bioRxiv preprint doi: https://doi.org/10.1101/790642; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Functional characterization and lineage analysis of broadly neutralizing human
antibodies against dengue virus identified by single B cell transcriptomics

Natasha D. Durham'”, Aditi Agrawal"", Eric Waltari', Derek Croote?, Fabio Zanini?* ,Edgar
Davidson®, Mallorie Fouch?®, Olivia Smith’, Esteban Carabajal’, John E. Pak’, Benjamin J.
Doranz®, Makeda Robinson*®°, Ana M. Sanz®, Ludwig L. Albornoz’, Fernando Rosso®®, Shirit
Einav*5, Stephen R. Quake'?, Krista M. McCutcheon', Leslie Goo"%.

'Chan Zuckerberg Biohub, San Francisco, United States

’Department of Bioengineering, Stanford University, Stanford, United States

3Integral Molecular, Inc., Philadelphia, United States

“Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford
University School of Medicine, Stanford, United States

*Department of Microbiology and Immunology, Stanford University School of Medicine,
Stanford, United States

8Clinical Research Center, Fundacién Valle del Lili, Cali, Colombia

"Pathology and Laboratory Department, Fundacién Valle del Lili, Cali, Colombia.
8Department of Internal Medicine, Division of Infectious Diseases, Fundacion Valle del Lili, Cali,
Colombia

9Fred Hutchinson Cancer Research Center, Seattle, United States

"Equal contribution

"Current affiliation: Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, United States

*Current affiliation: Lowy Cancer Research Center, University of New South Wales, Kensington,
NSW, Australia

#Corresponding author: lgoo@fredhutch.org

Abstract

Eliciting broadly neutralizing antibodies (bNAbs) against the four dengue virus serotypes
(DENV1-4) that are spreading into new territories is an important goal of vaccine design. To
delineate bNAD targets, we characterized 28 monoclonal antibodies belonging to expanded and
hypermutated clonal families identified by transcriptomic analysis of single plasmablasts from
DENV-infected individuals. Among these, we identified two somatically related bNAbs that
potently neutralized DENV1-4. Mutagenesis studies revealed that the major recognition
determinants of these bNAbs are in E protein domain |, distinct from the only known class of
human bNAbs against flaviviruses with a well-defined epitope. B cell repertoire analysis from
acute-phase peripheral blood suggested a memory origin and divergent somatic hypermutation
pathways for these bNAbs, and a limited number of mutations was sufficient for neutralizing
activity. Our study suggests multiple B cell evolutionary pathways leading to DENV bNAbs
targeting a novel epitope that can be exploited for vaccine design.
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Introduction

Dengue virus (DENV) is an enveloped, positive-stranded RNA virus belonging to the Flavivirus
genus, which includes clinically significant human pathogens such as Yellow Fever virus (YFV),
Japanese encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV). DENV is
transmitted to humans via Aedes mosquitoes, whose global distribution places half of the
world’s population at risk for infection (Kraemer et al., 2019; Messina et al., 2019). Each year,
the four phylogenetically and antigenically distinct DENV serotypes (DENV1-4) cause
approximately 400 million infections (Bhatt et al., 2013). Additionally, increased global trade,
connectivity, and climate change have fueled the expansion of DENV1-4 into new territories
(Kraemer et al., 2019; Messina et al., 2014).

Approximately 20% of DENV-infected individuals develop a mild febrile iliness, of which 5% to
20% progress to potentially fatal severe disease, characterized by bleeding, plasma leakage,
shock, and organ failure (Guzman & Harris, 2015; Khursheed et al., 2013; Thein, Leo, Lee, Sun,
& Lye, 2011). Epidemiological studies have shown that pre-existing antibodies from a primary
DENV infection are a risk factor for severe disease following subsequent infection with a
heterologous DENV serotype (Katzelnick et al., 2017; Salje et al., 2018; Sangkawibha et al.,
1984). This is partly attributed to the prevalence of cross-reactive antibodies from the initial
infection that can bind, but not neutralize the secondary heterologous virus. Instead, these non-
neutralizing antibodies have the potential to facilitate viral uptake into Fc gamma receptor-
expressing target cells in a process known as antibody-dependent enhancement (ADE)
(Guzman & Harris, 2015; Halstead, 2014). Recent studies of clinical cohorts demonstrated that
the risk of severe disease following secondary infection is greatest when pre-existing titers of
cross-reactive antibodies fall within a narrow, intermediate range (Katzelnick et al., 2017; Salje
et al., 2018). To limit the potential for ADE, an effective vaccine must therefore elicit durable and
potent neutralizing antibodies of high titer against DENV1-4 simultaneously. However, the viral
and host determinants leading to such bNAbs against flaviviruses are poorly understood.

All of the leading DENV vaccine candidates in clinical development are based on a tetravalent
strategy (Scherwitzl, Mongkolsapaja, & Screaton, 2017), which assumes that the use of
representative viral strains from each serotype will elicit a balanced and potent polyclonal
antibody response to minimize the risk of ADE. However, the suboptimal efficacy and safety
profile of a recently licensed DENV vaccine has been partly attributed to its inability to generate
a balanced neutralizing antibody response to all four serotypes (Hadinegoro et al., 2015).
Additionally, there may be important antigenic differences between circulating and lab-adapted
strains (Lim et al., 2019; Raut et al., 2019), as well as among strains even within a given
serotype (Bell, Katzelnick, & Bedford, 2019; Katzelnick et al., 2015). Antigenic mismatch
between vaccine and circulating strains impacted vaccine efficacy (Juraska et al., 2018),
highlighting the importance of rational selection of vaccine components. An alternative strategy,
largely exemplified by vaccine development efforts for HIV (Kwong & Mascola, 2018) and
respiratory syncytial virus (RSV) (Crank et al., 2019), relies on identifying antibodies with
desirable properties and precisely defining their epitopes to guide epitope-based vaccine design
(Graham, Gilman, & McLellan, 2019). For antigenically diverse viruses such as DENV, a
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conserved epitope-based vaccine strategy to elicit a broad and potent monoclonal neutralizing
antibody response could mitigate the challenge of selecting representative vaccine strains.

The main target of flavivirus neutralizing antibodies is the envelope (E) glycoprotein, which
consists of three structural domains (DI, DI, DIIl), and is anchored to the viral membrane via a
helical stem and transmembrane domain. The E proteins direct many steps of the flavivirus life
cycle, including entry, fusion, and assembly of new virus particles (Pierson & Diamond, 2012).
Flaviviruses bud into the endoplasmic reticulum lumen as immature particles with a spiky
surface on which E proteins associate into sixty heterotrimers with a chaperone protein, prM
(Prasad et al., 2017; Y. Zhang et al., 2003; Y. Zhang, Kaufmann, Chipman, Kuhn, & Rossmann,
2007). Within the low pH environment of the trans-golgi network, E proteins undergo
conformational changes that allow furin-mediated cleavage of prM (Yu et al., 2008), resulting in
the release of mature infectious virions with a smooth surface densely coated with ninety E
homodimers (Kostyuchenko et al., 2016; Kuhn et al., 2002; Mukhopadhyay, Kim, Chipman,
Rossmann, & Kuhn, 2003; Sirohi et al., 2016; X. Zhang et al., 2013). The dense arrangement of
E proteins on the virion surface is important for antigenicity, as many potently neutralizing
human antibodies against flaviviruses target quaternary epitopes spanning multiple E proteins
(de Alwis et al., 2012; Hasan et al., 2017; Kaufmann et al., 2010; Rouvinski et al., 2015; Teoh et
al., 2012).

Recent advances in monoclonal antibody isolation and characterization (Boonyaratanakornkit &
Taylor, 2019; Corti & Lanzavecchia, 2014) have accelerated the identification of bNAbs,
including those against flaviviruses. Examples include antibodies d488 (Li et al., 2019) and
m366 (Hu et al., 2019), which were cloned from B cells of rhesus macaques receiving an
experimental DENV vaccine and from healthy flavivirus-naive humans, respectively, and mAb
DM25-3, which was isolated from a mouse immunized with a mature form of DENV2 virus-like
particles ((Shen et al., 2018). Although these antibodies are cross-reactive against DENV1-4,
they demonstrated only moderate potency. E protein residues involved in d488 binding lie at the
interface of the M protein and the E protein ectodomain (Li et al., 2019), while those for m366.6
binding appear to be located at the dimerization interface between DIl and DIl (Hu et al., 2019).
Residue W101 within the DIl fusion loop was identified to be important for recognition by mAb
DM25-3 (Shen et al., 2018). Attempts to engineer mouse antibodies with increased breadth and
potency against DENV1-4 have also been described (Deng et al., 2011; Shi et al., 2016;
Tharakaraman et al., 2013).

Only a few naturally occurring human bNAbs against flaviviruses have been characterized.
Many of these antibodies target epitopes consisting of the DIl fusion loop as well as the
adjacent bc loop in DIl in some cases (Smith et al., 2013; Tsai et al., 2013; Xu et al., 2017).
Although antibodies recognizing the highly conserved fusion loop can demonstrate broad
reactivity to all DENV serotypes and related flaviviruses, their neutralizing potency is often
limited due to this epitope being largely inaccessible, especially on mature virions (Cherrier et
al., 2009; Nelson et al., 2008; Shen et al., 2018; Stiasny, Kiermayr, Holzmann, & Heinz, 2006).
To date, the most well-characterized class of human antibodies with broad and potent
neutralizing activity against flaviviruses targets a conserved, quaternary epitope spanning both
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E monomeric subunits within the dimer. A subset of these E dimer epitope (EDE)-specific
bNADbs potently neutralize not only DENV1-4, but also ZIKV, owing to the high conservation of
the EDE, which overlaps the prM binding site on E (Barba-Spaeth et al., 2016; Dejnirattisai et
al., 2015; Rouvinski et al., 2015). The exciting discovery of the EDE class of bNAbs highlights
the potential for an epitope-focused flavivirus vaccine strategy.

