
   
 

1 
 

PINOT: An Intuitive Resource for Integrating Protein-Protein Interactions 1 

 2 

Tomkins JE1, Ferrari R2, Vavouraki N1, Hardy J2, Lovering RC3, Lewis PA1,2, 3 

McGuffin LJ4*, and Manzoni C1,2* 4 

 5 

1. School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, 6 

United Kingdom; 2. Department of Molecular Neuroscience, UCL Institute of 7 

Neurology, Queen Square, London, WC1B 5EH, United Kingdom; 3. Functional 8 

Gene Annotation, Institute of Cardiovascular Science, University College London, 9 

WC1E 6JF, United Kingdom; 4 School of Biological Sciences, University of Reading, 10 

Whiteknights, Reading, RG6 6AS, United Kingdom. 11 

 12 

*Corresponding authors: c.manzoni@reading.ac.uk; l.j.mcguffin@reading.ac.uk  13 

 14 

Abstract  15 

The past decade has seen the rise of omics data, for the understanding of biological 16 

systems in health and disease. This wealth of data includes protein-protein interaction 17 

(PPI) derived from both low and high-throughput assays, which is curated into multiple 18 

databases that capture the extent of available information from the peer-reviewed 19 

literature. Although these curation efforts are extremely useful, reliably downloading 20 

and integrating PPI data from the variety of available repositories is challenging and 21 

time consuming. 22 

We here present a novel user-friendly web-resource called PINOT (Protein Interaction 23 

Network Online Tool; available at 24 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) to optimise the collection 25 

and processing of PPI data from the IMEx consortium associated repositories 26 

(members and observers) and from WormBase for constructing, respectively, human 27 

and C. elegans PPI networks. 28 

Users submit a query containing a list of proteins of interest for which PINOT will mine 29 

PPIs. PPI data is downloaded, merged, quality checked, and confidence scored based 30 

on the number of distinct methods and publications in which each interaction has been 31 

reported. Examples of PINOT applications are provided to highlight the performance, 32 

the ease of use and the potential applications of this tool.  33 
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PINOT is a tool that allows users to survey the literature, extracting PPI data for a list 34 

of proteins of interest. The comparison with analogous tools showed that PINOT was 35 

able to extract similar numbers of PPIs while incorporating a set of innovative features. 36 

PINOT processes both small and large queries, it downloads PPIs live through 37 

PSICQUIC and it applies quality control filters on the downloaded PPI annotations (i.e. 38 

removing the need of manual inspection by the user). PINOT provides the user with 39 

information on detection methods and publication history for each of the downloaded 40 

interaction data entry and provides results in a table format that can be easily further 41 

customised and/or directly uploaded in a network visualization software. 42 

   43 

Keywords: protein interaction, protein network, network, data mining, protein 44 

database  45 

 46 

Background 47 

During the past two decades the use of omics data to understand biological systems 48 

has become an increasingly valued approach (1). This includes extensive efforts to 49 

detect protein-protein interactions (PPIs) on an almost proteome-wide scale (2, 3). 50 

The utility of such data has been greatly supported by primary database curation 51 

and the International Molecular Exchange (IMEx) Consortium, which promotes 52 

collaborative efforts in standardising and maintaining high quality data curation 53 

across the major molecular interaction data repositories (4). The primary databases, 54 

such as IntAct (5) and BioGRID (6), are rich data resources providing a 55 

comprehensive record of published PPI literature. PPI data are critical to describe 56 

connections among proteins, which in turn supports both inference of new functions 57 

for proteins (based on the guilt by association principle (7)) and visualization of 58 

protein connectivity via shared interactors. This support shedding light on communal 59 

pathways involving proteins of interest (8-10). Additionally, literature extracted PPI 60 

data can support the prioritization of interactions from high-throughput experiments 61 

(which generate large lists of potential PPI hits), assisting the selection of candidates 62 

for further analysis/validation (11). 63 

However, the process of collating PPI data from multiple sources is currently 64 

hampered by the fact that no single data source encompasses the full extent of PPIs 65 

reported in the literature, requiring users to merge (partial) information mined from 66 

different primary databases. Furthermore, merging such data is not straightforward 67 
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due to inconsistencies in data format and differences in data curation across the PPI 68 

databases (IMEx members vs non-members). 69 

To optimize the use of PPI data from the public domain, we developed a user-70 

friendly tool that assists PPI data extraction and processing: the Protein Interaction 71 

