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Abstract

1 Transcriptome-wide association studies (TWAS) integrate expression quantitative trait loci
2 (eQTLs) studies with genome-wide association studies (GWASs) to prioritize candidate target
s genes for complex traits. Several statistical methods have been recently proposed to improve the
s+ performance of TWAS in gene prioritization by integrating the expression regulatory information
s imputed from multiple tissues, and made significant achievements in improving the ability to
s detect gene-trait associations. The major limitation of these methods is that they cannot be
7 used to elucidate the specific functional effects of candidate genes across different tissues. Here,

s we propose a tissue-specific collaborative mixed model (TisCoMM) for TWAS, leveraging the
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o co-regulation of genetic variations across different tissues explicitly via a unified probabilistic
1w model. TisCoMM not only performs hypothesis testing to prioritize gene-trait associations,
u but also detects the tissue-specific role of candidate target genes in complex traits. To make
12 use of widely available GWAS summary statistics, we extend TisCoMM to use summary-level
15 data, namely, TisCoMM-S2. Using extensive simulation studies, we show that type I error is
1 controlled at the nominal level, the statistical power of identifying associated genes is greatly
15 improved, and false positive rate (FPR) for non-causal tissues is well controlled at decent levels.
16 We further illustrate the benefits of our methods in applications to summary-level GWAS data
17 of 33 complex traits. Notably, apart from better identifying potential trait-associated genes, we
18 can elucidate the tissue-specific role of candidate target genes. The follow-up pathway analysis
19 from tissue-specific genes for asthma shows that the immune system plays an essential function

2 for asthma development in both thyroid and lung tissues.
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2 Introduction

» Over the last decade, GWASs have achieved remarkable successes in identifying genetic
23 susceptible variants for a variety of complex traits [I]. However, the biological mechanisms to
2 understand these discoveries remain largely elusive as majority of these discoveries are located in
s non-coding regions [2]. Recent expression quantitative trait loci (eQTLs) studies indicate that
s the expression regulatory information may play a pivotal role bridging both genetic variants
x» and traits [3, [4 5]. Cellular traits in comprehensive eQTL studies can serve as reference data,
s providing investigators with an opportunity to examine the regulatory role of genetic variants on
2 gene expression. For example, the Genotype-Tissue Expression (GTEx) Project [6] has provided
s DNA sequencing data from 948 individuals and collected gene-expression measurements of 54
a1 tissues from these individuals in the recent V8 release.

32 Transcriptome-wide association studies (TWAS) has been widely used to integrate the
13 expression regulatory information from these eQTL studies with GWAS to prioritize genome-
1 wide trait-associated genes [7, 8, 0]. A variety of TWAS methods have been proposed using
55 different prediction models for expression imputation, including the parametric imputation
% models, e.g., PrediXcan [7], TWAS [8], CoMM [10] and CoMM-S? [I1], and the nonparametric
» imputation model, e.g., Tigar [12]. These methods have been used for analyzing many complex
;s traits with expression profiles from different tissues, successfully enhancing the discovery of
0 genetic risk loci for complex traits [13],[9]. To further improve the power of identifying potential
w0 target genes, two recent studies were proposed by leveraging the substantial shared eQTLs
s across different tissues, i.e., MultiXcan [14] and UTMOST [15]. They use a step-wise procedure
« by first conducting imputation for gene expressions across multiple tissues and then performing
13 subsequent association analysis using a multivariate regression that pools information across
w different tissues. Compared to single-tissue methods, these multi-tissue strategies enhance the
s imputation accuracy for gene expression and thus improve the power of identifying potential
46 target genes.

a7 Despite their successes, the existing multi-tissue methods have several limitations. First,
ss MultiXcan and UTMOST cannot be used to identify the tissue-specific gene-trait associations.
s Many studies have shown that genes associated with complex traits are always regulated in a
so tissue-specific manner [16] 17, I8, [9]. For example, a recent study across 44 tissues confirmed

si this phenomenon in 18 complex traits [19], implying the persuasive role of tissue-specific
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> regulatory effects in a wide range of complex traits. Using a single-tissue test, one can easily

1

53 reach a false conclusion regarding which tissue that a gene affects traits through. Second, both
s MultiXcan and UTMOST rely on a step-wise inference framework, ignoring the uncertainty in
55 the process of expression imputation and thus losing power, especially when cellular-heritability
s is small [I0]. Recently, CoMM [I0] and its variant for summary-level data, CoMM-S? [I1],
sz have been proposed to account for uncertainty in the process of expression imputation. Third,
s MultiXcan and UTMOST do not make efficient use of the shared patterns of eQTLs across
so tissues, where MultiXcan uses principal component analysis (PCA) regularization on the
o predicted expression data, and UTMOST uses penalized regularization on coefficients for
o eQTL effects. A study of GTEx revealed these shared patterns [20], and later many efforts
&2 have been made to take advantage of them in the analysis for GTEx data. For example,
ss  Urbut et al. proposed statistical methods for estimating and testing eQTL effects explicitly
s¢ incorporating this extensively tissue-shared patterns [21], shedding light on how to account for
s the tissue-shared eQTLs in statistical modeling successfully.

