled by 109

the use of A∗ [4, 12,26,54], which allows for the gap-free enumeration of conformations 110

in order of increasing lower bounds on energy [26]. However, enumerating a sufficient 111

number of these conformations to obtain a guaranteed ε-approximation can be very 112

time consuming because the set of all conformations Q(s) grows exponentially with the 113

number of residues n. Also, the K∗ algorithm was originally [12,29,30] limited to 114

computing a K∗ score for every sequence in the sequence space as defined by the input 115

model for a particular design. However, BBK∗ [32] builds on K∗ and provably returns 116

the top m sequences along with their ε-approximate K∗ scores and runs in time 117

sublinear in the number of sequences. That is, BBK∗ does not require calculating 118

ε-approximate K∗ scores for (or even examining) every sequence in the sequence space 119

before it returns the top sequences. Nevertheless, BBK∗ may spend unnecessary time 120

and resources evaluating unfavorable sequences before deciding to prune them. 121

To overcome the above limitations of BBK∗ and K∗, we introduce fries, a Fast 122

Removal of Inadequately Energied Sequences, and EWAK∗, an Energy Window 123

Approximation to K∗. These two algorithms focus on limiting the input sequence space 124

and the number of conformations included in each partition function estimate when 125

approximating a sequence’s K∗ score to provably only the most energetically favorable 126

options. The fries/EWAK∗ approach limits the number of conformations that must be 127

enumerated (see the Section entitled “EWAK∗ limits the number of minimized 128

conformations when approximating partition functions while maintaining accurate K* 129

scores”), which leads to significant speed-ups (see the Section entitled “fries/EWAK∗ 130

is up to 2 orders of magnitude faster than BBK*”) because each enumerated 131

conformation must undergo an energy minimization step. This minimization step is 132
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relatively expensive, therefore, anything that reduces the number of minimized 133

conformations while not sacrificing provable accuracy is desirable. For the importance 134

of this minimization step to biological accuracy, see the discussions of continuous 135

flexibility and its comparison to discrete flexibility in [4, 5, 7, 13,14,19]. EWAK∗ also 136

maintains the advances made by BBK∗ including running in time sublinear in the 137

number of sequences N and returning sequences in order of decreasing K∗ score. fries 138

and EWAK∗ are described in further detail in the Section entitled “Algorithms” below. 139

Algorithms 140

Fast Removal of Inadequately Energied Sequences (fries).Generally in protein 141

design when optimizing a protein-protein interface (PPI) for affinity, the designer aims 142

to improve the K∗ score of a variant sequence relative to the wild-type sequence, and, 143

when performing a design targeting a similar fold, to minimally perturb the native 144

structure. To accomplish this, fries guarantees to only keep sequences whose partition 145

function values are not markedly worse than the wild-type sequence’s partition function 146

values for all of the design states (e.g. protein, ligand, and complex). How many orders 147

of magnitude worse a particular sequence’s partition function values are allowed to be is 148

determined by a user-specified value m. The fries algorithm prunes sequences that 149

exhibit massive decreases in partition function values that signal an increased risk of 150

disturbing the native structure of the states in a given system. However, sequences with 151

markedly worse, lower partition function values may be required when searching for, for 152

example, resistance mutations, where positive and negative design are 153

necessary [2, 37,38]. Importantly, fries does still allow for sequences that may have 154

lower, worse partition function values by allowing the user to specify how many orders 155

of magnitude lower a candidate sequence’s partition function is allowed to be relative to 156

the wild-type sequence’s partition function. 157

To prune the input sequence space, fries exploits A∗ over a multi-sequence tree (as 158

is described and used in comets [55]), which enjoys a fast sequence enumeration in 159

order of lower bound on minimized energy. Each sequence v in this multi-sequence 160

tree [55] has a corresponding single-sequence conformation tree, viz., a tree that can be 161

searched for the lowest energy conformations for a sequence v. fries first enumerates 162
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sequences (in order of energy lower bounds) in the multi-sequence tree until the 163

wild-type sequence is found. Then, fries searches the wild-type’s corresponding 164

single-sequence conformation tree using A∗. The first conformation enumerated 165

according to monotonic lower bound on pairwise minimized energy is then subjected to 166

a full-atom minimization [30] to calculate the minimized energy of one of the wild-type 167

sequence’s conformations E
WT

. fries then continues enumerating sequences in the 168

multi-sequence tree in order of increasing lower bound on minimized energy until the 169

lower-bound on the energy of a sequence v, E	
v

, is greater than E
WT

+ w where E
WT

is 170

as described above and w is a user-specified energy window value (Fig 2). Any variant 171

sequence v with a lower bound on minimized energy E	
v

not satisfying the following 172

criterion is pruned: 173

E	
v
≤ E

WT
+ w. (3)

This criterion guarantees that the remaining, unpruned sequence space includes all 174

sequences within an energy window of the wild-type sequence’s energy. fries 175

enumerates sequences in order of increasing lower bound on minimized energy. 176

Therefore, it calculates an upper bound q⊕
v

on the partition function for each sequence v 177

by Boltzmann-weighting the lower bound on its energy E	
v

and multiplying it by the 178

size of the conformation space for that particular sequence |Q(v)|: 179

q⊕
v

= |Q(v)| exp(−E	
v
/RT ). (4)

The lower bound for the wild-type sequence q	
WT

is calculated by 180

Boltzmann-weighting the minimized energy of the single conformation found during the 181

sequence search for the wild-type sequence E
WT

: 182

q	
WT

= exp(−E
WT

/RT ). (5)

q	
WT

is a lower bound because, in the worst case, at least this one conformation will 183

contribute to the partition function for the wild-type sequence. fries then uses these 184

bounds to remove all of the sequences whose partition function value is not within some 185

user-specified m orders of magnitude of the lower bound on the wild-type partition 186
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function q	
WT