Network Online Tool (PINOT). This tool represents the development (and 72 

automation) of our previous PPI analysis framework (i.e. weighted protein-protein 73 

interaction network analysis - WPPINA) (9, 11-15). Through PINOT, PPI data is 74 

downloaded directly (i.e. downloaded “live” at the time of the query) from seven 75 

databases using the Proteomics Standard Initiative Common Query Interface 76 

(PSICQUIC) and integrated to ensure a wide coverage of the PPIs available from 77 

these repositories (16). These data are scored through a simple and transparent 78 

procedure based on ‘method detection’ and ‘publication records’ and allows the user 79 

to further apply customized confidence thresholds. PINOT is fully automated and 80 

available online as an open access resource. Output data are provided as a 81 

summary table (directly online or emailed to the user), which summarizes the most 82 

comprehensive current knowledge of the PPI landscape for the protein(s)-of-interest 83 

submitted in the query list. Of note, the R scripts which underlie PINOT can be freely 84 

downloaded from the help-page. 85 

 86 

Methods 87 

Protein Interaction Network Online Tool (PINOT) 88 

PINOT can be run automatically at 89 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html (hereafter referred to as 90 

“webtool”). A choice of parameters is integrated by default as explained further below 91 

and in Supplementary Materials (S1). Alternatively, R scripts can be downloaded from 92 

the help-page (hereafter referred to as “standalone tool”, since parameters can be 93 

modified as per user choice).  94 

A list of proteins of interest (seeds) can be queried to identify their literature-reported 95 

interactors that have been curated into PPI databases (Figure 1).  96 

 97 

 98 
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 99 

 100 

FIGURE 1 – PINOT user interface 101 

A. Screenshot of the PINOT webpage, B. Examples of the text file to be uploaded or list to 102 

be populated into the text box of query seeds (i.e. proteins for which protein interactors will 103 

be extracted from primary databases that manually curate the literature), C. Example result 104 

output file from PINOT, containing the extracted and processed PPI data (only the file’s 105 

header is reported as an example), D. Example of the discarded proteins log file from 106 

PINOT, a text file reporting all the seeds for which interactions are not returned to the user, 107 

and E. Example of the network providers log file from PINOT containing a list of active 108 

databases that were utilised for downloading PPI data. 109 

 110 

 111 

For Homo sapiens (taxonomy ID: 9606) the seed identifiers submitted into the query 112 

field must be in an approved HUGO Gene Nomenclature Committee (HGNC) gene 113 

symbol or valid Swiss-Prot UniProt ID format. Upon query submission, PPI data are 114 

extracted directly (via API: Shannon, P. (2018) PSICQUIC R package, DOI: 115 

10.18129/B9.bioc.PSICQUIC (17)) from seven primary databases, all of which directly 116 

annotate PPI data from peer-reviewed literature: bhf-ucl, BioGRID (6), InnateDB (18), 117 

IntAct (5), MBInfo (https://www.mechanobio.info), MINT (19) and UniProt (20). The 118 

downloaded protein interaction data are then parsed, merged, filtered and scored 119 

(Figure 2) automatically by PINOT. Detailed description of the PINOT pipeline can be 120 

found in the supplementary materials (S1). The user can select to run PINOT with 121 

lenient or stringent filter parameters. The output of PINOT (Figure 1C-E) consists of: 122 
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i) a network file (final_network.txt), which is a tab-spaced text file containing the 123 

processed PPI data in relation to the seeds in the initial query list; ii) a log file 124 

(final_network_log.txt) reporting proteins that have been discarded from the initial 125 

query list, and; iii) a log file (final_network_providers.txt) indicating the PPI databases 126 

used by the API at download. The output dataset is available for download and/or 127 

emailed to the user.  128 

For Caenorhabditis elegans (taxonomy ID: 6239) the seed identifiers must be in an 129 

approved WormBase gene ID (21) format, “WBGene” followed by 8 numerical digits. 130 