As multiple specificities are likely required to provide maximum coverage of diverse circulating
viral variants (Bell et al., 2019; Doria-Rose et al., 2012; Goo, Jalalian-Lechak, Richardson, &
Overbaugh, 2012; Katzelnick et al., 2015; Keeffe et al., 2018; Kong et al., 2015), in this study,
we aimed to define novel sites on the flavivirus E protein that can be targeted by bNAbs. By
characterizing 28 monoclonal antibodies from the plasmablasts of two DENV-infected
individuals, we identified J8 and J9, clonally related bNAbs that neutralized DENV1-4 in the low
picomolar range. The major recognition determinants for J8 and J9 were in E protein DI, distinct
from previously characterized bNAbs. Analysis of the corresponding B cell repertoire revealed
divergent evolution of J8 and J9, suggesting multiple evolutionary pathways to generate bNAbs
within this lineage. Our work identifies both viral and host determinants of the development of
DENV bNAbs that can guide immunogen design and evaluation.

Results

Identification of cross-reactive neutralizing antibodies from clonally expanded
plasmablasts of DENV-infected individuals

We previously profiled the single-cell transcriptomics of peripheral blood mononuclear cells
(PBMCs) from six dengue patients and four healthy individuals (Zanini et al., 2018). In two
DENV-infected patients (013 and 020), we identified 15 clonal families comprising a total of 38
unique paired heavy (VH) and light (VL) chain IgG1 plasmablast sequences, some of which
were hypermutated (1.67% to 10.77% for VH, 0.67% to 7.22% for VL; Figure S1). One clonal
family (CF) included members found in both individuals (antibodies B10, M1, and D8 from CF1,
Figure S1), suggesting convergent evolution, which has been described for the antibody
response to distinct viruses, including flaviviruses (Parameswaran et al., 2013; Robbiani et al.,
2017), Ebola virus (Davis et al., 2019) and HIV (Scheid et al., 2011; Wu et al., 2011). To
functionally characterize these monoclonal antibodies (mAbs), we successfully cloned 36 paired
VH and VL sequences into expression vectors, and transfected mammalian cells for small scale
(96-well) recombinant IgG1 production. We detected secreted IgG in the transfection
supernatants for 28 of 36 mAbs, which were tested for binding to DENV2 recombinant soluble E
protein (rE) and reporter virus particles (RVPs), as well as for neutralizing activity against a
panel of flavivirus RVPs, including DENV1-4, ZIKV, and WNV (Figure S1). Seventeen of 28
mAbs bound to either DENV2 rE (n = 1), or RVPs (n = 7), or both (n = 9). None of the mAbs
neutralized ZIKV, but all 28 neutralized at least one DENV serotype, 21 mAbs neutralized two or
more DENV serotypes, and one mAb neutralized WNYV in addition to DENV.

Binding profile of mAbs
For further characterization, we selected six mAbs for larger scale production and IgG
purification based on their ability to neutralize at least four of the six RVPs tested. These
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included two mAb clonal variants found in both patients (B10 from patient 020 and M1 from
patient 013), two (C4, J9) and one (L8) patient 013 and patient 020 mAbs, respectively, that
neutralized DENV1-4, and the only mAb that neutralized WNV (I7 from patient 020). We first
confirmed binding activity at a single antibody concentration (5 pg/ml) by ELISA. Consistent with
our pilot screen using crude IgG-containing supernatant (Figure S1), 17, M1, B10, and L8 bound
to both rE and RVPs, while C4 and J9 bound to RVPs only (Figure 1A & B), suggesting that
these mAbs target epitopes preferentially displayed on the intact virion. As incubation at higher
temperatures has been shown to improve exposure of some epitopes (Dowd, Jost, Durbin,
Whitehead, & Pierson, 2011; Lok et al., 2008; Sukupolvi-Petty et al., 2013), we performed the
ELISA at both ambient temperature and 37°C. For most antibodies, incubation at 37°C resulted
in a modest but consistent increase in RVP binding (Figure 1B). To evaluate the relative binding
of the mAbs to rE and RVP, we also performed a dose-responsive indirect ELISA at ambient
temperature (Figure 1C). Binding curves revealed robust binding of mAbs L8, B10, M1, and |7
to DENV2 rE (EC50 range of 0.4 to 23 ng/ml) while J9, C4 and the EDE mAbs C10 and B7
displayed little to no binding to rE even at high antibody concentrations (up to 200 pg/mL). All
mAbs showed binding to DENV2 RVP to varying extents, with relatively high EC50 values for J9
(200 ng/ml), J8 (213 ng/ml), and C4 (1200 ng/ml), suggesting limited affinity maturation (Figure
1D).

Neutralization potency of mAbs

We next performed dose-response neutralization assays to obtain ICsy values (mAb
concentration at which 50% of virus infectivity was inhibited). Antibodies M1, B10, and L8
displayed modest (average ICso range of 379 to 796 ng/ml) and incomplete neutralization of
DENV1-4, with ~10% to ~50% infectivity persisting at the highest mAb concentration tested (10
pg/ml) (Figures 2A-B). Incomplete neutralization is commonly observed for cross-reactive DII
fusion loop-specific antibodies, and likely represents structurally heterogeneous virions on which
the epitope is not displayed frequently enough for antibodies to bind at a stoichiometry sufficient
for neutralization (Nelson et al., 2008; Pierson et al., 2007). Antibody 17 displayed an unusual
neutralization profile as it did not neutralize DENV4, and its potency against DENV1-3 was
lower than that against the more antigenically distant WNV. Although mAb C4 completely
neutralized DENV1-4, it did so with modest potency, especially against DENV4 (ICso > 1000
ng/ml). The most potent mAb we identified was J9, which despite relatively weak binding (Figure
1), completely neutralized DENV1-4 with average I1Cso values of 6 ng/ml, 30 ng/ml, 15 ng/ml,
and 39 ng/ml, respectively. A previously characterized subgroup of the EDE class of bNAbs,
which includes mAb EDE1 C10 can neutralize not only DENV1-4, but also ZIKV (Barba-Spaeth
et al., 2016). J9 showed a high specificity for DENV, with no activity against ZIKV, and up to
~60-fold greater potency against some DENV serotypes compared to EDE1 C10 (Figure 2B).
Depending on the serotype, the average neutralization potency of J9 against DENV1-4 was also
up to 15-fold higher than that of bNAb EDE2 B7, which belongs to another EDE subgroup with
poor neutralizing activity against ZIKV (Barba-Spaeth et al., 2016).

The broad and potent neutralizing activity of J9 prompted us to re-evaluate our pilot results
obtained for J8, a somatic variant with no binding or neutralizing activity in our screen with crude
IgG-containing supernatant (Figure S1). When we repeated the cloning, expression, and
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purification of J8 IgG, we observed similar binding (Figure 1) and neutralization (Figure 2)
profiles to J9. When tested as Fab fragments, J9 and J8 were still able to potently neutralize
DENV, unlike C4 and EDE1 C10, which failed to achieve 50% neutralization at the highest mAb
concentration tested (Figure S2). J9 and J8 also potently neutralized contemporary DENV1-4
isolates with ICso values < 50 ng/ml (Figure S3). Additionally, in contrast to C4 and the cross-
reactive DIl fusion loop-specific mouse mAb E60 (Goo, VanBlargan, Dowd, Diamond, &
Pierson, 2017; Nelson et al., 2008; Oliphant et al., 2006), but similar to EDE bNAbs
(Dejnirattisai et al., 2015), J9 and J8 potently neutralized DENV regardless of virion maturation
state (Figure S4), which can indirectly modulate epitope exposure (Cherrier et al., 2009; Goo et
al., 2019; Nelson et al., 2008) and has been shown to be distinct among circulating versus lab-
adapted strains (Raut et al., 2019). We also tested the ability of mAbs to mediate neutralization
after virus attachment to cells, which is characteristic of many potently neutralizing antibodies
against flaviviruses (Goo et al., 2019; Nybakken et al., 2005; Sukupolvi-Petty et al., 2010; Vogt
et al., 2009; Xu et al., 2017). When added after virus attachment to Raji-DCSIGNR cells, C4
failed to inhibit 40-50% of infection at the highest mAb concentration tested (300 pg/ml) (Figure
3). In contrast, J9, J8, and EDE1 C10 potently inhibited DENV2 infection both pre- and post-
virus attachment to cells.

ADE potential of mAbs

In vitro, antibodies can mediate ADE of infection in cells expressing Fc gamma receptor (FcyR)
at sub-neutralizing concentrations (Pierson et al., 2007). Recent studies in humans have also
demonstrated that the risk of severe dengue disease following secondary infection is greatest
within a range of intermediate titers of pre-existing DENV-specific antibodies, while higher titers
are protective against symptomatic infection (Katzelnick et al., 2017; Salje et al., 2018). Thus,
eliciting potently neutralizing antibodies is desirable to limit the concentration range within which
ADE can occur. We measured the ADE potential of a subset of the mAbs identified above in
K562 cells, which have been used extensively to study ADE of flaviviruses as they express
FcyR and are poorly permissive for infection in the absence of antibody (Littaua, Kurane, &
Ennis, 1990). As expected, all DENV-specific mAbs mediated ADE of DENV2 infection to
varying extents (Figure S5). We measured the antibody concentration at which the highest level
of ADE was observed (peak enhancement titer). Consistent with their high neutralization
potencies, the average peak enhancement titer of J9 and J8 for DENV2 (3 ng/ml) was
approximately 27-fold and 480-fold lower than that of mAbs EDE1 C10 (80 ng/ml) and C4 (1467
ng/ml), respectively (Figures S5A and S5D). For J9, J8, and EDE bNAbs, DENV2 neutralization
occurred beyond the peak enhancement titer, with no infectivity observed at high antibody
concentrations. In contrast, for C4 and L8, which neutralized DENV relatively weakly (Figure 1),
ADE of DENV2 was still detected at the highest concentration (10 ug/ml) tested (Figure S5A).
Even at high concentrations, L8 also mediated ADE of ZIKV (Figure S5B) and WNV (Figure
S5C), suggesting binding, but not neutralizing activity against these viruses (Figure 1).
Consistent with their ability to recognize ZIKV, EDE bNAbs enhanced ZIKV infection at sub-
neutralizing concentrations (Figure S5B). J9 and J8 did not facilitate ADE of ZIKV nor WNV
infection, suggesting lack of binding to these flaviviruses. Given their high neutralization
potencies against DENV1-4, J9 and J8 represent desirable antibodies to elicit as their ADE
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potential is restricted to a narrow range of low antibody concentrations, beyond which
neutralization is observed.

