

Novel repellents for the blood-sucking insects *Rhodnius prolixus* and *Triatoma infestans*, vectors of Chagas disease

3

4 Melanie Ramírez¹, Mario I. Ortiz¹, Pablo Guerenstein², Jorge Molina¹

5

6 Institutional affiliations:

7 1. Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT),
8 Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
9 2. Laboratorio de Estudio de la Biología de Insectos, Centro de Investigación
10 Científica y de Transferencia Tecnológica a la Producción (CICyTTP, CONICET -
11 Prov. Entre Ríos - Uader), Diamante, Entre Ríos, Argentina.

12

13 Corresponding author

14 Jorge Molina

15 E-mail address: jmolina@uniandes.edu.co

16 Facultad de Ciencias, Universidad de los Andes

17 A.A. 4976 Carrera 1a # 18A-10

18 Bogotá, Colombia

19 +57 133394949 ext. 3220

20

21

22

23

24 **Abstract**

25

26 **Background:** Studying the behavioral response of blood-sucking, disease-vector insects to
27 potentially repellent volatile compounds could shed light on the development of new
28 control strategies. Volatiles released by human facial skin microbiota play different roles in
29 the host-seeking behavior of triatomines. We assessed the repellency effect of such
30 compounds of bacterial origin on *Triatoma infestans* and *Rhodnius prolixus*, two important
31 vectors of Chagas disease in Latin America.

32 **Methods:** Using an exposure device, insects were presented to human odor alone (negative
33 control) and in the presence of three individual tested compounds (2-mercaptoethanol,
34 dimethyl sulfide and 2-phenylethanol, which was only tested in *R. prolixus*) and the gold-
35 standard repellent NN-diethyl-3-methylbenzamide-DEET (positive control). We quantified
36 the time the insects spent in the proximity of the host and performed nonparametric
37 statistical tests to determine if any of the compounds evaluated affected the behavior of the
38 insect.

39 **Results:** We found volatiles that significantly reduced the time spent in the proximity of the
40 host. These were 2-phenylethanol and 2-mercaptoethanol for *R. prolixus*, and dimethyl
41 sulfide and 2-mercaptoethanol for *T. infestans*. Such an effect was also observed in both
42 species when DEET was presented, although only at the higher doses tested.

43 **Conclusions:** The new repellents modulated the behavior of two Chagas disease vectors
44 belonging to two different triatomine tribes, and this was achieved using a dose up to three
45 orders of magnitude lower than that needed to evoke the same effect with DEET. Future
46 efforts in understanding deeply the mechanism of action of repellent compounds such as 2-

47 mercaptoethanol, as well as an assessment of their temporal and spatial repellent properties,
48 could lead to the development of novel control strategies for insect vectors refractory to
49 DEET.

50 **Keywords:** Semiochemicals, *Citrobacter*, Skin microbiota, Volatile organic compounds,
51 DEET.

52

53 **Introduction**

54 Most vectors of human infectious diseases are bloodsucking insects, and therefore, many of
55 those diseases could be potentially eradicated by insect-vector control strategies [1]. For
56 example, it is strongly advised that people living in or visiting regions populated by insects
57 that feed on blood, such as mosquitoes, should protect themselves using insect repellents
58 [2]. Independent of its mechanism of action, the final effect of a repellent is to cause an
59 insect to make oriented movements away from its source. The expected result is to disrupt
60 the host-seeking behavior of the threatening insect [3–5].

61 Triatomine bugs (Hemiptera: Reduviidae: Triatominae) feed on the blood of vertebrates
62 and are vectors of the protozoan parasite *Trypanosoma cruzi*, the etiological agent of
63 Chagas disease, also known as American trypanosomiasis [6]. The vast majority of the
64 extant 149 species of triatomines are found in Latin American countries, where 68
65 triatomine species have been found infected with *T. cruzi*, and more than 150 species of
66 domestic and wild mammals have been found to carry the parasite [7,8]. However, few
67 triatomine species are recognized as competent vectors, and only approximately five
68 species are considered very important vectors for humans: *Rhodnius prolixus* Stål, 1859
69 (inhabiting mainly Colombia and Venezuela), *Triatoma infestans* (Klug, 1834) (inhabiting

70 mainly Peru, Bolivia, Paraguay, and Argentina), *T. dimidiata* (Latreille, 1811) (inhabiting
71 Mexico and Central America), *T. brasiliensis* Neiva, 1911 and *Panstrongylus megistus*
72 (Burmeister, 1835) (both found mainly in Brazil) [8,9]. The infection can occur if, after
73 taking a large blood meal, the insect defecates on the host skin and the feces carrying
74 infective forms of *T. cruzi* enter the blood stream through the wound or any mucous tissue
75 [8]. Since its discovery by Carlos Chagas, until now, controlling vectorial transmission has
76 been the most suitable method to prevent Chagas disease, which affects approximately 7
77 million people worldwide [10].

78 Historically, most research on repellents has focused on mosquitoes over other blood-
79 sucking arthropods such as triatomines [4,11–17]. This tendency to focus on mosquito-
80 repellent research is not surprising considering the higher mortality and morbidity due to
81 mosquito-borne diseases compared to Chagas disease [18–20]. For almost six decades, NN-
82 diethyl-3-methylbenzamide, known as DEET, has been the most common mosquito
83 repellent used worldwide [21]. In fact, the effectiveness of DEET against all groups of
84 biting arthropods, triatomines included, has granted it the title of the *gold standard* among
85 repellents [4,5]. However, compared with mosquitoes and other blood-sucking arthropods,
86 triatomines have a lower sensitivity to this repellent [15,22]. Studies with *R. prolixus* and *T.*
87 *infestans* have revealed that whether the host is present or not, only high doses (i.e., >90%)
88 have a repellent effect, making DEET rather impractical for reducing human-vector
89 contacts [11,23–26]. In addition to these and other related findings in triatomines (i.e.,
90 DEET pre-exposure adaptation, DEET repellency in pyrethroid resistant colonies and the
91 effect of nitric oxide on the sensory detection of DEET) [16,27,28], other studies have

92 explored natural repellents such as essential oils, aiming at finding alternatives to DEET
93 and other synthetic repellents [14,17,19,29–32].

