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Computational analyses of pathogen genomes are increasingly
being used to unravel the dispersal history and transmission dy-
namics of epidemics. Here, we show how to go beyond histor-
ical reconstructions and use spatially-explicit phylogeographic
and phylodynamic approaches to formally test epidemiological
hypotheses. We focus on the spread and invasion of West Nile
virus spread in North America that has been responsible for sub-
stantial impacts on public, veterinary and wildlife health. WNV
isolates have been sampled at various times and locations across
North America since its introduction to New York twenty years
ago. We exploit this genetic data repository to demonstrate that
factors hypothesised to affect viral dispersal and demography
can be statistically tested. We find that WNV lineages tend to
disperse faster in areas with higher temperatures and we identify
temporal variation in temperature as a main predictor of viral
genetic diversity through time. Finally, we compare inferred and
simulated dispersal histories of lineages in order to assess the im-
pact of migratory bird flyways on the rapid east-to-west continen-
tal spread of WNV. We find no evidence that viral lineages pref-
erentially circulate within the same migratory flyway, suggesting
a substantial role for non-migratory birds or mosquito disper-
sal along the longitudinal gradient. Our study demonstrates that
the development and application of statistical approaches, cou-
pled with comprehensive pathogen genomic data, can address
epidemiological questions that might otherwise be difficult or un-
acceptably costly to answer.

Keywords: molecular epidemiology, landscape phylogeography,
phylodynamic, environmental factors, West Nile virus.

The evolutionary analysis of rapidly evolving pathogens, particularly
RNA viruses, allows us to establish the epidemiological relatedness
of cases through time and space. Such transmission information can
be difficult to detect using classical epidemiological approaches. The
development of spatially-explicit phylogeographic models'?, which
place time-referenced phylogenies in a geographical context, can
provide a detailed spatiotemporal picture of the dispersal history
of virus lineages®. Recent advances in methodology have moved
beyond simple reconstructions of epidemic history and instead
attempt to analyse the impact of underlying factors on the dispersal
dynamics of virus lineages*®, giving rise to the concept of landscape

phylogeography’.

Similar improvements have been made to phylodynamic anal-
yses that use flexible coalescent models to reconstruct virus
demographic history®®; these methods can now provide insights
into epidemiological or environmental variables that might be
associated with population size change'. In this study we aim to go
beyond historical reconstructions and formally test epidemiological
hypotheses by exploiting phylodynamic and spatially-explicit
phylogeographic models. We illustrate our approach by examining
the spread of West Nile virus (WNV) across North America, an
emergent virus lineage that is responsible for substantial impacts on
public, veterinary, and wildlife health''.

WNV is the most widely-distributed encephalitic flavivirus transmit-
ted by the bite of infected mosquitoes'>"*. WNV is a single-stranded
RNA virus that is maintained by an enzootic transmission cycle involv-
ing birds and mosquitoes that mainly belong to the Culex genus'".
Humans are incidental terminal hosts, because viremia does not reach
a sufficient level for subsequent transmission to mosquitoes'®'*. WNV
human infections are mostly subclinical although symptoms may
range from fever to meningoencephalitis and can occasionally lead to
death'*". The WNV epidemic in North America likely resulted from
a single introduction to the continent twenty years ago®. WNV persis-
tence in North America is not the result of successive reintroductions
to the territory, but rather of local overwintering and maintenance of
long-term avian and/or mosquito transmission cycles''. Overwinter-
ing could also be facilitated by vertical transmission of WNV from
infected female mosquitos to their offspring®-?2. WNYV represents
one of the most important vector-borne diseases in North America®;
there were an estimated 50,720 human WNYV cases between 1999 to
2018, leading to 2,300 deaths (www.cdc.gov/westnile). In addition,
WNYV has had a notable impact on North American bird populations®,
with several species® such as the American crow (Corvus brachyrhyn-
chos) and the blue jay (Cyanocitta cristata) being particularly severely
affected.

