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Abstract 
 
The goal of the National Cancer Institute (NCI) Genomic Data Commons (GDC) is to provide 
the cancer research community with a data repository of uniformly processed genomic and 
associated clinical data that enables data sharing and collaborative analysis in the support of 
precision medicine. The initial GDC dataset include genomic, epigenomic, proteomic, clinical 
and other data from the NCI TCGA and TARGET programs. Data production for the GDC 
started in June, 2015 using an OpenStack-based private cloud. By June of 2016, the GDC had 
analyzed more than 50,000 raw sequencing data inputs, as well as multiple other data types.   
Using the latest human genome reference build GRCh38, the GDC generated a variety of data 
types from aligned reads to somatic mutations, gene expression, miRNA expression, DNA 
methylation status, and copy number variation.  In this paper, we describe the pipelines and 
workflows used to process and harmonize the data in the GDC.  The generated data, as well as 
the original input files from TCGA and TARGET, are available for download and exploratory 
analysis at the GDC Data Portal and Legacy Archive (https://gdc.cancer.gov/). 
 
Introduction 
 
The National Cancer Institute’s (NCI) Genomic Data Commons (GDC) 1 currently contains NCI-
generated data from some of the largest and most comprehensive cancer genomic datasets, 
including The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/) and 
Therapeutically Applicable Research to Generate Effective Therapies (TARGET, 
https://ocg.cancer.gov/programs/target). Each of these projects contains a variety of processed 
and unprocessed molecular data types, including genomics, epigenomics, proteomics, imaging, 
clinical, and others.  
 
These data, as well as data from future projects, are often generated using different methods, 
so that joint analysis of multiple datasets are often confounded by batch effects. Based on the 
lessons learned from TCGA, one of the major goals of the GDC is to create a uniform set of 
molecular datasets that minimize batch effects due to differences in reference genomes, gene 
models, analytical algorithms, and processing pipelines. In the GDC, this process is called 
harmonization and is broken up into two stages: alignment and higher level data generation. In 
the alignment stage, reads from Next Generation Sequencing (NGS) data are extracted and 
aligned, or re-aligned, to a single human reference genome sequence using a single pipeline for 
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that particular data type. In the second stage, different higher level data generation pipelines 
utilize the GDC aligned data to derive summary results, such as somatic mutations or gene 
expression.   
 
Data production started with processing of Whole Exome Sequencing (WXS) alignment and 
somatic mutation calling, Whole Genome Sequencing (WGS) alignment, mRNA-Seq alignment 
and gene/exon level quantification, miRNA-Seq alignment and quantification, TCGA Affymetrix 
Genome-Wide Human SNP Array 6.0 array copy number segmentation, and Illumina Infinium 
HumanMethylation450/27 methylation array re-annotation. By the end of May 2016, we had 
successfully processed more than 56,168 BAM files and FASTQ bundles, including 27,594 
WXS, 4691 WGS, 11,969 RNA-Seq and 11,914 miRNA-Seq, from 12,487 patients with a total 
input file size of 1001.7 TB. From GDC harmonized BAMs, more than 100,000 higher level 
derived data files have been generated. A total of more than 1400 TB of generated data, 
including intermediate files, have been produced by GDC data processing pipelines, and stored 
in GDC storage. Many of them have been imported into the GDC database (described in a 
companion submission), and have become queryable and downloadable from the GDC Data 
Portal (https://portal.gdc.cancer.gov/) and API. 
 
Results  
 
1 Reference Genome and Gene Model 
The GDC chose GRCh38 as the reference human genome build for all data analyses, because 
of its improved coverage and accuracy over the previous major build GRCh37 2. The GRCh38 
major human genome assembly was released by GRC (Genome Reference Consortium, 
https://www.ncbi.nlm.nih.gov/grc/) on Dec 2013 with GenBank assembly accession 
GCA_000001405.15. The complete assembly downloaded from NCBI contains 456 sequences, 
including 25 continuous chromosomal and mitochondrial sequences, 42 unlocalized scaffolds, 
127 unplaced scaffolds, 261 alternative scaffolds, and 1 EBV decoy sequence.  
 
At the time of GDC pipeline development, there was a lack of tool support for alternative 
scaffolds analysis. As a result, the GDC excluded alternative contigs from the GDC reference 
sequence, and used GCA_000001405.15_GRCh38_no_alt_analysis_set from the NCBI ftp site 
(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_fo
r_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz, see 
description README_analysis_sets.txt in the same directory). 
 
