

A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies

Xingjie Shi^{1,2}, Xiaoran Chai³, Yi Yang², Qing Cheng², Yuling Jiao⁴, Jian Huang⁵, Can Yang⁶, Jin Liu^{2*}

¹Department of Statistics, Nanjing University of Finance and Economics, Nanjing, China

²Centre for Quantitative Medicine, Health Services & Systems Research, Duke-NUS Medical School, Singapore

³School of Medicine, National University of Singapore, Singapore

⁴School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China

⁵Department of Statistics and Actuarial Science, University of Iowa, USA

⁶Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China

*To whom the correspondence should be addressed

Abstract

1 Transcriptome-wide association studies (TWAS) integrate expression quantitative trait loci
2 (eQTLs) studies with genome-wide association studies (GWASs) to prioritize candidate target
3 genes for complex traits. Several statistical methods have been recently proposed to improve the
4 performance of TWAS in gene prioritization by integrating the expression regulatory information
5 imputed from multiple tissues, and made significant achievements in improving the ability to
6 detect gene-trait associations. The major limitation of these methods is that they cannot be
7 used to elucidate the specific functional effects of candidate genes across different tissues. Here,
8 we propose a tissue-specific collaborative mixed model (TisCoMM) for TWAS, leveraging the

*Correspondence should be addressed to Jin Liu (jin.liu@duke-nus.edu.sg)

9 co-regulation of genetic variations across different tissues explicitly via a unified probabilistic
10 model. TisCoMM not only performs hypothesis testing to prioritize gene-trait associations,
11 but also detects the tissue-specific role of candidate target genes in complex traits. To make
12 use of widely available GWAS summary statistics, we extend TisCoMM to use summary-level
13 data, namely, TisCoMM-S². Using extensive simulation studies, we show that type I error is
14 controlled at the nominal level, the statistical power of identifying associated genes is greatly
15 improved, and false positive rate (FPR) for non-causal tissues is well controlled at decent levels.
16 We further illustrate the benefits of our methods in applications to summary-level GWAS data
17 of 33 complex traits. Notably, apart from better identifying potential trait-associated genes, we
18 can elucidate the tissue-specific role of candidate target genes. The follow-up pathway analysis
19 from tissue-specific genes for asthma shows that the immune system plays an essential function
20 for asthma development in both thyroid and lung tissues.

21 Introduction

22 Over the last decade, GWASs have achieved remarkable successes in identifying genetic
23 susceptible variants for a variety of complex traits [1]. However, the biological mechanisms to
24 understand these discoveries remain largely elusive as majority of these discoveries are located in
25 non-coding regions [2]. Recent expression quantitative trait loci (eQTLs) studies indicate that
26 the expression regulatory information may play a pivotal role bridging both genetic variants
27 and traits [3, 4, 5]. Cellular traits in comprehensive eQTL studies can serve as reference data,
28 providing investigators with an opportunity to examine the regulatory role of genetic variants on
29 gene expression. For example, the Genotype-Tissue Expression (GTEx) Project [6] has provided
30 DNA sequencing data from 948 individuals and collected gene-expression measurements of 54
31 tissues from these individuals in the recent V8 release.

32 Transcriptome-wide association studies (TWAS) has been widely used to integrate the
33 expression regulatory information from these eQTL studies with GWAS to prioritize genome-
34 wide trait-associated genes [7, 8, 9]. A variety of TWAS methods have been proposed using
35 different prediction models for expression imputation, including the parametric imputation
36 models, e.g., PrediXcan [7], TWAS [8], CoMM [10] and CoMM-S² [11], and the nonparametric
37 imputation model, e.g., Tigar [12]. These methods have been used for analyzing many complex
38 traits with expression profiles from different tissues, successfully enhancing the discovery of
39 genetic risk loci for complex traits [13, 9]. To further improve the power of identifying potential
40 target genes, two recent studies were proposed by leveraging the substantial shared eQTLs
41 across different tissues, i.e., MultiXcan [14] and UTMOST [15]. They use a step-wise procedure
42 by first conducting imputation for gene expressions across multiple tissues and then performing
43 subsequent association analysis using a multivariate regression that pools information across
44 different tissues. Compared to single-tissue methods, these multi-tissue strategies enhance the
45 imputation accuracy for gene expression and thus improve the power of identifying potential
46 target genes.

47 Despite their successes, the existing multi-tissue methods have several limitations. First,
48 MultiXcan and UTMOST cannot be used to identify the tissue-specific gene-trait associations.
49 Many studies have shown that genes associated with complex traits are always regulated in a
50 tissue-specific manner [16, 17, 18, 9]. For example, a recent study across 44 tissues confirmed
51 this phenomenon in 18 complex traits [19], implying the persuasive role of tissue-specific

52 regulatory effects in a wide range of complex traits. Using a single-tissue test, one can easily
53 reach a false conclusion regarding which tissue that a gene affects traits through. Second, both
54 MultiXcan and UTMOST rely on a step-wise inference framework, ignoring the uncertainty in
55 the process of expression imputation and thus losing power, especially when cellular-heritability
56 is small [10]. Recently, CoMM [10] and its variant for summary-level data, CoMM-S² [11],
57 have been proposed to account for uncertainty in the process of expression imputation. Third,
58 MultiXcan and UTMOST do not make efficient use of the shared patterns of eQTLs across
59 tissues, where MultiXcan uses principal component analysis (PCA) regularization on the
60 predicted expression data, and UTMOST uses penalized regularization on coefficients for
61 eQTL effects. A study of GTEx revealed these shared patterns [20], and later many efforts
62 have been made to take advantage of them in the analysis for GTEx data. For example,
63 Urbut et al. proposed statistical methods for estimating and testing eQTL effects explicitly
64 incorporating this extensively tissue-shared patterns [21], shedding light on how to account for
65 the tissue-shared eQTLs in statistical modeling successfully.

66 To overcome these limitations, we propose a tissue-specific collaborative mixed model
67 (TisCoMM) for TWAS, providing a principled way to perform gene-trait joint and tissue-
68 specific association tests across different tissues. Our method allows us not only to perform
69 hypothesis testing to prioritize gene-trait association but also to uncover the tissue-specific
70 role of candidate genes. By conditioning on the trait-relevant tissues, one could largely remove
71 the spurious associations due to highly correlated gene expressions among multiple tissues. As
72 a unified model, TisCoMM jointly conducts the “imputation” and the association analysis,
73 pooling expression regulatory information across multiple tissues explicitly. Furthermore,
74 we extend TisCoMM to use summary statistics from a GWAS, namely, TisCoMM-S². In
75 simulations, we show that both TisCoMM and TisCoMM-S² provide correctly controlled type
76 I error and are more powerful than existing multi-tissue methods. More importantly, our
77 methods can be used to test for the tissue-specific role of candidate genes. We illustrate the
78 benefits of our methods using summary-level GWAS data in 33 complex traits. Results show
79 that our findings have biologically meaningful implications. The follow-up pathway analysis
80 from tissue-specific genes for asthma shows that the regulated immune system in both thyroid
81 and lung tissues could have significant impact on asthma development.

82 Results

83 Method overview

84 Our method, TisCoMM, jointly integrates expression regulatory information across multiple
85 tissues by considering two models. The first one models the relationship between genetic factors
86 and gene expressions across multiple tissues in the eQTL data set,

$$\mathbf{Y}_g = \mathbf{X}_{1g} \mathbf{B}_g + \mathbf{E}_g, \quad (1)$$

87 where $\mathbf{Y}_g \in \mathbb{R}^{n_1 \times T}$ is expression matrix of n_1 samples across T tissues for gene g , $\mathbf{X}_{1g} \in \mathbb{R}^{n_1 \times M_g}$ is
88 the standardized genotype matrix corresponding to M_g nearby single nucleotide polymorphisms
89 (SNPs) of gene g in the eQTL data, \mathbf{B}_g is an $M_g \times T$ matrix of the corresponding effect
90 sizes across T tissues and \mathbf{E}_g is an $n_1 \times T$ matrix for random errors from a multivariate
91 normal distribution $\mathcal{N}(0, \mathbf{V}_e)$. Here, \mathbf{V}_e captures the correlations among tissues from the same
92 individual. Then we assume that phenotypic value \mathbf{z} and standardized genotype \mathbf{X}_{2g} in GWAS
93 are related by

$$\mathbf{z} = \mathbf{X}_{2g} \mathbf{B}_g \boldsymbol{\alpha}_g + \mathbf{e}_z, \quad (2)$$

94 where \mathbf{z} is an $n_2 \times 1$ vector of phenotypic values, $\mathbf{X}_{2g} \in \mathbb{R}^{n_2 \times M_g}$ is the standardized genotype
95 matrix corresponding to M_g nearby variants of gene g in the GWAS data, $\boldsymbol{\alpha}_g$ is a $T \times 1$ unknown
96 parameter vector of interest that represents the effect sizes of “imputed” gene expression across
97 T tissues for gene g , and $\mathbf{e}_z \sim \mathcal{N}(0, \sigma^2)$ is an $n_2 \times 1$ vector of independent errors associated
98 with the trait. Our TisCoMM can be depicted as Figure 1, within which Figure 1A illustrates
99 the TisCoMM method combining both the expression prediction model (1) and the corresponding
100 association model (2) together with data input and output.

101 To pool expression regulatory information across relevant tissues, we assume the factorizable
102 assumption [22, 23] for $\mathbf{B}_g = [\beta_{jt}]$, $j = 1, \dots, M_g, t = 1, \dots, T$. This assumption has been
103 empirically validated for GTEx data in an imputation study [24] and Park et al. further
104 used this assumption in a multi-tissue TWAS [25]. Here, we assume that the effect size of
105 cis-SNP j in tissue t can be factorized by variant-dependent and tissue-dependent components:
106 $\beta_{jt} = b_j w_{jt}$, where b_j (variant) is the eQTL effect of cis-SNP j shared in all the T tissues, and
107 w_{jt} is the tissue-specific effect size. Thus, we have $\mathbf{B}_g = \text{diag}\{\mathbf{b}\}\mathbf{W}$. This factorization allows
108 us to model the co-regulation of cis-SNPs shared across different tissues explicitly (Figure
109 1A, right). To make TisCoMM identifiable, we further assume that b_j independently follows

110 a normal distribution $\mathcal{N}(0, \sigma_b^2)$ due to polygenicity and by following the adaptive weighting
111 strategy used in [24], the adaptive weight w_{jt} is estimated using the marginal regression of gene
112 expression in tissue t on the j -th genetic variant.

113 The parameter of our interest in TisCoMM is the vector of effect size α_g . To prioritize
114 candidate target genes, we conduct hypothesis testing for a joint null, $H_0 : \alpha_g = 0$ (Figure
115 1B). To further explore the tissue-specific roles of candidate genes, we conduct hypothesis
116 testing for each tissue, $H_0 : \alpha_{gt} = 0, t = 1, \dots, T$ (Figure 1C). We refer to the two inference
117 tasks as the TisCoMM joint test and TisCoMM tissue-specific test, respectively. We develop
118 an expectation-maximization (EM) algorithm for parameter estimation by maximizing the
119 complete-data likelihood. A parameter expansion technique is further adopted to accelerate
120 computational efficiency (see details in Supplementary Text). In contrast to the existing
121 two-step TWAS methods, we perform TisCoMM analysis in a unified model by treating \mathbf{b} as a
122 hidden random variable. Generally, the computational cost for the TisCoMM tissue-specific
123 test is $\mathcal{O}(T)$ of that for the TisCoMM joint test. To enable computational efficiency, we only
124 conduct the TisCoMM tissue-specific test for candidate genes detected in the joint test, rather
125 than for all genes.

126 In a single-tissue analysis, it is difficult to explore the tissue-specific role of a candidate
127 gene. The disease-associated genes will be identified in all the causal tissues as well as the
128 tissues (possibly non-causal) highly correlated with the causal one, because there exist sharing
129 patterns for expressions in multiple tissues. By conditioning on the trait-relevant tissues, our
130 tissue-specific test could largely remove the spurious discoveries due to correlated expression
131 across tissues.