66 To overcome these limitations, we propose a tissue-specific collaborative mixed model
o7 (TisCoMM) for TWAS, providing a principled way to perform gene-trait joint and tissue-
s specific association tests across different tissues. Our method allows us not only to perform
s hypothesis testing to prioritize gene-trait association but also to uncover the tissue-specific
70 role of candidate genes. By conditioning on the trait-relevant tissues, one could largely remove
7 the spurious associations due to highly correlated gene expressions among multiple tissues. As
72 a unified model, TisCoMM jointly conducts the “imputation” and the association analysis,
7z pooling expression regulatory information across multiple tissues explicitly. Furthermore,
2 we extend TisCoMM to use summary statistics from a GWAS, namely, TisCoMM-S2. In
75 simulations, we show that both TisCoMM and TisCoMM-S? provide correctly controlled type
7 1 error and are more powerful than existing multi-tissue methods. More importantly, our
77 methods can be used to test for the tissue-specific role of candidate genes. We illustrate the
s  benefits of our methods using summary-level GWAS data in 33 complex traits. Results show
7o that our findings have biologically meaningful implications. The follow-up pathway analysis
g0 from tissue-specific genes for asthma shows that the regulated immune system in both thyroid

s1 and lung tissues could have significant impact on asthma development.
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Results

Method overview

Our method, TisCoMM, jointly integrates expression regulatory information across multiple
tissues by considering two models. The first one models the relationship between genetic factors

and gene expressions across multiple tissues in the eQTL data set,
Y, =X,B, +E,, (1)

where Y, € R™*7 is expression matrix of ny samples across T tissues for gene g, X;, € R"*Ms jg
the standardized genotype matrix corresponding to M, nearby single nucleotide polymorphisms
(SNPs) of gene g in the eQTL data, B, is an M, x T matrix of the corresponding effect
sizes across T tissues and E, is an n; x T" matrix for random errors from a multivariate
normal distribution (0, V,). Here, V. captures the correlations among tissues from the same
individual. Then we assume that phenotypic value z and standardized genotype Xs, in GWAS
are related by

z = Xy B,y + e, (2)

where z is an ny x 1 vector of phenotypic values, Xy, € R"2*Ms is the standardized genotype
matrix corresponding to M, nearby variants of gene g in the GWAS data, oy, is a 7' x 1 unknown
parameter vector of interest that represents the effect sizes of “imputed” gene expression across
T tissues for gene g, and e, ~ N (0,0?) is an ny x 1 vector of independent errors associated
with the trait. Our TisCoMM can be depicted as Figure [I| within which Figure illustrates
the TisCoMM method combing both the expression prediction model and the corresponding
association model together with data input and output.

To pool expression regulatory information across relevant tissues, we assume the factorizable
assumption [22, 23] for B, = [6], 7 = 1,..., My, t = 1,...,T. This assumption has been
empirically validated for GTEx data in an imputation study [24] and Park et al. further
used this assumption in a multi-tissue TWAS [25]. Here, we assume that the effect size of
cis-SNP j in tissue ¢ can be factorized by variant-dependent and tissue-dependent components:
Bjt = bjw;i, where b; (variant) is the eQTL effect of cis-SNP j shared in all the 7" tissues, and
wj; is the tissue-specific effect size. Thus, we have B, = diag{b}W. This factorization allows
us to model the co-regulation of cis-SNPs shared across different tissues explicitly (Figure

, right). To make TisCoMM identifiable, we further assume that b; independently follows
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o a normal distribution N(0,0?) due to polygenicity and by following the adaptive weighting

1

=

- strategy used in [24], the adaptive weight w,, is estimated using the marginal regression of gene
2 expression in tissue ¢ on the j-th genetic variant.

113 The parameter of our interest in TisCoMM is the vector of effect size a,. To prioritize
us  candidate target genes, we conduct hypothesis testing for a joint null, Hy : a; = 0 (Figure
115 ) To further explore the tissue-specific roles of candidate genes, we conduct hypothesis
s testing for each tissue, Ho : ay = 0, t = 1,...,T (Figure[I[C). We refer to the two inference
7 tasks as the TisCoMM joint test and TisCoMM tissue-specific test, respectively. We develop
s an expectation-maximization (EM) algorithm for parameter estimation by maximizing the
e complete-data likelihood. A parameter expansion technique is further adopted to accelerate
10 computational efficiency (see details in Supplementary Text). In contrast to the existing
21 two-step TWAS methods, we perform TisCoMM analysis in a unified model by treating b as a
122 hidden random variable. Generally, the computational cost for the TisCoMM tissue-specific
13 test is O(T) of that for the TisCoMM joint test. To enable computational efficiency, we only
124 conduct the TisCoMM tissue-specific test for candidate genes detected in the joint test, rather
s than for all genes.

126 In a single-tissue analysis, it is difficult to explore the tissue-specific role of a candidate
127 gene. The disease-associated genes will be identified in all the causal tissues as well as the
s tissues (possibly non-causal) highly correlated with the causal one, because there exist sharing
120 Ppatterns for expressions in multiple tissues. By conditioning on the trait-relevant tissues, our
130 tissue-specific test could largely remove the spurious discoveries due to correlated expression

131 across tissues.
132 [Figure 1 about here.|

15 Inferring TisCoMM results from GWAS summary statistics

13« To make our method widely applicable, we extend TisCoMM to use summary-level GWAS
155 data, denoted as TisCoMM-S2. The model details are given in Supplementary Text.

136 We observe high concordance between TisCoMM and TisCoMM-S? results. Figure 2| shows
137 the comparison of TisCoMM and TisCoMM-S? test statistics for ten traits from the Northern
13s Finland Birth Cohorts program 1966 (NFBC1966) data set [26] (see Methods section). The

130 reference panel was 400 subsamples from the NFBC1966 data set. The high correlation between
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o TisCoMM and TisCoMM-S? suggests the goodness of detections for trait-associated genes using

w1 summary-level GWAS data.
142 [Figure 2 about here.|

143 To test the robustness of TisCoMM-S2, we applied European subsamples from 1000 Genomes
s as the reference panel. Note that the NFBC1966 data set is Finns study, and it is well known that
115 Finns have significant genetic differences with other Europeans [27]. Hence, the estimated LD
us did not well match that of the GWAS study. Supplementary Figure S1 shows the performance
17 of TisCoMM-S? using European subsamples as a reference panel data set. Despite the high
us concordance between TisCoMM and TisCoMM-S? in the null region (A > 34.67 = p-values
w > 5 x 1079); the test statistics of TisCoMM-S? in the non-null region are much more significant

1o than TisCoMM.