Epitope specificity of mAbs

To identify amino acid residues required for mAb recognition, we screened a shotgun alanine-
scanning mutagenesis library of DENV2 E protein variants for mAb binding by flow cytometry
(Davidson & Doranz, 2014). MAb binding profiles to this entire library are summarized in Table
S1. MAbs M1 and L8 demonstrated loss of binding to variants encoding W101A and F108A
mutations within the DIl fusion loop (Figure 4A). Similar to a subset of previously described
fusion loop-specific antibodies (Cherrier et al., 2009; Smith et al., 2013; Tsai et al., 2013), M1
recognition also depended on residue G106 within the fusion loop and residue 75 on the
adjacent bc loop (Figure 4A). Specificity for the fusion loop epitope likely contributes to the
inability of these mAbs to neutralize completely, even at high concentrations (Figures 2A-B), as
previously described (Dowd et al., 2011; Nelson et al., 2008). The |7 epitope involved DII
residues Q256 and G266 (Figure 4B), which are conserved among many flaviviruses (indicated
by yellow squares in Figure S6A alignment) and are important for recognition by the recently
described cross-reactive mAb (d448) isolated from vaccinated rhesus macaques (Li et al.,
2019). Unlike 17, d448 neutralized DENV4, but not WNV (Li et al., 2019). Despite testing
different temperature and pH conditions, we did not detect C4 binding to WT DENV?2 in this flow
cytometry-based assay (data not shown) and were thus unable to screen against the mutant
library. For J9, most E protein mutations that reduced binding by >80% relative to WT (shown in
bold in Table S1) were found in DI (R2, 14, K47, S145, H149, N153, T155), but G102 within DII
fusion loop and DIl N242, as well as DIl N366 were also important (Figure 4C). These
mutations minimally affected EDE1 C10 binding (Figure 4C).

For further epitope mapping of J9, one of the most potent bNAbs we identified, we first
attempted to select for neutralization escape viral variants but were unsuccessful after six serial
passages in cell culture under mAb selection pressure. We noted that J9 neutralized DENV1-4
but not ZIKV (Figure 1). As an alternative epitope mapping approach, we generated a panel of
DENV2 RVP variants encoding individual mutations at solvent accessible E protein residues on
the mature DENV virion that are identical or chemically conserved across representative
DENV1-4 strains but differ from ZIKV (Figure S6A). These residues in DENV2 16681 E were
substituted for analogous residues in ZIKV H/PF/2013. We also included a subset of alanine
mutants identified by our binding screen to confirm their importance for neutralization. In total,
we generated 34 DENV2 RVP variants encoding individual mutations throughout the E protein
(Figure S6B); 31 of these variants retained sufficient infectivity (Figure S7) for neutralization
studies. Most individual mutations displayed minimal (< 2-fold) effects on J9 neutralization
potency (Figure S8A). Two DI mutations, K47T and V151T resulted in a modest 4-fold increase
in ICso (Figure S8A). Consistent with our binding screen, we confirmed that mutation at residue
N153 or T155, each of which results in a loss of a potential N-linked glycosylation site,
abrogated J9 neutralization, while mutation at N242 resulted in a 5-fold reduction in potency
(Figures S8A). Although our binding screen suggested that individual G102A and S145A
mutations contributed to J9 recognition, they had limited effects (~2-fold) on neutralization
potency (Figure S8A).
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Because we observed only modest effects with single mutations, we next generated DENV2
RVPs encoding the K47T and V151T mutations in combination, as well as 8 additional pairs of
mutations at a subset of the above 34 residues selected based on their proximity to each other
on the E dimer structure (Figure S6C). Seven of 8 DENV2 RVP variants encoding paired
mutations retained infectivity (Figure S7). Five combinations of paired mutations displayed
similarly modest (up to 4-fold) effects on J9 neutralization potency as when these mutations
were tested individually (Figure S8A). However, in combination, K47T+V151T reduced J9
potency by almost 100-fold. In combination with the F279S mutation in DI, K47T also resulted in
a 16-fold average reduction in J9 potency (Figure S8A). Figures 5A-B highlight key residues that
reduced J9 neutralization potency, either alone or in combination, as identified from our screen
against the entire panel of single and double mutants (Figure S8).

As seen for J9, individual mutations at residues N153 and N155, which together encode a
potential N-linked glycosylation site, abrogated the neutralizing activity of the somatically related
bNADb, J8 (Figure 5C). To varying extents, a similar set of individual and paired mutations that
reduced J9 neutralization potency, including V151T, N242A, K47T+V151T, and H149S+V151T,
also reduced J8 and C4 neutralization potency (Figures 5C-D). However, individual mutations at
some DIl and DIl residues that did not impact J9 neutralization potency (Figure S8A) did
modestly increase resistance to neutralization by J8 (Figure S8B) and C4 (Figure S8C),
respectively by 4- to 7-fold. Interestingly, the V151T mutation alone or in combination with either
K47T or H149S increased neutralization potency of EDE1 C10 by 25-fold (Figure 5E). These
mutations had minimal (< 2-fold) effects on the neutralizing activity of EDE2 B7 (Figure 5F) as
well as patient 013 polyclonal serum (Figure S9), suggesting that they did not globally alter
antigenicity. As previously shown (Dejnirattisai et al., 2015; Rouvinski et al., 2015), mutation at
residue N153 or N155 improved and disrupted EDE1 C10 and EDE2 B7 recognition,
respectively (Figures 5E-F). Overall, these results suggest that the recognition determinants of
J9, J8, and C4, are distinct from those targeted by EDE-specific and other previously
characterized bNAbs against DENV1-4 (Dejnirattisai et al., 2015; Hu et al., 2019; Li et al., 2019;
Smith et al., 2013; Tsai et al., 2013; Xu et al., 2017).

Lineage analysis reveals memory origin and divergent evolution of bNAbs

To gain insight into the development of bNAbs J9 and J8, we processed PBMCs of patient 013
(from which these bNAbs were identified) obtained four days post-fever onset, and performed
next generation sequencing (NGS) of the B cell receptor (BCR) repertoire. This patient
experienced acute secondary infection with DENV4 (Zanini et al., 2018). Given its greater
junctional diversity compared to light chain, we focused our analysis on the heavy chain
repertoire, which is sufficient to identify clonal relationships (Zhou & Kleinstein, 2019). We have
recently shown that PBMC stimulation in a polyclonal, BCR-independent manner can selectively
expand antigen-specific memory B cells (Waltari, McGeever, Friedland, Kim, & McCutcheon,
2019). Accordingly, we obtained 8-fold more unique VH sequences from stimulated PBMCs with
a greater representation of IgG over IgM clonal families compared to unstimulated PBMCs
(Table S2). Compared to previously described healthy BCR repertoire data (Waltari et al.,
2019), VH1-69, VH3-30, VH3-30-3, VH4-34, VH4-39 and VH4-59 were the most dominant
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across both unstimulated and stimulated PBMC VH families in patient 013 (average >= 5% of
repertoire; Figure S10).

We found 579 and 43,179 VH sequences related to J9/J8 in unstimulated and stimulated
PBMCs, respectively (0.4% and 3.5% of total reads, respectively, Table S3). For lineage
construction (Figure 6A), we included sequences that met one of three criteria: 1) highest
numbers of unique molecular identifier (UMI) counts (>35 in PBMC repertoire and >150 in
stimulated PBMC repertoire 1IgG sequences and >15 in IgA sequences), 2) < 5% somatic
hypermutation, or 3) 97% identity to J9 or J8. The J9/J8 lineage derived from recombination of
IGHV1-69 with IGHD2-2 and IGHJ5 with no CDRH3 insertions or deletions (Figure 6B). The
majority of the clonal family members were of the IgG1 subtype, with no IgM identified having a
UMI count >2 and only a small percentage of IgA (1.8% of stimulated PBMC relatives; Figure
6A, triangles).

We identified clones with a 100% match at the nucleotide (nt) level to J9 and J8 in the
stimulated PBMC repertoire (UMI counts of 9 and 14, respectively), and related clones identical
in both unstimulated and stimulated PBMC repertoires throughout the various branches of the
lineage (branch tips labeled J, Q, M, N and P in Figure 6A). Overall, the repertoire showed a
rapid expansion of class switched IgG with numerous nt point mutations from germline VH,
strongly suggesting both J8 (27 nt) and J9 (28 nt) plasmablasts derived from memory B cells
from a prior infection, consistent with previous studies (Priyamvada et al., 2016; Xu et al., 2016).
Among this acute-phase repertoire, we did observe less mutated IgG clones A (3 nt), B (5 nt),
and C (5 nt) early in the lineage (Figure 6A ), which could represent antibodies derived from a
de novo immune response, or from less mutated memory clones. Finally, the divergent
evolution of J9 and J8 suggested multiple somatic hypermutation pathways within this lineage
leading to bNADs.

VH and VL maturation contributes to broadly neutralizing activity

As described above, J8 and J9 VH derived from V-D-J recombination of IGHV1-69 with IGHD2-
2 and IGHJ5. Although we did not analyze the light chain repertoires, both J8 and J9 used the
same founder germline IGKV3-11 and IGKJ2 genes with identical CDR lengths and no
convergent mutations from germline (Figure 6C). To investigate the contribution of somatic
hypermutation (SHM) on broadly neutralizing activity, we generated a panel of recombinant IgG
variants, confirmed proper folding (Figure S11), and tested them for neutralizing activity. As
expected, recombinant J8 and J9 IgGs expressing fully germline VH and VL had no neutralizing
activity (Figures 7A-D). Similarly, J8 and J9 IgG expressing germline VH paired with the
corresponding mature VL, and vice versa, did not neutralize DENV1-4, suggesting that both VH
and VL SHM contributed to neutralizing activity.

Several mutations occurred early in the J8/J9 lineage, including CDR-H2 153F, CDR-H3 T99A/P
and D100cH (clones labeled A, B, and C in Figure 6A, and alignments in Figure 6B), and were
retained throughout the continued VH somatic hypermutation. To investigate the VH SHM
requirements for broadly neutralizing activity, we generated “J9 5mut” and “J8 5mut” variants
containing the above three early VH mutations (153F, T99P, D100cH) and two additional CDR-
H2 mutations (Q61D, K62N) common across different lineage branches (Figures 6A and 6B).
We paired J8 and J9 5mut VH with the corresponding mature VL to generate recombinant IgGs.
These five CDR-H2 and CDR-H3 mutations were sufficient for broadly neutralizing activity of J8
against DENV1-4 (Figures 7A-D) and of J9 against DENV1 and DENV2 only (Figures 7A-B).
Compared to fully mature J9, J9 5mut displayed reduced neutralization potency against DENV3
and DENV4 (Figures 7C-D), suggesting that additional J9 VH mutations were required for


https://doi.org/10.1101/790642
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/790642; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

neutralization of these viruses. J9 VL mutations also played a role in neutralization of DENV3
and DENV4 as chimeric IgG expressing J9 heavy chain with J8 light chain displayed less potent
neutralization of these viruses (Figures 7C-D). Finally, although the FR2 of J9 VH contained a
glycine insertion not present in related clones (Figure 6B), this insertion was not necessary for
neutralizing activity (Figure 7A-D).