Since the beginning of the epidemic in North America in 19997,
WNV has received considerable attention from local and national
health institutions and the scientific community. This had led to the
sequencing of more than 2,000 complete viral genomes collected
at various times and locations across the continent. The resulting
availability of virus genetic data represents a unique opportunity to
better understand the evolutionary history of WNV invasion into an
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Figure 1. Spatiotemporal diffusion of WNV lineages in North America. Maximum clade credibility (MCC) tree obtained by continuous phylogeographic
inference based on 100 posterior trees (see the text for further details). Nodes of the tree are coloured from red (the time to the most recent common ancestor,
TMRCA) to green (most recent sampling time). Older nodes are plotted on top of younger nodes, but we provide also an alternative year-by-year representation
in Figure S1. In addition, this figure reports global dispersal statistics (mean lineage dispersal velocity and mean diffusion coefficient) averaged over the entire
virus spread, the evolution of the mean lineage dispersal velocity through time, the evolution maximal wavefront distance from the origin of the epidemic, as
well as the delimitations of the North American Migratory Flyways (NAMF) considered in the USA.

originally non-endemic area. Here, we analyse a comprehensive data
set of WNV genomes with the objective of unveiling the dispersal and
demographic dynamics of the virus in North America. Specifically, we
aim to (i) reconstruct the dispersal history of WNV on the continent,
(ii) test the impact of environmental factors on the dispersal velocity of
lineages, (iii) test the impact of migratory bird flyways on the dispersal
history, and (iv) test the association between external covariates and
WNV genetic diversity through time.

RESULTS
Reconstruction of WNV dispersal history

To infer the dispersal history of WNV lineages in North America,
we performed a spatially-explicit phylogeographic analysis' of 801
viral genomes (Fig. 1), which is almost an order of magnitude larger
than the early US-wide study by Pybus et al.> (104 WNV genomes).
Year-by-year visualisation of the reconstructed invasion history high-
lighted frequent long-distance dispersal events across the continent
(Fig. S1). To quantify the spatial dissemination of virus lineages,
we extracted the spatio-temporal information embedded in molecular
clock phylogenies sampled by Bayesian phylogeographic analysis.
From the resulting collection of lineage movement vectors, we esti-
mated several key statistics of spatial dynamics (Fig. 1). We estimated
a mean lineage dispersal velocity of ~1,200 km/year and a mean diffu-
sion coefficient of ~940 km2/day, consistent with previous estimates?.
We further inferred how the mean lineage dispersal velocity changed
through time, and found that dispersal velocity was notably higher
in the earlier years of the epidemic (Fig. 1). The early peak of lin-
eage dispersal velocity around 2001 corresponds to the expansion
phase of the epidemic. This is corroborated by our estimate of the
maximal wavefront distance from the epidemic origin through time
(Fig. 1). This expansion phase lasted until the end of 2001, when
WNV lineages first reached the west coast (Figs. 1-S1).

Testing the impact of environmental factors on dispersal velocity

We employed two different statistical tests based on landscape phy-
logeography to investigate the impact of environmental factors on the
dispersal dynamics of WNV. First, we analysed whether the hetero-
geneity observed in lineage dispersal velocity could be explained by
specific environmental factors. For this purpose, we used a computa-
tional method that assesses the correlation between lineage dispersal
durations and environmentally-scaled distances**. These distances

were computed on rasters (geo-referenced grids) that summarise the
different environmental factors to be tested (Fig. 2): elevation, land
cover in the study area (forests, shrublands, savannas, grasslands,
croplands, water areas), annual mean temperature, and annual pre-
cipitation. This analysis aimed to quantify the impact of each factor
of virus movement by calculating a statistic, Q, that measures the
correlation between lineage durations and environmentally-scaled dis-
tances. Specifically, the Q statistic describes difference in strength
of the correlation when distances are scaled using the environmental
raster versus when they are computed using a “null” raster (i.e. a
uniform raster with a value of “1” assigned to all cells). As detailed
in the Methods section, two alternative path models were used to
compute these environmentally-scaled distances: the least-cost path
model* and a model based on circuit theory”. The Q statistic was
estimated for each posterior tree sampled during the phylogeographic
analysis, yielding a posterior distribution of this metric. Finally, statis-
tical support for Q was obtained by comparing inferred and simulated
distributions of Q; the latter was obtained by estimating Q on the
same set of tree topologies, along which a new stochastic diffusion
history was simulated. This simulation procedure thereby generated a
null model of dispersal, and the comparison between the inferred and
simulated Q distributions enabled us to approximate a Bayes factor
support (see Methods for further details).

As summarised in Table S1, we found strong support for one variable:
annual temperature raster treated as a conductance factor. Using this
factor, the association between lineage duration and environmentally-
scaled distances was significant using the path model based on circuit
theory”’. As detailed in Figure 3, this environmental variable better ex-
plained the heterogeneity in lineage dispersal velocity than geographic
distance alone (i.e. its Q distribution was positive). Furthermore, this
result received strong statistical support (Bayes factor >20), obtained
by comparing the distribution of Q values with that obtained under a
null model (Fig. 3).