s Simulation

152 Methods for comparison  To detect gene-trait association, we compared the performance of
153 three methods in the main text: (1) our TisCoMM and TisCoMM-S? implemented in the R
1se package TisCoMM; (2) MultiXcan and S-MultiXcan implemented in the MetaXcan package
155 available at http://gene2pheno.org/; (3) UTMOST available at https://github.com/Joker-
155 Jerome/UTMOST/. To detect the tissue-specific effect, we compared the performance of Tis-
157 CoMM tissue-specific test with three single-tissue methods that include (1) CoMM available at
158 https://github.com/gordonliu810822/CoMM; (2) PrediXcan available at http://gene2pheno.org/;
159 (3) TWAS relies on the BSLMM [2§] implemented in the GEMMA [28] software. All methods
10 were used with default settings. We conducted comprehensive simulations to gauge the per-
11 formance of each method better by performing gene-trait joint and tissue-specific tests across
12 different tissues.

163 Stmulation settings  In detail, we considered the following simulation settings. We set
66 {n1,n,,na} = {400;400; 5,000} as the sample size for eQTL data, GWAS data and reference
s panel data. We first generated the genotype data for M, = 400 cis-SNPs from a multivari-
16 ate normal distribution assuming an autoregressive correlation with parameter p. We then
167 discretized each SNP to a trinary variable {0, 1,2} by assuming Hardy-Weinberg equilibrium
s and a minor allele frequency randomly selected from a uniform [0.05,0.5] distribution. The

169 genotype correlation was varied at p = {0.2,0.5,0.8}. All three genotype matrices, X4, X,4,

7


http://gene2pheno.org
https://github.com/Joker-Jerome/UTMOST/
https://github.com/Joker-Jerome/UTMOST/
https://github.com/Joker-Jerome/UTMOST/
https://github.com/gordonliu810822/CoMM
http://gene2pheno.org
https://doi.org/10.1101/789396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/789396; this version posted October 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

o and Xy, for eQTL data, GWAS data and reference panel data, respectively, are generated in
1 this manner.

172 To generate multi-tissue gene expressions, we considered different cellular-level heritability
173 levels (h?) and sparsity levels (s). These are key parameters to describe the genetic architecture
s of gene expression [29]. The cellular-level heritability represents the proportion of variance
s of the gene expression that can be explained by genotype, while sparsity represents the
we proportion of genetic variants that are associated with the gene expression. First, SNP effect
17 size B, = diag{b}W is generated. Specifically, we simulated SNP effect size b from a standard
17 normal distribution, and randomly selected 10%, 50% or 100% of the SNPs to have non-zero
o tissue-specific effect W for gene expressions in all 7" tissues, while simulated their effects from a
1o standard normal distribution. We then simulated errors E; from a normal distribution, where
1 their variances were chosen according to h?, and the covariance structure was autoregressive
w2 with p, = 0.5 . Here we set h? = 0.025,0.05,0.1,0.2,0.4. Afterward, we simulated a multi-tissue
s €QTL data set assuming Y, = X,B, + E,.

184 To simulate a quantitative trait, we generated nonzero entries of oy, from a uniform

2

15 distribution and e, from a normal distribution. The variance ¢ was chosen according to the

Var(X24,Bgay)

Var@) Here we set h? = 0 for null simulations and type I

186 tissue-level heritability h? =
17 error control examination and h? = 0.01 for non-null simulations and power comparisons.

s Stmulation I: Testing gene-trait associations We focus on the detection of trait-associated
1o gemnes in the first set of simulations. Here, we compared TisCoMM and TisCoMM-S? with
1o three different multi-tissue methods that include MultiXcan, S-MultiXcan, and UTMOST.
1w We set T' = 10, and all tissues are causal. For each scenario, we run 5,000 replicates. We
12 first examined type I error control of different methods under the null. Results are shown in
103 Supplementary Figures S2 — S6. By comparing the distribution of p-values with the expected
104 uniform distribution, we observe that all methods provide well-controlled type I errors.

195 Next, we examined the power of different methods under the alternative hypothesis, as shown
w6 in Figure [3l We observe that the performance of all five methods improves with the increment
w7 of cellular heritability. In general, the summary-level methods (TisCoMM-S? and S-MultiXcan)
108 perform similarly to their counterparts in individual-level data. Moreover, TisCoMM and

0o TisCoMM-S? have better performance than other alternative methods when cellular heritability

200 s relatively small (h? = 0.025,0.05,0.1), and comparable performance when cellular heritability
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is large. Finally, we observe that although our model favors dense eQTLs, it was robust to the
sparsity level s. Specifically, the power of TisCoMM and TisCoMM-S? in the setting where
10% of cis-SNPs have non-zero effects on gene expression are similar to the setting where all

cis-SNPs have non-zero effects.
[Figure 3 about here.]

Simulation II: Testing tissue-specific effects We focus on the detection of tissue-specific effects
in the second set of simulations. Here, we compared the TisCoMM tissue-specific test with the
single-tissue methods including CoMM [10], PrediXcan [7], and TWASI[§| under the alternative
hypothesis with fixed tissue heritability h? = 0.01 and fixed sparsity s = 0.1. We considered
three tissues T' = 3 and varied the number of causal tissues to simulate different levels of tissue
specificity of a trait. Specifically, we considered settings with one (g2 = a3 = 0) and two
causal tissues (ay3 = 0), respectively. To allow correlated gene expression in the GWAS, the
nonzero of tissue-specific effect W was generated with rows drawn from a multivariate normal
distribution, with AR correlation parameter py = 0.2,0.5,0.8. A large value of py implies a
higher correlation among columns of Xy,B,. Other sittings are similar to Simulation I.

