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Abstract20

Dispersal is a key ecological process. An individual dispersal event has a source and a

destination, both are well localized in space and can be seen as points. A probability to22

move from a source point to a destination point can be described by a dispersal kernel.

However, when we measure dispersal, the source of dispersing individuals is usually24

an area, which distorts the shape of the dispersal gradient compared to the dispersal

kernel. Here, we show theoretically how di�erent source geometries a�ect the gradient26

shape depending on the type of the kernel. We present an approach for estimating

dispersal kernels from measurements of dispersal gradients independently of the source28

geometry. Further, we use the approach to achieve the �rst �eld measurement of dispersal

kernel of an important fungal pathogen of wheat, Zymoseptoria tritici. Rain-splash30

dispersed asexual spores of the pathogen spread on a scale of one meter. Our results

demonstrate how analysis of dispersal data can be improved to achieve more rigorous32

measures of dispersal. Our �ndings enable a direct comparison between outcomes of

di�erent experiments, which will allow to acquire more knowledge from a large number34

of previous empirical studies of dispersal.

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2019. ; https://doi.org/10.1101/789156doi: bioRxiv preprint 

https://doi.org/10.1101/789156
http://creativecommons.org/licenses/by-nc/4.0/


Introduction36

Individuals comprising biological populations often need to move from one location to

a di�erent location in order to survive and reproduce. Hence, dispersal is an important38

component of many life histories. Empirical characterization of dispersal has been a

major theme in ecological research for a long time (for example Heald, 1913; Bullock40

et al., 2017). However, Bullock et al. (2017) found much fewer datasets describing plant

dispersal than plant demography, likely indicating that �dispersal is notoriously di�cult42

and resource-consuming to measure�.

To measure dispersal, one needs a source of dispersing units and a method to record44

their displacement. Sources can be natural (e.g. a spawning site) or arti�cial (a planted

patch). To record the displacement, studies on animal movement often use on mark-46

recapture experiments (Van Houtan et al., 2007; Carrasco et al., 2010), while plant

studies commonly use seed traps or genotyping of seedlings around potential parents48

(Nathan et al., 2000; Goto et al., 2006). Spread of a plant pathogen can be recorded based

on visual symptoms and genetic data (Solheim and Hietala, 2017). The appropriate50

methodology varies depending on the study system.

In the presence of a localized source, a dispersal gradient is expected: many individuals52

will stay close to the source while fewer individuals will travel further, leading to a

decreasing dependency with distance. This pattern can be described mathematically by54

�tting a decreasing one-dimensional function to gradient measurements (e.g. review of

Fitt et al., 1987; Ferrandino, 1996; Werth et al., 2006; Madden et al., 2007). However,56

the geometry of the source a�ects the shape of such gradients (Zadoks and Schein,

1979; Ferrandino, 1996; Cousens and Rawlinson, 2001). �Flattening� of gradients due58

to extended sources is noted qualitatively in previous studies (Zadoks and Schein, 1979;

Ferrandino, 1996), but how exactly and how much does the source geometry a�ect the60

dispersal gradient?
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A more rigorous mathematical description of dispersal is achieved with a dispersal62

kernel that represents a probability distribution of dispersal to a certain location relative

to the source (�dispersal location kernel�, Nathan et al., 2012). It is convenient to have64

a point source for an empirical characterization of dispersal kernels, because a dispersal

gradient from a point source will have the same shape as the kernel. Zadoks and Schein66

(1979) proposed a rule of thumb, stating that a point source should have �a diameter

smaller than 1% of the gradient length; but in many experiments, it is up to 5 or68

10%�. However, to determine whether the source is small enough so that the dispersal

gradient captures the shape of the dispersal kernel, the size of the source should be70

compared with the characteristic distance of dispersal (i.e., the distance over which the

dispersal kernel changes substantially), rather than the gradient length. This represents a72

challenge for the design of dispersal experiments that aim to achieve a point-like source,

because whether or not the chosen source size is su�ciently small can be established74

with certainty only when the measurements are already conducted. As a result, �point�

sources of various sizes are found in literature: an adult tree (Werth et al. (2006); cf.76

Cousens and Rawlinson (2001) presenting e�ect of tree canopy morphology on the shape

of the gradient), circles of 80 cm (Skarpaas and Shea, 2007) and 25 cm diameter (Loebach78

and Anderson, 2018), 4m2 square (Emsweller et al., 2018), route of a single sampling

dive (D'Aloia et al., 2015).80

This challenge can be resolved using a modeling approach that incorporates the spread

from any source geometry considering each point within the source as an independent82

point source (Clark et al., 1999). This would lead to a better, more mechanistic under-

standing of the dispersal as recommended by Bullock et al. (2006). While such approach84

has been suggested (e.g. by Greene and Calogeropoulos, 2002) it is rarely adopted, as

demonstrated by the previous examples of various �point� sources and, for example, Bul-86

lock et al. (2017) who excluded line and area sources from their analysis, because those

4

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2019. ; https://doi.org/10.1101/789156doi: bioRxiv preprint 

https://doi.org/10.1101/789156
http://creativecommons.org/licenses/by-nc/4.0/


could not be compared to gradients from point sources.88

We investigate the e�ect of source geometry on the shape of dispersal gradients consid-

ering three qualitatively di�erent dispersal kernels: exponential, Gaussian, and power-90

law. We present possible simpli�cations, i.e. cases when a non-point source can be con-

sidered a point. We provide straightforward mathematical methods to take into account92

the source geometry in a more general case, when the simpli�cations are not possible.

Finally, we present results of a case study, where we measured rain-splash driven asexual94

dispersal of a major fungal pathogen of wheat, Zymoseptoria tritici, characterizing its

dispersal kernel for the �rst time in natural, �eld conditions.96

Theory

Dispersal location kernel describes the probability of dispersal from a source point98

(ps = (xs, ys)) to a destination point (pd = (xd, yd)) depending on the distance be-

tween the points (r(ps, pd) =
√

(xd − xs)2 + (yd − ys)2). Note the important di�erence100

between dispersal location kernel and dispersal distance kernel (Appendix A); we con-

sider dispersal location kernel hereafter. In an ideal situation, the dispersal kernel could102

be measured in an experiment with a similar structure: a single point as a source of

dispersing individuals and a single point for measuring dispersed individuals at each104

location. In such an experiment, the dispersal gradient, i.e. the spatial distribution of

the dispersed individuals will correspond to the dispersal kernel. In reality, the source or106

the destination or both are usually areas, i.e. the source has a certain measurable area

and the measurements at the destination are performed over a certain area. To describe108

such situations mathematically, we have to take sum over the individual points com-

prising the source to calculate their combined contribution to the dispersing population.110

Similarly, the sum over all points of the destination area gives the total population in

5
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the area. Population in a destination area D after dispersal is then calculated as112

N1(S,D) =

∫∫
D

∫∫
S

N0(ps)κ(r) dAS dAD (1)

where N0(ps) is the total dispersing population from ps (more precisely, the density114

function of the dispersing individuals within S), S = {ps} is the source area, κ(r) is

the dispersal kernel, and area integrals sum up the contributions of source points and116

destination points to the total observed population at the destination D = {pd}. When

the populations before dispersal (N0) and after dispersal (N1) are measured, the Eq. (1)118

becomes the function of only the kernel parameters, which can be estimated by �tting

this function to the data.120

Fitting a model with the above structure to empirical data can be challenging. Mul-

tiple integrations increase the computational demand making the process slower. Also,122

analytical solutions are more di�cult to achieve with complex formulae. Therefore, sim-

pli�cations could be useful to improve the analytical understanding and data analysis.124

A common simpli�cation is to �t a one-dimensional model to dispersal gradient data to

estimate dispersal without accounting for the source geometry: N1 = Cκ. For example,126

a function of the form

N1 = Ce−x/α (2)128

can be used to estimate the dispersal parameter α and the scale parameter C, in the case

of an exponential kernel. The parameter C here does not have a clear biological meaning.130

If both the source and the destination are points, the above approach provides a correct

estimate for the dispersal parameter α, because the function in Eq. (2) is the same as the132

exponential dispersal kernel [Eq. (3) in Box 1] up to a constant factor. The estimate of

the parameter C then contains the normalization factor of the kernel and other biological134

parameters, such as the population size at the source and the dispersal probability, which
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Exponential kernel is de�ned as

κe(r, α) = Cke
−r/α (3)

where k ∈ {1, 2} is the number of dimensions,
r = r(ps, pd) > is the Euclidean distance from

the source point ps = (xs, ys) to the desti-

nation point pd = (xd, yd) (in one dimension

ys = yd = 0), and Ck is normalization factor:

C1 = 1/(2α) and C2 = 1/(2πα2).

Gaussian kernel is de�ned as

κg(r, α) = Cke
−r2/2α2

, (4)

where C1 = 1/
√
2πα2 and C2 = 1/(πα2).

Power-law kernel is de�ned here as

κp(r, α, λ) = Ck(λ+ r)−α, (5)

where C1 = (α − 1)λα−1, C2 = (α − 2)(α −
1)λα−2/(2π). λ is a scale parameter de�ning

the �nite starting point of the distribution in

relation to r−α distribution, which is not de-

�ned at r = 0.