Upon submission PPI data are downloaded from an internal network stored within 131 

PINOT and created (following similar criteria applied for the human PPIs - details in 132 

S1) based on the WormBase PPI catalogue (Alliance_molecular_interactions.tar file 133 

downloaded from the Alliance of Genome Resources on 15th April 2019). The user 134 

can apply stringent or lenient filtering options. The output of PINOT for a C. elegans 135 

query consists of: i) a network file (final_network.txt), which is a tab-spaced text file 136 

containing the processed PPIs for the seeds in the initial query list; and ii) a log file 137 

(final_network_log.txt) reporting proteins that have been discarded from the initial 138 

query list. 139 

Software 140 

The PINOT pipeline is coded in R and runs on a Linux server at the University of 141 

Reading, with java servlets processing user’s submissions via the web interface.  142 

PINOT quality control 143 

We have tested the PINOT pipeline using multiple input query lists structured as 144 

follows: i) small input lists = 6 sets of 1 to 5 proteins, selected randomly or in 145 

association with typical processes suspected to be functionally relevant for 146 

Parkinson’s Disease (PD); and ii) large input list = 941 proteins, the mitochondrial 147 

proteome as reported by MitoCarta2.0 (22).  148 

PINOT was compared to two other related online tools. For this analysis, searching 149 

parameters were selected (where possible) to maximize the extraction of protein 150 

interactions: the Human Integrated Protein-Protein Interaction Reference (HIPPIE) 151 

was used with confidence score = 0 and no filters on confidence level, interaction type 152 

or tissue expression; and the Molecular Interaction Search Tool (MIST) was used with 153 

no filtering rank to download only protein protein interactions. Importantly and of note, 154 

files from HIPPIE and MIST required manual parsing after download to remove entries 155 

that were associated to no PMID and/or no conversion method code (incomplete 156 
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entries). Data were downloaded on 18th September 2019 (H. sapiens) and on 24th 157 

September 2019 (C. elegans). 158 
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FIGURE 2 – PINOT pipeline 160 

A stepwise insight into the process which underlies the PINOT pipeline. Performance reports 161 

(green boxes) are generated and data are discarded (red boxes) at numerous stages within 162 

the pipeline to ensure high quality and transparent data processing.   163 

 164 

Results 165 

PINOT is a webtool that takes a list of proteins/genes (seeds) as input and returns a 166 

table containing a comprehensive list of PPIs - published in peer-reviewed literature – 167 

centred upon the seeds. This table consists of a variable number of rows and 11 168 

columns (Figure 1C and 3C). Each row represents a binary interaction between one 169 

of the seeds (interactor A) and one of its specific protein interactors (interactor B). The 170 

11 columns contain: the gene name, the Swiss-Prot protein ID and the Entrez gene ID 171 

for interactor A and B (“NameA”, “SwissA”, “EntrezA”, “NameB”, “SwissB”, “EntrezB”); 172 

the number and type of different methods through which the interaction has been 173 

identified (“Method.Score”, “Method”); and the number of different publications 174 

reporting the interaction and the corresponding PubMed IDs (“Publication.Score”, 175 

“PMIDS”). The final column (“Final.Score”) contains a confidence score based on the 176 

number of different methods + the number of different publications reporting the 177 

interaction. PPIs with a final score of 2 are reported in literature by 1 publication and 178 

detected by 1 technique; these PPIs are considered “suggestive” (but are clearly not 179 

“replicated”). They might be either: i) false positives, or ii) true novel interactions that 180 

have not yet been replicated in additional studies. A final score >2 suggests a degree 181 

of replication that can be either or both: multiple publications reporting the PPI and 182 

multiple techniques used to detect the interaction. It is not possible to obtain a final 183 

score <2 since every PPI annotation – to be retained in PINOT – has to be supported 184 

by at least 1 interaction detection method and 1 PMID; if this condition is not met, the 185 