. If the following criterion is not met, the sequence v is pruned from the 187

space: 188

ln q⊕
v
≤ ln q	

WT
+m. (6)

fries prunes sequences for the protein, the ligand, and the protein-ligand complex 189

independently, limiting the input sequence space to exclude unfavorable sequences for 190

all of the states. The resulting smaller sequence space is subsequently used as input for 191

EWAK∗. The set of sequences remaining is guaranteed to include all of the sequences 192

within a user-specified energy window w of the wild-type sequence that also satisfy the 193

partition function criterion given in Eq (4). Importantly, fries can be used to limit the 194

size of the input sequence space in this fashion for any of the protein design algorithms 195

available within osprey. 196

Fig 2. How fries chooses which sequences to keep and which sequences to
prune. The solid curve represents the energy landscape of the conformation space that
spans across, in this example, 7 different sequences (separated by dotted lines). Each
sequence is labeled on the x-axis with an index indicating the order with which it is (or
would be) enumerated with fries in order of increasing lower bound on minimized
energy (red dotted curve). fries continues to enumerate in this way until it encounters
the wild-type sequence (green), at which point fries calculates the minimized energy
E

WT
of the conformation with the lowest lower bound on minimized energy for the

wild-type sequence (marked with a green dot). E
WT

then becomes the baseline from
which fries can provably enumerate all remaining sequences within some user-specified
energy window w (yellow lines). Finally, fries prunes the sequences with energies
provably higher than E

WT
+ w (black) and keeps the sequences that occur within the

shaded yellow region (colored in blue and green). More sequences are also pruned
according to their partition function values as described in the Section entitled “Fast
Removal of Inadequately Energied Sequences (fries)” and as defined by Eq (4).

Energy Window Approximation to K* (EWAK∗). After reducing the size of the 197

input sequence space using fries, as described in the Section entitled “Fast Removal of 198

Inadequately Energied Sequences (fries),” EWAK∗ proceeds by using a variation on an 199

existing algorithm: BBK∗ (described in [32]). The crucial difference between BBK∗ and 200

EWAK∗ is that with EWAK∗ the ensemble of conformations used to approximate each 201

K∗ score is limited to those within a user-specified energy window of the GMEC for 202

each sequence. This guarantees to populate the partition function for a particular 203

sequence and state with all of the provably lowest, most-favorable conformations (that 204

fall within the user-specified energy window). These conformations often account for the 205
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majority of the full ε-approximate partition function (see the Section entitled 206

“Computational materials and methods”) in traditional K∗ calculations [12]. Hence, 207

EWAK∗ also empirically enjoys negligible loss in accuracy of K∗ scores (see the Sections 208

entitled “EWAK∗ limits the number of minimized conformations when approximating 209

partition functions while maintaining accurate K* scores” and “fries/EWAK∗ 210

retrospectively predicted the effect mutations in c-Raf-RBD have on binding to KRas”). 211

EWAK∗ retains the beneficial aspects of BBK∗, including returning sequences in order 212

of decreasing predicted binding affinity and running in time sublinear in the number of 213

sequences. 214

Computational experiments 215

We implemented fries/EWAK∗ in the osprey suite of open source protein design 216

algorithms [1]. fries was tested on 2,662 designs that range from an input sequence 217

space size of 441 to 10,164 total sequences. The size of the reduced input sequence space 218

produced by fries was compared to the size of the full input sequence space size for 219

each design. For these tests, fries returned every sequence within 8 kcal/mol of the 220

wild-type sequence and was set to include only those sequences that are at most 2 221

orders of magnitude worse in partition function value than the wild-type. The results 222

for these tests are described in the Section entitled “fries can reduce the size of the 223

input sequence space by more than 2 orders of magnitude while retaining the most 224

favorable sequences.” Computational experiments were also run comparing 225

fries/EWAK∗ with the previous state-of-the-art algorithm in osprey: BBK∗ [32]. 226

Using BBK∗ and fries/EWAK∗, we computed the top 5 best binding sequences for 167 227

different designs to compare the running time of BBK∗ vs. fries/EWAK∗. fries was 228

limited to sequences within 4 kcal/mol of the wild-type sequence that are at most 2 229

orders of magnitude worse in partition function values than the wild-type. The EWAK∗ 230

partition function approximations were limited to conformations within an energy 231

window of 1 kcal/mol of the GMEC for each sequence. BBK∗ was set to return the top 232

5 sequences with an accuracy of ε = 0.68 (as was described in [32]). Using these same 233

EWAK∗ and BBK∗ parameters, we also compared the change in the size of the 234

conformation space necessary to compute an accurate K∗ score for BBK∗ vs. EWAK∗ 235

September 25, 2019 11/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/790949doi: bioRxiv preprint 

https://doi.org/10.1101/790949
http://creativecommons.org/licenses/by/4.0/


for 661 partition functions from 161 design examples. The results for these tests are 236

described in Sections entitled “fries/EWAK∗ is up to 2 orders of magnitude faster than 237