Box 1

cannot be disentangled without additional information. This approach generally works136

for any kernel function (e.g., Gaussian or power-law kernels), when both the source and

the destination are points.138

However, when the geometry of the source and/or destination is more complex, the

above approach may lead to wrong estimates. The parameter α estimated with this140

approach, may depend on the particular experimental design and have no relation to

the actual kernel shape. However, the shape of the dispersal gradient does match to142

the shape of the dispersal kernel even when the source and the destination are areas in

certain special cases. We discuss these special cases in relation to exponential, Gaussian,144

and power-law kernels (de�ned in Box 1).

If the source is extended in the direction of the measured gradient, and the underlying146

kernel is exponential, the Eq. (2) will still give a correct estimate of α. This holds,

because exponential kernels are memoryless (Box 2). This property allows to sum up148

all point sources within the source area along the x-axis to an equivalent virtual point

7
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Memoryless kernel. Exponential ker-

nels have a special feature: they are memory-

less. To be memoryless means that setting any

point along the gradient as a starting point,

the tail of the distribution will have the same

shape as entire distribution. This property

explains why exponential kernel can be de-

scribed unambiguously with the half-distance

α ln(2). From any point on an exponential

gradient, moving α ln(2) further along the gra-

dient will decrease the density by half.

Separable kernel. Separable functions

are those that can be expressed as a product of

functions which depend on only one indepen-

dent variable each, e.g. f(x, y) = fx(x)fy(y).

The shape of the dispersal gradient in the x-

direction does not depend on the y-coordinate

if the kernel is separable.

Most dispersal kernels found in the literature

are neither memoryless nor separable (Nathan

et al., 2012).

Box 2

source at x = 0 and in this way simplify the �tting process (see Fig. 1B). Thus, the150

extension of the source in the direction of the gradient will only add more power to

the source but not change the shape of the gradient outside of the source, leading to a152

correct estimate of α. This is not true for Gaussian and power-law kernels (Fig. 1 C, D).

If the extension of the source is in the other direction, perpendicular to the source, the154

simpli�ed approach works with Gaussian kernel (Fig. 1C). Gaussian kernel is separable,

which means that the shape of the kernel along x-dimension does not change when ys156

varies (Box 2). Hence, when measuring the dispersal along the x-axis, the extension of

source along the y-axis only adds to the power of the source but does not modify shape of158

the gradient. Thus changing the source from a point to a thin line source perpendicular

to the gradient leads to a di�erent estimate of C but the same estimate of α. This holds160

for any separable kernel, but not for non-separable exponential or power-law kernels

(Fig. 1B, D).162

The situation is analogous when we consider extended destinations. Extended des-

tination here implies that multiple measurements are conducted across the destination164

area in a uniformly random manner, and subsequently an average is taken over these

8
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measurements. When the kernel is exponential, both the source and the destination166

can be elongated in the direction of the dispersal gradient. An exponential function in

Eq. (2) �tted to dispersal gradient data acquired in this way will have same dispersal168

parameter α as the dispersal kernel. In the case of separable kernels, both the source

and the destination can be elongated perpendicular to the gradient and the gradient170

will have the same shape as the original kernel. If the geometry of the source or the

destination is more complex, for example rectangles, the presented simpli�cations fail172

with each of the three kernels.

Case study174

Materials and methods of the experiment

Experimental design and disease measurements176

We performed a �eld experiment to measure dispersal kernels of Zymoseptoria tritici in

natural, �eld conditions within a wheat canopy. By analyzing the experimental data178

we demonstrate both bene�ts and drawbacks of simpli�cations related to the theory

presented above. Winter wheat cultivar Runal was grown in 1.125m × 4m plots in180

Eschikon, Switzerland (coordinates: 47.449N, 8.682E). Inoculation was performed in

inoculation areas in the middle of each plot (Fig. 2 A) on 17�18 May 2017 with 300ml182

of spore suspension containing 106 spores/ml of Z. tritici strain 1A5 (treatment A), strain

3D7 (D) or both strains (B, 5×105 sp/ml each) (Zhan et al., 2002). The pathogen strains184

were chosen because of their capacity to infect cultivar Runal and due to their contrasting

production of pycnidia (asexual fruiting bodies) (Stewart et al., 2018). Control plots186

(C) were not inoculated. Five replicates of each treatment were assigned in a fully

randomized design to 20 plots (Fig. B1). Further details of the experimental materials188

and methods are given in the Appendix B.

9
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Figure 1: How source geometry a�ects the shape of dispersal gradients with di�erent
kernels (Box 1). (A) Four di�erent sources: 1) point source; 2) Line source x ∈
[−20, 0]; 3) Line source, y ∈ [−100, 100]; 4) Rectangular area source, (x, y) ∈
[−20, 0]× [−100, 100]. (B, C, D) Simulated gradients along the coloured lines
in (A). Kernel parameters are chosen such that the mean dispersal distance
is 20 units in all cases. Gradients are normalized to begin at 1. (B) With
the exponential kernel (α = 10), sources 1 and 2 result in identical gradients.
(C) With the Gaussian kernel (α = 22.5) the gradients are identical between
sources 1 and 3 and between sources 2 and 4. (D) With the power-law kernel
(α = 5, λ = 20) all gradients are di�erent.
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Disease levels were measured within 10 cm-wide measurement lines across each plot190

(Fig. 2A), representing the destination area. Within each measurement line, multiple

measurements were conducted in a uniformly random manner. In each measurement, Z.192

tritici incidence was assessed at the leaf scale by visual counting. After that, diseased

leaves were collected and analyzed using the automated image analysis (Karisto et al.,194

2018, and Fig. 2 B-D) to obtain pycnidia counts as a measure of conditional severity.

Success of inoculation was con�rmed within the inoculated areas (source areas) on 14196

June and primary disease gradients were measured in all measurement lines three weeks

later, on 4 July.198

Statistical analysis

Fitting disease gradients. The disease intensity (numbers of pycnidia per leaf) at t1200

in a given measurement line is a result of dispersal of spores and successful infections

from the source area to the area of the measurement line (i.e. the destination area).202

Assuming spatially uniform success of infections in all plots, the observed disease gradient

is the result of the dispersal gradient of spores and it provides the e�ective dispersal204

gradient of the pathogen population. Following the equation (1) with the exponential

kernel (that �ts well when dispersal is driven by water splashes, according to Fitt et al.,206

1987; Saint-Jean et al., 2004), the dispersal process of the pathogen can be described

mathematically using two area integrals: one over the source area and the other over208

the destination area. The disease intensity at the time t1 in a measurement line at a

distance x∗ (destination D = {(xd, yd)} = [x∗−5, x∗+5]× [b, w−b]) from the inoculation210

area (source S = {(xs, ys)} = [0, 40]× [0, w]) is given by

It1(x
∗) =

I0β

10(w − 2b)

∫∫
D

∫∫
S

e−
√

(xd−xs)2+(yd−ys)2/α

2πα2
dAS dAD (6)212
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Figure 2: (A) Design of the experimental plot. 40 cm-wide inoculation area in the middle
of the plot (orange). Distances from the middle of the inoculated area (x0)
to the middle of each measurement line were 0 cm, 40 cm, 60 cm, 80 cm, and
120 cm. (B, C, D) Overlay images illustrate the automated image analysis.
Leaves collected from measurement lines x0 (B), x2 (C) and x4 (D) of the
treatment D at the sampling date t1. Cyan, purple and yellow lines mark
borders of leaves, lesions and pycnidia, respectively.
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where I0 is the intensity (pycnidia/leaf) in the inoculation area at t0; β is the transmission

rate (unitless) describing how many new pycnidia there will be produced in the measured214

leaf layer per unit of measured intensity in the source leaves; w = 112.5 cm is plot

width; b = 12.5 cm is width of the border excluded from measurement lines; and α216

is the dispersal parameter describing the dispersal kernel. The integration over the

measurement line divided by area of the line, 10(w − 2b), gives the average disease218

intensity in a measurement line, representing uniform sampling of leaves.