In addition to the continuous chromosomal and mitochondrial sequences, unlocalized and 
unplaced scaffolds described above, the GDC reference sequence also includes 2385 human 
decoy sequences, together named hs38d1 with GenBank assembly accession 
GCA_000786075.2. These human decoy sequences are additional unlocalized sequences not 
officially recognized by the Genome Reference Consortium at the time of reference release, and 
having them in the GDC reference helps to reduce false alignments of such reads in other 
regions 3. 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/788919doi: bioRxiv preprint 

https://doi.org/10.1101/788919
http://creativecommons.org/licenses/by/4.0/


Similar to the idea of improving alignment quality with human decoy sequence, we collected 
genomic sequences from 10 types (200 subtypes) of cancer related viruses in the reference 
genome, together called “virus decoy” as a collection. The additional benefit of having such 
virus sequences in the reference genome is to give users the opportunity to directly identify 
virus genome derived reads. These viruses include Human Cytomegalovirus (CMV, HHV-5), 
Epstein-Barr virus (EBV, HHV-4), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human 
immunodeficiency virus (HIV), Human herpesvirus 8 (KSHV, HHV-8), Human T-lymphotropic 
virus 1 (HTLV-1), Merkel cell polyomavirus (MCV), Simian vacuolating virus 40 (SV40) and 
Human papillomavirus (HPV) (Table 1). All HPV sequences were obtained from The 
PapillomaVirus Episteme (PaVE, http://pave.niaid.nih.gov/) instead of NCBI, because this group 
updated the sequences as new information is confirmed 4. The GDC reference including all 
human and viral decoys can be downloaded from the GDC at the following link 
(https://api.gdc.cancer.gov/data/62f23fad-0f24-43fb-8844-990d531947cf). 
 
For variant annotation and RNA-Seq alignment/quantification, we use Human GENCODE 
release version 22 as the default GRCh38 gene model 4,5.  This version contains 60,483 genes, 
including 19,814 protein-coding genes, 15,900 long non-coding RNA genes, 9894 small non-
coding RNA genes, and many other types, such as pseudogenes. For miRNA-Seq annotation 
and qualifications, GDC uses miRBase version 21 6. 
  
2 Reproducibility of analysis.  All major GDC data production pipelines are written in the 
Common Workflow Language (CWL, https://www.commonwl.org/). In each workflow, a main 
CWL file describes how tools and sub-workflows, also written in CWL, can be used in clearly 
defined steps. All major tools have been containerized using Docker containers to support 
reproducibility and portability of the workflows.  The GDC will be redistributing the main GDC 
workflows to the research community to support reproducible research. 
 
3 DNA-Seq Alignment, Mutation Calling, Annotation, and Somatic Variant Aggregation 
The DNA-Seq alignment process includes initial alignment and a post-alignment optimization 
process. In the initial alignment step, reads are mapped to GRCh38 using BWA, followed by 
BAM sorting, merging of read group BAMs into a single BAM, and then duplicate-marking using 
Picard. When the read length of a read group is larger than 70 bps, BWA MEM 7 is used for 
alignment; or otherwise, BWA Aln 7,8 is used. 
 
After intial alignment of WXS data, we follow GATK Best Practice 
(https://software.broadinstitute.org/gatk/best-practices/) to process all BAMs from the same 
patient together for a post-alignment optimization process called ”co-cleaning“ in which includes 
GATK IndelRealigner and BaseQualityScoreRecalibration (BQSR). IndelRealigner performs 
local realignment to further improve mapping quality acrossing all reads at loci close to indels, 
and BQSR detects and fixes systematic errors made by the sequencer when it estimates the 
quality score of each base call 9–11. For post-alignment optimization of WGS data, we only 
employ BQSR, but not IndelRealigner. 
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GDC uses four somatic variant callers, MuSE 12, MuTect2 11, VarScan2 13, and SomaticSniper 
14. MuSE and SomaticSniper only detect point mutations, while MuTect2 and VarScan2 can 
detect both point mutations and small insertions and deletions (INDELs). The GDC provides 
these point mutations and small INDELs together as Simple Nucleotide Variants (SNV). INDEL 
calls from VarScan2 were not included in the initial GDC data release, but is included since 
release 10.  
 
Artificial chimera reads can form during the Multiple Displacement Amplification reaction 15, such 
as the one used to generate the WGA libraries by REPLI-g. This phenomenon is most obvious 
in MuTect2 calls shown as abnormally high INDEL/SNP ratio, and we observed that most of 
such INDELs are primarily supported by soft-clipped reads. In order to increase specificity, we 
re-analyzed all TCGA tumor WGA samples with MuTect2 option –dontUseSoftClippedBases, 
and successfully removed most of these false-positive INDELs. However, as these artifacts 
were introduced during library preparation, they could also exist in MuTect2 SNPs, as well as 
variants called by other tools, in a smaller scale. We recommend users to consume these WGA 
calls with care.  
 
Raw Somatic Variant Call Format files (VCFs) generated from each pipeline are further 
processed by caller-specific filters to tag low quality variants in the FILTER column in VCF.  For 
SomaticSniper, variants with Somatic Score (SSC) < 25 are removed. These VCFs are then 
annotated using Variant Effect Predictor (VEP) 16 to generate Annotated Somatic VCFs.  
 
To allow easier investigation of variants and annotations, the VCFs are transformed into project-
level tab-delimited Mutation Annotation Format (MAF) files 17.  This is done with a custom tool 
based upon VCF2MAF (https://github.com/mskcc/vcf2maf) from Memorial Sloan Kettering 
Cancer Center. VCF and MAF files may contain germline variants and therefore all VCFs and 
MAFs described above are only available as controlled-access files. To access controlled-
access files in the GDC, users must obtain approval from the Data Access Committee through 
dbGaP (database of Genotypes and Phenotypes) 18.  
 
