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20 Abstract

Dispersal is a key ecological process. An individual dispersal event has a source and a

2 destination, both are well localized in space and can be seen as points. A probability to
move from a source point to a destination point can be described by a dispersal kernel.

2« However, when we measure dispersal, the source of dispersing individuals is usually
an area, which distorts the shape of the dispersal gradient compared to the dispersal

26 kernel. Here, we show theoretically how different source geometries affect the gradient
shape depending on the type of the kernel. We present an approach for estimating

28 dispersal kernels from measurements of dispersal gradients independently of the source
geometry. Further, we use the approach to achieve the first field measurement of dispersal

30 kernel of an important fungal pathogen of wheat, Zymoseptoria tritici. Rain-splash
dispersed asexual spores of the pathogen spread on a scale of one meter. Our results

32 demonstrate how analysis of dispersal data can be improved to achieve more rigorous
measures of dispersal. Our findings enable a direct comparison between outcomes of

sa  different experiments, which will allow to acquire more knowledge from a large number

of previous empirical studies of dispersal.
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» Introduction

Individuals comprising biological populations often need to move from one location to
s a different location in order to survive and reproduce. Hence, dispersal is an important
component of many life histories. Empirical characterization of dispersal has been a
w0 major theme in ecological research for a long time (for example Heald, 1913; Bullock
et al., 2017). However, Bullock et al. (2017) found much fewer datasets describing plant
.2 dispersal than plant demography, likely indicating that “dispersal is notoriously difficult
and resource-consuming to measure”.
as To measure dispersal, one needs a source of dispersing units and a method to record
their displacement. Sources can be natural (e.g. a spawning site) or artificial (a planted
s patch). To record the displacement, studies on animal movement often use on mark-
recapture experiments (Van Houtan et al., 2007; Carrasco et al., 2010), while plant
a8 studies commonly use seed traps or genotyping of seedlings around potential parents
(Nathan et al., 2000; Goto et al., 2006). Spread of a plant pathogen can be recorded based
so on visual symptoms and genetic data (Solheim and Hietala, 2017). The appropriate
methodology varies depending on the study system.
52 In the presence of a localized source, a dispersal gradient is expected: many individuals
will stay close to the source while fewer individuals will travel further, leading to a
sa decreasing dependency with distance. This pattern can be described mathematically by
fitting a decreasing one-dimensional function to gradient measurements (e.g. review of
ss Fitt et al., 1987; Ferrandino, 1996; Werth et al., 2006; Madden et al., 2007). However,
the geometry of the source affects the shape of such gradients (Zadoks and Schein,
ss 1979; Ferrandino, 1996; Cousens and Rawlinson, 2001). “Flattening” of gradients due
to extended sources is noted qualitatively in previous studies (Zadoks and Schein, 1979;
oo Ferrandino, 1996), but how exactly and how much does the source geometry affect the

dispersal gradient?
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62 A more rigorous mathematical description of dispersal is achieved with a dispersal
kernel that represents a probability distribution of dispersal to a certain location relative
e« to the source (“dispersal location kernel”, Nathan et al., 2012). It is convenient to have
a point source for an empirical characterization of dispersal kernels, because a dispersal
es gradient from a point source will have the same shape as the kernel. Zadoks and Schein
(1979) proposed a rule of thumb, stating that a point source should have “a diameter
es smaller than 1% of the gradient length; but in many experiments, it is up to 5 or
10%”. However, to determine whether the source is small enough so that the dispersal
70 gradient captures the shape of the dispersal kernel, the size of the source should be
compared with the characteristic distance of dispersal (i.e., the distance over which the
722 dispersal kernel changes substantially), rather than the gradient length. This represents a
challenge for the design of dispersal experiments that aim to achieve a point-like source,
7 because whether or not the chosen source size is sufficiently small can be established
with certainty only when the measurements are already conducted. As a result, “point”
76 sources of various sizes are found in literature: an adult tree (Werth et al. (2006); cf.
Cousens and Rawlinson (2001) presenting effect of tree canopy morphology on the shape
7s  of the gradient), circles of 80 cm (Skarpaas and Shea, 2007) and 25 cm diameter (Loebach
and Anderson, 2018), 4m? square (Emsweller et al., 2018), route of a single sampling

so dive (D’Aloia et al., 2015).
This challenge can be resolved using a modeling approach that incorporates the spread
&2 from any source geometry considering each point within the source as an independent
point source (Clark et al.; 1999). This would lead to a better, more mechanistic under-
s« standing of the dispersal as recommended by Bullock et al. (2006). While such approach
has been suggested (e.g. by Greene and Calogeropoulos, 2002) it is rarely adopted, as
ss demonstrated by the previous examples of various “point” sources and, for example, Bul-

lock et al. (2017) who excluded line and area sources from their analysis, because those
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ss could not be compared to gradients from point sources.
We investigate the effect of source geometry on the shape of dispersal gradients consid-
o0 ering three qualitatively different dispersal kernels: exponential, Gaussian, and power-
law. We present possible simplifications, i.e. cases when a non-point source can be con-
o2 sidered a point. We provide straightforward mathematical methods to take into account
the source geometry in a more general case, when the simplifications are not possible.
oa Finally, we present results of a case study, where we measured rain-splash driven asexual
dispersal of a major fungal pathogen of wheat, Zymoseptoria tritici, characterizing its

96 dispersal kernel for the first time in natural, field conditions.

Theory

os Dispersal location kernel describes the probability of dispersal from a source point

(ps = (xs,ys)) to a destination point (py = (z4,vyq)) depending on the distance be-

wo tween the points (r(ps,pa) = v/(Ta — 25)? + (ya — ys)?). Note the important difference
between dispersal location kernel and dispersal distance kernel (Appendix A); we con-
102 sider dispersal location kernel hereafter. In an ideal situation, the dispersal kernel could
be measured in an experiment with a similar structure: a single point as a source of
10a  dispersing individuals and a single point for measuring dispersed individuals at each
location. In such an experiment, the dispersal gradient, i.e. the spatial distribution of
w0s the dispersed individuals will correspond to the dispersal kernel. In reality, the source or
the destination or both are usually areas, i.e. the source has a certain measurable area
108 and the measurements at the destination are performed over a certain area. To describe
such situations mathematically, we have to take sum over the individual points com-
1o prising the source to calculate their combined contribution to the dispersing population.

Similarly, the sum over all points of the destination area gives the total population in
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12 the area. Population in a destination area D after dispersal is then calculated as
Ni(S,D) = /// No(ps)k(r)dAs dAp (1)
D S

us where Ny(ps) is the total dispersing population from pg (more precisely, the density
function of the dispersing individuals within S), S = {ps} is the source area, x(r) is
ue the dispersal kernel, and area integrals sum up the contributions of source points and
destination points to the total observed population at the destination D = {py}. When
us  the populations before dispersal (V) and after dispersal (N;) are measured, the Eq. (1)
becomes the function of only the kernel parameters, which can be estimated by fitting
120 this function to the data.
Fitting a model with the above structure to empirical data can be challenging. Mul-
122 tiple integrations increase the computational demand making the process slower. Also,
analytical solutions are more difficult to achieve with complex formulae. Therefore, sim-
120 plifications could be useful to improve the analytical understanding and data analysis.
A common simplification is to fit a one-dimensional model to dispersal gradient data to
126 estimate dispersal without accounting for the source geometry: Ny = C'k. For example,
a function of the form

128 Ny = Ce_x/a (2)

can be used to estimate the dispersal parameter a and the scale parameter C', in the case
1o of an exponential kernel. The parameter C' here does not have a clear biological meaning.
If both the source and the destination are points, the above approach provides a correct
132 estimate for the dispersal parameter «, because the function in Eq. (2) is the same as the
exponential dispersal kernel [Eq. (3) in Box 1] up to a constant factor. The estimate of
132 the parameter C' then contains the normalization factor of the kernel and other biological

parameters, such as the population size at the source and the dispersal probability, which
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Exponential kernel is defined as where C; = 1/v2ra? and Cy = 1/(ma?).

