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49  Abstract

50  Cotton Verticillium wilt (VW) is a devastating disease seriously affecting fiber yield
51  and quality, and the most effective and economical prevention measure at present is
52 selection and extension of Gossypium varieties harboring high resistant VW. However,
53  multiple attempts to improve the VW resistance of the most widely cultivated Upland
54  cotton have brought in little significant progress, and it seems necessary and urgent to
55  develop Chromosome segment substitution lines (CSSLs) for merging the superior
56  genes related with high yield and wide adaptation from G. hirsutum and VW
57  resistance and excellent fiber quality from G. barbadense. In this study, 300 CSSLs
58  were chosen from the developed BCsF3:s CSSLs constructed by G. hirsutum CCRI36
59 and G. barbadense Hail to conduct quantitative trait locus (QTL) mapping on VW
60  resistance, and a total of 53 QTLs relevant to VW disease index (DI) were identified
61  together with the phenotypic data of 2 years investigations in two fields with two
62  replications per year. All the QTLs were distributed on 20 chromosomes with
63  phenotypic variation of 3.74-11.89%, of which 29 stable ones were consistent in at
64  least two environments. Based on Meta-analysis on the 53 QTLs, 43 novel ones were
65 identified, while 10 ones consistent to previously identified QTLs. Meanwhile, 32
66 QTL hotspot regions were detected, including 15 ones were novel. This study
67  concentrates on QTL identification and screening hotspot region related with VW in
68  the 300 CSSLs, which lay a solid platform not only for revealing the genetic and
69  molecular mechanisms of VW resistance, but also for further fine mapping, gene

70 cloning and molecular designing in breeding program for resistant cotton varieties.
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74 1. Introduction

75  Cotton (Gossypium spp. L.) is not only the most significant cash crop producing the
76 main source of natural fiber for the textile industry, but also the second important
77  oilseed crop [1]. The cultivation history of cotton could retrospect to 7000 years
78  ago[2], which is widely grown in approximately 100 countries principally located in
79  tropical and sub-tropical arena [3]. The genus Gossypium consists of 53 species all
80  over the world, including 46 diploid ones (2n = 2x = 26) and 7 allotetraploid ones (2n
81 = 2x = 52) [4], of which the emergence of the latte dated from a polyploidization
82  event between A and D genomel-2 million years ago [3]. Only 4 cultivated species (2
83  diploids and 2 tetraploids) are extant and widely planted all over the world, while the
84  rest of the 53 species are wild but important reservoir of beneficial agronomic traits
85  for improvement of the cultivated ones [5, 6]. Nowadays, G. hirsutum and G.
86  barbadense are the the most widely cultivated species, and could contribute for 97%
87  and 3% of world cotton production, respectively, which attributes to the facts that the
88  former harbors high yield and wide adaptability, while the latter possesses superior
89  fiber quality and high VW resistance [7].

90 Plenty of restraining factors during organism growth are generally divided into
91  abiotic and biotic stresses [8], while plant diseases might be the dominating threat in

92 cotton production [9], of which Verticillium wilt (VW) infected by soil-borne fungus
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93 Verticillium dahliae Kleb has been the most significant disease in cotton production
94  due to causing substantial yield loss and serious fiber quality reduction [10 - 12]. As a
95  result of cotton VW infestation, fiber loss is estimated to approximately stand at 80%
96  [13]. What is worse, this disease can attack more than 400 plant species and exist in
97  soil for a long period in dormant form in the vascular system of perennial plants. Thus,
98 it is completely impossible to control VW disease through conventional method [14].
99  The general symptoms of the disease are vascular browning, stunting, leaf epinasty
100  and chlorosis, curling or necrosis, wilt and finally death of the entire plant [15, 16].

101 Despite multiple methods put forward to control VW, it remains one of the most
102 efficient and economical measures to develop elite cotton cultivars harboring genetic
103 factors tolerant or completely resistant against pathogen in cotton breeding [17-19].
104  There are only four subsistent cultivars of Gossypium species, while the tetraploid
105  cultivars cover more than 95% of planting areas around the world, namely as G.
106  barbadense (Sea Island cotton) and G. hirsutum (Upland cotton), which present
107  resistant and susceptible to VW disease, respectively [20, 21]. Hybrid breeding via
108  conventional techniques has been utilized earlier to improve VW resistance in upland
109  cottons, while some hindrances like infertility and hybrid break down/low parent
110 heterosis hindered the way of conducting resistant gene introgression from G.
111 barbadense into G. hirsutum [21]. Therefore, it has become a challenging task for
112 cotton breeders to achieve synchronous improvement in cultivating novel varieties

113 simultaneously harboring high yield, superior fiber quality, and high disease

114  resistance. QTL Mapping approaches make it possible for the discovery of
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115  quantitative genetic factors responsible for disease resistance as well as high fiber
116  quality and yield with the utilization of marker-assisted selection (MAS). Thus, we
117 can take full advantage of genetic markers presenting linkage disequilibrium with
118  disease resistance to confirm the contribution of key candidate genes in cotton
119 research, which will be transferred from Sea Island cotton into Upland cotton to
120  improve the VW resistance [22].

121 Chromosome Segment Substitution Lines (CSSLs) have perpetual effects as
122 accompanied with similar genetic base to their recurrent parent thereby acting as
123 favorable implement in mining of elite QTLs and alleles; ultimately carrying out
124 advanced functional genomic techniques devoid of any non-additive genetic effects
125 [23-28]. Optimal utilization of upland cotton as well as island cottons can be brought
126  about via MAS and conventional breeding techniques of inbreeding, outcrossing and
127 backcrossing with the provision of CSSLs. Therefore, CSSLs are extensively
128  exploited especially in QTL mapping approaches for discovering genetic factors
129  responsible for economic traits such as fiber quality, yield, biotic and abiotic stress
130 tolerance or resistance [29-37].

131 Nowadays, cotton genomics research like other crop species, has been
132 successively performed by QTL mapping on the significant traits based upon
133 comprehensive deployment of molecular markers, of which simple sequence repeats
134 (SSRs) are the most extensively utilized genetic markers in cotton [38]. To date,
135 approximately 19010 SSRs have been accounted for cotton genomics research in

136 Cotton Data Base (http://cottondb.org/), and almost 100,290 microsatellites have been
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137  newly extracted from genome while about 77,996 ones have been established
138 successfully.

139 In the recent days, there is a newly emerging technique of mapping renowned as
140  Meta-analysis of QTLs in tetraploid cotton research, which has been intensively
141  activated for the identification of hotspot regions and known to harbor a massive
142 amount of QTLs [32, 33]. Consensus map positions for QTLs and merging of datasets
143 are the fundamental properties for meta-analysis approach, making this technique
144 unique and widely adoptable. Not only previously declared QTLs positions can be
145  reassured with identification of hotspot regions, but also the pleotropic effects of
146 QTLs for different traits can be identified with Meta QTL analysis [32]. Moreover,
147  this beneficial aspect of meta-analysis can be exploited to create hotspot region
148  refuging stable QTLs for any disease by reassembling the previously identified QTLs
149  for the relevant disease. Facilitation of breeders and geneticists can be brought about
150 by employing this technique as they would only need to identify that specific
151  chromosome region enriched with genetic factors controlling disease resistance for
152 MAS or advanced mapping techniques [7, 39].

153 The goals of this study therefore are to identify favorable QTL alleles linked with
154 VW resistance, to screen SSR markers that can be implemented in marker-assisted
155  breeding program, and to confirm consistent and stable QTLs through meta-analysis
156 for MAS application in cotton breeding for VW prevention and control. The results in

157  this study are of importance for VW resistance as well as breeding improvements in

158 cotton.
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159 2. Results

160 2.1 Phenotypic disease index (DI) of parents and controls

161 At Anyang in July 2015, the highest DI value of VW was obtained in the susceptible

162  Jimianll (41.95%), followed by CCRI36 (31.03%), while the lowest one was

163  observed in the parental line Hail (6.21%) (Table 2), indicating a significant
164  difference of DI values between Hail and Jimianl1. At Anyang in August 2015, the
165  highest DI was found in Jimianl1 (48.30%), followed by CCRI36 (47.70%) and by
166 ~ Hail (19.50%). The difference of DI values between the parental lines was significant
167  while that of DI values between CCRI36 and Jimianl1 was insignificant (Figure 1. A).
168  In both case of Xinjiang in July and August 2015, highly significant differences were
169  observed between parental lines (Figure 1. B).