We have also created open-access MAF files by applying stringent criteria to remove potential 
germline variants. These open-access MAF files are used to support variant visualization and 
simpler data sharing. We didn’t produce open-access MAFs for the TARGET program because 
of privacy concerns of child sample donors. Mutation loads of point mutations and INDELs from 
both open-access (public) and controlled-access (protected) MAFs of all TCGA projects are 
displayed in Figure 1. Of note, this germline-masking process is so stringent that some real 
somatic variants, for example somatic variants in areas of low sequencing coverage in the 
paired normal samples, may have been removed from open-access MAF.  We encourage users 
to explore controlled-access MAFs to view additional variants.  
 
 
4 Quality Assessment of GDC Somatic Variants  
Somatic variant detection is still in a stage of rapid algorithm development, and no single caller 
is superior to others in every respect 19–22. As shown in Figure 2A, a direct comparison of SNV 
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calls from different callers show significant overlaps, but also many tool-specific calls. Here, we 
only compared high quality variants, which means they do not have a non-PASS caller assigned 
FILTER value or GDC assigned GDC_FILTER values in the somatic MAF files of data release 
version 10. In summary, 56.0% of the clean variants have been identified by all four callers, 
15.1% by three callers, 14.0% by two callers, and 14.9% called by only one caller. Among all 
four somatic callers, MuTect2 has detected the highest number of unique calls, while 
SomaticSniper has the least. Additional efforts are needed to examine the validity of such calls, 
especially those not called by all pipelines, in order to evaluate the performance of each tool, 
and hopefully lead to machine-learning algorithms that help to unify caller outputs. Please note 
that these results are only relevant to the GDC implementation of these pipelines and filtering 
strategy. 
 
Evaluation of somatic variant callers often requires comparison with a so-called gold standard 
dataset that has been extensively sequenced using multiple independent methods 22, or using a 
simulated dataset. In a previous effort to evaluate quality of somatic variant callers, TCGA re-
sequenced regions of many called variants using orthogonal sequence technologies, such as 
Sanger Sequencing, and therefore have produced a set of validated variants that GDC can use 
to evaluate False-Negatives (FN) in current GDC callers. However, no validation experiments 
were designed for GDC-called variants, thus False-Positives (FP) will not be evaluated in this 
paper. 
 
We extracted and lifted over all TCGA validation information from 196 MAFs available on May 
2016 to GRCh38 coordinates, and selected mutation calls from the same tumor samples that 
GDC has also successfully analyzed with all four pipelines. This results in 1,911 unique tumor 
samples and 115,476 validated variants, across 13 TCGA projects (BLCA, BRCA, CESC, 
COAD, GBM, KIRC, LAML, OV, PAAD, READ, SARC, THYM and UCS). Comparison to GDC 
called somatic variants of the sample tumor sample shows that only 3.2% of TCGA validated 
variants are not re-discovered by any of the GDC pipelines (Figure 2B). This number further 
decreases to 1.6% if we only compare variants from exactly the same tumor and normal aliquot 
pairs. 95.6% of the validated variants are called by at least two GDC pipelines; 86.2% by at 
least three pipelines; and 71.6% called by all four GDC pipelines.  
 
To further investigate the impact of cancer type or project to each caller, we analyzed the 
validated variant recall rate for each pipeline (Figure 3). In most of the cancer types, MuTect2, 
MuSE and VarScan2 show good performance, while SomaticSniper typically recalls less. In 
particular, SomaticSniper displays a very low average recall rate of less than 50% in PAAD 
(Pancreatic Adenocarcinoma). Interestingly, SomaticSniper has the best recall rate for LAML. 
The algorithm of SomaticSniper may have been designed to better tolerate high-level tumor 
contaminations in germline control samples, which often exists as infiltration of liquid tumor cells 
in skin or buccal swabs of LAML patients.  
 
5 RNA-Seq Data Processing and Quality Assessment 
RNA-Seq analysis by the GDC makes use of a modified workflow 
(https://github.com/ucscCancer/icgc_rnaseq_align) created by the International Cancer Genome 
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Consortium (ICGC). Input RNA-Seq FASTQ files were aligned to GRCh38 using the STAR 2-
pass method 23, and quantified using HTSeq 24 and DEXSeq 25. The GDC uses GENCODE v22 
as the default gene model for both mRNA-Seq alignment and quantification. DEXSeq exon-level 
quantification results have not yet been imported into GDC Data Portal at the time of 
publication.  
 
Gene expression is measured using HTSeq. In this pipeline, only reads or read pairs that can 
be uniquely assigned to a gene are counted. HTSeq supports mapping of both stranded (either 
forward or reverse) and unstranded libraries; however, the read assignment is different between 
these two different modes resulting in an inability to compare across these library types.  
Because the GDC emphasizes data comparability across projects, we have run HTSeq on all 
projects as if they were unstranded libraries.  
 