Ke(r,a) = Ce™ "/ (3)
Power-law kernel is defined here as
where k € {1, 2} is the number of dimensions,
r = r(ps, pa) > is the Euclidean distance from Fp(r; o, A) = Ce(A+7)77, ()

the source point ps = (xs,ys) to the desti-
where C; = (a — DXL, Oy = (a — 2)(a —

nation point pg = (x4,yq) (in one dimension
1)A*=2/(27). X is a scale parameter defining

ys = ya = 0), and C% is normalization factor:

Ch = 1/(2a) and Cy = 1/(27a?). the finite starting point of the distribution in

relation to r~—¢ distribution, which is not de-
fined at r = 0.
Gaussian kernel is defined as

Kg(ry ) = Cre™"" /27 (4)

Box 1

136 cannot be disentangled without additional information. This approach generally works
for any kernel function (e.g., Gaussian or power-law kernels), when both the source and
s the destination are points.
However, when the geometry of the source and/or destination is more complex, the
o above approach may lead to wrong estimates. The parameter o estimated with this
approach, may depend on the particular experimental design and have no relation to
12 the actual kernel shape. However, the shape of the dispersal gradient does match to
the shape of the dispersal kernel even when the source and the destination are areas in
s certain special cases. We discuss these special cases in relation to exponential, Gaussian,
and power-law kernels (defined in Box 1).
146 If the source is extended in the direction of the measured gradient, and the underlying
kernel is exponential, the Eq. (2) will still give a correct estimate of . This holds,
us because exponential kernels are memoryless (Box 2). This property allows to sum up

all point sources within the source area along the z-axis to an equivalent virtual point
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Memoryless kernel. Exponential ker-
nels have a special feature: they are memory-
less. To be memoryless means that setting any
point along the gradient as a starting point,
the tail of the distribution will have the same
shape as entire distribution. This property

explains why exponential kernel can be de-

Separable kernel. Separable functions
are those that can be expressed as a product of
functions which depend on only one indepen-
dent variable each, e.g. f(z,y) = fz(2)fy(y)-
The shape of the dispersal gradient in the z-
direction does not depend on the y-coordinate

if the kernel is separable.

scribed unambiguously with the half-distance
aln(2).
gradient, moving a In(2) further along the gra-

. . Most dispersal kernels found in the literature
From any point on an exponential

are neither memoryless nor separable (Nathan

dient will decrease the density by half. et al., 2012).

Box 2

10 source at = 0 and in this way simplify the fitting process (see Fig.1B). Thus, the
extension of the source in the direction of the gradient will only add more power to
152 the source but not change the shape of the gradient outside of the source, leading to a
correct estimate of . This is not true for Gaussian and power-law kernels (Fig.1 C, D).
154 If the extension of the source is in the other direction, perpendicular to the source, the
simplified approach works with Gaussian kernel (Fig. 1C). Gaussian kernel is separable,
1ss  which means that the shape of the kernel along x-dimension does not change when y;
varies (Box 2). Hence, when measuring the dispersal along the x-axis, the extension of
158 source along the y-axis only adds to the power of the source but does not modify shape of
the gradient. Thus changing the source from a point to a thin line source perpendicular
1o to the gradient leads to a different estimate of C' but the same estimate of «. This holds
for any separable kernel, but not for non-separable exponential or power-law kernels

2 (Fig. 1B, D).
The situation is analogous when we consider extended destinations. Extended des-
16s  tination here implies that multiple measurements are conducted across the destination

area in a uniformly random manner, and subsequently an average is taken over these
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16 measurements. When the kernel is exponential, both the source and the destination
can be elongated in the direction of the dispersal gradient. An exponential function in
s Eq.(2) fitted to dispersal gradient data acquired in this way will have same dispersal
parameter « as the dispersal kernel. In the case of separable kernels, both the source
1o and the destination can be elongated perpendicular to the gradient and the gradient
will have the same shape as the original kernel. If the geometry of the source or the
12 destination is more complex, for example rectangles, the presented simplifications fail

with each of the three kernels.

-~ Case study

Materials and methods of the experiment
176 Experimental design and disease measurements

We performed a field experiment to measure dispersal kernels of Zymoseptoria tritici in
s natural, field conditions within a wheat canopy. By analyzing the experimental data
we demonstrate both benefits and drawbacks of simplifications related to the theory
10 presented above. Winter wheat cultivar Runal was grown in 1.125m x 4m plots in
Eschikon, Switzerland (coordinates: 47.449N, 8.682E). Inoculation was performed in
12 inoculation areas in the middle of each plot (Fig. 2 A) on 17-18 May 2017 with 300 ml
of spore suspension containing 10® spores/ml of Z. triticistrain 1A5 (treatment A), strain
18 3D7 (D) or both strains (B, 5x10° sp/ml each) (Zhan et al., 2002). The pathogen strains
were chosen because of their capacity to infect cultivar Runal and due to their contrasting
18s  production of pycnidia (asexual fruiting bodies) (Stewart et al., 2018). Control plots
(C) were not inoculated. Five replicates of each treatment were assigned in a fully
s randomized design to 20 plots (Fig. B1). Further details of the experimental materials

and methods are given in the Appendix B.
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How source geometry affects the shape of dispersal gradients with different
kernels (Box 1). (A) Four different sources: 1) point source; 2) Line source = €
[—20,0]; 3) Line source, y € [—100,100]; 4) Rectangular area source, (x,y) €
[—20, 0] x [-100,100]. (B, C, D) Simulated gradients along the coloured lines
in (A). Kernel parameters are chosen such that the mean dispersal distance
is 20 units in all cases. Gradients are normalized to begin at 1. (B) With
the exponential kernel (a = 10), sources 1 and 2 result in identical gradients.
(C) With the Gaussian kernel (o = 22.5) the gradients are identical between
sources 1 and 3 and between sources 2 and 4. (D) With the power-law kernel
(v =5, = 20) all gradients are different.

10
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190 Disease levels were measured within 10 cm-wide measurement lines across each plot
(Fig. 2A), representing the destination area. Within each measurement line, multiple
192 measurements were conducted in a uniformly random manner. In each measurement, Z.
tritici incidence was assessed at the leaf scale by visual counting. After that, diseased
104 leaves were collected and analyzed using the automated image analysis (Karisto et al.,
2018, and Fig. 2 B-D) to obtain pycnidia counts as a measure of conditional severity.
s Success of inoculation was confirmed within the inoculated areas (source areas) on 14
June and primary disease gradients were measured in all measurement lines three weeks

s later, on 4 July.

Statistical analysis

200 Fitting disease gradients. The disease intensity (numbers of pycnidia per leaf) at t;
in a given measurement line is a result of dispersal of spores and successful infections
200 from the source area to the area of the measurement line (i.e. the destination area).
Assuming spatially uniform success of infections in all plots, the observed disease gradient
204 18 the result of the dispersal gradient of spores and it provides the effective dispersal
gradient of the pathogen population. Following the equation (1) with the exponential
206 kernel (that fits well when dispersal is driven by water splashes, according to Fitt et al.,
1987; Saint-Jean et al., 2004), the dispersal process of the pathogen can be described
208 mathematically using two area integrals: one over the source area and the other over
the destination area. The disease intensity at the time ¢; in a measurement line at a
210 distance x* (destination D = {(z4,yq)} = [2*—5, 2"+ 5] X [b, w—1b]) from the inoculation

area (source S = {(zs,ys)} = [0,40] x [0,w]) is given by

[0/3 e_\/($d—l‘s)2+(yd_ys)2/a
212 L (%) = —°22 A
t (%) 10(w — 2b) // // 22 5 aAp (6)
D S

11
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Figure 2: (A) Design of the experimental plot. 40 cm-wide inoculation area in the middle
of the plot (orange). Distances from the middle of the inoculated area (xg)
to the middle of each measurement line were 0 cm, 40 cm, 60 cm, 80cm, and
120cm. (B, C, D) Overlay images illustrate the automated image analysis.
Leaves collected from measurement lines x¢ (B), x2 (C) and x4 (D) of the
treatment D at the sampling date ¢;. Cyan, purple and yellow lines mark
borders of leaves, lesions and pycnidia, respectively.

12
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where [ is the intensity (pycnidia/leaf) in the inoculation area at to; 0 is the transmission
212 rate (unitless) describing how many new pycnidia there will be produced in the measured
leaf layer per unit of measured intensity in the source leaves; w = 112.5cm is plot
216 width; b = 12.5cm is width of the border excluded from measurement lines; and «
is the dispersal parameter describing the dispersal kernel. The integration over the
218 measurement line divided by area of the line, 10(w — 2b), gives the average disease
intensity in a measurement line, representing uniform sampling of leaves.
220 Note that 10cm width of measurement lines was practically the smallest possible
width that could be achieved in our field measurements, because the foliage of even a
222 single straw spans more than 10 cm, limiting the spatial resolution of our measurements.
For this reason, we simplified the model by neglecting the width of measurement lines
22« and assigning all disease intensity values recorded within each measurement line to
the distance from the source that corresponds to the middle of the line. With this

26 simplification, disease gradients were calculated according to

105 web /40 /w 67\/($*7$S)Q+(yd*ys)2/a
0 0

I, (x%) =
u (@) w—2b J, 2ma?

dz dys dyg. (7)

28 We compare results obtained using Eq. (6) and Eq. (7) to results obtained using sev-
eral simplifying assumptions. As implied by Madden et al. (2007) and the analysis of
220 Fitt et al. (1987), dispersal is often modeled as a one-dimensional process. However,
this simplification leads to correct estimates of the dispersal kernels only under certain
232 circumstances, as discussed above in Theory section. To test what kind of error we make
using the one-dimensional approach, we constructed the following function describing

234 the dispersal according to an exponential kernel in one dimension:

]— . I ls 6—7"(1’57 *)/ d 8
tl(iﬁ)—oﬁ/oTﬂfs- (8)

13
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236 Here the integral takes sum over the length of the source along the plot, [, = 40 cm.
When measuring the gradient outside of the inoculation area, (z > 40 cm) the integral

238 can be solved analytically and the equation (8) is greatly simplified:

1
n(at) = 22

els/o _ 1) e /e (9)
220 leading to the same structure as in the equation (2) (with C' = % (e"/* —1)). Equation
(9) can be used directly to fit empirical disease gradients when considering the measure-
222 ment line as a point. When taking into account the real width of the measurement
line (10 cm) we calculate the mean intensity within a measurement line taking sum over

20 it and dividing by the width. Continuing from the equation (9) the gradient is now

T z*45 efxr/oz
=B ey [T,
xr*—5

]60'/ « —5/a « —z* /o
= 020 (1—€ls/)(€ 5/ —65/)6 /

calculated as

(10)

246

which still retains the same form as the equation (2) but with a different constant than
25 in the equation (9) (C = % (1 —e/®) (e7/ — €%/*)). In this example, we retained
the same shape of the gradient despite adding the spatial extension of both the source
250 and the destination along the direction of the gradient. This highlights the memoryless
property of exponential kernels (Box 2).
22 We constructed the functions similar to the one in Eq.(8) also using the Gaussian
kernel and the power-law kernel (Box 1). These were compared to Eq.(9) based on
2sa AIC-score (Akaike information criterion Akaike, 1973). The differences in the AIC-
scores were lower than the single parameter penalty, for this reason we conclude that

256 neither of the three kernels can be considered superior.