Discussion

A safe and effective vaccine to protect against DENV remains elusive, largely due to the
challenge of eliciting antibodies that can potently neutralize all four viral serotypes
simultaneously to minimize the risk of ADE. For antigenically diverse viruses, more than one
antibody specificity may be required to provide optimal coverage of diverse circulating variants
(Bell et al., 2019; Doria-Rose et al., 2012; Goo et al., 2012; Katzelnick et al., 2015; Keeffe et al.,
2018; Kong et al., 2015). Although cross-reactive antibodies against flaviviruses have been
described, very few display potent neutralizing activity (Barba-Spaeth et al., 2016; Dejnirattisai
et al., 2015; Xu et al., 2017). The epitope for one of these bNAbs (SiGN-3C) is not well defined
but involves 2 residues within DIl fusion loop and one in DIl (Xu et al., 2017). Detailed epitope
mapping studies have been performed only for the EDE class of bNAbs, which recognize a
quaternary epitope spanning both monomers within the E protein dimer (Barba-Spaeth et al.,
2016; Rouvinski et al., 2015). This epitope involves five main regions on the E protein: b strand,
fusion loop, and ij loop on DII; glycan loop on DI; and the DIII A strand. In this study, we
functionally characterized 28 mAbs identified to be clonally expanded and somatically
hypermutated by transcriptomic analyses of single plasmablasts from two individuals acutely
infected with DENV (Zanini et al., 2018). Among these, we identified bNAbs J9 and J8, which
potently neutralized all four DENV serotypes and recognize an epitope with major determinants
in DI. The location of residues important for J9 and J8 recognition (Figure 5A), and the ability of
these bNAbs to bind virus particles but not soluble E protein (Figure 1) suggest a quaternary
epitope. Alternatively, the epitope may be localized to the E monomer, but is preferentially
displayed on virus particles, as previously described for a DENV1-specific mAb (Fibriansah et
al., 2014). Nevertheless, our epitope mapping results demonstrated that the recognition
determinants for J9/J8 are distinct from EDE bNAbs because E protein mutations that reduced
neutralization potency of J9/J8 either increased or did not alter neutralization potency of EDE1
and EDEZ2 antibodies, respectively (Figure 5). Thus, our study defines a new vulnerable site on
the DENV E protein that can be exploited for immunogen design to elicit bNAbs.

A common strategy to isolate and characterize virus-specific mAbs involves sorting hundreds of
single B cells from immune donors followed by reverse-transcription (RT)-PCR to isolate paired
VH/VL genes for recombinant IgG production and functional characterization (Dejnirattisai et al.,
2015; Robbiani et al., 2017; Rogers et al., 2017). In some cases, memory B cells that
specifically bind viral antigens are first enriched by staining with fluorescently labeled antigen
(Robbiani et al., 2017; Rogers et al., 2017; Scheid et al., 2009; Woda & Mathew, 2015; Wu et
al., 2010). Alternatively, single B cells are cultured, and secreted antibodies are directly
screened for function (Walker et al., 2009). Although these methods have successfully identified
many human bNAbs, including those against flaviviruses (Dejnirattisai et al., 2015; Smith et al.,
2013; Tsai et al., 2013; Xu et al., 2012; Xu et al., 2017), they involve labor intensive steps.
Instead of screening a large panel of candidate antibodies, we leveraged transcriptomic
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analyses of single plasmablasts from acute secondary DENYV infection to focus our screen on
clonally expanded and somatically hypermutated B cells (Zanini et al., 2018), which are likely to
encode antigen-specific and affinity matured antibodies. Using this approach, we successfully
identified highly potent mAbs capable of neutralizing all four DENV serotypes. It is unclear
whether this bioinformatics-based approach to identify DENV bNAbs is fortuitous as acute
DENV infection has been shown to induce a rapid and massive expansion of plasmablasts,
many of which can neutralize multiple DENV serotypes (Priyamvada et al., 2016; Wrammert et
al., 2012; Xu et al., 2012), or whether it is applicable to the rapid identification of highly
functional antibodies against other viruses.

J9 and J8 are somatic IgG variants isolated from the same patient (013) who had an acute
secondary infection with DENV4 (Zanini et al., 2018). NGS of the B cell repertoire and
phylogenetic analysis of the J9/J8 lineage revealed divergent evolution of these bNAbs (Figure
6A), suggesting multiple SHM pathways to generate bNAbs against the J9/J8 epitope, which is
encouraging for vaccine design. Antibody lineage divergence and parallel evolution leading to
multiple bNAbs within the same individual has also been described in the context of HIV
infection (MacLeod et al., 2016). J9 and J8 bNAbs derived from IGVH1-69 and IGVK3-11
germline genes. Consistent with a previous study of DENV-infected individuals (Appanna et al.,
2016), many of the DENV-specific mAbs originating from plasmablasts of patient 013 also
derived from IGVH1-69 (Table S3), which is commonly used among bNAbs against other
viruses such as influenza and Hepatitis C virus (Chen, Tzarum, Wilson, & Law, 2019). Many of
these bNAbs can achieve neutralization breadth and potency with limited SHM (Lingwood et al.,
2012; Tzarum et al., 2019). Despite a moderately high degree of SHM for J8 VH (9.9% at the
nucleotide level, Figure S1), five early amino acid mutations in CDR-H2 and CDR-H3 were
sufficient for neutralization breadth and potency (Figure 7). As the paired VL had a low (1.4%)
level of SHM, this observation suggests a relatively limited maturation pathway to a highly
functional antibody.

To our knowledge, all human bNAbs against flaviviruses identified in the context of natural
infection so far, including J9 and J8, were isolated from plasmablasts of individuals sequentially
exposed to at least two different DENV serotypes (Dejnirattisai et al., 2015; Xu et al., 2012;
Zanini et al., 2018). Sequential infection with heterologous DENV serotypes or HIV strains has
been shown to broaden and strengthen the polyclonal neutralizing antibody response (Cortez,
Odem-Davis, McClelland, Jaoko, & Overbaugh, 2012; Patel et al., 2017; Tsai et al., 2015; Tsai
et al., 2013). One proposed model is that low affinity, cross-reactive antibody secreting B-cell
clones elicited by primary DENV exposure are reactivated during secondary infection to
undergo further affinity maturation resulting in antibodies with more broad and potent
neutralizing activity (Patel et al., 2017). Although the relatively high level of SHM already
present in J9 and J8 at day 4 post-fever onset following secondary DENV infection suggests a
recall response, repertoire analysis from earlier time points would be required to determine
whether the memory B cell clones from which these bNAbs were derived underwent further
SHM to achieve neutralization breadth and potency.
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It is also unclear whether the specificities and functions of plasmablast-derived mAbs present
during acute infection confer long-lived protection from infection and pathogenesis. Interestingly,
despite the presence of plasmablast-derived bNAbs such as J9 and J8, and those belonging to
the EDE class during acute secondary infection, the donors from which these antibodies were
isolated subsequently developed severe dengue disease (Dejnirattisai et al., 2015; Zanini et al.,
2018). Indeed, the rapid and massive plasmablast activation following acute DENV infection is
coincident with the onset of severe symptoms and has been proposed to contribute to
immunopathology (Wrammert et al., 2012). Alternatively, despite broad and potent in vitro
neutralizing activity against a surrogate panel of DENV1-4 strains, these bNAbs may not
efficiently neutralize circulating infecting strains. Finally, it is possible that these bNAbs make up
a minor component of the overall polyclonal antibody response, as supported by our finding that
J9/J8-like mAbs minimally contribute to the overall neutralizing activity of patient 013 serum
(Figure S9). Moreover, BCR repertoire analysis revealed that though expanded, the J9/J8 clonal
family is not the largest in this donor (Table S3), at least not in the acute phase sample tested.
The complex interplay among B cells and antibodies of different specificities and functions
present in sera, and their impact on immunity and pathogenesis warrant further study.
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Methods

Patient samples

The study was approved by the Stanford University Administrative Panel on Human Subjects in
Medical Research (Protocol #35460) and the Fundacion Valle del Lili Ethics committee in
biomedical research (Cali,Colombia). All subjects, their parents, or legal guardians provided
written informed consent, and subjects between 6 to 17 years of age and older provided assent.
We collected blood samples from individuals who presented with symptoms compatible with
dengue between 2016 and 2017 to the Fundacion Valle del Lili in Cali, Colombia. Cohort details
have been previously described (Zanini et al., 2018).

Monoclonal antibodies

Plasmablast-derived variable heavy or light chain sequences (Zanini et al., 2018) were
synthesized as gene fragments (Genewiz, San Francisco, CA; Integrated DNA Technologies,
Coralville, IA) to include at least a 15 basepair overlap with the 5’ signal sequence and 3’
constant region of our human IgG1, kappa or lambda expression vectors described elsewhere
(Waltari et al., 2019). For pilot ELISAs and neutralization assays using crude lgG-containing
supernatant, paired heavy and light chain plasmids for each mAb were expressed in Expi293F
cells (Cat# A14527, ThermoFisher Scientific, Waltham, MA) in a 96-well format. IgG levels were
quantified by ELISA as described (Waltari et al., 2019). Antibodies with crude IgG expression
levels < 0.5 ng/mL were excluded from further characterization. Antibodies selected for in-depth
characterization (J9, J8, C4, B10, M1, L8 and I7), as well as control mAbs EDE1 C10
(Dejnirattisai et al., 2015), EDE2 B7 (Dejnirattisai et al., 2015), CR4354 (Kaufmann et al., 2010)
were expressed by transient transfection of Expi-CHO-S cells (Cat# A29129; ThermoFisher
Scientific). Variable heavy and light chain sequences of the above control mAbs used for gene
synthesis and cloning into expression vectors were based on PDB IDs 4UT9, 4UT6, and 3N9G,
respectively. Cell culture supernatant was clarified by centrifugation at 3900 xg for 30 min at
4°C, passed through a 0.22 pm filter, and IgG was purified on MabSelect SuRe resin (Cat# 17-
5438-01; GE Healthcare, Chicago, IL). Other control mAbs used in this study were obtained
commercially: Anti-Dengue Virus Type Il Antibody, clone 3H5-1 (Cat# MAB8702; Millipore
Sigma, Burlington, MA); Flavivirus group antigen Antibody (D1-4G2-4-15 (4G2)) (Cat# NBP2-
52709-0.2mg; Novus Biologicals, Centennial, CO).