For convenience to the scientific community, the GDC also produces gene level quantification in 
the units of FPKM (Fragments Per Kilobase of transcript per Million mapped reads) 26 and 
FPKM-UQ (Upper-Quartile Normalized FPKM) 26,27. The definition of these units are described 
in the Materials and Methods section. Note that the denominators of such normalizations are 
read counts of all the protein coding genes, instead of all genes. If users are interested in a 
different set of genes, they are encouraged to perform a normalization based on the genes they 
are working on, or to use a more sophisticated method, such as DESeq 28 or EdgeR 29.  
 
We also compared GDC FPKM-UQ expression data to the original TCGA upper-quartile 
normalized RSEM expression values using Spearman correlation. This comparison was 
performed over 10,243 shared aliquots and 18,038 shared genes in both dataset. The average 
correlation between the same sample from two datasets (Figure 4. Top) is 94.4%, and the 
majority of the samples have correlation higher than 90%.  
 
We can also measure the relative expression of the same gene among different samples. The 
average correlation between the same gene from two datasets is 92.9%. We suspected that 
most of the deviation is from sporadic low-level expressed genes. To address this concern, we 
further categorized genes into 4 quartile groups (Q1 to Q4) based on their average expression 
values in the GDC, and then examined gene level correlations within each of these 4 groups 
with TCGA results (Figure 4. Bottom). We observed an average correlation of 98% in high-level 
expressed Q3 and Q4 groups and much lower values in Q1 and Q2. 
 
6. miRNA Data Processing and Quality Assessment  
The GDC miRNA quantification analysis workflow is based on the profiling pipeline that was 
developed by the British Columbia Genome Sciences Centre 30. After realignment of miRNA-
Seq reads to GRCh38 using BWA Aln, the profiling pipeline generates TCGA-formatted miRNA 
gene expression and isoform expression results by comparing the individual reads to sequence 
feature annotations in miRBase v.21 6. Of note, however, the tool only annotates those reads 
that have an exact match with known miRNAs in miRBase and therefore does not identify novel 
miRNA or transcript with mutations. 
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We compared TPM (Transcripts Per Kilobase Million) normalized miRNA gene expression from 
GDC GRCh38 pipeline to the original TCGA Hg19 pipeline of the same aliquot using Spearman 
correlation. Similar to what we have described before for mRNA expression, only 9516 shared 
aliquots, and 641 shared mature miRNAs are used in this comparison. As shown in the boxplots 
at the bottom of Figure 5, the majority of the samples have a correlation coefficient of greater 
than 0.975, with an average of 0.984. Three cancer types, COAD (Colon adenocarcinoma), 
READ (Rectum adenocarcinoma) and OV (Ovarian carcinoma), have relatively lower 
correlation, which may reflect specific sensitivities of miRNA species in these cancer types to 
the reference genome and miRNA database versions.  
 
Expression level groups are also created in the miRNA datasets for detailed correlation 
comparisons (Figure 5. Bottom). Because there are many fewer miRNAs compared to mRNA 
genes, and many of them are expressed at low expression levels, we categorized miRNA into 
two groups. In the “Low-Expressed” group, all miRNAs show low (Q1 or Q2) in both TCGA and 
GDC quantifications; and the rest of miRNAs belong to the “Other” group. The average 
Spearman correlation in these two groups are about 95.6% and 97.9%, respectively.  
 
7. Array-Based Copy Number Variation Data Processing 
TCGA used Affymetrix Genome-Wide Human SNP 6.0 (SNP6) array data to identify genomic 
regions that have Copy Number Variations (CNV) by aggregation of typed loci into larger 
contiguous regions. Direct liftover of region boundaries from hg19 to GRCh38 results in 
fragmented segments with poor data quality due to change of probe loci between different 
genome builds. For this reason, the GDC SNP6 pipeline is built onto the existing TCGA level 2 
tangent-normalized copy number data generated by Birdsuite 31 and uses the DNAcopy version 
1.44.0 32 R-package to perform a Circular Binary Segmentation (CBS) analysis 33 with GRCh38 
probeset metadata. This pipeline normalizes noisy intensity measurements into chromosomal 
regions of equal copy number in the form of segment mean values, which are equal to 
log2(copy-number/2), so that diploid regions will have a segment mean of zero, amplified 
regions will have positive values, and deletions will have negative values.  
 
To be consistent with the original TCGA data, two different output files were produced for each 
input: copy number segment files that generated from all probes, and masked copy number  
segment files, equivalent to the original TCGA “nocnv” file, generated by excluding certain 
probes that have been previously identified to carry copy number variations in a pool of germline 
samples.  
 