Note that 10 cm width of measurement lines was practically the smallest possible220

width that could be achieved in our �eld measurements, because the foliage of even a

single straw spans more than 10 cm, limiting the spatial resolution of our measurements.222

For this reason, we simpli�ed the model by neglecting the width of measurement lines

and assigning all disease intensity values recorded within each measurement line to224

the distance from the source that corresponds to the middle of the line. With this

simpli�cation, disease gradients were calculated according to226

It1(x
∗) =

I0β

w − 2b

∫ w−b

b

∫ 40

0

∫ w

0

e−
√

(x∗−xs)2+(yd−ys)2/α

2πα2
dxs dys dyd. (7)

We compare results obtained using Eq. (6) and Eq. (7) to results obtained using sev-228

eral simplifying assumptions. As implied by Madden et al. (2007) and the analysis of

Fitt et al. (1987), dispersal is often modeled as a one-dimensional process. However,230

this simpli�cation leads to correct estimates of the dispersal kernels only under certain

circumstances, as discussed above in Theory section. To test what kind of error we make232

using the one-dimensional approach, we constructed the following function describing

the dispersal according to an exponential kernel in one dimension:234

It1(x
∗) = I0β

∫ ls

0

e−r(xs,x
∗)/α

2α
dxs. (8)

13
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Here the integral takes sum over the length of the source along the plot, ls = 40 cm.236

When measuring the gradient outside of the inoculation area, (x ≥ 40 cm) the integral

can be solved analytically and the equation (8) is greatly simpli�ed:238

It1(x
∗) =

I0β

2

(
els/α − 1

)
e−x

∗/α (9)

leading to the same structure as in the equation (2) (with C = I0β
2

(
els/α − 1

)
). Equation240

(9) can be used directly to �t empirical disease gradients when considering the measure-

ment line as a point. When taking into account the real width of the measurement242

line (10 cm) we calculate the mean intensity within a measurement line taking sum over

it and dividing by the width. Continuing from the equation (9) the gradient is now244

calculated as

It1(x
∗) =

I0β

2

(
els/α − 1

) ∫ x∗+5

x∗−5

e−xr/α

10
dxr

=
I0βα

20

(
1− els/α

) (
e−5/α − e5/α

)
e−x

∗/α

(10)246

which still retains the same form as the equation (2) but with a di�erent constant than

in the equation (9) (C =
Ii,t0βα

20

(
1− els/α

) (
e−5/α − e5/α

)
). In this example, we retained248

the same shape of the gradient despite adding the spatial extension of both the source

and the destination along the direction of the gradient. This highlights the memoryless250

property of exponential kernels (Box 2).

We constructed the functions similar to the one in Eq. (8) also using the Gaussian252

kernel and the power-law kernel (Box 1). These were compared to Eq. (9) based on

AIC-score (Akaike information criterion Akaike, 1973). The di�erences in the AIC-254

scores were lower than the single parameter penalty, for this reason we conclude that

neither of the three kernels can be considered superior.256

Estimation of dispersal and transmission parameters. The data we used in the

analysis were obtained in the following way. First, we collected incidence measurements258
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(counts) and acquired conditional severity measurements using image analysis. Second,

the severity data in each measurement line were multiplied with the corresponding in-260

cidence to obtain unconditional severity measurements. Third, we calculated mean for

each measurement line to obtain �ve data points for each distance in each treatment.262

These means over each measurement line were used for �tting. The dispersal gradient

functions (Eqs. (6), (7), (9), (10)) were �tted to the data to estimate α and I0β.264

To compare treatments and dispersal directions we used the bootstrapping approach.

We re-sampled our collected samples with replacement to create a large set of variable266

bootstrap samples. Variation in the bootstrap samples re�ects the variation that we

expect to observe if the actual experiment was repeated several times (see for example268

Davison and Hinkley, 1997). Bootstrapping allowed us to model explicitly the variation

related to incidence counts and variation related to leaf collection, separately of each270

other. This approach also allowed us to assess uncertainties in parameter estimates

without making any assumptions about the distributions of the data or the parameter272

values.

We created 100 000 bootstrap samples for each measurement line. First, we re-sampled274

the infected leaves, i.e. generated 100 000 new samples of original size sampling from

original leaf data with replacement. Second, we simulated the incidence counts on the276

measurement lines to create a distribution of incidence values. Based on the measured

plant density (730 stems/m2) we had on average 82 leaves within a measurement line. In278

this way, we simulated incidence counts with a population of 82 plants and all possible

incidence values (from 0/82 to 82/82) 100 000 times each and recorded the �real� inci-280

dence value each time when the simulation gave the same incidence as in the observed

data. Third, the mean of each bootstrap set of leaf severity was multiplied by incidence282

value drawn from the corresponding incidence distribution to obtain the unconditional

mean severity for each measurement line. Fourth, we grouped these unconditional means284
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of measurement lines into sets of �ve representing the �ve replicates. As a result, we

obtained 100 000 bootstrap replicates of the entire experiment.286

The one-dimensional disease gradient in equation (9) was �tted to each of the 100 000

bootstrap replicates. Two-dimensional disease gradient function in equation (7) was288

�tted to a subset of 10 000 bootstrap replicates. As a result, we obtained a large number

of bootstrap point estimates of parameters α and βI0 for each treatment and direction.290

These estimates were used to conduct statistical tests.

Statistical tests. Parameter di�erences were tested using a simple bootstrap hypoth-292

esis test (Davison and Hinkley, 1997, p. 162), where the observed di�erence between

parameter values in di�erent conditions is compared to a distribution of di�erences ob-294

tained with bootstrap samples. Signi�cance level (p-value) of the test is calculated by

dividing the number of cases where the di�erence in the test statistic ti is greater than296

or equal to the observed di�erence tobs by the number of bootstrap replicates (R) plus

the observed case:298

p =
1 + #{ti ≥ tobs}

R + 1
(11)

If only a few bootstrap samples give a more extreme di�erence than the observed one,300

then the observed di�erence is considered signi�cant. We tested the di�erences between

parameter estimates using Eq. (11).302

Additionally, we tested di�erences between α- and βI0-estimates simultaneously using

a two-dimensional hypothesis test based on the joint distribution of di�erences in α and304

βI0 (analogous to Johansson et al., 2014). A kernel density estimate of the joint distribu-

tion was obtained to de�ne the degree of �extremity� of a point in the two-dimensional306

parameter space. The point re�ecting observed di�erence in the two parameters was

compared to the distribution of di�erences between bootstrap replicates. The observed308

di�erence is considered signi�cantly di�erent from zero, if it is located in a su�ciently
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sparse area, such that less than 5% of the bootstrap estimates are located in regions310

with equal or lower density (the �equidensity test�).

We present 95% con�dence intervals for the parameters derived from the distribution312

of bootstrap results, i.e. the limits of 2.5th and 97.5th percentile of the distribution.

Di�erences in disease levels between treatments A, B and D were tested at t0, x0 and314

t1, x±1 with the Kruskal-Wallis test and the pairwise Dunn's posthoc comparison with

the Bonferroni correction.316

Statistics implementation. All data analysis was implemented in Python (versions

3.5.2 and 3.6.0) and the code is provided together with the data. Fitting was performed318

using lm�t-package (v. 0.9.10, Newville et al., 2014). Numerical integrations were im-

plemented with 'quad' and 'dblquad' functions in scipy-package (v. 1.0.1, Jones et al.,320

2001�). Fitting of the two-dimensional functions (Eq. 6 and 7) was performed using

the high performance computing cluster Euler of the ETH Zurich. Kruskal-Wallis test322

was conducted with 'kruskal' function in scipy-package and Dunn's test with function

'posthoc_dunn' in package scikit-posthocs (v. 0.3.8, Terpilowski, 2018).324

Results and discussion of the experiment

The inoculations with Z. tritici strain 1A5 (treatment A), strain 3D7 (D) and their mix-326

ture (B) were successful: at t0 we observed increased disease levels in the inoculation

areas of all three treatments (Fig. 3 A). Subsequently, disease gradients re�ecting the328

dispersal gradients were obtained. At t1, there was a gradient of disease severity from

higher levels at x±1 to lower levels at x±4 (Fig. 3 B). Genotyping of re-isolated strains330

con�rmed the successful spread (Appendix C). In total, 4190 plants were inspected for

incidence counts; 2527 leaves were collected and analyzed using the digital image anal-332

ysis. Total analyzed leaf area was 4.56m2 and the total number of observed pycnidia

was 1 131 608. The entire dataset including raw data, bootstrap replicates, best �t-334
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ting parameter estimates and weather data is available in DATADRYAD (TBA after

acceptance in the journal).336

Pathogen dispersal

Fitting the equation (7) to the observed disease gradients allowed us to estimate pa-338

rameters α (dispersal parameter) and βI0 (transmission rate × initial intensity at the

source). In treatment A, estimates of α were very low and estimates of βI0 were very340

high, compared to treatments B and D (Table 1). These unrealistic results (discussed

below) were likely due to an insu�cient disease intensity within the inoculation area342

and consequently a shallow gradient outside the inoculation area (Fig. 3 A and B). Less

successful pathogen spread in treatment A than in other treatments was con�rmed by344

comparing disease levels between treatments A and D at t0, x0 and at t1, x±1. At t0

x0, the disease intensity was signi�cantly lower in treatment A than in treatment D346

(Kruskal-Wallis test p = 0.005, pairwise Dunn's test p = 0.004). Further, at t1 x±1

the intensity in treatment A was lower than the intensity in both treatments B and D348

(Kruskal-Wallis p = 3.4×10−26; Dunn's test A vs B p = 2.6×10−18; Dunn's test A vs D

p = 6.0× 10−24). For this reason, the next steps of analysis were conducted only using350

data obtained in treatments B and D.