Cells

Expi293F cells (Cat# A14527; ThermoFisher Scientific) were cultured in Expi293 Expression
Medium (Cat# A1435101; ThermoFisher Scientific) according to the manufacturer's instructions.
Expi-CHO-S Cells (Cat# A29127; ThermoFisher Scientific) were cultured in ExpiCHO
Expression Medium (Cat# A2910001; ThermoFisher Scientific). HEK-293T/17 cells (ATCC
CRL-11268) were maintained in DMEM (Cat# 11965118; ThermoFisher Scientific)
supplemented with 10% fetal bovine serum (Cat# FB-11; Omega Scientific, Inc.) and 100U/mL
penicillin-streptomycin (Cat# 15140-122; ThermoFisher Scientific). Raiji cells stably expressing
DCSIGNR (Raji-DCSIGNR) (Davis et al., 2006) (provided by Ted Pierson, NIH) and K562 cells
(ATCC Cat# CCL-243) were maintained in RPMI 1640 supplemented with GlutaMAX (Cat#
72400-047; ThermoFisher Scientific), 10% FBS and 100U/mL penicillin-streptomycin. All cells
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were maintained at 37°C in 5% CO; unless otherwise stated. C6/36 cells (ATCC CRL-1660)
were maintained in EMEM (ATCC Cat# 30-2003) supplemented with 10% FBS at 30°C in 5%
CO..

Production of reporter virus particles (RVPs)

RVPs were produced by co-transfection of HEK-293T/17 cells with (i) a plasmid expressing a
WNV subgenomic replicon encoding GFP in place of structural genes (Pierson et al., 2006), and
(i) a plasmid encoding C-prM-E structural genes from the following viruses: DENV1 Western
Pacific (WP) (Ansarah-Sobrinho, Nelson, Jost, Whitehead, & Pierson, 2008), DENV2 16681
(Ansarah-Sobrinho et al., 2008), WNV NY99 (Pierson et al., 2006), and ZIKV H/PF/2013 (Dowd
et al., 2016). Briefly, 8 x 10"5 HEK-293T/17 cells pre-plated in a 6-well plate were co-
transfected with a mass ratio of 1:3 replicon:C-prM-E plasmids using Lipofectamine 3000 (Cat#
L3000-015; ThermoFisher Scientific). Four hours post-transfection, media was replaced with
low-glucose DMEM (Cat# 12320-032; ThermoFisher Scientific) containing 10% FBS and
100U/mL penicillin-streptomycin (i.e. low-glucose DMEM complete) and cells were transferred
to 30°C in 5% CO.. RVP-containing supernatant was harvested at 3, 4, and 5 days post-
transfection, passed through a 0.22 um filter, pooled, and stored at -80°C. DENV3 strain
CH53489 RVPs (Cat# RVP-301; Integral Molecular, Philadelphia, PA) and DENV4 strain
TVP360 RVPs (Cat# RVP-401; Integral Molecular) were obtained commercially. RVPs with
increased efficiency of prM cleavage were produced as above by co-transfecting plasmids
encoding the replicon, structural genes, and human furin (provided by Ted Pierson, NIH) at a
1:3:1 mass ratio. Where indicated, RVPs were concentrated by ultracentrifugation through 20%
sucrose at 164,000 xg for 4 h at 4°C, resuspended in HNE buffer (5mM HEPES, 150mM NaCl,
0.1mM EDTA, pH 7.4), and stored at -80°C.

Infectious titers of RVPs were determined by infection of Raji-DCSIGNR cells. At 48 h post-
infection, cells were fixed in 2% paraformaldehyde (Cat# 15714S; Electron Microscopy
Sciences, Hatfield, PA), and GFP positive cells quantified by flow cytometry (Intellicyt iQue
Screener PLUS, Sartorius AG, Gottingen, Germany).

Production, titer and neutralization of fully infectious contemporary DENV1-4 isolates
The following DENV contemporary strains were used to infect C6/36 cells: DENV1 UIS 998
(Cat# NR-49713; BEI), DENV2 US/BID-V594/2006 (Cat# NR-43280; BEI), DENV3/US/BID-
V1043/2006 (Cat# NR-43282; BEI), DENV4 Strain UIS497 (Cat# NR-49724; BEI). Virus-
containing supernatant was collected at days 2-7 post-infection, filtered, and stored at -80 °C.
Infectious titer was determined on Raji-DCSIGNR cells. At 48 h post-infection, intracellular
staining was performed using BD Cytofix/Cytoperm Solution Kit (Cat# 554714; BD Biosciences,
San Jose, CA) according to the manufacturer’s instructions. Mouse mAb 4G2 conjugated to
Alexa Fluor 488 (Cat# A20181; Thermo Fisher Scientific) was used for intracellular staining to
detect infected cells by flow cytometry (Intellicyt iQue Screener PLUS, Sartorius AG).
Neutralization assays were performed as described below, using intracellular staining with Alexa
Fluor 488-conjugated 4G2 to detect infected cells.

Generation of E protein variants


https://doi.org/10.1101/790642
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/790642; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

The DENV2 16681 C-prM-E expression construct (Ansarah-Sobrinho et al., 2008) was used as
a template for site-directed mutagenesis using the Pfu Ultra DNA polymerase system (Cat#
600380; Agilent Technologies, Santa Clara, CA) and primers generated by QuikChange®
Primer Design (Agilent Technologies). The entire C-prM-E region was sequenced (Quintara,
San Francisco, CA) to confirm the presence of the desired mutation(s).

Shotgun mutagenesis epitope mapping

A DENV2 strain 16681 prM/E expression construct was subjected to high-throughput shotgun
mutagenesis to generate a comprehensive mutation library, with each prM/E polyprotein residue
mutated to alanine (with alanine residues to serine). In total, 559 DENV2 mutants were
generated (99.6% coverage of the prM/E protein), sequence confirmed, and arrayed into 384-
well plates (one mutation per well). For mAb library screening, plasmids encoding the DENV
protein variants were transfected individually into human HEK-293T cells and allowed to
express for 22 h before fixing cells in 4% paraformaldehyde (Electron Microscopy Sciences),
and permeabilizing with 0.1% (w/v) saponin (Sigma-Aldrich, St. Louis, MA) in PBS plus calcium
and magnesium (PBS++). Cells were incubated with purified mAbs (0.1-2.0 ug/mL) diluted in
10% NGS (Sigma-Aldrich) / 0.1% saponin, pH 9.0. MAb J9 was screened in unfixed cells that
had been co-transfected with the prM/E library and furin expression plasmids, to decrease
levels of prM in the cells. Before screening, the optimal concentration was determined for each
antibody, using an independent immunofluorescence titration curve against wild-type prM/E to
ensure that signals were within the linear range of detection and that signal exceeded
background by at least 5-fold. Antibodies were detected using 3.75 ug/mL Alexa Fluor 488-
conjugated secondary antibody (Jackson ImmunoResearch, West Grove, PA) in 10% NGS /
0.1% saponin. Cells were washed three times with PBS++ / 0.1% saponin followed by 2 washes
in PBS. Mean cellular fluorescence was detected using a high throughput flow cytometer
(Intellicyt iQue Screener Plus, Sartorius AG). Antibody reactivity against each mutant protein
clone was calculated relative to reactivity with wild-type prM/E, by subtracting the signal from
mock-transfected controls and normalizing to the signal from wild-type protein-transfected
controls. The entire library data for each mAb was compared to the equivalent data from control
mAbs. Mutations were identified as critical to the mAb epitope if they did not support reactivity of
the test mAb (<20% of reactivity to WT prM/E) but supported reactivity of appropriate control
antibodies (>70% of reactivity to WT prM/E). This counter-screen strategy facilitates the
exclusion of DENV prM/E protein mutants that are mis-folded or have an expression defect
(Davidson & Doranz, 2014; Paes et al., 2009).

ELISA

High-binding 96-well plates (Cat# CLS3361; Millipore Sigma, Burlington, MA) were either coated
directly with 500 ng/well of recombinant DENV2 16681 E protein (Cat# DENV2-ENV-500; The
Native Antigen Company, Oxford, UK) or with 300 ng/well of murine mAb 4G2 for capture of
concentrated and partially purified RVPs. Recombinant E or capture mAb was added in 100 pl
1X PBS and incubated at 4°C overnight. The following day, 300 ul 1% BSA in PBS blocking
buffer (Cat# B0101; Teknova, Hollister, CA) was added for 1 h either at room temperature (RT)
or 37°C. Plates were subsequently washed 6 times using 300 yl PBST (PBS + 0.05% Tween-
20) and 100 pl of DENV2 RVPs diluted 1:10 in blocking buffer was added to wells coated with
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murine mAb 4G2 and incubated for 1 hr at RT and 37°C. Plates were washed 6 times and
incubated with 5 pg/well of primary mAbs in 100ul blocking buffer for 1 h at room temperature or
37°C. Plates were washed 6 times and incubated with horseradish peroxidase (HRP)-
conjugated mouse anti-human IgG Fc secondary antibody (Cat# 05-4220; ThermoFisher
Scientific) diluted 1:1000 in 100 ul blocking buffer for 1 h at room temperature or 37°C. Plates
were washed 6 times, and 100 pl TMB substrate (Cat# 34028; Thermo Fisher Scientific) was
added at room temperature. The reaction was stopped after 6 min by adding 50 ul of 1N HCL.
The absorbance at 450 nm was determined using a microplate reader (SpectraMax i3,
Molecular Devices, San Jose, CA).

