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Abstract

In the past decade, a large number of genetic biomarkers have been discovered through
large-scale genome wide association studies (GWASs) in Alzheimer’s disease (AD), such
as APOE, TOMM/0 and CLU. Despite this significant progress, existing genetic findings
are largely passengers not directly involved in the driver events, which presents challenges
for replication and translation into targetable mechanisms. In this paper, leveraging
the protein interaction network, we proposed a modularity-constrained Lasso model
to jointly analyze the genotype, gene expression and protein expression data. With a
prior network capturing the functional relationship between SNPs, genes and proteins,
the newly introduced penalty term maximizes the global modularity of the subnetwork
involving selected markers and encourages the selection of multi-omic markers with
dense functional connectivity, instead of individual markers. We applied this new model
to the real data in ROS/MAP cohort for discovery of biomarkers related to cognitive
performance. A functionally connected subnetwork involving 276 multi-omic biomarkers,
including SNPs, genes and proteins, were identified to bear predictive power. Within
this subnetwork, multiple trans-omic paths from SNPs to genes and then proteins were
observed, suggesting that cognitive performance can be potentially affected by the
genetic mutations due to their cascade effect on the expression of downstream genes and
proteins.

Introduction

Alzheimer’s disease (AD) is the most common form of brain dementia characterized by
the gradual loss of memory and other cognitive function. With rapidly increasing aging
population, AD is drawing more and more attention in the United States and around the
world [1]. Unfortunately, the underlying mechanism of AD remains largely unknown and
no clinically validated drug is available for disease treatment and prevention. Although
recent large-scale genome wide association studies (GWASs) have led to discovery of many
genetic markers associated with AD, such as APOFE, TOMM/0 and CLU, replicability
of existing findings and their translation into targetable mechanisms related to disease
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pathogenesis remain a challenge. Identification of novel biomarkers or functionally
validating existing biomarkers becomes increasingly important for discovery of new
potential future therapeutic targets.

Recently, there is a substantial increase in AD multi-omic data. Example projects
include the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [2] and the Religious
Orders Study and Memory and Aging Project (ROSMAP) [3]. Instead of limiting
their perspective to a single -omics layer, these data collections create a molecular
landscape spanning the genome, transcriptome, proteome and metabolome. Coupling
with systems biology networks (e.g., protein-protein interaction (PPI) network), these
data provides a valuable resource with rich content and opens numerous opportunities
for more comprehensive analyses of AD. These multi-omics data has been increasingly
recognized to be a potential key enabler of novel biomarker discovery [4},/5]. It not only
allows us to examine the disease from different -omics layers, but also provides insights
into their interactions which is critical for translation of genetic findings into targetable
mechanism.

Despite this great potential, the power of multi-omic data has not been fully unleashed.
Much research effort of existing studies has been on single type of -omics data without
acknowledging the interconnections between —omics layers. This shortcoming is largely
due to the limited availability of computational methods that are sufficiently powerful
and comprehensive enough to handle the high dimensionality and heterogeneity of multi-
mic data. In addition, major findings generated from current —omics studies have been
largely restricted to relatively simple patterns. They are mostly individual biomarkers,
possibly without functional interactions, which presents difficulties to validate these
findings and to relate them to downstream biology [6}/7]. To address this problem, some
recent studies propose to seek common genetic markers with evidence from more than
one -omics layer [8H10], which are expected to more reliable for further experimental
validation. However, this simple overlap strategy may be too stringent as -omic features
in different layers are not completely mapped in a one-to-one relationship.

In this paper, leveraging the functional interaction network in REACTOME, we pro-
pose a modularity-constrained Lasso model to jointly analyze genotype, gene expression
and protein expression data. We aim to identify a set of SNPs, genes and proteins as
biomarkers, forming a subnetwork with functional connections cutting across different
-omics layers. Compared to individual mutations, genes or proteins identified using
traditional methods, such connected pattern can help improve not only the reliability of
identified biomarkers, but also their replicability and interpretability.