94 A decade of research has shown that volatile organic compounds (VOCs) from human skin
95 and of microbial origin play a role in the behavioral responses of some blood-sucking
96 insects [33]. For example, VOCs produced by skin bacteria are important cues for the
97 malaria vector *Anopheles gambiae* in identifying hosts as human and confer specificity to
98 certain body regions on which mosquitos tend to bite more [33–38]. Moreover, previous
99 studies carried out in our laboratory have demonstrated the role that VOCs released by
100 human facial skin microbiota play in the host-seeking behavior of *R. prolixus* [39–41].
101 Tabares and collaborators [39] showed, in dual choice olfactometer experiments, that
102 VOCs produced *in vitro* by some skin bacteria (at specific growth phases) had an attractive
103 effect on *R. prolixus*. The authors also reported odor-source avoidance when some other
104 bacteria VOCs were presented, such as those produced by *Citrobacter koseri*
105 (Enterobacteriaceae). Insects consistently chose the negative control (i.e., culture medium
106 without bacteria) over the culture medium with bacteria VOCs. These two findings, the
107 attractive and avoidance behavioral effects, contrasted with those from other bacterial
108 VOCs to which *R. prolixus* did not respond at all [39].

109 Therefore, the behavioral response of triatomines to the mix of VOCs produced by the skin
110 microbiota seems to be very complex [39]. Moreover, the role of individual bacterial
111 volatiles from mixtures in evoking avoidance is still unknown, and their potential use as
112 repellents deserves further investigation. In this study, we asked whether individual VOCs
113 released by cultures of *C. koseri*, which evokes avoidance, could affect the behavior of
114 kissing bugs in the proximity of a human host exhibiting, for example, a repellent effect.

115 Furthermore, we investigated whether this potential effect could be equivalent to that
116 evoked by the well-known repellent DEET. Thus, using an exposure device, we assessed in
117 *R. prolixus* and *T. infestans* the repellency effect of three compounds whose chemical
118 structure is similar to that of compounds identified from cultures of *C. koseri* [36]: 2-
119 mercaptoethanol, 2-phenylethanol and dimethyl sulfide. We compared the repellency
120 effectiveness of these compounds at different doses with that obtained with DEET.

121

122 **Methods**

123 *Insects*

124 Adults of *R. prolixus* and third-instar nymphs of *T. infestans* from our laboratory colonies
125 were used. The *R. prolixus* colony originated from wild populations from San Juan de
126 Arama, Meta Department (Northeast of Colombia), and has been maintained at the Centro
127 de Investigaciones en Microbiología y Parasitología Tropical–CIMPAT in Universidad de
128 los Andes (Bogotá, Colombia), while the *T. infestans* colony originated from wild
129 populations from Chaco province (Northeast of Argentina; provided by the Servicio
130 Nacional de Chagas of Argentina), and has been maintained at the Centro de Investigacion
131 Cientifica y de Transferencia Tecnologica a la Produccion (CICyTTP, Diamante,
132 Argentina). Insects were fed on hens every two weeks and maintained under an artificial
133 12:12 (L:D) illumination regime at controlled temperature and humidity (27± 2°C, 75 ±
134 10% RH).

135 For experiments, insects were separated from the colony after molting and starved for at
136 least 20 days for *R. prolixus* and 30 days for *T. infestans*. Experiments were video recorded
137 (using a DCR-SR 200 camera (Sony Corp., Japan) or an A1633 iPhone camera (Apple Inc.,

138 USA)) and performed during the early scotophase at 24.5 ± 0.5 °C in a dark (or red-light
139 illuminated) room. Experiments with *R. prolixus* were performed at CIMPAT, Universidad
140 de los Andes, and experiments with *T. infestans* were carried out at Laboratorio de Estudio
141 de la Biología de Insectos – LEBI, CICyTTP-CONICET. Insects were tested individually
142 and used only once.

143

144 *Repellency tests*

145 To test the individual effect of compounds produced *in vitro* by bacteria previously isolated
146 from human facial skin, an exposure device modified from Zermoglio and collaborators
147 [11] was used. In brief, a polystyrene tube was divided into three zones: host, intermediate
148 and refuge zones. The host stimulus consisted on a human forearm. Insects were placed in
149 the refuge zone, and after a five-minute adaptation time, the experiment started with the
150 opening of a gate, allowing the insect to freely move from the refuge to the other two
151 zones. Insects attracted by the stimuli from the host walked to the host zone, while a mesh
152 prevented them from biting the forearm. Experiments lasted five minutes. The exposure
153 device allowed us to quantify the time the insect spent near the host in the presence or
154 absence of the compounds tested.

155 Ten insects per treatment were used; these were randomly assigned to each treatment.
156 Treatments for experiments with *R. prolixus* consisted of 2-mercaptoethanol (0.0015625%,
157 0.003125%, 0.00625%, 0.0125%, 0.025%, 0.05% and 0.1%), dimethyl sulfide (0.00625%,
158 0.0125%, 0.025%, 0.05% and 0.1%), 2-phenylethanol (0.025%, 0.05%, 0.1% and 0.2%),
159 and DEET (10%, 50%, 90%). Treatments for experiments with *T. infestans* consisted of 2-
160 mercaptoethanol (0.00625%, 0.025%, 0.1% and 1%), dimethyl sulfide (0.1% and 1%), and

161 DEET (90%). The tested compounds were $\geq 99\%$ pure (Merck, Darmstadt, Germany), while
162 DEET was $>97\%$ pure (Sigma-Aldrich, Darmstadt, Germany). Dimethyl sulfide and 2-
163 mercaptoethanol solutions were made in distilled water, while ethanol was the solvent for
164 2-phenylethanol and DEET. We performed frequent negative-control tests: host stimuli
165 without any test compound (“host alone” see below) and host stimuli plus just ethanol
166 (“host plus ethanol”, see below). Test-odor stimuli consisted of a 10 μl solution (or just
167 solvent for the controls) loaded onto a filter paper strip (1.0 x 3.0 cm). In the case of DEET,
168 10 μl or 50 μl solutions (where indicated) were used. The paper strip with the test solution
169 or solvent control was carefully placed in the space between the host’s forearm and the
170 mesh in the tube. Neither the host’s skin nor the insects were in direct contact with the
171 compounds tested.