Protein array printing and ELISA

Spotted protein arrays (5 x 6) were printed onto each well of Greiner high-binding 96-well plates
(Cat# 655097, Thermo Fisher Scientific) using a sciFLeXARRAYER S12 (Scienion AG, Berlin).
An array with 75x final concentration of sucrose-purified DENV2 RVPs and a final concentration
of 180 pg/mL of recombinant DENV2 16681 E protein was printed alongside 10 ug/mL anti-
human IgG Fc (Cat# 09-005-098; Jackson ImmunoResearch), and 1 ug/mL biotinylated kappa
secondary (Cat# 2060-08, SouthernBiotech, Birmingham, AL). Probes were diluted 1:1 with D12
buffer (Cat# CBP-5436-25; Scienion AG) and printed at the final concentrations indicated above
in triplicate spots from a 384-well source plate (Cat# CPG-5502-1; Scienion AG) chilled to dew
point with 3 x 350 pL drops per spot at 60% humidity on each 96-well plate. Plates were cured
overnight at 70% humidity before vacuum sealing.

For ELISAs, printed 96-well plates were washed once with binding buffer (0.5% BSA + 0.025%
Tween in PBS) then blocked in 100 pl/well blocking buffer (3% BSA in PBS + 0.05% Tween-20
(PBST)). After 1 h, blocking buffer was removed and 100 pl/well of test mAbs diluted in binding
buffer added and incubated overnight at 4°C. We tested twelve 3-fold serial dilutions of J9, J8,
C4, EDE1 C10, EDE2 B7 and CR4354 starting at 200 ug/mL; and B10, M1, L8 and |7 starting at
2 ug/mL. The following day, plates were washed 3 times with PBST, and 100 pl/well of goat
anti-human IgG Fc-BIOT (Cat# 2014-08; Southern Biotech) secondary antibody diluted 1:10,000
in binding buffer was added. After 1 h shaking incubation at room temperature, plates were
washed 3 times, followed by 1 h shaking incubation at room temperature with 100 pl/well Pierce
High Sensitivity Streptavidin-HRP (Cat# 21130, Thermo Fisher Scientific). Plates were again
washed 3 times, developed for 20 min with 50 ul/well SciColor T12 (Cat# CD-5600-100;
Scienion AG), then analyzed using sciREADER CL2 (Scienion AG). Dose-response binding
curves were analyzed by non-linear regression with a variable slope (GraphPadPrism v8,
GraphPad Software Inc., San Diego, CA).

Neutralization and antibody-dependent enhancement assays

RVP stocks diluted to 5-10% final infectivity were incubated with 5-fold dilutions of mAb or heat-
inactivated (65°C for 30 min) serum for 1 h at room temperature before addition of Raji-
DCSIGNR cells (neutralization assays) or K562 cells (ADE assays). After 48 h incubation at
37°C, cells were fixed in 2% paraformaldehyde and GFP positive cells were quantified by flow
cytometry (Intellicyt iQue Screener Plus, Sartorius AG). Dose-response neutralization curves
were analyzed by non-linear regression with a variable slope (GraphPadPrism v8, GraphPad
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Software Inc.). Fab fragments were generated and purified from IgGs using the Pierce Fab
Preparation Kit (Cat# P144985; Thermo Scientific) and used in neutralization assays at 2x molar
concentration relative to IgG.

Pre- and post-attachment neutralization assays were carried out as previously described (Xu et
al., 2017) using Raji-DCSIGNR cells, DENV2 RVPs, and serial 5-fold dilutions of mAb starting at
150 pg/mL (J9 and J8) or 300 ug/mL (C4 and EDE1 C10). All cells, RVPs, mAbs, and media
were pre-chilled to 4°C prior to use. For the pre-attachment assay, mAb dilutions were mixed
with undiluted DENV2 RVPs for 1 h at 4°C followed by the addition of Raji-DCSIGNR cells and
incubation for 1 h at 4°C. Cells were washed 3 times with media, resuspended in media and
incubated for 48 h at 37°C. For the post-attachment assay, undiluted DENV2 RVPs were
incubated with Raji-DCSIGNR cells for 1h at 4°C, washed three times with media, resuspended
in fresh media and incubated with antibody dilutions. After 1 h at 4°C, cells were washed three
times with media, resuspended in media and incubated for 48 h at 37°C. After 48 h at 37°C,
cells from both pre- and post-attachment assays were fixed in 2 % paraformaldehyde. GFP
positive cells were quantified by flow cytometry after 48h incubation, as described above.

Preparation of PBMCs for BCR repertoire analysis

A 1 ml vial of PBMCs was thawed rapidly in a 37°C water bath, immediately diluted into 9 ml of
B cell growth media containing Corning® DMEM [+] 4.5 g/L glucose, sodium pyruvate [-] L-
glutamine (VWR International, Radnor, PA), 1x Pen/Strep/Glu and 10% ultralow IgG HI-FBS
(Thermo Fisher Scientific), and pelleted at 350 xg for 5 min. The cells were resuspended in 1
mL of growth media and filtered through a 5 ml polystyrene tube with a cell strainer cap
(Thomas Scientific, Swedesboro, NJ). One half of the PBMCs were transferred to the T25 flask
with feeder cells and B cell stimulation media as described previously (Waltari et al., 2019) and
the other half was spun down in a 1.5 ml Eppendorf tube at 8000 rpm for 5 min, resuspended in
600 ul RLT (Qiagen, Hilden, Germany) + beta-mercaptoethanol, allowed to lyse for 5 min, snap
frozen on dry ice and stored at -80°C until RNA purification with the Qiagen AllPrep RNA/DNA
kit (Qiagen). Immunoglobulin amplicon preparation, sequencing and BCR analysis were
previously described (Waltari et al., 2019). Lineage trees were constructed using the IgPhyML
package in the Immcantation pipeline (Hoehn, Fowler, Lunter, & Pybus, 2016) to construct a
somatic hypermutation-optimized maximum likelihood phylogeny of the heavy chain sequences
clonally related to J9 and J8.
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Figure legends

Figure 1. Binding profile of mAbs. A single dilution of the mAbs indicated on the x-axis was
tested for binding to DENV2 (A) soluble recombinant E protein (rE) and (B) reporter virus
particles (RVPs) at room temperature (RT) and 37°C by ELISA. The y-axis shows absorbance
values at 450 nm. Error bars indicate the range of values obtained in duplicate wells. Data are
representative of 3 independent experiments. The dotted horizontal line in (B) indicates the
average A450 values obtained for negative control WNV-specific mAb CR4354. Representative
dose-response binding curves of the indicated mAbs to DENV2 (C) rE and (D) RVPs at room
temperature. The y-axis shows binding signal intensity in arbitrary units (AU). Error bars indicate
the standard deviation (SD) of triplicate spots within one well of the microarray. Binding curves
are representative of two independent experiments.

Figure 2. Neutralization profile of mAbs. (A) Representative mAb dose-response
neutralization curves against DENV1-4, ZIKV, and WNV RVPs. Infectivity levels were
normalized to those observed in the absence of antibody. Data points and error bars indicate
the mean and range, respectively. Results are representative of at least 3 independent
experiments, each performed in duplicate. (B) MAb concentrations resulting in 50% inhibition of
infectivity (ICso) from dose-response neutralization experiments described in (A). Values
represent the mean of at least 3 independent experiments, each performed in duplicate. The
heatmap indicates neutralization potency, as defined in the key. Grey boxes indicate that 50%
neutralization was not achieved at the highest mAb concentration tested (10 ug/ml). The patient
(Pt) from which mAbs were isolated are indicated above each mAb name. MAbs from shared
clonal families are indicated.

Figure 3. Mechanism of neutralization. Representative dose-response curves for pre- and
post-attachment neutralization of DENV2 16681 RVPs by the indicated mAbs. Results are
representative of at least 2 independent experiments each performed in duplicate. Data points
and error bars indicate the mean and range, respectively.

Figure 4. Critical E protein residues for mAb binding. Individual alanine mutation of a subset
of DENV2 E residues decreased binding by mAbs (A) M1 and L8, (B) 17 or (C) J9 as shown, but
did not affect binding by other mAbs, including EDE1 C10 and a previously screened control
mAb (FL) targeting the fusion loop (unpublished). Error bars represent the mean and range (half
of the maximum-minus-minimum values) of at least two biological replicates. The dotted
horizontal line indicates 80% reduction in mAb binding reactivity to mutant compared to wildtype
DENV2 E. Above each graph, residues involved in binding of the corresponding mAb are
highlighted on the ribbon structure of one of the monomers (black) within the DENV2 E dimer
(PDB: 10AN). Residues in DI, DII, DIIl, and DIl fusion loop are indicated in red, yellow, blue,
and green, respectively.

Figure 5. Critical E protein residues for mAb neutralization. (A) Ribbon structure of the
DENV2 E dimer (PDB: 10AN) with one monomer in black and the other in grey. The conserved
DIl fusion loop is shown in green. Colored spheres indicate residues that contribute to J9
recognition identified in Figure S8A and summarized in (B). Bar graphs depict the mean fold
change in ICso values against the DENV2 E variants indicated on the x-axis relative to DENV2
wildtype RVPs for mAbs (B) J9, (C) J8, (D) C4, (E) EDE1 C10, and (F) EDE2 B7. For each
mADb, wildtype ZIKV RVPs were included as controls. Mean values were obtained from 2 to 7
independent experiments represented by data points. Error bars indicate the standard deviation
(n > 2 experiments) or range (n = 2 experiments). Bar colors correspond to those of spheres in
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(A) to indicate location within the E dimer. The dotted horizontal line indicates a 4-fold increase
in ICso value relative to wildtype DENV2.

Figure 6. Lineage analysis of the J9/J8 clonal family. (A) Maximum likelihood phylogeny of
mAbs related to J9 and J8 found in the BCR repertoire of patient 013 created using the HLP19
model in IgPhyML. VH germline sequence (IGHV1-69*05 + IGHD2-2 + IGHJ5) is shown at the
top. Red letters and tips indicate sequences found in unstimulated PBMCs, black letters and tips
indicate sequences found in stimulated PBMCs, and magenta letters indicate sequences found
both in unstimulated and stimulated PBMCs. Letters correspond to sequences shown in the
alignment in (B). Triangles next to tips indicate IgA sequences. (B) Heavy chain alignment of
selected mAbs within the J9/J8 lineage found in the BCR repertoire of patient 013. Letters
correspond to sequences shown in (A), with isotype indicated. The germline sequence (IGHV1-
69 + IGHD2-2 + IGHJ5) is shown first, followed by a constructed sequence with 5 amino acid
changes shown as “GERM 5mut.” Kabat numbering is shown on top. Amino acid changes are
highlighted in gray, and boxes indicate the CDR regions. (C) Light chain alignment of J8 and J9.
The germline sequence (IGKV3-11 + IGKJ2) is shown first, with Kabat numbering shown on top.
Amino acid changes are highlighted in gray, and boxes indicate the CDR regions.