Method

Study cohort

All the data analyzed in the present report were obtained from the Religious Orders Study
(ROS) and Memory and Aging Project (MAP). It was launched by Rush University
to build a cohort from religious communities to measure the progression of amnestic
mild cognitive impairment (MCI, a prodromal stage of AD) and early probable AD.
The combined ROS/MAP cohort includes around 600 participants under age 90, which
constitute a very rich repository of multi-modal data including GWAS data, whole
genome sequencing (WGS) data, cognitive, behavioral and clinical data. The more
detailed description could be found in [3]. In this paper, GWAS genotype data and
quality controlled RNA-Seq gene expression and protein expression data collected from
prefrontal cortex tissue in the brain were downloaded. To perform the proposed joint
analysis, only subjects with all three types of -omics data were included. In total, we
have 262 subjects (115 healthy controls (HC), 67 mild cognitive impairment (MCI), 80
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AD patients) with full set of genotype, RNA-seq gene expression and proteomic data.
The detailed demographic information can be found in Table

Table 1. Demographic information of the ROS/MAP participants included
in this study.

Dignosis HC MCI AD
Subject Number 115 67 80
ROS/MAP 60/46 27740 10/40
Male/Female 51/64 28/39 31/49
Education(mean+ std.) | 16.9 = 3.5 | 16.6 + 3.3 | 16.9 &+ 3.8
Age(mean= std.) 83.0 +£4.7 | 85.0 £4.2 | 86.3 £ 3.7

GWAS genotype data preparation

ROS/MAP samples were genotypes on the Affymetrix GeneChip 6.0 platform [11].
We performed sample and SNP quality control procedures on GWAS data (SNP call
rate<95%, Hardy-Weinberg equilibrium test p<10~% in controls, and frequency filtering
(MAF<1%) were performed. After performing the standard quality control procedures
for genetic markers and subjects , only non-Hispanic Caucasian participants were selected
by clustering with CEU (Utah residents with Northern and Western European ancestry
from the CEPH collection) + TSI (Toscani in Italia) populations using HapMap 3
genotype data and the multidimensional scaling (MDS) analysis [12]. Un-genotyped
SNPs were imputed using MaCH and the 1000 Genomes Project as a reference panel [13].

RINA-Seq gene expression preparation

RNA-Seq gene expression data in the ROS/MAP cohort were collected from the prefrontal
cortex tissue in the brain. The RNA-Seq data were recently reprocessed in parallel with
other AMP-AD RNAseq datasets, and this second version of the data were downloaded for
our subsequent analysis. The input data for the RNAseq reprocessing effort was aligned
reads in bam files that were converted to fastq using the Picard SamToFastq function.
Fastq files were re-aligned to the reference genome using STAR with twopassMode set
as Basic. Gene counts were computed for each sample by STAR by setting quantMode
as GeneCounts. These gene level counts further went through normalized and adjusted
to remove the effects of relevant factors such as age, gender, education, batch, RNA
integrity number (RIN) and post moterm interval (PMI). Detailed reprocessing and

normalization steps can be found in the AMP-AD knowledge portal (https://www|

synapse.org/#!Synapse:syn9702085/)).

Protein expression data preparation

SRM proteomics was performed using frozen tissue from dorsolateral prefrontal cortex
(DLPFC). The samples were prepared for LC-SRM analysis using standard protocol
as described in [14}/15]. All the data were manually inspected to ensure correct peak
assignment and peak boundaries. The abundance of endogenous peptides was quanti-
fied as a ratio to spiked-in synthetic peptides containing stable heavy isotopes. The
"light /heavy” ratios were log2 transformed and shifted such that median log2-ratio is
zero. Normalization adjusted for differences in protein amounts between the samples.
During that normalization, we shifted the log2-ratios for each sample to make sure
the median is set at zero. Detailed processing steps can be found in the AMP-AD
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Fig 1. The selection of SNPs in upstream 5K boundary for each gene.

knowledge portal (https://www.synapse.org/#!Synapse:syn8456629). Using the re-
gression weights derived from the healthy control participants, peptide abundance data
were further adjusted to remove the effects of the age at death, gender, education, PMI
and batch.