BBK*” and “fries can reduce the size of the input sequence space by more than 2 238

orders of magnitude while retaining the most favorable sequences.” The number of 239

conformations that undergo minimization (as described in [12–15]) for each partition 240

function calculation with EWAK∗ was also compared across different energy window 241

sizes for 350 partition function calculations from 87 design examples. These partition 242

function calculations were compared to BBK∗’s partition function calculations with a 243

demanded accuracy of ε = 0.10. This smaller ε allowed for more accurate 244

approximations of the K∗ scores. The results for these tests are described in the Section 245

entitled “fries can reduce the size of the input sequence space by more than 2 orders of 246

magnitude while retaining the most favorable sequences.” 247

Every design included a set of mutable residues along with a set of surrounding 248

flexible residues (Fig 1 for an example). All of these residues were allowed to be 249

continuously flexible [12–15]. The designs were selected from 40 different protein 250

structures (listed in S1 Table and also used in [32,56]), and were run on 40-48 core Intel 251

Xeon nodes with up to 200 GB of memory. 252

Computational results 253

fries can reduce the size of the input sequence space by more 254

than 2 orders of magnitude while retaining the most favorable 255

sequences 256

The number of remaining sequences after fries was compared to the size of the 257

complete input sequence space. In the best case, when using fries, the sequence space 258

was decreased by more than 2 orders of magnitude and the conformation space was 259

decreased by just over 4 orders of magnitude. The sequence space was reduced an 260

average of 49% and the conformation space was reduced an average of 40%. These 261

results are broken down further in Fig 3. 262

September 25, 2019 12/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/790949doi: bioRxiv preprint 

https://doi.org/10.1101/790949
http://creativecommons.org/licenses/by/4.0/


Fig 3. Reduction in input sequence space size using fries. (A) A pie chart
representing the reduction in the sequence space in percentages across all 2,662 designs.
7% of the designs had a reduction in sequence space over 95%, 24% of the designs had a
reduction in sequence space between 66-95%, 31% of the designs had a reduction in
sequence space between 36-65%, 32% of the designs had a reduction in sequence space
between 6-35%, and 6% of the designs had a reduction in sequence space under 5%. (B)
and (C) plot the number of sequences remaining after using fries starting with 441 and
9,261 sequences total, respectively. The number of sequences remaining for each design
are sorted in order of decreasing size of the remaining conformation space after fries.

fries/EWAK∗ is up to 2 orders of magnitude faster than BBK* 263

The overall runtime was compared between BBK∗ and fries/EWAK∗. fries/EWAK∗ 264

was an average of 62% faster than BBK∗ on 167 example design problems. fries 265

removed unfavorable sequences (as described in the Section entitled “Fast Removal of 266

Inadequately Energied Sequences (fries)”) from the search space for 156 out of the 167 267

design problems. For the cases described in the Section entitled “Computational 268

experiments,” fries/EWAK∗ performed consistently faster than BBK∗ (in 92% of the 269

design examples) as shown in Fig 4, Panel A. The longest running BBK∗ design 270

problem took nearly 8 days, whereas fries/EWAK∗ completed the same example in 271

just under 2 hours. In contrast, the design problem that took the longest for 272

fries/EWAK∗ out of the 167 tested only required about 22 hours (the same design 273

took BBK∗ over 178 hours). 274

EWAK∗ limits the number of minimized conformations when 275

approximating partition functions while maintaining accurate 276

K* scores 277

We examined 661 K∗ score calculations, and concluded that the total number of 278

conformations minimized to approximate the K∗ score was decreased by an average of 279

27%. In the best case the number of conformations minimized to approximate the K∗ 280

score was decreased by 93%. These results are plotted in Fig 4, Panel B. Even though 281

the partition function approximations were limited to a smaller conformation space with 282

EWAK∗, the K∗ scores did not differ by more than 0.2 orders of magnitude between 283

EWAK∗ and BBK∗ for these 661 example K∗ score calculations. 284

A total of 350 of these 661 partition functions were subsequently re-estimated using 285
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Fig 4. Comparing runtimes and the number of minimized conformations
between fries/EWAK∗ and BBK∗ for a variety of designs. (A) A plot of the
runtime in seconds (the y-axis is on a log scale) for fries/EWAK∗ (blue dots) and
BBK∗ (yellow dots) for 167 design examples. Each point represents one design and is
plotted in increasing order of BBK∗ running time. fries/EWAK∗ was faster than BBK∗

92% of the time with an average improvement of 62% over BBK∗ and a maximum
improvement of 2.2 orders of magnitude. This improvement was evident in (A) since the
blue dots (fries/EWAK∗ times) fall mostly below the yellow dots (BBK∗ times). (B) A
plot of the number of conformations minimized (y-axis is on a log scale) for 661
partition function calculations from 161 design examples. The number of conformations
minimized by EWAK∗ (blue dots) was less than the number of conformations minimized
by BBK∗ (yellow dots) in 68% of these cases, as is evidenced by the blue dots landing
mostly below the yellow dots. In the best case, EWAK∗ decreased the number of
conformations by 1.1 orders of magnitude. The average percent reduction in the number
of minimized conformations was 27%. (C) Each dot represents a calculated partition
function. Yellow dots are partition functions limited to within a 1.0 kcal/mol window of
the GMEC, red dots are partition functions limited to a 3.0 kcal/mol window of the
GMEC, and green dots are partition functions limited to within a 5.0 kcal/mol window
of the GMEC. These dots are plotted according to the number of minimized
conformations required for each corresponding BBK∗ partition function calculation.
The solid black line represents the number of BBK∗ minimized conformations, so dots
that fall below the black line represent examples that required fewer minimized
conformations than with BBK∗. As they approach the 5.0 kcal/mol window, the dots
begin to converge with the BBK∗ line. However, as the number of BBK∗ minimized
conformations rises beyond ∼ 104, even the green dots drop below the BBK∗ line.