Testing the impact of migratory bird flyways on dispersal history

The second landscape phylogeography test we performed focused
on the impact of migratory bird flyways on the dispersal history of
WNV. For this purpose, we first tested whether virus lineages tended
to remain within the same North American Migratory Flyway (NAMF;
Fig. 1). As with the testing approach used in the section above, we
again compared inferred and simulated trees (i.e. simulation of a
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Figure 2. Environmental variables tested for their impact on the dispersal of West Nile virus lineages in North America.

new stochastic diffusion process along the estimated trees). Under
the null hypothesis (i.e. NAMFs have no impact on WNV dispersal
history), virus lineages should not transition between flyways less
often than under the null dispersal model. Our test did not reject this
null hypothesis (BF <1). Because the NAMF borders are based on
administrative areas (US counties), we also performed a similar test
using the alternative delimitation of migratory bird flyways estimated
for terrestrial bird species by La Sorte ef al.”® (Fig. S2). Again, the null
hypothesis was not rejected, confirming that inferred virus lineages did
not tend to remain within specific flyways more often than expected
by chance.

Testing the impact of environmental factors on the viral diversity
through time

We next employed a phylodynamic approach to investigate predictors
of the dynamics of viral genetic diversity through time. In particular,
we used the generalised linear model (GLM) extension' of the skygrid
coalescent model’, hereafter referred to as the “skygrid-GLM” ap-
proach, to statistically test for associations between estimated dynam-
ics of virus effective population size and several covariates. Coalescent
models that estimate effective population size (Ne) typically assume
a single panmictic population that encompasses all individuals. Be-
cause this assumption is frequently violated in practice, the estimated
effective population size is sometimes interpreted as representing an
estimate of the genetic diversity of the whole virus population®”. The
skygrid-GLM approach accounts for uncertainty in effective popu-
lation size estimates when testing for associations with covariates;
neglecting this uncertainty can lead to spurious conclusions'.

We first performed univariate skygrid-GLM analyses of five distinct
time-varying covariates: human WNV case counts (log-transformed),
temperature, precipitation, a greenness index, and a bird observation
index. For the human case count covariate, we modelled a possible lag

period of one or two months, because a rise or reduction in cases may
be observed potentially some time after the corresponding change
in virus infections of mosquito vectors and bird hosts (e.g. due to
incubation periods in hosts, vectors, and humans, and/or to the time
needed to detect and report human cases). We obtained evidence for
a significant lagged association between the time series of human
cases and virus effective population size and the covariate (the former
lagged the latter by two months). Therefore, in subsequent analyses
we considered only the number of human cases advanced by two
months (see below).

In addition, univariate analyses of temperature and precipitation time
series were also associated with the virus genetic diversity dynam-
ics (i.e. the posterior GLM coefficients for these covariates had 95%
credible intervals that did not include zero; Fig. 4). To further assess
the relative importance of each covariate, we performed multivariate
skygrid-GLM analyses to rank covariates based on their inclusion
probabilities®. The first multivariate analysis involved all covariates
and suggested that the lagged human case counts best explain vi-
ral population size dynamics, with an inclusion probability close to
1. However, because human case counts are known to be a conse-
quence rather than a potential causal driver of the WNV epidemic,
we performed a second multivariate analysis after having excluded
this covariate. This time, the temperature time series emerged as a
covariate with the highest inclusion probability.

DISCUSSION

The spread of WNV in North America can be divided into an initial
“invasion phase” and a subsequent “maintenance phase” (see Car-
rington et al.*' for similar terminology used in the context of spatial
invasion of dengue viruses). The invasion phase is characterised by
an increase in virus effective population size until the west coast was
reached, followed by a maintenance phase associated with a more
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Figure 3. Impact of annual mean temperature acting as a conductance
factor on lineage dispersal velocity. The graph displays the distribution of
the correlation metric Q computed on 100 spatially-annotated trees obtained
by continuous phylogeographic inference (red distributions). The metric Q
measures to what extent considering a heterogeneous environmental raster,
increases the correlation between lineage durations and environmentally-scaled
distances compared to a homogeneous raster. If Q is positive and supported,
it indicates that the heterogeneity in lineage dispersal velocity can be at least
partially explained by the environmental factor under investigation. The graph
also displays the distribution of Q values computed on the same 100 posterior
trees along which we simulated a new forward-in-time diffusion process (grey
distributions). These simulations are used as a null dispersal model to estimate
the support associated with the inferred distribution of Q values. For both
inferred and simulated trees, we report the Q distributions obtained while trans-
forming the original environmental raster according to two different scaling
parameter k values (100 and 1,000; respectively full and dashed line, see the
text for further details on this transformation). The annual mean temperature
raster, transformed in conductance values using these two k values, is the only
environmental factor for which we detect a positive distribution of Q that is
also associated with a strong statistical support (Bayes factor >20).

