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Abstract

Event-free and overall survival remains poor for acute myeloid leukemia (AML). Chemo-
resistant clones contributing to relapse of the disease arise from minimal residual disease
(MRD) rather than resulting from newly acquired mutations during or after chemotherapy.
MRD is the presence of measurable leukemic cells using non-morphologic assays. Itis
considered a strong predictor of relapse. The dynamics of clones comprising MRD is poorly
understood and is considered influenced by a form of Darwinian selection. We propose a
stochastic model based on a multitype (multi-clone) age-dependent Markov branching process
to study how random events in MRD contribute to the heterogeneity in response to treatment
in a cohort of six patients from The Cancer Genome Atlas database with whole genome
sequencing data at two time points. Our model offers a more accurate understanding of how
relapse arises and which properties allow a leukemic clone to thrive in the Darwinian
competition among leukemic and normal hematopoietic clones. The model suggests a
quantitative relationship between MRD and time to relapse and therefore may aid clinicians in
determining when and how to implement treatment changes to postpone or prevent the time

to relapse.

Author summary

Relapse affects about 50% of AML patients who achieved remission after treatment, and the
prognosis of relapsed AML is poor. Current evidence has shown that in many patients,
mutations giving rise to relapse are already present at diagnosis and remain in small numbers in
remission, defined as the minimal residual disease (MRD). We propose a mathematical model
to analyze how MRD develops into relapse, and how random events in MRD may affect the
patient's fate. This work may aid clinicians in predicting the range of outcomes of
chemotherapy, given mutational data at diagnosis. This can help in choosing treatment

strategies that reduce the risk of relapse.

Introduction


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/790261; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Acute myeloid leukemia (AML) is the most common myeloid malignancy with over 21,000 cases
diagnosed annually in the United States. Event-free and overall survival remain poor, chiefly
because of the emergence of chemoresistant clones. Despite stem cell transplantation and new
drug approvals, chemoresistance and relapse remain major obstacles to survival for those with

AML.

Different models have been proposed for the emergence of AML and its treatment outcomes as
well as for other hematologic malignancies (1-10). Deterministic models, of which an example is
the model of (2) do not account for the unpredictability of clonal heterogeneity in the genomic
landscapes or therapeutic responses of an individual’s cancer. The main objective of the
present work is to characterize the range of treatment outcomes by taking into account that
when leukemic cell population is reduced to very low numbers, survival of any particular clone
is subject to chance fluctuations. That is, even with the same parameters of disease state such
as blast percentages in bone marrow and peripheral blood, leukemic clonal percentages at
diagnosis, and treatment responses such as chemotherapy-induced cell death rate (see Table 1
for a complete listing), a small residual population of malignant cells may or may not regrow.
Another objective is to verify if the extent of the minimal residual disease (MRD) is a predictor

of the time to relapse.

We developed a stochastic model of clonal evolution based on a multitype (multi-clone) age-
dependent Markov branching process model of cell proliferation (11). In brief, we consider the
critical time interval between diagnosis and initial relapse of AML that includes cytotoxic
chemotherapy, chemotherapy-induced myelosuppression and decrease in leukemic cells, non-
leukemic marrow recovery, and growth of the leukemic clones due to refractory or relapsed
disease. Figure 1 depicts a simplified sequence of events we address (including, for
completeness, leukemogenesis that we do not model). This scenario may be different if
chemotherapy leads to eradication of the malignant cells, i.e., absence of minimal residual

disease (MRD). However, the most informative data at are those from patients suffering relapse
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with the malignant myeloid bone marrow cells being sequenced at two time points: diagnosis

and at relapse.

Fig 1. Sequence of events in acute myeloid leukemia, including carcinogenesis,
diagnosis followed by chemotherapy, and relapse. Leukemic clones arise and compete
against each other and healthy hematopoietic clones. Our mathematical model starts at
diagnosis, so it does not include carcinogenesis. We also assume no additional clones

arise by mutation after diagnosis.

Underlying our model are assumptions regarding the structure of growth, differentiation, and
competition of the normal and leukemic clones. These are depicted in a schematic way in
Figure 2 (to be discussed in detail in Methods). Because human bone marrow cell counts are
too large for direct stochastic simulation methods to be effective, we developed a hybrid
numerical algorithm combining stochastic Gillespie-type (12) and tau-leaping algorithms (13),
and a deterministic differential equation solver, which uses much less computer time than a
“straight Gillespie algorithm” (see Methods for more detail). Our model was fitted to somatic
mutations data from patients enrolled in recent clinical trials available in The Cancer Genome
Atlas (TCGA) and the Genotypes and Phenotypes (dbGaP) databases.
Figure 2. Schematic of the model. The negative feedback controlling the total
population in blood downregulates all clones’ self-renewal rates if blood is
overcrowded. The negative feedback controlling the total population in bone marrow
upregulates the death rates of all compartments in bone marrow if it is overcrowded.

Feedback configuration assumed follows closely (7).

Stochastic modeling can predict the range of outcomes of chemotherapy, given mutational data
at diagnosis. The algorithm can be tested as a predictive tool for clinical management of
patients with post-remission AML. To inform the model, we employ whole genome sequencing
and clonal evolution data from the TCGA database. One limitation to existing models is the

paucity of serial, paired sequencing data. Of 200 cases of AML sequenced at diagnosis, 20
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patients were also sequenced at relapse, and only six have the clinical information required for

the model available.