BBK∗ with a more accurate, stringent ε value of 0.1 and using EWAK∗ with varied 286

energy windows: 1.0 kcal/mol, 3.0 kcal/mol, and 5.0 kcal/mol. We examined the 287

number of conformations minimized for each complex partition function calculation 288

across the examples. When using 1.0 kcal/mol, EWAK∗ minimized up to 1.7 orders of 289

magnitude fewer conformations (Fig 4, Panel C for more details). Despite this decrease 290

in the number of included conformations, EWAK∗ reported accurate K∗ scores. The 291

largest difference in scores between BBK∗ and EWAK∗ was 0.3 orders of magnitude. 292

The accuracy of EWAK∗ is explored further in the Section entitled “fries/EWAK∗ 293

retrospectively predicted the effect mutations in c-Raf-RBD have on binding to KRas.” 294

Computational redesign of the c-Raf-RBD:KRas 295

protein-protein interface 296

We previously showed, by investigating 58 mutations across 4 protein systems, that 297

osprey can accurately predict the effect of mutations on PPI binding [1]. Herein, we 298
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tested the biological accuracy of the new modules fries and EWAK∗ after adding them 299

to osprey by applying them to a particular system of significant biomedical and 300

pharmacological importance: c-Raf-RBD in complex with KRas. The c-Raf Ras-binding 301

domain (c-Raf-RBD) is a small self-folding domain that does not include the kinase 302

signaling domains normally present in c-Raf. The c-Raf-RBD normally binds to KRas 303

when KRas is GTP-bound (KRasGTP). A c-Raf-RBD variant that has high affinity for 304

KRasGTP could be an important first step toward discovering a tool that disrupts the 305

KRas:effector interaction. Despite the recent successes with inhibitors targeting mutant 306

KRas(G12C) by trapping it in the inactive GDP-bound state [57–62] and their recent 307

move to clinical trials [63], these inhibitors are susceptible to resistance in the form of 308

up-regulation of guanine nucleotide exchange factors (GEFs) and nucleotide 309

exchange [60] which both push KRas to remain in its GTP-bound state. An inhibitor of 310

the interaction between KRasGTP and its effectors is hypothesized to have the 311

advantage of not being susceptible to these mechanisms of resistance because it would 312

directly interrupt KRas signaling. Hence, to further verify the accuracy and utility of 313

fries/EWAK∗, we focused on this important PPI between KRasGTP and one of its 314

many effectors, c-Raf. First, in the Section entitled “fries/EWAK∗ retrospectively 315

predicted the effect mutations in c-Raf-RBD have on binding to KRas,” we 316

retrospectively investigated previously reported mutations in the c-Raf-RBD [49,64,65] 317

and how they affect the binding of c-Raf-RBD to KRas. This retrospective study lays 318

the groundwork for the prospective study we present that investigates novel mutations. 319

So, following the retrospective study, we computationally redesigned the PPI using 320

fries/EWAK∗ in search of new c-Raf-RBD variants with improved affinity for 321

KRasGTP (see the Section entitled “Prospective redesign of the c-Raf-RBD:KRas 322

protein-protein interface toward improved binding” for details). To perform these 323

computational designs, we first made a homology model of c-Raf-RBD bound to 324

KRasGTP (see S1 Text for details). 325
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fries/EWAK∗ retrospectively predicted the effect mutations in 326

c-Raf-RBD have on binding to KRas 327

Each previously reported c-Raf-RBD variant [49,64,65] was tested computationally 328

using fries/EWAK∗ by calculating a K∗ score, a computational approximation of Ka, 329

for each variant along with its corresponding wild-type sequence. A percent change in 330

binding was then calculated by comparing the variant’s K∗ score to the corresponding 331

wild-type sequence’s K∗ score. The log10 of this value was then calculated and 332

normalized to the wild-type by subtracting 2. A similar procedure was completed using 333

the reported experimental data in order to easily compare the computationally 334

predicted effect with the experimentally measured effect. The resulting value, called ∆b, 335

represents the change in binding. If a variant has a ∆b less than 0, it is predicted to 336

decrease binding. If a variant has a ∆b greater than 0, it is predicted to increase 337

binding. ∆b values that are roughly equivalent to 0 indicate variants that have little to 338

no effect on binding since the wild-type sequence was normalized to 0. The ∆b values 339

for the 41 computationally tested variants were plotted and compared to experimental 340

values in Fig 5. 341

Fig 5. Predicting the effect of mutations in c-Raf-RBD on binding with
KRas. Each bar represents either the experimental (red) or computationally predicted
(blue) effect each variant has on binding. The bars are sorted in increasing order of ∆b
value (see the Section entitled “fries/EWAK∗ retrospectively predicted the effect
mutations in c-Raf-RBD have on binding to KRas”) of the experimental (red) bars. If
the ∆b value is less than 0, binding decreases. If the ∆b value is greater than 0, binding
increases. If the ∆b value is close to 0, the effect is neutral. Quantitative values of K∗

tend to overestimate the biological effects of mutations (leading to the much larger blue
bars) due to the limited nature of the input model compared to a biologically accurate
representation. However, K∗ in general does a good job ranking variants, as can be seen
here in Fig 6, in [1], and in [38]. Out of the 41 variants listed on the x-axis, only 3 were
predicted incorrectly (marked with black asterisks) by EWAK∗. In terms of accuracy,
BBK∗ performed very similarly to EWAK∗ (data not shown), however, in 2 cases
(marked with green boxes), BBK∗ ran out of memory and was unable to calculate a
score. BBK∗ also did not return values for the 2 variants marked with orange boxes.
The variants marked with purple dots were tested in [49] experimentally – not
computationally – and decreased binding of c-Raf-RBD to KRasGTP was observed,
which EWAK∗ was able to predict correctly. The two variants marked with yellow
triangles were computationally predicted in [49] to improve binding of c-Raf-RBD to
KRasGTP. However, the experimental validation in [49] showed that these variants
exhibit decreased binding, which EWAK∗ accurately predicted.

