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Abstract
It is widely believed that cleavage-furrow formation during cell division is driven by the
contraction of a ring containing F-actin and type-11 myosin. However, even in cells that have
such rings, they are not always essential for furrow formation. Moreover, many taxonomically
diverse eukaryotic cells divide by furrowing but have no type-11 myosin, making it unlikely that
an actomyosin ring drives furrowing. To explore this issue further, we have used one such
organism, the green alga Chlamydomonas reinhardtii. We found that although F-actin is
concentrated in the furrow region, none of the three myosins (of types VIII and XI) is localized
there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug,
furrows still formed and the cells divided, although somewhat less efficiently than normal.
Unexpectedly, division of the large Chlamydomonas chloroplast was delayed in the cells lacking
F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain,
at least in part, the delay in cell division itself. Earlier studies had shown an association of
microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show
that at least the microtubule plus-ends are still associated with the furrows in the absence of F-
actin, consistent with the possibility that the microtubules are important for furrow formation.
We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core

process for furrow formation that was already present in ancestral eukaryotes.
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Introduction
Cytokinesis is the final stage in the cell-division cycle in which the cytoplasms and plasma
membranes of the daughter cells are separated. In unikonts [animals, fungi, slime molds, and
their close relatives], cytokinesis occurs by the symmetric or asymmetric ingression of a
"cleavage furrow" from the periphery of the cell. For 50 years, thinking about cleavage-furrow
ingression in these cells has been dominated by the contractile-actomyosin-ring (CAR) model, in
which bipolar filaments of myosin-1l walk along actin filaments (F-actin), much as in muscle, to
produce the force that pulls the plasma membrane in to form the furrow (1-4). Actin, myosin-II,
and functionally related proteins are clearly present in a ring that constricts during furrow
ingression in unikont cells (5-10), and there is good evidence both that this ring produces
contractile force (11) and that this force is required for normal cytokinesis in at least some cell
types (12-14).

However, there are also multiple observations that are difficult to reconcile with the CAR
model, at least in its simplest forms. For example, in mammalian normal rat kidney (NRK) cells,
local application of the actin-depolymerizing agent cytochalasin D to the furrow region
accelerated, rather than delayed, furrowing (15, 16). Moreover, equatorial furrows could form in
NRK cells while myosin-11 was inhibited by blebbistatin, so long as the cells were attached to a
substratum (17). Additionally, motor-impaired myosin-Il was able to support a normal rate of
furrow ingression in mammalian COS-7 kidney-derived cells (18). In addition, myosin-II null
mutants are viable and can divide some microorganisms. In the amoeba Dictyostelium
discoideum such mutants form equatorial cleavage furrows when growing on a solid substratum
(19-22), and in the budding yeast Saccharomyces cerevisiae, the mutant cells complete division

even though they fail to assemble an actin ring at the division site (9). Although cytokinesis of
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4
the yeast mutants is inefficient, it can be almost completely rescued by expression of the myosin-
Il tail domain, which is incapable of generating force by myosin-actin interaction (23, 24). In a
final example, modeling indicates that the actomyosin ring cannot provide more than a fraction
of the force needed to drive furrow ingression in the face of intracellular turgor pressure in the
fission yeast Schizosaccharomyces pombe, and pharmacological disassembly of F-actin after
initiation of furrowing did not inhibit further furrow ingression (25).

The limitations of the CAR model become even more apparent when cytokinesis is viewed
in a phylogenetic and evolutionary perspective. For example, most cells in plants divide by a
mechanism (centrifugal cell-plate growth mediated by the microtubule-based phragmoplast: 26-
29) that seems completely different from the cleavage-furrow ingression of unikonts, although
the two groups have a common ancestor. Moreover, except for the plants, some types of algal
cells, and some intracellular parasites, all non-unikont cells that have been examined divide by
cleavage-furrow ingression (30-39) although they lack a myosin-Il, which appears to be
conserved only in the unikont lineage (40-43) [with the interesting exception of a myosin-II in
the Excavate Naegleria gruberi (44)]. There is very little information about the mechanisms by
which such furrows form, although some non-unikont cells have been reported to have actin
localized in the developing furrows (33, 34, 36, 37, 45-51), raising the possibility that actin
might have a role that predates and is independent of myosin-II.

Taken together, these and other observations (27, 52) suggest that the earliest eukaryotes
[and the last eukaryotic common ancestor (LECA)] had a mechanism for cleavage-furrow
formation that did not involve a CAR, although it might have involved actin. Importantly, such
an ancestral mechanism could still exist as the underpinning for the seemingly diverse modes of

cytokinesis seen today. To explore the nature of this postulated mechanism and the role of actin
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5
cytokinesis, we are studying the green alga Chlamydomonas reinhardtii, which divides by
furrow formation (30, 53, 54; this study) but has no myosin-Il (55, 56). We report here that
cleavage-furrow formation in this organism does not require F-actin or any of its three non-type-
Il myosins. In contrast, our observations are consistent with earlier reports (30, 53, 54)
suggesting a possible role for microtubules in furrow formation. Our results also suggest a

previously unappreciated role for F-actin in chloroplast division.

Results
Live-cell observations of cleavage-furrow ingression. Previous descriptions of cytokinesis in
Chlamydomonas have been based on light and electron micrographs of fixed cells (30, 53, 54).
To observe the process in living cells, we expressed the plasma-membrane ATPase PMH1 (57)
tagged with mNeonGreen (mNG) and observed cells by time-lapse microscopy. As expected,
cleavage furrows ingressed primarily from one pole of each imaged cell (Fig. 1A, arrowhead 1;
Movies S1 and S2); and reached the opposite side of the cell in 16+3 min (n=13). However, the
earlier appearance of a small notch at the opposite side (Fig. 1A, arrowhead 2) suggested that a
“lateral ingression” formed a groove around the entire perimeter of the plane of cleavage well
before ingression of the medial furrow was complete, consistent with observations by DIC (Fig.
1A, 10" and 12") and electron (30) microscopy. When the imaged cells also expressed ble-GFP (a
marker for the nucleus: 58), it was apparent that the medial furrow began to form at the anterior
pole of the cell and progressed between the daughter nuclei (Fig. 1B), consistent with previous
reports (30, 53). In most cells, furrow ingression was accompanied by cytoplasmic rotation (Fig.
1A, 0'-16").