Results

The mathematical model can account for heterogeneity in clonal evolution

We develop a stochastic model for the evolution of leukemic clones along with the healthy
hematopoietic one from diagnosis through treatment to relapse. Our model reflects the
stochasticity inherent when leukemic clones are near depletion after chemotherapy, which we
hypothesize strongly contributes to the interpatient heterogeneity in treatment response. The
parameters are estimated by fitting the expected-value model (1-5) to the patient's clinical
data, as outlined in the Methods. Since the fits are not unique (see below), three sets of
parameters for stochastic simulations are acquired from the list of expected-value fits,

correspondingly characterized by low, average, and high renewal rates (see below for details).

The input of the model includes clinical data and clonal landscapes at diagnosis and relapse
A set of clinical parameters (Table 1) was extracted from the TCGA database and used as input
for modeling. The available data at diagnosis includes patient's weight, percent cellularity,
white blood cell count, percentage of blasts in both peripheral blood and bone marrow, and
percentage of normal neutrophils in the peripheral blood. Importantly, the time to relapse and
percentage of blasts in bone marrow at relapse are available. Table 2 lists each patient’s
parameters estimated based on the data in Table 1. These serve as input parameters for the
stochastic model and the fitting procedure. Several constants for estimating the cell
populations at diagnosis per kilogram of body weight are obtained from (7) and adjusted here

using the patient's weight from the TCGA dataset.
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Table 1: Data available in the TCGA used as inputs for modeling.

Parameter Explanation
w (kg) the patient's weight
Yocettutarity percentage cellularity in bone marrow at diagnosis
WBC (% 103 /ul) white blood cell count in blood at diagnosis
Yopiast percentage of blasts in peripheral blood at diagnosis
Ysegs/neutrophils percentage of normal neutrophils in peripheral blood at diagnosis
Linduction duration of induction treatment
Lconsotidation duration of consolidation treatment
Lyetapse time from diagnosis to relapse

Table 2: Parameters computed for each patient based on TCGA data.

Parameter Calculation Interpretation

C1 =2x10°xw equilibrium normal mitotic cell

population in the absence of leukemia?®

p%ﬁzml =4.6 X 10" X Y%ceniariey total cell population in BM at diagnosis®
pﬁ;‘ﬁffc =5x10° x WBC total population of WBC in blood at
diagnosis®
pgl:’;fqa“ = pgl:‘gquC X Yop1ast/100 total population of blasts in blood at
diagnosis
pgizzrmaz = pgl:‘gquC X Yosegs/meutrophils/ total population of normal cells in blood

100 at diagnosis

3bThe values arise from calculation of the hematopoietic cell lineage per kilogram of body weight
in (7).

‘Based on the assumption that, on the average, the patients have 51 of blood.

To simplify parameter estimation, we employed expected-value model trajectories that satisfy
a system of ordinary differential equations (ODEs). As detailed in Methods, we first identify

leukemic clones by clustering in the variant allele frequency (VAF) space using the Mclust
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algorithm. For each clone, we estimate two parameters: the proliferation rate p!, at which the
clone's mitotic cells divide, and the self-renewal rate a!, which is the probability of each
daughter cell becoming a new mitotic cell as opposed to becoming a mature cell. Estimates of
these parameters, specified and generally different for each leukemia clone, are obtained by
fitting the model to data. The death rates for all leukemic clones are assumed to be equal (see
Methods). This assumption is unlikely to hold true for actual leukemic cell populations, but it
helps minimize the number of parameters for fitting per patient. Finally, the fit must satisfy the
biological constraint of remission, which all patients achieved after the consolidation period.
This requires that the total leukemic population at the end of treatment constitute less than 5%
of the total bone marrow mononuclear cell population, corresponding to a classical

morphologic definition of remission.

Uncertainty of fitting is caused by the fact that different estimates of self-renewal and
proliferation rates for the leukemic clones can lead to the same results at relapse. In each case,
the fit obtained is of desired quality, as described in Methods. As shown further on, the
configuration of estimated pairs (a!, p') depends on the number of clones present at diagnosis
and relapse. The uncertainty is caused by an inability to distinguish, using data available, the
two following extreme scenarios (as well as a range of intermediate ones):

Scenario 1: Clones that exist at diagnosis but not at relapse are those that are not
competitive compared to the other clones. Generally, the corresponding fits include low
renewal and proliferation rates.

Scenario 2: Clones that exist at diagnosis are not present at relapse because they are
the most competitive, i.e. they have renewal rates or higher proliferation rates higher than the
other leukemic clones. Therefore, under chemotherapy, with the cell kill assumed proportional
to each clone's proliferation rate (Egs (9-10)), the mitotic population modeled is decreasing

sharply and hence it is eliminated.

Uncertainty of parameter fits affects the distribution of outcomes of the stochastic model,

while it does not affect the fit quality, although it generally affects the expected trajectories at
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times between diagnosis and relapse. These effects are separate from the intrinsic randomness
of the stochastic simulations starting from MRD levels. In further analysis of the stochastic
results, we choose 3 parameter sets from the 100 found using this parameter fitting process.

The chosen parameter sets can lead to qualitatively different outcomes for the patients.

Estimation of coefficients

For each patient, 100 parameter sets are found using the parameter fitting scheme. All the
parameters found for each patient are presented in Figure 3. There are several observations
that can be drawn:

For the clones which are present at relapse, the pairs (a', p!) form curves in the
parameter space. This phenomenon was also observed in (14). A given clone curve is above
others if the clone is more competitive (higher renewal rates or higher proliferation rates; see
Patients 400220, 573988, and 804168 in Figure 3).