Figure 7. Contribution of VH and VL SHM to J9 and J8 neutralizing activity. Summary of
ICso values of J9 and J8 IgG variants against (A) DENV1, (B) DENV2, (C) DENV3, and (D)
DENV4 RVPs. Bars represent mean ICsg values obtained from 3 to 4 independent experiments
indicated by data points for each mAb. Error bars show the SD. Values at the dotted horizontal
line indicates that 50% neutralization was not achieved at the highest IgG concentration tested
(10 pg/ml). ICs values for fully mature J9 and J8 are shown in red and blue bars, respectively.
J8J9_full germ: germline J8/J9 heavy chain (HC) paired with J8/J9 light chain (LC); J9 HCgerm:
J9 germline HC paired with J9 mature LC; JOLC_germ: J9 mature HC paired with J9 germline
LC; J8 HCgerm: J8 germline HC paired with J8 mature LC; J8_ LCgerm: J8 mature HC paired
with J9 germline LC; J9_HC5mut: J9 HC with 5 mutations indicated in Figure 6B paired with J9
mature LC; J8 HC5mut: J8 HC with 5 mutations indicated in Figure 6B paired with J8 mature
LC; JOHC_ J8LC: J9 mature HC paired with J8 mature LC; JBHC J9LC: J8 mature HC paired
with J9 mature LC; J9 -G: J9 HC with a single glycine deletion in FR2 paired with mature J9 LC.
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Supplemental Information

Table S1. Percent mAb binding reactivity to DENV2 E protein alanine scanning
mutagenesis library normalized to wildtype DENV2

Table S2. Summary of Ig sequences, clonal families, and mean SHM in unstimulated
versus stimulated PBMCs from patient 013.

Table S3. Sequences from patient 013 unstimulated and stimulated PBMCs related to
clonal families of single plasmablasts with reactivity to DENV

Figure S1. Characteristics of plasmablast-derived mAbs from DENV-infected patients.
MADb sequences were identified from single plasmablasts of DENV-infected patient 013 and
patient 020, as previously described (Zanini et al., 2018). The patient from which corresponding
mAb sequences were identified is listed in the first column, followed by mAb clonal family ID,
mAb name, and gene usage, % nucleotide (nt) SHM, and CDR3 amino acid (aa) length for the
variable heavy (VH) and light (VL) chain genes. VH and VL sequences were cloned into IgG1
expression vectors and transfected into mammalian cells. Neat crude IgG1-containing culture
supernatant was tested for binding to recombinant DENV2 E protein ectodomain and DENV2
RVPs by ELISA, and for neutralizing activity against the indicated RVPs. MAbs 3H5-1 (2
pg/mL), EDE2 B7(2 ug/mL) and EDE1 C10 (10 pg/mL), and CR4354 (2 ug/mL) were used as
controls. MAb binding activity is expressed as fold-change in absorbance values over negative
control wells containing media only. The heatmap (light to dark blue) indicates strength of
binding, as defined in the key below the table. A value of 1 indicates no increase in binding
relative to negative control wells. Percent neutralization was calculated using the formula: (%
infection in the absence of IgG1 - % infection in the presence of IgG1) / (% infection in the
absence of IgG1) x 100. The heatmap (yellow to red) indicates the range of neutralization
potencies as indicated in the key below the table. Results are representative of 2 independent
experiments. Under the crude IgG column, a value of <0.0005 indicates undetectable levels of
IgG1 in crude culture supernatant. Antibodies selected for further characterization are shown in
bold. “N/a,” not applicable; “nc,” not successfully cloned; “nd,” not determined.

Figure S2. Neutralization potency of IgG and Fab fragments. (A) J9, (B) J8, (C) C4, and (D)
EDE1 C10 were tested as Fab fragments or full-length IgG for neutralization of DENV2 RVPs.
Dose-response neutralization curves represent 3 independent experiments, each performed in
duplicate. Data points and error bars indicate the mean and range, respectively. (E) Mean ICsg
values of the indicated IgG or Fab fragment from 3 independent experiments represented by
data points. Error bars represent the SD. Values at the dotted horizontal line indicates that 50%
neutralization was not achieved at the highest concentration of IgG or Fab tested. Fabs were
tested at 2x excess molar concentration relative to 1gG.

Figure S3. Neutralization potency of mAbs against contemporary DENV1-4 strains.
Neutralization of contemporary DENV1-4 strains by (A) J9, C4, and (B) J8 was determined by
intracellular staining with AF488-conjugated 4G2 at 48 h post-infection. Error bars indicate the
range of duplicate infections. Infectivity levels were normalized to those in the absence of
neutralizing antibody. Dose-response neutralization curves represent one experiment.

Figure S4. mAb neutralization of standard and mature RVP preparations. (A) Dose-
response neutralization curves for the indicated mAbs against DENV2 RVPs prepared under
standard conditions (Std) or in the presence of overexpressed furin to generate mature RVPs
(Furin). Data points and error bars indicate the mean and range of infectivity in duplicate wells,
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respectively. (B) Mean ICsp values of mAbs against standard or mature RVPs from 3
independent experiments depicted by data points. Error bars indicate the SD. P-values were
obtained from two-tailed paired t-tests.

Figure S5. Antibody-dependent enhancement (ADE) of DENV2, ZIKV and WNYV infection.
Serial dilutions of the indicated mAbs were tested for ADE of (A) DENV2, (B) ZIKV or (C) WNV
RVP infection of K562 cells. Error bars indicate the mean of infection in duplicate wells. Bar
graphs represent average mAb concentrations at peak enhancement of (D) DENV2, (E) ZIKV or
(F) WNV RVP infection obtained from 2-3 independent experiments, each represented by a
data point. Where indicated, error bars represent the SD.

Figure S6. DENV2 E protein mutagenesis. (A) Alignment of DENV1-4, ZIKV, and WNV E
ectodomain amino acid residues obtained using ClustalW2. Red, yellow, green, and blue bars
above the alignment indicate residues within E protein DI, DII, DIl-fusion loop, and DIII,
respectively. Squares above colored bars indicate residues selected for mutagenesis and
generation of RVP variants tested for sensitivity to J9 neutralization: gray squares = no effect on
neutralization sensitivity; black squares = reduced sensitivity to J9 neutralization. Yellow
squares indicate residues conserved across flaviviruses and important for mAb 17 binding. The
sequence used for ZIKV H/PF/2013 differs at two amino acids (residue 246 K>R and 345 M>|
from GenBank accession number AHZ13508.1, as previously described (Dowd et al., 2016). (B)
Ribbon structure of the DENV2 E dimer (PDB 10AN) with 34 individually mutated residues
shown as gray spheres. E protein domains are color-coded as in (A). (C) Ribbon structure of the
DENV2 E dimer (PDB 10AN) with one monomer shown in black, and the other in gray. Colored
spheres indicate the locations of paired mutations: K47T+V151T (red); L56V+Q211E (orange);
E85Q+Q86S (green); H149S+V151T (blue); Y178F+M287V (cyan); N194S+E195D (purple);
Q316L+K394S (yellow).

Figure S7. Infectious titer of DENV2 RVPs encoding E protein mutations. Infectious titers of
DENV2 RVP encoding (A) single or (B) double E protein mutations. For each graph, white bars
show the infectious titer of WT DENV2 RVP, and red, yellow, and blue bars represent mutations
in DI, DI, and DIII, respectively. In (B), the purple bar represents a paired mutation at one
residue in DI (Y178F) and another in DIl (M297V). Titers are based on one or two independent
RVP preparations, as indicated by data points. Where present, error bars represent the range of
infectivity from 2 independent RVP preparations.

Figure S8. Effect of E protein mutations mAb neutralization potency. We screened a panel
of DENV2 RVP variants encoding single (left) or double (right) E protein mutations for sensitivity
to neutralization by mAbs (A) J9, (B) J8, (C) C4, (D) EDE1 C10, and (E) EDE2 B7. Bar graphs
represent average fold-change in ICs relative to WT DENV2 RVP obtained from at least 2
independent experiments, as indicated by data points. Error bars indicate the range (n = 2) or
SD (n > 2). The dotted line represents a 4-fold increase in I1Cso relative to DENV2 WT. On the
left panel, red, yellow, and blue bars indicate mutations are residues in DI, DII, and DIIl,
respectively. For each mAb, neutralization of WT ZIKV RVPs is included as a control.

Figure S9. Effect of E protein mutations on patient 013 serum neutralization potency.
Neutralizing activity of mAb J9 and longitudinal serum samples from patient 013 were tested
against DENV2 RVP variants encoding E protein mutations that reduced J9 neutralization
potency. ZIKV WT RVP was included as a control. Serum samples 013-1, 013-2 and 013-3
were collected 4, 8 and 22 days after onset of fever, respectively. Dose-response neutralization
curves are representative of 3 independent experiments, each performed in duplicate. Error
bars indicate the range of infectivity normalized to infection levels in the absence of antibody.
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Figure S10. Patient 013 VH gene usage. Germline VH gene usage among the unstimulated
(circles) and stimulated (triangles) PBMC repertoires of patient 013, with only IgM (top) and IgG
(bottom) sequences shown. Genes are grouped by color into gene families, as indicated in the
key.