170 At Anyang in July 2016, the DI value of Jimianll (26.83%) was the highest,

171 followed by CCRI36 (25.57%), while the DI value of Hail (5.59%) was the lowest
172 (Table 2), identifying no significant difference of DI values between CCRI36 and
173 Jimianll. At Anyang in August 2016, the highest DI was recorded in Jimianll

174 (35.19%), followed by CCRI36 (32.89%), while the DI value of Hail (5.60%) was the
175  lowest (Figure 1. C). The difference of DI values between CCRI36 and Jimian11 was
176 also insignificant. In both case of Xinjiang in July and August 2016, we observed
177 highly significant difference of resistance against the VW disease between the parents,
178  while no significant difference between CCRI36 and Jimianl1 was observed (Figure
179 1.D).

180
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181 2.2 Evaluation of CSSLs for VW resistance

182  The ANOVA results displayed the P-value was 0.002, suggesting significant
183  differences of resistance against VW in CSSLs (Table 1). Results of the descriptive
184  statistical analysis of CSSLs and parental lines across 8 environments were illustrated
185 in Table 2. Less than one absolute value of skewness of the mean values of VW in
186 CSSLs across 8 environments indicated a normal distribution. The DI of CSSLs
187  presented a perpetual and normal distribution, which was in consistent with
188  multi-gene inheritance patterns for VW resistance (Figure 2).

189 The average DI values of CSSLs varied from 0.30 to 18.50% in XJJulyl5 and
190  from 16.67 to 53.29% in XJAuglS5 (Table 2). The average DI value in XJJulyl5 was
191  6.52%, showing not significant to either of parents. On the other hand, the average DI
192 values of CSSLs varied from 0 to 59.72% in AYJulyl6. The average DI value in
193 AYlJulyl6 was 25.02%, which was close to the recurrent parent CCRI36 (25.57%).
194 The broad-sense heritability varied from 67.90% to 97.07%, of which the highest
195  heritability was observed in AYJulyl5 while the lowest in XJAugl5 (Table 2). For all
196  the environments of two years and developmental stages, wide variations of
197  heritability were found in CSSLs to VW disease onset with some lines showing

198  introgressive segregation over their parents.
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204 deviation. a, b, ¢ indicate the significance at 5%.
205

206 2.3 Correlation coefficient among DI in different stages growth and
207  environments
208  Highly significant positive correlations were visible among the disease index of

209  Verticillium wilt in the fields except between XJJull5 and AYJull6 (Table 3).
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Table 1. Analysis of variance of VW resistance

ratings showed by DI across 8 environments

Sum of Mean
Source of Variation DF square square F P-value
Environments 7 281489 40212.71 508.556 0**
Genotypes 299 101795.6 340.4534 4.306 <0.001%**
Error 2093 165498.4 79.07235
Total 2399 548783



https://doi.org/10.1101/788901
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/788901; this version posted October 1, 2019. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

216 Table 2. Descriptive statistics of VW resistance with broad sense Heritability (H?) measured in
217 BC:sFs:s population
CSSL population Parents H? (%)
Mid  Jimian11
Traits Env Mean Max Mini SD Skew Kurt Var CCRI36 Hail
parent (Control)

DI(%)  AYJull5 2190 7320 000 13.10  0.94 133 17155 31.03 6.21 18.62 41.95 97.07
AYAugl5 4333 7350 1430 954  -0.18  0.09  91.06 47.70 19.50  33.60 48.30 94.87
XJJull5 652 1850 030 344 056 000 1181 6.76 4.14 5.45 7.87 72.03
XJAugl5 3510 5329 1667 545 023 035  29.69 29.63 2583 27.83 42.48 67.90
AYJull6 2502 5972 000 1132 006  -020 128.11 25.57 5.59 15.58 26.83 96.60
AYAugl6 2896 6324 000 1241 016  -035 15391 32.89 5.60 19.25 35.19 96.56
XJJulle 2621 5661 281 1075 029  -0.46 11556 33.18 5.43 19.31 35.20 82.79
XJAugl6 3994 7264 337 1387 003  -047 19227 46.52 6.41 26.47 42.89 85.33

218 DI: Disease Index; Env: Environment; Max: Maximum; Mini: Minimum; SD: Standard deviation;
219 Skew: Skewness; Kurt: Kurtosis; Var: Variance
220
221 Table 3. Correlation coefficient among the DI in the different stages of growth of BCsF3:5 population
222
Traits AYJull5  AYAugl5 XJJull5  XJAugl5 AYJullé AYAuglé XJJull6
AYAugls 0.407**
XJJul15 0.202** 0.164**
XJAugl5 0.187** 0.136* 0.314**
AYJull6 0.119* 0.164** 0.04 0.123*
AYAuglé 0.315** 0.326** 0.169** 0.188** 0.401**
XJJull6 0.445** 0.485** 0.210** 0.157** 0.248** 0.376™*
XJAugleé 0.437** 0.481** 0.163** 0.164** 0.240** 0.379** 0.919**
223
224 2.4 QTL mapping
225  In total, 53 QTLs for VW were detected during different stages of growth and
226  environments at Anyang and Xinjiang fields in the year of 2015 and 2016, which
227  explained from 3.74 to 11.89% of the total phenotypic variation (PV) with LOD
228  scores ranging 2.50 to 6.96. They were located on 20 chromosomes except Chr04,
229  Chr08, Chrl3, Chrl6, Chr18 and Chr25. Among them, 35 QTLs (66%) had negative
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230  additive effects, indicating that their favorable alleles come from G. barbadense,
231  which enhanced VW resistance and decremented DI by 2.64 to 13.23. On the other
232 hand, 18 QTLs (34%) had positive additive effects, indicating that the G. barbadense
233 alleles decremented VW resistance and enhanced phenotypic DI values by 2.27 to
234 19.47. Thirty-one QTLs were identified in 2015 and 86 QTLs in 2016, of which
235  eleven ones were found in the both years. The highest number of QTLs (11) was
236  detected on Chromosome 5 (Figure 3, Table S1).

237 2.4.1 QTLs for VW resistance in Anyang in 2015

238 In July 2015, there were ten QTLs identified in Anyang and mapped on 5
239  chromosomes, explaining 4.39-11.89% of overall PV with LOD scores ranging
240  2.89-4.87, of which five ones were found on Chr05 while two ones on Chrl9. All
241  QTLs except gVW-Chr05-8 and gVW-Chri9-5 had negative additive -effects,
242 indicating that their favorable alleles derived from donor parent Hail incremented
243 VW resistance and decremented phenotypic DI by 4.75-7.98 (Table S1).

244 In August 2015, thirteen QTLs were identified at Anyang and mapped on 8
245  chromosomes, explaining 3.79-7.67% of the overall phenotypic variation with LOD
246  scores ranging 2.51-5.22. Five QTLs were found on Chr05 and two QTLs on Chrl9,
247  which was consistent with the results in July 2015. Except for gVW-Chr0I-1,
248  qVW-Chri2-1 and qVW-Chr26-1, the whole QTLs had negative additive effects,
249  which suggested that donor parent G. barbadense alleles incremented VW resistance
250  and decremented DI by 2.64-13.23 (Table S1).

251 2.4.2 QTLs for VW resistance at Xinjiang in 2015
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252 In July 2015, there were six QTLs detected at Xinjiang, which were mapped on 6
253  Chromosomes with 3.78-9.33% of the total PV explained. All the QTLs showed
254  positive additives, which suggested the Hail alleles decremented resistance against
255 VW and incremented phenotypic DI by 2.27-13.25 (Table S1).

256 In August 2015, two QTLs were found at Xinjiang, namely as gVW-Chr05-10
257  and gVW-Chr06-1 which were mapped on Chr5 and Chr6 with 5.00 and 5.59% of PV
258 and LOD scores of 3.35 and 3.94, respectively. These QTLs also presented positive
259  additives, suggesting their alleles derived from G. barbadense decreased resistance of
260 the disease and increased DI by 2.81 and 9.40 (Table S1).

261  2.4.3 QTLs for VW resistance in Anyang in 2016

262 In July 2016, there were fourteen QTLs detected at Anyang and mapped on 9
263  chromosomes, explaining 4.27-7.71% of the total PV. Four QTLs were located on
264  Chr05, while each two QTLs were identified on Chr06 and Chrl19, respectively. All
265 the QTLs had negative additives, which suggested their parent Hai alleles
266  incremented VW resistance and decremented DI by 4.43-9.57 (Table S1).

267 In August 2016, ten QTLs were recorded at Anyang and mapped on 8
268  chromosomes, explaining 3.76—6.15% of the overall PV, of which three ones were
269  identified on Chr05. All the QTLs except gVW-Chr(2-3 had negative additives,
270  suggesting their alleles derived from parent Hail incremented resistance and
271 decremented DI by 4.19-10.47 (Table S1).