8. Array-based Methylation Data Processing 
TCGA used Illumina Infinium HumanMethylation27 (HM27)  and HumanMethylation450 
(HM450) BeadChip to measure the level of methylation at known CpG sites as beta values, 
calculated from array intensities (Level 2 data) as Beta = M/(M+U), where M is the methylated 
probe intensity and U is the unmethylated probe intensity. The GDC inherited these beta values 
from existing hg19-based TCGA Level 3 DNA methylation data, and re-annotated each 
probeset with new metadata information based on GRCh38 and GENCODE v22.   
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9. Integrated Genomic Data Clustering 
To show how users can take advantages of GDC harmonized datasets for cross-project 
analysis, here we demonstrate integrated analysis with t-Distributed Stochastic Neighbor 
Embedding (t-SNE) 34,35 to reduce high dimensional information in the molecular data to two 
dimensions. (Figure 6).  We utilized four distinct GDC generated molecular features of TCGA 
primary tumor samples, including mRNA expression, miRNA expression, methylation and copy 
number variation.  Our results are shown only for TCGA data, but could be expanded to other 
GDC projects. 
 
In our result, different cancer types are well separated and some interesting patterns arise. For 
example, it has been previously suggested that colon and rectum cancer should be grouped as 
one colorectal cancer 36 and that esophageal adenocarcinomas resembles a subtype of 
stomach cancer 37. Our method supports those observations.  In our 2D-clustering the majority 
of the colon cancer (COAD) samples are co-clustered with rectum cancer (READ) samples, and 
some esophageal cancer (ESCA) samples cluster together with stomach cancer (STAD) 
samples. We also identify a few samples designated as primary tumor in one cancer type, but 
which cluster together with samples from another cancer type. For example, a paraganglioma 
and phenochromocytoma (PCPG) sample is located within a cluster of adrenocortical carcinoma 
(ACC) samples.   
 
Conclusion 
 
The rapid decrease in sequencing costs has lead to a rapid increase in the resources needed 
for storage and computation. The GDC provides a solution for this problem by centralizing 
storage and processing of genomics data. This model currently enables researchers to perform 
analysis in three different ways: 1) Quick data analysis and exploration using existing GDC 
visualization tools without the need to download files; 2) Data analysis using GDC generated 
high level processed data. These files are much smaller than the raw data;  3) Resource-
extensive data analysis by downloading raw sequencing data to other data centers or 
commercial clouds.  
 
The genomic data available through the GDC are analyzed uniformly using common algorithms 
and pipelines, and will be reanalyzed in the future as improved algorithms and methods are 
developed. As there is no consensus among the scientific community on the best algorithms on 
somatic variant detection, the GDC implements four callers, and each generates its own set of 
variant calling output. As shown in Figure 2A and 2B, only 55.97% of the variants are called by 
all four pipelines; while this category also includes 71.57% of the TCGA validated variants. This 
suggests a simple strategy to combine results from multiple callers to increase specificity. The 
boxplots in the bottom of Figure 3 show the effect of a combined caller approach to the recovery 
rate of TCGA validated variants by different cancer types. The downside of using a consensus 
call is a decrease in sensitivity.  While we cannot measure sensitivity directly, a good approach 
may be to combine results from only two somatic callers rather than require a variant be called 
by all four pipelines. The GDC is in the development stage to generate a new set of MAFs that 
contain merged results from each tool. 
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The GDC data harmonization process also makes cross-project analysis much simpler, and 
reduces artificial findings due to differences in algorithms. Users will be then able to perform 
joint analysis of data originating from different projects because all data are processed by the 
same tools and represented in the same format.  
  
The NCI's Genomic Data Commons has provided a feasible and scalable model for easy 
sharing of large set of genomics data. We hope our efforts in data sharing and uniform data 
processing will be valuable not only to researchers, but also to clinicians, patients, and other 
interested parties, and help accelerate the long-term goal of precision oncology. 
 
 
Materials and Methods 
 
1. Pipeline Development and Production 
The GDC takes advantage of containerization technology and built pipelines using Docker 
(www.docker.com) to ensure pipeline scalability, portability, and reproducibility. The alignment 
was managed by an in-house job management system that creates new virtual machines of the 
designated configuration on demand in an OpenStack environment. The corresponding Docker 
container that holds the entire workflow then runs inside of the virtual machine for an additional 
layer of security.  
 
During development of high-level data generation pipelines, we transitioned from single Docker 
workflows to using Common Workflow Language (CWL, www.commonwl.org) to describe 
analysis workflows of multiple Dockerized tools. CWL provides an additional transparent layer 
between workflow description and workflow execution, that allows even better scalability 
through parallel execution and portability.  The GDC managed CWL pipeline production uses 
the Slurm Workload Manager (slurm.schedmd.com). 
 
2. DNA-Seq Alignment and Co-cleaning 
The GDC DNA-Seq alignment pipeline follows GATK Best Practices 
(https://software.broadinstitute.org/gatk/best-practices/). The main steps include regenerating 
FASTQ files from BAM input on a per-read group basis using biobambam2 38 and alignment by 
read group using BWA (version 0.7.12) in both paired-end and single-end mode.  This was 
followed by BAM sort, merge, and MarkDuplicates using Picard 39,40. The GDC maps reads 
using either BWA MEM mode if length is equal or larger than 70bp or BWA Aln mode if below. 
BWA Aln is also used when mapping older FASTQ reads formatted with Illumina-1.3 and 
Illumina-1.5 quality scores. Multiple QC metrics were collected both before and after 
realignment using FastQC 41, samtools 39 and Picard. Re-aligned BAM files from the same 
patient are then collected together for co-cleaning using GATK 3.6 IndelRealigner and 
BaseQualityScoreRecalibration.  
 
