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Abstract

In the past decade, a large number of genetic biomarkers have been discovered through
large-scale genome wide association studies (GWASs) in Alzheimer’s disease (AD), such
as APOE, TOMM40 and CLU. Despite this significant progress, existing genetic findings
are largely passengers not directly involved in the driver events, which presents challenges
for replication and translation into targetable mechanisms. In this paper, leveraging
the protein interaction network, we proposed a modularity-constrained Lasso model
to jointly analyze the genotype, gene expression and protein expression data. With a
prior network capturing the functional relationship between SNPs, genes and proteins,
the newly introduced penalty term maximizes the global modularity of the subnetwork
involving selected markers and encourages the selection of multi-omic markers with
dense functional connectivity, instead of individual markers. We applied this new model
to the real data in ROS/MAP cohort for discovery of biomarkers related to cognitive
performance. A functionally connected subnetwork involving 276 multi-omic biomarkers,
including SNPs, genes and proteins, were identified to bear predictive power. Within
this subnetwork, multiple trans-omic paths from SNPs to genes and then proteins were
observed, suggesting that cognitive performance can be potentially affected by the
genetic mutations due to their cascade effect on the expression of downstream genes and
proteins.

Introduction 1

Alzheimer’s disease (AD) is the most common form of brain dementia characterized by 2

the gradual loss of memory and other cognitive function. With rapidly increasing aging 3

population, AD is drawing more and more attention in the United States and around the 4

world [1]. Unfortunately, the underlying mechanism of AD remains largely unknown and 5

no clinically validated drug is available for disease treatment and prevention. Although 6

recent large-scale genome wide association studies (GWASs) have led to discovery of many 7

genetic markers associated with AD, such as APOE, TOMM40 and CLU, replicability 8

of existing findings and their translation into targetable mechanisms related to disease 9
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pathogenesis remain a challenge. Identification of novel biomarkers or functionally 10

validating existing biomarkers becomes increasingly important for discovery of new 11

potential future therapeutic targets. 12

Recently, there is a substantial increase in AD multi-omic data. Example projects 13

include the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [2] and the Religious 14

Orders Study and Memory and Aging Project (ROSMAP) [3]. Instead of limiting 15

their perspective to a single -omics layer, these data collections create a molecular 16

landscape spanning the genome, transcriptome, proteome and metabolome. Coupling 17

with systems biology networks (e.g., protein-protein interaction (PPI) network), these 18

data provides a valuable resource with rich content and opens numerous opportunities 19

for more comprehensive analyses of AD. These multi-omics data has been increasingly 20

recognized to be a potential key enabler of novel biomarker discovery [4, 5]. It not only 21

allows us to examine the disease from different -omics layers, but also provides insights 22

into their interactions which is critical for translation of genetic findings into targetable 23

mechanism. 24

Despite this great potential, the power of multi-omic data has not been fully unleashed. 25

Much research effort of existing studies has been on single type of -omics data without 26

acknowledging the interconnections between –omics layers. This shortcoming is largely 27

due to the limited availability of computational methods that are sufficiently powerful 28

and comprehensive enough to handle the high dimensionality and heterogeneity of multi- 29

mic data. In addition, major findings generated from current –omics studies have been 30

largely restricted to relatively simple patterns. They are mostly individual biomarkers, 31

possibly without functional interactions, which presents difficulties to validate these 32

findings and to relate them to downstream biology [6, 7]. To address this problem, some 33

recent studies propose to seek common genetic markers with evidence from more than 34

one -omics layer [8–10], which are expected to more reliable for further experimental 35

validation. However, this simple overlap strategy may be too stringent as -omic features 36

in different layers are not completely mapped in a one-to-one relationship. 37

In this paper, leveraging the functional interaction network in REACTOME, we pro- 38

pose a modularity-constrained Lasso model to jointly analyze genotype, gene expression 39

and protein expression data. We aim to identify a set of SNPs, genes and proteins as 40

biomarkers, forming a subnetwork with functional connections cutting across different 41

-omics layers. Compared to individual mutations, genes or proteins identified using 42

traditional methods, such connected pattern can help improve not only the reliability of 43

identified biomarkers, but also their replicability and interpretability. 44

Method 45

Study cohort 46

All the data analyzed in the present report were obtained from the Religious Orders Study 47