272 2.4.4 QTLs for VW resistance in Xinjiang in 2016
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273 In July 2016, there were twenty-eight QTLs detected at Xinjiang and mapped on 14
274  chromosomes with 3.74-11.14% of total PV explained, of which LOD score ranging
275  was 2.55-6.96. In addition, nine QTLs were found on Chr05, and three QTLs were
276  located on Chr19. All the QTLs except gVW-Chr09-1, gVW-Chri10-2, gVW-Chrl5-1,
277 and gVW-Chr22-2 had negative additives, suggesting their parent Hail alleles
278  enhanced resistance against VW and decreased DI by 2.96-7.65 (Table S1).

279 In August 2016, thirty-four QTLs were found at Xinjiang and mapped on 15
280  chromosomes, explaining 3.79-10.22% of total PV. Nine QTLs were identified on
281  Chr05, while five and three QTLs were separately located on Chrl9 and ChrlO.
282  Except for gVW-Chri0-2, qVW-Chri0-3, gVW-Chri5-1, and qVW-Chr22-2, all the
283  QTLs had negative additives, which suggested their alleles derived from parent G.
284  barbadense incremented resistance against VW and decremented phenotypic value of
285 DI by 3.94-10.48 (Table S1).

286

287 2.5 Identification of stable QTLs over environments and developmental periods
288  In total, 53 QTLs of VW disease index were detected in CSSLs during different
289  stages of growth and environments, which were separately located on 20 different
290  chromosomes. There were 11 and 7 QTLs identified on Chr05 and Chrl9,
291  respectively, and each 3 QTLs were separately located on Chr01, Chr06, Chr10, and
292 Chr22. Each 2 QTLs were found on Chr02, Chr03, Chr09, Chrll, Chrl4, Chrl5,
293 Chrl7, Chr2l, and Chr23, respectively, while Chr07, Chr12, Chr20, Chr24, and

294  Chr26 separately contained only 1 QTL (Table S1).
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295 Among 53 QTLs, 29 stable QTLs were identified in at least two environment,
296  explaining 3.74-11.89% of the overall PV (Table 4). There were 25 stable QTLs (86%)
297  showing negative additive effects, which suggested thier Hail alleles enhanced
298  resistance against VW and decreased phenotypic DI. Among 29 stable QTLs, Chr05
299  harbored 09 stable QTLs, and Chrl9 contained 3 stable QTLs. Each 2 stable QTLs
300 were separately located on Chr06, Chr10, Chrl7, and Chr22, while ChrO1, Chr03,
301  Chr07, Chrll, Chrl4, Chrl5, Chr20, Chr23, and Chr26 contained 1 stable QTL,
302 respectively.

303 Four stable QTLs, namely as gVW-Chr05-2, gVW-Chr05-3, gVW-Chr05-6, and
304  qVW-Chr20-1, were detected in six environments explaining 4.56-11.89%,
305 4.56-10.03%, 4.15-10.17% and 4.53-11.14% of PV, respectively. Only one stable
306 QTL (gVW-Chri9-2) was identified in five environments with 3.82-9.40% of the
307 observed PV, while three stable QTLs (gVW-Chr05-4, qVW-Chri0-1, and
308  qVW-Chri9-1) were investigated in four environments separately explaining the
309 observed PV of 4.47-7.62%, 4.09-5.17%, and 4.66-7.96%. Morcover, there were nine
310 stable QTLs detected in three environments, namely as ¢gVW-Chr05-1,
311 qVW-Chr05-11, qVW-Chr06-2, qVW-Chr06-3, qVW-Chr07-1, qVW-Chrll-2,
312 qVW-Chri9-6, qVW-Chr22-1, and qVW-Chr23-2, which presented 7.67-9.13%,
313 4.69-5.98%, 3.98-5.52%, 5.28-6.67%, 4.05-5.97%, 6.06-9.04%, 3.79-5.20%,
314 4.39-7.06%, and 5.32-7.59% of the observed PV, respectively. Twelve stable QTLs
315  were detected in two environments with overall 3.74-10.22% of PV. The stable QTLs,

316 including gVW-Chr05-2, qVW-Chr05-3, qVW-Chr05-6, qVW-Chr05-7, and


https://doi.org/10.1101/788901
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/788901; this version posted October 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

317 qVW-Chr20-1, had major effects and explained 11.89%, 10.03%, 10.17%, 10.22%
318  and 11.14% of the observed PV, respectively (Table 4).
319 Table 4. Identification of QTLs for VW disease index during different development and
320 environments in BCsF3:5 populations
SL. Growth Location Nearest PV
No. QTLs stage Env Chr (cM) marker LOD ~ Add (%)
1 qVW-Chr01-3 July XJJull6 Chr01 122.7 TMBI152  3.15 -3.37 5.60
August XJAugl6 Chr01 122.7 TMBI152 427 -5.05 7.59
2 qVW-Chr03-2 July XJJull6 Chr03 114.4 HAUO0195 395 -599 6.38
August XJAugl6 Chr03 114.4 HAUO0195 488 -850 7.71
3 qVW-Chr05-1 August  AYAugl5  Chr05 30.5 CIR224b 522 -3.81 17.67
July XJJull6 Chr05 30.5 CIR224b  6.87 -425 9.13
August XJAugl6 Chr05 30.5 CIR224b 595 -5.09 7.88
4 qVW-Chr05-2 July AYJull5 Chr05 323 CIR102 3.84 -544 11.89
August  AYAugl5  Chr05 323 CIR102 348 -4.07 531
July AYJull6 Chr05 323 CIR102 347 -443 542
August  AYAugl6é  Chr05 323 CIR102 288 446 4.56
July XJJull6 Chr05 323 CIR102 6.66 -5.65 9.77
August XJAugl6 Chr05 323 CIR102 459 -6.16 697
5 qVW-Chr05-3 July AYJull5 Chr05 354 DPL0063 332 -5.08 4.89
August  AYAugl5  Chr05 354 DPL0063  3.57 -4.23 546
July AYJull6 Chr05 354 DPL0063 5.07 -542 7.71
August  AYAugl6  Chr05 354 DPL0063 298 -4.57 4.56
July XJJull6 Chr05 354 DPL0063 696 -5.87 10.03
August XJAugl6 Chr05 354 DPL0063 445 -6.15 6.61
6 qVW-Chr05-4 July AYJull5 Chr05 38.2 HAU0746 3.19 -5.69 4.76
July AYJull6 Chr05 38.2 HAUO0746 299 -4.68 447
July XJJull6 Chr05 38.2 HAUO0746 5.18 -5.80 7.62
August XJAugl6 Chr05 38.2 HAUO0746 326 -598 4.86
7 qVW-Chr05-5 July XJJull6 Chr05 40.2 CGR5025 392 -474 584
August XJAugl6 Chr05 40.2 CGR5025 630 -7.69 9.22
8 qVW-Chr05-6 July AYJull5 Chr05 43.1 HAU1712 348 -539 523
August  AYAugl5  Chr05 43.1 HAU1712 2.83 -3.78 4.15
July AYJull6 Chr05 43.1 HAU1712 347 -456 5.18
August  AYAugl6  Chr05 43.1 HAU1712 2.82 453 425
July XJJull6 Chr05 43.1 HAU1712 696 -6.06 10.17
August XJAugl6 Chr05 43.1 HAU1712 434 -623 6.44
9 qVW-Chr05-7 July XJJull6 Chr05 45.0 DPLOI138 2.82 -390 6.84
August XJAugl6 Chr05 45.0 DPLOI38 3.59 -448 10.22
10 qVW-Chr05-9 July XJJull6 Chr05 89.9 MUSS317 323 -692 4385
August XJAugl6 Chr05 89.9 MUSS317 3.84 -9.71 5.74
11 qVW-Chr05-11 August  AYAugl5  Chr05 197.4 HAU1050 3.11 -2.64 4.69
July XJJull6 Chr05 197.4 HAU1050 3.80 -296 5.62
August XJAugl6 Chr05 197.4 HAU1050 4.03 -394 598
12 qVW-Chr06-2 July AYJull6 Chr06 44.5 CER]:?O% 511 957 7.50
August  AYAugl6  Chr06 445 ~ CEROOBS )00 583 417

b


https://doi.org/10.1101/788901
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/788901; this version posted October 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

qVW-Chr06-3

qVW-Chr07-1

qVW-Chr10-1

qVW-Chr10-2

qVW-Chrl1-2

qVW-Chr14-2
qVW-Chrl5-1
qVW-Chrl7-1
qVW-Chrl7-2

qVW-Chr19-1

qVW-Chr19-2

qVW-Chr19-6

qVW-Chr20-1

qVW-Chr22-1

qVW-Chr22-2

qVW-Chr23-2

available under aCC-BY 4.0 International license.