The TCGA and TARGET BAMs to be harmonized were originally processed over a relatively 
large time scale in relation to the development of NGS technology.  Some originated from as 
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early as 2010 and were generated by a variety of workflows and reference genomes (11 
different reference genomes in total including variants of hg18, hg19, GRCh36 and GRCh37). 
Some of the workflows had introduced incorrect information into the data which were corrected 
in the GDC harmonization process.  
 
3. MuTect2 Somatic Variant Calling 
MuTect2 is built upon the capability of local de novo assembly by HaplotypeCaller and somatic 
genotyping engine of Mutect.  Mutect applies a Bayesian classifier to detect somatic mutations 
11. The GDC uses MuTect2 tools from the GATK nightly-2016-02-25-gf39d340 version. Before 
tumor normal pairs can be used for somatic variant calling, it is important to generate a Panel of 
Normals (PoNs) filter that contains calling artifacts and potential germline variants.  As 
mentioned previously, whole genome amplified (WGA) samples are analyzed with 
dontUseSoftClippedBases turned on.  
 
4. VarScan2 Somatic Variant Calling 
VarScan2 is another somatic variant caller that identifies both SNV and INDELS.  It uses 
heuristics and statistics to identify variants and considers the confounding impacts of read 
depth, base quality, variant allele frequency and statistical significance 13. GDC uses VarScan2 
version 2.3.9. 
 
The first step of VarScan2 calling is to generate a mpileup file of both tumor and normal BAMs 
using samtools for a single mpileup file. We set the quality cutoff for samtools to be 1 and also 
disabled Base Alignment Quality (BAQ) score computation. The mpileup is then used as input 
to VarScan Somatic to generate a VCF file that contains both SNP and INDEL calls. The 
resulting VCF is filtered for significant calls using VarScan ProcessSomatic.   
 
5. MuSE Somatic Variant Calling 
MuSE calls somatic variants using Markov Substitution model for Evolution 12. The first step, 
“MuSE call”, estimates the equilibrium frequencies of all four alleles and presents the maximum 
a posteriori on every genomics locus. The second step, “MuSE sump”, performs a tier based 
cutoff based on a sample-specific error model which also takes dbSNP information into account. 
GDC uses MuSE version 1.0rc_submission_c039ffa. 
 
Parallelization can be implemented for the first step of MuSE, based on genomic chunks, which 
can accelerate the production close to linear. The GDC currently only passes calls with quality 
filter “PASS” to the GDC public MAF files; however, variants with other quality Tier values could 
also be considered a user’s discretion.  
 
6. SomaticSniper Somatic Variant Calling  
SomaticSniper is a somatic variant caller that only identifies SNPs.  It uses a bayesian inference 
to compare genotype likelihoods between tumor and normals 14. GDC uses the default 
parameter settings of SomaticSniper version 1.0.5.0.  
 
7. Somatic Variant Filters 
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In addition to the built-in filters in each somatic caller, the GDC also applies additional filtering 
tools to label caller-generated variants. Because these filters are frequently updated, we have 
highlighted only a few of the major steps below. 
 

A. False Positive Filter (FPFilter, https://github.com/ucscCancer/fpfilter-tool) was applied to 
both VarScan2 and SomaticSniper VCFs.  

B. SomaticSniper variants with SSC < 25 are removed from annotated VCFs. This is the 
only step in the entire GDC somatic variant pipeline in which low-quality variants are 
removed, instead of tagged. 

C. A WXS Panel of Normals were generated internally by MuTect2 calling on about 5,000 
TCGA normal WXS samples in artifact detection mode, and combined using GATK 
CombineVariants. This is not only used as a MuTect2 built-in filter 42, but also applied to 
the other three somatic calling outputs in a similar manner. 

D. d-ToxoG (http://archive.broadinstitute.org/cancer/cga/dtoxog) is used to remove oxoG 
artifacts from point mutation calls. These artifacts were generated due to oxidative DNA 
damage during sample preparation 43.  

E. DKFZ Strandbias Filter (https://github.com/eilslabs/DKFZBiasFilter) is used to tag 
variants that are supported with significant bias from one strand direction compared to 
the other.  

 
8. MAF Generation 
Mutation Annotation Format (MAF) is a tab-delimited text file with aggregated mutation 
information from VCF Files and are generated on a project-level. The GDC currently produces 
two types of MAF files: controlled-access MAFs that contain all variants in VCFs, and open-
access somatic MAFs that contain “high quality" variants and reduced germline contaminations. 
Any user can explore the open-access somatic MAF for high quality calls; while a more 
sophisticated user may want to apply for dbGaP access to obtain the superset of mutations in 
the controlled-access MAF.  With the larger set of mutations they may perform custom filtering 
based on FILTER and GDC_FILTER columns, or collect information that was removed from the 
open-access version, such as supporting read depth in the normal samples. 
 