(ROS) and Memory and Aging Project (MAP). It was launched by Rush University 48

to build a cohort from religious communities to measure the progression of amnestic 49

mild cognitive impairment (MCI, a prodromal stage of AD) and early probable AD. 50

The combined ROS/MAP cohort includes around 600 participants under age 90, which 51

constitute a very rich repository of multi-modal data including GWAS data, whole 52

genome sequencing (WGS) data, cognitive, behavioral and clinical data. The more 53

detailed description could be found in [3]. In this paper, GWAS genotype data and 54

quality controlled RNA-Seq gene expression and protein expression data collected from 55

prefrontal cortex tissue in the brain were downloaded. To perform the proposed joint 56

analysis, only subjects with all three types of -omics data were included. In total, we 57

have 262 subjects (115 healthy controls (HC), 67 mild cognitive impairment (MCI), 80 58
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AD patients) with full set of genotype, RNA-seq gene expression and proteomic data. 59

The detailed demographic information can be found in Table 1.

Table 1. Demographic information of the ROS/MAP participants included
in this study.

Dignosis HC MCI AD
Subject Number 115 67 80
ROS/MAP 69/46 27/40 40/40
Male/Female 51/64 28/39 31/49
Education(mean± std.) 16.9 ± 3.5 16.6 ± 3.3 16.9 ± 3.8
Age(mean± std.) 83.0 ± 4.7 85.0 ± 4.2 86.3 ± 3.7

60

GWAS genotype data preparation 61

ROS/MAP samples were genotypes on the Affymetrix GeneChip 6.0 platform [11]. 62

We performed sample and SNP quality control procedures on GWAS data (SNP call 63

rate<95%, Hardy-Weinberg equilibrium test p<10−6 in controls, and frequency filtering 64

(MAF<1%) were performed. After performing the standard quality control procedures 65

for genetic markers and subjects , only non-Hispanic Caucasian participants were selected 66

by clustering with CEU (Utah residents with Northern and Western European ancestry 67

from the CEPH collection) + TSI (Toscani in Italia) populations using HapMap 3 68

genotype data and the multidimensional scaling (MDS) analysis [12]. Un-genotyped 69

SNPs were imputed using MaCH and the 1000 Genomes Project as a reference panel [13]. 70

RNA-Seq gene expression preparation 71

RNA-Seq gene expression data in the ROS/MAP cohort were collected from the prefrontal 72

cortex tissue in the brain. The RNA-Seq data were recently reprocessed in parallel with 73

other AMP-AD RNAseq datasets, and this second version of the data were downloaded for 74

our subsequent analysis. The input data for the RNAseq reprocessing effort was aligned 75

reads in bam files that were converted to fastq using the Picard SamToFastq function. 76

Fastq files were re-aligned to the reference genome using STAR with twopassMode set 77

as Basic. Gene counts were computed for each sample by STAR by setting quantMode 78

as GeneCounts. These gene level counts further went through normalized and adjusted 79

to remove the effects of relevant factors such as age, gender, education, batch, RNA 80

integrity number (RIN) and post moterm interval (PMI). Detailed reprocessing and 81

normalization steps can be found in the AMP-AD knowledge portal (https://www. 82

synapse.org/#!Synapse:syn9702085/). 83

Protein expression data preparation 84

SRM proteomics was performed using frozen tissue from dorsolateral prefrontal cortex 85

(DLPFC). The samples were prepared for LC-SRM analysis using standard protocol 86

as described in [14, 15]. All the data were manually inspected to ensure correct peak 87

assignment and peak boundaries.The abundance of endogenous peptides was quanti- 88

fied as a ratio to spiked-in synthetic peptides containing stable heavy isotopes. The 89

”light/heavy” ratios were log2 transformed and shifted such that median log2-ratio is 90

zero. Normalization adjusted for differences in protein amounts between the samples. 91

During that normalization, we shifted the log2-ratios for each sample to make sure 92

the median is set at zero. Detailed processing steps can be found in the AMP-AD 93
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Fig 1. The selection of SNPs in upstream 5K boundary for each gene.