132 [Figure 1 about here.]

133 **Inferring TisCoMM results from GWAS summary statistics**

134 To make our method widely applicable, we extend TisCoMM to use summary-level GWAS
135 data, denoted as TisCoMM-S². The model details are given in Supplementary Text.

136 We observe high concordance between TisCoMM and TisCoMM-S² results. Figure 2 shows
137 the comparison of TisCoMM and TisCoMM-S² test statistics for ten traits from the Northern
138 Finland Birth Cohorts program 1966 (NFBC1966) data set [26] (see Methods section). The
139 reference panel was 400 subsamples from the NFBC1966 data set. The high correlation between

140 TisCoMM and TisCoMM-S² suggests the goodness of detections for trait-associated genes using
141 summary-level GWAS data.

142 [Figure 2 about here.]

143 To test the robustness of TisCoMM-S², we applied European subsamples from 1000 Genomes
144 as the reference panel. Note that the NFBC1966 data set is Finns study, and it is well known that
145 Finns have significant genetic differences with other Europeans [27]. Hence, the estimated LD
146 did not well match that of the GWAS study. Supplementary Figure S1 shows the performance
147 of TisCoMM-S² using European subsamples as a reference panel data set. Despite the high
148 concordance between TisCoMM and TisCoMM-S² in the null region ($\Lambda > 34.67 = p$ -values
149 $> 5 \times 10^{-6}$), the test statistics of TisCoMM-S² in the non-null region are much more significant
150 than TisCoMM.

151 Simulation

152 *Methods for comparison* To detect gene-trait association, we compared the performance of
153 three methods in the main text: (1) our TisCoMM and TisCoMM-S² implemented in the R
154 package *TisCoMM*; (2) MultiXcan and S-MultiXcan implemented in the MetaXcan package
155 available at <http://gene2pheno.org/>; (3) UTMOST available at <https://github.com/Joker-Jerome/UTMOST/>. To detect the tissue-specific effect, we compared the performance of Tis-
156 CoMM tissue-specific test with three single-tissue methods that include (1) CoMM available at
157 <https://github.com/gordonliu810822/CoMM>; (2) PrediXcan available at <http://gene2pheno.org/>;
158 (3) TWAS relies on the BSLMM [28] implemented in the GEMMA [28] software. All methods
159 were used with default settings. We conducted comprehensive simulations to gauge the per-
160 formance of each method better by performing gene-trait joint and tissue-specific tests across
161 different tissues.

162 *Simulation settings* In detail, we considered the following simulation settings. We set
163 $\{n_1, n_r, n_2\} = \{400; 400; 5,000\}$ as the sample size for eQTL data, GWAS data and reference
164 panel data. We first generated the genotype data for $M_g = 400$ cis-SNPs from a multivari-
165 ate normal distribution assuming an autoregressive correlation with parameter ρ . We then
166 discretized each SNP to a trinary variable $\{0, 1, 2\}$ by assuming Hardy-Weinberg equilibrium
167 and a minor allele frequency randomly selected from a uniform $[0.05, 0.5]$ distribution. The
168 genotype correlation was varied at $\rho = \{0.2, 0.5, 0.8\}$. All three genotype matrices, $\mathbf{X}_{1g}, \mathbf{X}_{rg}$,

170 and \mathbf{X}_{2g} , for eQTL data, GWAS data and reference panel data, respectively, are generated in
171 this manner.

172 To generate multi-tissue gene expressions, we considered different cellular-level heritability
173 levels (h_c^2) and sparsity levels (s). These are key parameters to describe the genetic architecture
174 of gene expression [29]. The cellular-level heritability represents the proportion of variance
175 of the gene expression that can be explained by genotype, while sparsity represents the
176 proportion of genetic variants that are associated with the gene expression. First, SNP effect
177 size $\mathbf{B}_g = \text{diag}\{\mathbf{b}\}\mathbf{W}$ is generated. Specifically, we simulated SNP effect size \mathbf{b} from a standard
178 normal distribution, and randomly selected 10%, 50% or 100% of the SNPs to have non-zero
179 tissue-specific effect \mathbf{W} for gene expressions in all T tissues, while simulated their effects from a
180 standard normal distribution. We then simulated errors \mathbf{E}_g from a normal distribution, where
181 their variances were chosen according to h_c^2 , and the covariance structure was autoregressive
182 with $\rho_e = 0.5$. Here we set $h_c^2 = 0.025, 0.05, 0.1, 0.2, 0.4$. Afterward, we simulated a multi-tissue
183 eQTL data set assuming $\mathbf{Y}_g = \mathbf{X}_{1g}\mathbf{B}_g + \mathbf{E}_g$.

184 To simulate a quantitative trait, we generated nonzero entries of $\boldsymbol{\alpha}_g$ from a uniform
185 distribution and \mathbf{e}_z from a normal distribution. The variance σ^2 was chosen according to the
186 tissue-level heritability $h_t^2 = \frac{\text{Var}(\mathbf{X}_{2g}\mathbf{B}_g\boldsymbol{\alpha}_g)}{\text{Var}(\mathbf{z})}$. Here we set $h_t^2 = 0$ for null simulations and type I
187 error control examination and $h_t^2 = 0.01$ for non-null simulations and power comparisons.

188 *Simulation I: Testing gene-trait associations* We focus on the detection of trait-associated
189 genes in the first set of simulations. Here, we compared TisCoMM and TisCoMM-S² with
190 three different multi-tissue methods that include MultiXcan, S-MultiXcan, and UTMOST.
191 We set $T = 10$, and all tissues are causal. For each scenario, we run 5,000 replicates. We
192 first examined type I error control of different methods under the null. Results are shown in
193 Supplementary Figures S2 – S6. By comparing the distribution of p -values with the expected
194 uniform distribution, we observe that all methods provide well-controlled type I errors.

195 Next, we examined the power of different methods under the alternative hypothesis, as shown
196 in Figure 3. We observe that the performance of all five methods improves with the increment
197 of cellular heritability. In general, the summary-level methods (TisCoMM-S² and S-MultiXcan)
198 perform similarly to their counterparts in individual-level data. Moreover, TisCoMM and
199 TisCoMM-S² have better performance than other alternative methods when cellular heritability
200 is relatively small ($h_c^2 = 0.025, 0.05, 0.1$), and comparable performance when cellular heritability

201 is large. Finally, we observe that although our model favors dense eQTLs, it was robust to the
202 sparsity level s . Specifically, the power of TisCoMM and TisCoMM-S² in the setting where
203 10% of cis-SNPs have non-zero effects on gene expression are similar to the setting where all
204 cis-SNPs have non-zero effects.

205

[Figure 3 about here.]

206 *Simulation II: Testing tissue-specific effects* We focus on the detection of tissue-specific effects
207 in the second set of simulations. Here, we compared the TisCoMM tissue-specific test with the
208 single-tissue methods including CoMM [10], PrediXcan [7], and TWAS[8] under the alternative
209 hypothesis with fixed tissue heritability $h_t^2 = 0.01$ and fixed sparsity $s = 0.1$. We considered
210 three tissues $T = 3$ and varied the number of causal tissues to simulate different levels of tissue
211 specificity of a trait. Specifically, we considered settings with one ($\alpha_{g2} = \alpha_{g3} = 0$) and two
212 causal tissues ($\alpha_{g3} = 0$), respectively. To allow correlated gene expression in the GWAS, the
213 nonzero of tissue-specific effect \mathbf{W} was generated with rows drawn from a multivariate normal
214 distribution, with AR correlation parameter $\rho_W = 0.2, 0.5, 0.8$. A large value of ρ_W implies a
215 higher correlation among columns of $\mathbf{X}_{2g}\mathbf{B}_g$. Other settings are similar to Simulation I.

216 We repeated the whole process 1,000 times. We calculated statistical power and false
217 positive rate (FPR) as the proportion of p -values reaching the significance level in causal
218 tissues and non-causal tissues, respectively. Specifically, we set the significance level at 0.05/3
219 for all considered methods. Figure 4 shows simulation results for the case that one tissue is
220 causal. We observe that in all settings, the TisCoMM tissue-specific test has comparable or
221 slightly inferior power, as shown in Figure 4A, compared to the single-tissue methods, but
222 much smaller FPR (Figure 4B). As expected, the statistical power of all methods increases
223 with cellular heritability (h_c^2). However, the FPR of single-tissue methods substantially inflates
224 while that of TisCoMM tissue-specific test remains at the same level. Furthermore, the FPR of
225 TisCoMM tissue-specific test does not vary with correlations among expressions across multiple
226 tissues (ρ_W) while that of single-tissue methods increase with ρ_W . The similar pattern could
227 be observed for the case that two tissues are causal (Supplementary Figure S7). These results
228 demonstrate the usefulness of TisCoMM tissue specific test in exploring the tissue-specific role
229 of genes.

230

[Figure 4 about here.]

231 Real Data Applications

232 We performed multi-tissue TWAS analysis for summary-level GWAS data in 33 complex
233 traits (see Supplementary Table S1 for details), including 15 traits from Gamazon et al. [19]
234 and 18 traits from the UK Biobank. Hereafter we refer to as NG traits and UKB traits,
235 respectively. These traits can be roughly divided into four categories, including metabolites
236 (e.g., HDL-C, LDL-C and fasting glucose), autoimmune diseases (e.g., asthma, Crohn's disease
237 and macular degeneration), psychiatric/neurodegenerative disorders (e.g., Alzheimer's disease,
238 major depression disorder, and psychiatric disorder), and cardiovascular disorders (e.g., coronary
239 artery disease and peripheral vascular disease). The Genotype-Tissue Expression (GTEx)
240 Project [6] reported eQTL in 48 tissues, where the number of genes in each tissue ranges from
241 16,333 to 27,378. In the analysis, we extracted cis-SNP that are within either 500 kb upstream
242 of the transcription start site or 500 kb downstream of the transcription end site.

243 In a single-tissue analysis, there are two different strategies to select a tissue for TWAS: one
244 uses expressions from the most biologically related tissue while the other selects a tissue with
245 the largest number of available individuals [9]. To select multiple tissues for TisCoMM-S², there
246 exists a trade-off between biological relevance and its corresponding sample size for each tissue.
247 In [19], it provides the most biologically related tissues and thus we used trait-relevant tissues
248 for the NG traits from Supplementary Table 2 in [19]. In detail, for each trait, a set of tissues
249 with significant enrichment *p*-values (after Bonferroni correction) was identified, and a subset
250 with more than 100 overlapped samples [30] was chosen for further analysis in TisCoMM-S².
251 On the other hand, although methods like LD score regression [17] can be used for the UKB
252 traits, it is difficult to balance the tissue relevance and sample size for each tissue. To make
253 efficient use of the GTEx data set, we used six tissues with the largest number of overlapped
254 samples for the UKB traits.

255 The analysis for each trait based on its GWAS summary statistics together with the eQTL
256 data from multiple tissues can be done around 100 min on a Linux platform with 2.6 GHz Intel
257 Xeon CPU E5- 2690 with 30720 KB cache and 96 GB RAM (only 10~12 GB RAM used) on
258 24 cores.

259 **TisCoMM-S² joint test provides statistically powerful results of disease relevant
260 genes**

261 To prioritize trait-associated genes, we compared TisCoMM-S² with other two multi-tissue
262 TWAS methods, i.e., S-MultiXcan and UTMOST. Both alternative methods take advantage of
263 prediction models to impute gene expressions. The prediction models used here were Elastic
264 Net models trained on 48 GTEx tissues. See Table 1 and 2 for the summary of detections across
265 different approaches for the 15 NG and 18 UKB traits, respectively. Generally, TisCoMM-S²
266 identifies more genome-wide associations than S-MultiXcan and UTMOST in most traits. In
267 detail, TisCoMM-S²/S-MultiXcan/UTMOST identified 3,058/2,008/1,769, and 443/338/277
268 genome-wide significant genes in all the NG traits and UKB traits, respectively. Their qq-plots
269 of *p*-values are shown in Supplementary Figures S8 – S11 and plots for their genomic inflation
270 factors are shown in Supplementary Figure S12. As case study examples, we carefully examined
271 the results for late-onset Alzheimer's disease (LOAD) and asthma.