July

August

July
July
August
August
July
August
July
August
July
August
July
August
July
July

August

July
August
July
August
July
August
July
August
July
August
August
July
July
August
July
July
August
August
August
July
July
August
July
August
July
August
July
August
July
July
August
July

XJIull6

XJAugl6

AYJull6
XJJull6
XJAugl6
AYAugl6
XJJull6
XJAugl6
AYJull6
AYAugl6
XJJull6
XJAugl6
XJJull6
XJAugl6
AYJull6
XJIull6

XJAugl6

AYJull6
XJAugl6
XJIull6
XJAugl6
XJIull6
XJAugl6
XJIull6
XJAugl6
AYJull6
AYAugl6
XJAugl6
XJJull6
AYJull5
AYAugl5
AYJull6
XJIull6
XJAugl6
XJAugl6
AYAugl5
XJIull6
AYJulls
AYAugl5
AYJull6
AYAugl6
XJJull6
XJAugl6
AYJull5
XJAugl6
XJIull6
XJJull6
XJAugl6
AYJulls

Chr06

Chr06

Chr06
Chr06
Chr06
Chr07
Chr07
Chr07
Chr10
Chr10
Chr10
Chr10
Chr10
Chr10
Chrl1
Chrl1

Chrl1

Chr14
Chrl4
Chrl5
Chrl5
Chrl7
Chr17
Chr17
Chrl7
Chr19
Chr19
Chr19
Chr19
Chr19
Chr19
Chr19
Chr19
Chr19
Chr19
Chr19
Chr19
Chr20
Chr20
Chr20
Chr20
Chr20
Chr20
Chr22
Chr22
Chr22
Chr22
Chr22
Chr23

44.5

44.5

66.1
66.1
66.1
92.2
92.2
92.2
150.7
150.7
150.7
150.7
199.7
199.7
253.0
253.0

253.0

203.0
203.0
16.3
16.3
233
233
122.8
122.8
17.4
17.4
17.4
17.4
145.9
145.9
145.9
145.9
145.9
257.1
257.1
257.1
175.5
175.5
175.5
175.5
175.5
175.5
21.8
21.8
21.8
26.2
26.2
208.1

CERO0086
b
CERO0086
b
NAU5433
NAUS5433
NAU5433
NAU1085
NAU1085
NAU1085
NAU2869
NAU2869
NAU2869
NAU2869
HAU1701
HAU1701
DPL0209
DPL0209

DPL0209

HAUO0883
HAUO0883
CICR&15
CICRS815
HAU2014
HAU2014
HAUO0195
HAUO0195
NAU3405
NAU3405
NAU3405
NAU3405
NAU5475
NAUS5475
NAUS5475
NAU5475
NAUS5475
HAU1785
HAU1785
HAU1785
NAU3665
NAU3665
NAU3665
NAU3665
NAU3665
NAU3665
NAU2026
NAU2026
NAU2026
Gh200
Gh200
NAUS5189

2.67

3.74

3.55
3.69
4.53
2.62
391
3.37
3.37
3.28
2.69
341
2.90
2.61
3.97
5.40

6.06

3.32
4.27
2.64
2.56
4.58
5.25
2.55
2.50
3.12
4.05
5.04
5.42
4.03
2.54
2.85
6.45
5.58
3.47
2.51
3.01
3.64
2.73
2.80
341
6.52
5.73
2.89
5.51
4.84
2.90
2.97
3.32

-6.62
-10.0

-6.89
-6.68
-9.50
-4.19
-4.41
-5.29
-6.75
-7.31
-5.73
-8.31
6.64
7.80
-7.00
-7.65
-10.4

-5.89
-8.15
6.63

8.43

-5.46
-7.49
-3.87
-4.94
-5.01
-6.23
-1.75
-6.22
-6.38
-4.01
-4.57
-6.45
-7.76
-8.39
-5.42
-6.07
-6.31
-4.07
-4.56
-5.61
-6.54
-7.87
-4.75
-6.28
-4.58
12.75
16.66
-7.98

3.98

5.52

5.28
5.50
6.67
4.05
5.97
5.18
5.12
5.00
4.09
5.17
4.36
3.94
6.06
8.01

9.04

5.42
6.91
3.96
3.85
6.78
7.66
3.87
3.79
4.66
6.00
7.43
7.96
5.98
3.82
4.27
9.40
8.18
5.20
3.79
4.53
6.74
4.53
4.89
6.15
11.14
9.69
4.39
7.06
6.26
3.74
3.83
5.32


https://doi.org/10.1101/788901
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/788901; this version posted October 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

July XJIull6 Chr23 208.1 NAUS5189 435 -726 6.77

August XJAugl6 Chr23 208.1 NAU5189 498 -992 7.59

29 qVW-Chr26-1 August AYAugl5 Chr26 8.2 NAU4925 4.03 797 6.08
July XJJull5 Chr26 8.2 NAU4925 3.09 227 4.6l
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323 Figure 3. Identification of QTLs for VW disease index and linkage map in BCsF3.s populations.
324 Note: stars indicate stable QTLs

325

326 2.6 QTL hotspots and meta-analysis

327 Based on Meta-analysis, 32 QTL hotspot regions were totally detected on 18
328  chromosomes, including Chr01, Chr03, Chr05, Chr06, Chr07, Chr09, Chrl1, Chrl2,
329  Chrl4, Chrl5, Chrl7, Chr19, Chr20, Chr21, Chr22, Chr23, Chr24 and Chr26 (Figure
330  S1, Table 5). Among them, 17 QTL hotspot regions were consistent with those
331  detected earlier by [7, 22, 33] (Table 5), and the other 15 were identified as novel
332 ones. Each 3 QTL hotspot regions were separately located on Chr05, Chrl9, and
333  Chr26, while each 2 QTL hotspot regions were detected on ChrO1, Chr03, Chr07,
334 Chr09, Chr20, Chr21, Chr22, and Chr23, respectively. In addition, Chr06, Chrll,
335  Chrl2, Chrl4, Chrl5, Chrl7, and Chr24 separately contained 1 QTL hotspot region
336 (Table 5).

337 Among 32 QTL hotspot regions, 9 hotspot regions located on seven different
338  chromosomes had more QTLs (Figure S1, Table 5), which could be very important
339  for further studies and utilized for molecular breeding via MAS. As for chr05, 40
340  QTLs were selected to project on consensus chromosome 05 (Cons.Chr05), resulting
341 in 3 identified QTL hotspot regions. There were 18, 5, and 17 QTLs on
342 Chr05-DI-Hotspot-1, Chr05-DI-Hotspot-2, and Chr05-DI-Hotspot-3, respectively
343  (Figure 4, Table 5). Eleven QTLs were selected to project on chromosome 09
344  (Cons.Chr09), and 2 QTL hotspot regions were identified, of which

345  Chr09-DI-Hotspot-1 had 9 QTLs, while Chr09-DI-Hotspot-2 had 2 QTLs. Sixteen
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346  QTLs were identified and projected on consensus Chrl9 to perform meta-analysis,
347  identifying 3 QTL hotspot regions. Chr19-DI-Hotspot-1, Chr19-DI-Hotspot-2 and
348  Chrl19-DI-Hotspot-3 contained 5, 4 and 7 QTLs, respectively. Twelve QTLs were
349  selected to project on chromosome 22 (Cons.Chr22), and 2 QTL hotspot regions were
350 identified, of which Chr22-DI-Hotspot-1 had 5 QTLs, while Chr22-DI-Hotspot-2 had
351 7 QTLs (Figure 4). Fifty six QTLs were selected to project on Cons.Chr23,
352 identifying 2 QTL hotspot regions. Chr23-DI-Hotspot-1 and Chr23-DI-Hotspot-2
353  contained 30 and 26 QTLs, respectively. Sixteen QTLs were selected to project on
354  Cons.Chr26, and 3 QTL hotspot regions were identified. Chr26-DI-Hotspot-1,
355  Chr26-DI-Hotspot-2 and Chr26-DI-Hotspot-3 contained 6, 5 and 5 QTLs,
356  respectively. The details of all QTLs are described in Table 5.