Under the growth conditions used, most cells underwent two or three rapid divisions, then

hatched from the mother cell wall as four or eight daughter cells (Movie S2). The second
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cleavage followed the first by 38+4 min (n = 11) and was often not clearly visible because of its
angle relative to the imaging plane. However, when it could be seen clearly, it always initiated at

the center of the previous cleavage (Fig. 1A, 46', asterisk; Movies S1 and S2).

A Cleavage-furrow formation in wild type (PMH1-mNG)

Onishi et al., Fig. 1

Fig. 1. Live-cell observations of cleavage-furrow formation in Chlamydomonas. (A) Wild-type cells
expressing the plasma-membrane ATPase PMH1 tagged with mNeonGreen (mNG) were synchronized using
the 12L:12D/TAP agar method, mounted on TAP + 1.5% low-melting agarose, and imaged over several hours
at ~25°C. Selected images are shown (times in min); the full series is presented in Movies S1 and S2. Upper
images, mNG fluorescence (YFP channel); lower images, DIC. Arrowheads, positions of the initial
appearance of furrow ingression visible in this focal plane in the anterior (1) and posterior (2) poles of the cell.
Asterisk, onset of second cleavage. (B) Wild-type cells co-expressing PMH1-Venus and the nuclear marker
ble-GFP were imaged using a YFP filter set during growth on TAP medium at 26°C. Cells at different stages

in mitosis and cytokinesis are shown. Bars, 5 pm.
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L ocalization of F-actin, but not myosins, to the cleavage furrow. Despite the lack of a type-II
myosin in Chlamydomonas, actin could still have a role in cleavage-furrow formation (see
Introduction). To explore this possibility, we expressed the F-actin-binding peptide Lifeact (59)
as a fusion with mNG. In interphase cells, F-actin localized around the nucleus, at the basal
body region, and in the cortex, as observed previously (Fig. 2A; 56, 60-62). In dividing cells, F-
actin showed a transient but strong enrichment at the anterior pole (Fig. 2B, 0'-4") and then
appeared to be associated with the furrow throughout its ingression (Fig. 2B, 4'-12'; Fig. 2C, top).
F-actin was also associated with the furrows in cells undergoing their second round of

cytokinesis (Fig. 2C, bottom).

A FE-actin in interphase cells C F-actin in dividing cells
FL

First
division

Second
division

QQ

B F-actin in dividing cell (time lapse)
8I
g

DIC|

Onishi et al., Fig. 2

Fig. 2. F-actin localization to the region of the cleavage-furrow. Wild-type cells expressing Lifeact-mNG

were imaged; fluorescence (FL) and DIC images are shown. Fluorescence images are presented with contrast
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123  inverted for greater clarity. (Aand C) Still images of interphase (A) and dividing (C) cells grown on TAP
124  medium at 26°C. (B) Time-lapse images (as in Fig. 1A) showing enrichment of F-actin in the region of the

125  cleavage furrow. Bars, 5 um.

126
127 If the F-actin that concentrates in the furrow region has a role in cleavage-furrow formation,

128  one or more myosins might also be involved. A BLAST search of the Chlamydomonas genome
129  using the motor domain of Drosophila melanogaster type-11 myosin detected only the three

130  myosin genes reported previously (56). A phylogenetic analysis indicated that MYO1 and MYO3
131  encode type-XI myosins, whereas MYO2 encodes a type-VIIl1 myosin (Fig. 3A; Fig. S1A).

132 Importantly, none of these myosins has an extended C-terminal coiled-coil domain such as those
133 that allow type-I1 myosins to form bipolar filaments (63).

134 To ask if any of these non-type-11 myosins might be involved in cytokinesis, we expressed
135  each protein in wild-type cells with mNG-3FLAG or Venus-3FLAG fused at its C-terminus; in
136  each case, the fusion protein was detected at or near the expected molecular weight by Western
137  blotting (Fig. S1B). In interphase cells, MYOL1 was enriched in the perinuclear region (Fig. 3B,
138 1; Fig. S1C, 4) in a pattern overlapping one subdomain of F-actin localization as seen with the
139  tagged Lifeact probe (Fig. 2A; Fig. S1C, 1). MYO2 localized to the perinuclear region as well as
140  to dots at the cell-anterior region near the basal bodies (Fig. 3B, 2; Fig. S1C, 7), again resembling
141  aspects of F-actin localization. MYO3 localized to the cell-anterior region, as well as to the

142 cortex in the cell-posterior (Fig. 3B, 3; Fig. S1C, 10). Importantly, in dividing cells, none of the

143 myosins showed any detectable enrichment around the cleavage furrow (Fig. 3B, 4-6).


https://doi.org/10.1101/789016
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/789016; this version posted October 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

9
A The three Chlamydomonas myosins and a representative myosin Il
SH3 ‘ Coiled
-like Myosinhead 1Q “gof DIL
MYO1 (type XI) 1663
MYO2 (type VIII) .—IHHQS
MYO3 (type XI) .—-"—1331
wncz ooty nmmnm
B Localization of the three myosins
Interphase cells Dividing cells
FL ~ DIC
1 S U
MYO1-mNG 3
-3FLAG r - ?@@
" k. ,'-G,_‘k"
e T |
MYO2-Venus '-_1
144 Onishi et al., Fig. 3
145  Fig. 3. Lack of myosin localization to the region of the cleavage furrow. (A) Domain structures of the three
146  Chlamydomonas myosins; a typical type-11 myosin with a long coiled-coil tail (Drosophila Mhc2) is included
147  for comparison. Domains were predicted using the HMMER (hmmer.org) and COILS (124) programs; total
148  numbers of amino acids are indicated. (B) Localization of fluorescently tagged myosins in interphase and
149  dividing cells; cells were grown on TAP medium at 26°C. Bar, 5 pm.
150
151 The similarity in localization of the myosins to that of F-actin in interphase cells (see above)