Selection of SNPs, genes and proteins

We focused our analysis on a set of SNPs, genes and proteins with known functional
connections. Though we have genome-wide genotype and transcriptome-wide gene
expression data available in the ROS/MAP cohort, only a limited number of proteins
are measured and form a bottleneck for the joint -omics data analysis. To address
this problem, we used these proteins as seeds to select a subset of SNPs and genes for
subsequent analysis. As shown in Fig[l] in the proteomic level, abundance level of
186 peptides, from 126 unique genes, were measured in the ROS/MAP project. When
mapped to the functional interaction network in REACTOME , where all protein
interactions were manually curated from pathways with directionality information, these
genes are found to interact with 954 genes. After excluding those without gene ID, totally
743 genes with RNA-seq data were included in the transcriptomic level. In the genomic
level, SNPs located on the upstream of these genes (boundary: 5K) were extracted.
To ensure the functional connection of selected SNPs and their downstream genes,
we included only SNPs significantly affecting the transcrition factor binding activity,
as shown in SNP2TFBS database . This relationship between SNPs, genes and
proteins/peptides are used as the trans-omic network to guide the search of functionally
connected biomarkers in the subsequent analysis.

Memory outcomes

In the ROS/MAP project, cognitive performance of participants was estimated through
the mini mental state examination, a standardized screening measure for collecting 30
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items in related with dementia [18]/19]. This score ranges from 0 to 30, and is scaled
to quantify the severity of dementia. In this study, we use this memory test score as
the AD quantitative trait for discovery of functionally connected biomarkers. Using the
regression weights derived from the healthy control participants, the memory score is
adjusted to remove the effect of sex, education and age.

Modularity-constrained Lasso

Throughout this section, we write matrices as boldface uppercase letters and vectors as
boldface lowercase letters. Given a matrix M = (m;;), its i-th row and j-th column are
denoted as m* and m; respectively. Let X = [z1, zo, ..., x,)T be the multi-omic features
as predictors and y = [y1,¥2, ..., yn]T be the disease quantitative trait as outcome (i.e.,
cognitive performance). Here, £; C R? is a concatenated vector of genotype, gene
expression and protein expression data for j-th subject.

The least absolute shrinkage and selection operator (Lasso) is a shrinkage and selection
method for linear regression [20]. It minimizes the usual sum of squared errors with a
bound on the sum of the absolute values of the coefficients, which is also known as L1

norm (Eq. [I)).

P
. 2
min [ly — Xw|? st [jwlli =Y Juy| <t (1)
j=1

With this constraint, Lasso aims to minimize the number of selected features, which
significantly improved the interpretability of results compared to traditional linear
regression, where almost all features are considered to be outcome-relevant with non-
zero weight. However, when dealing with a group of highly correlated features, L1
norm penalty will result in a random selection. In this case, multiple runs of Lasso
on the same set of data will possibly generate different set of selected features, which
presents challenges for replicating and interpreting the results. To address this problem,
several groups proposed to explicitly incorporate the correlation structure into the
sparse prediction model and encourage the selection/exclusion of all highly correlated
features [21H24]. Among those is GraphNet, where a graph G C RP*? indicating the
correlation structure between predictors is used as a priori to guide the feature selection
(Eq. [24]. Here, L is the corresponding Laplacian matrix of graph G. However,
GraphNet only takes account into local topology information with a focus on pairwise
similarity. For multi-omic biomarker discovery, using this penalty can not guarantee the
selected features are densely connected in the prior network.

min ||y — Xwl|> + Aw”Lw s.t. ||w||; <t (2)