For the clones which, in the model, become extinct at relapse, there is no pattern to the
pairs (a!, p') (see Patients 426980 and 452198 in Figure 3). The pairs that are either above the
curves or slightly below the curves correspond to Scenario 2, in which the corresponding clones
are extremely competitive and die during chemotherapy because of the high proliferation
rates. The pairs that are well below the curves correspond to Scenario 1, in which the
corresponding clones die because they cannot compete against the other leukemic clones or

the normal clone.

Figure 3. Parameter estimates for all patients. 100 parameter sets have been found for
each patient starting from randomly selected initial conditions of the fitting procedure.
Parameter sets corresponding to clones present at both diagnosis and relapse form
curves in the parameter space, while those corresponding to clones absent at relapse
display a more complicated pattern, implying different scenarios for these clones to
become extinct. For each patient, three parameter sets have been chosen for stochastic
simulations, corresponding to low, medium and high renewal rates (left triangles,

circles, and right triangles).
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Figure 4 shows one expected trajectory for Patient 3 corresponding to a particular parameter set.
For the same patient, different parameter sets result in different dynamics in the expected
trajectories, however they all have the same clonal percentages at diagnosis and relapse, since
this is the goal of the fitting scheme. Under this parameter set, the model predicts that leukemic
clone 1 is eliminated during treatment, clone 2 escapes treatment but grows very slowly and is
undetectable at relapse, clone 3 also escapes treatment but was subsequently outcompeted by
the other clones, and clone 4 grows steadily from a small level after remission and is the only
leukemic clone detected at relapse.
Figure 4. Results of the fitting procedure for Patient 3 (ID: 452198). Example of fitting
the expected trajectories using a single parameter set. (A) Evolution of mitotic
populations in the BM of all clones, with cell counts in logarithmic scale. (B) Evolution of
the mature populations in peripheral blood. Green bars indicate chemotherapy
treatments. (C) Evolution of BM cellularity. (D) Evolution of clonal percentages in bone
marrow. The bar-plot on the left consists of clonal percentages at diagnosis, and the one
on the right consists of clonal percentages at relapse (both are based on sequencing
data). The parameter sets are chosen to fit the clonality data in these two bar-plots, as
shown in the middle plot. The color code for different clones in (B) and (D) is the same
asin (A), as described in its legend. (E) Evolution of clonal percentages in peripheral

blood.

Stochastic simulations
As detailed in previous sections, for each patient 100 parameter sets were found. Three of the
parameter sets are chosen such that leukemic clones typically have
Parameter set 1: high proliferation rates and low renewal rates
Parameter set 2: intermediate proliferation and renewal rates
Parameter set 3: low proliferation rates and high renewal rates
For each parameter set, 1000 stochastic trajectories have been created by using the hybrid

stochastic simulation algorithm, described in Methods. These trajectories are different paths of
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remission achieved by chemotherapy, nevertheless with the disease progressing to relapse. The
trajectories are categorized into disjoint “outcomes”, based on the number of mitotic cells in
each clone at relapse. For demonstration purposes, a clone is considered dead at relapse if it
has less than 1000 mitotic cells, and alive at relapse otherwise. Using a different threshold does

not lead to a marked change in the results.

Figure 5 shows the expected-value and stochastic outcomes for Patient 5. Under parameter set
1, leukemic clones have high proliferation rates and low renewal rates. The result is that the
clones are highly affected by chemotherapy (since mitotic cell death is assumed to be
proportional to proliferation rate during treatment). In the expected-value model, the disease is
almost eradicated but still exists in a very small population at remission, which eventually gives
rise to relapse. As a result, no stochastic simulation leads to the outcome where all leukemic
clones detected at diagnosis are present at relapse, which is predicted by the expected-value
model. Because the simulated leukemic population is small at remission, random fluctuations
lead to eradication of one or more leukemic clones soon after treatment. For parameter set 3,
in which clones have low proliferation rates and high renewal rates, chemotherapy has smaller
impact on the leukemic populations. The disease exists in larger percentages at remission, and
gradually increases in size until relapse. Parameter set 2 presents a middle ground between
parameter sets 1 and 3: the disease is almost eradicated by chemotherapy, such as in
parameter set 1, but remission contains a larger leukemic population and therefore all clones
are more likely to progress to relapse. 64.1% of stochastic simulations lead to the same

outcome as the expected-value simulation.

Figure 5. Results of the stochastic model for Patient 5 (ID: 758168). Columns
correspond to different parameter sets. Row 1: Evolution of clonal percentages in the
expected-value model. Rows 2 and on: Outcomes of the stochastic model, with cell
counts in logarithmic scale, with corresponding frequencies of occurrence listed.
Stochastic simulations agree with the expected-value results in parameter set 3. In

parameter set 1, no simulation leads to the same outcome as the expected-value
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simulation, where all three leukemic clones detected at diagnosis are present at relapse.
This increases to 64.1% in parameter set 2 and 100% in parameter set 3. The parameter

sets for all patients are listed in Supplemental Table S1.

Figure 6 shows the expected and stochastic outcomes for Patient 2. The expectation results show
that only clones 2 and 5 are present at relapse. 42.4%, 92.3% and 0% of the stochastic simulations
under parameter set 1, 2 and 3 lead to this outcome, respectively. Under parameter set 1, all
other leukemic clones are eradicated by chemotherapy. However, random fluctuations also may
lead to either clone 2 or 5 being eliminated even after treatment. The stochastic simulations
under parameter set 3 follow a different route. No leukemic clone is entirely eradicated by the
time of complete remission, but clones 1 and 4 are gradually outcompeted. Furthermore, clone
3 is present at relapse in all stochastic simulations, but at population sizes smaller than the
detection level. Similarly as for parameter set 1, clones 2 and 5 can each be erased due to
stochastic fluctuations.