172

173 *Data analysis and statistics*

174 We carried out nonparametric statistical tests to determine whether the compounds
175 influenced the time that the insect spent in the host proximity. Prism software (GraphPad,
176 v. 7.0a) was used to perform Kruskal-Wallis and Dunn’s multiple comparison tests ($p <$
177 0.05) within each treatment group.

178

179 **Results**

180 In this study, we assessed the repellency of VOCs released by the skin bacterium *C. koseri*
181 on *R. prolixus* and *T. infestans*. For this, 240 starved adult *R. prolixus* and 90 starved *T.*
182 *infestans* nymphs were assayed in an exposure device.

183 In the absence of test compounds (negative controls), *R. prolixus* spent 241 s (“host alone”
184 *a*), 148.5 s (“host alone” *b*), and 255.5 s (“host alone” *c*) in the host zone out of 300 s of
185 experimental time (median values) (Fig. 1, white boxes). In the case of *T. infestans*, insects
186 spent 177 s (“host alone” *d*) (median value) in the host zone out of 300 s of experimental
187 time (Fig. 2, white boxes).

188 However, when certain doses of 2-mercaptoethanol, 2-phenylethanol or DEET were added,
189 the time that adult *R. prolixus* spent in the host zone was significantly lower (Kruskal-
190 Wallis test, $p < 0.0001$, $p = 0.0007$, $p = 0.0037$, respectively) (Fig. 1). Likewise, certain
191 doses of 2-mercaptoethanol and DEET considerably reduced the time that *T. infestans*
192 nymphs stayed near the host (Kruskal-Wallis test, $p = 0.0002$ and $p = 0.0002$, respectively)
193 (Fig. 2). It should be noted that Dunn’s Multiple Comparison tests showed no differences
194 between the times for treatments in which the compounds were dissolved in ethanol and
195 those for the control “host plus ethanol”. However, a significant difference was found when
196 the former times were compared with those for the host alone (Table 1).

197 The time spent by *R. prolixus* near the host did not differ statistically from the negative
198 control when dimethyl sulfide was tested (Kruskal-Wallis test, $p = 0.1414$). In contrast,
199 dimethyl sulfide did reduce the time that the *T. infestans* nymphs spent near the forearm
200 (Kruskal-Wallis test, $p < 0.0001$). A summary of the statistically significant results of the
201 multiple comparisons tests is shown in Table 1.

202

203 **Discussion**

204 Our results provide evidence that some VOCs released by the opportunistic skin bacterium
205 *Citrobacter koseri* interfere with the host-seeking behavior of *R. prolixus* and *T. infestans*,

206 two important vectors of Chagas disease. In negative control tests where just a host is
207 presented, *R. prolixus* adults and *T. infestans* nymphs move their antennae in a triangulation
208 fashion [42,43], and in just a few seconds, walk towards the host, extend their proboscis
209 and insistently try to bite the forearm. However, when the compounds tested are added to
210 the stimuli of the host, the behavior of the bugs changes; the time spent near the human
211 host is considerably reduced (see Results), and the frequency of biting attempts is lower
212 (data not shown). Moreover, our observations show that the reduction in the time spent in
213 the proximity of the host is because there is an augmentation of the latency time (i.e.,
214 insects are delayed in making the decision to move forward) and they spend a very short
215 time in the host zone (i.e., insects going in and out of the host zone). An additional movie
216 file shows that both species rapidly walk away from the stimulus source after approaching
217 it [see Additional file 1]. Suggesting a clear repellent effect on triatomines working against
218 potential attractive stimuli like thermo and chemoreception mediated by host VOCs. The
219 methodology used in this work (based on that by Zermoglio and collaborators [11])
220 suggested a fast and direct way to test the effect of candidate VOCs on the repellency of
221 triatomines when the VOCs were applied near a vertebrate host.

222 The fact that *R. prolixus* is attracted by some VOCs released by some common bacteria of
223 the human face skin, as Tabares and collaborators [39] showed, could be related to the
224 close vertebrate-vector coevolutive history. However, the response of the bugs to the VOCs
225 produced by *C. koseri* could make sense if the natural occurrence of the bacterium is
226 considered: *C. koseri* is a gram-negative bacillus of the Enterobacteriaceae family, found in
227 animal intestines, soils, water, sewage and contaminated food, and widely recognized for
228 causing devastating meningitis in neonates and severe infections in immunosuppressed

229 patients [44]. As this bacterium is not part of the healthy human skin microbiota (human
230 skin isolations where this bacillus was found are commonly from sick patients, see
231 [44,45]), blood-sucking insects such as triatomines would barely contact the volatile
232 products of the bacterium. Moreover, it could signal an unhealthy individual to the bugs.

233 Interestingly, it is not new that the VOC signature of the genus *Citrobacter* influences the
234 chemotactic orientation behavior of blood-seeking insects. Ponnusamy and collaborators
235 found that VOCs released by *Citrobacter freundii* were attractive to gravid females of
236 *Aedes (Stegomyia) aegypti* and *Ae. (Stegomyia) albopictus* [46]; both mosquitoes are well
237 recognized as vectors of important arboviruses [47]. It was also suggested that *Citrobacter*
238 VOCs, in synergy with other compounds present in water, give mosquito information about
239 the quality of the oviposition sites [46]. In the bloodsucking stable fly *Stomoxys calcitrans*,
240 Romero and collaborators showed that *C. freundii* was a strong cue inducing oviposition in
241 soil [48]. Therefore, VOCs released by *Citrobacter* sp. appear to be an interesting
242 semiochemical source, mediating interactions with biotic (e.g., animal and human hosts)
243 and abiotic (e.g., water and soil) factors, which is crucial for insects of medical importance
244 [49–52].