Comparison of the best-�tting parameters (Eq. (7), Table 1) between the positive352

and the negative directions revealed no signi�cant di�erence neither in treatment D

(equidensity p-value: p2D = 0.21, one-dimensional hypothesis test Eq. (11) for parameter354

α: pα = 0.17, parameter βI0: pβI0 = 0.13, Fig. 4 A), nor in treatment B (p2D = 0.74,

pα = 0.60, pβI0 = 0.95). This similarity between directions suggests isotropic dispersal.356

As there was no signi�cant di�erence between the two directions, we combined the

data from the two directions and estimated the parameters using the combined dataset.358

We observed a signi�cant di�erence between treatments B and D using the combined

dataset (p2D = 0.014, pα = 0.020, pβI0 = 0.018, Fig. 4 B). Dispersal parameter α was360
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Figure 3: Disease levels and derived dispersal gradients. Data in blue shows treatment A
(strain 1A5), in orange treatment B (mixture of 1A5+3D7), in green treatment
D (strain 3D7), and in red treatment C (control). A: Disease levels in the
inoculation area at t0. Means of replicates shown with dots. Layers F and
F-1 shown for treatments A, B, and C; while layer F-2 for treatment C (no
disease on F-1 nor F). B: Disease gradients at t1 after the spread event. Blue,
orange and green dots and boxes show F leaf data. Red lines: mean over
control plots. Black horizontal bars with asterisks show signi�cant pairwise
di�erences between treatments at t0 and at t1 (40 cm). C: Disease gradients
of treatment D, using Eq. (9). Black dots show the observed replicate means
(same as green dots in (B)) and black curve shows the best �tting gradient
function. Vertical black line shows 99th percentile of the dispersal distance (Eq.
(A3): x99). Distributions of bootstrap data, disease gradients, and x99 values
of 500 bootstrap replicates shown in green violin plots, curves and horizontal
lines, respectively.
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higher in treatment B while βI0 was higher in treatment D (Table 1). Thus the mixture

of the two strains dispersed further, but imposed lower infection pressure on host plants362

than the strain 3D7 alone. Estimated values αD = 13.5 cm and αB = 21.4 cm fall close to

the range estimated in spore dispersal experiments with arti�cial rain (Fitt et al., 1987).364

The one-dimensional estimates of α (Table 2) correspond to half-distances 10.5 cm (strain

3D7) and 17.0 cm (strain mixture), which match well to the range of 6�16 cm reported366

by Fitt et al. (1987). We conclude that experiments in controlled conditions translate

well to the �eld conditions, at least when using simplistic one-dimensional �tting. The368

dispersal occurred due to two short rain showers (Fig. B2). During a longer rainy period

the spores may disperse in multiple splash events leading to longer average dispersal370

distances and �atter disease gradients (Fitt et al., 1989).

Table 1: Best �tting parameters from �tting Eq. (7).

Treatment
-direction α (95% CI), cm βI0 (95% CI), pycnidia/leaf

A
-positive 2.5 99992
-negative 4.9 3518
-combined 2.6 99975

B
-positive 23.1 (15.9 - 37.5) 1271 (1052 - 1618)
-negative 20.0 (14.8 - 28.4) 1281 (1049 - 1586)
-combined 21.4 (16.7 - 28.6) 1271 (1095 - 1468)

D
-positive 15.3 (12.3 - 19.7) 1559 (1147 - 2112)
-negative 12.0 (9.3 - 15.5) 2387 (1613 - 3638)
-combined 13.5 (11.5 - 16.1) 1915 (1475 - 2430)

Note: Con�dence intervals (CI) derived from bootstrapping, but not for biologically implausible

results of treatment A. Values of βI0 were limited below 100 000.
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Figure 4: Visualization of one- and two-dimensional bootstrap tests, in histograms and
main panels, respectively. (A) Comparison between two directions in treat-
ment D. (B) Comparison between treatments D and B. Histograms show single
parameter distributions while heat maps and black dots show joint distribu-
tions (10 000 replicates). Observations (red line; red plus) in the 5% extreme
of the distribution (shaded area; outside of the dashed line), are considered
signi�cant. The di�erences are signi�cant between treatments (B) but not be-
tween directions (A). Black cross in panel (A) shows a hypothetical observation
where the di�erence would be deemed non-signi�cant for each parameter sep-
arately (non-shaded area), but the joint test reveals a signi�cant di�erence
(outside of the dashed line).
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Disease transmission372

Besides the dispersal parameter, we were also able to estimate transmission rate of the

disease. The �tting yielded estimates of βI0, from which we extracted β by dividing βI0374

by estimates of I0. We estimated I0,B = 227pycnidia/leaf and I0,D = 249 pycnidia/leaf.

Based on those we calculated βD = 7.7 (unitless) and βB = 5.6. Estimation of β was376

only possible possible because we de�ned the scale parameter in a biologically meaningful

manner.378

Parameter estimates for the strain 1A5 were not realistic. It is not biologically plau-

sible that spores of the strain 1A5 would disperse by only 2-5 cm, while spores of the380

strain 3D7 spread some 14 cm, because pycnidiospores of the two di�erent strains are

expected to have the same physical properties. Likewise, the transmission rate estimates382

of 1A5 were unrealistically high (Table 1). However, we inferred the parameter βI0 for

the strain 1A5 assuming that the physical process of spore transport via rain droplets384

is the same for the two strains. Under this assumption (αA = αD = 13.5 cm), we found

that the dispersal of the strain 1A5 was isotropic (p = 0.38). Furthermore, with the two386

directions combined, we estimated βI0 = 349pycnidia/leaf and β = 3.0 for treatment A

(I0,A = 118pycnidia/leaf).388

The transmission rates of strain 1A5 and the strain mixture were lower than that of

strain 3D7 (1A5 vs 3D7: p = 1.00×10−4, mixture vs 3D7: p = 0.0498). The intermediate390

transmission of the strain mixture is likely the result of a combination of transmission

rates of the two strains. Strain 1A5 is known to produce fewer and smaller pycnidia392

than strain 3D7 on cultivar Runal in greenhouse (Stewart et al., 2018). Our results in

�eld conditions are consistent with previous �ndings, as 1A5 produced fewer pycnidia394

within the source area (Fig. 3 A) and had a lower estimate of the transmission rate.

In this study system, the infectivity depends on weather conditions (Henze et al.,396

2007). Also, the disease levels within the source source and along the disease gradient
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were measured only on highest leaves, but dispersal occurred likely to and possibly from398

the lower leaf layers, which were not included in our analysis. Hence, the reported

transmission rates should be considered relative to each other rather than as absolute400

values.

Genotyping402

In total, 153 individuals of Z. tritici were isolated from separate pycnidia on the leaves

collected from the experimental plots and genotyped using targeted PCR-primers (Ap-404

pendix C). The genotyping of the re-isolated strains supported the conclusions drawn

from the phenotypic data. (i) The strains spread out from the source area; we detected406

them on the measurement lines (9 isolates out of 19 were detected as strain 1A5 at x±1

on treatment A, 45/55 as 3D7 on treatment D). (ii) There was a decreasing disease408

gradient; proportion of putative 1A5 and 3D7 isolates was lower further away from the

inoculation area (2 + 37 (1A5 + 3D7) out of 49 isolates at x±1 vs 1 + 8/30 at x±3, on410

treatment B). (iii) The strain 1A5 was transmitted less successfully than 3D7; propor-

tion of the putative 3D7 strain individuals in treatment D was higher than proportion412

of 1A5 individuals in treatment A (see (i)) and the same e�ect was visible in treatment

B (see (ii)). Thus, the genotypic and phenotypic data were in agreement.414

How good are the simpli�cations?

Simplifying the analysis of dispersal data by reducing the source and the destination416

to one dimension or even to points allows for simpler and faster calculation than in

the two-dimensional analysis. However, these simpli�cations may lead to less accurate418

estimates of parameters. We compare the simpli�cations used based on (i) accuracy of

the estimates, (ii) e�ect on statistical tests, and (iii) computational time.420

(i) The values of parameter α were higher in one- than in two-dimensional approach

(Table 2). If one would use the parameter estimates derived with one-dimensional ap-422
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proach (as found in literature) in a two-dimensional model, the dispersal would be over-

estimated as the values of α tend to be higher. This overestimation relates to the general424

��attening� of disease gradients from extended sources. Compared to a point source, an

extended source contributes to the gradient mostly through the tail of the dispersal ker-426

nel, which tends to be more �at than the beginning of the kernel. When an extended

source is considered as a point, the �attening e�ect of the source geometry is accounted428

for in larger estimates of the width of the kernel.

On the other hand, the relationship between the population spread and dispersal pa-430

rameter α is di�erent between one- and two-dimensional models. This di�erence becomes

clear for example when dispersal is described based on �mean dispersal distance� which432

is α for one-dimensional exponential kernel but 2α for two-dimensional. In treatment

D, the corresponding mean dispersal distances are 2α2D = 27 cm and α1D = 15 cm -434

a considerable di�erence. Clearly, a one-dimensional model of dispersal should not be

used for deriving dispersal distances on a population level. One should also be careful436

not to confuse the half-distance of an exponential dispersal location kernel with median

dispersal distance of the population (see Appendix A).438

(ii) All the statistical tests based on the bootstrap replicates gave similarly signi�cant

or non-signi�cant results for one-dimensional and two-dimensional parameter estimates.440

(iii) Regarding the computational time, one-dimensional �tting of the disease gradient

based on Eq. 9 to 100 000 bootstrap replicates was easily performed on a PC in a442

few hours, while �tting the two-dimensional function (Eq. 7) required a few days of

computational time for only 10 000 replicates. When using the most complex function444

with two area integrals [Eq. (6)] it took more than 12 hours on a PC to obtain the

estimates for only the observed data with one replicate.446
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Table 2: Comparison of parameter estimates between di�erent functions.