357 As for the hotspots on Cons.Chr05, Chr05-DI-Hotspot-1 from the 25-36 cM
358  region was located between markers Gh243 and HAU3395, and Chr05-DI-Hotspot-2
359  from 31 to 42 cM region and Chr05-DI-Hotspot-3 from 39 to 54 cM region were
360  separately located between markers NAU3204 and CIR301 and between markers
361 TMBO0131b and NAU2948. There were two hotspots on Cons.Chr09, and
362  Chr09-DI-Hotspot-1from the 34-60 cM region and Chr09-DI-Hotspot-2 from 87 to
363 93 cM region were located between markers CGR6170 and CGR6719 and between
364  markers BNL0597 and BNL4053, respectively. With regard to the hotspots on
365  Cons.Chrl9, Chr19-DI-Hotspot-1 from the 2-27 cM region was located between
366  markers CIR415 and BNL3452, and Chr19-DI-Hotspot-2 from 32—-55 cM region and

367  Chr19-DI-Hotspot-3 from 123 to 148 cM region were separately located between
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368  markers NAU2894 and COTO037 and between markers DPL0216 and Gh354.
369  Moreover, three hotspots were identified on Cons.Chr26, of which
370 Chr26-DI-Hotspot-1 from 4 to 29 cM region was located between markers HAU1845
371 and DPLO0888, while Chr26-DI-Hotspot-2 from 33 to 54 cM region and
372 Chr26-DI-Hotspot-3 from 85 to 102 cM region were lacated between markers

373 NAU2356 and CIR167 and between markers C2-0528 and DPL1283, respectively.
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374 A B
375 Figure 4. QTL hotspots and QTLs for VW resistance on the consensus map by a meta-analysis.
376 Consensus Chromosome 05 (Cons.Chr05) has three hotspots, Cons.Chr09 has 2, Cons.Chr19 has
377 three and Cons.Chr22 has 2 hotspots.
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386

387 Table 5. QTL hotspots detected for VW resistance on the consensus map through meta-analysis

Location No. of No. of QTLs

Hotspot name Chr L. Reported earlier
(cM) QTLs in this paper
Chr01-DI-Hotspot-1 Chr01 14-33 cM 6 3
Chr01-DI-Hotspot-2 Chr01 34-55 cM 5 0
Chr03-DI-Hotspot-1 Chr03 20-34 cM 5 1 Shi et al., 2016
Chr03-DI-Hotspot-2 Chr03 34-44 cM 5 1
Chr05-DI-Hotspot-1 Chr05 25-36 cM 18 8 Shi et al., 2016
Chr05-DI-Hotspot-2 Chr05 31-42 cM 5 2 Shi et al., 2016;
Said et al., 2015
Chr05-DI-Hotspot-3 Chr05 39-54 cM 17 1 Shi et al., 2016;
Zhang et al., 2015
Chr06-DI-Hotspot-1 Chr06 35-51 cM 6 2
Chr07-DI-Hotspot-1 Chr07 51-76 cM 6 0 Zhang et al., 2015
Chr07-DI-Hotspot-2 Chr07  178-193 ctM 8 1
Chr09-DI-Hotspot-1 Chr09 34-60 cM 9 2 Zhang et al., 2015
Chr09-DI-Hotspot-2 Chr09 87-93 cM 2 0
Chrl1-DI-Hotspot-1 Chrll 72-99 cM 6 2
Chr12-DI-Hotspot-1 Chrl2 13-28 cM 6 1 Shi et al., 2016
Chr14-DI-Hotspot-1 Chrl14 19-34 cM 7 2 Shi et al., 2016
Chr15-DI-Hotspot-1 Chrl5 41-68 cM 10 1
Chr17-DI-Hotspot-1 Chr17 6-23 cM 4 2
Chr19-DI-Hotspot-1 Chr19 2-27 cM 5 1 Shi et al., 2016;
Zhang et al., 2015
Chr19-DI-Hotspot-2 Chrl9 32-55cM 4 0 Zhang et al., 2015
Chr19-DI-Hotspot-3 Chr19  123-148 cM 7 Shi et al., 2016
Chr20-DI-Hotspot-1 Chr20 12-24 cM 4 0 Shi et al., 2016;
Zhang et al., 2015
Chr20-DI-Hotspot-2 Chr20 26-45 cM 5 1
Chr21-DI-Hotspot-1 Chr21 3-29 cM 6 0 Zhang et al., 2015
Chr21-DI-Hotspot-2 Chr21 35-60 cM 7 2
Chr22-DI-Hotspot-1 Chr22 0-25 cM 5 1 Zhang et al., 2015
Chr22-DI-Hotspot-2 Chr22 30-54 cM 7 2
Chr23-DI-Hotspot-1 Chr23 40- 65 cM 30 1 Zhang et al., 2015
Chr23-DI-Hotspot-2 Chr23 67-92 cM 26 1
Chr24-DI-Hotspot-1 Chr24 0-25 cM 5 1 Zhang et al., 2015
Chr26-DI-Hotspot-1 Chr26 4-29 cM 6 1 Zhang et al., 2015
Chr26-DI-Hotspot-2 Chr26 33-54 cM 5 0
Chr26-DI-Hotspot-3 Chr26 85-102 cM 5 0
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390 3. Discussion

391 3.1 Field status and phenotypic assessment

392 Without the inoculation provision and just under natural environmental conditions, a
393  population of CSSLs developed from interspecific cross between Upland cotton
394  CCRI36 and Sea Island cotton Hail, which has been investigated for resistance
395 against VW together with parents and controls. The VW resistance was assessed
396  based on the leaf tissue damage in the mature stages, of which the results indicated the
397  parent Hail appeared to be more resistant to the disease compared to CCRI36, while
398  the control Jimianll displayed slightly higher susceptibility over CCRI36. Most of
399  the CSSLs exhibited higher DI values than mid parents (Table 2), and this unclear
400  phenomenon might be due to DI values fluctuation across the environments. The
401  same remark was made in a study using an interspecific chromosome segment line
402  with different VW strains and according to the authors, that fact can be explained the
403  resistance to different VW isolates is controlled by distinct single genes and that in the
404  presence of a mixture of isolates, interactions occurred [19].

405 Over different years of study and across variable environments, the investigated
406  population of CSSLs has displayed a broad range of sensitivity ranging between
407  highly susceptible to highly resistant. Having taken the previous studies [40] into
408  consideration, the hypothesis came into being regarding inheritance of VW in
409  recessive fashion, which is that both the paternal and maternal contributors should

410  harbor genetic factors for resistance. For the verification of the generated hypothesis,
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411  the CSSL population has been investigated on phenological basis over different
412  environments at various growth stages. In this study, we observed that DI values
413 susecptible to VW infection were higher in August than those in July, to be specific to
414  presenting that the susceptible control (Jimianll) showed above 35% DI values
415  except in XJJull5 and AYJull6, while the DI values of CCRI36 were lower than 35%
416  except in AYAugl5 and XJAugl6 (Table 2). This lesser DI percentage is the
417  evidence for the occurrence of high pressure projected by variable VW strains under
418  natural environmental conditions. Few more reasons behind this phenological
419  variation include intensity and virulence of strains, fungal amount in soil and
420  developmental stages as well as environmental influences [41]. The similar findings
421  have been reported earlier in which the host plant proved to be resistant against
422 inoculum of VW while remained susceptible under natural environmental conditions
423 [21]. We also have synchrony with previous findings with a display of lesser disease
424  index (DI<40%) by CCRI36 progenitor whereas some of the offspring depicted a
425  prominent resistance level comparable to susceptible control Jimianl1. Besides this, a
426  noteworthy level of transgressive segregation has been witnessed under field
427  conditions, which are in accordance with previous reports [42, 43]. Across different
428  environment during whole investigation period, few CSSLs remained consistent in
429  resistance display to pressurizing mixture of strains present in the vicinity as
430  compared to most of the lines which displayed a high level of susceptibility (Figure 2).
431  This fact can be justified by the presence of wider range of environmental variation

432 occurrence during two experimental years of study, where the VW strains keep on
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433 changing their genetic make up for being more resistant. Previous reports [19]
434  justified our such findings for the confirmation of reality that there must exists an
435  antagonistic interaction between resistance QTLs/genes and different strains of fungi
436  plus large number of genes are responsible for controlling the resistance mechanism
437  against V. dahliae isolates.

438 The phenological parameters measured in two years of study at both locations
439  depicted rare weak correlations. Expression of different genetic factors in variable
440  environments at different growth stages confirmed the reason behind weak correlation
441  coefficient values (Table 3). It realizes the fact regarding alteration of genes on
442  exposure to VW strains at varying growth stages. In a study on backcross inbreed
443 lines regarding VW resistance, there observed a weak but positive correlation among
444  disease index under field conditions [44].

445 Due to varying environmental stresses in both years at two locations, erroneous
446  frequency was very high and because of this heritability values ranged between weak
447  to moderate only. This happening suggests a wider range of phenology regarding DI
448  has been caused by varying environmental influences. However, this is not a
449  surprising truth as cotton resistance levels to V. dahliae are greatly inclined to
450  environmental influences, resistance genes, inoculum concentrations and their
451  interactions [45].