We repeated the whole process 1,000 times. We calculated statistical power and false
positive rate (FPR) as the proportion of p-values reaching the significance level in causal
tissues and non-causal tissues, respectively. Specifically, we set the significance level at 0.05/3
for all considered methods. Figure [] shows simulation results for the case that one tissue is
causal. We observe that in all settings, the TisCoMM tissue-specific test has comparable or
slightly inferior power, as shown in Figure 4A] compared to the single-tissue methods, but
much smaller FPR (Figure .AS expected, the statistical power of all methods increases
with cellular heritability (h?). However, the FPR of single-tissue methods substantially inflates
while that of TisCoMM tissue-specific test remains at the same level. Furthermore, the FPR of
TisCoMM tissue-specific test does not vary with correlations among expressions across multiple
tissues (py) while that of single-tissue methods increase with py,. The similar pattern could
be observed for the case that two tissues are causal (Supplementary Figure S7). These results
demonstrate the usefulness of TisCoMM tissue specific test in exploring the tissue-specific role

of genes.

[Figure 4 about here.|
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Real Data Applications

We performed multi-tissue TWAS analysis for summary-level GWAS data in 33 complex
traits (see Supplementary Table S1 for details), including 15 traits from Gamazon et al. [19]
and 18 traits from the UK Biobank. Hereafter we refer to as NG traits and UKB traits,
respectively. These traits can be roughly divided into four categories, including metabolites
(e.g., HDL-C, LDL-C and fasting glucose), autoimmune diseases (e.g., asthma, Crohn’s disease
and macular degeneration), psychiatric/neurodegenerative disorders (e.g., Alzheimer’s disease,
major depression disorder, and psychiatric disorder), and cardiovascular disorders (e.g., coronary
artery disease and peripheral vascular disease). The Genotype-Tissue Expression (GTEx)
Project [6] reported eQTL in 48 tissues, where the number of genes in each tissue ranges from
16,333 to 27,378. In the analysis, we extracted cis-SNP that are within either 500 kb upstream
of the transcription start site or 500 kb downstream of the transcription end site.

In a single-tissue analysis, there are two different strategies to select a tissue for TWAS: one
uses expressions from the most biologically related tissue while the other selects a tissue with
the largest number of available individuals [9]. To select multiple tissues for TisCoMM-S?; there
exists a trade-off between biological relevance and its corresponding sample size for each tissue.
In [19], it provides the most biologically related tissues and thus we used trait-relevant tissues
for the NG traits from Supplementary Table 2 in [19]. In detail, for each trait, a set of tissues
with significant enrichment p-values (after Bonferroni correction) was identified, and a subset
with more than 100 overlapped samples [30] was chosen for further analysis in TisCoMM-S2.
On the other hand, although methods like LD score regression [17] can be used for the UKB
traits, it is difficult to balance the tissue relevance and sample size for each tissue. To make
efficient use of the GTEx data set, we used six tissues with the largest number of overlapped
samples for the UKB traits.

The analysis for each trait based on its GWAS summary statistics together with the eQTL
data from multiple tissues can be done around 100 min on a Linux platform with 2.6 GHz Intel
Xeon CPU E5- 2690 with 30720 KB cache and 96 GB RAM (Only 10~12 GB RAM used) on

24 cores.

10
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TisCoMM-S? joint test provides statistically powerful results of disease relevant
genes

To prioritize trait-associated genes, we compared TisCoMM-S? with other two multi-tissue
TWAS methods, i.e., S-MultiXcan and UTMOST. Both alternative methods take advantage of
prediction models to impute gene expressions. The prediction models used here were Elastic
Net models trained on 48 GTEx tissues. See Table 1] and [2| for the summary of detections across
different approaches for the 15 NG and 18 UKB traits, respectively. Generally, TisCoMM-S?
identifies more genome-wide associations than S-MultiXcan and UTMOST in most traits. In
detail, TisCoMM-S? /S-MultiXcan/UTMOST identified 3,058/2,008/1,769, and 443/338/277
genome-wide significant genes in all the NG traits and UKB traits, respectively. Their qg-plots
of p-values are shown in Supplementary Figures S8 — S11 and plots for their genomic inflation
factors are shown in Supplementary Figure S12. As case study examples, we carefully examined
the results for late-onset Alzheimer’s disease (LOAD) and asthma.

LOAD results  After Bonferroni correction, TisCoMM-S?/S-MultiXcan/UTMOST identified
92/71/70 genome-wide significant genes, respectively, with 45 overlapping genes (17 of them are
known LOAD GWAS genes). Here we define known LOAD GWAS gene as the ones reported
in GWAS catalog. The qqg-plots for associations in these three approaches are shown in Figure
Al Among the 92 candidate target genes identified by TisCoMM-S2, 24 of them are previously
known LOAD GWAS genes, which are annotated in the Manhattan plot in Figure These
include genes on the chromosome (CHR) 2 (BIN1), CHR 6 (CD2AP), CHR 7 (EPHA1), CHR
8 (CLU), CHR 11 (PICALM, CCDC89, MS}4A2, MS4/A6A), CHR 16 (IL34) , and CHR 19
(STK11 and APOE region). Moreover, TisCoMM-S? also identified 35 genes that were not
significant in neither S-MultiXcan nor UTMOST, and four of them are known LOAD GWAS
genes, including IL34 (p-value =1 x 107%), PTK2b (p-value =1.4 x 107?), EPHX (p-value
=4.7 x 107®) and STK11 (p-value = 7.2 x 1077).