Out of the 41 variants tested (see S2 Table), EWAK∗ predicted the 342
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experimentally-reported effect (increased vs. decreased binding) correctly in 38 cases. 343

The three designs where the effect was predicted incorrectly are marked with a star in 344

Fig 5. To make these predictions, the corresponding computational designs ranged in 345

size from single point mutations up to 6 simultaneous mutations. Results are outlined in 346

Fig 5. Furthermore, the Spearman’s ρ value – a measure of the correlation between two 347

sets of rankings – when comparing the experimental data to the computational 348

predictions is 0.81. This ρ value indicates that not only can EWAK∗ correctly predict 349

the effect of a particular set of mutations, but that EWAK∗ also does a good job ranking 350

the variants in order according to change in binding upon mutation (Fig 6). This value 351

is very similar to Spearman’s ρ values for other PPI systems when using osprey [1]. 352

Fig 6. Comparing the computational EWAK∗ ranking with the
experimental ranking for 41 c-Raf-RBD variants binding to KRas. Each
green dot represents a variant of c-Raf-RBD and is plotted according to the
experimental ranking along with the corresponding computational ranking of its binding
to KRas. A least squares fit line is shown in gray. Calculating the Pearson correlation
coefficient between the two sets of rankings yields a Spearman’s ρ of 0.81.

BBK∗ produced similarly accurate results, but took up to 10 times longer and failed 353

to produce results in 4 cases. In particular, in 2 cases (marked in green in Fig 5), BBK∗ 354

ran out of memory. These cases serve as examples of large designs where EWAK∗ 355

outperforms BBK∗. In the 2 other cases (marked in orange in Fig 5), BBK∗ failed to 356

return a result for the requested sequence in the top 5 reported sequences. This 357

illustrates how EWAK∗ and fries are particularly helpful when performing larger 358

designs that contain more simultaneous mutations and more flexible residues. 359

Finally, we compared our predictions to the interesting biological predictions in [49]. 360

It is unclear how many mutants were computationally evaluated, but the authors do 361

report computational predictions for 6 point mutations. Of those, point mutants R67L, 362

N71R, and V88I were predicted to improve the intermolecular interactions between 363

c-Raf-RBD and KRasGTP. However, experiments found that R67L and V88I actually 364

reduced the binding of c-Raf-RBD to KRasGTP [49, 64]. In contrast to [49], EWAK∗ 365

accurately predicted that these mutations decrease binding of c-Raf-RBD to KRasGTP. 366

For a more detailed view of one of these designs, V88I, see Fig 7. Additionally, a 367

number of mutations were combined and experimentally tested in [49]. Unfortunately, 368

none of these variants improved binding to either KRasGTP or KRasGDP, which 369
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fries/EWAK∗ correctly predicted computationally (Fig 5). In [49], the authors do not 370

present any computational predictions for these combined variants, but our results show 371

that a computational prediction using osprey’s EWAK∗ would have saved the time and 372

resources taken to experimentally test these variants. 373

Fig 7. Redesign of c-Raf-RBD residue position 88 from valine to isoleucine.
The left-hand side shows c-Raf-RBD (yellow) in complex with KRas (pink). Panels
(A-D) zoom in on one particular design at residue position 88 and are rotated 180°.
Residue position 88 has a valine in the native, wild-type sequence (panels A & C) which
was redesigned to an isoleucine (panels B & D). A mutation to isoleucine at this
position was computationally predicted by EWAK∗ to decrease the binding of
c-Raf-RBD to KRasGTP. This was experimentally validated in [49], where the authors
incorrectly computationally predicted the effect of this particular mutation on the
binding of c-Raf-RBD to KRasGTP. (A) The wild-type residue (valine) is shown in
green with dots that indicate molecular interactions [66] with the surrounding residues
(residues allowed to be flexible in the design are shown as lines). (B) The mutant
residue (isoleucine) is shown in blue with dots that indicate molecular interactions [66]
with the surrounding residues (residues allowed to be flexible in the design are shown as
lines). Contacts made by the wild-type valine residue (circled dots in (A)) were lost
upon mutation to isoleucine (circled space in (B)). (C & D) A set of 10 low-energy
conformations that were included in the corresponding partition function calculation are
shown for the wild-type (green) and the variant (blue).

Prospective redesign of the c-Raf-RBD:KRas protein-protein 374

interface toward improved binding 375

The ability to accurately predict the effect mutations have on the binding of c-Raf-RBD 376

to KRasGTP (see the Section entitled “fries/EWAK∗ retrospectively predicted the 377

effect mutations in c-Raf-RBD have on binding to KRas”) gave us confidence in the 378

EWAK∗ algorithm’s ability to predict new mutations in this interface toward a 379

c-Raf-RBD variant that exhibits an even higher affinity for KRasGTP than previously 380

reported variants which focused on targeting KRasGDP [49]. Therefore, to do a 381

prospective study, we computationally redesigned 14 positions in c-Raf-RBD in the 382

c-Raf-RBD:KRas PPI to identify promising mutations. After extending osprey to 383

include fries and EWAK∗, 14 different designs were completed where each design 384

included 1 mutable position that was allowed to mutate to all amino acid types except 385

for proline. Each design also included a set of surrounding flexible residues within 386

roughly 4 Å of the mutable residue. These designs were run using fries and EWAK∗ 387

and included continuous flexibility [12–15]. fries was first used to limit each design to 388