PPI is discarded by PINOT and not shown in the output file. 186 

The PINOT output can be imported into Cytoscape (23) for network visualization by 187 

selecting the “NameA” and “NameB” columns as source and target nodes, 188 

respectively.  189 

PINOT: Example of application 190 

In Figure 3 PINOT has been used to download PPIs for a limited selection of human 191 

protein products of genes mutated in familial PD: ATP13A2, FBXO7, GBA, PINK1, 192 

SMPD1 and VPS35 (seeds). PINOT quickly retrieved a table containing 327 193 
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interactions from peer-reviewed literature (with associated PMIDs) thus supporting 194 

and simplifying otherwise time-consuming classical literature mining. The PINOT 195 

output was imported into Cytoscape and PPIs were visualized in a network (“NameA” 196 

= source and “NameB” = target), the seeds were highlighted in dark-red and the edges 197 

(interactions between each protein) were coded based on the “Final.Score” field, thus 198 

highlighting the confidence (number of methods + number of publications) of the 199 

interaction. Since we were interested in interactors that were common to the seeds - 200 

and not in “private” interactors of just one seed - the network was filtered retaining only 201 

the nodes (interactors) that bridged two or more seeds. The obtained core-network 202 

revealed that among the common interactors of the seeds (PD proteins) there were 2 203 

proteins (SNCA and PRKN), which are products of 2 additional genes known for being 204 

mutated in familial PD. Thus, the analysis pointed towards the involvement of SNCA 205 

and PRKN in PD even if they were initially excluded from the list of seeds. Additionally, 206 

topological analysis (based on the number and strength of the edges) suggested the 207 

core network could be subdivided into 2 distinct clusters respectively including PINK1, 208 

FBXO7 and the newly identified PRKN and SNCA in the first cluster, while ATP13A2, 209 

VPS35 and SMPD1 were more closely associated in the second cluster, with GBA a 210 

bridge seed between the 2 clusters. This observation suggested a dichotomy, based 211 

on the protein interactomes, of the seeds included in the initial input list. Based on the 212 

guilt-by-association principle we hypothesised that the proteins contributing to these 213 

clusters could be associated with different cellular functions and components. We 214 

therefore performed functional enrichment analysis (based on Gene Ontology (GO) 215 

Cellular Component (CC) annotations) using g:Profiler (24) revealing that indeed, 216 

clusters 1 and 2 are associated with mitochondria and 217 

vacuoles/lysosomes/endosomes, respectively. 218 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 30, 2019. ; https://doi.org/10.1101/788000doi: bioRxiv preprint 

https://doi.org/10.1101/788000
http://creativecommons.org/licenses/by/4.0/


   
 

10 
 

 219 

 220 

Figure 3 – PINOT: An example application  221 

A stepwise insight into the potential use of PINOT. 1. A submission list is created as a text file 222 

using gene names as per HGNC approved symbols or Swiss-Prot IDs; the submission list can 223 

be uploaded as file or pasted into the PINOT interface. 2. PINOT downloads from PSICQUIC 224 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 30, 2019. ; https://doi.org/10.1101/788000doi: bioRxiv preprint 

https://doi.org/10.1101/788000
http://creativecommons.org/licenses/by/4.0/


   
 

11 
 

the human PPIs (in this example, stringent filters applied) 3. PPIs are provided back to the 225 

user via email or from the webpage; results are in a parsable file that can be opened by a text 226 

reader application and imported into Microsoft Excel. 4. The interactions can be visualized in 227 

a network format by opening the PINOT output through Cytoscape. Connections between 228 

nodes (edges) are coded with increased line width based on the final score that interaction 229 

was assigned by PINOT. The wider the edge – the more confident PINOT is about the 230 

interactions. 5. The interactions can be further processed according to the user’s research 231 

question, in this case, only interactors that are communal to at least 2 of the initial query 232 

proteins have been retained, generating a core network (in dark-red the initial seeds; in bright-233 

green the identified common interactors that are proteins mutated in PD). Based on the 234 

network topology the seeds and their interactors can be visually clustered into group 1 235 