Among all novel genes for LOAD identified by TisCoMM-S?, some of them were identified
to be LOAD-related genes based on other computational models (e.g., MAP3K2) while some
of them have not been directly linked to LOAD yet, but have been proven to be important
regulators in different regions of the neuron system (e.g., STMN4, EED and APC2). MAP3K2
is 200kb downstream of BIN1, a reported LOAD risk gene [31] that was also genome-wide
significant in our joint test (p-values for both BIN1 and MAP3K2 < 10~'°). MAP3K2 belongs
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to the serine/threonine protein kinase family and has been previously identified as a member
of the Alzheimer’s disease susceptibility network [32]. STMN4 (p-value < 1071°) encodes the
known protein that exhibits microtubule-destabilizing activity. The expression levels of this
gene in mouse neurons have been shown to change significantly after different exposure of
cortical nerve cells to the AS peptide [33]. The expression of STMN4 in zebrafish has also been
shown to have an important role in regulating neurogenesis in the neural keel stage [34]. EED
(p-value =5.7 x 10~7) encodes a Polycomb protein, which plays a starring role as an important
modulator of hippocampal development [35]. APC2 (p-value = 1.3 x 107%) is preferentially
expressed in postmitotic neurons and involved in brain development through its regulation of
neuronal migration and axon guidance [36]. We annotate these four genes in red in Figure .

Validation of these potential target genes requires further functional studies. The list of
significant gene-trait associations of TisCoMM-S?, S-MultiXcan, and UTMOST can be found
in Supplementary Table S2. To replicate our findings in another independent data set, we used
the summary statistics from the GWAS by proxy (GWAX [37], the sample size is 114,564). Our
replication rate was high (Supplementary Table S3), where 31 out of 92 genes were successfully
replicated under the Bonferroni-corrected significance threshold and the numbers of replicated
genes raised to 44 under a relaxed p-value cutoff of 0.05.
Asthma results ~ After Bonferroni correction, TisCoMM-S? /S-MultiXcan/UTMOST identified
200/157/140 genome-wide significant genes, respectively, with 98 overlapping genes in all three
methods (and 21 of them are known asthma GWAS genes). The qq-plots for associations
in these three approaches are shown in Figure pB] Among all 200 candidate target genes
identified by TisCoMM-S?2, 31 of them are known asthma GWAS genes, which is annotated
in the Manhattan plot in Figure B}, including genes on CHR 2 (ILIRL1/IL18R1), CHR 5 (
TSLP/WDR36, RAD50), CHR 6 (HLA-DR/DQ regions, MAP3K7), CHR 9 (IL33), CHR 11
(C11orf30, LRRC32), CHR 15 (SMADS3), and CHR 17 (genes from the 17q21 asthma locus).
Also, TisCoMM-S? identified 56 genes that were not significant in neither S-MultiXcan nor
UTMOST, and two of them are known asthma GWAS genes, which are PSORS1C1 (p-value
=2.2x 1077), and MAP3K7 (p-value =3 x 1077).

Among all novel loci for asthma identified by TisCoMM-S?, PDCDILG?2 was shown to
have essential roles in modulating and polarizing T-cell functions in airway hyperreactivity

[38]. Validating causal role of this gene in asthma requires further investigation. The list of
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significant gene-trait associations of TisCoMM-S?, S-MultiXcan, and UTMOST can be found
in Supplementary Table S4. We annotate these two genes in red in Figure 5B|
To replicate our findings in another independent data set, we used the summary statistics
from TAGC European-ancestry GWAS [39] (the sample size is 127,669). Our replication rate
was high (Supplementary Table S5), where 179 out of 200 genes were successfully replicated
under the Bonferroni-corrected significance threshold and the numbers of replicated genes

raised to 189 under a relaxed p-value cutoff of 0.05.

TisCoMM-S? tissue-specific test infers gene effects in causal tissues

To demonstrate the utility of the TisCoMM-S? tissue-specific test, we applied the tissue-specific
test to all identified 92 candidate genes of LOAD and 200 candidate genes of asthma by using
the TisCoMM-S? joint test, and compared analysis results with those from CoMM [10, [11].
Table 3| shows the distributions of identified tissues with which candidate genes are associated
in LOAD and asthma, respectively (see details in Supplementary Tables S6 and S7). Among
all identified candidate genes respectively for both LOAD and asthma, 76.1% and 81.5% were
significant in less than two tissues using TisCoMM-S? while 70.7% and 60% were significant
in all six tissues using CoMM-S2. The most plausible explanation is that compared to the
multivariate perspective of our TisCoMM-S? tissue-specific test, single-tissue approaches, e.g.,
CoMM-S?, tend to have larger tissue bias and more inflation in significant findings [9]. Suppose
a gene is causal in tissue A but not in tissue B, and its expressions in tissues A and B are
correlated. In a single-tissue test, the association can be spuriously significant for tissue B
because of the similar gene expression pattern observed in both tissues. By performing a
tissue-specific test for this gene in tissue B conditioned on tissue A, the significant spurious

association will be largely excluded.
[Table 1 about here.]

To demonstrate the tissue-specific role of candidate genes inferred by TisCoM-S? tissue-
specific test for LOAD and asthma, respectively, we plot the volcano plots in Supplementary
Figure S13, where the x-axis is the effect size showing in log scale, the y-axis is —log10 of the
p-value from tissue-specific test, and the size of points reflect the cellular-heritability in each

tissue. Known GWAS genes are also annotated. Next, we explored the tissue-specific effects of
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30 some well-replicated genes that are identified by the TisCoMM-S? joint test for LOAD and
;51 asthma, respectively.

32 LOAD results The well-replicated risk gene APOFE [40] and its 50Kb downstream CLPTM1
353 have been identified by the TisCoMM-S? joint test. Moreover, the TisCoMM-S? tissue-specific
3¢ test identified CLPTM1 to be significantly associated with LOAD in all four tissues (artery
15 aorta, esophagus mucosa, nerve tibial, and skin sun-exposed lower leg with tissue-specific
s p-values < 4.9 x 1077), but APOE to be only significantly associated with LOAD in artery
%7 aorta (tissue-specific p-value =8.3 x 107?) and nerve tibial (tissue-specific p-value =1.2 x 1078).
32 On the other hand, CoMM-S? significantly identified both APOE and CLPTM]1 in all four
0 tissues (p-values < 107'%) but failed to identify the difference of tissue-specific role for these
w0 two genes. We further investigate the molecular functions of LOAD associated genes in each
s tissue. In each of tested tissues in LOAD), there are about 40 tissue-specific genes. It is difficult
2 to carry out a proper pathway analysis with such limited gene sets. So we classified the genes
53 into seven functional groups based on which molecular functions they belong to. As shown
% in Figure [fA and [6B, majority (> 62%) of LOAD-associated genes belonged to binding and
s catalytic activity, and a small portion of significant LOAD genes were transcription factors
w6 suggesting that many regulation processes are going on at both protein and mRNA levels in
se7 - different tissues.