knowledge portal (https://www.synapse.org/#!Synapse:syn8456629). Using the re- 94

gression weights derived from the healthy control participants, peptide abundance data 95

were further adjusted to remove the effects of the age at death, gender, education, PMI 96

and batch. 97

Selection of SNPs, genes and proteins 98

We focused our analysis on a set of SNPs, genes and proteins with known functional 99

connections. Though we have genome-wide genotype and transcriptome-wide gene 100

expression data available in the ROS/MAP cohort, only a limited number of proteins 101

are measured and form a bottleneck for the joint -omics data analysis. To address 102

this problem, we used these proteins as seeds to select a subset of SNPs and genes for 103

subsequent analysis. As shown in Fig 1, in the proteomic level, abundance level of 104

186 peptides, from 126 unique genes, were measured in the ROS/MAP project. When 105

mapped to the functional interaction network in REACTOME [16], where all protein 106

interactions were manually curated from pathways with directionality information, these 107

genes are found to interact with 954 genes. After excluding those without gene ID, totally 108

743 genes with RNA-seq data were included in the transcriptomic level. In the genomic 109

level, SNPs located on the upstream of these genes (boundary: 5K) were extracted. 110

To ensure the functional connection of selected SNPs and their downstream genes, 111

we included only SNPs significantly affecting the transcrition factor binding activity, 112

as shown in SNP2TFBS database [17]. This relationship between SNPs, genes and 113

proteins/peptides are used as the trans-omic network to guide the search of functionally 114

connected biomarkers in the subsequent analysis. 115

Memory outcomes 116

In the ROS/MAP project, cognitive performance of participants was estimated through 117

the mini mental state examination, a standardized screening measure for collecting 30 118
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items in related with dementia [18, 19]. This score ranges from 0 to 30, and is scaled 119

to quantify the severity of dementia. In this study, we use this memory test score as 120

the AD quantitative trait for discovery of functionally connected biomarkers. Using the 121

regression weights derived from the healthy control participants, the memory score is 122

adjusted to remove the effect of sex, education and age. 123

Modularity-constrained Lasso 124

Throughout this section, we write matrices as boldface uppercase letters and vectors as 125

boldface lowercase letters. Given a matrix M = (mij), its i-th row and j-th column are 126

denoted as mi and mj respectively. Let X = [x1,x2, ...,xn]T be the multi-omic features 127

as predictors and y = [y1, y2, ..., yn]T be the disease quantitative trait as outcome (i.e., 128

cognitive performance). Here, xj ⊆ Rp is a concatenated vector of genotype, gene 129

expression and protein expression data for j-th subject. 130

The least absolute shrinkage and selection operator (Lasso) is a shrinkage and selection 131

method for linear regression [20]. It minimizes the usual sum of squared errors with a 132

bound on the sum of the absolute values of the coefficients, which is also known as L1 133

norm (Eq. 1). 134

min
w
‖y −Xw‖2 s.t. ||w||1 =

p∑
j=1

|wj | ≤ t (1)

With this constraint, Lasso aims to minimize the number of selected features, which 135

significantly improved the interpretability of results compared to traditional linear 136

regression, where almost all features are considered to be outcome-relevant with non- 137

zero weight. However, when dealing with a group of highly correlated features, L1 138

norm penalty will result in a random selection. In this case, multiple runs of Lasso 139

on the same set of data will possibly generate different set of selected features, which 140

presents challenges for replicating and interpreting the results. To address this problem, 141

several groups proposed to explicitly incorporate the correlation structure into the 142

sparse prediction model and encourage the selection/exclusion of all highly correlated 143

features [21–24]. Among those is GraphNet, where a graph G ⊆ Rp×p indicating the 144

correlation structure between predictors is used as a priori to guide the feature selection 145

(Eq. 2) [24]. Here, L is the corresponding Laplacian matrix of graph G. However, 146

GraphNet only takes account into local topology information with a focus on pairwise 147

similarity. For multi-omic biomarker discovery, using this penalty can not guarantee the 148

selected features are densely connected in the prior network. 149

min
w
‖y −Xw‖2 + λwTLw s.t. ||w||1 ≤ t (2)