stable cyclic variation of effective population size (Fig. 4). In only
2-3 years, WNV rapidly spread from the east to the west coast of
North America, despite the fact that the migratory flyways of its avian
hosts are primarily north-south directed. This suggests potentially-
important roles for non-migratory bird movements, as well as natural
or human-mediated mosquito dispersal, in spreading WNYV along a
longitudinal gradient™*. Furthermore, we uncover a higher lineage
dispersal velocity during the invasion phase, which could reflect a
consequence of increased bird immunity through time slowing down
spatial dispersal. It has indeed been demonstrated that avian immunity
can impact WNV transmission dynamics*.

Here we formally test the hypothesis that WNV lineages are contained
or preferentially circulate within the same migratory flyway; we find
no statistical support for this hypothesis. This result contrasts with
previously-reported phylogenetic clustering by flyways*. However,
the clustering analysis of Di Giallonardo et al.*> was based on a dis-
crete phylogeographic analysis and, as recognised by the authors, it
is difficult to distinguish the effect of these flyways from those of
geographic distance. Here, we circumvent this issue by performing a
spatial analysis that explicitly represents dispersal as a function of geo-
graphic distance. Although we cannot entirely exclude the possibility
that WNV moved via rapid and successive north-south bird migrations,
our phylogeographic analysis highlights the occurrence of several fast
and long-distance dispersal events along a longitudinal gradient. A
potential anthropogenic contribution to such long-distance dispersal
(e.g. through commercial transport) warrants further investigation.

The WNYV epidemic in North America is a powerful illustration of
viral invasion and emergence in a new environment®. Our analyses
find evidence for the impact of only one environmental factor on virus
lineage dispersal velocity, namely annual mean temperature. The
relevance of temperature is further demonstrated by the association
between the virus genetic dynamics and several time-dependent co-
variates. Indeed, among the four environmental time-series we tested,
temporal variation in temperature is the most important predictor of
cycles in viral genetic diversity. Temperature is known to have a dra-
matic impact on the biology of arboviruses and their arthropod hosts*,
including WNV. Higher temperatures have been shown to impact
directly the mosquito life cycle, by accelerating larval development'!,

decreasing the interval between blood meals, and prolonging mosquito
breeding season”. Higher temperatures have been also associated with
shorter extrinsic incubation periods, accelerating WNYV transmission
by the mosquito vector’™*. Interestingly, temperature has also been
suggested as a variable that can increase the predictive power of WNV
forecast models*. The impact of temperature that we reveal here
on both dispersal velocity and viral genetic diversity is particularly
important in the context of global warming. In addition to altering
mosquito species distribution**?, an overall temperature increase in
North America could imply increased enzootic transmission and hence
increased spill-over risk in different regions.

In addition to temperature, we find evidence for an association be-
tween viral genetic diversity dynamics and the number of human
cases, but only when a lag period of two months is added to the model.
To our knowledge, this represents the first empirical evidence for a
lag period between viral genetic diversity and human case counts
for WNV. This result is in line with a previously reported lag for
WNYV between the basic reproduction number (R0O) and incidence of
human cases®. Such lags can, at least in part, be explained by the time
needed for mosquitos to become infectious, bite humans and subse-
quently for symptoms to be detected and reported**. This result also
implies that monitoring viral genetic diversity in mosquitoes/birds
may have predictive power, but this would require sufficiently fast
sampling and real-time sequencing**. Finally, our evidence for a lag
period between viral genetic diversity and reported cases will hope-
fully motivate further developments of the skygrid-GLM approach
that would enable co-estimating a lag period rather than testing a set
of pre-specified values.