In this paper, we propose a new modularity-constrained Lasso which leverages the
global network property to encourage the selection of a sub-network module rather
than individual markers scattered in the prior network. Given the trans-omic network
capturing the functional interaction between SNPs, genes and proteins, we formulate
it as a graph and its corresponding adjacency matrix is denoted as G C RP*P. B is
the modularity matrix [25], where B;; = Gijf ) _ hQ:lJ . It evaluates whether the number
of links is significantly more than expected. h; and h; are the degrees of the i-th and
j-th node in the network, and m is the total number of links in the network. To impose
a modular structure in the identified biomarkers, we propose a new penalty term as
Py (w,B) =< wl'w, B >, inspired by the module identification problem [26}[27]. Here,
<> is the Frobenius inner product defined by < A, B >= tr(AT B). Maximizing the
Frobenius inner product between w’w and the modularity matrix B encourages the
selection of features with dense functional connections in the prior multi-omic network.
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Taken together, our new modularity-constrained Lasso objective is formulated as in Eq.

[3- q
min Y~ [ly — Xwl* — Pa(w, B) st |[wlly <1 3)

i=1

Here, )\ and ¢ are the parameters that control and balance the contribution from two
regularization terms. Note that the objective function in Eq. |3|is not convex because
the modularity matrix B used in Py;(w,B) =< wlw,B > is indefinite. To make B
negative-definite, we introduced an auxiliary function where B is replaced by B — Agl
and Ap is the absolute maximum eigenvalue of B. Eq. [3|can be easily solved by obtaining
a closed form solution without L1 constraint, followed by soft-threshold method [20].

Results

Performance comparison between M-Lasso and G-Lasso

In this section, we denote our modularity-constrained Lasso as M-Lasso and GraphNet-
constrained Lasso as G-Lasso. For both methods, nested 5-fold cross validation (CV)
procedure was applied to tune the parameters based on root mean squared error (RMSE)
and the portion of different diagnosis groups was kept the same in different folds. As can
be observed, the major difference between Eq. [2| and Eq. |3]is the penalty term and they
have the same set of parameters. The parameters are tuned with the range set from
[1076 107° 10=* 1072 10=2 10! 10° 10! 10?]. For fair comparison, both methods were
evaluated using the same partition of subjects during the cross validation procedure.

Shown in Table [2]is the root mean square error estimated by M-Lasso and G-Lasso
on test data set across five folds. As we can observe, M-Lasso consistently outperforms
G-Lasso with smaller prediction error over all 5 folds.

Table 2. Performance comparison on test set between M-Lasso and
G-Lasso (RMSE).

Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Mean
M-Lasso 0.853 1.082 0.905 0.959 0.874 0.935
G-Lasso 0.876 1.127 1.015 1.085 1.415 1.104

For feature selection, M-Lasso identified around 600 -omics features, including SNPs,
genes and proteins, to be predictive of cognitive performance, while G-Lasso only
identified a handful of them (i.e., less than 20 for all 5 folds). When mapped to the
prior functional connectivity network, markers identified by G-Lasso scatters across
the network with few connections, which suggests that the local topology information
used in GraphNet penalty is not strong enough to form subnetwork structure among
identified biomarkers. For M-Lasso, -omics biomarkers identified are largely connected
to each other in the prior network. Take the result from one fold as example, 650 -omics
features were selected, including 255 SNPs, 339 genes and 56 proteins. The largest
connected network component involves 276 -omics features with 366 edges (Fig. .
The rest of the multi-omic markers identified in M-Lasso mostly form small connected
components, ranging in size from 2 to 50. These features are found predictive yet not
well functionally connected, possibly due to the fact that they are false positives or their
functional connections have not been previously studied yet. In the subsequent part, we
focus on the multi-omic biomarkers in the largest connected component, which are both
predictive of cognitive performance and functionally connected with evidence from prior
knowledge.
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Functionally connected multi-omic biomarkers

Shown in Fig. 2] are the top 7 connected components obtained after mapping 650 -omics

features back to the prior network. Size of each node is made proportional to their degree.