Figure 6. Results of the stochastic model for Patient 2 (ID: 426980). Columns

correspond to different parameter sets. Row 1: Evolution of clonal percentages in the

expected-value model. Rows 2 and on: Outcomes of the stochastic model, in logarithmic

scale with corresponding frequencies of occurrence listed.

Comparison to independent estimates of the MRD and clone proliferation rates
Ivey et al. (15) studied patient bone marrow at several time points following remission to detect
MRD as early as possible. All patients had AML with mutated NPM1 gene. This study allowed
drafting approximate trajectories leading to hematological relapse. Under assumption that the
re-growth of the malignant clone is exponential, the resulting growth rates are included in the
range of 0.3 to 2.0 logio month?, as reproduced in Figure 7.

Figure 7. Kinetics of relapse of NPM1-mutated AML (reproduced from (15) with

permission). Based on sequential monitoring of samples obtained in human patients
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after the end of chemotherapy until molecular or hematological relapse. PB, peripheral

blood; BM, bone marrow.

We compared the growth rates of the clones in the TCGA AML patients to see if they fit into this
range (assuming clones with different mutations have similar growth rates to the NPM1-mutant
clones). Only the clones still present in the patients' clinical data at relapse were considered.
Their growth rates can be computed from the parameters resulting from model fitting (see

Methods).

When compared with the result from lvey et al. (15), the growth rates for all patients in our
analysis fit in the range of experimentally observed data (Figure 8). Growth rates are smaller
when it takes longer for the disease to relapse in a given patient, and vice versa.
Figure 8. Inferred growth rates of different clones in all patients. Only the clones that
still exist at relapse in the patients' data were considered. The red lines are bounds for
growth rates from 0.3 to 2.0 logio month, based on the range of growth rates of NPM1
mutant clones in (15); see Fig 7. Growth rates computed from our model (blue circles) fit

into this range.

Computed growth rates agree with experimental data, which is an indication that the

parameters we derived from the expected-value model might be biologically relevant.

Relationship between MRD and the time to relapse
We next study the connection between MRD (defined as the clonal percentage in BM at 6
months after remission) and time to relapse (defined as the time period from remission to
when %BM blast exceeds 5%) inferred from the stochastic model (3 parameter sets per patient,
as explained earlier on). Figure 9 shows the comparison in all patients.
Figure 9. Relationship between MRD and time to relapse for all patients. Estimates of
MRD and time to relapse are mean values from 1000 stochastic simulations. Each color
corresponds to a single patient; left triangles, circles, and right triangles correspond to

parameter sets 1, 2 and 3, respectively. Simulated points are fitted with a sigmoidal Hill
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function of the form: Time to relapse = A/(B + (log(MRD) — C)™) where A =
15539,B =20,C = -7,n = 2.
For all patients, the MRD at 6 months is smallest in parameter set 1 and largest in parameter
set 3. This is in agreement with our previous observation from the stochastic model; parameter
set 1 results in leukemic clones being affected the most by chemotherapy and therefore the
disease level at remission is very small (some clonal populations can decrease to ~10! — 10?2
cells; see Figs. 4 and 5). Comparing all patients, it is clear that larger MRD is associated with

shorter time to relapse.

Analysis of MRD in bone marrow and peripheral blood
Finally, we analyze the blast percentage in both bone marrow (%BM blast) and in blood (%PB
blast). Figure 10A shows the evolution of %BM blast and %PB blast in Patient 3 (ID: 452198).
Also shown here is the frequency of %BM blast when % peripheral blood (PB) blast reaches 5%
in the stochastic results, usually defined to be the time of relapse (Figure 10B).
Figure 10. Analysis of MRD for Patient 3 (ID: 452198). (A): Evolution of %BM blast (red)
and %PB blast (blue) from diagnosis to relapse. Solid lines: Mean values, broken lines:
minimum/maximum values. The mean %BM blast and the mean %PB blast are largely
close from complete remission to relapse. The minimum %BM blast and %PB blast
indicate that some simulations lead to the disease being eradicated. (B): Frequency graph

of %BM blast when %PB blast reaches 5%.

In Patient 3, a number of stochastic simulations lead to eradication of some leukemic clones.
Because of this, the minimum %BM blast and %PB blast are effectively at 0% after
chemotherapy. In spite of this, the mean %BM blast from simulations leads to the same value
as that observed in clinical data. The mean %BM blast and the mean %PB blast are largely
identical from the end of chemotherapy to relapse. As a result, when %PB blast reaches 5% in

the stochastic simulations, the %BM blast is also distributed close to 5% (Figure 10B).

Discussion
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Despite major advances in leukemia genetics and molecular targeted therapies, event-free and
overall survival of AML patients remains less than 40%. Emergence of chemoresistant clones
and relapse after intensive chemotherapy or stem cell transplantation remain the chief
obstacles. Identification of MRD as an independent prognostic factor, stratification of patients
by their status, and early intervention with change in therapy has improved outcomes in acute
lymphoblastic leukemia (16-22). A challenge has been how to define MRD in AML. The
threshold of what constitutes MRD in AML is not well-established in the terms of either
cytogenetics, or leukemia-associated immunophenotype, or mutational allelic frequency (20).
Each of these assays has a different level of sensitivity. Current clinically-accepted definition of
MRD at 0.01% is based on flow cytometric leukemia-associated immunophenotypes. Different
subtypes of AML, e.g., NPM1 or FLT3 mutations, may have different MRD dynamics. Relapse
can be associated with loss of founder mutations (23). Somewhat surprisingly, flow cytometric
false-negative results occur in almost 19% (19). Nonetheless, a growing number of clinical trials
document the prognostic value of MRD in AML (20). One of our results is a model-based MRD —
time to relapse relationship (Fig. 9), indicating large uncertainty in predicting the time to
relapse. Making this prediction more accurate will require further data on clonal evolution in

bone marrow from diagnosis to relapse.