Estimation of dispersal and transmission parameters. The data we used in the

253 analysis were obtained in the following way. First, we collected incidence measurements

14
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(counts) and acquired conditional severity measurements using image analysis. Second,
260 the severity data in each measurement line were multiplied with the corresponding in-
cidence to obtain unconditional severity measurements. Third, we calculated mean for
262 each measurement line to obtain five data points for each distance in each treatment.
These means over each measurement line were used for fitting. The dispersal gradient
26a  functions (Eqgs. (6), (7), (9), (10)) were fitted to the data to estimate o and Ip[5.
To compare treatments and dispersal directions we used the bootstrapping approach.
266 We re-sampled our collected samples with replacement to create a large set of variable
bootstrap samples. Variation in the bootstrap samples reflects the variation that we
28 expect to observe if the actual experiment was repeated several times (see for example
Davison and Hinkley, 1997). Bootstrapping allowed us to model explicitly the variation
270 related to incidence counts and variation related to leaf collection, separately of each
other. This approach also allowed us to assess uncertainties in parameter estimates
22 without making any assumptions about the distributions of the data or the parameter
values.
274 We created 100 000 bootstrap samples for each measurement line. First, we re-sampled
the infected leaves, i.e. generated 100000 new samples of original size sampling from
276 original leaf data with replacement. Second, we simulated the incidence counts on the
measurement lines to create a distribution of incidence values. Based on the measured
27e  plant density (730 stems/m?) we had on average 82 leaves within a measurement line. In
this way, we simulated incidence counts with a population of 82 plants and all possible
280 incidence values (from 0/82 to 82/82) 100000 times each and recorded the “real” inci-
dence value each time when the simulation gave the same incidence as in the observed
282 data. Third, the mean of each bootstrap set of leaf severity was multiplied by incidence
value drawn from the corresponding incidence distribution to obtain the unconditional

284 Imean severity for each measurement line. Fourth, we grouped these unconditional means
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of measurement lines into sets of five representing the five replicates. As a result, we

286 obtained 100 000 bootstrap replicates of the entire experiment.
The one-dimensional disease gradient in equation (9) was fitted to each of the 100000
288 bootstrap replicates. Two-dimensional disease gradient function in equation (7) was
fitted to a subset of 10000 bootstrap replicates. As a result, we obtained a large number
200 Of bootstrap point estimates of parameters o and (1 for each treatment and direction.

These estimates were used to conduct statistical tests.

202 Statistical tests. Parameter differences were tested using a simple bootstrap hypoth-
esis test (Davison and Hinkley, 1997, p.162), where the observed difference between
204 parameter values in different conditions is compared to a distribution of differences ob-
tained with bootstrap samples. Significance level (p-value) of the test is calculated by
206 dividing the number of cases where the difference in the test statistic ¢; is greater than
or equal to the observed difference ¢, by the number of bootstrap replicates (R) plus

208 the observed case:

L+t >t}
B R+1

(11)

s00 If only a few bootstrap samples give a more extreme difference than the observed one,
then the observed difference is considered significant. We tested the differences between

202 parameter estimates using Eq. (11).
Additionally, we tested differences between a- and (1y-estimates simultaneously using
304 a two-dimensional hypothesis test based on the joint distribution of differences in v and
B1y (analogous to Johansson et al., 2014). A kernel density estimate of the joint distribu-
;06 tion was obtained to define the degree of “extremity” of a point in the two-dimensional
parameter space. The point reflecting observed difference in the two parameters was
308 compared to the distribution of differences between bootstrap replicates. The observed

difference is considered significantly different from zero, if it is located in a sufficiently
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a0 sparse area, such that less than 5% of the bootstrap estimates are located in regions
with equal or lower density (the “equidensity test”).

312 We present 95% confidence intervals for the parameters derived from the distribution
of bootstrap results, i.e. the limits of 2.5th and 97.5th percentile of the distribution.

s1s Differences in disease levels between treatments A, B and D were tested at tg, xo and
t1, r4+1 with the Kruskal-Wallis test and the pairwise Dunn’s posthoc comparison with

sie the Bonferroni correction.

Statistics implementation. All data analysis was implemented in Python (versions
a1is 3.5.2 and 3.6.0) and the code is provided together with the data. Fitting was performed
using Imfit-package (v. 0.9.10, Newville et al., 2014). Numerical integrations were im-
20 plemented with 'quad’ and ’dblquad’ functions in scipy-package (v. 1.0.1, Jones et al.,
2001-). Fitting of the two-dimensional functions (Eq. 6 and 7) was performed using
322 the high performance computing cluster Euler of the ETH Zurich. Kruskal-Wallis test
was conducted with ’kruskal’ function in scipy-package and Dunn’s test with function

224 'posthoc_dunn’ in package scikit-posthocs (v. 0.3.8, Terpilowski, 2018).

Results and discussion of the experiment

26 The inoculations with Z. tritici strain 1A5 (treatment A), strain 3D7 (D) and their mix-
ture (B) were successful: at ¢, we observed increased disease levels in the inoculation
»s areas of all three treatments (Fig.3 A). Subsequently, disease gradients reflecting the
dispersal gradients were obtained. At t;, there was a gradient of disease severity from
;0 higher levels at x4, to lower levels at x4y (Fig.3 B). Genotyping of re-isolated strains
confirmed the successful spread (Appendix C). In total, 4190 plants were inspected for
332 incidence counts; 2527 leaves were collected and analyzed using the digital image anal-

2

ysis. Total analyzed leaf area was 4.56 m~ and the total number of observed pycnidia

a3a was 1 131 608. The entire dataset including raw data, bootstrap replicates, best fit-
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ting parameter estimates and weather data is available in DATADRYAD (TBA after

136 acceptance in the journal).

Pathogen dispersal

1s  Fitting the equation (7) to the observed disease gradients allowed us to estimate pa-

rameters « (dispersal parameter) and I, (transmission rate X initial intensity at the

a0 source). In treatment A, estimates of o were very low and estimates of 51y were very

high, compared to treatments B and D (Table 1). These unrealistic results (discussed

sz below) were likely due to an insufficient disease intensity within the inoculation area

and consequently a shallow gradient outside the inoculation area (Fig.3 A and B). Less

aaa  successful pathogen spread in treatment A than in other treatments was confirmed by

comparing disease levels between treatments A and D at ¢y, x¢ and at t;, x41. At g

us  Tg, the disease intensity was significantly lower in treatment A than in treatment D

(Kruskal-Wallis test p = 0.005, pairwise Dunn’s test p = 0.004). Further, at t; x4,

as  the intensity in treatment A was lower than the intensity in both treatments B and D

(Kruskal-Wallis p = 3.4 x 1072%; Dunn’s test A vs B p = 2.6 x 107'%; Dunn’s test A vs D

30 p = 6.0 x 1072%). For this reason, the next steps of analysis were conducted only using
data obtained in treatments B and D.

2 Comparison of the best-fitting parameters (Eq. (7), Table 1) between the positive

and the negative directions revealed no significant difference neither in treatment D

s (equidensity p-value: pop = 0.21, one-dimensional hypothesis test Eq. (11) for parameter

a: p, = 0.17, parameter Sy pgr, = 0.13, Fig.4 A), nor in treatment B (pap = 0.74,

36 Do = 0.60, pgr, = 0.95). This similarity between directions suggests isotropic dispersal.

As there was no significant difference between the two directions, we combined the

sss  data from the two directions and estimated the parameters using the combined dataset.