272 *LOAD results* After Bonferroni correction, TisCoMM-S²/S-MultiXcan/UTMOST identified
273 92/71/70 genome-wide significant genes, respectively, with 45 overlapping genes (17 of them are
274 known LOAD GWAS genes). Here we define known LOAD GWAS gene as the ones reported
275 in GWAS catalog. The qq-plots for associations in these three approaches are shown in Figure
276 5A. Among the 92 candidate target genes identified by TisCoMM-S², 24 of them are previously
277 known LOAD GWAS genes, which are annotated in the Manhattan plot in Figure 5A. These
278 include genes on the chromosome (CHR) 2 (*BIN1*), CHR 6 (*CD2AP*), CHR 7 (*EPHA1*), CHR
279 8 (*CLU*), CHR 11 (*PICALM*, *CCDC89*, *MS4A2*, *MS4A6A*), CHR 16 (*IL34*), and CHR 19
280 (*STK11* and *APOE* region). Moreover, TisCoMM-S² also identified 35 genes that were not
281 significant in either S-MultiXcan nor UTMOST, and four of them are known LOAD GWAS
282 genes, including *IL34* (*p*-value = 1×10^{-6}), *PTK2b* (*p*-value = 1.4×10^{-9}), *EPHX* (*p*-value
283 = 4.7×10^{-8}) and *STK11* (*p*-value = 7.2×10^{-7}).

284 Among all novel genes for LOAD identified by TisCoMM-S², some of them were identified
285 to be LOAD-related genes based on other computational models (e.g., *MAP3K2*) while some
286 of them have not been directly linked to LOAD yet, but have been proven to be important
287 regulators in different regions of the neuron system (e.g., *STMN4*, *EED* and *APC2*). *MAP3K2*
288 is 200kb downstream of *B1N1*, a reported LOAD risk gene [31] that was also genome-wide
289 significant in our joint test (*p*-values for both *B1N1* and *MAP3K2* < 10^{-10}). *MAP3K2* belongs

290 to the serine/threonine protein kinase family and has been previously identified as a member
291 of the Alzheimer's disease susceptibility network [32]. *STMN4* (*p*-value < 10^{-10}) encodes the
292 known protein that exhibits microtubule-destabilizing activity. The expression levels of this
293 gene in mouse neurons have been shown to change significantly after different exposure of
294 cortical nerve cells to the A β peptide [33]. The expression of *STMN4* in zebrafish has also been
295 shown to have an important role in regulating neurogenesis in the neural keel stage [34]. *EED*
296 (*p*-value = 5.7×10^{-7}) encodes a Polycomb protein, which plays a starring role as an important
297 modulator of hippocampal development [35]. *APC2* (*p*-value = 1.3×10^{-6}) is preferentially
298 expressed in postmitotic neurons and involved in brain development through its regulation of
299 neuronal migration and axon guidance [36]. We annotate these four genes in red in Figure 5A.

300 Validation of these potential target genes requires further functional studies. The list of
301 significant gene-trait associations of TisCoMM-S², S-MultiXcan, and UTMOST can be found
302 in Supplementary Table S2. To replicate our findings in another independent data set, we used
303 the summary statistics from the GWAS by proxy (GWAX [37], the sample size is 114,564). Our
304 replication rate was high (Supplementary Table S3), where 31 out of 92 genes were successfully
305 replicated under the Bonferroni-corrected significance threshold and the numbers of replicated
306 genes raised to 44 under a relaxed *p*-value cutoff of 0.05.

307 *Asthma results* After Bonferroni correction, TisCoMM-S²/S-MultiXcan/UTMOST identified
308 200/157/140 genome-wide significant genes, respectively, with 98 overlapping genes in all three
309 methods (and 21 of them are known asthma GWAS genes). The qq-plots for associations
310 in these three approaches are shown in Figure 5B. Among all 200 candidate target genes
311 identified by TisCoMM-S², 31 of them are known asthma GWAS genes, which is annotated
312 in the Manhattan plot in Figure 5B, including genes on CHR 2 (*IL1RL1/IL18R1*), CHR 5 (*TSLP/WDR36, RAD50*), CHR 6 (*HLA-DR/DQ* regions, *MAP3K7*), CHR 9 (*IL33*), CHR 11
314 (*C11orf30, LRRK32*), CHR 15 (*SMAD3*), and CHR 17 (genes from the 17q21 asthma locus).
315 Also, TisCoMM-S² identified 56 genes that were not significant in either S-MultiXcan nor
316 UTMOST, and two of them are known asthma GWAS genes, which are *PSORS1C1* (*p*-value
317 = 2.2×10^{-7}), and *MAP3K7* (*p*-value = 3×10^{-7}).

318 Among all novel loci for asthma identified by TisCoMM-S², *PDCD1LG2* was shown to
319 have essential roles in modulating and polarizing T-cell functions in airway hyperreactivity
320 [38]. Validating causal role of this gene in asthma requires further investigation. The list of

321 significant gene-trait associations of TisCoMM-S², S-MultiXcan, and UTMOST can be found
322 in Supplementary Table S4. We annotate these two genes in red in Figure 5B.

323 To replicate our findings in another independent data set, we used the summary statistics
324 from TAGC European-ancestry GWAS [39] (the sample size is 127,669). Our replication rate
325 was high (Supplementary Table S5), where 179 out of 200 genes were successfully replicated
326 under the Bonferroni-corrected significance threshold and the numbers of replicated genes
327 raised to 189 under a relaxed *p*-value cutoff of 0.05.

328 **TisCoMM-S² tissue-specific test infers gene effects in causal tissues**

329 To demonstrate the utility of the TisCoMM-S² tissue-specific test, we applied the tissue-specific
330 test to all identified 92 candidate genes of LOAD and 200 candidate genes of asthma by using
331 the TisCoMM-S² joint test, and compared analysis results with those from CoMM [10, 11].
332 Table 3 shows the distributions of identified tissues with which candidate genes are associated
333 in LOAD and asthma, respectively (see details in Supplementary Tables S6 and S7). Among
334 all identified candidate genes respectively for both LOAD and asthma, 76.1% and 81.5% were
335 significant in less than two tissues using TisCoMM-S² while 70.7% and 60% were significant
336 in all six tissues using CoMM-S². The most plausible explanation is that compared to the
337 multivariate perspective of our TisCoMM-S² tissue-specific test, single-tissue approaches, e.g.,
338 CoMM-S², tend to have larger tissue bias and more inflation in significant findings [9]. Suppose
339 a gene is causal in tissue A but not in tissue B, and its expressions in tissues A and B are
340 correlated. In a single-tissue test, the association can be spuriously significant for tissue B
341 because of the similar gene expression pattern observed in both tissues. By performing a
342 tissue-specific test for this gene in tissue B conditioned on tissue A, the significant spurious
343 association will be largely excluded.

344 [Table 1 about here.]

345 To demonstrate the tissue-specific role of candidate genes inferred by TisCoMM-S² tissue-
346 specific test for LOAD and asthma, respectively, we plot the volcano plots in Supplementary
347 Figure S13, where the x-axis is the effect size showing in log scale, the y-axis is $-\log_{10}$ of the
348 *p*-value from tissue-specific test, and the size of points reflect the cellular-heritability in each
349 tissue. Known GWAS genes are also annotated. Next, we explored the tissue-specific effects of

350 some well-replicated genes that are identified by the TisCoMM-S² joint test for LOAD and
351 asthma, respectively.

352 *LOAD results* The well-replicated risk gene *APOE* [40] and its 50Kb downstream *CLPTM1*
353 have been identified by the TisCoMM-S² joint test. Moreover, the TisCoMM-S² tissue-specific
354 test identified *CLPTM1* to be significantly associated with LOAD in all four tissues (artery
355 aorta, esophagus mucosa, nerve tibial, and skin sun-exposed lower leg with tissue-specific
356 *p*-values $< 4.9 \times 10^{-7}$), but *APOE* to be only significantly associated with LOAD in artery
357 aorta (tissue-specific *p*-value $= 8.3 \times 10^{-9}$) and nerve tibial (tissue-specific *p*-value $= 1.2 \times 10^{-8}$).
358 On the other hand, CoMM-S² significantly identified both *APOE* and *CLPTM1* in all four
359 tissues (*p*-values $\leq 10^{-10}$) but failed to identify the difference of tissue-specific role for these
360 two genes. We further investigate the molecular functions of LOAD associated genes in each
361 tissue. In each of tested tissues in LOAD, there are about 40 tissue-specific genes. It is difficult
362 to carry out a proper pathway analysis with such limited gene sets. So we classified the genes
363 into seven functional groups based on which molecular functions they belong to. As shown
364 in Figure 6A and 6B, majority ($> 62\%$) of LOAD-associated genes belonged to binding and
365 catalytic activity, and a small portion of significant LOAD genes were transcription factors
366 suggesting that many regulation processes are going on at both protein and mRNA levels in
367 different tissues.

368 According to our tissue selection strategy, above tissue-specific test for LOAD was conducted
369 on four non-brain tissues (enriched tissues). To further investigate the gene expression changes
370 in the well-studied disease tissues, three more brain regions (hippocampus, frontal cortex, and
371 cerebellar hemisphere) were selected for another tissue-specific analysis for LOAD. Because it is
372 known that hippocampus is one of the first brain regions to be affected by Alzheimer's disease
373 and related to the memory lost [41], markers such as A β in frontal cortex can be used to predict
374 future Alzheimer's disease [42], and cerebellum is affected in the final stage of the disease and
375 related to cognitive decline [43]. The joint test conducted on brain regions revealed 105 LOAD
376 associated genes, of which 73 were identified in the enriched tissues (Figure S14A), and the
377 other 32 genes were uniquely identified in brain regions (Figure S14B). The most significant
378 gene uniquely identified in brain regions is *KLC3* according to the joint test (*p*-value $< 10^{-10}$),
379 which is within 50kb downstream of *APOE*. Moreover, it is significantly associated with LOAD
380 in hippocampus region only, but not the other two brain regions according to the tissue-specific

381 test (Figure S14B). Thus, we propose *KLC3* as one of the potential novel targets for LOAD in
382 hippocampus.

383 *Asthma results* We take identified genes *ORMDL3* and *GSDMB* in the 17q21 asthma locus
384 as an example, because these two genes have been mentioned as asthma susceptibility locus
385 by many studies, a comprehensive review was written by Stein et al. [44]. The original
386 finding of *ORMDL3* was observed in one GWAS study, and have been further validated in
387 a mouse model [45]. The TisCoMM-S² tissue-specific test identified both *ORMDL3* and
388 *GSDMB* to be significantly associated with asthma only in lung tissue (see the volcano plot
389 in Supplementary Figure S14B, tissue-specific *p*-values for these two genes are 1.7×10^{-3} and
390 7.1×10^{-7} , respectively). However, CoMM-S² identified both *ORMDL3* and *GSDMB* in all six
391 tissues (*p*-values $\leq 10^{-10}$) but failed to identify the relevant tissues with which these two genes
392 are causally related to asthma. We further conducted pathway analysis using DAVID [46] on
393 six sets of asthma-associated genes in all six tissues (thyroid, lung, artery tibial, muscle skeletal,
394 adipose subcutaneous, and skin sun-exposed lower leg), respectively. As listed in Figure 6B,
395 all three significant pathways in thyroid tissue belonged to the immune system, and the only
396 significant pathway in lung tissue was immune response. However, no significant pathways were
397 detected in the other four tissues. Among asthma-associated genes in immune response (first
398 row in Figure 6C and 6D), the majority of them were shared between thyroid and lung, and
399 located in the MHC region on CHR 6 including several *HLA* genes and *LST1*. Our pathway
400 analysis suggests that nearly the same set of immune genes in thyroid and lung are responsible
401 for asthma development.