(depicted in gold) and group 2 (depicted in blue). 6. Specific functional enrichment (GO CC 236 

terms) for groups 1 and 2 after filtering out the less represented terms. Analyses performed 237 

on the 22nd August 2019.      238 

 239 

H. sapiens - PINOT performance 240 

The performance of PINOT was compared to that of alternative resources for both 241 

small and large numbers of seeds. Regarding the former, five different small seed lists 242 

were used as input for PPI query in HIPPIE (25) and MIST (26), two alternative online 243 

and freely available resources. It should be noted that, despite apparent similarities, 244 

each of these tools has been developed differently. All three resources (PINOT, 245 

HIPPIE and MIST) have distinguishing features for addressing different research 246 

questions (Table 1). The results of the different queries have been compared, 247 

evaluating the total number of interactors provided in the output (Figure 4A).  248 

PINOT, HIPPIE and MIST retrieved a similar number of PPIs. PINOT with stringent 249 

filtering applied, was always extracting fewer interactions; this is an expected outcome 250 

since this filter option is built with the purpose of retaining only annotations that have 251 

survived stringent screening, largely based on completeness of curated data entries.  252 

The large input list was compared in PINOT and HIPPIE, the only two webtools that 253 

allowed for easy processing of more than 900 seeds within the submission list. In fact, 254 

MIST submission needed to be divided into multiple small lists to allow the browser to 255 

properly process the query. Additionally, the downloaded table(s) were not parsable 256 

(in an automated fashion), thus making MIST (the version available at the time of the 257 

query) counterintuitive for the processing of large input lists. The number of retrieved 258 

interactors was slightly higher for HIPPIE in comparison with PINOT when the 259 

stringent QC filter was applied; while PINOT with lenient filtering retrieved more 260 

interactions than HIPPIE (Figure 4B). Additionally, the vast majority of downloaded 261 
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interactions were similar from using the two resources, suggesting that PINOT is able 262 

to confidently extract specific interations from literature (Figure 4C). 263 

 264 

 265 

 266 

Figure 4 – PINOT: Performance & Sensitivity  267 

A. PINOT performance was evaluated by counting the number of interactors retrieved (gene 268 

names) upon submission of the reported query lists to PINOT (with stringent and lenient 269 

filtering), HIPPIE and MIST (on 18th September 2019). The databases were set to retrieve the 270 

maximum number of interactions (by removing all possible filters). The HIPPIE and MIST 271 

outputs were manually cleaned to remove interactions with i) no interaction detection method; 272 

ii) no PMID; iii) multiple Entrez IDs. The number of retained interactions retrieved is reported 273 
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on top of each bar. B. PINOT (with stringent and lenient filtering) and HIPPIE were queried to 274 

retrieve PPIs for a seed list of 941 protein from Mitocarta 2.0. C. Comparison between PINOT 275 

and HIPPIE showing that the vast majority of interactors (Entrez IDs) downloaded by the two 276 

tools was identical: 6790 common interactors for PINOT lenient (640 unique interactors) vs 277 

HIPPIE (355 unique interactors); 6572 common interactors for PINOT stringent (319 unique 278 

interactors) vs HIPPIE (573 unique interactors). 279 

 280 

C. elegans - PINOT performance 281 

The performance of PINOT for querying C. elegans PPI data was tested alongside the 282 

C. elegans query option in MIST, assessing interaction networks of different 283 

dimensions (Figure 5). The data acquisition strategy underlying these two resources 284 

differs slightly, PINOT extracts data from the latest release of WormBase molecular 285 

interaction data, whereas MIST utilises data from numerous sources, including 286 

WormBase, BioGRID and IMEx associated repositories.  287 

Similarly to comparisons across the human PPI query capacity, PINOT and MIST 288 

performed comparably in terms of the number of PPI data entries extracted. More 289 

specifically and as previously described with human data, PINOT extracting slightly 290 

fewer across these test query cases. However, upon assessing the completeness of 291 

these extracted data entries, in terms of interaction detection method and/or PMID 292 

annotations, there was a striking difference in performance. Since the PINOT pipeline 293 

focusses particular emphasis on the QC of data, all data entries within the output 294 

dataset were complete, whereas incomplete data entries persisted in the MIST output 295 

dataset thus requiring manual inspection. In the more abundant PPI data pools, for 296 

example when querying the ATP and CED C. elegans proteins, incomplete data 297 

entries accounted for the majority of the output dataset in MIST.  298 
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 299 