We observed a significant difference between treatments B and D using the combined

w0 dataset (pap = 0.014, p, = 0.020, pg, = 0.018, Fig.4 B). Dispersal parameter a was
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Figure 3: Disease levels and derived dispersal gradients. Data in blue shows treatment A
(strain 1A5), in orange treatment B (mixture of 1A5+3D7), in green treatment
D (strain 3D7), and in red treatment C (control). A: Disease levels in the
inoculation area at ty. Means of replicates shown with dots. Layers F and
F-1 shown for treatments A, B, and C; while layer F-2 for treatment C (no
disease on F-1 nor F). B: Disease gradients at t; after the spread event. Blue,
orange and green dots and boxes show F leaf data. Red lines: mean over
control plots. Black horizontal bars with asterisks show significant pairwise
differences between treatments at to and at ¢; (40cm). C: Disease gradients
of treatment D, using Eq. (9). Black dots show the observed replicate means
(same as green dots in (B)) and black curve shows the best fitting gradient
function. Vertical black line shows 99" percentile of the dispersal distance (Eq.
(A3): zg9). Distributions of bootstrap data, disease gradients, and zg9 values
of 500 bootstrap replicates shown in green violin plots, curves and horizontal
lines, respectively.
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higher in treatment B while 5y was higher in treatment D (Table 1). Thus the mixture
362 of the two strains dispersed further, but imposed lower infection pressure on host plants
than the strain 3D7 alone. Estimated values ap = 13.5c¢m and aog = 21.4 ¢m fall close to
e the range estimated in spore dispersal experiments with artificial rain (Fitt et al., 1987).
The one-dimensional estimates of « (Table 2) correspond to half-distances 10.5 cm (strain
16 3D7) and 17.0 cm (strain mixture), which match well to the range of 6-16 cm reported
by Fitt et al. (1987). We conclude that experiments in controlled conditions translate
s well to the field conditions, at least when using simplistic one-dimensional fitting. The
dispersal occurred due to two short rain showers (Fig. B2). During a longer rainy period
;0 the spores may disperse in multiple splash events leading to longer average dispersal

distances and flatter disease gradients (Fitt et al., 1989).

Table 1: Best fitting parameters from fitting Eq. (7).

Treatment
-direction  « (95% CI), cm Sy (95% CI), pycnidia/leaf

A
-positive 2.5 99992
-negative 4.9 3518
-combined 2.6 99975

B
-positive 23.1 (15.9 - 37.5) 1271 (1052 - 1618)
-negative  20.0 (14.8 - 28.4) 1281 (1049 - 1586)
-combined 21.4 (16.7 - 28.6) 1271 (1095 - 1468)

D
-positive 15.3 (12.3 - 19.7) 1559 (1147 - 2112)
-negative 12.0 (9.3 - 15.5) 2387 (1613 - 3638)
-combined 13.5 (11.5 - 16.1) 1915 (1475 - 2430)

Note: Confidence intervals (CI) derived from bootstrapping, but not for biologically implausible
results of treatment A. Values of Iy were limited below 100 000.
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Figure 4: Visualization of one- and two-dimensional bootstrap tests, in histograms and
main panels, respectively. (A) Comparison between two directions in treat-
ment D. (B) Comparison between treatments D and B. Histograms show single
parameter distributions while heat maps and black dots show joint distribu-
tions (10 000 replicates). Observations (red line; red plus) in the 5% extreme
of the distribution (shaded area; outside of the dashed line), are considered
significant. The differences are significant between treatments (B) but not be-
tween directions (A). Black cross in panel (A) shows a hypothetical observation
where the difference would be deemed non-significant for each parameter sep-
arately (non-shaded area), but the joint test reveals a significant difference
(outside of the dashed line).
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sz Disease transmission

Besides the dispersal parameter, we were also able to estimate transmission rate of the
sra  disease. The fitting yielded estimates of 51y, from which we extracted § by dividing 51,
by estimates of Ip. We estimated Iy p = 227 pycnidia/leaf and Iy p = 249 pycnidia/leaf.
ss  Based on those we calculated Sp = 7.7 (unitless) and S = 5.6. Estimation of 3 was
only possible possible because we defined the scale parameter in a biologically meaningful
378 INANNer.
Parameter estimates for the strain 1A5 were not realistic. It is not biologically plau-
;0 sible that spores of the strain 1A5 would disperse by only 2-5cm, while spores of the
strain 3D7 spread some 14 cm, because pycnidiospores of the two different strains are
32 expected to have the same physical properties. Likewise, the transmission rate estimates
of 1A5 were unrealistically high (Table 1). However, we inferred the parameter 51, for
;s the strain 1A5 assuming that the physical process of spore transport via rain droplets
is the same for the two strains. Under this assumption (a4 = ap = 13.5cm), we found
6 that the dispersal of the strain 1A5 was isotropic (p = 0.38). Furthermore, with the two
directions combined, we estimated §1y = 349 pycnidia/leaf and 5 = 3.0 for treatment A
s ([p 4 = 118 pycnidia/leaf).
The transmission rates of strain 1A5 and the strain mixture were lower than that of
s00 strain 3D7 (1A5 vs 3D7: p = 1.00x 10™*, mixture vs 3D7: p = 0.0498). The intermediate
transmission of the strain mixture is likely the result of a combination of transmission
302 rates of the two strains. Strain 1A5 is known to produce fewer and smaller pycnidia
than strain 3D7 on cultivar Runal in greenhouse (Stewart et al., 2018). Our results in
;04 field conditions are consistent with previous findings, as 1A5 produced fewer pycnidia
within the source area (Fig. 3 A) and had a lower estimate of the transmission rate.
396 In this study system, the infectivity depends on weather conditions (Henze et al.,

2007). Also, the disease levels within the source source and along the disease gradient
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38 were measured only on highest leaves, but dispersal occurred likely to and possibly from
the lower leaf layers, which were not included in our analysis. Hence, the reported
a0 transmission rates should be considered relative to each other rather than as absolute

values.

w2 Genotyping

In total, 153 individuals of Z. tritici were isolated from separate pycnidia on the leaves
awa collected from the experimental plots and genotyped using targeted PCR-primers (Ap-
pendix C). The genotyping of the re-isolated strains supported the conclusions drawn
ws from the phenotypic data. (i) The strains spread out from the source area; we detected
them on the measurement lines (9 isolates out of 19 were detected as strain 1A5 at x4
ws on treatment A, 45/55 as 3D7 on treatment D). (ii) There was a decreasing disease
gradient; proportion of putative 1A5 and 3D7 isolates was lower further away from the
a0 inoculation area (2 4 37 (1A5 + 3D7) out of 49 isolates at x4 vs 14 8/30 at z13, on
treatment B). (iii) The strain 1A5 was transmitted less successfully than 3D7; propor-
a2 tion of the putative 3D7 strain individuals in treatment D was higher than proportion
of 1A5 individuals in treatment A (see (i)) and the same effect was visible in treatment

aa B (see (ii)). Thus, the genotypic and phenotypic data were in agreement.

How good are the simplifications?

a1 Simplifying the analysis of dispersal data by reducing the source and the destination
to one dimension or even to points allows for simpler and faster calculation than in
ss  the two-dimensional analysis. However, these simplifications may lead to less accurate
estimates of parameters. We compare the simplifications used based on (i) accuracy of

220 the estimates, (ii) effect on statistical tests, and (iii) computational time.
(1) The values of parameter « were higher in one- than in two-dimensional approach

a2 (Table 2). If one would use the parameter estimates derived with one-dimensional ap-
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proach (as found in literature) in a two-dimensional model, the dispersal would be over-
s24  estimated as the values of « tend to be higher. This overestimation relates to the general
“fattening” of disease gradients from extended sources. Compared to a point source, an
w26 extended source contributes to the gradient mostly through the tail of the dispersal ker-
nel, which tends to be more flat than the beginning of the kernel. When an extended
w8 source is considered as a point, the flattening effect of the source geometry is accounted
for in larger estimates of the width of the kernel.
430 On the other hand, the relationship between the population spread and dispersal pa-
rameter « is different between one- and two-dimensional models. This difference becomes
a2 clear for example when dispersal is described based on “mean dispersal distance” which
is a for one-dimensional exponential kernel but 2« for two-dimensional. In treatment
i3 D, the corresponding mean dispersal distances are 2asp = 27cm and a;p = 15¢m -
a considerable difference. Clearly, a one-dimensional model of dispersal should not be
i3 used for deriving dispersal distances on a population level. One should also be careful
not to confuse the half-distance of an exponential dispersal location kernel with median
s3s  dispersal distance of the population (see Appendix A).
(ii) All the statistical tests based on the bootstrap replicates gave similarly significant
a0 Or non-significant results for one-dimensional and two-dimensional parameter estimates.
(iii) Regarding the computational time, one-dimensional fitting of the disease gradient
w2 based on Eq. 9 to 100000 bootstrap replicates was easily performed on a PC in a
few hours, while fitting the two-dimensional function (Eq. 7) required a few days of
sa computational time for only 10000 replicates. When using the most complex function
with two area integrals [Eq.(6)] it took more than 12 hours on a PC to obtain the

me estimates for only the observed data with one replicate.
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Table 2: Comparison of parameter estimates between different functions.

Treatment B Treatment D
Equation a, cm - f[ly, pyen./leaf  «a, cm S, pycn./leaf
Eq. 6, 2D extended destination 21.4 1265 13.5 1889
Eq. 7, 2D line destination 21.4 1271 13.5 1915
Eq. 10, 1D extended destination  24.6 1123 15.1 1994
Eq. 9, 1D point destination 24.6 1131 15.1 2031

Note: Estimates from using the combined data of the two directions. “2D” and “1D” stand for two-

and one-dimensional models, respectively.