402 [Figure 5 about here.]

403 [Figure 6 about here.]

404 Discussion

405 Despite the substantial successes of TWAS and its variants, the existing multi-tissue methods
406 have several limitations, e.g., incapability to identify the tissue-specific effect of a gene, igno-
407 rance of imputation uncertainty, and failure to efficiently use tissue-shared patterns in eQTLs.
408 To overcome these limitations and provide additional perspectives over tissue-specific roles
409 of identified genes, we have proposed a powerful multi-tissue TWAS model, together with a

410 computationally efficient inference method and software implementation in TisCoMM. Specifi-
411 cally, we have developed a joint test for prioritizing gene-trait associations and a tissue-specific
412 test for identifying the tissue-specific role of candidate genes. Conditioned on the inclusion
413 of trait-relevant tissues, the tissue-specific test in TisCoMM can mostly remove the spurious
414 associations in a single-tissue test due to high correlations among gene expression across
415 tissues. We have also developed a summary-statistic-based model, TisCoMM-S², extending the
416 applicability of TisCoMM to publicly available GWAS summary data. Using both simulations
417 and real data, we examined the relationship between TisCoMM and TisCoMM-S². Our results,
418 as shown in Figure 2, show that the test statistics from TisCoMM and TisCoMM-S² are highly
419 correlated ($R^2 > 0.95$). We further analyzed summary-level GWAS data from 33 traits with
420 replication data for Alzheimer's disease and asthma. Overall, the findings from TisCoMM-S²
421 are around 30% more than those from S-MultiXcan or UTMOST while qq-plots from these
422 studies show that there are no apparent inflations. To replicate our findings for Alzheimer's
423 disease and asthma, we applied TisCoMM-S² to independent data sets for each disease. Results
424 show that replication rates for Alzheimer's disease and asthma are high.

425 We further inferred the tissue-specific effects of identified genes using the TisCoMM-S²
426 tissue-specific test. By classifying these genes into seven functional groups, we observed that
427 majority (62%) of LOAD-associated genes were related to binding and catalytic activity while
428 a small portion was from transcription factors suggesting active regulation processes at both
429 protein and mRNA level in different tissues. We also observed about 40 LOAD-associated
430 genes in each non-brain tissues. The significance of these genes could be due to the exclusion
431 of LOAD-relevant tissues, e.g., brain tissues. To fill this gap, we further conducted one more
432 analysis on three brain regions, and identified 32 brain specific genes. For asthma, genes
433 *ORMDL3* and *GSDMB* were identified to be significantly associated with asthma only in
434 lung tissue using TisCoMM-S² tissue-specific test. However, single-tissue analysis (CoMM-S²)
435 identified both genes significant in all six tested tissues. Further pathway analysis shows that
436 all three significant pathways for thyroid tissue belong to the immune system and the only
437 significant pathway for lung tissue was immune response. The majority of shared genes between
438 thyroid and lung tissues are located in the MHC region on CHR 6, including several *HLA* genes
439 and *LST1*. The proteins encoded by *HLA* genes are known as antigens. In combination with
440 antigen-presenting cells (e.g., macrophages and dendritic cells), they play an essential role in the

activation of immune cells as well as airway inflammation in response to asthma-related allergens [47, 48]. Based on our tissue-specific test, *TNF* that is a well-studied asthma gene [49, 50] was explicitly identified to be associated with asthma in lung tissue. The positive correlation between *TNF* expression and asthma in lung confirmed our previous understanding of *TNF* activation in asthma, promoting airway inflammation and airway hyperresponsiveness. On the other hand, *LTA* was specifically regulated in thyroid tissue. It is a cytokine produced by lymphocytes, and also known as a regulator of lipid metabolism [51]. Another immune gene regulated individually in thyroid tissue is *NCR3*, which mediates the crosstalk between natural killer cells and dendritic cells [52]. However, it remains unclear how the alteration of *LTA* and *NCR3* in thyroid could lead to asthma development.

Despite the utility of TisCoMM to perform gene-trait association analysis in a tissue-specific manner, it is primarily designed to test genes with direct effects from cis-eQTL. Recently, an omnigenic model was proposed to better understand the underlying mechanism of so-called polygenicity in complex traits [53]. Liu et al. [54] further provided a theoretical model to understand complex trait architecture by partitioning genetic contributions into direct effects from core genes and indirect effects from peripheral genes acting in trans. Most works from TWAS identify core genes with direct effects. How to effectively interrogate peripheral genes with indirect effects essentially remains an open question. As high-throughput data are continuously generating for a much larger sample size with more precision, TisCoMM sheds light on how to integrate useful data for the desired analysis effectively.

Methods

Model settings

Conventionally, both single-tissue and multi-tissue TWAS methods proceed by conducting a prediction model in Equation (1) followed by a subsequent association analysis in Equation (2), where a steady-state gene expression is imputed from $\mathbf{X}_{2g}\widehat{\mathbf{B}}_g$ and $\widehat{\mathbf{B}}_g$ is estimated in the first prediction model, e.g., PrediXcan, MultiXcan, S-MulitXcan, and UTMOST. However, this imputation strategy ignores the uncertainty in the process of expression imputation. Here, we describe the individual-level data version of TisCoMM by jointly analyzing models (1) and (2), and extensions to summary statistics will be discussed in the Supplementary Text. Assume $\mathcal{D}_1 = \{\mathbf{Y}_g, \mathbf{X}_{1g}\}$ denote the reference transcriptome data set of gene g for n_1 samples over

471 T tissues, where \mathbf{Y}_g is the $n_1 \times T$ expression matrix for this gene over T tissues, and \mathbf{X}_{1g} is
 472 the corresponding $n_1 \times M_g$ standardized genotype matrix for M_g cis-SNPs within this gene.
 473 Denote the GWAS data $\mathcal{D}_2 = \{\mathbf{z}, \mathbf{X}_{2g}\}$, where \mathbf{z} is an $n_2 \times 1$ vector of phenotypic values, \mathbf{X}_{2g}
 474 is the corresponding $n_2 \times M_g$ standardized genotype matrix for M_g cis-SNPs. Since we conduct
 475 hypothesis testing sequentially or parallelly for each gene, we will omit the subscript g in all
 476 the expression that has dependence on gene g to simplify notations. Our model becomes

$$\mathbf{Y} = \mathbf{X}_1 \mathbf{B} + \mathbf{E}, \quad \mathbf{z} = \mathbf{X}_2 \mathbf{B} \boldsymbol{\alpha} + \mathbf{e}_z, \quad (3)$$

477 where $\boldsymbol{\alpha} \in \mathbb{R}^T$, $\mathbf{E} \sim \mathcal{MN}(0, \mathbf{I}_m, \mathbf{V}_e)$, and $\mathbf{e}_z \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$. Note that we assume \mathcal{D}_1 and \mathcal{D}_2
 478 are centered and thus intercepts can be omitted.

479 To estimate the tissue-specific eQTL effects, we need to first estimate an $M \times T$ coefficient
 480 matrix \mathbf{B} . To reduce the number of parameters, we follow an adaptive weighting scheme
 481 [22, 23, 24]: we regress the gene expression in tissue type t on the j th eQTL and let the
 482 marginal eQTL effect be the adaptive weight, w_{jt} . Specifically, we assume the joint eQTL
 483 effect size β_{jt} can be decomposed into variant-dependent components b_j and tissue-specific
 484 components w_{jt} : $\beta_{jt} = b_j w_{jt}$. That is, $\mathbf{B} = \text{diag}\{\mathbf{b}\} \mathbf{W}$. Similar strategies have been applied to
 485 model tissue-shared patterns [24, 21]. Let \mathbf{y}_i , \mathbf{x}_{1i} and \mathbf{w}_j denote the i th row of \mathbf{Y} , \mathbf{X}_1 and \mathbf{W} ,
 486 respectively. Our model can be written as

$$\begin{aligned} \mathbf{y}_i | \mathbf{b} &\sim \mathcal{N}\left(\sum_j x_{1ij} b_j \mathbf{w}_j, \mathbf{V}_e\right), \\ z_i | \mathbf{b} &\sim \mathcal{N}\left(\boldsymbol{\alpha}^\top \left(\sum_j x_{2ij} b_j \mathbf{w}_j\right), \sigma^2\right), \\ b_j &\sim \mathcal{N}(0, \sigma_b^2). \end{aligned}$$

487 Denote $\boldsymbol{\theta} = (\boldsymbol{\alpha}, \sigma_b^2, \sigma^2, \mathbf{V}_e)^T$ the vector for all model parameters. We need to estimate
 488 parameters and make inference for $\boldsymbol{\alpha}$. Both the TisCoMM joint test and tissue-specific test
 489 are based on likelihood ratio tests. The joint test for gene-trait associations can be formally set
 490 up as $H_0 : \boldsymbol{\alpha} = 0$ versus $H_1 : \boldsymbol{\alpha} \neq 0$. The corresponding likelihood ratio test statistic is given by

$$\Lambda = 2 \left[\log \Pr(\mathbf{y}, \mathbf{z} | \mathbf{X}_1, \mathbf{X}_2; \hat{\boldsymbol{\theta}}) - \log \Pr(\mathbf{y}, \mathbf{z} | \mathbf{X}_1, \mathbf{X}_2; \hat{\boldsymbol{\theta}}_{\boldsymbol{\alpha}=0}) \right],$$

491 where $\hat{\boldsymbol{\theta}}$ is the vector of parameter estimates under the full model, and $\hat{\boldsymbol{\theta}}_{\boldsymbol{\alpha}=0}$ is the vector of
 492 estimates under the constraint $\boldsymbol{\alpha} = 0$. Similarly, the tissue-specific test for the tissue-specific
 493 effect can be formally set up as $H_0 : \alpha_t = 0$ versus $H_1 : \alpha_t \neq 0$. The corresponding likelihood

494 ratio test statistic is given by

$$\Lambda_t = 2 \left[\log \Pr(\mathbf{y}, \mathbf{z} | \mathbf{X}_1, \mathbf{X}_2; \hat{\boldsymbol{\theta}}) - \log \Pr(\mathbf{y}, \mathbf{z} | \mathbf{X}_1, \mathbf{X}_2; \hat{\boldsymbol{\theta}}_{\alpha_t=0}) \right],$$

495 where $\hat{\boldsymbol{\theta}}_{\alpha_t=0}$ is the vector of parameter estimates under $\alpha_t = 0$.

496 For statistical inference, we developed an expectation-maximization (EM) algorithm accele-
497 rated by expanding parameters [55]. Details of updating equations for each parameter and
498 the corresponding algorithm can be found in Supplementary Text.

499 GWAS data

500 The NFBC1966 data set

501 The NFBC1966 data set consists of ten traits and 364,590 SNPs from 5402 individuals [26],
502 including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density
503 lipoprotein cholesterol (LDL-C) and triglycerides (TG), inflammatory marker C-reactive protein,
504 markers of glucose homeostasis (glucose and insulin), body mass index (BMI) and blood pressure
505 (BP) measurements (systolic and diastolic BP). Quality control procedures are conducted
506 following similar steps to Shi et al. [56]. Specifically, individuals with missing-ness in any
507 of the traits and with genotype missing call-rates $> 5\%$ were excluded. We excluded SNPs
508 with minor allele frequency (MAF) $< 1\%$, missing call-rates $> 1\%$, or failed Hardy-Weinberg
509 equilibrium. After quality control filtering, 172,412 SNPs from 5123 individuals were available
510 for downstream analysis.

511 The tissues used in TisCoMM and TisCoMM-S² were the same, and the six tissues with the
512 largest number of overlapped individuals were used. The summary statistics for TisCoMM-S²
513 were calculated using PLINK [57].