 300 

Figure 5 – PINOT and MIST performance comparison for C. elegans PPI data 301 

The performance of PINOT (with stringent and lenient filter options) and MIST was assessed 302 

in terms of the number of PPI data entries extracted upon querying different protein lists (on 303 

24th September 2019). The output dataset was evaluated in relation to the number of 304 

complete and incomplete (lacking interaction detection method and/or PubMed ID 305 

annotations) data entries extracted. The query lists were PD-associated DNAJC orthologs: 306 

DNJ-14, DNJ-25, DNJ-27, Y73B6BL.12, K07F5.16, RME-8 and GAKH-1; ATP proteins: ATP-307 

1, ATP-2, ATP-3, ATP-4, ATP-5 and ATP-6; and CED proteins: CED-1, CED-2, CED-3, CED-308 

4, CED-5, CED-6, CED-7, CED-8, CED-9, CED-10, CED-11, CED-12 and CED-13. The input 309 

format used for PINOT was the WormBase gene ID, the common gene name (as listed here) 310 

was used for MIST querying and no filter by rank parameter was set. 311 

 312 

Discussion 313 

PINOT can be used as a tool to quickly and effectively survey the literature and 314 

download the most up-to-date PPI data available for a given set of proteins/genes of 315 

interest. This is particularly useful to assist anyone attempting to mine overwhelming 316 

abundant literature targeting certain proteins/genes, in relation identifying reported 317 

PPIs. 318 

The PPI data downloaded through PINOT can be used as a reference list (from 319 

literature) for experimental PPI data resulting from high-throughput experiments 320 

(protein microarrays; yeast 2 hybrid screens, etc) helping in prioritisation of 321 
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experimental results for validation. PINOT can also be useful to evaluate interactors 322 

of different proteins/genes of interest within an input seed list simultaneously. The 323 

analysis of the combined interactomes of such seeds can reveal the existence of 324 

communal interactors, can provide a base to cluster the seeds into groups and can 325 

support further functional analysis to better characterize the functional landscape of 326 

seeds of interest. 327 

 328 

Alternative tools that appear to be similar to PINOT are HIPPIE and MIST. STRING 329 

(27) is a conceptually different tool; it does not report ‘interaction detection methods’ 330 

nor ‘Publication IDs’ for PPIs which are crucial pieces of information for the evaluation 331 

and interpretation of PPI data. Additionally, the reported interactions are not focused 332 

only on the proteins in the input list; interactions of interactors are also reported, thus 333 

making it difficult to parse the output table. HIPPIE implements a tailored confidence 334 

score for different methodological approaches; MIST provides a valuable resource for 335 

users interested in mapping PPIs across species (i.e. interologs); PINOT focusses on 336 

high quality PPI data output by implementing multiple QC steps to remove problematic 337 

or non-univocal annotations. PINOT performance was comparable to that of HIPPIE 338 

and MIST both in terms of number and identity of downloaded interactions. However, 339 

there are some unique features of PINOT that are not, at the moment, integrated within 340 

the other databases. Human PPIs in PINOT are directly downloaded from PSICQUIC 341 

at every query submission. In contrast, PPIs in HIPPIE and MIST are recovered from 342 

a central built-in repository within the servers. This difference is clearly demonstrated 343 

by searching for interactors of LRRK2, where (at the time of analysis) 1 high-344 

throughput publication was updated in PSICQUIC, while both HIPPIE and MIST did 345 

not contain this full annotation yet (Figure 6).  346 

PINOT has access to the most up-to-date interactions that could be retrieved at a 347 

given time from PSICQUIC (however, it has to be considered that each database is 348 

responsible for updating their PSICQUIC service and therefore discrepancies might 349 

exist with the central database).  350 

 351 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 30, 2019. ; https://doi.org/10.1101/788000doi: bioRxiv preprint 

https://doi.org/10.1101/788000
http://creativecommons.org/licenses/by/4.0/


   
 