245 The VOC mix released by *Citrobacter* sp. can be described as having a strong, fetid and
246 putrid odor. Many species among the genus are cataloged within the malodor-generating
247 bacteria group, in part because of their participation in decomposition processes [53–55].
248 The compounds methanethiol and dimethyl disulfide, identified as VOCs released by *C.*
249 *koseri* [39], and the two VOCs used in our study, 2-mercaptopethanol and dimethyl sulfide,
250 are sulfur-containing compounds with a strong smell. Sulfur compounds are neurotoxic and
251 lethal to some insects and are proposed as a new control alternative to agricultural pests

252 [56,57]. However, in addition to the repellency effect, we did not identify any symptoms of
253 intoxication (i.e., insects with abnormal rest positions, paralysis in the legs or death. [15])
254 due to sulfur compounds in our experiments, perhaps because of the low doses tested;
255 nevertheless, the toxicity of these sulfur compounds to animals and humans should be
256 reviewed carefully for future applications.

257 Both sulfur compounds, together with 2-phenylethanol, are also known and used as VOC
258 markers of human and animal wastes [58,59]. They are also involved in the decomposition
259 of mammal and bird tissues [60,61], a scenario that is not very attractive to triatomine
260 insects. It is interesting to note that 2-phenylethanol is also produced by the Brindley's
261 gland of *T. infestans*, a gland involved in the alarm pheromone production of the adult [62–
262 65]. However, this compound has not been reported as part of the alarm pheromone of *R.*
263 *prolixus* [63]. In this study, we showed that 2-phenylethanol has a repellent effect on *R.*
264 *prolixus*. Likewise, in *An. gambiae*, this compound was reported as a spatial repellent
265 candidate that inhibits attraction [66,67]. The effect that this compound could have on the
266 behavior of *T. infestans* needs to be further assessed. It should be noted that in this work,
267 the time spent in the host zone when presenting 2-phenylethanol was significantly lower
268 than that of the “host alone” negative control but not different from the “host plus ethanol”
269 negative control. Additionally, there were no significant differences between the two
270 negative controls. This suggests that the repellent effect of 2-phenylethanol is evident only
271 when presented together with ethanol, possibly due to a synergistic effect between the
272 solvent and the test compound.

273 In this work, DEET was used as a positive control. As our results show, the repellency
274 effect of DEET for *R. prolixus* may be the result of a synergy between the solvent and

275 DEET, as in the case of 2-phenylethanol. Such a repellency effect of DEET (plus ethanol)
276 was only achieved at the highest dose tested (i.e., 90%–50µl). In contrast, 2-phenylethanol
277 (for *R. prolixus*), dimethyl sulfide (for *T. infestans*) and 2-mercaptoethanol (for both
278 species) showed a repellent effect at doses two to three orders of magnitude lower than the
279 effective dose of DEET (i.e., 0.003125% – 0.1%). Efficiency at low doses is one of the key
280 characteristics that is required for a good, new repellent [21]. The need to employ high
281 concentrations of DEET to achieve repellency has limited its application in disrupting
282 triatomine-human contacts, as several studies have already shown [11,23–26]. Although its
283 use is deemed safe, DEET has some disadvantages: it needs to be constantly reapplied, it
284 has a short range of action due to its low volatility and can melt plastics and vinyl [4,21].
285 Even more important, the people who truly need it usually cannot afford it [4].
286 The question of why triatomines are almost refractory to the gold standard DEET is still
287 open. One hypothesis concerning the repellent effect of DEET is that it mimics a defensive
288 compound of plants, methyl jasmonate, explaining why in insects with a large-plant
289 evolutive history, such as mosquitoes, it is still effective [4,68]. Although some triatomine
290 species such as *Rhodnius prolixus* have a close relationship with palm tree niches [71],
291 resting within such plants although not feeding on them, molecules as DEET may not be
292 directly related to the triatomine evolutive history as it is with mosquitoes (i.e., early
293 ancestors of the Triatominae subfamily were predators, unlike plant-feeder mosquito
294 ancestors). In fact, triatomines are obligate hematophagous, and many species have nearly
295 zero contact with plants [26,69–71]. Despite the advances in research on repellency in
296 mosquitoes, where DEET is considered the gold standard, finding efficient repellents for
297 triatomines still represents a challenge.

298

299 **Conclusions**

300 As far as we know, this is the first study in triatomines that assesses the repellent effect of
301 individual volatiles of microbial origin from a human host. We showed that vectors of two
302 different tribes (Rhodniini and Triatomini), with epidemiological importance in Chagas
303 disease transmission, are repelled by very low doses of the sulfur compound 2-
304 mercaptoethanol. Future studies should be directed to understand deeply its mechanism of
305 action in triatomines and to assess its possible use as a repellent (although not applied
306 directly onto the skin) or within a push-pull control strategy.

307

308 **Acknowledgements**

309 MR is grateful to Colciencias and Facultad de Ciencias–Universidad de los Andes for
310 funding this project and fellowship (Convocatoria Nacional para estudios de Doctorados
311 No. 567, and Proyecto Semilla 2018 for Candidate PhD. Students). JM is also grateful to
312 Colciencias (funding project 759-2013). PG acknowledges Agencia Nacional de Promoción
313 Científica y Tecnológica (ANPCyT, Argentina) for funding through grant PICT 2015, N°
314 3260.