In this paper, we propose a new modularity-constrained Lasso which leverages the 150

global network property to encourage the selection of a sub-network module rather 151

than individual markers scattered in the prior network. Given the trans-omic network 152

capturing the functional interaction between SNPs, genes and proteins, we formulate 153

it as a graph and its corresponding adjacency matrix is denoted as G ⊆ Rp×p. B is 154

the modularity matrix [25], where Bij = G
(f)
ij −

hihj

2m . It evaluates whether the number 155

of links is significantly more than expected. hi and hj are the degrees of the i-th and 156

j-th node in the network, and m is the total number of links in the network. To impose 157

a modular structure in the identified biomarkers, we propose a new penalty term as 158

PM (w,B) =< wTw,B >, inspired by the module identification problem [26,27]. Here, 159

<> is the Frobenius inner product defined by < A,B >= tr(ATB). Maximizing the 160

Frobenius inner product between wTw and the modularity matrix B encourages the 161

selection of features with dense functional connections in the prior multi-omic network. 162
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Taken together, our new modularity-constrained Lasso objective is formulated as in Eq. 163

3. 164

min
w

q∑
i=1

‖y −Xw‖2 − PM (w,B) s.t. ||w||1 ≤ t (3)

Here, λ and t are the parameters that control and balance the contribution from two 165

regularization terms. Note that the objective function in Eq. 3 is not convex because 166

the modularity matrix B used in PM (w,B) =< wTw,B > is indefinite. To make B 167

negative-definite, we introduced an auxiliary function where B is replaced by B− λBI 168

and λB is the absolute maximum eigenvalue of B. Eq. 3 can be easily solved by obtaining 169

a closed form solution without L1 constraint, followed by soft-threshold method [20]. 170

Results 171

Performance comparison between M-Lasso and G-Lasso 172

In this section, we denote our modularity-constrained Lasso as M-Lasso and GraphNet- 173

constrained Lasso as G-Lasso. For both methods, nested 5-fold cross validation (CV) 174

procedure was applied to tune the parameters based on root mean squared error (RMSE) 175

and the portion of different diagnosis groups was kept the same in different folds. As can 176

be observed, the major difference between Eq. 2 and Eq. 3 is the penalty term and they 177

have the same set of parameters. The parameters are tuned with the range set from 178

[10−6 10−5 10−4 10−3 10−2 10−1 100 101 102]. For fair comparison, both methods were 179

evaluated using the same partition of subjects during the cross validation procedure. 180

Shown in Table 2 is the root mean square error estimated by M-Lasso and G-Lasso 181

on test data set across five folds. As we can observe, M-Lasso consistently outperforms 182

G-Lasso with smaller prediction error over all 5 folds.

Table 2. Performance comparison on test set between M-Lasso and
G-Lasso (RMSE).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
M-Lasso 0.853 1.082 0.905 0.959 0.874 0.935
G-Lasso 0.876 1.127 1.015 1.085 1.415 1.104

183

For feature selection, M-Lasso identified around 600 -omics features, including SNPs, 184

genes and proteins, to be predictive of cognitive performance, while G-Lasso only 185

identified a handful of them (i.e., less than 20 for all 5 folds). When mapped to the 186

prior functional connectivity network, markers identified by G-Lasso scatters across 187

the network with few connections, which suggests that the local topology information 188

used in GraphNet penalty is not strong enough to form subnetwork structure among 189

identified biomarkers. For M-Lasso, -omics biomarkers identified are largely connected 190

to each other in the prior network. Take the result from one fold as example, 650 -omics 191

features were selected, including 255 SNPs, 339 genes and 56 proteins. The largest 192

connected network component involves 276 -omics features with 366 edges (Fig. 2). 193

The rest of the multi-omic markers identified in M-Lasso mostly form small connected 194

components, ranging in size from 2 to 50. These features are found predictive yet not 195

well functionally connected, possibly due to the fact that they are false positives or their 196

functional connections have not been previously studied yet. In the subsequent part, we 197

focus on the multi-omic biomarkers in the largest connected component, which are both 198

predictive of cognitive performance and functionally connected with evidence from prior 199

knowledge. 200
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Functionally connected multi-omic biomarkers 201

Shown in Fig. 2 are the top 7 connected components obtained after mapping 650 -omics 202

features back to the prior network. Size of each node is made proportional to their degree. 203