368 According to our tissue selection strategy, above tissue-specific test for LOAD was conducted
30 on four non-brain tissues (enriched tissues). To further investigate the gene expression changes
w0 in the well-studied disease tissues, three more brain regions (hippocampus, frontal cortex, and
s cerebellar hemisphere) were selected for another tissue-specific analysis for LOAD. Because it is
;2 known that hippocampus is one of the first brain regions to be affected by Alzheimer’s disease
w3 and related to the memory lost [41], markers such as AS in frontal cortex can be used to predict
s future Alzheimer’s disease [42], and cerebellum is affected in the final stage of the disease and
w5 related to cognitive decline [43]. The joint test conducted on brain regions revealed 105 LOAD
s associated genes, of which 73 were identified in the enriched tissues (Figure S14A), and the
w7 other 32 genes were uniquely identified in brain regions (Figure S14B). The most significant
ws  gene uniquely identified in brain regions is KLC3 according to the joint test (p-value < 10719),
s9 - which is within 50kb downstream of APOFE. Moreover, it is significantly associated with LOAD

;50 in hippocampus region only, but not the other two brain regions according to the tissue-specific
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31 test (Figure S14B). Thus, we propose KLC3 as one of the potential novel targets for LOAD in
;2 hippocampus.

33 Asthma results  We take identified genes ORMDL3 and GSDMB in the 17q21 asthma locus
;s as an example, because these two genes have been mentioned as asthma susceptibility locus
3s by many studies, a comprehensive review was written by Stein et al. [44]. The original
16 finding of ORMDL3 was observed in one GWAS study, and have been further validated in
57 a mouse model [45]. The TisCoMM-S? tissue-specific test identified both ORMDL3 and
1 GSDMB to be significantly associated with asthma only in lung tissue (see the volcano plot
s in Supplementary Figure S14B, tissue-specific p-values for these two genes are 1.7 x 1073 and
w0 7.1 x 1077, respectively). However, CoMM-S? identified both ORMDLS and GSDMB in all six
1 tissues (p-values < 10719) but failed to identify the relevant tissues with which these two genes
1 are causally related to asthma. We further conducted pathway analysis using DAVID [46] on
03 8ix sets of asthma-associated genes in all six tissues (thyroid, lung, artery tibial, muscle skeletal,
. adipose subcutaneous, and skin sun-exposed lower leg), respectively. As listed in Figure [6B,
35 all three significant pathways in thyroid tissue belonged to the immune system, and the only
w6 significant pathway in lung tissue was immune response. However, no significant pathways were
27 detected in the other four tissues. Among asthma-associated genes in immune response (first
s TOow in Figure @C and @D), the majority of them were shared between thyroid and lung, and
39 located in the MHC region on CHR 6 including several HLA genes and LST1. Our pathway
w0 analysis suggests that nearly the same set of immune genes in thyroid and lung are responsible

w1 for asthma development.
402 [Figure 5 about here.]

403 [Figure 6 about here.]

« D1scussion

ws Despite the substantial successes of TWAS and its variants, the existing multi-tissue methods
ws have several limitations, e.g., incapability to identify the tissue-specific effect of a gene, igno-
w7 rance of imputation uncertainty, and failure to efficiently use tissue-shared patterns in eQTLs.
ws To overcome these limitations and provide additional perspectives over tissue-specific roles

w0 of identified genes, we have proposed a powerful multi-tissue TWAS model, together with a
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a0 computationally efficient inference method and software implementation in TisCoMM. Specifi-

furt

a1 cally, we have developed a joint test for prioritizing gene-trait associations and a tissue-specific
a2 test for identifying the tissue-specific role of candidate genes. Conditioned on the inclusion
sz of trait-relevant tissues, the tissue-specific test in TisCoMM can mostly remove the spurious
sa  associations in a single-tissue test due to high correlations among gene expression across
as  tissues. We have also developed a summary-statistic-based model, TisCoMM-S?, extending the
se  applicability of TisCoMM to publicly available GWAS summary data. Using both simulations
a7 and real data, we examined the relationship between TisCoMM and TisCoMM-S2. Our results,
s as shown in Figure |2, show that the test statistics from TisCoMM and TisCoMM-S? are highly
ao correlated (R? > 0.95). We further analyzed summary-level GWAS data from 33 traits with
20 replication data for Alzheimer’s disease and asthma. Overall, the findings from TisCoMM-S?
w21 are around 30% more than those from S-MultiXcan or UTMOST while qg-plots from these
w22 studies show that there are no apparent inflations. To replicate our findings for Alzheimer’s
23 disease and asthma, we applied TisCoMM-S? to independent data sets for each disease. Results
w24 show that replication rates for Alzheimer’s disease and asthma are high.