Treatment B Treatment D
Equation α, cm βI0, pycn./leaf α, cm βI0, pycn./leaf
Eq. 6, 2D extended destination 21.4 1265 13.5 1889
Eq. 7, 2D line destination 21.4 1271 13.5 1915
Eq. 10, 1D extended destination 24.6 1123 15.1 1994
Eq. 9, 1D point destination 24.6 1131 15.1 2031

Note: Estimates from using the combined data of the two directions. �2D� and �1D� stand for two-

and one-dimensional models, respectively.

Discussion

We propose an approach for estimating dispersal kernel parameters, where the source448

geometry is explicitly incorporated in the model. This provides a solution for correcting

inaccurate estimates caused by unjusti�ed simplifying assumptions (See Fig. 1 and Table450

2). This approach also provides a quantitative answer to the question �By how much

and in which way does the source geometry a�ect the observed dispersal gradient?�,452

instead of more qualitative statements regarding the ��attening� of the gradient with

a larger source (Zadoks and Schein, 1979; Ferrandino, 1996; Cousens and Rawlinson,454

2001). Using our method, we are able to relax the requirement of having a point source

in a dispersal experiment. This helps designing experiments by increasing the power456

of the source and consequently the amount of collected data, which may be a limiting

factor in many systems. With our approach, one can use results acquired from di�erent458

experimental designs (e.g. those cited in Fitt et al., 1987) to estimate dispersal kernels

in each case. Those can then be compared to each other directly, in contrast to dispersal460

gradients that re�ect di�erences in experimental designs and cannot be compared if the

designs are di�erent. Most importantly, our approach allows to estimate actual kernel462

parameters in a much wider range of empirical studies than it was recognized previously,

that includes all studies with spatially extended sources. In this way, �we can move from464

descriptions of pattern to a grasp of process� (Bullock et al., 2006).
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We show, with simulations (Fig. 1) that di�erent source geometries may lead to similar466

gradients when the kernel is either memoryless or separable. However, most kernels

are neither memoryless nor separable, and thus distortions of the gradient shape are468

expected with varying source geometry. In any case, such simulations can be used when

planning an experiment to guide the experimental design and to test predicted outcomes.470

Simulated outcomes of an experiment can also help to determine when the source can be

considered a point and what kind of errors this simpli�cation may introduce. Clearly, our472

two-dimensional models of dispersal are simpli�cations of the three-dimensional process

(e.g. Vidal et al., 2018). If the third dimension is of great importance, as perhaps in474

aquatic environments or with tree canopies (Cousens and Rawlinson, 2001), modeling of

source geometry and dispersal processes in three dimensions may be necessary.476

We used this approach to analyze the data we acquired on Z. tritici, showing how

di�erent simplifying assumptions lead to di�erent results. The explicit consideration of478

source geometry allowed us not only to estimate kernel parameter α but also a biolog-

ically relevant transmission rate β, instead of a meaningless normalization factor. Our480

experiment was conducted using an arti�cial experimental design with passively dispers-

ing organisms, but similar approach can be used in observational studies in nature and482

with actively dispersing organisms whenever the source area can be characterized and

the dispersal process can be described with the help of dispersal kernels.484

In the common case of anisotropic dispersal (Soubeyrand et al., 2007), the validity

of the simpli�cations based on separability or memorylessness of the speci�c functional486

forms of kernels, will generally not hold. However, the more general integration method

that we presented can be modi�ed to take into account the anisotropy of the kernel.488

In the modi�ed model, the probability of dispersal from a source point to a destination

point should depend not only on the distance between the points, as in our case, but490

also on the direction from the source to the destination. In this way, also anisotropic
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dispersal kernels can be inferred from measurements of dispersal gradients with the492

explicit consideration of the source geometry.

Our theoretical analysis shows that most pronounced di�erences between the dispersal494

gradients originating from di�erent source geometries appear close to the source, while

at larger distances from the source these di�erences disappear (Fig. 1B, C, D). The496

e�ect is seen in each of the three very di�erent types of kernels, indicating that it is

a universal feature. Therefore, even when the size of the source is much smaller than498

the gradient length, it could be that the size of the source is still comparable to the

characteristic dispersal distance (i.e., the distance over which the dispersal kernel changes500

substantially). In this case, measurements close to the source will be substantially

distorted due to the �nite area of the source. Therefore, simple rules of thumb stating502

that to be considered as a point, the size of the source should be smaller than 1% of the

length of the gradient (Zadoks and Schein, 1979; McCartney et al., 2006), can be quite504

misleading, and result in inaccurate estimates of dispersal parameters. This emphasizes

the importance of explicit modeling of the source geometry as we have done it here,506

considering that it is often the case that most measurements are conducted close to the

source even when the overall gradient is long (Werth et al., 2006; Skarpaas and Shea,508

2007; Loebach and Anderson, 2018).

Experiments that measure dispersal are di�cult and laborious (Bullock et al., 2017).510

Geometry of the source, location of sampling areas, amount of sampling at di�erent

locations and other components of the experimental design may have a large e�ect on512

the precision and generalizability of the results. We support Skarpaas et al. (2005)

calling for optimization of dispersal study designs by simulations, to make the most out514

of the e�ort.
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Appendix A: Dispersal distance kernel524

Dispersal distance kernel. Dispersal kernels are not only used to describe distribu-

tions of locations of dispersed individuals, but also to summarize dispersal distances,526

such as mean distance travelled. Dispersal distance kernel is a one-dimensional func-

tion describing the probability of individuals to end up at a certain distance from the528

source. It can be derived from a two-dimensional dispersal location kernel by integrat-

ing it around the source, essentially by multiplying it with 2πr (Nathan et al., 2012).530

The shape of the dispersal location kernel can di�er substantially from the shape of the

dispersal distance kernel (e.g. Cousens and Rawlinson, 2001; Nathan et al., 2012). The532

dispersal distance kernel corresponding to exponential dispersal location kernel is given

by534

κe,dist(r) = 2πr
e−r/α

(2πα2)
=
re−r/α

α2
=
rk−1e−r/α

αkΓ(k)
, k = 2, (A1)

where Γ(2) = 1 is the gamma function. Equation (A1) gives the one-dimensional gamma-536

distribution with the shape parameter k = 2 and the scale parameter α.

It is important to keep in mind that means and medians of dispersal location kernels538

do not generally correspond to means and medians of population dispersal distances

(i.e. means and medians of dispersal distance kernels). The example of the exponential540

kernel is of particular importance, as this kernel is often described with the half-distance.

Considering the one-dimensional exponential kernel, the dispersal parameter α gives the542

mean and α ln(2) (half-distance) gives the median of the distribution. However, in the

case of the two-dimensional exponential location kernel the mean dispersal distance is544

not α but 2α (i.e. mean of the gamma-distribution in Eq. (A1)). Furthermore, median,

or any percentile, of the dispersal distance distribution can be determined by solving the546

equation ∫ xL

0

κe,dist(r)dr = 0.01L (A2)548
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where xL is the Lth percentile of dispersal distance (L ∈ [0, 100]). After integration, the

Eq. (A2) reads550

e−xL/α
(

1 +
xL
α

)
= 1− 0.01L. (A3)

We solve Eq. (A3) numerically to obtain the median dispersal distance x50 ≈ 1.7α �552

0.69α ≈ ln(2)α. Considering the limits of population dispersal, Golan and Pringle

(2017) de�ned 99th percentile of the dispersal distance distribution as a limit for the554

long-distance dispersal in fungi. At L = 99, we �nd x99 ≈ 6.6α. These numbers have

applied relevance, for example in conservation biology or in precision agriculture when a556

treatment is targeted to a certain fraction of a dispersing population. Mean or median

dispersal distances or other characteristic numbers should be determined using the two-558

dimensional location kernel and the corresponding distance kernel.

The limit of long-distance dispersal (x99, Eq. (A3)) corresponding to observed values560

of α is 90 cm for treatment D and 142 cm for treatment B. In an agricultural �eld, a visible

disease focus (Zadoks and van den Bosch, 1994) and signi�cant host damage (Shaw and562

Royle, 1993) would occur close to the source due to higher density, while the edge of the

population is likely to incur less damage because of lower pathogen density. This hidden564

pathogen population in the tails of the distribution should be taken into account when

attempting spatially targeted treatments, for example in precision agriculture involving566

focal fungicide spraying.
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Appendix B: Field experiment568

The study system

Zymoseptoria tritici (formerlyMycosphaerella graminicola) is a major fungal pathogen of570

wheat in temperate areas (Jørgensen et al., 2014; Dean et al., 2012). It causes the disease

Septoria tritici blotch (STB), which is visible as brownish lesions on wheat leaves. The572

lesions reduce the photosynthetic ability of the host and cause yield losses of 5-10%, even

when resistant cultivars and fungicides are used in combination. Annually in Europe574

some 1.2 billion dollars are spent for fungicides mainly aimed to control STB (Torriani

et al., 2015).576

Infection by Z. tritici begins when spores deposited on wheat leaves germinate and

penetrate the leaves through stomata (Kema et al., 1996). The fungus grows in the578

apoplast for several days without visible symptoms (Duncan and Howard, 2000). In

optimal conditions, necrotic lesions appear in the invaded host tissue after about ten days580

and asexual fruiting bodies called pycnidia begin to form (Kema et al., 1996; Duncan

and Howard, 2000). Asexual pycnidiospores ooze from pycnidia within water-soluble582

cirri and are spread mostly by rain splash. If a spore falls within the wheat canopy and

stays on a healthy leaf instead of being washed down, it can infect new host tissue either584

on the same or on the neighbouring plants. Upon successful infection, the spore again

creates a lesion and produces new pycndia within the lesion. The pathogen undergoes586

several rounds of asexual reproduction per growing season. Zhan et al. (1998, 2000)

estimated that ≈66% of infections on �ag leaves came from asexual spores, leading to588

conclusion that asexual reproduction is the most important source of infection on �ag

leaves.590

Initial inoculum by air-borne ascospores is often considered uniform across a wheat

�eld and not a limiting factor for epidemics (Morais et al., 2016). Therefore, much of592
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interest has been on vertical dispersal of the spores from initial infection of seedlings to

emerging leaf layers (Shaw, 1987; Lovell et al., 1997; Bannon and Cooke, 1998; Lovell594

et al., 2004; Vidal et al., 2018). Interaction between the pathogen and the host has been

described by Robert et al. (2018) as a race, where the pathogen need to �climb� up to596

the next leaf layer before current layer becomes senescent and its resources are depleted.