514 Summary-level GWAS data

515 We obtained summary statistics from GWASs for 33 traits, including 15 traits from [19] and 18
516 traits from the UK Biobank. Details of these traits can be found in Supplementary Table S1.
517 In the main text, we discussed LOAD and asthma. Analyses results for other traits can be
518 found in Supplementary Text.

519 GTeX eQTL Data

520 The GTeX data including genotype and RNA-seq data are obtained from dbGaP with accession
521 number phs000424.v7.p2. Processed gene-expression data are available on the GTeX portal
522 (<https://gtexportal.org/home/>). In the eQTL data, we removed SNPs with ambiguous alleles
523 or MAF less 0.01.

524 We used two different strategies to select tissues used in our real data analysis. For the
525 15 NG traits, we obtained the top enriched tissues for each trait according to Supplementary
526 Table 2 in [19], and a subset of tissues with sample sizes larger than 100 was kept. For the
527 UKB traits, we used the six tissues with the largest number of overlapped individuals.

528 Reference panel

529 Due to the absence of genotype data using summary statistics, we use reference samples to
530 estimate the LD structures R among SNPs in the study samples. Since diseases and traits
531 considered in our real data application are for European population cohorts, we choose to use
532 European subsamples from the 1000 Genome Project as a reference panel.

533 Let \mathbf{X}_r denote the genotype matrix for cis-SNPs in the reference panel. To estimate the
534 LD matrix R , we adopt a simple shrinkage method as follows. We first calculate the empirical
535 correlation matrix $\hat{R}^{\text{emp}} = [r_{jk}] \in \mathbb{R}^{M \times M}$ with $r_{jk} = \frac{X_{rj}^T X_{rk}}{\sqrt{(X_{rj}^T X_{rj})(X_{rk}^T X_{rk})}}$, where X_{rj} the j th
536 column of \mathbf{X}_r . To make the estimated correlation matrix positive definite, we apply a simple
537 shrinkage estimator [58]: $\hat{R} = \tau R^{\text{emp}} + (1 - \tau) \mathbf{I}_M$, where $\tau \in [0, 1]$ is the shrinkage intensity.
538 In real data application, we fixed the shrinkage intensity at 0.95 both for simplicity and
539 computational stability.

540 Web Resources

541 *TisCoMM* is available at <https://github.com/XingjieShi/TisCoMM/>.

542 *PrediXcan*, *MultiXcan* and *S-MultiXcan* are available at <http://gene2pheno.org/>.

543 *UTMOST* is available at <https://github.com/Joker-Jerome/UTMOST/>.

544 *CoMM* is available at <https://github.com/gordonliu810822/CoMM>.

545 Known trait-associated genes are available at the NHGRI-EBI GWAS Catalog <https://www.ebi.ac.uk/gwas/>.

546 Summary statistics from UK Biobank is available at <http://geneatlas.roslin.ed.ac.uk/>.

547 URLs for summary statistics from Gamazon et al. [19] are summarized in Supplementary Table

548 S1.

549

550 **Acknowledgements**

551 This work was supported by grant R-913-200-098-263 from the Duke-NUS Medical School,
552 AcRF Tier 2 (MOE2016-T2-2-029, MOE2018-T2-1-046 and MOE2018-T2-2-006) from the
553 Ministry of Education, Singapore, grant No. 71501089, No. 11501579 and No. 71472023 from
554 the National Natural Science Foundation of China; and grant Nos. 22302815, No. 12316116
555 and No. 12301417 from the Hong Kong Research Grant Council. The computational work for
556 this article was partially performed using resources from the National Supercomputing Centre,
557 Singapore (<https://www.nscc.sg>).

558 **References**

- 559 1. Peter M Visscher, Naomi R Wray, Qian Zhang, Pamela Sklar, Mark I McCarthy, Matthew A
560 Brown, and Jian Yang. 10 years of gwas discovery: biology, function, and translation. *The
561 American Journal of Human Genetics*, 101(1):5–22, 2017.
- 562 2. Matthew T Maurano, Richard Humbert, Eric Rynes, Robert E Thurman, Eric Haugen,
563 Hao Wang, Alex P Reynolds, Richard Sandstrom, Hongzhu Qu, Jennifer Brody, et al.
564 Systematic localization of common disease-associated variation in regulatory dna. *Science*,
565 337(6099):1190–1195, 2012.
- 566 3. William Cookson, Liming Liang, Gonçalo Abecasis, Miriam Moffatt, and Mark Lathrop.
567 Mapping complex disease traits with global gene expression. *Nature Reviews Genetics*,
568 10(3):184, 2009.
- 569 4. Dan L Nicolae, Eric Gamazon, Wei Zhang, Shiwei Duan, M Eileen Dolan, and Nancy J
570 Cox. Trait-associated snps are more likely to be eqtls: annotation to enhance discovery
571 from gwas. *PLoS genetics*, 6(4):e1000888, 2010.
- 572 5. Frank W Albert and Leonid Kruglyak. The role of regulatory variation in complex traits
573 and disease. *Nature Reviews Genetics*, 16(4):197, 2015.

574 6. John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad,
575 Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, et al. The genotype-tissue
576 expression (gtex) project. *Nature genetics*, 45(6):580, 2013.

577 7. Eric R Gamazon, Heather E Wheeler, Kaanan P Shah, Sahar V Mozaffari, Keston Aquino-
578 Michaels, Robert J Carroll, Anne E Eyler, Joshua C Denny, Dan L Nicolae, Nancy J Cox,
579 et al. A gene-based association method for mapping traits using reference transcriptome
580 data. *Nature genetics*, 47(9):1091, 2015.

581 8. Alexander Gusev, Arthur Ko, Huwenbo Shi, Gaurav Bhatia, Wonil Chung, Brenda WJH
582 Penninx, Rick Jansen, Eco JC De Geus, Dorret I Boomsma, Fred A Wright, et al. Integrative
583 approaches for large-scale transcriptome-wide association studies. *Nature genetics*, 48(3):245,
584 2016.

585 9. Michael Wainberg, Nasa Sinnott-Armstrong, Nicholas Mancuso, Alvaro N Barbeira, David A
586 Knowles, David Golan, Raili Ermel, Arno Ruusalepp, Thomas Quertermous, Ke Hao, et al.
587 Opportunities and challenges for transcriptome-wide association studies. *Nature genetics*,
588 51(4):592, 2019.

589 10. Can Yang, Xiang Wan, Xinyi Lin, Mengjie Chen, Xiang Zhou, and Jin Liu. Comm: a
590 collaborative mixed model to dissecting genetic contributions to complex traits by leveraging
591 regulatory information. *Bioinformatics*, 35(10):1644–1652, 2018.

592 11. Yi Yang, Xingjie Shi, Yuling Jiao, Jian Huang, Min Chen, Xiang Zhou, Lei Sun, Xinyi Lin,
593 Can Yang, and Jin Liu. Comm-s2: a collaborative mixed model using summary statistics
594 in transcriptome-wide association studies. *bioRxiv*, page 652263, 2019.

595 12. Sini Nagpal, Xiaoran Meng, Michael P Epstein, Lam C Tsoi, Matthew Patrick, Greg Gibson,
596 Philip L De Jager, David A Bennett, Aliza P Wingo, Thomas S Wingo, et al. Tigar:
597 An improved bayesian tool for transcriptomic data imputation enhances gene mapping of
598 complex traits. *The American Journal of Human Genetics*, 2019.

599 13. Yang I Li, Garrett Wong, Jack Humphrey, and Towfique Raj. Prioritizing parkinsons disease
600 genes using population-scale transcriptomic data. *Nature communications*, 10(1):994, 2019.

601 14. Alvaro N Barbeira, Milton D Pividori, Jiamao Zheng, Heather E Wheeler, Dan L Nicolae,
602 and Hae Kyung Im. Integrating predicted transcriptome from multiple tissues improves
603 association detection. *PLoS genetics*, 15(1):e1007889, 2019.

604 15. Yiming Hu, Mo Li, Qiongshi Lu, Haoyi Weng, Jiawei Wang, Seyedeh M Zekavat, Zhaolong
605 Yu, Boyang Li, Jianlei Gu, Sydney Muchnik, et al. A statistical framework for cross-tissue
606 transcriptome-wide association analysis. Technical report, Nature Publishing Group, 2019.

607 16. Alvaro N Barbeira, Scott P Dickinson, Rodrigo Bonazzola, Jiamao Zheng, Heather E
608 Wheeler, Jason M Torres, Eric S Torstenson, Kaanan P Shah, Tzitzuni Garcia, Todd L
609 Edwards, et al. Exploring the phenotypic consequences of tissue specific gene expression
610 variation inferred from gwas summary statistics. *Nature communications*, 9(1):1825, 2018.

611 17. Hilary K Finucane, Yakir A Reshef, Verner Anttila, Kamil Slowikowski, Alexander Gusev,
612 Andrea Byrnes, Steven Gazal, Po-Ru Loh, Caleb Lareau, Noam Shores, et al. Heritability
613 enrichment of specifically expressed genes identifies disease-relevant tissues and cell types.
614 *Nature genetics*, 50(4):621, 2018.

615 18. Mingxuan Cai, Lin Chen, Jin Liu, and Can Yang. Quantifying the impact of genetically
616 regulated expression on complex traits and diseases. *bioRxiv*, page 546580, 2019.

617 19. Eric R Gamazon, Ayellet V Segrè, Martijn van de Bunt, Xiaoquan Wen, Hualin S Xi, Farhad
618 Hormozdiari, Halit Ongen, Anuar Konkashbaev, Eske M Derkx, François Aguet, et al.
619 Using an atlas of gene regulation across 44 human tissues to inform complex disease-and
620 trait-associated variation. *Nature genetics*, 50(7):956, 2018.

621 20. GTEx Consortium et al. Genetic effects on gene expression across human tissues. *Nature*,
622 550(7675):204, 2017.

623 21. Sarah M Urbut, Gao Wang, Peter Carbonetto, and Matthew Stephens. Flexible statistical
624 methods for estimating and testing effects in genomic studies with multiple conditions.
625 Technical report, Nature Publishing Group, 2018.

626 22. John W Tukey. One degree of freedom for non-additivity. *Biometrics*, 5(3):232–242, 1949.

627 23. Nilanjan Chatterjee, Zeynep Kalaylioglu, Roxana Moslehi, Ulrike Peters, and Sholom
628 Wacholder. Powerful multilocus tests of genetic association in the presence of gene-gene and

629 gene-environment interactions. *The American Journal of Human Genetics*, 79(6):1002–1016,
630 2006.

631 24. Jiebiao Wang, Eric R Gamazon, Brandon L Pierce, Barbara E Stranger, Hae Kyung Im,
632 Robert D Gibbons, Nancy J Cox, Dan L Nicolae, and Lin S Chen. Imputing gene expression
633 in uncollected tissues within and beyond gtex. *The American Journal of Human Genetics*,
634 98(4):697–708, 2016.

635 25. Yongjin Park, Abhishek K Sarkar, Kunal Bhutani, and Manolis Kellis. Multi-tissue
636 polygenic models for transcriptome-wide association studies. *bioRxiv*, page 107623, 2017.

637 26. Chiara Sabatti, Susan K Service, Anna-Liisa Hartikainen, Anneli Pouta, Samuli Ripatti,
638 Jae Brodsky, Chris G Jones, Noah A Zaitlen, Teppo Varilo, Marika Kaakinen, et al.
639 Genome-wide association analysis of metabolic traits in a birth cohort from a founder
640 population. *Nature genetics*, 41(1):35, 2009.

641 27. Monkol Lek, Konrad J Karczewski, Eric V Minikel, Kaitlin E Samocha, Eric Banks, Timothy
642 Fennell, Anne H O'Donnell-Luria, James S Ware, Andrew J Hill, Beryl B Cummings, et al.
643 Analysis of protein-coding genetic variation in 60,706 humans. *Nature*, 536(7616):285, 2016.