152  suggests that the tagged myosins interact normally with actin. Further evidence for this

153  conclusion was obtained in experiments that exploited the Chlamydomonas system for F-actin
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homeostasis (60, 61, 64, 65). In vegetative wild-type cells, only the conventional actin IDAS5 is
expressed. Exposure of cells to the F-actin-depolymerizing drug latrunculin B (LatB) leads to a
rapid disassembly of F-IDA5 (Fig. S1C, 2), degradation of the monomeric IDAS5, and
upregulation of the divergent actin NAP1, which provides actin function by assembling into
LatB-resistant filaments (Fig. S1C, 3). Similarly, the localization signals for MYO1 and MYQO3
were largely lost during a short incubation with LatB but subsequently recovered (Fig. S1C, 4-6
and 10-12), suggesting that these tagged myosins can bind to both F-IDA5 and F-NAP1. The
perinuclear signal for MYO2 was also sensitive to LatB but did not recover (Fig. S1C, 7-9; 56),
suggesting that this myosin binds only to F-IDAS5.

Thus, although the current lack of null mutations for any of the myosin genes precludes a
definitive test of the function of the tagged proteins, it seems most likely that they at least
localize as expected in a F-actin or NAP dependent manner, so that their apparent absence from
the furrow region suggests that any function of actin in furrowing does not involve the myosins

(e.g., in a noncanonical actomyosin ring).

Cleavage-furrow ingression in the absence of F-actin. To ask whether actin (with or without
myosin) plays a role in cleavage-furrow formation, we took advantage of our prior isolation of a
null mutation (napl1-1) in the NAP1 gene (60). Because F-IDAGS is highly sensitive to LatB,
treatment of a napl-1 strain with the drug results in a rapid and complete loss of F-actin as
detected by LifeAct. LatB treatment is lethal for napl-1 mutants, indicating that F-actin is
directly or indirectly important for various cellular processes in Chlamydomonas. We found
previously that LatB treatment of napl-1 cells blocked cell growth, and DNA replication and cell
division were also blocked, likely as an indirect consequence of the block to cell growth. To

evaluate a possible specific role of actin in cytokinesis, we employed an accurate cell-cycle
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11
synchronization method using a 12:12 light-dark cycle (66, 67). Under the conditions used, the
cells grew in size throughout the light phase, began to divide at ~13 h (i.e., 1 h into the dark
phase), and hatched out as small daughter cells at <20 h (Fig. 4A, top row). We then treated
aliquots of the culture with LatB at different times before and during the onset of cytokinesis and
examined the cells several hours later (Fig. 4A, bottom row). When LatB was added at <9 h, the
cells ceased growth and never detectably initiated cytokinesis. Flow-cytometry analysis in
separate but similar experiments indicated that most of these cells had arrested before DNA
replication as expected (60). When LatB was added at 10 h, most cells remained round and did
not begin furrow formation, but a few formed what appeared to be normal cleavage furrows (Fig.
4A, arrowhead) or “notch”-like structures (Fig. 4A, arrow). A similar experiment using cells
expressing PMH1-Venus and ble-GFP indicated that the cells with notches had not undergone
mitosis (Fig. S2A, left). In contrast, when LatB was added at >11 h, many cells appeared to have
gone through two or more rounds of cleavage-furrow ingression, forming clusters of 4-8 cells,
each of which contained a nucleus (Fig. 4A; Fig. S2A, right). In a separate but similar
experiment, we noted a rough positive correlation between size of the undivided cells and their
likelihood of forming a furrow in the presence of LatB (Fig. S2B), suggesting either a direct size
requirement for cytokinesis or a requirement for some size-correlated cell-cycle event for actin-
independent furrow formation.

Although our prior work had suggested that LatB-treated napl1-1 cells contained no residual
F-actin, it seemed possible that there might be a special population of drug-resistant filaments in
the cleavage-furrow region. However, no such filaments were observed when time-lapse
observations were made on LatB-treated napl-1 cells expressing Lifeact-mNG (Fig. 4B).

Moreover, consistent with our prior observations indicating rapid proteasomal degradation of
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200 LatB-depolymerized IDAS5 (61), IDAS was also largely or entirely degraded by the time such

201  cells began furrow formation (Fig. 4C).

A Cleavage-furrow formation with or without F-actin in a synchronized population

% with furrow(s): 0

LatB added
at indicated times;
images taken at 20 h

% with furrow(s):
~ Lifeact-mNG in n 1 1’ no LatB C Tme (h)

. 11 12 13 14 15

Actin

- - - (IDAS)
————

HRREN -

- Actin

LatB (IDA5)

-

202 Onishi et al., Fig. 4

203 Fig. 4. Cleavage-furrow formation in the absence of F-actin. (A) napl-1 cells were synchronized using the
204  12L:12D/liquid TP method at 26°C, incubated for up to 20 h, and imaged at intervals (top row). At the

205  indicated times (red arrows), samples were plated on TAP agar containing 3 pM LatB, incubated at 26°C, and
206  thenimaged at 20 h (i.e., 8 h into the dark period). The percentages of cells with visible cleavage furrows are
207  shown below the images. (B) F-actin localization in napl-1 cells with or without LatB treatment. napl-1 cells
208  expressing Lifeact-mNG were synchronized using the 12L:12L/TAP agar method at 26°C, mounted on TAP +
209  1.5% low-melting agarose with or without 3 uM LatB, and observed during growth at 26°C. Selected images
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are shown; contrast is inverted for greater clarity. The LatB-treated cell had been incubated with the drug for
~4.5 h before the first frame shown. Note that dispersion of Lifeact-mNG into the entire cytoplasm
contributed to the strong apparent background in these cells. Bar, 5 um. (C) Rapid degradation of IDA5 upon
LatB addition to a synchronized culture. napl-1 cells were synchronized as in (A) and the culture was split. 3
UM LatB was added to one culture at 11 h, and samples were drawn at the indicated times and subjected to
Western blotting using an anti-actin antibody. 30 pg total protein were loaded in each lane. CBB, the

membrane stained with Coomassie Brilliant Blue, shown as a loading control.