Our study shows the utility of landscape phylogeographic and phylo-
dynamic hypothesis tests when applied to a comprehensive data set
of viral genomes sampled during an epidemic. Such spatially-explicit
investigations are possible when only viral genomes (whether recently
collected or available on public databases such as GenBank) are asso-
ciated with sufficiently precise metadata, in particular the collection
date and the sampling location. The availability of precise collection
dates - ideally known to the day - for isolates obtained over a suf-
ficiently long time-span enables reliable timing of epidemic events
due to the accurate calibration of molecular clock models. Further,
spatially-explicit phylogeographic inference is possible only when
viral genomes are associated with sampling coordinates. However,
geographic coordinates are frequently unknown or unreported. In
practice this may not represent a limitation if a sufficiently precise
descriptive sampling location is specified (e.g. a district or admin-
istrative area), as this information can be converted into geographic
coordinates. The full benefits of comprehensive phylogeographic
analyses of viral epidemics will be realised only when precise location
and time metadata are made systematically available.

Although we use a comprehensive collection of WNV genomes in this
study, it would be useful to perform analyses based on even larger data
sets that cover regions under-sampled in the current study; this work is
the focus of an ongoing collaborative project (westnile4k.org). While
the resolution of phylogeographic analyses will always depend on the
spatial granularity of available samples, they can still be powerful in
elucidating the dispersal history of sampled lineages. Furthermore,
when testing the impact of environmental factors on virus dispersal
history, heterogeneous sampling density will primarily affect statistical
power in detecting the impact of relevant environmental factors in
under- or unsampled areas®. In this study, we note that heterogeneous
sampling density across counties can be at least partially mitigated
by performing phylogenetic subsampling (detailed in the Methods
section).

By placing virus lineages in a spatio-temporal context, phylogeo-
graphic inference provides information on the linkage of infections
through space and time. Mapping lineage dispersal can provide a
valuable source of information for epidemiological investigations and
can shed light on the ecological and environmental processes that have
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Figure 4. Associations between viral effective population size and poten-
tial covariates. These associations were tested with a generalised linear model
(GLM) extension of the coalescent model used to infer the dynamics of the
viral effective population size of the virus (Ne) through time. Specifically, we
here tested the following time-series variables as potential covariates (orange
curves): number of human cases (log-transformed and with a negative time
period of two months), mean temperature, mean precipitation, Normalised
Difference Vegetation Index (NDVI, a greenness index), and Birds Observa-
tion Normalised Index (BONI,; see the text for further details). Posterior mean
estimates of the viral effective population size based on both sequence data
and covariate data are represented by blue curves, and the corresponding blue
polygon reflects the 95% HPD region. Posterior mean estimates of the viral
effective population size inferred strictly from sequence data are represented by
grey curves and the corresponding grey polygon reflects the 95% HPD region.
A significant association between the covariate and effective population size
is inferred when the 95% HPD interval of the GLM coefficient excludes zero,

which is the case for the case count, temperature, and precipitation covariates.

impacted the epidemic dispersal history and transmission dynamics.
When complemented with phylodynamic testing approach, such as
the skygrid-GLM approach used here, these methods offer new op-
portunities for epidemiological hypotheses testing. These tests can
complement traditional epidemiological approaches that employ oc-
currence data. If coupled to real-time virus genome sequencing, land-
scape phylogeographic and phylodynamic testing approaches have the
potential to inform epidemic control and surveillance decisions.

METHODS

Selection of viral sequences. We started by gathering all WNV se-
quences available on GenBank on the 20" November 2017. We then
only selected sequences (i) of at least 10 kb, i.e. covering almost the
entire viral genome (~11 kb), and (ii) associated with a sufficiently
precise sampling location, i.e. at least an administrative area of level
2. Administrative areas of level 2 are hereafter abbreviated “admin-2”

and corresponds to US counties. Finding the most precise sampling
location (admin-2, city, village, or geographic coordinates), as well as
the most precise sampling date available for each sequence, required
a bibliographic screening because such metadata are often missing on
GenBank. The resulting alignment of geo-referenced sequences of
993 genomic sequences of at least 10 kb was made using MAFFT*
and manually edited in AliView*. Based on this alignment, we per-
formed a first phylogenetic analysis using the maximum likelihood
method implemented in the program FastTree* with 1,000 bootstrap
replicates to assess branch supports. The aim of this preliminary
phylogenetic inference was solely to identify monophyletic clades
of sequences sampled from the same admin-2 area associated with
a bootstrap support higher than 70%. Such clusters of sampled se-
quences largely represent lineage dispersal within a specific admin-2
area. Because we randomly draw geographic coordinates from an
admin-2 polygon for sequences only associated with an admin-2 area
of origin, keeping more than one sequence per cluster would not con-
tribute any meaningful information in subsequent phylogeographic
analyses”’. Therefore, we subsampled the original alignment such that
only one sequence is randomly selected per admin-2 location-specific
cluster, leading to a final alignment of 801 genomic sequences.