September 25, 2019 18/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/790949doi: bioRxiv preprint 

https://doi.org/10.1101/790949
http://creativecommons.org/licenses/by/4.0/


only the most favorable sequences (as described in the Section entitled “Fast Removal of 389

Inadequately Energied Sequences (fries)”) and then EWAK∗ was used to estimate the 390

K∗ scores (as described in the Section entitled “Energy Window Approximation to K* 391

(EWAK∗)”). We report the upper and lower bounds on the EWAK∗ score for each 392

design in Table 1 (also see S3 Table), where the listed sequences are those that were not 393

pruned during the fries step. From these results, the predicted binding effect 394

(increased vs. decreased) was determined based on comparing each variant’s K∗ score to 395

its corresponding wild-type K∗ score. We then selected 5 novel point mutations – that 396

to our knowledge are not reported in any existing literature – for experimental 397

validation (Table 1). It is worth noting that these 5 point mutations were selected out 398

of an initial 294 possible mutations. We limited our experimental validation to only 399

these 5 new mutations and 2 previously reported mutations. This greatly reduced the 400

amount of resources necessary for experimental validation compared to testing all 294 401

possibilities. These mutations were selected based on having a promising K∗ score and 402

through examining structures calculated by EWAK∗. Of the mutations selected, T57M 403

was selected to act as a variant that was computationally predicted to be comparable to 404

wild-type. This variant was included to further verify the accuracy of osprey’s 405

predictions. On the other hand, some of osprey’s top predictions were excluded, for 406

instance, T57R (included in S3 Table) was not selected for experimental testing because 407

it has an unsatisfied hydrogen bond as evidenced in the structures calculated by 408

osprey. Therefore, we do not believe that the score accurately represents the effect the 409

mutation will have. Other excluded top predictions (see S3 Table) displayed similar 410

characteristics or have been reported and tested previously [49,64,65]. 411

Experimental validation of mutations in the c-Raf-RBD:KRas 412

protein-protein interface 413

The mutations selected (highlighted in Table 1) from computational design were 414

experimentally validated using a bio-layer interferometry (BLI) assay. Results from an 415

initial single-concentration BLI screen (Fig 8) suggested that, contrary to the 416

computational predictions, the T57K and V88F variants decrease binding, whereas the 417

T57M and K87Y mutations both have a roughly neutral effect on binding, which is 418
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Table 1. Computational predictions by osprey/fries/EWAK∗ that were
selected for experimental validation. Each row of the table shows the results of
the redesign of a residue position in c-Raf-RBD in the c-Raf-RBD:KRas PPI that were
also selected for experimental validation (all of the computational results are listed in S3
Table). The table contains the values for upper and lower bounds on log(K∗) values
(the calculation of these bounds is described in detail in [32]). Mutations highlighted in
yellow, blue, and pink were selected for experimental testing and validation. The two
residues highlighted in blue are the best previously discovered [49] mutations that
improve binding (independently and additively) and are included in our tightest binding
variant, c-Raf-RBD(RKY) (Figs 9, 8, and 10). The variants highlighted in yellow are, to
the best of our knowledge, never-before-tested variants that are predicted to increase
the binding of c-Raf-RBD to KRasGTP. The variant highlighted in pink was selected for
experimental testing to act as a mutation predicted to be comparable to wild-type to
test how accurately osprey predicted the effects of these mutations.

Mutation Lower Bound log (K∗) Upper Bound log (K∗)

T57M 3.43 3.46

T57 3.82 3.92

T57K 5.01 5.07

N71 7.25 7.49

N71R 9.66 10.10

A85 26.3 26.9

A85K 30.7 32.3

K87 13.4 14.1

K87Y 14.1 14.2

V88 16.5 16.6

V88Y 17.3 17.6

V88F 18.0 18.2

consistent with the computational predictions. The final computationally predicted 419

point mutant, V88Y, improves binding a comparable amount to the improvement seen 420

with A85K or N71R, two previously reported variants also predicted by osprey and 421

experimentally tested herein that improve binding. With the discovery of this new 422

variant containing the point mutant V88Y (referred to herein as c-Raf-RBD(Y)) the 423

next natural step was to combine it with the mutations found in the best reported 424

variant, N71R and A85K (referred to herein as c-Raf-RBD(RK)). Therefore, we also 425

included the double-mutant, c-Raf-RBD(RK), and the new triple-mutant – which 426

contains N71R, A85K, and V88Y and is referred to herein as c-Raf-RBD(RKY) – in our 427

initial BLI screen. Additionally, the c-Raf-RBD(RKY) variant was computationally 428

predicted by fries/EWAK∗ to bind to KRasGTP more tightly than the previous best 429

known binder, c-Raf-RBD(RK) (results are detailed in Fig 9). Given the promising 430

screening and computational results for the c-Raf-RBD(Y) and c-Raf-RBD(RKY) 431

variants, we measured Kd values for each variant by titrating the analyte over the 432
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Fig 8. Single-concentration experimental screening of c-Raf-RBD variants
binding to KRas using BLI. (A) Binding curves are shown for each variant (labeled
on the plot) tested at a concentration of 250 nM. The colors and labels in panel (A)
correspond to those in panel (B). (B) Plot of estimated Kd values for each tested
variant from a single-concentration screen (plotted in panel (A)). The c-Raf-RBD(RKY)
variant (in green on the far left) is a novel, newly discovered variant of c-Raf-RBD. Top
variants were further validated and had their Kd values calculated more accurately
using BLI titration experiments (Fig 10).