Discussion

ws  We propose an approach for estimating dispersal kernel parameters, where the source
geometry is explicitly incorporated in the model. This provides a solution for correcting
0 inaccurate estimates caused by unjustified simplifying assumptions (See Fig. 1 and Table
2). This approach also provides a quantitative answer to the question “By how much
ss2 and in which way does the source geometry affect the observed dispersal gradient?”,
instead of more qualitative statements regarding the “flattening” of the gradient with
ssa a larger source (Zadoks and Schein, 1979; Ferrandino, 1996; Cousens and Rawlinson,
2001). Using our method, we are able to relax the requirement of having a point source
w6 1n a dispersal experiment. This helps designing experiments by increasing the power
of the source and consequently the amount of collected data, which may be a limiting
w8 factor in many systems. With our approach, one can use results acquired from different
experimental designs (e.g. those cited in Fitt et al., 1987) to estimate dispersal kernels
w0 1n each case. Those can then be compared to each other directly, in contrast to dispersal
gradients that reflect differences in experimental designs and cannot be compared if the
w62 designs are different. Most importantly, our approach allows to estimate actual kernel
parameters in a much wider range of empirical studies than it was recognized previously,
w64 that includes all studies with spatially extended sources. In this way, “we can move from

descriptions of pattern to a grasp of process” (Bullock et al., 2006).
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ws  We show, with simulations (Fig. 1) that different source geometries may lead to similar
gradients when the kernel is either memoryless or separable. However, most kernels
ss  are neither memoryless nor separable, and thus distortions of the gradient shape are
expected with varying source geometry. In any case, such simulations can be used when
w0 planning an experiment to guide the experimental design and to test predicted outcomes.
Simulated outcomes of an experiment can also help to determine when the source can be
a2 considered a point and what kind of errors this simplification may introduce. Clearly, our
two-dimensional models of dispersal are simplifications of the three-dimensional process
aa (e.g. Vidal et al., 2018). If the third dimension is of great importance, as perhaps in
aquatic environments or with tree canopies (Cousens and Rawlinson, 2001), modeling of
are  source geometry and dispersal processes in three dimensions may be necessary.
We used this approach to analyze the data we acquired on Z. tritici, showing how
wrs  different simplifying assumptions lead to different results. The explicit consideration of
source geometry allowed us not only to estimate kernel parameter o but also a biolog-
a0 ically relevant transmission rate (3, instead of a meaningless normalization factor. Our
experiment was conducted using an artificial experimental design with passively dispers-
w2 Ing organisms, but similar approach can be used in observational studies in nature and
with actively dispersing organisms whenever the source area can be characterized and
ssa  the dispersal process can be described with the help of dispersal kernels.
In the common case of anisotropic dispersal (Soubeyrand et al., 2007), the validity
w6 Of the simplifications based on separability or memorylessness of the specific functional
forms of kernels, will generally not hold. However, the more general integration method
s that we presented can be modified to take into account the anisotropy of the kernel.
In the modified model, the probability of dispersal from a source point to a destination
w0 point should depend not only on the distance between the points, as in our case, but

also on the direction from the source to the destination. In this way, also anisotropic
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a2 dispersal kernels can be inferred from measurements of dispersal gradients with the
explicit consideration of the source geometry.
404 Our theoretical analysis shows that most pronounced differences between the dispersal
gradients originating from different source geometries appear close to the source, while
ws at larger distances from the source these differences disappear (Fig. 1B, C, D). The
effect is seen in each of the three very different types of kernels, indicating that it is
s0s @ universal feature. Therefore, even when the size of the source is much smaller than
the gradient length, it could be that the size of the source is still comparable to the
so0 characteristic dispersal distance (i.e., the distance over which the dispersal kernel changes
substantially). In this case, measurements close to the source will be substantially
so2 distorted due to the finite area of the source. Therefore, simple rules of thumb stating
that to be considered as a point, the size of the source should be smaller than 1% of the
soa length of the gradient (Zadoks and Schein, 1979; McCartney et al., 2006), can be quite
misleading, and result in inaccurate estimates of dispersal parameters. This emphasizes
sos the importance of explicit modeling of the source geometry as we have done it here,
considering that it is often the case that most measurements are conducted close to the
sos  source even when the overall gradient is long (Werth et al., 2006; Skarpaas and Shea,
2007; Loebach and Anderson, 2018).
s0 Experiments that measure dispersal are difficult and laborious (Bullock et al., 2017).
Geometry of the source, location of sampling areas, amount of sampling at different
si2 locations and other components of the experimental design may have a large effect on
the precision and generalizability of the results. We support Skarpaas et al. (2005)
s+ calling for optimization of dispersal study designs by simulations, to make the most out

of the effort.
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= Appendix A: Dispersal distance kernel

Dispersal distance kernel. Dispersal kernels are not only used to describe distribu-
s26 tions of locations of dispersed individuals, but also to summarize dispersal distances,
such as mean distance travelled. Dispersal distance kernel is a one-dimensional func-
s28 tion describing the probability of individuals to end up at a certain distance from the
source. It can be derived from a two-dimensional dispersal location kernel by integrat-
s30 ing it around the source, essentially by multiplying it with 27r (Nathan et al., 2012).
The shape of the dispersal location kernel can differ substantially from the shape of the
s22  dispersal distance kernel (e.g. Cousens and Rawlinson, 2001; Nathan et al., 2012). The
dispersal distance kernel corresponding to exponential dispersal location kernel is given
s34 by
o/ re—T/a ph=lp—r/a

Gra?) ~ o o) PP (A1)

Kedist(1) = 277

s3  where I'(2) = 1 is the gamma function. Equation (A1) gives the one-dimensional gamma-
distribution with the shape parameter k = 2 and the scale parameter a.

538 It is important to keep in mind that means and medians of dispersal location kernels
do not generally correspond to means and medians of population dispersal distances

sa0  (i.e. means and medians of dispersal distance kernels). The example of the exponential
kernel is of particular importance, as this kernel is often described with the half-distance.

sa2  Considering the one-dimensional exponential kernel, the dispersal parameter « gives the
mean and aIn(2) (half-distance) gives the median of the distribution. However, in the

sasa case of the two-dimensional exponential location kernel the mean dispersal distance is
not o but 2« (i.e. mean of the gamma-distribution in Eq. (A1)). Furthermore, median,

sa6  Or any percentile, of the dispersal distance distribution can be determined by solving the
equation

TL
548 / ’fe,dist(r)dr =0.01L (A2)
0
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where z7, is the L™ percentile of dispersal distance (L € [0,100]). After integration, the
ss0  Eq. (A2) reads
et/ (14 25) =12 001L, (A3)
a

52 We solve Eq. (A3) numerically to obtain the median dispersal distance x5 ~ 1.7ac >
0.69a ~ In(2)a. Considering the limits of population dispersal, Golan and Pringle
ssa (2017) defined 99th percentile of the dispersal distance distribution as a limit for the
long-distance dispersal in fungi. At L = 99, we find x99 ~ 6.6cx. These numbers have
sse  applied relevance, for example in conservation biology or in precision agriculture when a
treatment is targeted to a certain fraction of a dispersing population. Mean or median
sss  dispersal distances or other characteristic numbers should be determined using the two-
dimensional location kernel and the corresponding distance kernel.
sso  The limit of long-distance dispersal (zg9, Eq. (A3)) corresponding to observed values
of avis 90 cm for treatment D and 142 cm for treatment B. In an agricultural field, a visible
sz disease focus (Zadoks and van den Bosch, 1994) and significant host damage (Shaw and
Royle, 1993) would occur close to the source due to higher density, while the edge of the
sea population is likely to incur less damage because of lower pathogen density. This hidden
pathogen population in the tails of the distribution should be taken into account when
ses  attempting spatially targeted treatments, for example in precision agriculture involving

focal fungicide spraying.
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« Appendix B: Field experiment