The plant, in turn, �tries� to save the newly emerging leaves making them escape the598

infection by fast stem elongation.

However, horizontal dispersal greatly in�uences the ability of a particular clonal lin-600

eage to grow in numbers and can play a major role in the dynamics of emerging fungicide

resistance or ability to overcome host resistance genes. Resistance gene pyramids or ho-602

mogeneous host cultivar mixtures may select for multiple virulences in a single pathogen

strain. Thus, spatial adjustment of control strategies has been suggested as a potentially604

more sustainable solution and optimal spatial scale of such heterogeneity is determined

by the spatial scale of the pathogen's horizontal spread (Mundt and Browning, 1985;606

Brophy and Mundt, 1991; Newton et al., 2009; Sapoukhina et al., 2010; Newton and

Guy, 2011; Djidjou-Demasse et al., 2017). Dispersal of Z. tritici or similarly spread-608

ing species Parastagonospora nodorum (formerly Septoria nodorum) has been studied

in controlled conditions using either infected straw or spore suspension together with610

arti�cial rain and often spore traps (Brennan et al., 1985; Saint-Jean et al., 2004; Vidal

et al., 2017). Bannon and Cooke (1998) studied the e�ect of wheat-clover intercrop on612

dispersal from plates via arti�cial rain and merely noted a reduction of dispersed spores

at the 15 cm distance. No experiment has so far been conducted in �eld conditions to614

estimate parameters of dispersal kernel of the disease spread from infected plants to the

surrounding healthy canopy.616

Spatial spread directly in�uences the number of new hosts that a pathogen can poten-

tially invade and it also a�ects the spatial distribution of the pathogen population. For a618
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polycyclic pathogen, such as Zymoseptoria tritici, small di�erences in monocyclic spread

can result in considerable di�erences in the epidemic outcomes after multiple disease cy-620

cles. Thus, understanding the mechanisms and the scale of the spread will improve our

ability to predict and control potentially disastrous epidemics of the disease.622

Plant materials and agronomic practices

The experiment was performed at the Field Phenotyping Platform (FIP) site of Eschikon624

Field Station of the ETH Zurich, Switzerland (Kirchgessner et al., 2017). Experimental

plots were sown with winter wheat (Triticum aestivum) cultivar Runal on 1 November626

2016. Sowing density was 440 seeds/m2 and the observed stem density on 19 June 2017

was 730 stems/m2. Field maintenance included herbicide Herold SC (0.6 l/ha; Bayer)628

on 2 November 2016, and stem shortener Moddus (0.5 l/ha; Syngenta) on 13 April 2017.

Fungicide Input (1.25 l/ha; Spiroxamin 300 g/l, Prothioconazol 160 g/l; Bayer) was630

applied on 13 March 2017 to suppress the background infection.

Similar experiment was prepared also at the facilities of INRA Bioger in Thiverval-632

Grignon, France (coordinates: 48.840N, 1.952E). The experimental design was similar

with minor modi�cations. Due to unconducive weather conditions the inoculation failed634

to produce measurable primary disease gradients. Therefore, the data is not presented.

Experimental design636

The experimental plots were 1.125m× 4m rectangles consisting of nine long rows of

wheat with 12.5 cm spacing between the rows. Plots were randomly assigned to four638

treatments with �ve replicates of each treatment as shown in Fig. B1. The four treat-

ments were: inoculation with strain ST99CH_1A5 (short identi�er 1A5, treatment A),640

strain ST99CH_3D7 (3D7, treatment D), both strains (B) and no inoculation (C).

Strains were collected in Switzerland in 1999 as described by Zhan et al. (2002) (see also642
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www.septoria-tritici-blotch.net/isolate-collections.html).

In each plot, there was a 40 cm-wide inoculated area across the plot in the middle.644

Disease measurements were conducted in the middle of the inoculated area (x0 = 0 cm)

and at eight locations outside of the inoculated area, four on each side at distances646

x±1 = ±40 cm, x±2 = ±60 cm, x±3 = ±80 cm and x±4 = ±120 cm from the center of

the inoculated area (see Fig. 2 A). A measurement line consisted of a line across the648

experimental plot at the given distance, extended with 5 cm margins along the plot and

excluding 12.5 cm borders at the edge of the plot to reduce edge e�ects. Measurements650

were conducted uniformly over space in the rectangular area of each measurement line.

Z. tritici inoculation652

Inoculum was prepared by growing the fungus for seven days in yeast-sucrose-broth

(https://dx.doi.org/10.17504/protocols.io.mctc2wn). The liquid culture was then �l-654

tered, spores were pelleted in centrifuge and re-suspended into sterile water to harvest

blastospores. The washed spore suspension was diluted to achieve the concentration of656

106 spores/ml. For treatment B the �nal spore concentration was 106 spores/ml so that

each strain was present with the concentration of 5× 105 spores/ml. Finally, we added658

0.1% (v/v) of Tween20 and kept the inoculum suspension on ice until spraying.

Inoculation was performed by spraying 300ml of the spore suspension onto the inoc-660

ulation site of each plot using a hand-pump pressure sprayer. The plots were inoculated

during the late afternoon to avoid direct sunlight. All treatments were inoculated with662

Figure B1: Arrangement of the plots in the �eld.
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Figure B2: Weather conditions during the experiment. Daily precipitation in the blue
bars, daily mean temperature in the red line, dates of inoculation, sampling
dates t0 and t1 are shown using vertical lines.

the same sprayer, which was rinsed with water and 70% ethanol to clean all parts before

inoculating each treatment. Entire canopy within the inoculation area was inoculated664

until runo�. During spraying, the inoculation area was bordered with plastic sheets to

avoid the spillover of the inoculum to other plots. After spraying, the border sheets were666

folded over the canopy to enclose the plants in plastic tents maintaining high humidity

overnight. The tents were removed early next morning to avoid overheating of plants.668

The inoculation was repeated next evening in the same manner. Pictures of inoculation

are shown in Appendix D.670

First attempt to inoculate was made on 5 and 6 April, when F-3 layer (the third leaf

layer below �ag leaf) was mostly emerged (approximate growth stage, GS 22, Zadoks672

et al. (1974)), and inoculation success was assessed on 24 April and again on 3 May.

Due to cold weather the inoculation success was extremely low: we observed low levels674

of disease in the F-3 leaf layer and the plants were in the beginning of stem elongation

(F-1 emerging, GS 35). Average incidence in F-3 layer in the inoculated area 3 May was676

6.1%, 2.9%, 0% and 4.9% for treatments A, B, C, and D, respectively. We considered the

inoculation as failed, because the secondary spread from such low initial infection levels678
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would likely cause only negligible gradients and due to stem elongation and senescence

the highest leaf layers would likely escape the spread (Robert et al., 2018). We decided to680

inoculate again the higher leaf layers to achieve stronger, measurable disease gradients.

Dates of this main inoculation were 17 and 18 May 2017, when �ag leaves had already682

emerged (GS 39�41).

Assessment of the disease gradient684

The disease assessment combining incidence and severity measurements was performed

twice. At t0, on 14 June 2017 (GS 70) only the inoculation areas were assessed to686

con�rm the success of inoculation across the measurement line x0. Flag leaves outside

the inoculation area were visually con�rmed to be healthy without further assessment.688

At t1 on 4 July 2017 (GS 85) all measurement lines of treatments A, B and D were

sampled. One line on each plot of treatment C was assessed for reference.690

At t0, incidence of the disease was measured at the leaf scale in the following manner.