It can be easily observed that there are multiple trans-omic paths from SNPs to genes 204

and then proteins. Note that these SNPs are located upstream of their connected genes 205

and has significant effect on the transcription factor binding activity. Thus, these SNPs 206

are very likely to have an influence on the expression of their connected genes. Also, 207

the functional interaction between genes and proteins are curated from REACTOME 208

pathways with direction information. Therefore, genes have a regulatory role toward 209

the expression of their connected proteins in the prior network. Taken together, these 210

trans-omic paths suggest that cognitive performance can be potentially affected by the 211

genetic mutations (i.e., SNPs) due to their cascade effect on the expression of downstream 212

genes, which further regulate the protein expression. We further examined all 28 SNPs 213

involved in the largest connected component in BRAINEAC database. 25 of them were 214

found to be expression quantitative locus (eQTLs) in the prefrontal cortex tissue, which 215

gives further support to our discovery of trans-omic paths as biomarkers. 216

For the largest connected components, we further performed network analysis using 217

NetworkAnalyzer in Cytoscape [28] and identified the -omic biomarkers with top centrality 218

values, such as degree, betweenness and closeness (Table 3). Top nodes by degree in 219

this subnetwork included proteins PIK3R1, FYN, CD44 and RPS2, and genes GRB2, 220

FBXO2, EP300, SV2A and SPCS3. Most hub nodes are also found to have the top 221

centrality value in betweenness, closeness and clustering coefficient, such as PIK3R1, 222

FYN, and EP300. Majority of these genes and proteins have been previously reported 223

in association with AD. For example, PIK3R1 encodes the regulatory subunit of the 224

phosphoinositide-3-kinase protein complex PI3Ks, which are known to play a key role in 225

insulin signaling. Results from recent studies start to show evidence of intrinsic insulin 226

resistance inside AD brains [29]. The hub gene EP300 encodes the enzyme histone 227

acetyltransferase p300 or E1A-associated protein p300, also known as EP300 or P300. 228

This enzyme functions as histone acetyltransferase that regulates transcription of genes 229

via chromatin remodeling. Findings from multiple studies have suggested the potential of 230

P300 to act as a biomarker for dementia assessment and monitoring AD. Meta-analysis 231

of P300 amplitude and latency reveals useful information about the early stages of 232

AD [30,31]. In addition, both GRB2 and FBXO2 were found to interact with APP, a 233

well-known gene related to AD. GRB2 interacts with APP requiring phosphorylation 234

of APP at Tyr-682 [32]. This could lead to the activation of the MAPK pathway, 235

since GRB2 are known to link growth factor receptors to signaling pathways, such as 236

MAPK and PI3K, and participate in oncogenic proliferation, neuronal development, 237

cell differentiation, and apoptosis [33–38] The hub gene FBXO2 participates in APP 238

processing by promoting degradation of APP cleaving β-secretase [39]. 239

Pathway enrichment analysis 240

For 168 genes and 37 proteins in the largest connected subnetwork, we performed 241

pathway enrichment analysis using ClueGO based on the Kyoto Encyclopedia of Genes 242

and Genomes (KEGG) database [40, 41]. In total, 74 pathways were found to be 243

significantly enriched by our gene/protein set, with Bonferroni corrected term p-value 244

smaller than 5% (P≤0.05). Shown in Table 4 was the top 20 enriched KEGG pathways 245

with smallest p values after correction. The top hit is PI3K -Akt signaling pathway, 246

a major mediator of effects of insulin. Two recent studies have found a significant 247

correlation between peripheral insulin resistance and brain Aβ levels as measured by 248

Pittsburgh compound B-positron emission tomography (PiB-PET) [42,43]. The impaired 249

insulin-PI3K-Akt signaling observed in the AD brain has led to clinical trials studying 250
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Fig 2. Top 7 connected components with biomarkers identified using
M-Lasso mapped to prior network.
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Table 3. For 7 network features, nodes with the top highest value in
modularity enrichment analysis.