Here, we report our use of patient-derived data to design stochastic modeling based on age-
dependent Markov branching process. The structure of our model is similar to that by Stiehl et
al. (7), which can be considered a most parsimonious model taking into account treatment and
competition of normal and leukemic clones in the bone marrow. However, our model is entirely
stochastic. The data we employed to estimate our model parameters include treatment details,
blood counts, and bone marrow biopsy results from which the clonal landscapes at diagnosis
and relapse can be determined. The model was calibrated to fit the clonal frequencies, while
satisfying the biological requirements as observed in the data. This allows us to realistically
reconstruct the rise and fall of clonal populations, and take into account uncertainties of

estimation process, as well as those inherent in AML relapse having a random component.
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The parameters fitted to the expected-value model offer an explanation of how a leukemic
clone can escape chemotherapy and promote relapse. As it has been observed in (14), these
clones either have high proliferation rates or high self-renewal rates. As a result, there is a
range of different parameter combinations that can explain their ability to succeed. On the
other hand, we also study the clones that have been eradicated by the time of relapse and
conclude that these clones might be eliminated either because they are not competitive and
therefore surrender to other clones, or they are simply killed by chemotherapy. Also, we
checked if the parameters are biologically relevant by using the model to compute the
corresponding clonal growth rates for each patient. That these values fit in the clinically
observed range independently found in (15) for patients with the NPM1 mutations, suggests

that the model is consistent with clinical data.

In (21), the authors modeled the emergence of clonal heterogeneity by modifying the ODE
model to accommodate new leukemic clones arising from mutations. We do not include
mutations in our model here because relapse more likely results from MRD than new mutations
during and after chemotherapy (24, 25). The deterministic ODE models in (7, 14, 21) were used
to track the evolution of different leukemic clones from diagnosis to relapse. This is an
appropriate approach when the populations advance toward equilibrium. However, during and
after chemotherapy, leukemic populations are experiencing bottlenecks and therefore are
subject to stochastic fluctuations. Because of this, a stochastic branching process model was
used, such that the expectations (means) of its trajectories approximately satisfy the ODE
model. We showed that with the same parameters, the stochastic model predicts a variety of
outcomes for the disease, due to the stochastic fluctuations in the MRD. This partially explains
the inter-individual heterogeneity in response to treatment of AML and underlines the

importance of a careful MRD monitoring in predicting the progress of the disease.

An interesting general conclusion from this analysis is once more that the “generalized” growth
rate is not sufficient in understanding the effects of chemotherapy. It is necessary to distinguish

between the division rate and self-renewal fraction. Various combinations of these two
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parameters lead to the same growth rates, but different treatment effects. This seems to be
not universally recognized, although a review paper has been recently devoted to this

important issue (26).

Methods

Data

Somatic mutation data for primary and relapsed tumor samples were derived from dbGaP
(phs000159) for 8 patients, with the following IDs: 400220, 426980, 452198, 573988, 758168,
804168, 869586, 933124. Clinical information, including treatment details, complete blood
count and bone marrow biopsy, was obtained from dbGaP and TCGA and supplements to (22,
27) and summarized in Figure 11. Tumor clone frequencies were calculated from deep read
count data in (22). The somatic mutation variant allele frequencies (VAF) at primary and
relapsed tumors are clustered by the Gaussian mixture based Mclust algorithm (available from

the CRAN repository of R-codes under https://cran.r-project.org/web/packages/mclust; also

read the Supplement to (22) for more details). Patients 869586 and 933124 were excluded
because they underwent autologous hematopoietic stem cell rescue after chemotherapy but

before relapse, so they do not seem directly comparable with the other 6 patients.

Figure 11. Detailed information about patients used in the study. Clinical information
of individual patients. Left: Information about weight, age, sex, percentages of blasts at
diagnosis and relapse, cellularity of bone marrow and percentage of segs or neutrophils.
Right: Number of months since initial diagnosis to relapse and death of each patient,
except for Patient 452198, whose history ends in 2011 with the last follow-up at which

the patient was alive.

In the clonal analysis, some clones might be nested in others, because the former originate
from the latter after gaining additional mutations. Since we define the clones as disjoint, the
percentage of a clone at either time point is defined as the percentage of this clone with all
subclones excluded. Therefore, the mutant clones’ and the normal clone's frequencies at any

given time point add up to 100%. An example of that is Patient 758168 (see Figure 12B) with
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three clones 1, 2 and 3. Clone 2 is a subclone of 1 and 3 is a subclone of 2. For this reason, clone
3 contains all mutations of clone 2 and 2 all of those in clone 1, however they show generally
different allelic frequencies. To calculate the percentage of cells that belong to clone 1 we
subtracted the allelic frequencies of clone 2 and 3 from clone 1 and multiplied them by 2
(assuming that most of the variants are heterozygous). Similar procedure was applied to all
patients. Clone percentages were later scaled by the fraction of blasts in bone marrow, to
additionally include the proportion of normal cells, since in all cases blast percentages were
lower than 100%. We assumed that the relapsed clones do not include newly formed
mutations, only that in the primary tumor some of them might have been undetectable. For
this reason, cell percentages of clones with allele frequencies equal to zero were set to 3%.
Figure 12. Clonal evolution for patient 5 (ID: 758168). Fractions of individual leukemic
clones in primary tumor and relapse from whole-genome sequencing are represented as
a fish plot, with percentage of each clone at either time point. Total width of the plot

corresponds to the percentage of bone marrow blasts.