Thirty to forty straws were inspected on each measurement line. The highest diseased692

leaf layer was recorded for each straw. The leaves lower than that were assumed to

be diseased as STB is usually more prevalent in the lower leaf layers. Additionally,694

naturally senescent leaf layers were recorded. In this way, incidence was estimated for

all non-senescent leaf layers. After estimating the incidence, eight infected leaves were696

collected from up to two consecutive leaf layers that had incidence higher than 20%. The

collected leaves were then mounted on paper sheets and scanned with 1200 dpi resolution.698

The resulting images were analyzed using automated image analysis method measuring

two aspects of severity of the infection that represent the host damage and pathogen700

reproduction, as described in Karisto et al. (2018). Host damage was measured as the

percentage of leaf area covered by lesions (PLACL) and pathogen reproduction as the702

pycnidia count per leaf. The sampled leaf layers at t0 were the �ag leaf layer (F) and
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the layer below it (F-1).704

At t1, the plants were already mostly chlorotic and hence the incidence measurement

was not possible in the �eld. Instead, we collected about 24 leaves from each mea-706

surement line at random. The leaves were taken into lab and each leaf was visually

inspected for the presence of pycnidia. Incidence was recorded based on the presence of708

pycnidia on the collected leaves and only leaves with pycnidia were scanned for severity

measurement. Due to vast chlorosis, the measurement of host damage was considered710

unreliable and only pathogen reproduction was used in the subsequent analysis. Thus,

we measured the disease intensity as numbers of pycnidia per leaf.712

We estimated number of asexual reproduction and dispersal events between t0 and

t1 using the following arguments. First, based on the data from Shaw (1990) regarding714

latent period lengths of Z. tritici at di�erent temperatures (as revisited in Karisto et al.

(2018), Fig. A1), latent period after inoculation was approximated to be longer than 20716

days (average daily temperature during �rst 19 days was 19 ◦C). Thus, there was likely

no spread from inoculation area during the rainy period at 13�17 days after inoculation718

(dai) (Fig. 2). This was con�rmed with visual assessments of the inoculation areas on

8 June (22 dai), when we observed few tiny lesions and mostly no pycnidia, concluding720

that substantial spread had not been possible by then. Second, at t0 (28 dai) there was

substantial disease (Fig. 3 A) in the inoculation areas and there were two strong showers722

in the night after t0. Third, there was no rain for one week before nor after t0. Thus, we

conclude that there was most likely only one asexual spread event at t0, which caused724

the disease gradients outside of the inoculation areas at t1 (38 dai).

In summary, the inoculation was successful and led to increased levels of disease in the726

inoculation areas after a latent period of 3�4 weeks, at t0. Three weeks later, at t1 there

were clearly visible symptoms outside of the inoculation area. The observed symptoms728

at t1 can be entirely accounted to the raining event and consequent asexual spread of
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the pathogen at t0.730

Discussion of experimental aspects

Measurement of pathogen population, not host damage. Our estimates of disper-732

sal kernel correspond to the e�ective dispersal of the pathogen population, instead of

the basic dispersal kernel of all spores. Di�erence between these may arise from possibly734

density-dependent post-dispersal mortality (Nathan et al., 2012; Klein et al., 2013). At

high spore densities, that can be found close to the source, leaves can become saturated736

with the infection leading to a decreased infection e�ciency of spores (Karisto et al.,

2019). In the tail of the distribution the density is however so low, that saturation may738

not be a major factor. Dispersal of spores could be measured with spore traps placed

within the canopy. However, that would leave open how many of the spores actually at-740

tach to healthy plants, how many of them are successful, and how much the established

population disperses. Using healthy plants as spore traps leads to the measurement of742

a more epidemiologically relevant combination of dispersal and infection processes.

Measurement of pathogen reproduction in terms of numbers of pycnidia per leaf gives744

us a proxy of the pathogen population size at each measurement point. Traditionally,

plant diseases are observed visually based on host damage, but novel methodology allows746

for a di�erent approach. While host damage is an important agronomic factor, pathogen

reproduction is more relevant for pathogen ecology and evolution. Moreover, pathogen748

reproduction is more powerful than host damage for predicting the host damage at a

later time point (Karisto et al., 2018).750

Sampling distances. The measurement lines were at closest 20 cm (±5 cm) from the

edge of the inoculated area. Measuring the gradient closer to the source and even inside752

the source could make the �tting more accurate, because di�erences between gradients

would be easier to detect closer to the source area where variations are more pronounced.754
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However, closer to the source, the reliability of data might su�er from saturation and

also from dispersal via direct contact (Fitt et al., 1989). Optimal measurement distances756

have to be determined for each study system based on biological understanding and prior

knowledge about the dispersal kernel.758

We measured the disease also inside the inoculation area, but those were excluded

from �tting to include only secondary infections. The increase in the disease intensity at760

x0 from t0 to t1 was not only due to secondary infections but also from extremely long

latent periods (Karisto et al., 2019). Additionally, possible saturation was strongest at762

x0. Therefore, measurement of newly spread infection was not possible inside the source

area.764
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Appendix C: Genotypic test with PCR

Primer design. We designed four primer pairs targeted at each of the two strains. The766

primers were aimed to be �rst fully speci�c for the target isolates 1A5 and 3D7 within

the set of four commonly used lab strains 1A5, 1E4, 3D1, 3D7 and second as speci�c768

to the target strain as possible in the �eld. Speci�city here means that the primers

designed for 1A5 should produce an amplicon in PCR only with 1A5 genome and not770

with other strains. Strain speci�c primers would allow for a convenient detection of the

focal sub-population after the experiment as in a mark-recapture experiment.772

To design the primers, we used presence-absence data of predicted genes from Hart-

mann and Croll (2017). We chose target regions that were present in the target strain774

(either 1A5 or 3D7) and absent in the other three isolates (1E4, 3D1, and either 3D7

or 1A5). From those potential targets, we selected ten least frequent regions in the 27776

Swiss isolates analyzed by Hartmann and Croll (2017). After selecting the target re-

gions, we designed four primer pairs that would be suitable for high throughput qPCR778

in same conditions: amplicon length 100-150 bp, melting temperature around 60 ◦C. The

primers were designed to amplify regions in di�erent chromosomes of the target strain780

to minimize the possibility of �nding all of them in a single strain in the �eld. Details

of the designed primers are given in Table C1.782

Validation of primer speci�city. First validation of the primers was done with qPCR

among the four strains 3D7, 1A5, 3D1 and 1E4 (Tables C2 and C3, Figures C1 and C2).784

Successful ampli�cation of the target DNA and no ampli�cation on non-target DNA

suggested that each of the eight primer pairs was speci�c to their target strain among786

the four strains, indicating successful primer design based on the genomes.

Primers' speci�city was then validated in a natural population using multiplex-PCR788

(Table C4, Table C5) combining each speci�c primer pair with a primer pair that is
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Table C1: Primers

Primer Sequence (5'-3') Tm (◦C) Amplicon (bp)
1A5.5_FWD AGC AGT CCT CGT AGC ATA ACG 59.93 135
1A5.5_REV GAC CTC CTA TGA TGC GGC AA 59.89
1A5.6_FWD GGG AGG CCC TGG TTG ATT AC 60.11 135
1A5.6_REV CTT GTA AGA GCG AGG GGC AA 60.04
1A5.9_FWD TTC TCT CTA TAG CCC GCC CT 59.52 137
1A5.9_REV GAG TAG ACT CTA GAG GAA ACC TAG T 58.11
1A5.10_FWD CTC GGC CAG GAA GTG ATT GT 60.04 137
1A5.10_REV GAG CAG TGG AGC CCA AGA AT 60.03
3D7.2_FWD CGA CAT CGG TTC AGA GAT GGA A 60.16 146
3D7.2_REV GTA CCT TCG ATT CGT GCG GT 60.46
3D7.6_FWD CTT GGG TGC AAT GAA CGG AC 59.76 139
3D7.6_REV TGA GAA ACA GTC GTG TGG CA 59.82
3D7.9_FWD CAG CTC GAC TTG TGA GTC CT 59.4 136
3D7.9_REV CGT GCA AAC GCT GCA TGA T 60.15
3D7.10_FWD GGT GCC CTC GTC GGA ATA C 60.23 123
3D7.10_REV TTG GGG AAG GAG ACC ATT CG 59.38
Zt_gen_FWD ATT GGC GAG AGG GAT GAA GG 60.5 101
Zt_gen_REV ATT TTC GTG TCC CAG TGC GTG TA 60.5

Note: Primer name starts with the target strain followed by chromosome number, except for Zt_gen

primers. The latter designed by Duvivier et al. (2013).

Table C2: qPCR reaction mix, 20µl

Reagent Concentration Volume (µl) Final concentration
Water 6
EvaGreen Mix 5X 4 1X
Strain.Chr_FWD 1µM 2 200nM
Strain.Chr_REV 1µM 2 200nM
Target DNA 1ng/µl 6 6ng/20µl

Note: We used qPCR mixture HOT FIREPol EvaGreen qPCR Mix Plus (ROX) (Solis BioDyne).

speci�c to Z. tritici generally (Zt_gen primers) (Duvivier et al., 2013). Zt_gen provided790

a positive control for success of the PCR: if it created an amplicon, the reaction was

successful. Primers were tested against 37 natural strains isolated from the control plots792

of the experiment. Reaction with primers 1A5.9 did not work reliably, indicated by the

lack of Zt_gen amplicon. Numbers of false positives for other primer pairs were 4, 8, 20,794
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Table C3: qPCR reaction cycles

Step Temperature (◦C) Time (s)
1 95 900
2 95 15
3 60 20
4 72 20

Note: Steps 2�4 repeated 40 times

Table C4: PCR reaction mix, 20µl

Reagent Concentration Volume (µl) Final concentration
Water 6.34
KAPA Bu�er 2X 10 1X
Zt_gen_FWD 10µM 0.5 250nM
Zt_gen_REV 10µM 0.5 250nM
Strain.Chr_FWD 5µM 1 250nM
Strain.Chr_REV 5µM 1 250nM
KAPA3G Polymerase 2.5U/µl 0.16 2U/100µl
Spore solution 104-106sp/ml 2

Note KAPA3G Plant PCR Kit (Kapa Biosystems).