Figure S11. Analytical size exclusion chromatography of recombinant IgGs. Biophysical
characterization of J9 and J8 IgG variants by analytical size exclusion chromatography
(Superdex S200 Increase 3.2/300). A single major peak at 280 nm corresponding to monomeric
IgG is observed.
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Table S1. Percent mAb binding reactivity to DENV2 E protein alanine scanning mutagenesis
library normalized to wildtype DENV2

J9 17 M1 L8 EDE1 C10 FL
Mutation | Mean Range | Mean Range | Mean Range | Mean Range | Mean Range | Mean Range
M1A -2 4 83 3 48 2 44 6 4 2 87 0
R2A 10 12 83 3 49 8 54 6 49 15 82 19
C3A 5 16 37 17 30 3 24 7 -4 2 49 7
14A -1 0 120 36 77 15 67 15 69 6 94 1
G5A -3 2 91 3 49 9 46 14 -2 5 87 3
M6A 89 17 121 39 98 3 96 8 82 10 126 29
S7A 82 46 127 18 78 9 77 15 106 3 111 7
N8A 79 12 60 0 76 13 60 4 99 19 81 14
R9A 2 13 52 7 36 3 39 8 -1 1 70 8
D10A 97 45 132 2 88 28 100 8 119 27 116 4
F11A 14 24 76 77 -3 17 51 10
V12A 75 10 90 62 118 5 76 9
E13A 63 38 79 22 75 5 74 4 90 16 83 6
G14A 87 44 164 37 86 5 102 3 92 19 86 16
V15A 90 23 100 14 86 17 94 2 141 18 111 13
S16A 101 9 149 76 93 27 89 20 135 51 104 6
G17A 91 3 132 77 81 7 76 24 130 29 98 22
G18A 131 29 126 24 94 1 120 23 120 34 116 7
S19A 113 39 117 45 87 11 85 29 108 62 97 17
W20A 119 45 83 23 66 7 63 19 77 25 99 19
V21A 59 4 49 3 66 17 65 4 93 23 81 10
D22A 17 7 14 13 23 2 28 4 34 33 32 2
123A 15 4 5 7 8 5 13 4 7 4 26 1
V24A 66 22 93 0 76 9 80 21 87 41 86 2
L25A 6 8 -5 5 2 3 2 1 1 1 13 1
E26A 74 18 96 24 80 3 80 6 116 23 95 5
H27A 44 9 73 10 72 23 80 22 80 3 93 10
G28A 34 1 53 50 68 21 50 6
S29A 130 6 137 9 77 26 88 16 79 17 108 18
C30A 2 5 27 14 21 8 23 4 -1 5 43 5
V31A 47 1 27 7 30 15 37 9 52 14 51 6
T32A 4 7 6 1 7 5 7 0 -1 5 21 3
T33A 118 16 116 15 93 9 95 3 98 57 112 23
M34A 2 2 34 5 30 6 34 12 3 3 66 6
A35S 88 22 122 13 71 22 69 8 66 6 99 10
K36A 120 29 115 18 83 20 83 1 69 1 106 5
N37A 68 11 68 14 50 10 56 6 67 14 78 6
K38A 54 6 71 28 55 15 61 1 75 12 77 4
P39A 2 1 27 7 19 3 22 4 4 3 41 3
T40A -1 0 55 11 37 2 34 1 4 6 62 4
L41A -3 0 2 1 2 1 5 2 -4 1 15 2
D42A 5 6 19 0 19 7 19 1 0 2 43 0
F43A 25 5 6 10 16 9 19 6 22 0 25 2
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Table S2. Summary of Ig sequences, clonal families and their corresponding mean SHM in unstimulated PBMCs vs.
stimulated PBMCs from DENV-infected patient 013.

Unstimulated Stimulated

PBMCs PBMCs
HC all unique reads 162928 1245789
HC sequences with UMI > 2 18588 146287
HC clonal families 11596 11407
IgM sequences 15318 4684
SHM, IgM sequences 0.6% 2.7%
IgG sequences 2156 129636
SHM, IgG sequences 6.7% 7.0%
IgA sequences 1114 11967
SHM, IgA sequences 7.0% 6.2%
Unique clonal family threshold 17.8% 21.4%
IgM clonal families 9794 2260
SHM, IgM clonal families 0.6% 1.9%
IgG clonal families 1243 5657
SHM, IgG clonal families 6.0% 5.6%
IgA clonal families 559 3490
SHM, IgA clonal families 6.9% 6.3%
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Table S3. Sequences from unstimulated PBMCs or stimulated PBMCs related to the clonal families

of single cell plasmablasts with reactivity to dengue virus isolated from patient 013.

Clonal family

Reads for all clonotypes

(mAbs) Gremling LSaigEe Unstimulated PBMCs Stimulated PBMCs
CF10 IGHV3-30-3 total 143 216292
(C1, A7,111, L9, P2, G5) IgM 8 427
IgG 112 199151
IgA 23 16714
CF5 IGHV1-69 total 422 141308
(C4,J2,N2) IgM 9 91
IgG 413 140117
IgA 0 1100
CF13 IGHV4-34 total 32 82814
(N8, F4) IgM 0 195
IgG 32 76605
IgA 0 6014
CF7 IGHV1-69 total 579 43179
(J8,J9) IgM 10 98
IgG 568 42315
IgA 1 764
CF9 IGHV1-69 total 673 35793
(K11, L3, M4, M11, O4) IgM 12 103
IgG 656 34444
IgA 5 1246
CF8 IGHV1-69 total 10 7349
(J3, 403 _P4) IgM 0 16
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1gG 10 7001
IgA 0 332

CF3 IGHVI1-18 | total 10 2993

(405 _P4,113) IgM 1 6
IgG 9 2899

IgA 0 88

CF1 IGHV4-39 | total 4 1087

(B10, M1, D8) IgM 1 11
1gG 3 1049

IgA 0 27

CF2 IGHVI1-69 | total 0 1087

(H3, M6) IgM 0 7
1gG 0 1066

IgA 0 14

CF11 IGHV3-30-3 | total 0 19

(E9, I8) IgM 0 0

1gG 0 19

IgA 0 0
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Figure S1

Fold change
in binding

% Neutralization

75-89
51-74
<50

i ) VH VL Crude [IgG] | Fold change in binding % Neutralization

Patient ID | Clonal family ID mAb name

Gene % nt mutation| CDR3 aa length Gene % nt mutation| CDR3 aa length (ug/mL) DENV2 rE (DENV2 RVP|DENV1|DENV2|DENV3 |DENV4| ZIKV | WNV
020 CF1 B10 4-39 2.68 10 1-9 247 9 3.21 65 43 64 69 38 11
013 M1 4-39 10.77 10 1-9 1.06 9 4.77 73 77 65 84 33 47
020 D8 4-39 5.30 10 1-9 2.13 9 1.77 48 41 55 42 28 44
013 CF2 M6 1-69 272 15 1-40 4.73 11 4.88 -6 10 36 53 27 36
013 H3 1-69 5.44 15 1-5 3.48 10 1.26 41 72 64 84 0 47
013 CF3 P4(405) 1-18 7.53 16 2-14 1.68 10 <0.0005 nla nla nla nla nla nla
013 113 1-18 7.53 16 2-14 3.37 10 <0.0005 n/a n/a n/a n/a n/a n/a n/a n/a
020 CF4 17 1-3 5.42 16 1-39 7.04 9 1.65 41 67 57 49 13 76
013 CF5 c4 1-69 1017 17 15 2.12 8 247 1 1 74 - 65 | 22 46
013 J2 1-69 10.51 17 1-5 247 8 <0.0005 n/a n/a n/a n/a n/a n/a n/a n/a
013 N2 1-69 8.81 17 1-5 2.12 8 1.97 1 1 -10 65 69 3 39
020 CFé L8 1-69 4.07 13 1-40 0.67 12 3.93 9 7 68 81 78 28 45
020 H1 1-69 4.41 13 1-40 0.67 12 <0.0005 n/a n/a n/a n/a n/a n/a n/a n/a
013 CF7 J8 1-69 9.86 16 3-11 1.39 12 <0.0005 n/a n/a n/a n/a n/a n/a n/a n/a
013 J9 1-69 10.44 16 3-11 3.83 12 4.04 1 5 20 29
013 CF8 J3 1-69 9.22 17 2-14 7.22 12 0.95 1 2 59 74 40 6 30
013 P4(403) 1-69 7.51 17 2-14 3.48 12 2.35 1 1 44 78 43 5 25
013 CF9 M11 1-69 8.45 20 3-15 348 9 4.04 1 2 39 59 56 25 49
013 M4 1-69 6.76 20 3-15 244 9 254 1 1 1 39 40 5 33
013 L3 1-69 5.07 20 3-15 244 9 240 1 2 18 53 53 22 45
013 K11 1-69 6.08 20 3-15 2.79 9 3.97 1 1 -17 47 44 14 33
013 04 1-69 7.43 20 3-15 2.44 9 1.74 1 1 0 40 58 5 34
013 CF10 111 3-30-3 3.08 14 3-15 1.77 8 1.61 2 3 84 10 31 57 14 22
013 C1 3-30-3 4.11 14 3-15 3.92 8 <0.0005 n/a n/a n/a n/a n/a n/a n/a n/a
013 G5 3-30-3 4.80 14 3-15 1.43 8 nc n/a n/a n/a n/a n/a n/a n/a n/a
013 P2 3-30-3 5.14 14 3-15 3.90 8 413 1 1 16 34 49 7 28
013 A7 3-30-3 10.27 14 3-15 4.26 8 2.16 1 2 30 20 55 14 32
013 L9 3-30-3 578 14 3-15 4.26 8 1.92 2 -16 0 52 78 19 35
013 CF11 E9 3-30-3 8.11 23 1-40 3.43 10 <0.0005 n/a n/a n/a n/a n/a n/a n/a n/a
013 18 3-30-3 8.78 23 1-40 4.45 10 nc n/a n/a n/a n/a n/a n/a n/a n/a
020 CF12 E1 3-7 2.71 17 8-61 2.03 10 <0.0005 n/a n/a n/a n/a n/a n/a n/a n/a
020 F10 3-7 4.41 17 8-61 2.70 10 3.96 2 3 -28 -8 40 63 6 15
013 CF13 N8 4-34 7.85 18 2-14 6.49 12 2.55 1 1 0 34 61 4 11
013 F4 4-34 5.12 18 2-14 3.05 12 1.41 1 1 1 48 58 6 20
020 CF14 K2 4-39 2.34 15 1-5 1.76 8 2.09 1 1 -32 24 44 54 26 39
020 A5 4-39 1.67 15 1-5 1.41 8 3.63 1 1 -5 23 58 75 20 37
013 CF15 P10 4-59 6.21 23 1-39 2.1 8 0.72 1 25 68 66 74 27 20
013 L2 4-59 7.29 23 1-39 6.43 8 4.66 1 10 61 60 61 25 9
3H5-1 DENV2-specific mAb n/a n/a n/a n/a n/a n/a n/a 10 nd nd nd nd nd nd

EDE2 B7 DENV cross-reactive mAb 3-74 6.94 26 2-23 4.51 10 n/a 1 & nd nd nd nd nd nd

EDE1 C10 DENV cross-reactive mAb 1-3 2.78 21 2-14 3.82 10 n/a nd nd -99

CR4354 WNV-specific mAb n/a n/a n/a n/a n/a n/a n/a nd nd -127 -57 -149 -139 -48
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Figure S3
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Figure S9
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