The study system

st0 - Zymoseptoria tritici (formerly Mycosphaerella graminicola) is a major fungal pathogen of
wheat in temperate areas (Jorgensen et al., 2014; Dean et al., 2012). Tt causes the disease
s72 Septoria tritici blotch (STB), which is visible as brownish lesions on wheat leaves. The
lesions reduce the photosynthetic ability of the host and cause yield losses of 5-10%, even
s7a  when resistant cultivars and fungicides are used in combination. Annually in Europe
some 1.2 billion dollars are spent for fungicides mainly aimed to control STB (Torriani
s7e et al., 2015).
Infection by Z. tritici begins when spores deposited on wheat leaves germinate and
s7s  penetrate the leaves through stomata (Kema et al., 1996). The fungus grows in the
apoplast for several days without visible symptoms (Duncan and Howard, 2000). In
sso  optimal conditions, necrotic lesions appear in the invaded host tissue after about ten days
and asexual fruiting bodies called pycnidia begin to form (Kema et al., 1996; Duncan
ss2 and Howard, 2000). Asexual pycnidiospores ooze from pycnidia within water-soluble
cirri and are spread mostly by rain splash. If a spore falls within the wheat canopy and
ssa stays on a healthy leaf instead of being washed down, it can infect new host tissue either
on the same or on the neighbouring plants. Upon successful infection, the spore again
sss creates a lesion and produces new pycndia within the lesion. The pathogen undergoes
several rounds of asexual reproduction per growing season. Zhan et al. (1998, 2000)
sss  estimated that ~66% of infections on flag leaves came from asexual spores, leading to
conclusion that asexual reproduction is the most important source of infection on flag
so0 leaves.
Initial inoculum by air-borne ascospores is often considered uniform across a wheat

se2 field and not a limiting factor for epidemics (Morais et al., 2016). Therefore, much of
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interest has been on vertical dispersal of the spores from initial infection of seedlings to
soa emerging leaf layers (Shaw, 1987; Lovell et al., 1997; Bannon and Cooke, 1998; Lovell
et al., 2004; Vidal et al., 2018). Interaction between the pathogen and the host has been
ses described by Robert et al. (2018) as a race, where the pathogen need to “climb” up to
the next leaf layer before current layer becomes senescent and its resources are depleted.
ses Lhe plant, in turn, “tries” to save the newly emerging leaves making them escape the
infection by fast stem elongation.
600 However, horizontal dispersal greatly influences the ability of a particular clonal lin-
eage to grow in numbers and can play a major role in the dynamics of emerging fungicide
02 resistance or ability to overcome host resistance genes. Resistance gene pyramids or ho-
mogeneous host cultivar mixtures may select for multiple virulences in a single pathogen
sos strain. Thus, spatial adjustment of control strategies has been suggested as a potentially
more sustainable solution and optimal spatial scale of such heterogeneity is determined
s0s by the spatial scale of the pathogen’s horizontal spread (Mundt and Browning, 1985;
Brophy and Mundt, 1991; Newton et al., 2009; Sapoukhina et al., 2010; Newton and
s0s  Guy, 2011; Djidjou-Demasse et al., 2017). Dispersal of Z. tritici or similarly spread-
ing species Parastagonospora nodorum (formerly Septoria nodorum) has been studied
s10 in controlled conditions using either infected straw or spore suspension together with
artificial rain and often spore traps (Brennan et al., 1985; Saint-Jean et al., 2004; Vidal
s12 et al., 2017). Bannon and Cooke (1998) studied the effect of wheat-clover intercrop on
dispersal from plates via artificial rain and merely noted a reduction of dispersed spores
s1a at the 15cm distance. No experiment has so far been conducted in field conditions to
estimate parameters of dispersal kernel of the disease spread from infected plants to the
s16 surrounding healthy canopy.
Spatial spread directly influences the number of new hosts that a pathogen can poten-

s1s tially invade and it also affects the spatial distribution of the pathogen population. For a
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polycyclic pathogen, such as Zymoseptoria tritici, small differences in monocyclic spread
s20 can result in considerable differences in the epidemic outcomes after multiple disease cy-
cles. Thus, understanding the mechanisms and the scale of the spread will improve our

s22 ability to predict and control potentially disastrous epidemics of the disease.

Plant materials and agronomic practices

s2«  The experiment was performed at the Field Phenotyping Platform (FIP) site of Eschikon
Field Station of the ETH Zurich, Switzerland (Kirchgessner et al., 2017). Experimental

s2s plots were sown with winter wheat (Triticum aestivum) cultivar Runal on 1 November
2016. Sowing density was 440 seeds/m? and the observed stem density on 19 June 2017

s was 730 stems/m?. Field maintenance included herbicide Herold SC (0.6 1/ha; Bayer)
on 2 November 2016, and stem shortener Moddus (0.5 1/ha; Syngenta) on 13 April 2017.

s30 Fungicide Input (1.25 1/ha; Spiroxamin 300 g/l, Prothioconazol 160 g/l; Bayer) was
applied on 13 March 2017 to suppress the background infection.

632 Similar experiment was prepared also at the facilities of INRA Bioger in Thiverval-
Grignon, France (coordinates: 48.840N, 1.952E). The experimental design was similar

3« with minor modifications. Due to unconducive weather conditions the inoculation failed

to produce measurable primary disease gradients. Therefore, the data is not presented.

s Experimental design

The experimental plots were 1.125m x 4m rectangles consisting of nine long rows of
s3s  wheat with 12.5cm spacing between the rows. Plots were randomly assigned to four
treatments with five replicates of each treatment as shown in Fig. B1. The four treat-
ss0 ments were: inoculation with strain ST99CH _1A5 (short identifier 1A5, treatment A),
strain ST99CH _3D7 (3D7, treatment D), both strains (B) and no inoculation (C).

sa2 Strains were collected in Switzerland in 1999 as described by Zhan et al. (2002) (see also
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www.septoria-tritici-blotch.net /isolate-collections.html).
644 In each plot, there was a 40 cm-wide inoculated area across the plot in the middle.
Disease measurements were conducted in the middle of the inoculated area (zo = 0cm)
sss and at eight locations outside of the inoculated area, four on each side at distances
ry1 = £40cm, r4o = £60cm, r43 = £80cm and z44, = £120cm from the center of
sas the inoculated area (see Fig.2 A). A measurement line consisted of a line across the
experimental plot at the given distance, extended with 5 cm margins along the plot and
eso excluding 12.5 cm borders at the edge of the plot to reduce edge effects. Measurements

were conducted uniformly over space in the rectangular area of each measurement line.

2 Z. tritici inoculation

Inoculum was prepared by growing the fungus for seven days in yeast-sucrose-broth
esa (https://dx.doi.org/10.17504 /protocols.io.mctc2wn). The liquid culture was then fil-
tered, spores were pelleted in centrifuge and re-suspended into sterile water to harvest
ese  blastospores. The washed spore suspension was diluted to achieve the concentration of
10% spores/ml. For treatment B the final spore concentration was 10° spores/ml so that
ess each strain was present with the concentration of 5 x 10° spores/ml. Finally, we added
0.1% (v/v) of Tween20 and kept the inoculum suspension on ice until spraying.
660 Inoculation was performed by spraying 300 ml of the spore suspension onto the inoc-
ulation site of each plot using a hand-pump pressure sprayer. The plots were inoculated

se2 during the late afternoon to avoid direct sunlight. All treatments were inoculated with

& North-West + - South-East =

Figure B1l: Arrangement of the plots in the field.
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Figure B2: Weather conditions during the experiment. Daily precipitation in the blue
bars, daily mean temperature in the red line, dates of inoculation, sampling
dates ty and t; are shown using vertical lines.

the same sprayer, which was rinsed with water and 70% ethanol to clean all parts before
se4 inoculating each treatment. Entire canopy within the inoculation area was inoculated
until runoff. During spraying, the inoculation area was bordered with plastic sheets to
ses avoid the spillover of the inoculum to other plots. After spraying, the border sheets were
folded over the canopy to enclose the plants in plastic tents maintaining high humidity
ses overnight. The tents were removed early next morning to avoid overheating of plants.
The inoculation was repeated next evening in the same manner. Pictures of inoculation

s70 are shown in Appendix D.
First attempt to inoculate was made on 5 and 6 April, when F-3 layer (the third leaf
ez layer below flag leaf) was mostly emerged (approximate growth stage, GS 22, Zadoks
et al. (1974)), and inoculation success was assessed on 24 April and again on 3 May.
sa  Due to cold weather the inoculation success was extremely low: we observed low levels
of disease in the F-3 leaf layer and the plants were in the beginning of stem elongation
s (F-1 emerging, GS 35). Average incidence in F-3 layer in the inoculated area 3 May was
6.1%, 2.9%, 0% and 4.9% for treatments A, B, C, and D, respectively. We considered the

e7s inoculation as failed, because the secondary spread from such low initial infection levels
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would likely cause only negligible gradients and due to stem elongation and senescence
sso the highest leaf layers would likely escape the spread (Robert et al., 2018). We decided to
inoculate again the higher leaf layers to achieve stronger, measurable disease gradients.
ss2 Dates of this main inoculation were 17 and 18 May 2017, when flag leaves had already

emerged (GS 39-41).