Table C5: PCR reaction cycles

Step Temperature (◦C) Time (s)
1 96 180
2 95 20
3 60 15
4 72 15
5 72 30

Note: Steps 2�4 repeated 35 times.

13, 12, 7 and 6 for 1A5.5, 1A5.6, 1A5.10, 3D7.2, 3D7.6, 3D7.9 and 3D7.10 respectively

(Figures C3, C4, C5, C6, C7, C8, C9, C10). Importantly, none of the false positives of796

1A5.5 and 1A5.6 overlapped with each other, hence using combined data of those two

gave no false positives. The six false positives of 3D7.10 were ampli�ed with all the798

other 3D7-primers and none of the 1A5 primers. Thus, it is possible that they were the

actual strain 3D7 either left on the �eld from previous years of �eld experiments or it800
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1A5.5 1A5.6

1A5.9 1A5.10

Figure C1: Ampli�cation plots of the 1A5 targeting primers in qPCR. The ampli�ed
curves represent four replicates of 1A5, while the lower curves represent two
replicates of each of 1E4, 3D1, 3D7 and water.

was a spill-over from the current treatments.
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3D7.2 3D7.6

3D7.9 3D7.10

Figure C2: Ampli�cation plots of the 3D7 targeting primers in qPCR. The ampli�ed
curves represent four replicates of 3D7, while the lower curves represent two
replicates of each of 1A5, 1E4, 3D1 and water.
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1A5
3D7

1A5
3D7

1A5
3D7

1A5
3D7

- - +     - - - - - - - - - - +     - +    +     - - -

- - - - - - - - - - - - - - - - -

_________________________   Test isolates _________________________

_____________________   Test isolates ____________________

Figure C3: Amplicons from Zt_gen (shorter) and 1A5.5 (longer). Isolate 1A5 as posi-
tive control and 3D7 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.

1A5
3D7

1A5
3D7

1A5
3D7

1A5
3D7

- +     - - - - - - - - - - +     - - - - - - -

+    - - +      - +     +    - +      - - - - +     - - -

_________________________   Test isolates _________________________

____________________   Test isolates ____________________

Figure C4: Amplicons from Zt_gen (shorter) and 1A5.6 (longer). Isolate 1A5 as posi-
tive control and 3D7 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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1A5
3D7

1A5
3D7
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3D7

1A5
3D7

0      0     0     0     0     0    0    0     0      0    0     0     0     0     0    0     0     0     0     0

0     0     0     0     0     0     0    0     0     0     0    0      0     0    0     0     0  

_________________________   Test isolates _________________________

_____________________   Test isolates ____________________

*

**

*

Figure C5: Amplicons from Zt_gen (shorter) and 1A5.9 (longer, not present). Isolate
1A5 as positive control and 3D7 as negative control. Zeros indicate that no
conclusions were drawn from the reactions, as the positive controls were not
ampli�ed (*).
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+ +    +     - - +     +     +    - +     +     +    +     - - +     - - - +

+     - - +     - +     +    - +     +     - - +     - - +      -

_________________________   Test isolates _________________________

____________________   Test isolates ____________________

Figure C6: Amplicons from Zt_gen (shorter) and 1A5.10 (longer). Isolate 1A5 as posi-
tive control and 3D7 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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_________________________   Test isolates _________________________

_____________________   Test isolates ____________________

Figure C7: Amplicons from Zt_gen (shorter) and 3D7.2 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.

1A5
3D7
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1A5
3D7
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- - - - - - - - - - - - - - +      - - - - -

+     +     +     +     - +     +    +      +     - - +     - - +     - +  

___________________________   Test isolates _________________________

______________________   Test isolates ____________________

Figure C8: Amplicons from Zt_gen (shorter) and 3D7.6 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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Figure C9: Amplicons from Zt_gen (shorter) and 3D7.9 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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_____________________   Test isolates ____________________

Figure C10: Amplicons from Zt_gen (shorter) and 3D7.10 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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Genotyping of the re-isolated strains. After validation, the primers 1A5.5, 1A5.6,802

3D7.9 and 3D7.10 were chosen for genotyping the strains isolated from experimental

material. If both of the two primer pairs targeting either 3D7 or 1A5 showed ampli�ca-804

tion, we called that a detection. On control plots, 6/37 strains tested were detected as

3D7 (16% false positives) while 0/37 strains were detected as 1A5 (0% false positives).806

On a plot of treatment A (replicate 1), 9/19 strains (47%) at x±1 were detected as 1A5

(Fig. C11). In contrast, on a plot of treatment D (replicate 1), 45/55 strains (82%) at808

x±1 were detected as 3D7 (Figs. C12, C13). Thus, frequency of 3D7 was higher than

1A5 outside the inoculation area, as implied by the disease gradients (Fig. 3B). On a810

plot of treatment B (replicate 1), at x±1 2/49 were 1A5 and 37/49 were 3D7 while x±3

1/30 was 1A5 and 8/30 were 3D7 (Figs. C14, C15 for 1A5, and Figs. C16, C17 for812

3D7). As expected, the proportion of the target strains decreased with distance. Lower

proportion of 1A5 is likely a result of two-fold e�ect of weaker transmission: �rst, the814

strain produced fewer pycnidia in the inoculation area (treatment B, replicate 1, at x0

t0: 1A5 4/15, 3D7 10/15, Figs. C11, C12, C13) and second, those pycnidia multiplied816

themselves with lower success.
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1A1    1B1 2B1    4A1     4B1    5A1   6A1    6B1     7A1  11A1  12A1  12B1

EA1.X1.T1.L1
0A1    3B1    4A1    6B1     7B1   12A1 12B1

EA1.X-1.T1.L1

Primers 1A5.5 & Zt_gen

0A1   0B1     1A1    1B1    2A1

EB1.X0.T0.L1

2B1     3A1    3B1     3D1    4A1    4B1   5B1    6A1     6B1     7A1

EB1.X0.T0.L1

1A5
3D7

Primers 1A5.6 & Zt_gen

1A1    1B1 2B1    4A1     4B1    5A1   6A1    6B1     7A1  11A1  12A1  12B1

EA1.X1.T1.L1
0A1    3B1    4A1    6B1     7B1   12A1 12B1

EA1.X-1.T1.L1
0A1   0B1     1A1    1B1    2A1

EB1.X0.T0.L1

2B1     3A1    3B1     3D1    4A1    4B1   5B1    6A1     6B1     7A1

EB1.X0.T0.L1

1A5
3D7

Figure C11: Amplicons from Zt_gen (shorter), 1A5.5 (longer, upper rows) and 1A5.6
(longer, lower rows). Isolate 1A5 as positive control and 3D7 as negative
control. First part of isolate labels consist of location (E = Eschikon), treat-
ment (e.g. A), and replicate (e.g. 1); second part contains measurement
line (x1 for x1); third, time point (T1 for t1); fourth, leaf layer (L1 = Flag);
and �nally the isolate itself (e.g. 1A1: leaf 1, area A, isolate 1).
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ED1.X1.T1.L1

Primers 3D7.9 & Zt_gen
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ED1.X1
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19B1    20B1  21A1  21B1  22A1 22B1 23A1  23B1
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Figure C12: Amplicons from Zt_gen (shorter), 3D7.9 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.
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Figure C13: Amplicons from Zt_gen (shorter), 3D7.10 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.
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Figure C14: Amplicons from Zt_gen (shorter), 1A5.5 (longer). Isolate 1A5 as positive
control and 3D7 as negative control. See Fig. C11 for label decoding.
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Figure C15: Amplicons from Zt_gen (shorter), 1A5.6 (longer). Isolate 1A5 as positive
control and 3D7 as negative control. See Fig. C11 for label decoding.
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Figure C16: Amplicons from Zt_gen (shorter), 3D7.9 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.
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EB1.X-1.T1.L1

22A1 22B1

EB1.X-1.
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0A1    1B1    4A1    4B1    4C1    4D1    5B1    7A1    7B1    8C1     9A1    9B1    9D1  10A1   10B1  11A1  14A1  16A1 17B1 23A1
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4A1   5A1

EB1.X-3.
T1.L1

6A1    6B1 6C1     7A1   8A1   12A1  17A1 18A1 18B1

EB1.X-3.T1.L1

Figure C17: Amplicons from Zt_gen (shorter), 3D7.10 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.
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Appendix D: Pictures of inoculation818

Figure D1: P. Karisto setting up the in-
oculation tent on one plot.

Figure D2: Inoculation tent prepared.

820

Figure D3: A. Mikaberidze spraying the
spore suspension inside the
tent to inoculate the canopy
of the source area.

Figure D4: A tent closed after inocula-
tion to maintain high humid-
ity.

822
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