Time-scaled phylogenetic analysis. Time-scaled phylogenetic trees
were inferred using BEAST 1.10.4°' and the BEAGLE 3 library** to
improve computational performance. The substitution process was
modelled according to a GTR+I" parametrisation®, branch-specific
evolutionary rates were modelled according to a relaxed molecular
clock with an underlying log-normal distribution*, and the flexible
skygrid model was specified as tree prior*'°. We ran and eventually
combined ten independent analyses, sampling Markov chain Monte-
Carlo (MCMC) chains every 2 x 10® generations. Combined, the
different analyses were run for more than 10'? generations. For each
distinct analysis, the number of sampled trees to discard as burn-
in was identified using Tracer 1.7°°. We used Tracer to inspect the
convergence and mixing properties of the combined output, referred to
as the “skygrid analysis” throughout the text, to ensure that estimated
sampling size (ESS) values associated with estimated parameters were
all >200.

Spatially-explicit phylogeographic analysis. The spatially-explicit
phylogeographic analysis was performed using the relaxed random
walk (RRW) diffusion model implemented in BEAST"2. This model
allows the inference of spatially- and temporally-referenced phylo-
genies while accommodating variation in dispersal velocity among
branches’. Following Pybus et al.?, we used a gamma distribution to
model the among-branch heterogeneity in diffusion velocity. Even
when launching multiple analyses and using GPU resources to speed-
up the analyses, poor MCMC mixing did not permit reaching an
adequate sample from the posterior in a reasonable amount of time.
This represents a challenging problem that is currently under fur-
ther investigation®®. To circumvent this issue, we performed 100
independent phylogeographic analyses each based on a distinct fixed
tree sampled from the posterior distribution of the skygrid analy-
sis. We ran each analysis until ESS values associated with estimated
parameters were all greater than 100. We then extracted the last
spatially-annotated tree sampled in each of the 100 posterior distribu-
tions, which is the equivalent of randomly sampling a post-burn-in
tree within each distribution. All the subsequent landscape phylogeo-
graphic testing approaches were based the resulting distribution of the
100 spatially-annotated trees. Given the computational limitations, we
argue that the collection of 100 spatially-annotated trees, extracted
from distinct posterior distributions each based on a different fixed
tree topology, represents a reasonable approach to obtain a phylogeo-
graphic reconstruction that accounts for phylogenetic uncertainty. We
note that this is similar to the approach of using a set of empirical trees
that is frequently employed for discrete phylogeographic inference®*®,
but direct integration over such a set of trees is not appropriate for the
RRW model because the proposal distribution for branch-specific scal-
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ing factors does not hold in this case. We used TreeAnnotator 1.10.4"'
to obtain the maximum clade credibility (MCC) tree representation of
the spatially-explicit phylogeographic reconstruction.

Phylogenetic branches, or “lineages”, from spatially- and temporally-
referenced trees can actually be treated as conditionally independent
movement vectors?. We used the R package “seraphim”™** to extract
the spatio-temporal information embedded within each tree and to
summarise lineages as movement vectors. We further used the package
“seraphim” to estimate two dispersal statistics based on the collection
of such vectors: the mean lineage dispersal velocity and the mean
diffusion coefficient*. We also estimated the evolution of the maximal
wavefront distance from the epidemic origin, as well as the evolution
of the mean lineage dispersal velocity through time.

Generating a null dispersal model. To generate a null dispersal
model we simulated a forward-in-time RRW diffusion process along
each tree topology used for the phylogeographic analyses. These RRW
simulations were performed with the “simulatorRRW1” function of
the R package “seraphim” and based on the sampled precision matrix
parameters estimated by the phylogeographic analyses*. For each
tree, the RRW simulation started from the root node location inferred
by the phylogeographic analysis. Furthermore, these simulations were
constrained such that the simulated node locations remain within the
study area, which is here defined by the minimum convex hull built
around all node positions, minus non-accessible sea areas. As for
the annotated trees obtained by phylogeographic inference, hereafter
referred to as “inferred trees”, we extracted the spatio-temporal in-
formation embedded within their simulated counterparts, hereafter
referred as “simulated trees”. Because RRW diffusion processes were
simulated along fixed tree topologies, each simulated tree shares a
common topology with an inferred tree. Such a pair of inferred and
simulated trees thus only differs by the geographic coordinates as-
sociated with their nodes, except for the root node position that was
fixed as starting points for the RRW simulation. The distribution of
100 simulated trees served as a null dispersal model for the landscape
phylogeographic testing approaches described below.