315 **Competing interests**

316 The author(s) declare(s) that they have no competing interests.

317

318

319

320

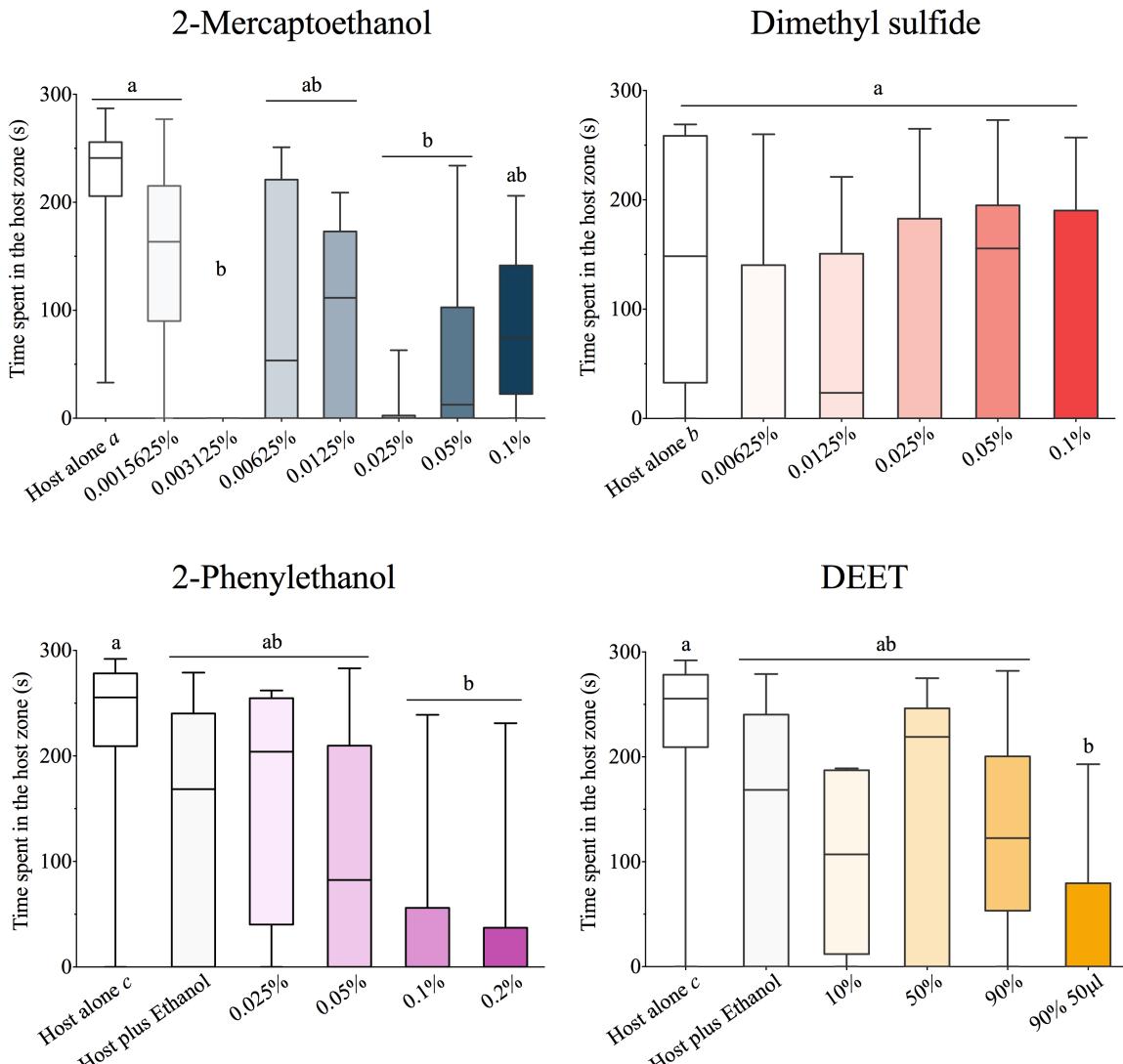
321 **Table 1.**

322 Summary of the multiple comparisons tests that resulted in statistically significant
323 differences ($p < 0.05$), showing treatments that reduced the time the insects spent in the host
324 zone with respect to a negative control.

Chagas Disease Vector	VOC Tested	Kruskal- Wallis Test	Comparison Test	Dunn's Multiple Test P value	Effective dose
<i>R. prolixus</i>	2-mercaptoethanol	<0.0001	Host alone <i>a</i> vs. 0.003125%	<0.0001	Low
			Host alone <i>a</i> vs. 0.025%	<0.0001	
			Host alone <i>a</i> vs. 0.05% 0.003125% vs. 0.0015625%	0.0148 0.0081	
<i>T. infestans</i>	2-phenylethanol	0.0007	Host alone <i>c</i> vs. 0.1%	0.0036	Low
			Host alone <i>c</i> vs. 0.2%	0.0033	
	DEET	0.0037	Host alone <i>c</i> vs. DEET 90% 50ul	0.0010	High
	2-mercaptoethanol	0.0002	Host alone <i>d</i> vs. 0.1%	0.0019	Low
			Host alone <i>d</i> vs. 1%	0.0001	
	dimethyl sulfide	<0.0001	Host alone <i>d</i> vs. 0.1% Host alone <i>d</i> vs. 1%	<0.0001 0.0058	Low
	DEET	0.0002	Host alone <i>d</i> vs. Host plus Ethanol Host alone <i>d</i> vs. DEET 90% 50ul	0.0346 0.0001	High

325

326

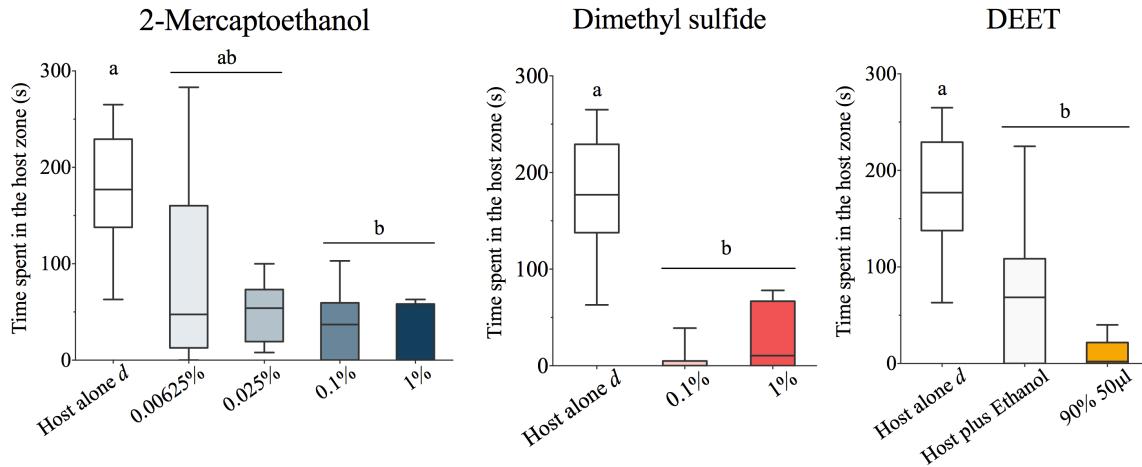

327

328

329

330

331



332

333

Figure 1.