Stochastic model for the proliferation and competition of normal and leukemic cells

The schematic of the stochastic model is depicted in Figure 2. Proliferation of cells in each clone
in the model is represented by an ordered sequence of different compartments. Each event in
the model (cell division, differentiation, or death) is characterized with an exponentially
distributed waiting time, the rate of which will be explained below. Because the waiting times
are random, the order in which reactions happen may differ between simulations. This results
in a variety of outcomes under the same conditions, and may contribute to interpatient

heterogeneity.

The two-compartment model for the hematopoietic clone was established in (28), in which the
healthy clone is divided into two sub-populations, mitotic compartment ¢, (t) and mature
compartment ¢, (t). The mitotic cell compartment, representing the more complex multi-stage
differentiation process of hematopoietic stem cells (HSCs), hematopoietic progenitor cells
(HPCs) and precursor cells, is located in the bone marrow (BM). Mitotic cells can divide into two

daughter cells at the proliferation rate p¢, and each of the daughter cells is either a new mitotic
g p p
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cell or a mature cell. The fraction of daughter cells returning to the mitotic cell compartment is
called the self-renewal rate a®. The mature cell compartment consisting of neutrophil
granulocytes, a major subtype of white blood cells, is located in the blood. Mature cells die at a
constant rate d°. Each leukemic clone, as detected by sequencing data, also consists of two
compartments: mitotic population [, (t) in BM, and mature population [, (t) in blood. The rules
dictating its divisions, differentiations, and deaths, are similar to the hematopoietic clone, with
proliferation rate p!, renewal rate a' and death rate d'.

There are two feedback systems governing the populations in blood and bone marrow. The first
feedback system reacts to overcrowding in the blood by down-regulating the self-renewal rates

of the hematopoietic and all leukemic clones by a factor of:

s()=—— (1)

1+k(c2(£)+13(2))

The second feedback system controls the total population in the bone marrow:

x(t) = c1(t) + 1, (8) + L (1) (2)
and if this population is too high, the death rates of all compartments in bone are increased by:
d(x(t)) = A, -max(0,x(t) — A, - ¢;) (3)

Finally, treatment drugs used in many chemotherapy protocols are characterized by increased
killing of cells in the synthesis stage. Therefore, during treatment, the death rates of mitotic
cells are increased by a factor proportional to their proliferation rates:

de =t ke pe (4)

d' =+ ki pt (5)
If any clonal mitotic population decreases below 1 cell during the time course, the clone is
marked as dead and remains 0 until relapse. We assume that chemotherapy kills leukemic
clones at a higher rate than the normal clone, therefore k; > k.. Furthermore, we simplify the
model by assuming a fixed ratio between the killing rates for all patients. The ratio k;: k. = 5:1

was found to result in realistic behavior of the disease trajectory.

Expected-value approximation for fitting the stochastic model
While parameter estimation techniques have been extensively applied for deterministic

models, such as those based on ordinary differential equations (ODEs), parameter fitting for
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stochastic models are still in early development. In this work, we approximate the stochastic
model with a set of ODEs, use these expected-value approximations to fit the clinical data, then
study the variability in the outcomes of the stochastic model under the resulting parameter
sets.

The approximate expected-value dynamics of hematopoietic and leukemic compartments can
be expressed from the division, differentiation and death events that govern their fluctuations,

as described above:

Se(t) = 2a¢-s() = 1) -p - ey (1) — d(x(®) - ¢, (1) (7)

o) =2-(1—a-s(®) p°-ei(t) —d - cp(8) (8)

%ll(t) = (2a' - s(t) = 1) - p' - 11(t) — d(x(®)) - [, () (9)

2L =2- (1 —d -s(t)) b1, (8) — db - (D) (10)
During chemotherapy, the mitotic populations further decrease:

Sy () = = ke p€ ey (D) (11)

L) ==k pt e 1y (E) (12)

Model parameters

1. Patient data from TCGA
The data available in the TCGA dataset and used as inputs for our models are summarized in
Table 1, including the differential counts in peripheral blood and lengths of chemotherapy
treatments.

2. Dependent and free parameters of the model
Stiehl et al. (7) calibrated the parameters for the hematopoietic cell lineage to data from the
literature and concluded that for these cells, the self-renewal rate is a¢ = 0.87, proliferation
rate is p¢ = 0.45 (day~1) and death rate is d° = 2.3 (day~1). We use these parameters in our
study.
The other important parameters for the model computed individually for each patient are listed
in Table 2, with the equations to derive them from the TCGA dataset for each individual.

The feedback parameters are as follows:
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k=10"12 A, =1 A, = 10712
Different magnitudes of k were tested and we observed that the value k = 10712 produces
simulations close to the patients’ clonal evolution. We chose A, = 1 because if it is greater, the
population in bone marrow can exceed its capacity. If A; > 10712, the log-plots of populations
in bone marrow and blood develop sharp turns where they reach equilibrium values. In
experimental data, it has been observed that these turns are more continuous, therefore we
chose 4; = 10712,
The chemotherapy constants k"¢, ki®, ko™, ko™, which model the effect of induction and
consolidation treatments on the normal and leukemic cell lines, have been interactively
determined depending on each patient’s clonal evolution. The free parameters of the model to
be fitted for each patient are a! and p' of each leukemic clone. We observe that the magnitude
of d! may vary without noticeable consequences for the population evolution, because the fate
of the disease depends on the leukemic mitotic population’s ability to grow in bone marrow.