452

453 3.2 Genetic Map used for QTLs identification
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454  Through utilization of hybridization technique including interspecific [7, 18, 21, 42,
455 43, 45-48] and intraspecific [21, 46, 47, 49, 50] crossing wide range of genetic maps
456  have been constructed. However, lesser genome coverage i.e. < 50% has been
457  achieved by using interspecific crossing, which appeared as bottleneck in the
458  detection of QTLs from whole genome with ultra-resolution. The fact has been
459  proved by the discovery of about 57.90% of tetraploid cotton genome from Zhang et
460  al. [7] study, 27% i.e. 1143.1cM and 35% with 279 markers of genome coverage in
461  Fang et al. [21] and [47] reports. To date, one exclusive report has found that covered
462  more than 50% of genome i.e. 55.7% accounting for 882 genetic markers in total,
463  including 414 SNPs, 36 RGA-RFLPs (resistance gene analog-amplified fragment
464  length polymorphism) and 432 SSRs. Therefore, the whole genome coverage of
465  allotetraploid cotton with resistant QTLs for VW is not yet to be achieved. This study
466  paced to cover approximately 100% of cotton genome enclosing about 5115.6cM [37],
467  which is really a comprehensive distance accomplished so far. It’s neonatal to take in
468  account all the 26 genetic threads of allotetraploid cotton with use of CSSLs in quest
469 of QTLs for VW resistance. An announce-worthy amount of QTLs (53) were
470  identified to be related to VW resistance from 20 chromosomes, which exposed the
471  reality that these QTLs are extensively distributed in whole genome chromosomes.
472 These results would be not easy to achieve if G.barbadense genome will be used as
473 template with restricted amount of markers and lesser polymorphism.

474

475 3.3 Distribution of QTLs of Verticillium wilt through the whole genome
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476 There were fewer chromosomes yet to have been explored regarding VW resistance
477  QTLs in the previous studies, specifically including Chromosome 6, Chromosome 10,
478  Chromosome 12, and Chromosome 18 together with almost 100 plus related QTLs
479  [45, 51], which left these gaps from completing the whole tetraploid genome. Our
480  findings have contributed plenty of valuable information to filling up there gaps to
481  greater extent, leaving just Chromosome 18 to be explored. There were three QTLs
482  detected on Chromosome 6 and 10, while only one DI QTL was identified on
483  Chromosome 12. Like previous findings such as Zhang et al. [7] from meta-analysis
484  done by different researchers, we also remained unable to discover any hotspot region
485  on Chromosomes 10 and 18. However, few chromosomes were found to be heavily
486  loaded with DI QTLs like Chromosome 5 with 11 DI QTLs, and Chromosome 19
487  with 7 DI QTLs. Each 3 QTLs were separately located on Chromosome 1 and 22 like
488  Chromosome 6 and 10 as mentioned earlier. Also in our findings we remained,
489  successful in identifying some stable QTLs across six different environments, which
490  was not the case in any of the previous reports.

491 As mentioned earlier, 20 chromosomes were explored in our study with 53 QTLs
492  using BCsFss populations, of which 30 QTLs were located on A sub-genome
493  chromosomes covering ChrO1, Chr02, Chr03, Chr05, Chr06, Chr07, Chr(09, Chrl0,
494  Chrll and Chrl2 accounting 56.66%, while 23 QTLs were explored on D
495  sub-genome covering Chrl4, Chrl5, Chrl7, Chr19, Chr20, Chr21, Chr22, Chr23,
496  Chr24 and Chr26 estimating about 43.44%. There results provided an evidence of the

497  fact that A sub-genome enclosed more resistant QTLs for VW resistance as compared
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498  to D sub-genome. Consistent discoveries have been made by Yang et al. [46], Ning et
499  al. [47] and Bolek et al. [42].

500

501 3.4 Stability with earlier studies VW resistance QTLs

502  In this study, 53 QTLs related to VW resistance were totally identified in 300 CSSLs.
503  Among all the QTLs, 35 ones (66%) had negative additive effects, which indicated
504  that the G. barbadense alleles increased Verticillium wilt resistance and decreased
505  disease index values by about 2.64 to 13.23. On the other hand, 18 QTLs (34%) had
506  positive additives effects, which indicated that the G. hirsutum alleles enhanced VW
507  wilt resistance and decremented phenotypic disease index values by about 2.27 to
508  19.47. As for different years, 31 QTLs were identified in the year of 2015, while 86
509  QTLs in the year of 2016, of which 11 QTLs were found in the both years. The
510  maximum number of QTLs (11) was detected on Chr05 (Figure 3, Table S2).

511 Among 53 QTLs, 29 QTLs were detected consistently in at least two
512 environments, which were deemed as stable QTLs. Out of 29 stable QTLs, 25 QTLs
513 (86%) had negative additive effects, which indicated that the G. barbadense alleles
514  incremented VW resistance and decreased DI. Based on Meta-analysis of the
515  identified 53 QTLs, 10 QTLs were consistent to previously identified QTLs, and they
516  had common SSR markers [19, 45-47, 52]. One QTL, gVW-Chr0I-3 positioned on
517  ChrOl for VW resistance was the similar as Ning’s gVW-A1-1 [47], which were
518  identified with common markers of Gh215. Another QTL, gVW-Chr03-2 was the

519  similar as gV'W-C3-2 in the results of Shi et al. [22], and they were associated with the
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520  shared marker CER0028. In addition, gVW-Chr05-1 on Chr05 was similar as Shi et
521  al’s gVW-C5-1 [22] based on common marker CIR224b. The ¢gVW-Chr05-11 mapped
522 on Chr05 was similar as the gVLBP2-A5-1RIL in the results of Yang et al. [46], which
523 were associated with shared markers NAU5210. The QTL gVW-Chr05-4 was similar
524 as the gV'W-C5-3 in the results of Shi et al [22] with the association of shared marker
525  HAUOQ746 [22]. The gVW-Chr07-1 was similar as gVW-A7-1 in the results of Ning et
526  al., [47] based on shared marker Gh527. gVW-Chr09-1 mapped on Chr09 was the
527  similar as Shi’s gV'W-C9-1 [22], with the association of common markers of DPL0O783.
528  The QTL gVW-Chri2-1 was the similar as gV'WR-06-C12 in the results of Zhang et al.
529  [7], which were associated with the common marker CIR272. Besides, gV'W-Chr23-2
530 was similar as Fang’s gDR5272-C23-2 [48] associated with the shared marker
531  DPL1938. Lastly, the QTL gVW-Chr05-1 was similar as the gV'W-C5-2 in the results
532 of Shi et al [22] with the association of shared marker CIR102 [22]. The remaining 43
533  QTLs for VW resistance could be allowed as novel ones in this study.

534 Based on meta-analysis, 32 QTLs hotspot regions were detected, of which 17
535  ones were consistent with the earlier studies [7, 22, 33], while another 15 ones were
536  novel and unreported hotspot regions (Figure 4, Table 5). These hotspot regions and
537 QTLs could be very important information for further comparative studies and
538  utilized for marker assisted selection.

539

540 3.5 Further utilization of QTLs for VW resistance
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541  According to previous reports on the CSSLs in cotton, the prominent characteristics
542 of high fiber quality and high yielding traits have deliberately been explained [53-58].
543 Nowadays in this whole experimental study, a total of 300 CSSLs from Upland cotton
544  CCRI36 and Sea Island cotton Hail have been keenly investigated regarding their
545  resistance to VW. The segments of chromosome introgressed from G. barbadense
546  into G. hirsutum made these lines little bit different from their recurrent parent by
547  reducing the influences of genetic background of recipient, which makes the CSSLs
548  as efficient breeding materials to conduct quantitative genetics researchs. Thus the
549  experimented work proves to be beneficial in paving the way towards whole genome
550  study of cotton by laying a solid platform stuffed with molecular findings related to
551  fine mapping, functional genomics, gene pyramiding and ultimately marker assisted
552 breeding.

553 4. Materials and Methods

554 4.1 Plant materials and development of cotton CSSLs

555  Mapping population based on 300 CSSLs along with their parents, specifically as
556  CCRI36 (G. hirsutum) as recurrent while Hail (G. barbadense) as donor parent, was
557 sown at the farm area of ICR, CAAS (Anyang, Henan) and Shihezi, Xinjiang
558  Province, respectively. The reason behind selection of Hail as donor parent is its
559  characteristic features of producing high quality fiber, resistant genes residence for
560 VW in its genome and also the presence of glandless producing factors which act in
561  dominant fashion [59]. However, CCRI36 developed by ICR, CAAS (State Approval

562  Certificate of Cotton 990007) [36] is a commercially grown renowned variety of
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563  upland cotton has the obvious property of high yielding as well as early maturing in
564  growth patterns but susceptible to Verticillium wilt. The two cultivars Hail and
565  CCRI36 used as paternal and maternal parents were hybridized followed by backcross
566  in 2003 at Anyang to construct CSSLs. In 2009, a mapping population comprising
567 2660 plants of BCsF3 was obtained by using CCRI36 as recurrent parent. In 2010 and
568 2011, BCsF34 population was planted via plant-to row method at Anyang and
569  Xinjiang, respectively. In 2014, at Xinjiang province, BCsF3.s population was grown
570  again. From these populations, a random selection process was conducted and 300
571  CSSLs were obtained for the evaluation of VW disease index. These selected lines
572 were then grown at Anyang and Xinjiang in 2015 and 2016, respectively. The details
573  of development of CSSLs was brought about by following the same procedure as
574  described earlier [60]. Stable performance regarding resistance to VW was displayed
575 by some lines in multiple environments over different years of study.