425 We further inferred the tissue-specific effects of identified genes using the TisCoMM-S?
w6 tissue-specific test. By classifying these genes into seven functional groups, we observed that
w7 majority (62%) of LOAD-associated genes were related to binding and catalytic activity while
w28 a small portion was from transcription factors suggesting active regulation processes at both
w9 protein and mRNA level in different tissues. We also observed about 40 LOAD-associated
w0 genes in each non-brain tissues. The significance of these genes could be due to the exclusion
s of LOAD-relevant tissues, e.g., brain tissues. To fill this gap, we further conducted one more
12 analysis on three brain regions, and identified 32 brain specific genes. For asthma, genes
133 ORMDLS3 and GSDMB were identified to be significantly associated with asthma only in
s lung tissue using TisCoMM-S? tissue-specific test. However, single-tissue analysis (CoMM-S?)
35 identified both genes significant in all six tested tissues. Further pathway analysis shows that
s all three significant pathways for thyroid tissue belong to the immune system and the only
s37 significant pathway for lung tissue was immune response. The majority of shared genes between
a8 thyroid and lung tissues are located in the MHC region on CHR 6, including several HLA genes
0 and LSTI1. The proteins encoded by HLA genes are known as antigens. In combination with

w0 antigen-presenting cells (e.g., macrophages and dendritic cells), they play an essential role in the
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activation of immune cells as well as airway inflammation in response to asthma-related allergens
[47, 48]. Based on our tissue-specific test, TNF that is a well-studied asthma gene [49, 50]
was explicitly identified to be associated with asthma in lung tissue. The positive correlation
between TNF expression and asthma in lung confirmed our previous understanding of TNF
activation in asthma, promoting airway inflammation and airway hyperresponsiveness. On
the other hand, LTA was specifically regulated in thyroid tissue. It is a cytokine produced by
lymphocytes, and also known as a regulator of lipid metabolism [51]. Another immune gene
regulated individually in thyroid tissue is NCRS, which mediates the crosstalk between natural
killer cells and dendritic cells [52]. However, it remains unclear how the alteration of LTA and
NCRS3 in thyroid could lead to asthma development.

Despite the utility of TisCoMM to perform gene-trait association analysis in a tissue-specific
manner, it is primarily designed to test genes with direct effects from cis-eQTL. Recently,
an omnigenic model was proposed to better understand the underlying mechanism of so-
called polygenicity in complex traits [53]. Liu et al. [54] further provided a theoretical model
to understand complex trait architecture by partitioning genetic contributions into direct
effects from core genes and indirect effects from peripheral genes acting in trans. Most works
from TWAS identify core genes with direct effects. How to effectively interrogate peripheral
genes with indirect effects essentially remains an open question. As high-throughput data are
continuously generating for a much larger sample size with more precision, TisCoMM sheds

light on how to integrate useful data for the desired analysis effectively.

Methods

Model settings

Conventionally, both single-tissue and multi-tissue TWAS methods proceed by conducting a
prediction model in Equation followed by a subsequent association analysis in Equation (2)),
where a steady-state gene expression is imputed from X2g]§g and ]§g is estimated in the first
prediction model, e.g., PrediXcan, MultiXcan, S-MulitXcan, and UTMOST. However, this
imputation strategy ignores the uncertainty in the process of expression imputation. Here, we
describe the individual-level data version of TisCoMM by jointly analyzing models (1) and (2,
and extensions to summary statistics will be discussed in the Supplementary Text. Assume

D, = {Y,, Xy,} denote the reference transcriptome data set of gene g for n; samples over

17
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T tissues, where Y, is the n; x T expression matrix for this gene over 7" tissues, and X, is
the corresponding n; x M, standardized genotype matrix for M, cis-SNPs within this gene.
Denote the GWAS data Dy = {z, Xy, }, where z is an ny x 1 vector of phenotypic values, X,
is the corresponding ny x M, standardized genotype matrix for M, cis-SNPs. Since we conduct
hypothesis testing sequentially or parralelly for each gene, we will omit the subscript ¢ in all

the expression that has dependence on gene g to simplify notations. Our model becomes
Y=XB+E, z=X;Ba-+e,, (3)

where o € RT) E ~ MN(0,1,,,V,), and e, ~ N(0,0%I,). Note that we assume D; and D,
are centered and thus intercepts can be omitted.

To estimate the tissue-specific eQTL effects, we need to first estimate an M x T coefficient
matrix B. To reduce the number of parameters, we follow an adaptive weighting scheme
[22, 23, 24]: we regress the gene expression in tissue type ¢ on the jth eQTL and let the
marginal eQTL effect be the adaptive weight, w;j;. Specifically, we assume the joint eQTL
effect size 3;; can be decomposed into variant-dependent components b; and tissue-specific
components wj;: f;: = bjw;. That is, B = diag{b}W. Similar strategies have been applied to
model tissue-shared patterns [24] 21]. Let y;, x;; and w; denote the ith row of Y, X; and W,

respectively. Our model can be written as
yilb ~ N (D wuiibjwy, Ve),
J
zi[b ~ N(aT(Z T2i5b; W), 02>7
b ~ N(0, J%).j

Denote 8 = (a, 02,02 V)T the vector for all model parameters. We need to estimate
parameters and maker inference for . Both the TisCoMM joint test and tissue-specific test
are based on likelihood ratio tests. The joint test for gene-trait associations can be formally set

up as Hy : a = 0 verses H; : a # 0. The corresponding likelihood ratio test statistic is given by
A=2 [log Pr<y7 Z‘Xh X2a é) - lOg Pr(Y7 Z’Xh X27 éa:O) )

where 6 is the vector of parameter estimates under the full model, and éazo is the vector of
estimates under the constrain a = 0. Similarly, the tissue-specific test for the tissue-specific

effect can be formally set up as Hy : oy = 0 verses Hy : ay # 0. The corresponding likelihood

18
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ratio test statistic is given by
Av =2 [log Pr(y, 7 X1, X5:0) — log Pr(y, 2/X1, Xa: 0,0) |

where 9at:0 is the vector of parameter estimates under a; = 0.
For statistical inference, we developed an expectation-maximization (EM) algorithm accel-
erated by expanding parameters [55]. Details of updating equations for each parameter and

the corresponding algorithm can be found in Supplementary Text.