It can be easily observed that there are multiple trans-omic paths from SNPs to genes
and then proteins. Note that these SNPs are located upstream of their connected genes
and has significant effect on the transcription factor binding activity. Thus, these SNPs
are very likely to have an influence on the expression of their connected genes. Also,
the functional interaction between genes and proteins are curated from REACTOME
pathways with direction information. Therefore, genes have a regulatory role toward
the expression of their connected proteins in the prior network. Taken together, these
trans-omic paths suggest that cognitive performance can be potentially affected by the
genetic mutations (i.e., SNPs) due to their cascade effect on the expression of downstream
genes, which further regulate the protein expression. We further examined all 28 SNPs
involved in the largest connected component in BRAINEAC database. 25 of them were
found to be expression quantitative locus (eQTLs) in the prefrontal cortex tissue, which
gives further support to our discovery of trans-omic paths as biomarkers.

For the largest connected components, we further performed network analysis using
NetworkAnalyzer in Cytoscape [28] and identified the -omic biomarkers with top centrality
values, such as degree, betweenness and closeness (Table [3)). Top nodes by degree in
this subnetwork included proteins PIK3R1, FYN, CD44 and RPS2, and genes GRB2,
FBXO02, EP300, SV2A and SPCS3. Most hub nodes are also found to have the top
centrality value in betweenness, closeness and clustering coefficient, such as PIK3R1,
FYN, and EP300. Majority of these genes and proteins have been previously reported
in association with AD. For example, PIK3R1 encodes the regulatory subunit of the
phosphoinositide-3-kinase protein complex PI3Ks, which are known to play a key role in
insulin signaling. Results from recent studies start to show evidence of intrinsic insulin
resistance inside AD brains [29]. The hub gene EP300 encodes the enzyme histone
acetyltransferase p300 or E1A-associated protein p300, also known as EP300 or P300.
This enzyme functions as histone acetyltransferase that regulates transcription of genes
via chromatin remodeling. Findings from multiple studies have suggested the potential of
P300 to act as a biomarker for dementia assessment and monitoring AD. Meta-analysis
of P300 amplitude and latency reveals useful information about the early stages of
AD [30,)31]. In addition, both GRB2 and FBXO02 were found to interact with APP, a
well-known gene related to AD. GRB2 interacts with APP requiring phosphorylation
of APP at Tyr-682 [32]. This could lead to the activation of the MAPK pathway,
since GRB2 are known to link growth factor receptors to signaling pathways, such as
MAPK and PI3K, and participate in oncogenic proliferation, neuronal development,
cell differentiation, and apoptosis [33-38] The hub gene FBXO2 participates in APP
processing by promoting degradation of APP cleaving [-secretase [39].

Pathway enrichment analysis

For 168 genes and 37 proteins in the largest connected subnetwork, we performed
pathway enrichment analysis using ClueGO based on the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database [40,/41]. In total, 74 pathways were found to be
significantly enriched by our gene/protein set, with Bonferroni corrected term p-value
smaller than 5% (P<0.05). Shown in Table [4| was the top 20 enriched KEGG pathways
with smallest p values after correction. The top hit is PISK-Akt signaling pathway,
a major mediator of effects of insulin. Two recent studies have found a significant
correlation between peripheral insulin resistance and brain Af levels as measured by
Pittsburgh compound B-positron emission tomography (PiB-PET) [42//43]. The impaired
insulin-PI3K-Akt signaling observed in the AD brain has led to clinical trials studying
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Fig 2. Top 7 connected components with biomarkers identified using
M-Lasso mapped to prior network.
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Table 3. For 7 network features, nodes with the top highest value in
modularity enrichment analysis.