Reduced efficiency of furrow ingression in cellslacking F-actin. To investigate the efficiency
of cleavage-furrow formation in the absence of F-actin, we performed time-lapse microscopy on
napl-1 cells expressing PMH1-mNG. In the absence of LatB, furrow formation in these cells
proceeded to completion in 17+4 min (n=12) (Fig. 5, Aand C1,; Fig. S2C, 2), not significantly
different from the rate in wild-type cells (16+3 min; n=13) (Fig. 1; Fig. 5C1; Fig. S2C, 1). In
contrast, in the presence of LatB, although the rates of furrow ingression varied considerably in
individual cells, they were slower in all cells examined than in control cells even during the early
stages of furrow ingression, and more so during its later stages (Fig. 5B, C1, C2; Fig. S2C, 3).
The time gap between the formation of a small cell-anterior notch and the detectable ingression
of the medial furrow was expanded from ~2 min in control cells to 5-15 min. Moreover,
although the medial furrow typically ingressed smoothly into about the middle of the cell, the
second notch at the cell-posterior end did not appear normally at that time, and, in most cells, the
medial furrow stalled at that point for an extended period before eventually appearing to
complete its growth (10 of the 12 cells examined: Fig. 5B1, arrow; Movie S4) or regressing (one
of the 12 cells examined: Fig. 5B2; Movie S5). More rarely (one of the 12 cells examined), the
furrow appeared to progress across the cell without interruption (Fig. 5B3; Movie S6). In all
cells examined, the daughter cells remained clustered without hatching, and the fluorescence of

PMH1-mNG became quite dim, making it difficult to determine when (or whether) the plasma
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236 membranes were fully resolved. Indeed, when the clusters of LatB-treated napl-1 cells (see Fig.
237  4A) were treated with the cell-wall digesting enzyme autolysin, ~5% of the cells remained
238  connected with an intercellular bridge between the pairs (Fig. S2D). Taken together, these
239  results suggest that although actin is not required for furrow ingression per se, it plays some
240  ancillary role(s) that facilitates the early stages of furrowing and become(s) more important

241  during the later stages of furrow ingression and/or abscission.
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243  Fig. 5. Slower cleavage-furrow ingression and delay in furrow completion in the absence of F-actin. (A)
244 napl-1 cells expressing PMH1-mNG were synchronized using the 12L:12D/TAP agar method and observed
245 by time-lapse microscopy at 26°C. Full series is presented in Movie S3. Bar, 5 pm. (B) As in A except that 3
246  uM LatB was added 120-160 min before the first frames shown. Selected images are shown to illustrate the
247  different time scales; full series are presented in Movies S4-S6. Bar, 5 um. (C) Kinetics of furrow ingression
248  in wild-type cells without LatB (Fig. 1A, Movie S2) and in napl-1 cells with or without 3 uM LatB. Data are
249  from the experiments shown in Aand B. (1) Distance of the leading edge of the medial furrow from the

250  opposite side of the cell as a function of time since the onset of furrow ingression (set at 0). Means and 95%
251  confidence intervals of 1000X-bootstrapped LOESS curves are shown (see Materials and Methods). The
252 curves for individual cells are shown in Fig. S2C. (2) Times for the furrow to reach 30% or 70% of the total
253  distance across the cells. Because of mNG bleaching after prolonged time-lapse observations, cleavage times
254 were capped at 100 min for these analyses. Bars indicate means and standard deviations. Statistical analyses
255  were performed using one-way ANOVA and Tukey’s post-hoc multiple comparisons (ns, not significant; ****,
256  P<0.0001).

257

258  Association of microtubuleswith the cleavage furrow in the absence of F-actin. It has long
259  been known that microtubules (MTSs) are associated with the cleavage furrows in

260  Chlamydomonas, and their depolymerization by drugs or mutation largely blocks cytokinesis (30,
261 53, 54). To ask if this association is maintained in the absence of F-actin, we first tried, but

262  failed, to visualize the furrow-associated MTs by time-lapse imaging using a fluorescently

263  tagged tubulin. However, we had better results upon expressing an mNG-tagged version of the
264  plus-end-binding protein EB1 (68). In both wild-type cells (68) and napl-1 cells not treated with
265  LatB (Fig. 6A, 0'; Movie S7), EB1-mNG was concentrated in the basal-body region of pre-

266  mitotic cells. Upon entry into mitosis, EB1-mNG disappeared from the cell pole and appeared in
267  the mitotic spindle (Fig. 6A, 4'-6"; Movie S7). After mitosis, the EB1-mNG signal reappeared at
268  the apical pole of the cell, from which it moved into and across the cell body as the cleavage

269  furrow formed (Fig. 6A, 12'-14'; Movie S7) and remained concentrated in the middle of the

270  division plane after cytokinesis (Fig. 6A, 20'; Movie S7). Each daughter cell then formed an
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EB1-labeled spindle in the region proximal to this site, and the new furrows (as marked by EB1-
MNG) grew outward from the center of the cell to the surface (Fig. 6A, 44" and 48, arrows). In
napl-1 cells treated with LatB, EB1-mNG localization was nearly normal during the first
division (Fig. 6B, 0'-22"; Movie S8), except for a slower-than-normal progression through the
cytoplasm, consistent with the PMH1-mNG data. However, a fraction of the EB1-mNG
appeared to leave the division plane prematurely and form foci at the far sides of the daughter
cells (Fig. 6B, 58'-126', arrowheads), suggesting a defect in polarity maintenance caused by the
loss of F-actin. Probably as a consequence, the spindles for the second mitosis were positioned
distal from the previous division plane, and the cleavage furrows subsequently grew inward (Fig.
6B, 152'-164', arrows; Movie S8), although the localization of EB1-mNG, and thus presumably
of both the spindle and furrow-associated MTs, otherwise appeared essentially normal. This
preservation of nearly normal association of MTs with the furrows is consistent with the
hypothesis that the MTs may be involved in furrow ingression both in the presence and absence

of F-actin.