Fig 9. Computational predictions in the protein-protein interface of the
c-Raf-RBD:KRas complex for c-Raf-RBD(RK) and the novel variant
c-Raf-RBD(RKY). Shown on the left is only the relevant protein-protein interface
between c-Raf-RBD and KRas. Each panel zooms in on this interface and details a
different c-Raf-RBD variant and its corresponding computational predictions. The
upper and lower bounds on the log(K∗) score for each design variant (wild-type,
c-Raf-RBD(RK), and c-Raf-RBD(RKY)) are given in the bottom table. These
computational predictions correspond with and are supported by the experimental
results presented in the Section entitled “Experimental validation of mutations in the
c-Raf-RBD:KRas protein-protein interface.” Panels (A) and (B) show the wild-type
sequence, panels (C) and (D) show the variant c-Raf-RBD(RK), and panels (E) and (F)
show the novel computationally predicted variant c-Raf-RBD(RKY). Panels (A), (C),
and (E) show the wild-type, c-Raf-RBD(RK), and c-Raf-RBD(RKY), respectively,
along with probe dots [66] that represent the molecular interactions within each
structure calculated by osprey. These probe dots were selected to only show
interactions between the residues included in the computational designs (shown as green
and blue lines) with their surrounding residues. Panels (B), (D), and (F) show 10
low-energy structures from each conformational ensemble calculated by
osprey/EWAK∗. Panel (G) shows a zoomed-in overlay of the wild-type variant with
the c-Raf-RBD variant that includes only the V88Y mutation. Purple arrows indicate
the change in positioning of the lysine at residue position 84 upon mutation of residue
position 88 from valine to tyrosine. When valine is present at position 88, the lysine
residue (shown in green) primarily hydrogen bonds with an aspartate (labeled) in KRas.
When valine is mutated to tyrosine (shown in cyan), the lysine at position 84 moves to
make room for the tyrosine and positions itself to hydrogen bond with both the
aspartate and the glutamate (labeled) in KRas.

ligand in a BLI-based assay (Fig 10). Excitingly, c-Raf-RBD(RKY) is calculated by the 433

data from the BLI assay (Figs 8 and 10) to bind KRasGTP roughly 5 times better than 434

the previous best known binder, c-Raf-RBD(RK), and approximately 36 times better 435

than wild-type c-Raf-RBD. Given how heavily studied the KRas system is, with several 436

reported mutational and structural studies [49,64,64,65,65,67,67–73,73,74,74–79], this 437

is a discovery of some significance. 438

Bio-layer interferometry (BLI) assay Binding of wild-type and variants of 439

c-Raf-RBD were experimentally measured using a bio-layer interferometry (BLI) assay. 440

Each variant of c-Raf-RBD was expressed and purified (S2 Text) with cysteine residues 441

at positions 81 and 96 substituted for isoleucine and methionine, respectively. These 442
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Fig 10. BLI titration experiments to calculate Kd values for select
c-Raf-RBD variants. The plots shown here are representative and the data from
replicate experiments are presented in S4 Table. Each plot shows the data collected
from a titration BLI experiment where the concentration of the c-Raf-RBD variant is
incrementally increased. The concentrations for the wild-type variant were 10, 50, 150,
200, and 300 nM. The concentrations for all of the other variants were 10, 25, 25, 75, 75,
125, and 200 nM. Repeat intermediate concentrations were used as loading controls.
These curves were then fit using a mass transport model within the Octet Data Analysis
HT software provided by FortéBio in order to calculate the Kd value for each variant’s
binding to KRas. The values in the table here (bottom right) are average Kd values
shown with 2 standard deviations calculated from replicate experiments (S4 Table). The
values presented here for Wild-Type, A85K, and c-Raf-RBD(RK) agree well with
previously reported Kd values [49]. The best binding variant, c-Raf-RBD(RKY), binds
to KRas about 5 times better than the previous tightest-known binder, c-Raf-RBD(RK),
and about 36 times better than wild-type c-Raf-RBD.

mutations were previously reported to minimally affect on the stability of 443

c-Raf-RBD [73] and their substitution allows for the use of the c-Raf-RBD constructs in 444

other assays (not mentioned herein). Additionally, we do not believe these residue 445

substitutions have a large effect since the Kd values determined herein align with 446

previously reported Kd values [49] (Fig 10). KRas was expressed and purified (S3 Text) 447

with a poly-histidine protein tag (His-tag) and loaded with a non-hydrolyzable GTP 448

analog, GppNHp. KRas was also made to include a substitution at position 118 from 449

cysteine to serine in order to increase expression and stability [80]. Ni-NTA tips were 450

then used to perform the BLI experiments to determine binding of the c-Raf-RBD 451

variants to KRasGppNHp (results are shown in Figs 8 and 10 and S4 Table). All 452

experiments were carried out in 30 mM phosphate pH 7.4, 327 mM NaCl, 2.7 mM KCl, 453

5 mM MgCl2, 1.5 mM TCEP, 0.1% BSA, and 0.02% Tween-20 + Kathon at 25°C with 454

1000 RPM shaking and a KRas loading concentration of 20 µg/ml. Each curve 455

presented (Figs 8 and 10) was fit using the built-in mass transport model within the 456