644 28. Xiang Zhou and Matthew Stephens. Genome-wide efficient mixed-model analysis for
645 association studies. *Nature genetics*, 44(7):821, 2012.

646 29. Heather E Wheeler, Kaanan P Shah, Jonathon Brenner, Tzintzuni Garcia, Keston Aquino-
647 Michaels, Nancy J Cox, Dan L Nicolae, Hae Kyung Im, GTEx Consortium, et al. Survey
648 of the heritability and sparse architecture of gene expression traits across human tissues.
649 *PLoS genetics*, 12(11):e1006423, 2016.

650 30. Nicholas Mancuso, Huwenbo Shi, Pagé Goddard, Gleb Kichaev, Alexander Gusev, and
651 Bogdan Pasaniuc. Integrating gene expression with summary association statistics to
652 identify genes associated with 30 complex traits. *The American Journal of Human Genetics*,
653 100(3):473–487, 2017.

654 31. De Jager, Philip L, Srivastava Gyan, Lunnon Katie, Burgess Jeremy, Leonard C Schalk-
655 wyk, Yu Lei, Matthew L Eaton, Brendan T Keenan, Ernst Jason, and Mc Cabe Cristin.
656 Alzheimer's disease: early alterations in brain dna methylation at ank1, bin1, rhbdf2 and
657 other loci. *Nature Neuroscience*, 17(9):1156–1163, 2014.

658 32. Alexei Kurakin and Dale E. Bredesen. Dynamic self-guiding analysis of alzheimer's disease.
659 *Oncotarget*, 6(16), may 2015.

660 33. Rita R Romito-Digiacomo, Menegay Harry, Samantha A Cicero, and Herrup Karl. Effects
661 of alzheimer's disease on different cortical layers: the role of intrinsic differences in abeta
662 susceptibility. *Journal of Neuroscience the Official Journal of the Society for Neuroscience*,
663 27(32):8496–504, 2007.

664 34. M. J. Lin and S. J. Lee. Stathmin-like 4 is critical for the maintenance of neural progenitor
665 cells in dorsal midbrain of zebrafish larvae. *Scientific Reports*, 6:36188, 2016.

666 35. Pei-Pei Liu, Ya-Jie Xu, Shang-Kun Dai, Hong-Zhen Du, Ying-Ying Wang, Xing-Guo
667 Li, Zhao-Qian Teng, and Chang-Mei Liu. Polycomb protein EED regulates neuronal
668 differentiation through targeting SOX11 in hippocampal dentate gyrus. *Stem Cell Reports*,
669 13(1):115–131, jul 2019.

670 36. Mariam Almuriekhi, Takafumi Shintani, Somayyeh Fahiminiya, Akihiro Fujikawa, Kazuya
671 Kuboyama, Yasushi Takeuchi, Zafar Nawaz, Javad Nadaf, Hussein Kamel, Abu Khadija
672 Kitam, Zaineddin Samiha, Laila Mahmoud, Tawfeg Ben-Omran, Jacek Majewski, and
673 Masaharu Noda. Loss-of-function mutation in APC2 causes sotos syndrome features. *Cell
674 Reports*, 10(9):1585–1598, mar 2015.

675 37. Jimmy Z Liu, Yaniv Erlich, and Joseph K Pickrell. Case-control association mapping by
676 proxy using family history of disease. *Nature genetics*, 49(3):325, 2017.

677 38. A. K. Singh, P. Stock, and O. Akbari. Role of PD-l1 and PD-l2 in allergic diseases and
678 asthma. *Allergy*, 66(2):155–162, aug 2010.

679 39. Florence Demenais, Patricia Margaritte-Jeannin, Kathleen C Barnes, William OC Cookson,
680 Janine Altmüller, Wei Ang, R Graham Barr, Terri H Beaty, Allan B Becker, John Beilby,
681 et al. Multiancestry association study identifies new asthma risk loci that colocalize with
682 immune-cell enhancer marks. *Nature genetics*, 50(1):42, 2018.

683 40. Chang-En Yu, Howard Seltman, Elaine R Peskind, Nichole Galloway, Peter X Zhou,
684 Elisabeth Rosenthal, Ellen M Wijsman, Debby W Tsuang, Bernie Devlin, and Gerard D
685 Schellenberg. Comprehensive analysis of apoe and selected proximate markers for late-onset

686 alzheimer's disease: patterns of linkage disequilibrium and disease/marker association.
687 *Genomics*, 89(6):655–665, 2007.

688 41. Aleksandra Maruszak and Sandrine Thuret. Why looking at the whole hippocampus is not
689 enougha critical role for anteroposterior axis, subfield and activation analyses to enhance
690 predictive value of hippocampal changes for alzheimers disease diagnosis. *Frontiers in*
691 *cellular neuroscience*, 8:95, 2014.

692 42. Ville Leinonen, Anne M Koivisto, Sakari Savolainen, Jaana Rummukainen, Juuso N
693 Tamminen, Tomi Tillgren, Sannakaisa Vainikka, Okko T Pyykkö, Juhani Mölsä, Mikael
694 Fraunberg, et al. Amyloid and tau proteins in cortical brain biopsy and alzheimer's disease.
695 *Annals of neurology*, 68(4):446–453, 2010.

696 43. Heidi IL Jacobs, David A Hopkins, Helen C Mayrhofer, Emiliano Bruner, Fred W van
697 Leeuwen, Wijnand Raaijmakers, and Jeremy D Schmahmann. The cerebellum in alzheimers
698 disease: evaluating its role in cognitive decline. *Brain*, 141(1):37–47, 2017.

699 44. Michelle M Stein, Emma E Thompson, Nathan Schoettler, Britney A Helling, Kevin M
700 Magnaye, Catherine Stanhope, Catherine Igartua, Andréanne Morin, Charles Washing-
701 ton III, Dan Nicolae, et al. A decade of research on the 17q12-21 asthma locus: piecing
702 together the puzzle. *Journal of Allergy and Clinical Immunology*, 142(3):749–764, 2018.

703 45. Jun Chen, Marina Miller, Hirotoshi Unno, Peter Rosenthal, Michael J Sanderson, and
704 David H Broide. Orosomucoid-like 3 (ormdl3) upregulates airway smooth muscle prolif-
705 eration, contraction, and ca2+ oscillations in asthma. *Journal of Allergy and Clinical*
706 *Immunology*, 142(1):207–218, 2018.

707 46. Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Bioinformatics enrichment
708 tools: paths toward the comprehensive functional analysis of large gene lists. *Nucleic acids*
709 *research*, 37(1):1–13, 2008.

710 47. GG Anderson and JFJ Morrison. Molecular biology and genetics of allergy and asthma.
711 *Archives of disease in childhood*, 78(5):488–496, 1998.

712 48. Namita A Gandhi, Brandy L Bennett, Neil MH Graham, Gianluca Pirozzi, Neil Stahl, and
713 George D Yancopoulos. Targeting key proximal drivers of type 2 inflammation in disease.
714 *Nature reviews Drug discovery*, 15(1):35, 2016.

715 49. Mike Berry, Christopher Brightling, Ian Pavord, and Andrew J Wardlaw. Tnf- α in asthma.
716 *Current opinion in pharmacology*, 7(3):279–282, 2007.

717 50. Christopher Brightling, Mike Berry, and Yassine Amrani. Targeting tnf- α : a novel ther-
718 apeutic approach for asthma. *Journal of Allergy and Clinical Immunology*, 121(1):5–10,
719 2008.

720 51. James C Lo, Yugang Wang, Alexei V Tumanov, Michelle Bamji, Zemin Yao, Catherine A
721 Reardon, Godfrey S Getz, and Yang-Xin Fu. Lymphotoxin β receptor-dependent control
722 of lipid homeostasis. *Science*, 316(5822):285–288, 2007.

723 52. H Mulcahy, KP O'rourke, C Adams, MG Molloy, and F O'gara. Lst1 and ncr3 expres-
724 sion in autoimmune inflammation and in response to ifn- γ , lps and microbial infection.
725 *Immunogenetics*, 57(12):893–903, 2006.

726 53. Evan A Boyle, Yang I Li, and Jonathan K Pritchard. An expanded view of complex traits:
727 from polygenic to omnigenic. *Cell*, 169(7):1177–1186, 2017.

728 54. Xuanyao Liu, Yang I Li, and Jonathan K Pritchard. Trans effects on gene expression can
729 drive omnigenic inheritance. *Cell*, 177(4):1022–1034, 2019.

730 55. Chuanhai Liu, Donald B Rubin, and Ying Nian Wu. Parameter expansion to accelerate
731 em: the px-em algorithm. *Biometrika*, 85(4):755–770, 1998.

732 56. Xingjie Shi, Yuling Jiao, Yi Yang, Ching-Yu Cheng, Can Yang, Xinyi Lin, and Jin Liu.
733 VIMCO: variational inference for multiple correlated outcomes in genome-wide association
734 studies. *Bioinformatics*, 03 2019. btz167.

735 57. Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel AR Ferreira,
736 David Bender, Julian Maller, Pamela Sklar, Paul IW De Bakker, Mark J Daly, et al.
737 Plink: a tool set for whole-genome association and population-based linkage analyses. *The
738 American journal of human genetics*, 81(3):559–575, 2007.

739 58. Juliane Schäfer and Korbinian Strimmer. A shrinkage approach to large-scale covariance
740 matrix estimation and implications for functional genomics. *Statistical applications in
741 genetics and molecular biology*, 4(1), 2005.

Table 1: Numbers of significant gene-trait associations across 15 NG traits. The reference panel is European subsamples from 1000 Genome. The number in the parenthesis denoted genes reported in the GWAS catalog. The full names of traits can be found in Table S1.

Table 2: Numbers of significant gene-trait associations across 18 UKB traits. The reference panel is European subsamples from 1000 Genome. The number in the parenthesis denoted genes reported on the GWAS catalog. The full names of traits can be found in Supplementary Table S1.

	TisCoMM-S ²	S-MultiXcan	UTMOST	TisCoMM-S ²	S-MultiXcan	UTMOST
2hrGlu	1(0)	0(0)	5(0)	25(3)	23(2)	12(4)
LOAD	92(24)	71(20)	70(19)	200(31)	157(29)	140(36)
BMI	82(30)	59(21)	68(25)	2(0)	2(0)	4(0)
CAD	69(9)	28(5)	36(11)	2(0)	1(0)	0(0)
CD	468(52)	339(50)	291(55)	166(0)	120(0)	91(0)
FG	94(11)	66(11)	54(8)	0	0	1(1)
FI	3(0)	1(0)	2(0)	0	0	2(1)
HDL-C	464(14)	268(13)	237(12)	0	0	0
HOMAB	10(0)	7(0)	4(0)	0	1(0)	0
HOMAIR	1(0)	1(0)	1(0)	0	0	0
LDL-C	498(5)	273(5)	228(5)	1(0)	2(0)	2(1)
TC	603(88)	376(77)	330(86)	0	1(0)	0
TG	360(58)	250(48)	192(40)	1(0)	1(0)	3(0)
UC	301(30)	262(31)	243(41)	1	1	3(0)
WHR	12(3)	7(1)	8(1)	2(0)	3(0)	1(0)
				1(0)	1(0)	1(0)
				40(2)	22(2)	20(2)