A mT plus ends (EB1-mNG) in nap7-1, no LatB (time lapse)

4’ 12' 14

MT plus ends (EB1-mNG) in nap7-1, +LatB (time lapse)
.'. |

Fig. 6. Persistent association of microtubules with cleavage furrows, but changes in polarity during the second

Onishi et al., Fig. 6

division, in the absence of F-actin. napl-1 cells expressing EB1-mNG to visualize microtubule plus ends were

synchronized using the 12L:12D/TAP agar method and observed by time-lapse microscopy at 26°C. Selected
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images are shown; full series are presented in Movies S7 and S8. (A) A cell not treated with LatB. (B) A cell
treated with 3 UM LatB beginning ~20 min before the first frame shown. Arrowheads, aberrant foci of EB1-
mNG at positions distal to the cleavage furrow in cells lacking F-actin; arrows, the directions of furrowing

during the second division of each cell. Bars, 5 um.

Defective chloroplast divison in cellswithout F-actin. The EB1-mNG studies also revealed a
possible cause of the delay in furrow completion in cells lacking F-actin. In normal
Chlamydomonas cells, the large, cup-shaped chloroplast is centered on the posterior pole of the
cell (Fig. 7A, 0, so that the organelle lies squarely in the path of the ingressing cleavage furrow.
In control cells, division of the chloroplast (as visualized by chlorophyll autofluorescence)
appeared to have occurred by the time that the furrow (or at least its associated EB1) reached the
organelle (Fig. 7A, 3', arrowhead), confirming previous observations that the chloroplast has a
division machinery that is independent of, although temporally and spatially coordinated with,
cleavage-furrow ingression (69, 70). In contrast, in cells lacking F-actin, the furrow appeared to
partially penetrate into the undivided chloroplast over an extended period (Fig. 7B, 21'-111"),
before finally moving through a gap formed in the chloroplast (Fig. 7B, arrowhead). These
results suggest that efficient chloroplast division requires F-actin, that coordination of division
between the cell and the plastid requires F-actin, or both, and that the physical barrier posed by

the undivided chloroplast may explain the delay in furrow completion in cells lacking F-actin.
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A MT plus ends (EB1-mNG) and chlorophyll in nap7-1, no LatB
6.'

o .-....

B MT pluse ends (EB1-mNG) and chlorophyll in nap71-1, +LatB

21 93’ 11
mNG

Chl.

Merge

Onishi et al., Fig. 7

Fig. 7. Delayed chloroplast division in the absence of F-actin. EB1-mNG fluorescence and chlorophyll
autofluorescence are shown in a cell not treated with LatB (A) and a cell treated with 3 uM LatB beginning
~20 min before the first frame shown (B). Cells had been synchronized prior to imaging using the

12L:12D/TAP agar method. Arrowhead, time of apparent completion of chloroplast division. Bars, 5 pm.
Discussion
Rate of cleavage-furrow ingression. Both electron microscopy (30, 53, 71) and light

microscopy (54, 72) had suggested that Chlamydomonas divides by means of an asymmetrically
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ingressing cleavage furrow (67), despite its lack of a type-11 myosin, and we confirmed this
model by live-cell imaging using a fluorescent plasma-membrane marker. The time-lapse
imaging also allowed us to determine the rate of furrow ingression. At its maximum (~0.85
um/min; see Fig. 5C), this rate is comparable to those in small- to medium-sized cells that have
type-11 myosins and form actomyosin rings at their furrow sites, such as S pombe (~0.15
um/min: 25, 73, 74), Neurospora crassa (1.3-3.2 pm/min: 75), and various mammalian somatic
cells (3-4 um/min: 18, 76-79). Thus, the presence of a CAR is not necessary to produce a rate of

furrow ingression in this range.

L ocalization of F-actin, but not myosin, to the cleavage furrow. Our live-cell imaging also
clarified the spatial relationships of the furrow, F-actin, and the three Chlamydomonas myaosins.
Although immunostaining had indicated that there was actin in the furrow region (47, 54, 65, 80),
it was not clear whether this actin was in filamentous form (47). However, imaging of cells
expressing the F-actin-specific probe Lifeact showed clearly that F-actin is enriched in the
furrow region during most or all of the period of furrow ingression. In contrast, although a
previous report had suggested (based on immunostaining with an antibody to Dictyostelium type-
I1 myosin) that myosin is also localized to the furrow region (54), fluorescence tagging of the
three Chlamydomonas myosins (two type XI and one type VI1II) showed no enrichment in this
region. Although this conclusion should be qualified by the lack of definitive evidence that the
tagged myosins were fully functional, the loss of their localization after LatB treatment suggests
that they co-localize normally with F-actin (see Results). Moreover, the likelihood of a myosin
role in Chlamydomonas furrow formation is also reduced by our finding that F-actin itself is not

essential for this process.