576

577 4.2 Field investigations and experimental design

578  Two field stations of ICR, CAAS in Anyang, Henan and Shihezi, Xinjiang were used
579  to grow the experimental material for two years. In 2015 and 2016, phenotypic data
580  were collected in months of July and August from Anyang and Xinjiang, respectively.
581  Under natural environmental conditions, there occurred intensive attack of V. dahliae
582  strains. Randomized complete block design (RCBD) under two replications was
583  established for study. By following the specifications prescribed for crop management

584  according to the locality, seeds were sown in single row plots. At research farm areas
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585 of Anyang, planting rows were kept 5 m long with an interval of 0.8 m whereas
586  thinning of seedlings was done upto 20 plants in a row. However, in Xinjiang row
587  length was kept at 3 m with plant to plant distance of 0.1 m following two-narrow by
588  row plots methodology. Row spacing alternation was 0.1 m by 0.66 m. The detail of
589  field layout is mentioned in Table 6. Wide/narrow row to row distance pattern was
590  followed and plastic membranes were utilized for covering of seedlings. Standard

591  agronomic performs were established during whole experiment at all locations.

592 Table 6. Details of 8 environments of fields used to evaluate CSSL population
593
Year Environments Abbreviation used Replication Layout
2015 Anyang July AYJull5 2 5%0.8 m
Anyang August AYAugl5 2 5%0.8 m
Xinjiang July XJJull5 2 3% (0.66+0.1) m
Xinjiang August XJAugls 2 3% (0.66+0.1) m
2016 Anyang July AYJull6 2 5%0.8 m
Anyang August AYAuglé6 2 5%0.8 m
Xinjiang July XJJull6 2 3% (0.66+0.1) m
Xinjiang August XJAugl6 2 3% (0.66+0.1) m

594

595 4.3 Verticillium wilt phenotypic evaluation

596  For scoring of diseased portion of plant, a percentage based scale was used for
597  evaluation ranging between 0-4 [61]. The scale used is a standard one being used
598  deliberately in China especially for Verticillium disease rating indices by classifying
599  the damaged portion of matured stage leaves into five groups [46, 51, 62]. The
600  scoring pattern is considered in ascending order regarding resistance level accounting
601  0-2 as resistant and 3-4 as susceptible. The disease rating scale of VW is

602  comprehensively discussed in Table 7.
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603 Table 7. Scoring of symptoms of Verticillium wilt
Rate  Degree of susceptibility Symptoms

0 Immune Without symptom (healthy plants)

1 Extremely resistance <25 % diseased leaves

2 Resistance 25-50 % diseased leaves

3 Susceptible 50-75 % diseased leaves

4 Extremely susceptible >75 % diseased leaves or plant death
604
605 The disease Index (DI) was estimated following the formulae below [Z, 61].
606

DIy = 22 X M) 16¢
607 mny x4
608
609 Where, d: is disease rate
610 between 0 and 4;
611 Mz is number of plants with interrelated disease rate;
612 Mt is total number of plants tested for each CSSL
613

614 4.4 Analysis of phenotypic trait

615  The software SPSS 20.0 was used for analyzing the observed phonotypic data and the
616  Pearson’s rank correlation coefficient was used for evaluating the correlation among
617  the disease index. The statistical package SAS version 9.1was employed for Analysis
618  of variance (ANOVA) of disease index and Tukey’s test was used to compare
619  treatment means. The broad-sense heritability (H?) was calculated following the

620  formulae described by [63].

621
Var(()

Broad senise Heritability (3) = (W{P]) X100

622
623
624 Where, Var(G) =
625 Genotypic variance

626 Var(P)
627 = Phenotypic variance

628

629 4.5 Genetic analysis
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630  Genomic DNA of CSSLs from BCsFs:s population and its parents was extracted by
631  following a modified procedure of CTAB method [64] by using young leaves which
632  were sampled from each line and kept at -80°C. The working concentration of DNA
633  was adjusted at 30ng/pL; quantified on NanoDrop2000 spectrophotometer (NanoDrop
634  Technologies, Wilmington, DE USA). Further the integrity of DNA was patterned on
635  agarose gel (1%) using Lambda DNA/HindIIl Markers[65] as ladder. Scoring pattern
636  followed for SSRs fragments include ‘—* for missing, ‘1’ for presence and ‘0’ for
637  absence of bands.

638

639 4.6 SSR markers and SSR molecular detection

640  Based on the genetic map [37], in total, 597 pairs markers were screened out by using
641 2292 pairs of markers to be used to screen 300 CSSLs DNA. The sequences of these

642  SSR primers were downloaded from the CMD database (http://www.cottongen.org/).

643  First of all, we diluted these primer pairs. For dilution, we centrifuge primer pairs at
644  12000rpm at 4°C for 10 minutes to settle down the contents at the bottom. We diluted
645  these primer pairs 100X and shake it vigorously for 2 minutes. Centrifuge it again and
646  store at -20°C. The details of these SSR primers are mentioned in Table S2.

647

648 4.7 QTL mapping

649  QTL IciMapping V4.0 software developed by Wang et al. [66] was used to map QTLs
650 of CSSLs. A LOD (likelihood of odds) of threshold 2.5 was used to declare

651  significant additive QTLs. The percentage of phenotypic variance (PV%) explained
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652 individual QTL and additive effects at the LOD peaks were determined through
653  stepwise regression (RSTEP-LRT). The graphical presentation of QTLs was done by
654  using the MapChart2.2 software [67].

655 Positive additive effects showed that CCRI36 alleles decremented the phenotypic
656  disease index values and enhanced resistance against VW. On the other hand,
657  negative scores indicated that Hailalleles decremented the phenotypic disease index
658  values and incremented the values of VW resistance. The QTL nomenclature was
659  designed as follows: the QTL designations begin with “q” come after the trait
660  abbreviation, the chromosome name, and the number of QTL on that chromosome [68,
661  69]. Stable QTL was declared when it is found in at least two environments.

662

663 4.8 Meta-analysis of QTLs

664  Biomercator 4.2 [70] software was considered suitable for our data in order to
665  perform Meta-analysis[32]. Already performed QTL meta-analysis has established a
666  database[33]of QTLs including approximately 2,274 QTLs regarding 66 traits;
667  accounting 201 QTLs regarding resistance for VW [13, 21, 43, 46-48, 50, 61, 71]. In
668  our study, we kept the standard reference of Said et al [33]for information of mapped
669  QTLs controlling VW resistance. Remaining previous studies, including 113 QTLs
670  responsible for VW resistance have also been mentioned later[7, 19, 22, 45, 72, 73].
671  In aggregate 367 QTLs related to VW resistance have been utilized to build a

672  platform for meta-analysis in which 53 QTLs were from our discovery in current

673  study. On manual basis, new QTL hotspots have been identified by considering a
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674  consistent QTL region as if four or more QTLs were occurring in an interval of 25cM.
675 However, the same consistent QTL region was possessing QTLs for only one trait
676  then it was taken as a ‘QTL Hotspot’ [7].

677 Meta-analysis was performed by taking two files as input i.e. QTL file and map
678  file. Map file was based on the information regarding names of parents, cross type and
679  markers position on chromosomes. The QTL file was loaded with QTL in given
680  environment as row information and QTL name, trait name, trait ontology, location,
681  year, chromosome number, linkage group, LOD score, observed phenotypic variation
682  (R?), most likely position of QTL, CI start position and CI end position. Initially, the
683  two files were uploaded successfully and map connectivity was investigated for
684  construction of consensus map. After that QTLs projection on consensus map was
685  done, followed by meta-analysis regarding trait. Ultimately four model were obtained
686  with different AIC (Akaike information criterion) value. The lowest AIC value
687  holding model was considered suitable for the identification of mQTL positon or QTL
688  hotspot. The criteria described by Said et al.[32]of occurrence of mQTLs in 20 cM

689 interval was kept standard for the identification of hotspot.
690

691 5. Conclusions

692  In this study, 300 CSSLs developed from Gossypium hirsutum CCRI36 x Gossypium
693  barbadense Hail were used to detect QTL for VW resistance in various environments
694  (Anyang and Xinjiang) and different developmental stages (July and August). The

695  nature of population (CSSL), population size and the presence of control (Jimianl1)
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696  in our study showed us to lower the experimental error and to check the accurateness
697  of data.