Octet Data Analysis HT software provided by FortéBio. We only accepted fits with a 457

sum of square deviations χ2 less than 1 (FortéBio recommends a value less than 3) and 458

a coefficient of determination R2 greater than 0.98. 459

Discussion 460

fries and EWAK∗ are new, provable algorithms for more efficient ensemble-based 461

computational protein design. Efficiency and efficacy were tested and shown across a 462
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total of 2,826 different design problems. An implementation of fries/EWAK∗ is 463

available in the open-source protein design software OSPREY [1] and all of the data has 464

been made available (see “Data availability statement”). fries/EWAK∗ in combination 465

achieved a significant runtime improvement over the previous state-of-the-art, BBK∗, 466

with runtimes up to 2 orders of magnitude faster. EWAK∗ also limits the number of 467

minimized conformations used in each K∗ score approximation by up to about 2 orders 468

of magnitude while maintaining provable guarantees (see the Section entitled “Energy 469

Window Approximation to K* (EWAK∗)”). fries alone is capable of reducing the 470

input sequence space while provably keeping all of the most energetically favorable 471

sequences (see the Section entitled “Fast Removal of Inadequately Energied Sequences 472

(fries)”), decreasing the size of the sequence space by more than 2 orders of magnitude, 473

and leading to more efficient design given the smaller search space. 474

To further validate osprey with fries/EWAK∗, we applied these algorithms to a 475

biomedically significant design problem: the c-Raf-RBD:KRas PPI. First, we performed 476

a series of retrospective designs where fries/EWAK∗ accurately predicted how a variety 477

of mutations affect the binding of c-Raf-RBD to KRasGTP that previous computational 478

methods had failed to accurately predict [49]. This success supports the use of osprey 479

and fries/EWAK∗ to evaluate the effect mutations in the protein-protein interface of 480

c-Raf-RBD:KRas have on binding (more, similar successes of the K∗ algorithm are 481

presented and discussed in [1]). fries/EWAK∗ also prospectively predicted the effect of 482

new mutations in the c-Raf-RBD:KRas PPI and discovered a novel c-Raf-RBD 483

mutation V88Y with improved affinity for KRas. We went on to combine this new 484

mutation with two previously reported mutations, N71R and A85K [49], to create 485

c-Raf-RBD(RKY), an even stronger binding c-Raf-RBD variant, which fries/EWAK∗ 486

accurately predicted. We biochemically screened top predicted variants using an initial 487

bio-layer interferometry (BLI) single-concentration assay. Only a promising subset of 488

the computationally predicted and initially screened variants were then evaluated using 489

a BLI titration assay to calculate Kd values for individual c-Raf-RBD variants. We 490

determined that c-Raf-RBD(RKY) binds to KRasGTP roughly 36 times more tightly 491

than wild-type c-Raf-RBD, making it the tightest known c-Raf-RBD variant binding 492

partner of KRasGTP. 493

Given that numerous groups have explored this protein-protein 494
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interaction [64,65,67–77] and performed mutagenesis on c-Raf-RBD either, through 495

rational means [64,67,74,78], computational methods [49,65] or high-throughput 496

evolutionary methods [73,79] and that none identified V88Y, this discovery validates 497

our computational approach and the use of computational algorithms such as fries and 498

EWAK∗ to redesign protein-protein interfaces toward improved binding. Finally, 499

previous mutations that enhanced the affinity of c-Raf-RBD binding to KRas did so by 500

supercharging c-Raf-RBD [49,64,65]. In contrast, our mutation V88Y introduces a 501

novel, aromatic residue. The discovery that such a mutation can improve the binding of 502

c-Raf-RBD to KRasGTP is of considerable significance. These new c-Raf-RBD variants 503

serve as an important step toward better understanding the KRas:effector interface and 504

eventually developing successful therapeutics to directly target and block the aberrant 505

behavior of mutant KRas. 506

Supporting information 507

S1 Text. Homology model of c-Raf-RBD in complex with KRas. 508

S2 Text. Details of the expression and purification of c-Raf-RBD variants. 509

S3 Text. Details of the expression and purification of KRas. 510

S1 Table. Protein structures used in computational experiments as 511

described in the Section entitled “Computational materials and methods.” 512

Each protein structure has its PDB ID listed along with its molecule names as 513

presented in the Protein Database entry for each structure. Individual designs are not 514

listed or described here, but the necessary code and data is provided for the interested 515

reader (see Data availability statement). 516

S2 Table. Experimental and computational percent change in binding and 517

rankings. For each listed variant, we give the experimental percent change in binding 518

relative to wild-type as reported in [64] and as calculated from reported binding values 519

in [65] and [49], the EWAK∗ computationally predicted percent change in binding (as 520

described in the Section entitled “fries/EWAK∗ retrospectively predicted the effect 521
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mutations in c-Raf-RBD have on binding to KRas”) and the rankings that correspond 522

to these values. The rankings have a Pearson correlation of 0.81. 523

S3 Table. Table of computational predictions for point mutants in 524

c-Raf-RBD. Each section of the table shows the results of the redesign of a residue 525

position in c-Raf-RBD in the c-Raf-RBD:KRas PPI in order of increasing upper bound 526

on log(K∗). The table contains the values for upper and lower bounds on log(K∗) 527

values (these bounds are described in detail in [32]). *Design results for the wild-type 528

amino acid identity for each position. †Mutations that were selected for experimental 529

testing and validation. 530

S4 Table. Kd values for each tested variant for all replicates of BLI 531

titration experiments. For each listed variant, we give the dissociation constant Kd 532

for each BLI titration experiment calculated from the fit done using the built-in mass 533

transport model within the Octet Data Analysis HT software provided by FortéBio. We 534

only accepted fits with a sum of square deviations χ2 less than 1 (FortéBio recommends 535

a value less than 3) and a coefficient of determination R2 greater than 0.98. Presented 536

in the table in Fig 10 are averages of these Kd values. 537
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