Dogree PIK3R1, GRB2, FYN, FBX02, CD/4, HSPAS,
EP300, RPS2, SV2A, SPCSS3
Average Shortest PIK3R1, SP1, FYN, EP300, LYN, LDHA,
Path Length PDGFRB, APP, GRB2, FCER1G
Betwoenness PIK3R1, SP1, EP300, FYN, GRB2, MYC, LDHA,
CD/4, RPL10A, HSPAS
Closoness PIK3R1, SP1, FYN, EP300, LYN, LDHA,
PDGFRB, APP, GRB2, FCER1G
Clustering FCER1G, LYN, GRB2, PIK3R1
Coefficient ’ ’ ’

rs- IDs: SNPs; Bold: genes; The rest: proteins.

whether the enhancement of this pathway using intranasal insulin (IN) treatment is
beneficial [44]. Other enriched pathways that are previously reported with a key role in
AD include Focal adhesion [45], Ras signaling pathway [46], ECM-receptor interaction [47],
MAPK signaling pathway [48], Rap1 signaling pathway [49], etc. In addition, we observe
many of the top enriched pathways are related to cancer, such as PISK-Akt signaling
pathway, Prostate cancer and small lung cancer. This finding provide support to the

hypothesis of shared pathological mechanism between cancer and AD [50453].

251

252

254

255

256

257

Table 4. Top enriched KEGG pathways by the gene and protein markers in the largest subnetwork.

Number of Total number of
Pathway markers in the genes in the p-value Corrected
p-value
pathway pathway
PI3K-Akt signaling pathway 84 354 5.78E-42 9.99E-40
Focal adhesion 59 199 5.89E-35 1.01E-32
Pathways in cancer 86 530 1.25E-29 2.14E-27
Ras signaling pathway 52 232 2.20E-24 3.73E-22
Human papillomavirus infection 55 330 2.88E-19 4.87TE-17
ECM-receptor interaction 28 82 9.34E-19 1.57E-16
MAPK signaling pathway 51 295 1.34E-18 2.24E-16
Kaposi sarcoma-associated 39 186 2.40E-17 3.98E-15
herpesvirus infection
Rapl signaling pathway 41 206 2.48E-17 4.09E-15
Human cytomegalovirus infection 42 225 1.14E-16 1.87E-14
Prostate cancer 27 97 1.41E-15 2.30E-13
Chronic myeloid leukemia 24 76 2.38E-15 3.85E-13
ErbB signaling pathway 25 85 3.99E-15 6.42E-13
Small cell lung cancer 25 93 4.04E-14 6.46E-12
Phospholipase D signaling 31 148 5.71E-14 9.08E-12
pathway
Chemokine signaling pathway 35 190 7.46E-14 1.18E-11
Proteoglycans in cancer 36 201 7.87E-14 1.24E-11
Neurotrophin signaling pathway 27 119 3.39E-13 5.28E-11
Relaxin signaling pathway 28 130 4.84E-13 7.50E-11
JAK-STAT signaling pathway 30 162 4.38E-12 6.74E-10
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Conclusion

In this study, we proposed a new modularity-constrained Lasso model to jointly ana-
lyze the genotype, RNA-Seq gene expression and protein expression data. The newly
introduced penalty term maximizes the global modularity of selected biomarkers in the
prior network and encourages the selection of multi-omic biomarkers forming network
modules. Compared to the GraphNet penalty that enforces local pairwise similarity,
modularity-based penalty helps identify more biomarkers with significantly improved
functional connectivity. In particular, we found that some biomarkers form trans-omic
paths from SNP to gene and then protein, suggesting the potential cascade effect of
genotype on the downstream transcriptome and proteome level. To the best of our
knowledge, this is the first study that explored the potential of functional multi-omic
subnetworks as biomarkers in AD.

Despite the promising findings, this study has multiple limitations. First, only one
disease quantitative trait is used as outcome in the prediction model. Considering
the potential bias introduced from data collection procedure, the biomarkers and their
functional connectivity network identified here may not reflect the optimal pattern.
Incorporating multiple correlated outcomes and performing a multitask prediction will
possibly help improve the performance. Second, our proposed model is not capable of
handling the missing data problem. Each subject has to have all the —omics data to be
included in the analysis. Therefore, many subjects with missing data in one or more
—omics layers are inevitably excluded and only a small portion of the big —omics data is
utilized. Future efforts are warranted to further improve this model.
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