334 Box plots showing the effect of different doses of the test compounds on the time that *R.*
335 *prolixus* spent in the proximity of a vertebrate host when the insects were exposed to 2-
336 mercaptoethanol, dimethyl sulfide, 2-phenylethanol, and DEET (median, maximum and
337 minimum values are shown). Letters denote significant differences among treatments
338 according to Dunn's multiple comparison test ($p<0.05$). *Host alone a, b* and *c* are
339 repetitions of a negative control consisting of exposure to the forearm of the host in the
340 absence of any test compound.

341

342 **Figure 2.**

343 Box plots showing the effect of different doses of the test compounds on the time that *T.*
344 *infestans* spent in the proximity of a vertebrate host when the insects were exposed to 2-
345 mercaptoethanol, dimethyl sulfide, and DEET (median, maximum and minimum values are
346 shown). Letters denote significant differences among treatments according to Dunn's
347 multiple comparison test ($p<0.05$). *Host alone d* refers to a negative control consisting of
348 exposure to the forearm of the host in the absence of any test compound.

349

350 **Additional file 1.mp4**

351 Video recording showing the repellency effect of tested compounds on *R. prolixus* and *T.*
352 *infestans*. The time in the host zone was diminished either by augmenting the time to get in
353 the host zone or by moving in and out of the host zone.

354

355 **References**

356

- 357 1. World Health Organization (WHO). Vector-borne diseases. <https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases> Accessed 13 August 2019.
- 358 2. Centers for Disease Control and Prevention (CDC). Avoid bug bites. <https://wwwnc.cdc.gov/travel/page/avoid-bug-bites> Accessed 14 August 2019.

361 3. Environmental Protection Agency United States. Product performance test guidelines
362 OPPTS 810.3700: Insect repellents to be applied to human skin. 2010.
363 <https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100LBO3.txt> Accessed 17 June 2019.

364 4. Leal WS. The enigmatic reception of DEET—the gold standard of insect repellents. *Curr
365 Opin Insect Sci.* 2014;6:93–8.

366 5. White G, Moore S. Terminology of insect repellents. In: *Insect repellents handbook*,
367 Second Ed. 2014. p. 3–30.

368 6. Chagas C. Nova tripanozomiae humana: estudos sobre a morfologia e o ciclo evolutivo
369 do *Schizotrypanum cruzi* n. gen., n. sp., agente etiológico de nova entidade morbida do
370 homem. *Mem Inst Oswaldo Cruz.* 1909;1:159–218.

371 7. Justi SA, Galvão C. The evolutionary origin of diversity in chagas disease vectors.
372 *Trends Parasitol.* 2017;33:42–52.

373 8. Rassi A, Rassi A, Marin-Neto JA. Chagas disease. *Lancet.* 2010;375:1388–402.

374 9. Gourbière S, Dorn P, Tripet F, Dumonteil E. Genetics and evolution of triatomines: from
375 phylogeny to vector control. *Heredity.* 2012;108:190–202.

376 10. World Health Organization (WHO). Chagas disease (American trypanosomiasis).
377 [https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-\(american-trypanosomiasis\)](https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)) Accessed 13 August 2019.

378 11. Zermoglio PF, Martin-Herrou H, Bignon Y, Lazzari CR. *Rhodnius prolixus* smells
379 repellents: Behavioural evidence and test of present and potential compounds inducing
380 repellency in Chagas disease vectors. *J Insect Physiol.* 2015;81:137–44.

381 12. Terriquez JA, Klotz SA, Meister EA, Klotz JH, Schmidt JO. Repellency of DEET,
382 Picaridin, and three essential oils to *Triatoma rubida* (Hemiptera: Reduviidae:
383 Triatominae). *J Med Entomol.* 2013;50:664–7.

384 13. Zamora D, Klotz SA, Meister EA, Schmidt JO. Repellency of the components of the
385 essential oil, citronella, to *Triatoma rubida*, *Triatoma protracta*, and *Triatoma recurva*
386 (Hemiptera: Reduviidae: Triatominae). *J Med Entomol.* 2015;52:719–21.

387 14. Lutz A, Sfara V, Alzogaray RA. Repellence produced by monoterpenes on *Rhodnius*
388 (*Hemiptera: Reduviidae*) decreases after continuous exposure to these compounds.
389 *J Insect Sci.* 2014;14:254–254.

390 15. Alzogaray RA, Zerba EN. *Rhodnius prolixus* intoxicated. *J Insect Physiol.* 2017;97:93–
391 113.

392 16. Sfara V, Mougabure-Cueto G, Zerba EN, Alzogaray RA. Adaptation of the repellency
393 response to DEET in *Rhodnius prolixus*. *J Insect Physiol.* 2011;57:1431–6.

394 17. Sfara V, Zerba EN, Alzogaray RA. Fumigant insecticidal activity and repellent effect of
395 five essential oils and seven monoterpenes on first-instar nymphs of *Rhodnius prolixus*. *J
396 Med Entomol.* 2009;46:511–5.

397 18. Lehane MJ. The biology of blood-sucking in insects. 2nd ed. Cambridge University
398 Press; 2005.

399 19. Benelli G, Pavela R. Beyond mosquitoes—Essential oil toxicity and repellency against

401 bloodsucking insects. *Ind Crops Prod.* 2018;117:382–92.

402 20. World Health Organization (WHO). A global brief on vector-borne diseases. *Tech Rep*
403 *Ser.* 2014;54.

404 21. Degennaro M. The mysterious multi-modal repellency of DEET. *Fly.* 2015;9:45–51.