698 In total, 53 QTLs for VW resistance were identified in CSSLs populations, of
699  which 29 ones were found as stable QTLs. Ten QTLs were similar to previously
700  reported QTLs, while 43 ones were novel QTLs. Based on meta-analysis, 32 QTLs
701 hotspot regions were detected, including 15 novel ones. These consistent QTLs and
702 hotspot regions form critical steps, which will contribute to molecular breeders in
703 developing and improving the VW resistance in upland cotton. The outcomes of this
704  study also provide most important message for further studies of the molecular basis
705  of VW resistance in cotton.

706

707
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709  Supplementary materials can be found at www.mdpi.com/link.
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English English Full Name

Abbr.

Vw Verticillium Wilt

DI Disease Index

SSR Simple Sequence Repeats

CSSL Chromosome Segment Substitution Lines
AIC Akaike Information Criterion

CI Confidence Interval
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Chr Chromosome

cM Centi- Morgan

CMD Cotton Marker Database

H?g Broad sense Heritability

LOD Logarithm of Odds

MAS Marker Assisted Selection

QTL Quantitative Trait Loci

PV Phenotypic Variation

CTAB Cetyl-Trimethyl Ammonium Bromide

mya Million Years Ago
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Table S1. Details QTLs for Verticillium wilt resistance detected during different stages of growth and environments in BC5F3:£

SL. No. QTLs Growth stage Env Chr  Position (cM) Nearest marker LOD Add
qVW-Chr01-1 August AYAugl5 Chr01 31.1 TMBO0119 263 773

2 qVW-Chr01-2 July AYJull6  Chr01 70.3 MUCS084 297 -8.77
3 qVW-Chro01-3 July XJJull6  Chr01 122.7 TMB152 3.15  -337
August XJAugleé  Chr01 122.7 TMB152 427 -5.05
4 qVW-Chr02-1 July XJJulls  Chr02 50.0 TMB1587 6.48 13.25
5 qVW-Chr02-2 August AYAugl6 Chr02 129.8 CICRS800 2.59 995
6 qVW-Chr03-1 August XJAugl6  Chr03 98.0 CERO0028 285 -6.02
7 qVW-Chro03-2 July XJJull6  Chr03 114.4 HAUO0195 395 -5.99
August XJAugl6  Chr03 114.4 HAUO0195 4.88 -8.50

8 qVW-Chro05-1 August AYAugl5 Chr05 30.5 CIR224b 522 -3.81
July XJJull6  Chr05 30.5 CIR224b 6.87 -4.25

August XJAugl6  Chr05 30.5 CIR224b 595  -5.09

9 qVW-Chro05-2 July AYJull5  Chr05 323 CIR102 384 -5.44
August AYAugl5 Chr05 323 CIR102 348  -4.07

July AYJull6  Chr05 323 CIR102 347 443

August AYAugl6 Chr05 323 CIR102 2.88 -4.46

July XJJull6  Chr05 323 CIR102 6.66  -5.65

August XJAugl6  Chr05 323 CIR102 459 -6.16

10 qVW-Chro05-3 July AYJull5  Chr05 354 DPLO0063 332 -5.08
August AYAugl5 Chr05 354 DPL0063 3.57 -423

July AYJull6  Chr05 354 DPL0063 507 -542

August AYAugl6 Chr05 354 DPL0063 298 -4.57

July XJJull6  Chr05 354 DPL0063 6.96 -5.87

August XJAugl6  Chr05 354 DPL0063 445  -6.15

11 qVW-Chro05-4 July AYJull5  Chr05 38.2 HAUO0746 3.19  -5.69
July AYJull6  Chr05 38.2 HAUO0746 299  -4.68

July XJJull6  Chr05 38.2 HAUO0746 5.18 -5.80

August XJAugl6  Chr05 38.2 HAUO0746 326 -598

12 qVW-Chro05-5 July XJJull6  Chr05 40.2 CGR5025 392 474
August XJAugl6  Chr05 40.2 CGR5025 630 -7.69

13 qVW-Chr05-6 July AYJull5  Chr05 43.1 HAU1712 348 -5.39
August AYAugl5 Chr05 43.1 HAU1712 2.83  -3.78

July AYJull6  Chr05 43.1 HAU1712 347 -4.56

August AYAugl6 Chr05 43.1 HAU1712 2.82 -4.53

July XJJull6  Chr05 43.1 HAU1712 6.96 -6.06

August XJAugl6  Chr05 43.1 HAU1712 434 -6.23

14 qVW-Chro05-7 July XJJull6  Chr05 45.0 DPLO0138 282 -390
August XJAugl6  Chr05 45.0 DPLO138 359 -448
15 qVW-Chr05-8 July AYJull5  Chr05 64.3 MUCSS530 487 12.73
16 qVW-Chro05-9 July XJJull6  Chr05 89.9 MUSS317 323 -6.92
August XJAugl6é  Chr05 89.9 MUSS317 3.84  -9.71

17 qVW-Chr05-10 August XJAugl5  Chr05 168.6 CGR5925a 335 281
18 qVW-Chro05-11 August AYAugl5 Chr05 197.4 HAU1050 3.11  -2.64
July XJJull6  Chr05 197.4 HAU1050 380 -2.96

August XJAugl6  Chr05 197.4 HAU1050 4.03 -394
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5 populations. Stable QTL are in bold
PV (%) Status

3.80 New

4.48 New

5.60 Confirmed
7.59 Confirmed
9.33 New

3.89 New

4.26 Confirmed
6.38 Confirmed
7.71 Confirmed
7.67 Confirmed
9.13 Confirmed
7.88 Confirmed
11.89  Confirmed
5.31 Confirmed
5.42 Confirmed
4.56 Confirmed
9.77 Confirmed
6.97 Confirmed

4.89 New
5.46 New
7.71 New
4.56 New
10.03 New
6.61 New

4.76 Confirmed
4.47 Confirmed
7.62 Confirmed
4.86 Confirmed

5.84 New
9.22 New
5.23 New
4.15 New
5.18 New
4.25 New
10.17 New
6.44 New

6.84 Confirmed
10.22  Confirmed

7.18 New
4.85 New
5.74 New
5.00 Confirmed
4.69 New
5.62 New

5.98 New
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5.59
7.50
4.17
3.98
5.52
5.28
5.50
6.67
4.05
5.97
5.18
4.09
5.28
5.12
5.00
4.09
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3.76
5.42
6.91
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3.85
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6.78
7.66
3.87
3.79
4.66
6.00
7.43
7.96
5.98
3.82
4.27
9.40
8.18
391
4.08
6.80

New
New
New
New
New
New
New
New
Confirmed
Confirmed
Confirmed
Confirmed
New
New
New
New
New
New
New
New
New
New
New
New
Confirmed
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
New
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5.20 New

3.79 New
4.53 New
3.84 New
6.74 New
4.53 New
4.89 New
6.15 New
11.14 New
9.69 New
4.08 New
3.81 New
4.39 New
7.06 New
6.26 New
3.74 New
3.83 New
3.78 New
4.42 New

5.32 Confirmed
6.77 Confirmed
7.59 Confirmed
4.31 New
6.08 New
4.61 New
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Table 2. Details of primers used in this study

Discovered by/Source

SL. No. Primer Name No. of polym.

1 BNL 43
2 C2 1
3 CER 5
4 CGR 48
5 CICR 13
6 CIR 9
7 CM 1
8 CoT 4
9 DC 10
10 DPL 77
11 Gh 25
12 HAU 100
13 JESPR 7
14 MGHES 2
15 MUCS 7
16 MUSB 7
17 MUSS 13
18 NAU 173
19 PGML 15
20 SHIN 5
21 STV 4
22 TMB 23
23 SWU 5

Brookhaven National Laboratory, NY
Monsanto Company, USA
Monsanto Company, USA
Monsanto Company, USA

ICR, CAAS, Anyang, China
CIRAD, France
Texas A & M University, USA
Texas A & M University, USA
Monsanto Company, USA
Delta and Pine Land, USA
Texas A & M University, USA
Huazhong Agricultural University, CHN
Texas A & M University, USA
USDA-ARS, Texas
University of California Davis, USA
University of California Davis, USA
University of California Davis, USA
Nanjing Agricultural University, CHN
Plant Genome Mapping Lab
Monsanto Company, USA
Stoneville, USA
USDA-ARS, Texas
South West University, CHN

Total 597
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Manufacturer

Invitrogen Co. Ltd. Shanghai
do
do
do
do
do
do
do
do
do
do
do
do
do
do
do
do
do
do
do
do
do

Beijing Genomics Inst.
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