Cleavage-furrow ingresson without F-actin. Despite the apparent absence of myosins from
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the furrow region in Chlamydomonas, it seemed possible that the F-actin there might play an
essential role in furrow formation. However, when we used a combination of a mutation (to
eliminate the drug-resistant actin NAP1) and a drug (to depolymerize the drug-sensitive actin
IDADS), the cells were still able to form cleavage furrows and divide. While it is theoretically
possible that a population of drug-resistant IDA5 filaments remained specifically in the cleavage
furrow, we could detect no such filaments by Lifeact staining. Moreover, Western blotting
revealed that, as observed previously in asynchronous cells (61), depolymerization of F-IDAS in
dividing cells was followed quickly by degradation of IDAS5 itself. Taken together, our results
appear to establish that the actin cytoskeleton does not play a principal role in generating the
force for cleavage-furrow ingression in Chlamydomonas.

Nonetheless, several observations indicate that actin does contribute significantly to cell
division in Chlamydomonas. First, in the absence of F-actin, the rate of early furrow ingression
was ~2-fold slower than normal. It seems possible either that actin forms a contractile structure,
not dependent on myosin, that contributes some force for furrow ingression or that actin is
necessary for the trafficking of Golgi-derived vesicles that ultimately provide the new cell
surface material for the growing furrow. Second, the last ~30% of cleavage was slowed even
more (>5 fold), and some cells appeared to fail (or at least have long delays in) the final
abscission of the daughters. In addition, EB1 signal (marking MT plus-ends) disappeared
prematurely from the furrow region when F-actin was missing, presumably reflecting a failure to
maintain MT organization during the final phase of cleavage. Finally, the directions of the
second cleavages were inverted, probably because the polarities of the two daughter cells
produced by the first cleavage were also inverted. The precise mechanisms by which F-actin

facilitates cytokinesis are not yet clear, but the observed slowness of late furrow ingression in its
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absence appears to at least partly reflect a delay in chloroplast division (see below). Together,
our findings highlight the value of using Chlamydomonas to explore non-CAR-related roles of

the actin cytoskeleton in cytokinesis.

An apparent rolefor F-actin in chloroplast division. In most cells lacking F-actin, there was a
delay in chloroplast division of >120 min. This observation was surprising, because despite
early reports of an actin role in plastid division in both charophyte and red algae (81, 82), no
such role has been recognized (to our knowledge) in plants or other organisms. As the
Chlamydomonas chloroplast lies directly in the path of the ingressing cleavage furrow, the delay
in chloroplast division may explain much or all of the delay also seen in furrow completion in
these cells. Although we cannot currently test this model due to the lack of a method for clearing
the chloroplast from the division path, a similar apparent obstruction of cytokinesis by an
undivided chloroplast was observed after expression of a dominant-negative dynamin mutant in
the red microalga Cyanidioschyzon merolae (83). Most other unicellular algae also contain only
one or a few chloroplasts, whose division must presumably be coordinated both temporally and
spatially (i.e., division in the same plane) with that of the cell (69). The temporal coordination is
achieved, at least in part, by cell-cycle control of the expression of the proteins (such as FtsZ and
dynamin) directly involved in chloroplast division (66, 84). However, the spatial coordination
seems to require a local, structure-based signal. Our results suggest that the furrow-associated F-
actin may provide this spatial cue to the chloroplast-division machinery and, in so doing, might

also dictate the precise timing of its action.

Possiblerolefor MTsin cleavage-furrow formation. It has long been thought that MTs may
be involved in cleavage-furrow positioning and/or ingression in Chlamydomonas. Electron-

microscopy and immunofluorescence studies have shown that two of the four "rootlet"” MTs that
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run from the basal body along the cortex align with the division plane (like the preprophase band
in plant cells), while an array of many MTs, the "phycoplast”, runs along the developing furrow
(30, 53, 54, 85, 86). Moreover, pharmacological disruption of the MTs inhibits cytokinesis (54).
Our observations on cells expressing a fluorescence-tagged EB1 protein have now added the
information that dynamic MT plus-ends are associated with the furrow throughout its ingression
and that this association is maintained even during furrow formation in the absence of F-actin.
Thus, it seems likely that the MTs have a direct, actin-independent role in promoting furrow
ingression, possibly by guiding the deposition of new cell-surface materials in the growing
furrow as they do in plant-cell phragmoplasts. Testing this hypothesis and elucidating the

mechanisms involved will be major goals of future studies.

Cytokinesisin phylogenetic and evolutionary per spective. Our study also sheds some light on
the evolutionary origins and underlying basal mechanisms of eukaryotic cytokinesis. The wide
phylogenetic distribution of division by cleavage-furrow ingression, together with the near-
universal absence of myosin-Il outside the unikonts, had already made clear that a conventional
CAR model cannot account generally for furrow formation. Moreover, we have shown here that
even F-actin is not essential for the formation of cleavage furrows in Chlamydomonas. This
observation has some precedents and parallels. Even within the unikonts, it is clear that F-actin
is not essential for furrow ingression in many cases (9, 15, 25, 87, 88; and see Introduction), and
this may be the rule, rather than the exception, in non-unikonts. For example, in the ciliate
Tetrahymena pyriformis, latrunculin A did not block cell division despite a loss of F-actin and a
consequent disruption of actin-dependent processes such as food-vacuole formation (39); in the
Diplomonad parasite Giardia lamblia, which has one actin but no myosin(38), furrowing

occurred efficiently when actin expression was knocked down with a morpholino (89), although
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the cells were delayed in abscission; and in the red alga C. merolae, which also has no myosin,
cells divide by furrowing even though actin is not expressed under normal growth conditions
(90). Taken together, these and related observations suggest that in the earliest eukaryotes, the
LECA, and most branches of the modern eukaryotic phylogeny, actin and myosin are not
primarily responsible for the force that produces cleavage-furrow ingression. We speculate that
as prominent roles for actin and myosin evolved in the unikonts, the underlying ancestral
mechanisms for driving furrow ingression may remain in force.