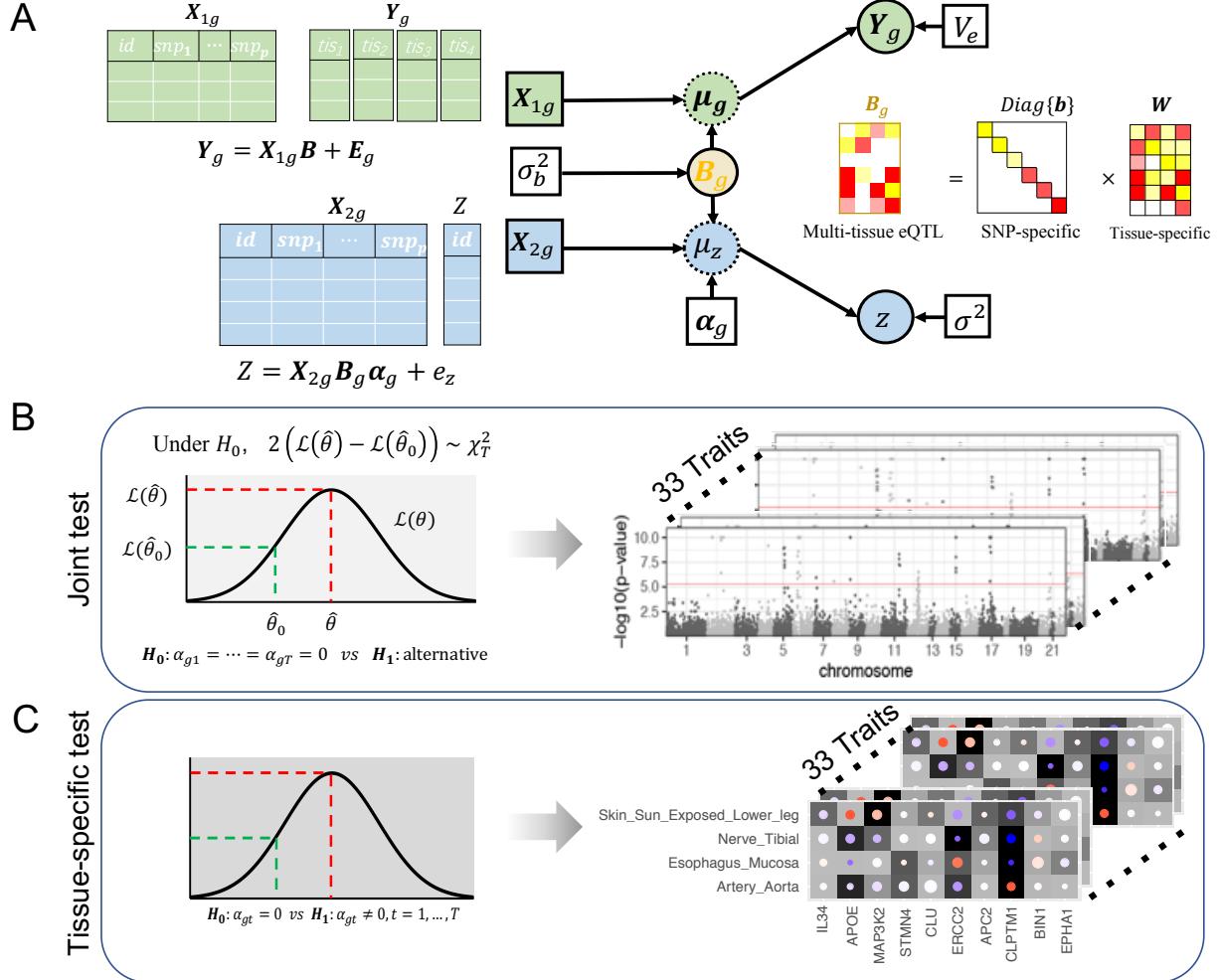


Figure 1: TisCoMM workflow. **A.** Two sets of TisCoMM input matrices are highlighted in green and blue separately (left). The probabilistic graphical model for TisCoMM is shown in the middle, which integrates gene expressions and models the co-regulation of cis-SNPs across different tissues explicitly. μ_g and μ_z denote expectations of gene expression in eQTL and phenotype in GWAS, respectively. The decomposition of the \mathbf{B} matrix is illustrated on the right-hand side of the figure. **B.** The TisCoMM joint test for all genes to prioritize candidate causal genes. See more details of $\mathcal{L}(\theta)$ in Methods section. The example outputs (right) are shown as Manhattan plots for 33 traits. **C.** The TisCoMM tissue-specific test for all candidate genes to explore the tissue-specific roles of candidate genes. The example outputs (right) are shown as heatmaps which summarize the tissue-specific effect of each gene. Significance level, effect size, and heritability are converted into background color, circle color, and circle size.

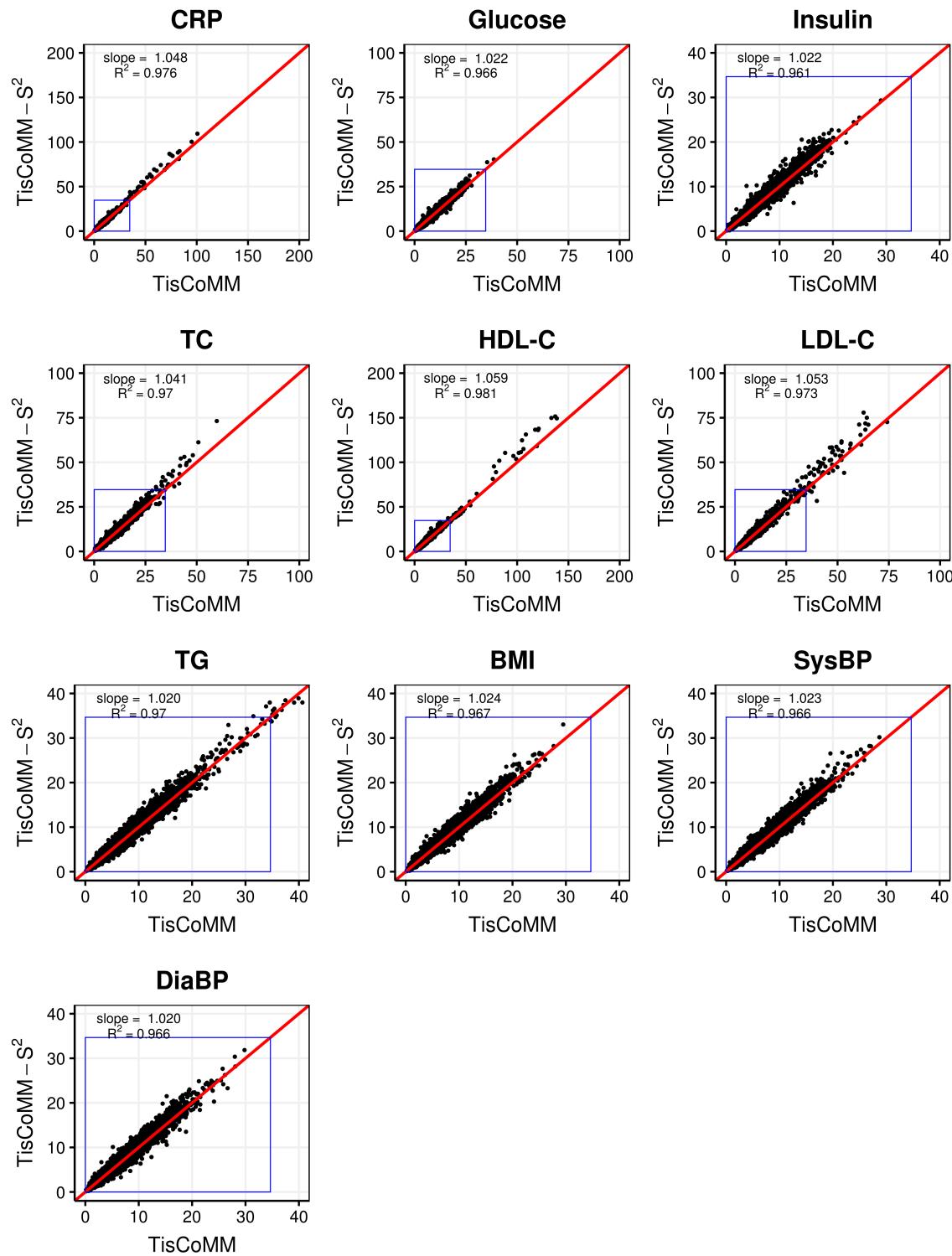


Figure 2: Comparison of TisCoMM and TisCoMM-S² results in NFBC1966 traits. The reference panel is subsamples from the NFBC1966 data set. The summary-based method shows similar results to the individual-based method. The blue rectangle indicates the null region.

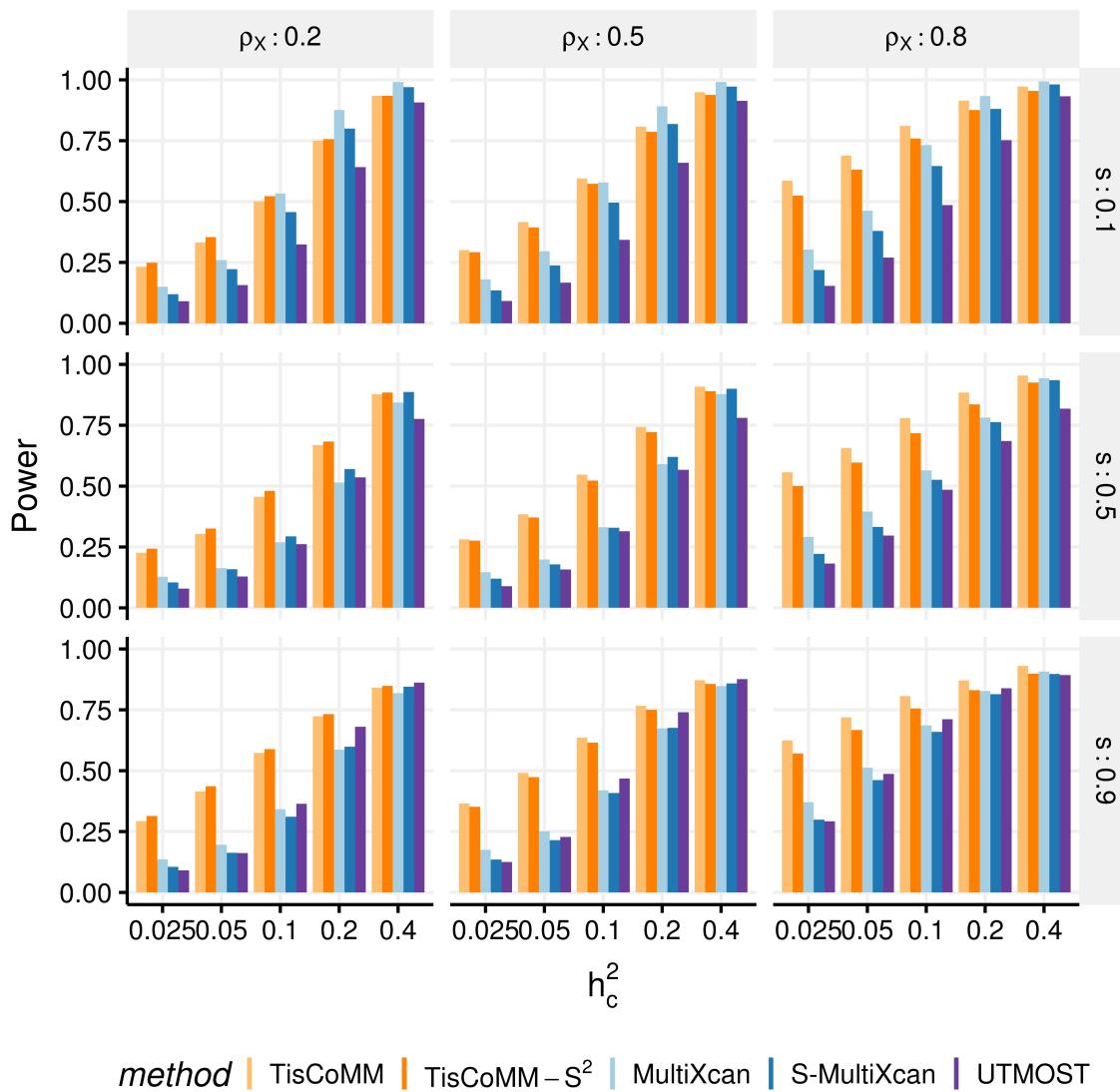


Figure 3: TisCoMM joint test outperforms the other multi-tissue methods. The number of replicates is 5,000. In each subplot, the x-axis stands for the SNP heritability level, and the y-axis stands for the proportion of significant genes within 5,000 replicates.