We choose d! = 0.5 (day™1).

Fitting procedure

The goal of fitting is to find a' and p' of each leukemic clone so that given the clonal
percentages at diagnosis, the error of the clonal percentages at relapse is less than 1%
compared to real data, subject to the constraint that BM leukemic population constitutes less
than 5% of the total population in BM at the end of induction treatment (so that complete
remission is achieved).

For each random parameter set, given the clonal percentages at diagnosis and the patient's
data, we calculate the clonal percentages at relapse. The "error" of the parameter set is defined
as the largest element-wise difference between these and the patient's sequencing-based
clonal percentages at relapse.

The fitting scheme is defined in the following steps:

Step 1: For each clone, the initial guesses for its proliferation and renewal rates are sampled
from uniform distributions:

a' €[0,7, 1]
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pt € 0.3, 0.7]
Step 2: Starting from the initial guess, use the FORTRAN procedure NELMIN (29, 30), which
seeks the minimum value of a function using the Nelder-Mead algorithm, a simplex-type
method, to arrive at a final guess for the parameter set that minimizes the error.
Step 3: Re-do step 2 if necessary with the newly found parameter set if the error can be
reduced further.
Step 4: Check the final error. If the error is less than 1, then record the parameter set and
return to step 1, until 100 parameter sets are found.
We observed that after NELMIN converges to a minimum, if we restart the procedure with the
result of the old run as the initial guess for the new run, NELMIN sometimes converges to an
even smaller minimum. Step 3 in the scheme above therefore makes sure that the optimization
algorithm converges to a local minimum, given the random initial guess.
Note that for the clones that are present at relapse but that were not detected at diagnosis, we
assume they already existed as small populations at diagnosis, instead of assuming they are
new mutants. There exists evidence that resistant clones exist before treatment, instead of
being driven by de novo mutations (24, 25). These clones are therefore assumed to have no
mature cells in their populations and their mitotic populations occupy 3% each in bone marrow
at diagnosis. This percentage was chosen to represent very small clones at diagnosis; however,
the percentages can be reduced to 0.1% without changing the clonal dynamics in expected-

value simulations.

Stochastic simulation algorithm

Parameters of each leukemic clone have been determined by fitting the expected-value model
to patients’ data. 1000 Monte Carlo trajectories are produced for each patient and parameter
set.

For a large population of cells, Gillespie’s Stochastic Simulation Algorithm (SSA) (12) is too slow.
For our case here, where the total number of cells can be in the range of 10?- 103, even the 7-
leaping algorithm does not perform fast enough. We used the following decision tree:

e 10°- 102 cells or less each: apply SSA (12).
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e 10%-10°cells: apply T-leaping algorithm (12, 13).

e 10° cells or more: apply deterministic algorithm (MATLAB's ode23, an ODE solver, is used
here).

The resulting algorithm faithfully models the stochastic effects while performing much more

effectively.

Minimal residual disease (MRD)

In addition to simulations of therapy effects, we need to derive expressions that allow us to
compare our results to the independent measurements of MRD in (15). Technically, this
consists of deriving an expression for the net growth rate of each leukemic clone given its
proliferation and differentiation rates. The net growth rates are needed to compare the model
predictions with the MRD data in (15):

1. The ODE governing the population of leukemic mitotic cells in bone marrow is
SL() = a5 — 1) pt L) — d(x(®) - L (D).

2. Negative feedbacks s(t) and d(x(t)) can be estimated by considering only the normal cells
in blood and bone marrow (which dominate between remission and relapse). The
corresponding estimates are denoted § and d, respectively.

3. The ODE now has solution

I,(t) = exp [((Zal §—1)-pt— J) : t],
from which we derive
logyo(l1(t)) = logyee - ((Zal 5—=1)-p' - 6?) "t

4. Adjusting the units (the parameters on the right hand side are in day~! but the growth

rates in (15) are in month™1), we conclude that
A =30"log;ge- ((Zal §—1)pt— J) month~?
with § and d computed immediately after treatment in the expected-value solution (assuming

the normal clone dominates until relapse).
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Supporting information

S1 File. Supplemental information appendix. This contains detailed patients characteristics,
clonal analysis and details from fitting the expected-value model and simulating the stochastic
model.

S1 Table. Data about the patients and the input data for the expected-value and stochastic
models. This includes characteristics, disease, nestedness of subclones and chemotherapy
treatment.

S2 Table. Parameter sets from fitting the expected-value model for all patients, 100
parameter sets per patient.

S1 Fig. Results of the expected-value model for Patient 1 (ID: 400220). (A-D): Results of fitting
the expected-value model using a single parameter set. (A) Evolution of mitotic populations in
the BM of all clones in logarithmic scale. (B) Evolution of the mature populations in blood.
Green bars indicate chemotherapy treatments. (C) Evolution of BM cellularity. Parameter sets
are chosen so that the BM cellularity is reduced to approximately 15 — 20% of the normal
value, as experimentally observed (read (31)). (D) Evolution of clonal percentages. The bar-plot
on the left consists of clonal percentages at diagnosis, and the one on the right consists of
clonal percentages at relapse (from data). The parameter sets are chosen to fit the clonality
data in these two bar-plots, as shown in the middle plot. The color code for different clones in

(B) and (D) is the same as in (A), described in its legend.