In thinking about these ancestral mechanisms, it is instructive to consider the mechanisms of
cytokinesis in modern prokaryotes. Bacteria divide using a furrowing mechanism in which the
tubulin-like FtsZ plays a central role (91-95), which is likely to be used also by many archaea
(96-100), so the immediate prokaryotic ancestor of the first eukaryotes probably also divided by
such a mechanism. Current information about FtsZ action suggests that it functions both to bend
the inner membrane and to organize the symmetric deposition of cell wall, which drives in the
membrane to produce the division furrow (93-95, 101). Thus, if an ancient FtsZ was the
evolutionary progenitor of modern tubulin, the major role of MTs in cleavage-furrow formation
in such distantly related modern eukaryotes such as Chlamydomonas, G. lamblia (89), Penium
margaritaceum (102), Trypanosoma brucei (103), Tetrahymena thermophila (104), and
Toxoplasma gondii (105) may reflect the persistence of an ancient mechanism for adding cell-
surface material to form a furrow. The same interpretation might apply even to the association
of parallel arrays of MTs with cleavage furrows observed in some animal cells, such as embryos
of Xenopus (106, 107), zebrafish (108), and Drosophila (109), or the midbody MTs formed
during metazoan abscission (27), where the MTs appear to play an important role in targeting

vesicles containing new membrane. In any case, the hypothesis of a primordial role for MTs in
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eukaryotic cytokinesis seems to make it easier to understand the central role of MTs in
cytokinesis in modern plants, where both the preprophase band (which marks the future division
plane) and the phragmoplast (which organizes the centrifugal deposition of new cell membrane
and cell wall by fusion of post-Golgi vesicles) are MT based (29).

At the same time, it should also be noted that there is now good evidence that the prokaryotic
ancestor of modern eukaryotes also had an actin-like protein (110, 111), and there is even some
evidence that this protein might have been associated with division sites (112) despite the lack of
evidence for any myosin in such organisms. Thus, the association of actin with the furrow
regions both in Chlamydomonas and in many other eukaryotes without a myosin Il may also be a
preserved ancestral trait. In this regard, it is interesting that the preprophase band in plants
involves actin as well as MTs, conceivably reflecting an earlier stage in plant evolution in which
MTs and actin functioned together to bring about ingression of a furrow (113). If both the
division mechanisms of modern plants and those of modern unikonts evolved from such an
ancestral state (by recruitment of intracellular MTs to form the phragmoplast, and by reduction
of the MT role in furrow formation in favor of an actomyosin system, respectively), then
continuing studies of Chlamydomonas should help to elucidate both the two evolutionary paths
and both of the modern mechanisms.

In summary, we suggest that a full understanding of eukaryotic cytokinesis, even in the
intensively studied animal cells, will remain elusive unless a greater effort is made to incorporate
the lessons about the evolution of this process that can be learned by studying it in the full

diversity of modern eukaryotes.

Materials and M ethods

Strains, growth conditions, and genetic analysis. C. reinhardtii wild-type strains CC-124 (mt-
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) and is010 (mt+, congenic to CC-124) were the parental strains. The napl-1 mutant had
previously been isolated and backcrossed three times in the CC-124 background (60). The ble-
GFP and PMH1-Venus strains are progeny of previously established transgenic strains (57, 58,
114).

Routine cell culture was done in Tris-acetate-phosphate (TAP) medium (115) at ~26°C
under constant illumination at 50-100 pmol photons m™s™*. The same medium without acetate
(TP) was used in one method for cell-cycle synchronization (see below). Except for
synchronized cultures, liquid cultures were in exponential phase when experiments were
performed. LatB was purchased from Adipogen (AG-CN2-0031, Lots A00143/I and A00143/]J),
and dilutions into TAP or TP medium were made from a 10-mM stock in DMSO. Paromomycin
(Sigma or EMD Millipore) and Zeocin (InvivoGen) were used at 10 pg/ml to select for and
maintain strains that were transformed with constructs containing resistance markers.

Genetic crosses were performed essentially as described previously (60, 116, 117). When
necessary, segregants were genotyped based on known phenotypes (LatB sensitivity, selectable

marker, fluorescence, etc.) or by allele-specific PCR (60) using appropriate primers.

Plasmids and transformation. pEB1-mNG (expressing EB1 protein fused to mNeonGreen)
was a kind gift from Karl Lechtreck (68). Construction of pMO431 (Py/r:MYO2-CrVenus-
3FLAG) was described previously (56); it expresses MY O2 tagged at its C-terminus with
CrVenus-3FLAG from the hybrid HSP70A/RBCS2 promoter (Pyr). All other plasmids used in
this study were constructed using one-step isothermal assembly (118); synthetic DNA fragments
and primers were obtained from Integrated DNA Technologies. All plasmids and corresponding
sequence files are available through the Chlamydomonas Resource Center

(https://www.chlamycollection.org). pMO654 (Pyr: Lifeact-mNG) was constructed by replacing
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CrVenus-3FLAG in pMO459 (57) with mNG from pEB1-mNG. A similar replacement of
CrVenusin pM0O611 (57) with mNG yielded pMO665 (Pnr:MNG-3FLAG), and genomic DNA
sequences of the PMH1 (Cre03.g164600), MYO1 (Cre16.9658650), and MYO3 (Cre13.g563800)
coding regions (start codon to last coding codon, including all introns) were inserted into the
Hpal site of pMO665 to generate pMO683 (Pr/r: PMH1-mNG-3FLAG), pM0668 (Pr/r:MYO1-
MNG-3FLAG), and pMO669 (Py/r:MYO3-mNG-3FLAG), respectively. Transformation by
electroporation was done using a NEPA21 square-pulse electroporator and CHES buffer, as
described previously (57), and transformants with strong Venus or mNG expression were
identified by screening using a Tecan Infinite 200 PRO microplate reader at excitation and

emission wavelengths of 515 and 550 nm, as described previously (57).