« Assessment of the disease gradient

The disease assessment combining incidence and severity measurements was performed
sss twice. At 5, on 14 June 2017 (GS 70) only the inoculation areas were assessed to
confirm the success of inoculation across the measurement line zy. Flag leaves outside
sss the inoculation area were visually confirmed to be healthy without further assessment.
At t; on 4 July 2017 (GS 85) all measurement lines of treatments A, B and D were

soo sampled. One line on each plot of treatment C was assessed for reference.
At ty, incidence of the disease was measured at the leaf scale in the following manner.
s02 Thirty to forty straws were inspected on each measurement line. The highest diseased
leaf layer was recorded for each straw. The leaves lower than that were assumed to
sosa be diseased as STB is usually more prevalent in the lower leaf layers. Additionally,
naturally senescent leaf layers were recorded. In this way, incidence was estimated for
sos all non-senescent leaf layers. After estimating the incidence, eight infected leaves were
collected from up to two consecutive leaf layers that had incidence higher than 20%. The
sos collected leaves were then mounted on paper sheets and scanned with 1200 dpi resolution.
The resulting images were analyzed using automated image analysis method measuring
700 two aspects of severity of the infection that represent the host damage and pathogen
reproduction, as described in Karisto et al. (2018). Host damage was measured as the
702 percentage of leaf area covered by lesions (PLACL) and pathogen reproduction as the

pycnidia count per leaf. The sampled leaf layers at t, were the flag leaf layer (F) and
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704 the layer below it (F-1).
At tq, the plants were already mostly chlorotic and hence the incidence measurement
706 was not possible in the field. Instead, we collected about 24 leaves from each mea-
surement line at random. The leaves were taken into lab and each leaf was visually
708 inspected for the presence of pycnidia. Incidence was recorded based on the presence of
pycnidia on the collected leaves and only leaves with pycnidia were scanned for severity
710 measurement. Due to vast chlorosis, the measurement of host damage was considered
unreliable and only pathogen reproduction was used in the subsequent analysis. Thus,
712 we measured the disease intensity as numbers of pycnidia per leaf.
We estimated number of asexual reproduction and dispersal events between t;, and
714ty using the following arguments. First, based on the data from Shaw (1990) regarding
latent period lengths of Z. tritici at different temperatures (as revisited in Karisto et al.
76 (2018), Fig. A1), latent period after inoculation was approximated to be longer than 20
days (average daily temperature during first 19 days was 19°C). Thus, there was likely
71e no spread from inoculation area during the rainy period at 13-17 days after inoculation
(dai) (Fig.2). This was confirmed with visual assessments of the inoculation areas on
70 8 June (22dai), when we observed few tiny lesions and mostly no pycnidia, concluding
that substantial spread had not been possible by then. Second, at t, (28 dai) there was
722 substantial disease (Fig.3 A) in the inoculation areas and there were two strong showers
in the night after ¢5. Third, there was no rain for one week before nor after ty. Thus, we
724 conclude that there was most likely only one asexual spread event at ¢y, which caused
the disease gradients outside of the inoculation areas at ¢; (38 dai).
726 In summary, the inoculation was successful and led to increased levels of disease in the
inoculation areas after a latent period of 3—4 weeks, at ty. Three weeks later, at ¢; there
78 were clearly visible symptoms outside of the inoculation area. The observed symptoms

at t; can be entirely accounted to the raining event and consequent asexual spread of

37


https://doi.org/10.1101/789156
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/789156; this version posted October 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

730 the pathogen at .

Discussion of experimental aspects

722 Measurement of pathogen population, not host damage. Our estimates of disper-
sal kernel correspond to the effective dispersal of the pathogen population, instead of
73a  the basic dispersal kernel of all spores. Difference between these may arise from possibly
density-dependent post-dispersal mortality (Nathan et al., 2012; Klein et al., 2013). At
736 high spore densities, that can be found close to the source, leaves can become saturated
with the infection leading to a decreased infection efficiency of spores (Karisto et al.,
728 2019). In the tail of the distribution the density is however so low, that saturation may
not be a major factor. Dispersal of spores could be measured with spore traps placed
70 within the canopy. However, that would leave open how many of the spores actually at-
tach to healthy plants, how many of them are successful, and how much the established
72 population disperses. Using healthy plants as spore traps leads to the measurement of
a more epidemiologically relevant combination of dispersal and infection processes.
744 Measurement of pathogen reproduction in terms of numbers of pycnidia per leaf gives
us a proxy of the pathogen population size at each measurement point. Traditionally,
e plant diseases are observed visually based on host damage, but novel methodology allows
for a different approach. While host damage is an important agronomic factor, pathogen
ng reproduction is more relevant for pathogen ecology and evolution. Moreover, pathogen
reproduction is more powerful than host damage for predicting the host damage at a

750 later time point (Karisto et al., 2018).

Sampling distances. The measurement lines were at closest 20 cm (£5cm) from the
752 edge of the inoculated area. Measuring the gradient closer to the source and even inside
the source could make the fitting more accurate, because differences between gradients

7sa  would be easier to detect closer to the source area where variations are more pronounced.
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However, closer to the source, the reliability of data might suffer from saturation and
756 also from dispersal via direct contact (Fitt et al., 1989). Optimal measurement distances
have to be determined for each study system based on biological understanding and prior

s knowledge about the dispersal kernel.
We measured the disease also inside the inoculation area, but those were excluded
70 from fitting to include only secondary infections. The increase in the disease intensity at
xo from ¢y to t; was not only due to secondary infections but also from extremely long
762 latent periods (Karisto et al., 2019). Additionally, possible saturation was strongest at
xo. Therefore, measurement of newly spread infection was not possible inside the source

764 alea.
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Appendix C: Genotypic test with PCR

766 Primer design. We designed four primer pairs targeted at each of the two strains. The
primers were aimed to be first fully specific for the target isolates 1A5 and 3D7 within
s the set of four commonly used lab strains 1A5, 1E4, 3D1, 3D7 and second as specific
to the target strain as possible in the field. Specificity here means that the primers
770 designed for 1A5 should produce an amplicon in PCR only with 1A5 genome and not
with other strains. Strain specific primers would allow for a convenient detection of the

72 focal sub-population after the experiment as in a mark-recapture experiment.
To design the primers, we used presence-absence data of predicted genes from Hart-
7z mann and Croll (2017). We chose target regions that were present in the target strain
(either 1A5 or 3D7) and absent in the other three isolates (1E4, 3D1, and either 3D7
776 or 1A5). From those potential targets, we selected ten least frequent regions in the 27
Swiss isolates analyzed by Hartmann and Croll (2017). After selecting the target re-
778 gions, we designed four primer pairs that would be suitable for high throughput qPCR
in same conditions: amplicon length 100-150 bp, melting temperature around 60 °C. The
70 primers were designed to amplify regions in different chromosomes of the target strain
to minimize the possibility of finding all of them in a single strain in the field. Details

782 of the designed primers are given in Table C1.

Validation of primer specificity. First validation of the primers was done with qPCR
7a among the four strains 3D7, 1A5, 3D1 and 1E4 (Tables C2 and C3, Figures C1 and C2).
Successful amplification of the target DNA and no amplification on non-target DNA
6 suggested that each of the eight primer pairs was specific to their target strain among
the four strains, indicating successful primer design based on the genomes.
788 Primers’ specificity was then validated in a natural population using multiplex-PCR

(Table C4, Table C5) combining each specific primer pair with a primer pair that is
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Table C1: Primers

Primer Sequence (5’-3) T, (°C)  Amplicon (bp)
1A5.5 FWD  AGC AGT CCT CGT AGC ATA ACG 59.93 135
1A5.5 REV GAC CTC CTA TGA TGC GGC AA 59.89
1A56_FWD GGG AGG CCC TGG TTG ATT AC 60.11 135
1A5.6_REV CTT GTA AGA GCG AGG GGC AA 60.04

1A5.9 FWD TTC TCT CTA TAG CCC GCC CT 59.52 137
1A59 REV GAG TAG ACT CTA GAG GAA ACCTAGT  58.11

1A5.10 FWD CTC GGC CAG GAA GTG ATT GT 60.04 137
1A5.10_REV ~ GAG CAG TGG AGC CCA AGA AT 60.03

3D7.2 FWD  CGA CAT CGG TTC AGA GAT GGA A 60.16 146
3D7.2_REV ~ GTA CCT TCG ATT CGT GCG GT 60.46
3D7.6_FWD  CTT GGG TGC AAT GAA CGG AC 59.76 139
3D7.6_REV ~ TGA GAA ACA GTC GTG TGG CA 59.82
3D7.9_FWD  CAG CTC GAC TTG TGA GTC CT 59.4 136
3D7.9_REV ~ CGT GCA AACGCT GCATGAT 60.15
3D7.10_FWD GGT GCC CTC GTC GGA ATA C 60.23 123
3D7.10_REV  TTG GGG AAG GAG ACC ATT CG 59.38

Zt_gen FWD ATT GGC GAG AGG GAT GAA GG 60.5 101
Zt_gen REV ATT TTC GTG TCC CAG TGC GTG TA 60.5

Note: Primer name starts with the target strain followed by chromosome number, except for Zt gen
primers. The latter designed by Duvivier et al. (2013).

Table C2: qPCR reaction mix, 20ul

Reagent Concentration Volume (ul) Final concentration
Water 6

EvaGreen Mix X 4 1X
Strain.Chr  FWD 1uM 2 200nM
Strain.Chr  REV 1uM 2 200nM
Target DNA Ing/ul 6 6ng/20ul

Note: We used gPCR mixture HOT FIREPol EvaGreen qPCR Mix Plus (ROX) (Solis BioDyne).