Testing the impact of environmental factors on dispersal veloc-
ity. The first landscape phylogeographic testing approach aimed to
test the association between environmental factors and the disper-
sal velocity of WNV lineages in North America. We tested several
environmental rasters both as potential conductance factors (i.e. fa-
cilitating movement) or resistance factors (i.e. impeding movement).
Each environmental factor was described by a raster that defines its
spatial heterogeneity (Fig. 2). The original rasters presented a res-
olution of 0.5 arcmin, corresponding to cells ~1 km? (see Table S2
for the source of each original raster file). Starting from the orig-
inal categorical land cover raster, we generated distinct land cover
rasters by creating lower resolution rasters (10 arcmin) whose cell
values equalled the number of occurrences of each land cover category
within the 10 arcmin cells. The resolution of the other three other
original rasters was also decreased to 10 arcmin for tractability. For
each environmental factor, several distinct rasters were generated by
transforming the original raster cell values with the following formula:
vt = 1 + k(vo/Vmayx), where v; and vo are the transformed and original
cell values, and v;;,4, the maximum cell value recorded in the raster.
The rescaling parameter k here allows the definition and testing of
different strengths of raster cell conductance or resistance, relative to
the conductance/resistance of a cell with a minimum value set to “1”.
For each of the three environmental factors, we tested three different
values for k (i.e. kK = 10, 100 and 1000).

The following analytical framework can be summarised in three dis-
tinct steps®. First, we used each environmental raster to compute
an environmentally-scaled distance for each branch in inferred and
simulated trees. These distances were computed using two different
path models: (i) the least-cost path model, which uses a least-cost

algorithm to determine the route taken between the starting and end-
ing points®, and (ii) the Circuitscape path model, which uses circuit
theory to accommodate uncertainty in the route taken”. Second,
correlations between time elapsed on branches and environmentally-
scaled distances are estimated with the statistic Q defined as the
difference between two coefficients of determination: (i) the deter-
mination coefficient obtained when branch durations are regressed
against environmentally-scaled distances computed on the environ-
mental raster, and (ii) the determination coefficient obtained when
branch durations are regressed against environmentally-scaled dis-
tances computed on a uniform null raster, i.e. an environmental raster
with a value of “1” assigned to all the cells. A Q statistic was esti-
mated for each tree and we subsequently obtained two distributions
of Q values, one associated with inferred trees and one associated
with simulated trees. An environmental factor was only considered
as potentially explanatory if both its distribution of regression co-
efficients and its associated distribution of Q values were positive®.
Finally, the statistical support associated with a positive Q distribution
(i.e. with at least 90% of positive values) was evaluated by comparing
it with its corresponding null of distribution of Q values based on
simulated trees, and formalised by approximating a Bayes factor (BF)
value®. For a particular environmental factor e, the Bayes factor BF,
associated with the statistic Q is approximated by the posterior odds
that Qgimared > Osimulateq divided by the equivalent prior odds (the
prior probability for Qegimared > Osimularea 1S considered to be 0.5)%:

Pe 0.5

BF, = /T03

B lfpe

where p, is the posterior probability that Q.gimared > Osimulated-
i.e. the frequency at which Q.yimared > Osimulatea 10 the samples
from the posterior distribution. The prior odds is 1 because we can
assume an equal prior expectation for Qegimarea a0d Qgimuiared™ -

Testing the impact of migratory bird flyways on the dispersal
history. In the second landscape phylogeographic testing approach,
we investigated the impact of migratory flyways on the dispersal
frequency of viral lineages. We first performed a test based on
the four North American Migratory Flyways (NAMF). Based on
observed bird migration routes, these four administrative flyways
(Fig. 1) were defined by the US Fish and Wildlife Service (USFWS;
https://www.fws.gov/birds/ management/flyways.php) to facilitate
management of migratory birds and their habitats. Although biologi-
cally questionable, we here used these administrative limits to discre-
tise the study and investigate if viral lineages tended to remain within
the same flyway. In practice, we analysed if viral lineages crossed
NAMF borders less frequently than expected by chance, i.e. than
expected in the null dispersal model in which simulated dispersal
histories were not impacted by these borders. Following the proce-
dure introduced by Dellicour et al.”’, we computed and compared the
number N of changing flyway events for each pair of inferred and
simulated tree. Each “inferred” N value (Njy, erreq) Was thus compared
to its corresponding “‘simulated” value (Nyjuiareq) by approximating
a BF value using the above formula, but this time defining p, as the
posterior probability that N, rerreq < Nyimularea- 1-€- the frequency at
which Ny, ferred < Nsimulatea 10 the samples from the posterior distri-
bution.