The specification of the GDC MAF can be found at 
https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/.  
 
9. RNA-Seq Alignment  
The RNA-Seq alignment pipeline performs alignments of raw reads against the reference 
genome using a two-pass approach using STAR 23,43.  The first pass alignment recognizes 
splice junctions in the sample, and the second pass uses those splice junctions to perform the 
final alignment. STAR version 2.4.0f1 was initially used and we then switched to version 2.4.2a 
that fixed a bug and allowed us to complete processing all the input files. If both BAM and 
FASTQ input files existed, only FASTQ files were used.   
 
10. HTSeq mRNA Quantification 
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The HTSeq (version 0.6.p1) 24 pipeline is used for calculating the number of reads that align to 
different genes in the genome. As mentioned previously, only reads that can be uniquely 
assigned to a gene are counted.  The GDC ran HTSeq on all samples as unstranded libraries in 
order to maintain consistency for cross-sample comparisons.  
 
The raw counts are normalized into Fragment per kilobase million mapped reads (FPKM) and 
Upper Quartile Normalized FPKM (FPKM-UQ) using all protein-coding genes as the 
denominator.   

 
Where, 

● RCg: Number of reads mapped to the gene 

● RCpc: Number of reads mapped to all protein-coding genes 

● RCg75: The 75th percentile read count value for genes in the sample 

● L: Length of the gene in base pairs 
11. DexSeq Exon Quantification 
The GDC has also generated exon-level quantification using the DEXSeq 44 pipeline. The first 
step in this pipeline is to create the flattened General Feature Format (GFF) file, which 
essentially collapses the information for multiple transcripts spanning the same exon into exon 
counting bins for that exon. Once the flattened GFF file is obtained, the number of reads that 
overlap with each exon counting bin are calculated. The result is a flat file which has raw counts 
for each exon. This data type is not currently available in the GDC data portal and will appear in 
a later data release. 
 
12. miRNA-Seq Alignment  
The GDC miRNA harmonization pipeline begins with a realignment of TCGA and TARGET 
miRNA-Seq reads using a similar strategy of the GDC DNA-Seq alignment pipeline. Because 
reads of miRNA-Seq are typically short, only BWA Aln was used.  
 
13. miRNA Profiling 
miRNA quantification is done with a modified version of the miRNA Profiling Pipeline v0.2.7 30 
from BCGSC (British Columbia Genome Sequencing Center). In this pipeline, miRNA species 
and miRNA isoforms are counted differently, and normalized Reads Per Million (RPM) values 
are also derived. The final results from each miRNA-Seq sample is a miRNA species 
quantification file and a miRNA isoform quantification file, in a human-readable format 
compatible to the original TCGA data.  
 
14. SNP 6.0 Array Copy Number Segmentation 
The hg19-based probeset metadata were obtained from the Affymetrix website, and then lifted 
over to GRCh38. Probes with reference bases not matching between hg19 and GRCh38 were 
removed.  
 

in 

ts 
in 
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To generate Copy Number Segment file, all SNP and CNV probes are used for Circular Binary 
Segmentation (CBS) calculation, with the only exception that probes in the Pseudo-Autosomal 
(PAR) regions were removed in males prior to calculation. To generate the Masked Copy 
Number Segment file from this result, all probesets in chromosome Y and in the frequent copy 
number variant regions in germlines obtained from GenePattern were also removed prior to 
calculation. 
 
15. Methylation Array Beta Value Annotation 
Using probe sequence information provided in the manufacturer's manifest, HM27 and HM450 
probes were remapped to the GRCh38 reference genome 45. Type II probes with a mapping 
quality of <10, or Type I probes for which the methylated and unmethylated probes map to 
different locations in the genome, and/or had a mapping quality of <10, had an entry of '*' for the 
'chr' field, and '-1' for coordinates 45. These coordinates were then used to identify the 
associated transcripts from GENCODE v22, the associated CpG island (CGI), and the CpG 
sites' distance from each of these features. Multiple transcripts overlapping the target CpG were 
separated with semicolons. Beta values were inherited from existing TCGA Level 3 DNA 
methylation data (hg19-based) based on Probe IDs. 
 
16. Variant Comparison 
The same genetic variant can be represented in VCF format in multiple different ways 46, and 
many of these discrepancies can not be easily solved by existing normalization tools. In order to 
reduce false-positive annotations, GDC requires a strict matching of Chromosome, Position and 
Alternative Alleles during implementation of MAF annotations. However, in various variant 
comparisons in this paper, we applied a loose matching strategy to regard two variants the 
same if they have overlapping regions between starting and ending positions. This is particularly 
useful when a non-INDEL caller, such as SomaticSniper or MuSE, represents a INDEL site as 
point mutations. 
 