405 22. Buescher MD, Rutledge LC, Wirtz RA, Nelson JH. Laboratory repellent tests against
406 *Rhodnius prolixus* (Heteroptera, Reduviidae). *J Med Entomol.* 1985;22:49–53.

407 23. Franco TA, Xu P, Brito NF, Oliveira DS, Wen X, Moreira MF, et al. Reverse chemical
408 ecology-based approach leading to the accidental discovery of repellents for *Rhodnius*
409 *prolixus*, a vector of Chagas diseases refractory to DEET. *Insect Biochem Mol Biol.*
410 2018;103:46–52.

411 24. Alzogaray RA, Fontan A, Zerba EN. Repellency of DEET to nymphs of *Triatoma*
412 *infestans*. *Med Vet Entomol.* 2000;14:6–10.

413 25. Reynoso MMN, Seccacini EA, Calcagno JA, Zerba EN, Alzogaray RA. Toxicity,
414 repellency and flushing out in *Triatoma infestans* (Hemiptera: Reduviidae) exposed to the
415 repellents DEET and IR3535. *PeerJ.* 2017;5:e3292.

416 26. Alzogaray RA. Behavioral and toxicological responses of *Rhodnius prolixus*
417 (Hemiptera: Reduviidae) to the insect repellents DEET and IR3535. *J Med Entomol.*
418 2016;53:387–93.

419 27. Sfara V, Zerba EN, Alzogaray RA. Toxicity of pyrethroids and repellency of
420 diethyltoluamide in two deltamethrin-resistant colonies of *Triatoma infestans* Klug, 1834
421 (Hemiptera: Reduviidae). *Mem Inst Oswaldo Cruz.* 2006;101:89–94.

422 28. Sfara V, Zerba EN, Alzogaray RA. Decrease in DEET repellency caused by nitric oxide
423 in *Rhodnius prolixus*. *Arch Insect Biochem Physiol.* 2008;67:1–8.

424 29. Moretti AN, Zerba EN, Alzogaray RA. Behavioral and toxicological responses of
425 *Rhodnius prolixus* and *Triatoma infestans* (Hemiptera: Reduviidae) to 10 monoterpenic
426 alcohols. *J Med Entomol.* 2013;50:1046–54.

427 30. Lima B, López S, Luna L, Agüero MB, Aragón L, Tapia A, et al. Essential oils of
428 medicinal plants from the Central Andes of Argentina: Chemical composition, and
429 antifungal, antibacterial, and insect-repellent activities. *Chem Biodivers.* 2011;8:924–36.

430 31. Sainz P, Sanz J, Burillo J, González-Coloma A, Bailén M, Martínez-Díaz RA. Essential
431 oils for the control of reduviid insects. *Phytochem Rev.* 2012;11:361–9.

432 32. Moretti AN, Zerba EN, Alzogaray RA. Lethal and sublethal effects of eucalyptol on
433 *Triatoma infestans* and *Rhodnius prolixus*, vectors of Chagas disease. *Entomol Exp Appl.*
434 2015;154:62–70.

435 33. Braks MAH, Anderson RA, Knols BGJ. Infochemicals in mosquito host selection:
436 Human skin microflora and *Plasmodium* parasites. *Parasitol Today.* 1999;15:409–13.

437 34. De Jong R, Knols BGJ. Selection of biting sites on man by two malaria mosquito
438 species. *Experientia.* 1995;51:80–4.

439 35. Verhulst NO, Qiu YT, Beijleveld H, Maliepaard C, Knights D, Schulz S, et al.
440 Composition of human skin microbiota affects attractiveness to malaria mosquitoes. *PLoS*

441 One. 2011;6:e28991.

442 36. Verhulst NO, Takken W, Dicke M, Schraa G, Smallegange RC. Chemical ecology of
443 interactions between human skin microbiota and mosquitoes. *FEMS Microbiol Ecol.*
444 2010;74:1–9.

445 37. Smallegange RC, Verhulst NO, Takken W. Sweaty skin: An invitation to bite? *Trends
446 Parasitol.* 2011;27:143–8.

447 38. Braks MAH, Takken W. Incubated sweat but not fresh sweat attracts the malaria
448 mosquito, *Anopheles gambiae* sensu stricto. *J Chem Ecol.* 1999;25:663–72.

449 39. Tabares M, Ortiz M, Gonzalez M, Carazzone C, Vives Florez MJ, Molina J. Behavioral
450 responses of *Rhodnius prolixus* to volatile organic compounds released *in vitro* by bacteria
451 isolated from human facial skin. *PLoS Negl Trop Dis.* 2018;12:e0006423.

452 40. Ortiz MI, Suárez-Rivillas A, Molina J. Behavioural responses to human skin extracts
453 and antennal phenotypes of sylvatic first filial generation and long rearing laboratory
454 colony *Rhodnius prolixus*. *Mem Inst Oswaldo Cruz.* 2011;106:461–6.

455 41. Ortiz MI, Molina J. Preliminary evidence of *Rhodnius prolixus* (Hemiptera:
456 Triatominae) attraction to human skin odour extracts. *Acta Trop.* 2010;113:174–9.

457 42. Wigglesworth V, Gillett J. The function of the antennae in *Rhodnius prolixus*
458 (Hemiptera) and the mechanism of orientation to the host. *J Exp Biol.* 1934;120–39.

459 43. Lazzari CR, Núñez J. The response to radiant heat and the estimation of the temperature
460 of distant sources in *Triatoma infestans*. *J Insect Physiol.* 1989;35:525–9.

461 44. Doran TI. The role of *Citrobacter* in clinical disease of children: Review. *Pediatr Infect
462 Dis J.* 1999;18:573.

463 45. Netsvyetayeva I, Marusza W, Olszanski R, Szylner K, Krolak-Ulinska A, Swoboda-
464 Kopec E, et al. Skin bacterial flora as a potential risk factor predisposing to late bacterial
465 infection after cross-linked hyaluronic acid gel augmentation. *Infect Drug Resist.*
466 2018;11:213–22.