790 specific to Z. tritici generally (Zt _gen primers) (Duvivier et al., 2013). Zt_gen provided
a positive control for success of the PCR: if it created an amplicon, the reaction was
792 successful. Primers were tested against 37 natural strains isolated from the control plots
of the experiment. Reaction with primers 1A5.9 did not work reliably, indicated by the

704 lack of Zt _gen amplicon. Numbers of false positives for other primer pairs were 4, 8, 20,
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Table C3: qPCR reaction cycles
Step Temperature (°C) Time (s)

1 95 900
2 95 15
3 60 20
4 72 20

Note: Steps 24 repeated 40 times

Table C4: PCR reaction mix, 20ul

Reagent Concentration Volume (ul) Final concentration
Water 6.34

KAPA Buffer 2X 10 1X

Zt _gen FWD 10uM 0.5 250nM

7t _gen REV 10puM 0.5 250nM
Strain.Chr_ FWD ouM 1 250nM
Strain.Chr  REV opuM 1 250nM
KAPA3G Polymerase 2.5U/ul 0.16 2U/100pul
Spore solution 10*-10%sp/ml 2

Note KAPA3G Plant PCR Kit (Kapa Biosystems).

Table C5: PCR reaction cycles
Step Temperature (°C) Time (s)

1 96 180
2 95 20
3 60 15
4 72 15
5 72 30

Note: Steps 2—4 repeated 35 times.

13, 12, 7 and 6 for 1A5.5, 1A5.6, 1A5.10, 3D7.2, 3D7.6, 3D7.9 and 3D7.10 respectively
76 (Figures C3, C4, C5, C6, C7, C8, C9, C10). Importantly, none of the false positives of
1A5.5 and 1A5.6 overlapped with each other, hence using combined data of those two
798 gave no false positives. The six false positives of 3D7.10 were amplified with all the
other 3D7-primers and none of the 1A5 primers. Thus, it is possible that they were the

soo actual strain 3D7 either left on the field from previous years of field experiments or it

42


https://doi.org/10.1101/789156
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/789156; this version posted October 1, 2019. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

1A5.5

1A5.6

14.0] o
13.0] '
1201 12.04
11.04
§11.D’ §1DD—
E 100 U
$ 90 § 90
& s $ 8
% 7.0 % 7.0
] E.[H £ 5.0
£ 50 2 50
4.0 4.0
30 oy -
20 e e -
1i3587 11 15 19 1357 11 15 13 24 28 32 37
Cycles Cycles
15.04 16.0
144 15.H
13.04 14.0]
= 120} = 130]
511,0— 512.0—
2 2 11.0]
g'lﬂ.ﬂ' =
g a0 g 2
§ 7o g i
u_g. Eﬁ u_g_ 5.0
- 5.
4. 4.
3 A
== = 2. —
1357 11 15 13 24 28 32 7 1357 11 15 13 24 28 322 a7
Cycles Cycles
Figure C1: Amplification plots of the 1A5 targeting primers in qPCR. The amplified

curves represent four replicates of 1A5, while the lower curves represent two

replicates of each of 1E4, 3D1, 3D7 and water.

was a spill-over from the current treatments.
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Figure C2: Amplification plots of the 3D7 targeting primers in qPCR. The amplified
curves represent four replicates of 3D7, while the lower curves represent two
replicates of each of 1A5, 1E4, 3D1 and water.
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Figure C3: Amplicons from Zt_gen (shorter) and 1A5.5 (longer). Isolate 1A5 as posi-
tive control and 3D7 as negative control. Plus and minus indicate successful

reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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Figure C4: Amplicons from Zt_gen (shorter) and 1A5.6 (longer). Isolate 1A5 as posi-
tive control and 3D7 as negative control. Plus and minus indicate successful

reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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Figure C5: Amplicons from Zt gen (shorter) and 1A5.9 (longer, not present). Isolate
1A5 as positive control and 3D7 as negative control. Zeros indicate that no
conclusions were drawn from the reactions, as the positive controls were not

amplified (*).

Test isolates

Test isolates
e

—— — — G

Figure C6: Amplicons from Zt_gen (shorter) and 1A5.10 (longer). Isolate 1A5 as posi-
tive control and 3D7 as negative control. Plus and minus indicate successful

reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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Figure C7: Amplicons from Zt _gen (shorter) and 3D7.2 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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Figure C8: Amplicons from Zt_gen (shorter) and 3D7.6 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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Figure C9: Amplicons from Zt _gen (shorter) and 3D7.9 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.

: Test isolates
3D7 B ... 3D7

1AS o e G S e e {AG

Test isolates

1A5 - ¢ e s 1

...-‘-4——------—“—---—‘-

Figure C10: Amplicons from Zt_ gen (shorter) and 3D7.10 (longer). Isolate 3D7 as posi-
tive control and 1A5 as negative control. Plus and minus indicate successful
reaction (Zt_gen amplicon) and presence or absence of target amplicon, re-
spectively.
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s Genotyping of the re-isolated strains. After validation, the primers 1A5.5, 1A5.6,
3D7.9 and 3D7.10 were chosen for genotyping the strains isolated from experimental
soa material. If both of the two primer pairs targeting either 3D7 or 1A5 showed amplifica-
tion, we called that a detection. On control plots, 6/37 strains tested were detected as
sos  3D7 (16% false positives) while 0/37 strains were detected as 1A5 (0% false positives).
On a plot of treatment A (replicate 1), 9/19 strains (47%) at x4, were detected as 1A5
ss  (Fig. C11). In contrast, on a plot of treatment D (replicate 1), 45/55 strains (82%) at
x4 were detected as 3D7 (Figs. C12, C13). Thus, frequency of 3D7 was higher than
s 1A5 outside the inoculation area, as implied by the disease gradients (Fig.3B). On a
plot of treatment B (replicate 1), at x4, 2/49 were 1A5 and 37/49 were 3D7 while x43
sz 1/30 was 1A5 and 8/30 were 3D7 (Figs. C14, C15 for 1A5, and Figs. C16, C17 for
3D7). As expected, the proportion of the target strains decreased with distance. Lower
s1a  proportion of 1A5 is likely a result of two-fold effect of weaker transmission: first, the
strain produced fewer pycnidia in the inoculation area (treatment B, replicate 1, at
sis to: 1AD 4/15, 3D7 10/15, Figs. C11, C12, C13) and second, those pycnidia multiplied

themselves with lower success.
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Figure C11: Amplicons from Zt_gen (shorter), 1A5.5 (longer, upper rows) and 1A5.6
(longer, lower rows). Isolate 1A5 as positive control and 3D7 as negative
control. First part of isolate labels consist of location (E = Eschikon), treat-
ment (e.g. A), and replicate (e.g. 1); second part contains measurement
line (x1 for x1); third, time point (T1 for ¢;); fourth, leaf layer (L1 = Flag);
and finally the isolate itself (e.g. 1A1: leaf 1, area A, isolate 1).
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Figure C12: Amplicons from Zt_gen (shorter), 3D7.9 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.
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Figure C13: Amplicons from Zt_gen (shorter), 3D7.10 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.
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Figure C14: Amplicons from Zt_gen (shorter), 1A5.5 (longer). Isolate 1A5 as positive
control and 3D7 as negative control. See Fig. C11 for label decoding.
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Figure C15: Amplicons from Zt_gen (shorter), 1A5.6 (longer). Isolate 1A5 as positive
control and 3D7 as negative control. See Fig. C11 for label decoding.
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Figure C16: Amplicons from Zt_gen (shorter), 3D7.9 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.

95


https://doi.org/10.1101/789156
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/789156; this version posted October 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Primers 3D7.10 & Zt_gen

Pk e TR IR p— - e -

0A1 0B1 1A1 1B1 3A1 3B1 9A1 9B1 10A1 11A111B1 12A1 15B116A117A1 19A1 22A1 22B1 23A123B123D1 0A1 1A1 3C1

EB1.X1.T1.L1 EB1.X-1.
- p—— A ‘ il

=" S

EESeosETEEsSe-—-tsmsrssessmmzm e —_—
6B1 7A1 7B1 8A1 8B1 8C1 8D1 9B1 10B1 11A1 11D1 12A1 12B113A1 13B1 13C1 14A1 14B1 15A1 17A1 17B1 19A119B121B1

EB1.X-1.T1.L1

= e -

pa—
=
Nt
a
—_—

- — -— - ———— — e — -
22A122B1 0A1 1B1 4A1 4B1 4C1 4D1 5B1 7A1 7B1 8C1 9A1 9B1 9D1 10A1 10B1 11A1 14A1 16A117B123A1 4A1 5A1

EB1.X-1. EBLX3T1.L1 EBL.X-3.
T1.8 . | T1.L1

1A5

- - SR E—— -
6A1 6B1 6C1 7A1 8A1 12A1 17A118A118B1

EB1.X-3T71.L1

Figure C17: Amplicons from Zt_gen (shorter), 3D7.10 (longer). Isolate 3D7 as positive
control and 1A5 as negative control. See Fig. C11 for label decoding.
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«« Appendix D: Pictures of inoculation

Figure D1: P. Karisto setting up the in-
oculation tent on one plot.

Figure D3: A. Mikaberidze spraying the
spore suspension inside the
tent to inoculate the canopy
of the source area.

822

820

Figure D4: A tent closed after inocula-
tion to maintain high humid-
Figure D2: Inoculation tent prepared. ity.
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