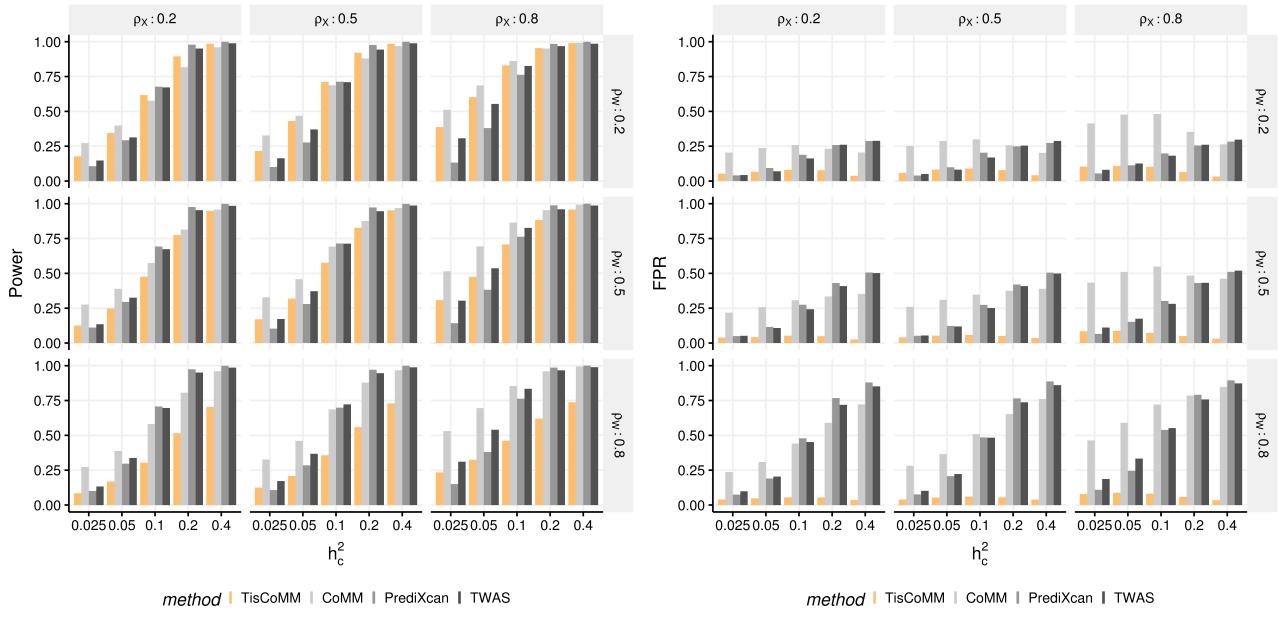
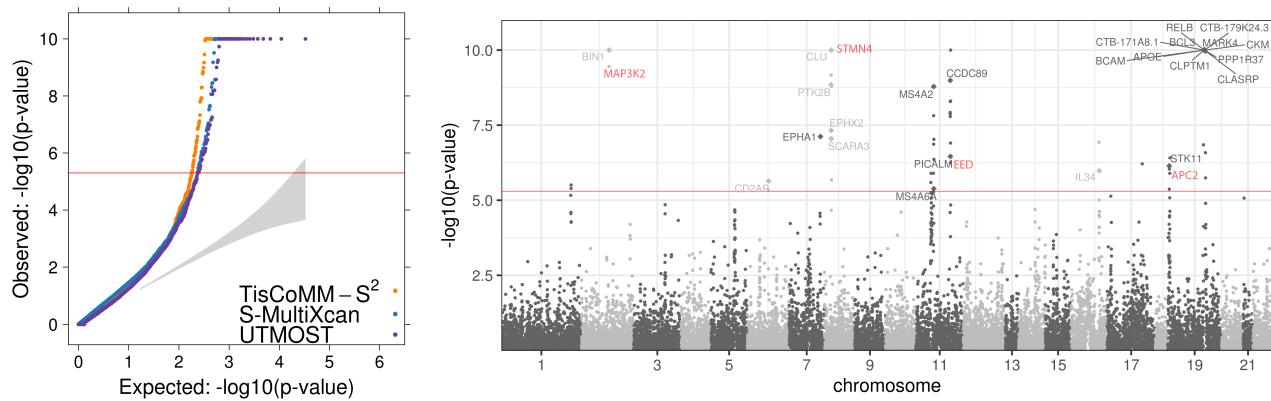
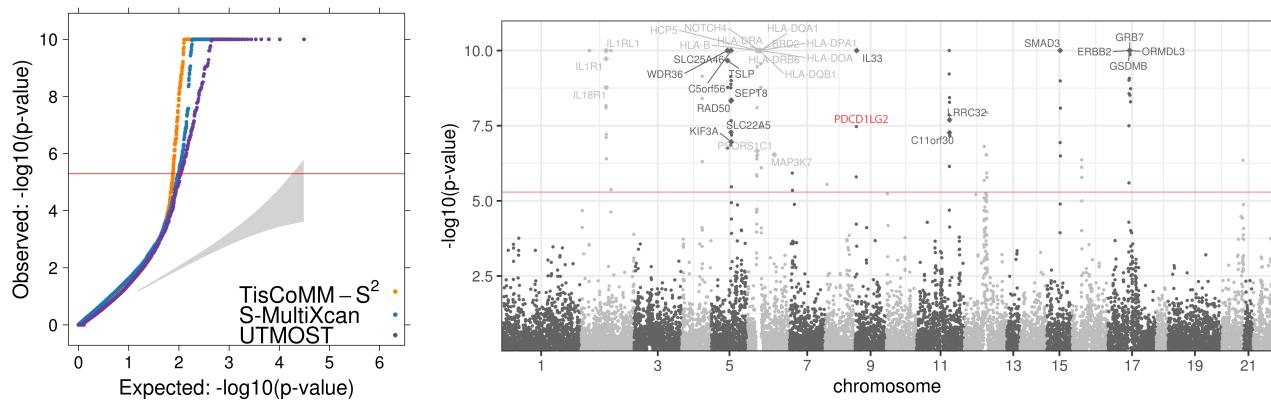


Figure 4: The comparison of the TisCoMM tissue-specific test and the single-tissue association tests under the alternative hypothesis with one causal tissue. **A.** The power of TisCoMM tissue-specific test and the single tissue methods with Bonferroni correction applied. **B.** The corresponding false positive rates under each setting.



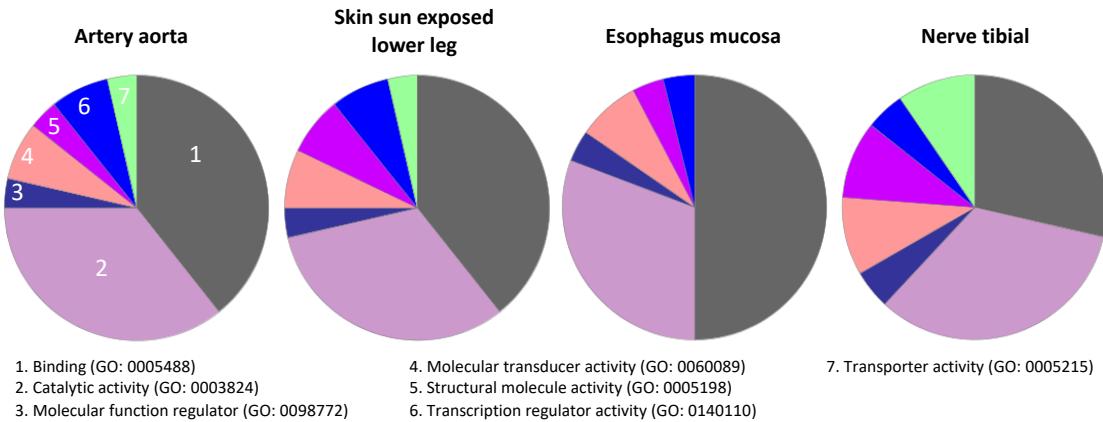
(A) LOAD



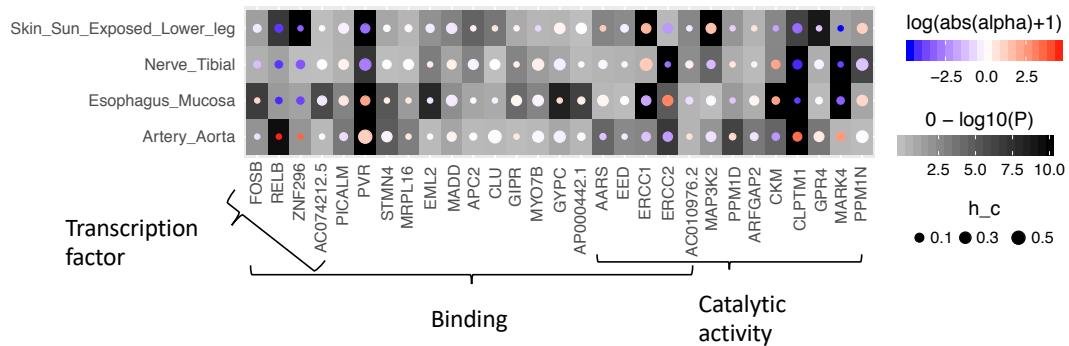
(B) Asthma

Figure 5: TisCoMM-S² results for LOAD and asthma. The reference panel is European subsamples from 1000 Genome. In each row, the two panels show the qq-plot (left) and Manhattan plot (right).

A



B



C

Pathway	Thyroid	Lung
1. Immune response	p (BH corrected) = 5.4E-6 (SMAD3, IL1R1L1, IL1R1, LST1, LTA, HLA-DMA, HLA-DOB, HLA-DPB1, HLA-DQB1, HLA-DRA, NCR3)	p (BH corrected) = 0.0024 (IL1R1, IL18RAP, LST1, HLA-DOA, HLA-DOB, HLA-DPB1, HLA-DRA, PDCD1LG2, TNF)
2. Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II	p (BH corrected) = 7.4E-6 (HLA-DMA, HLA-DOB, HLA-DPB1, HLA-DQB1, HLA-DRA)	< 5 genes
3. Antigen processing and presentation of exogenous peptide antigen via MHC class II	p (BH corrected) = 0.0051 (HLA-DMA, HLA-DOB, HLA-DPB1, HLA-DQB1, HLA-DRA)	< 5 genes

D



Figure 6: **A.** Each pie chart corresponding to a different tissue shows the percentage of LOAD-associated genes in each molecular function group (from gene ontology). **B.** The x-axis of the heatmap represents the union of LOAD-associated genes in 3 function groups (binding, catalytic activity, and transcription factor). The y-axis represents different tissue types. In each cell, the background color (shades of gray) indicates the significance level, the circle size indicates the heritability, and the color inside each circle indicates the effect size. **C.** Pathway analysis of asthma-associated genes in thyroid and lung. Pathway analysis was done using a web-based software DAVID, testing the enrichments of asthma-associated genes in biological processes (from gene ontology). Significant pathways were selected if gene count ≥ 5 and Benjamini-Hochberg (BH) corrected p -value ≤ 0.05 . The asthma-associated genes are highlighted in blue. **D.** The x-axis of the heatmap represents the asthma-associated genes in the immune response pathway. And all the other settings are the same as the one used in part B.

Table 3: Distributions of tissues in which the candidate genes' associations arise in LOAD and asthma.

trait	#tissues	0	1	2	3	4	5	6
LOAD	TisCoMM-S ²	5	28	37	17	5	-	-
	CoMM-S	6	5	7	9	65	-	-
Asthma	TisCoMM-S ²	37	68	58	28	6	3	0
	CoMM-S	20	11	5	5	9	30	120