467 46. Ponnusamy L, Schal C, Wesson DM, Arellano C, Apperson CS. Oviposition responses
468 of *Aedes* mosquitoes to bacterial isolates from attractive bamboo infusions. *Parasit Vectors.*
469 2015;8:486.

470 47. Conway MJ, Colpitts TM, Fikrig E. Role of the vector in arbovirus transmission. *Annu.
471 Rev. Virol.* 2014;1:71–88.

472 48. Romero A, Broce A, Zurek L. Role of bacteria in the oviposition behaviour and larval
473 development of stable flies. *Med Vet Entomol.* 2006;20:115–21.

474 49. Ross AA, Rodrigues Hoffmann A, Neufeld JD. The skin microbiome of vertebrates.
475 *Microbiome.* 2019;7:79.

476 50. Leroy PD, Sabri A, Verheggen FJ, Francis F, Thonart P, Haubruge E. The
477 semiochemically mediated interactions between bacteria and insects. *Chemoecology.*
478 2011;21:113–22.

479 51. Schulz S, Dickschat JS. Bacterial volatiles: The smell of small organisms. *Nat Prod
480 Rep.* 2007;24:814–42.

481 52. Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK. Microbial volatile emissions as
482 insect semiochemicals. *J Chem Ecol.* 2013;39:840–59.

483 53. Troccaz M, Niclass Y, Anziani P, Starkenmann C. The influence of thermal reaction
484 and microbial transformation on the odour of human urine. *Flavour Fragr J.* 2013;28:200–
485 11.

486 54. Goldberg S, Cardash H, Browning H, Sahly H, Rosenberg M. Isolation of
487 Enterobacteriaceae from the mouth and potential association with malodor. *J Dent Res.*
488 1997;76:1770–5.

489 55. Pascual J, von Hoermann C, Rottler-Hoermann A, Nevo O, Geppert A, Sikorski J, et al.
490 Function of bacterial community dynamics in the formation of cadaveric semiochemicals
491 during *in situ* carcass decomposition. *Environ Microbiol.* 2017;19:3310–22.

492 56. Dugavot S, Grolleau F, Macherel D, Rochetaing A, Hue B, Stankiewicz M, et al.
493 Dimethyl Disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and
494 activation of insect K ATP channels. *J Neurophysiol.* 2003;90:259–70.

495 57. Dugavot S, Sanon A, Thibout E, Huignard J. Susceptibility of *Callosobruchus*
496 *maculatus* (Coleoptera: Bruchidae) and its parasitoid *Dinarmus basalis* (Hymenoptera:
497 Pteromalidae) to sulphur-containing compounds: Consequences on biological control.
498 *Environ Entomol.* 2002;31:550–7.

499 58. Moore JG, Jessop LD, Osborne DN. Gas-chromatographic and mass-spectrometric
500 analysis of the odor of human feces. *Gastroenterology.* 1987;93:1321–9.

501 59. Sato H, Hirose T, Kimura T, Moriyama Y, Nakashima Y. Analysis of malodorous
502 volatile substances of human waste: Feces and urine. *J Heal Sci.* 2001;47:483–90.

503 60. Zhu JJ, Chaudhury MF, Tangtrakulwanich K, Skoda SR. Identification of oviposition
504 attractants of the secondary screwworm, *Cochliomyia macellaria* (F.) released from rotten
505 chicken liver. *J Chem Ecol.* 2013;39:1407–14.

506 61. Okunuga OO. Analysis of volatile organic compounds produced during the
507 decomposition of human analogues. (Doctoral Diss Dep Chem Univ Leicester). 2016.
508 <http://hdl.handle.net/2381/39915> Accessed 17 June 2019.

509 62. Cruz-López L, Morgan ED, Ondarza RN. Brindley's gland exocrine products of
510 *Triatoma infestans*. *Med Vet Entomol.* 1995;9:403–6.

511 63. Guerenstein PG, Guerin PM. A comparison of volatiles emitted by adults of three
512 triatomine species. *Entomol Exp Appl.* 2004;111:151–5.

513 64. Barrozo RB, Reisenman CE, Guerenstein P, Lazzari CR, Lorenzo MG. An inside look
514 at the sensory biology of triatomines. *J Insect Physiol.* 2017;97:3–19.

515 65. Audino PG, Alzogaray RA, Vassena C, Masuh H, Fontán A, Gatti P, et al. Volatile
516 compounds secreted by Brindley's glands of adult *Triatoma infestans*: Identification and
517 biological activity of previously unidentified compounds. *J Vector Ecol.* 2008;32:75–82.

518 66. Smallegange RC, Bukovinszkiné-Kiss G, Otieno B, Mbadi PA, Takken W, Mukabana
519 WR, et al. Identification of candidate volatiles that affect the behavioural response of the
520 malaria mosquito *Anopheles gambiae sensu stricto* to an active kairomone blend:

521 Laboratory and semi-field assays. *Physiol Entomol.* 2012;37:60–71.

522 67. Verhulst NO, Mbadi PA, Kiss GB, Mukabana WR, Van Loon JJA, Takken W, et al.

523 Improvement of a synthetic lure for *Anopheles gambiae* using compounds produced by

524 human skin microbiota. *Malar J.* 2011;10:1–9.

525 68. Xu P, Choo Y-M, De La Rosa A, Leal WS. Mosquito odorant receptor for DEET and

526 methyl jasmonate. *Proc Natl Acad Sci.* 2014;111:16592–7.

527 69. Otálora-Luna F, Pérez-Sánchez AJ, Sandoval C, Aldana E. Evolution of

528 hematophagous habit in Triatominae (Heteroptera: Reduviidae). *Rev Chil Hist Nat.*

529 2015;88.

530 70. Mans BJ. Evolution of vertebrate hemostatic and inflammatory control mechanisms in

531 blood-feeding arthropods. *J Innate Immun.* 2011;3:41–51.

532 71. Lent H, Wygodzinsky P. Revision of the Triatominae (Hemiptera, Reduviidae), and

533 their significance as vectors of Chagas' disease. *Bull Am Museum Nat Hist.* 1979;163:123–

534 520.