Cell-cycle synchronization. Three different methods were used for cell-cycle synchronization
in this study: (i) the 12L:12D/liquid TP method was essentially as described by Fang et al. (119)
except that TP medium at 26°C was used in place of HSM; (ii) the 12L.:12D/TAP agar method
was as described previously (120), except that it was carried out at 26°C; and (iii) the -N method
was exactly as described previously using a combination of 21°C and 33°C (121). Although
overall synchrony and the timing of mitosis and cytokinesis as determined by microscopic
examination varied slightly depending on the method, we observed no significant qualitative or
quantitative difference in the cells’ response to F-actin perturbation introduced by LatB addition

before the onset of cytokinesis.

Light microscopy. Fluorescence and DIC microscopy of cells expressing Venus-, mNG-,
and/or GFP-tagged proteins was performed as follows. Cells were mounted on a thin pad of
TAP medium containing 1.5% low-melting-point agarose (Invitrogen) and sealed with a

coverslip and VALAP. When desired, LatB was added to the agarose-containing medium at 3


https://doi.org/10.1101/789016
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/789016; this version posted October 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

28
500 pM. The cells were observed using a Nikon Eclipse 600-FN microscope equipped with an
501  Apochromat x100/1.40 N.A. oil-immersion objective lens, an ORCA-2 cooled CCD camera
502 (Hamamatsu Photonics), and Metamorph version 7.5 software (Molecular Devices). Signals of
503 all fluorescent proteins were captured using YFP filters; chlorophyll autofluorescence was
504  captured using Texas Red filters. For time-lapse experiments, the stage temperature was
505 maintained at ~26°C using a heater (AmScope), and the slide was continuously illuminated by
506 red LED lights to support photosynthesis. The distance from the leading edge of the cleavage
507  furrow to the opposite side of the cell was determined at each time point to provide an
508 approximate quantitative measure of the progress of furrow ingression. To visualize the rates of
509 furrow ingression, local polynomial regression curves were generated using the LOESS (locally
510 estimated scatterplot smoothing) method, and means and 95% confidence intervals of 1000 such
511  curves were calculated using the loess.boot() function in the R package spatialEco. Images were
512  post-processed using ImageJ (National Institutes of Health) and Photoshop (Adobe) software.
513  Images from a single experiment with a single strain were processed identically and can be
514  compared directly in the Figures.
515 The bright-field images in Fig. 4A and Fig. S2D were captured using a Leica DMI 6000 B
516  microscope equipped with a x40 objective lens and Leica DFC 450 camera. Cell-wall removal

517 by autolysin was performed essentially as described previously (122).

518 Western blotting. Whole-cell extracts were prepared as described previously (61). SDS-PAGE
519  was performed using Tris-glycine gels (8% for myosins, 11% for actin). After the proteins were
520 transferred onto P\VDF membranes, the blots were stained with a mouse monoclonal anti-FLAG
521  (Sigma, F1804) or anti-actin (clone C4, EMD Millipore, MAB1501) antibody, followed by an

522  HRP-conjugated anti-mouse-1gG secondary antibody (ICN Pharmaceuticals, 55564).
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523 Phylogenetic analysis. The amino-acid sequences of all myosins in the genomes of
524  Chlamydomonas (MYO1, Crel6.9658650.t1.1; MYQO2, Cre09.g416250.t1.1; MY O3,
525 Crel3.g563800.t1.1 from Phytozome v5.5: phytozome.jgi.doe.gov), Arabidopsis thaliana (40),
526 D. melanogaster (40), and S. cerevisae (Myol, YHR023W; Myo2, YOR326W; Myo03,
527 YKL129C; Myo4, YAL029C; Myo5, YMR109W from Saccharomyces Genome Database:

528  www.yeastgenome.org) were aligned using ClustalW 2.1 and the BLOSUM®62 matrix. This

529  alignment was then used to generate an unrooted Maximum Likelihood tree with approximate
530 likelihood test using the VT model in PhyML (123).
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841  Fig. S1. (A) Maximum-likelihood tree of amino-acid sequences of all myosins from D. melanogaster (Dm), S
842  cerevisiae (Sc), A. thaliana (At), and C. reinhardtii (Cr). Three Chlamydomonas myosins (green) clustered
843  with plant-specific type-VIII and type-XI myosins. Scale bar, substitutions per residue. Branch supports

844  bhelow 1 are shown next to nodes. See Materials and Methods for details. (B) Expression of mMNG-3FLAG-
845  tagged or Venus-3-FLAG-tagged myosins. Whole-cell extracts from wild-type (CC-124) and transformed
846  cells were analyzed by Western blotting using an anti-FLAG antibody. The positions of molecular-weight
847  markers and the predicted molecular weights of the tagged proteins are indicated. (C) Response of F-actin and
848  the tagged myosins to LatB treatment. Cells expressing Lifeact-mNG (1-3) or a tagged myosin (4-12) were
849  treated with 10 uM LatB for the indicated times. See text for details.
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like that of Fig. 4A, napl-1 cells expressing PMH1-Venus and the nuclear marker ble-GFP were treated with 3
UM LatB beginning at the indicated times and imaged at 20 h. (B) Correlation between cell size and successful
formation of furrows in the absence of F-actin. napl-1 cells were synchronized using the -N method (see
Materials and Methods). At 11 hr, as cells began to enter divisions, they were transferred to fresh plates with
or without 3 uM LatB and imaged every 30 minutes by brightfield time-lapse microscopy. The fractions of
initially undivided cells that divided successfully were plotted as a function of the size of the cells at the time
of transfer. (C) The kinetics of cleavage in individual cells in the experiments of Fig. 5. (D) Additional
evidence for an abscission defect in cells lacking F-actin. In the experiment of Fig. 4A, control cells and cells
treated with LatB beginning at 11 h were examined at 20 h. Cells were treated with autolysin before
examination (see Materials and Methods). Control cells became rounder than normal as a result of cell-wall

removal. ~5% of the LatB-treated cells remained connected by narrow intercellular bridges.
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