GWAS data

The NFBC1966 data set

The NFBC1966 data set consists of ten traits and 364,590 SNPs from 5402 individuals [26],
including total cholesterol (T'C), high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C) and triglycerides (TG), inflammatory marker C-reactive protein,
markers of glucose homeostasis (glucose and insulin), body mass index (BMI) and blood pressure
(BP) measurements (systolic and diastolic BP). Quality control procedures are conducted
following similar steps to Shi et al. [56]. Specifically, individuals with missing-ness in any
of the traits and with genotype missing call-rates > 5% were excluded. We excluded SNPs
with minor allele frequency (MAF) < 1%, missing call-rates > 1%, or failed Hardy-Weinberg
equilibrium. After quality control filtering, 172,412 SNPs from 5123 individuals were available
for downstream analysis.

The tissues used in TisCoMM and TisCoMM-S? were the same, and the six tissues with the
largest number of overlapped individuals were used. The summary statistics for TisCoMM-S?

were calculated using PLINK [57].

Summary-level GWAS data

We obtained summary statistics from GWASs for 33 traits, including 15 traits from [19] and 18
traits from the UK Biobank. Details of these traits can be found in Supplementary Table S1.
In the main text, we discussed LOAD and asthma. Analyses results for other traits can be

found in Supplementary Text.
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GTEx eQTL Data

Th GTEx data including genotype and RNA-seq data are obtained from dbGaP with accession
number phs000424.v7.p2. Processed gene-expression data are available on the GTEx portal
(https://gtexportal.org/home/). In the eQTL data, we removed SNPs with ambiguous alleles
or MAF less 0.01.

We used two different strategies to select tissues used in our real data analysis. For the
15 NG traits, we obtained the top enriched tissues for each trait according to Supplementary
Table 2 in [19], and a subset of tissues with sample sizes larger than 100 was kept. For the

UKB traits, we used the six tissues with the largest number of overlapped individuals.

Reference panel

Due to the absence of genotype data using summary statistics, we use reference samples to
estimate the LD structures R among SNPs in the study samples. Since diseases and traits
considered in our real data application are for European population cohorts, we choose to use
European subsamples from the 1000 Genome Project as a reference panel.

Let X, denote the genotype matrix for cis-SNPs in the reference panel. To estimate the

LD matrix R, we adopt a simple shrinkage method as follows. We first calculate the empirical
XL Xk
VX)) (X X))
column of X,.. To make the estimated correlation matrix positive definite, we apply a simple

correlation matrix R = [r;] € RM*M with ry = where X,; the jth

shrinkage estimator [58]: R = 7R™™ + (1 — 7)1, where 7 € [0,1] is the shrinkage intensity.
In real data application, we fixed the shrinkage intensity at 0.95 both for simplicity and

computational stability.

Web Resources

TisCoMM is available at https://github.com/XingjieShi/TisCoMM/.

PrediXcan, MultiXcan and S-MultiXcan are available at http://gene2pheno.org/.
UTMOST is available at https://github.com/Joker-Jerome/UTMOST/.

CoMM is available at https://github.com/gordonliu810822/CoMM.

Known trait-associated genes are available at the NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/.

Summary statistics from UK Biobank is available at http://geneatlas.roslin.ed.ac.uk/.

URLs for summary statistics from Gamazon et al. [19] are summarized in Supplementary Table
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Figure 1: TisCoMM workflow. A. Two sets of TisCoMM input matrices are highlighted in
green and blue separately (left). The probabilistic graphical model for TisCoMM is shown in
the middle, which integrates gene expressions and models the co-regulation of cis-SNPs across
different tissues explicitly. p, and p. denote expectations of gene expression in eQTL and
phenotype in GWAS, respectively. The decomposition of the B matrix is illustrated on the
right-hand side of the figure. B. The TisCoMM joint test for all genes to prioritize candidate
causal genes. See more details of £(0) in Methods section. The example outputs (right) are
shown as Manhattan plots for 33 traits. C.The TisCoMM tissue-specific test for all candidate
genes to explore the tissue-specific roles of candidate genes. The example outputs (right) are
shown as heatmaps which summarize the tissue-specific effect of each gene. Significance level,
effect size, and heritability are converted into background color, circle color, and circle size.
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Figure 3: TisCoMM joint test outperforms the other multi-tissue methods. The number of
replicates is 5,000. In each subplot, the x-axis stands for the SNP heritability level, and the
y-axis stands for the proportion of significant genes within 5,000 replicates.
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Figure 4: The comparison of the TisCoMM tissue-specific test and the single-tissue association
tests under the alternative hypothesis with one causal tissue. A. The power of TisCoMM
tissue-specific test and the single tissue methods with Bonferroni correction applied. B. The
corresponding false positive rates under each setting.
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Figure 5: TisCoMM-S? results for LOAD and asthma. The reference panel is European
subsamples from 1000 Genome. In each row, the two panels show the qg-plot (left) and

Manhatton plot (right).
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Figure 6: A. Each pie chart corresponding to a different tissue shows the percentage of LOAD-associated genes in each molecular
function group (from gene ontology). B. The x-axis of the heatmap represents the union of LOAD-associated genes in 3 function
groups (binding, catalytic activity, and transcription factor). The y-axis represents different tissue types. In each cell, the
background color (shades of gray) indicates the significance level, the circle size indicates the heritability, and the color inside
each circle indicates the effect size. C. Pathway analysis of asthma-associated genes in thyroid and lung. Pathway analysis was
done using a web-based software DAVID, testing the enrichments of asthma-associated genes in biological processes (from gene
ontology). Significant pathways were selected if gene count > 5 and Benjamini-Hochberg (BH) corrected p-value < 0.05. The
asthma-associated genes are highlighted in blue. D. The x-axis of the heatmap represents the asthma-associated genes in the
immune response pathway. And all the other settings are the same as the one used in part B.
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Table 3: Distributions of tissues in which the candidate genes’ associations arise in LOAD and
asthma.

trait #tissues o 1 2 3 4 5 6
TisCoMM-S? 5 28 37 17 5 - -
LOAD CoMM-S 6 5 7 9 65 - -
TisCoMM-S? 37 68 58 28 6 3 0

Asthma

CoMM-S 20 11 5 5 9 30 120
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