17. t-SNE Clustering 
mRNA expression count, miRNA expression count, Copy Number Segmentation, and 
Methylation Beta Values were collected from the GDC Data Portal. For mRNA expression and 
miRNA expression, we removed low-expressed genes and miRNAs if 99% or more samples 
have less than or equal to 1 count. For Copy Number Segments, we computed average 
segmentation means on each gene weighted on overlapped length between segments and 
genes. For methylation data, we removed probes that are empty in more than 5% of the 
samples, and imputed the remaining empty values with the probeset mean. The methylation 
data is also randomly down-sampled by 25% of the probes to reduce computational burden.  
 
To integrate these data together for t-distributed stochastic neighbor embedding  (t-SNE) 
clustering, we assigned the following arbitrary weights on these four data types (3:3:1:1 for 
mRNA:Methylation:miRNA:CNV).  Then we used Principal Component Analysis (PCA) to 
generate the top 200 Principal Components (PCs) with the R function prcomp, and ranked these 
800 PCs by weighted “variation explained”. The top 200 PCs out of this analysis were scaled 
again to match the desired weights among these data types, which were used as input for t-
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SNE analysis with the R package Rtsne. We ran t-SNE 1000 times with random seeds, and 
displayed the result that minimized “cost”.  
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Table 1 Virus Sequences in GDC Reference Genome (Full table is provided in a separate 

Excel spreadsheet) 

 

Contig_Name Virus_Name GenBank_Accession PaVE_ID Revised_Seq 

CMV Human Cytomegalovirus, Human herpes virus 5 AY446894.2   

EBV Epstein-Barr virus, , Human herpes virus 4 AJ507799.2   

HBV Hepatitis B X04615.1   

HCV-1 Hepatitis C AF009606.1   

HCV-2 Hepatitis C AF177036.1   

HIV-1 Human immunodeficiency virus 1 AF033819.3   

HIV-2 Human immunodeficiency virus 2 M30502.1   

KSHV Kaposi's sarcoma-associated herpesvirus, Human herpes 

virus 8 

AF148805.2   

HTLV-1 Human T-lymphotropic virus 1 AF033817.1   

MCV Merkel cell polyomavirus HM011556.1  

SV40 Simian vacuolating virus 40 J02400.1   

HPV16 Human papillomavirus 16 K02718 HPV16REF Revised 

HPV18 Human papillomavirus 18 X05015 HPV18REF Revised 

 

* All HPV sequences are retrieved from the Papillomavirus Knowledge Source (PaVE) 4 as 

of May 2015. Genomic sequences of 18 HPV subtypes were corrected by re-sequencing or 

efforts to maintain integrity of characterized open-reading frames 4, and thus not are 

consistent with sequences in the GenBank. 
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Figure 1. Mutation Loads of TCGA Projects. GDC-detected somatic variants per sample are 

displayed by each pipeline (rows), and grouped in each project (columns). Combined 

counts of point mutations (SNP) and INDELs of either public MAF or protected MAF are 

plotted in separate colors. 

 

 

Figure 2. Comparison of GDC Somatic Variant Caller Pipelines.  
The Venn Diagram on the left (A) shows the overlap among four GDC somatic callers. Among 
all clean variants, 56.0% have been identified by all four callers, 15.1% by three callers, 14.0% 
by two callers, and 14.9% by only one caller. The Venn Diagram on the right (B) shows recall 
rate of  validated TCGA variants by GDC somatic callers. Among 115,476 TCGA validated 
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variants collected, 3.2% are not recalled by any of the GDC pipelines; 1.2% are recalled by only 
one pipeline; 9.4% are recalled by two pipelines; 14.6% are recalled by three pipelines; and 
71.6% are recalled by all four GDC pipelines.  
 

Figure 3.. Recall Rate of TCGA Validated Variants by Project. 
Top: Boxplots of recall rate of TCGA validated variants by 13 projects and four GDC somatic 
variant calling pipelines. Each dot represents a unique tumor sample. Projects are ordered by 
decreasing average recall rate from left to right. Bottom: Boxplots of recall rate of TCGA 
validated variants by number of pipelines combined.   
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Figure 4. Boxplots of Spearman Correlation between GDC and TCGA mRNA Expression.  
Top: Boxplots of Sample to Sample Correlation between GDC and TCGA by Project.  
Bottom: Combined Boxplots and Density Plots of Gene to Gene Correlation between GDC and 
TCGA. All genes are categorized by four GDC groups (Q1-4) based on their average 
expression values. Mean and standard deviation of gene to gene Spearman’s correlations are 
calculated by these four groups.  
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Figure 5. Boxplots of Spearman Correlation between GDC and TCGA miRNA Expression.  
Top: Boxplots of Sample to Sample Correlation between GDC and TCGA by Project.  
Bottom: Combined Boxplots and Density Plots of miRNA to miRNA Correlation between GDC 
and TCGA by Average Expression Level. All miRNAs are categorized in “Low-Expressed” and 
“Other” groups. Mean and standard deviation of miRNA to miRNA Spearman’s correlations are 
shown.  
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Figure 6. 2D t-SNE Clustering of 32 TCGA Projects. Patients in different projects are presented 
by different dot colors or shapes. 
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