To complement the first test based on an administrative flyway delim-
itation, we performed a second test based on flyways estimated by
La Sorte er al.®® for terrestrial bird species: the Eastern, Central and
Western flyways (Fig. S2). Contrary to the NAMEF, these three flyways
overlap with each other and are here defined by geo-referenced grids
indicating the likelihood that studied species are in migration during
spring or autumn (see La Sorte et al.®® for further details). Because the
spring and autumn grids are relatively similar, we built an averaged
raster for each flyway. For our analysis, we then generated normalised
rasters obtained by dividing each raster cell by the sum of the val-
ues assigned to the same cell in the three averaged rasters (Fig. 2).
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Following a procedure similar to the first test based on NAMFs, we
computed and compared the average difference D defined as follows:

n .
D= Z Viend — Vistart
i=1 n

where 7 is the number of branches in the tree, v;gq- the highest
cell value among the three flyway normalised raster to be associated
with the position of the starting (oldest) node of tree branch i, and
Viend the cell value extracted from the same normalised raster but
associated with the position of the descendant (youngest) node of the
tree branch i. D is thus a measure of the tendency of tree branches to
remain within the same flyway. Each “inferred” D value (Djy ferrea)
is then compared to its corresponding “simulated” value (Dgjuiated)
by approximating a BF value using the above formula, but this time
defining p, as the posterior probability that Dyinujared < Dinferreds
i.e. the frequency at which Dy;uiared < Dinferrea in the samples from
the posterior distribution.

Testing the impact of environmental factors on the viral diversity
through time. We used the skygrid-GLM approach®'* implemented
in BEAST 1.10.4 to measure the association between viral effective
population size and five covariates: human case numbers, temperature,
precipitation, a greenness index and a bird observation index. The
monthly number of human cases were provided by the CDC and were
considered with different lag times of one and two months (meaning
that the viral effective population size was compared to case count
data from one and two months later), as well as the absence of lag
time. Preliminary skygrid-GLM analyses were used to determine the
most relevant lag time to use in subsequent analyses. Data used to
estimate the average temperature and precipitation time series were
obtained from the database managed by the US National Oceanic and
Atmospheric Administration (NOAA; https://data.nodc.noaa.gov).
For each successive month, meteorological stations were selected
based on their geographic location. To estimate the average
temperature/precipitation value for a specific month, we only
considered meteorological stations included in the corresponding
monthly minimum convex polygon obtained from the continuous
phylogeographic inference. For a given month, the corresponding
minimum convex hull polygon was simply defined around all the tree
node positions occurring before or during that month. In order to take
the uncertainty related to the phylogeographic inference into account,
the construction of these minimum convex hull polygons was based
on the 100 posterior trees used in the phylogeographic inference
(see above). The rationale behind this approach was to base the
analysis on covariate values averaged only over measures originating
from areas already reached by the epidemic. The greenness index
values were based on monthly Normalised Difference Vegetation
Index (NDVI) raster files obtained from the NASA Earth Observation
database (NEO; https://neo.sci.gsfc.nasa.gov). Monthly NDVI values
were here obtained by cropping the NDVI rasters with the series of
minimum convex hull polygons introduced above, and then averaging
the remaining raster cell values. Finally, the Bird Observation
Normalised Index (BONI) was obtained by the ratio of the sum of
WNYV associated bird sightings over the sum of all bird sightings for
each month of each year over the region of interest (either continental
US or US counties covered by the minimum convex hull polygons).
Raw data used to compute this index were obtained from the eBird
database® (https://ebird.org), for which each individual bird sighting
was given a weight of “1”. The list of birds associated with WNV
infection has been retrieved from a compiled list obtained from the
CDC, excluding “exotic-captive” bird species. We analysed these
covariates using both univariate and multivariate approaches. While
univariate skygrid-GLM analyses only involved one covariate at a
time, the multivariate analyses included all the five covariates and
used inclusion probabilities to assess their relative importance®.
To allow their inclusion within the same multivariate analysis, the
covariates were all log-transformed and standardised.
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