S2 Fig. Results of the expected-value model for Patient 2 (ID: 426980).

S3 Fig. Results of the expected-value model for Patient 4 (ID: 573988).

S4 Fig. Results of the expected-value model for Patient 5 (ID: 758168).

S5 Fig. Results of the expected-value model for Patient 6 (ID: 804168).

S6 Fig. Results of the stochastic model for Patient 1 (ID: 400220). Columns correspond to
different parameter sets. Row 1: Evolution of clonal percentages in the expected-value model.
Rows 2 and on: Outcomes of the stochastic model, in logarithmic scale with corresponding

frequencies of occurrence listed.

S7 Fig. Results of the stochastic model for Patient 3 (ID: 452198).
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S8 Fig. Results of the stochastic model for Patient 4 (ID: 573988).

S9 Fig. Results of the stochastic model for Patient 6 (ID: 804168).

$10 Fig. Clonal evolutions for all patients.

27


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

carcinogenesis (@ chemotherapy recurrence
_ . egYy __ . @ ___
Y . dermuons W, 3
" { | = remission (cell death) | | = clonal selection
- changes n regulatory (@), L] - additional mutations L
networks (]
= abnormal increase in
the number of WBC
normal cell AML cells minimal residual

disease

relapse


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

hematopoiesis

leukemia
{multiple clones)

BONE MARROW BLOOD

{ mitotic ‘,—J :‘L mature

.

[ mitotic }J :[ mature

¥

4
Negative feedback

Negative feedback



https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

Prolferation rate p,

Patient 1 (ID: 400220)

os
o
o %y
L]
0s Ty,
oa
%\»
ot N
.
ou
[ :
S ose 0w oss
Renewal rate a,
Patient 4 (ID: 573988)

085 09 095
Renewal rate &,

o

Leukemic clone 1 o~

oo

Leukemic clone 5

Patient 2 (ID: 426980}
L B So0 S, 050

Leukemic clone 2
Leukemic clone 3

i 08 oss o
Leukemic clone 4
Renewal rate a,

- Patient 5 (ID: 758168)
0as
04
oss

08 03 0% o0s4 0% 08
Renewal rate a,

Patient 3 (ID: 452198)

ot o o0, 8. %0 @ o¥F
0 0%%50 5P ° 088 oo

3,8 o8 o o

I N R !
o >

o5l Siae 000‘,0: »

P

Renewal rate &

Patient 6 (ID: 804168)

0% 085 03¢ 085 095 087 0% 098
Renewal rate 2,


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

5t
clone 1
8
10 clone 2
10° —ocones
—
| clone 4
10% | —romaicne |

400 450 500

S0 100 160 200 29 30 30

400 450 500

bone marrow colluarty (%)
i i .
400 450 500

0 S0 100 150 200 300 350



https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

Parameher set 1

4.7%

Parameter set 2
0 400 600

cells

days


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

Parameher set1 Paramemerset 2
600 200



https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

||||||||||||||||||||||||||||| o ------
NS WO
EEEETTE
200009
TEFEES
codoaa
eeocoeeo0
e]
L
L
o
[ ]
[ ]
o ®
[ ]
[ ]
(<]
L 1 | | |
Q Q Q Q Q Q Q Q =]
=1 <] =1 =] =] =1 =] =]
@ ~ © b=/

wn < @ o
(sAep) asdejas 03 swi]

0.6 0.8 1 1.2 1.4 1.6 1.8
Growth rate

0.4


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

|
<~

|
o
)

1
1
1
1
1
1
1
1
1
1
1
1
[ ]
1
1
1
1
1
[ ] 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

_
_
| | | | 1
® v N v

o

(1/sl192 01) JIPEU OEM

|
]
o

Patient


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

IS
=)
=]

Time to relapse (days)
g
I

10°

a
OEEDENE

Patient 400220 (Ding et al.)
Patient 426980 (Ding et al.)
Patient 452198 (Ding et al.)
Patient 573988 (Ding et al.)
Patient 758168 (Ding et al.)
Patient 804168 (Ding et al.)
@ Patient 2-1 (Shiush et al.)
@ Patient 2-2 (Shiush et al.)
@ Patient 3-1 (Shlush et al.)
@ Patient 3-2 (Shlush et al.)
@ Patient 6 (Shlush et al.)

@ Patient 8 (Shiush et al.)

@ Patient 15 (Shiush et al.)

4 —Fitted Hill function using Ding dataset
—Fitted Hill function using Ding dataset without patient 5
10° 10 1073 102 107 10° 10 10°

MRD at 4 months after remission (%)


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

234567

o
~ o o = o
S S & o
Aouanbaiq
3
o 3
% %
sSE 8
mbm.&m
£s58q
@mzol||o
=R8mEH3
BRREFNS
S EES
§scis
=50=5|g
1 [N
__.__

% BM blast

Days


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

diagnosis relapse death

o |
I
$ soets |
— B
1
LR e T T T T T T
Sang O 10 20 30 40 50
0% =G Months since initial diagnosis
BP0 o
RO E= .
%éq 3 Weight Age Cell %
il Dl DEEE Bl
[e]
5° 2 100 75 60 30 100



https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

Patient: 758168

Primary (93% blasts) Relapse (92% blasts)


https://doi.org/10.1101/790261
http://creativecommons.org/licenses/by-nc-nd/4.0/