Degree
PIK3R1, GRB2 , FYN, FBXO2 , CD44, HSPA8,

EP300 , RPS2, SV2A, SPCS3
Average Shortest

Path Length
PIK3R1, SP1 , FYN, EP300 , LYN , LDHA,

PDGFRB , APP, GRB2 , FCER1G

Betweenness
PIK3R1, SP1 , EP300 , FYN, GRB2 , MYC , LDHA,

CD44, RPL10A, HSPA8

Closeness
PIK3R1, SP1 , FYN, EP300 , LYN , LDHA,

PDGFRB , APP, GRB2 , FCER1G
Clustering
Coefficient

FCER1G, LYN , GRB2, PIK3R1

rs- IDs: SNPs; Bold: genes; The rest: proteins.

whether the enhancement of this pathway using intranasal insulin (IN) treatment is 251

beneficial [44]. Other enriched pathways that are previously reported with a key role in 252

AD include Focal adhesion [45], Ras signaling pathway [46], ECM-receptor interaction [47], 253

MAPK signaling pathway [48], Rap1 signaling pathway [49], etc. In addition, we observe 254

many of the top enriched pathways are related to cancer, such as PI3K -Akt signaling 255

pathway, Prostate cancer and small lung cancer. This finding provide support to the 256

hypothesis of shared pathological mechanism between cancer and AD [50–53]. 257

Table 4. Top enriched KEGG pathways by the gene and protein markers in the largest subnetwork.

Pathway
Number of

markers in the
pathway

Total number of
genes in the

pathway
p-value

Corrected
p-value

PI3K -Akt signaling pathway 84 354 5.78E-42 9.99E-40
Focal adhesion 59 199 5.89E-35 1.01E-32

Pathways in cancer 86 530 1.25E-29 2.14E-27
Ras signaling pathway 52 232 2.20E-24 3.73E-22

Human papillomavirus infection 55 330 2.88E-19 4.87E-17

ECM -receptor interaction 28 82 9.34E-19 1.57E-16
MAPK signaling pathway 51 295 1.34E-18 2.24E-16
Kaposi sarcoma-associated

herpesvirus infection
39 186 2.40E-17 3.98E-15

Rap1 signaling pathway 41 206 2.48E-17 4.09E-15

Human cytomegalovirus infection 42 225 1.14E-16 1.87E-14
Prostate cancer 27 97 1.41E-15 2.30E-13

Chronic myeloid leukemia 24 76 2.38E-15 3.85E-13

ErbB signaling pathway 25 85 3.99E-15 6.42E-13
Small cell lung cancer 25 93 4.04E-14 6.46E-12

Phospholipase D signaling
pathway

31 148 5.71E-14 9.08E-12

Chemokine signaling pathway 35 190 7.46E-14 1.18E-11
Proteoglycans in cancer 36 201 7.87E-14 1.24E-11

Neurotrophin signaling pathway 27 119 3.39E-13 5.28E-11
Relaxin signaling pathway 28 130 4.84E-13 7.50E-11

JAK-STAT signaling pathway 30 162 4.38E-12 6.74E-10
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Conclusion 258

In this study, we proposed a new modularity-constrained Lasso model to jointly ana- 259

lyze the genotype, RNA-Seq gene expression and protein expression data. The newly 260

introduced penalty term maximizes the global modularity of selected biomarkers in the 261

prior network and encourages the selection of multi-omic biomarkers forming network 262

modules. Compared to the GraphNet penalty that enforces local pairwise similarity, 263

modularity-based penalty helps identify more biomarkers with significantly improved 264

functional connectivity. In particular, we found that some biomarkers form trans-omic 265

paths from SNP to gene and then protein, suggesting the potential cascade effect of 266

genotype on the downstream transcriptome and proteome level. To the best of our 267

knowledge, this is the first study that explored the potential of functional multi-omic 268

subnetworks as biomarkers in AD. 269

Despite the promising findings, this study has multiple limitations. First, only one 270

disease quantitative trait is used as outcome in the prediction model. Considering 271

the potential bias introduced from data collection procedure, the biomarkers and their 272

functional connectivity network identified here may not reflect the optimal pattern. 273

Incorporating multiple correlated outcomes and performing a multitask prediction will 274

possibly help improve the performance. Second, our proposed model is not capable of 275

handling the missing data problem. Each subject has to have all the –omics data to be 276

included in the analysis. Therefore, many subjects with missing data in one or more 277

–omics layers are inevitably excluded and only a small portion of the big –omics data is 278

utilized. Future efforts are warranted to further improve this model. 279
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