16 
 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

Figure 6 – LRRK2 interactome 362 

PINOT performance was evaluated by counting the number of interactors retrieved (gene 363 

names) for LRRK2 by using PINOT (with stringent and lenient filtering), HIPPIE and MIST. 364 

The databases have been set to retrieve the maximum number of interactions (by removing 365 

all possible filters). HIPPIE and MIST output were manually cleaned to remove interactions 366 

with i) no interaction detection method; ii) no PMID; iii) multiple Entrez IDs. The number of 367 

the surviving interaction retrieved is reported on top of each bar (18th September 2019). 368 

 369 

PINOT implements QC filtering which involves discarding PPI data entries that are 370 

curated without a PMID and/or the interaction detection method annotation. Therefore 371 

the output file from PINOT does not require any further QC by the user, while lists from 372 

MIST and HIPPIE require manual parsing and inspection before analysis to remove 373 

incomplete data entries through a time consuming, post-hoc processing procedure. 374 

Another distinctive feature of the PINOT pipeline is the implementation of a unique 375 

interaction detection method conversion step. During this step, the interaction 376 

detection method annotation for each downloaded interaction data entry is converted 377 

based on a conversion table (S2) that is available for download from the PINOT web-378 

portal. During this conversion, technically similar methods are grouped together. For 379 

example: “Two Hybrid - MI:0018”, “Two Hybrid Array - MI:0397” and “Two Hybrid 380 

Pooling Approach - MI:0398” are grouped together into the “Two Hybrid” method 381 

category. This step of ‘method clustering and reassigment’ is critical to assess the 382 

actual number of distinct methods used to describe a particular interaction and to dilute 383 
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the bias caused in the event of the same technique being annotated under slightly 384 

different method codes in different PPI databases.  385 

Interaction scores are provided in different formats for the three tools. HIPPIE 386 

incorporates a filtering system based on a confidence score between 0 and 1 that can 387 

be set either before or after the analysis. This is a complex scoring system, which 388 

takes into consideration multiple parameters, such as the number of publications that 389 

report a specific interaction and a semi-computational quality score based on the 390 

experimental approach (for example, imaging techniques would score less than direct 391 

interactions etc.) (28). MIST similarly has an option for filtering interactions pre- or 392 

post-analysis; however, this is based on fixed ranking values defined as low, medium 393 

(interaction supported by other species), or high (supported by multiple experimental 394 

methods and/or reported in multiple publications). In the case of PINOT, two different 395 

scores are provided: the interaction detection method score (MS) reports the number 396 

of different methods used (after conversion), while the publication score (PS) counts 397 

the number of different publications which report the interaction. Finally, H. sapiens 398 

PINOT coding scripts are fully available for download. They are coded in R to make 399 

them accessible to a large research audience; additionally a read me text file helps 400 

customization of the scripts according to the users’ needs. Some of the divergent 401 

features across PINOT, HIPPIE, MIST and STRING are reported in Table 1.  402 

 403 

 PINOT HIPPIE MIST STRING 

Live PPI data yes no no no 

Large Submission yes yes no no 

Parsable Table yes yes no yes 

PPIs for seeds only yes yes yes no 

Visualization app no yes yes yes 

Other Species PPIs yes no yes yes 

Score yes yes yes yes 

Pubmed ID (PMID) yes yes yes no 

Detection Method yes yes yes no 

QC on method and PMID yes no no - 

Entrez ID yes yes yes no 

Swiss-Prot ID yes no no no 
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Codes available yes no no no 

 404 

Table 1 – Comparison of features available within the PINOT, HIPPIE, MIST and 405 

STRING resources. 406 

 407 

 408 

 409 

 410 

List of Abbreviations 411 

HIPPIE = Human Integrated Protein-Protein Interaction Reference; MIST = 412 

Molecular Interaction Search Tool; MS = method score; PPI = protein protein 413 

interaction; PD = Parkinson’s Disease; PINOT = protein interaction network online 414 

tool; PMID = Pubmed ID; PS = publication score; PSICQUIC = Proteomics Standard 415 

Initiative Common Query Interface; QC = Quality Control; WPPINA = weighted 416 

protein-protein interaction network analysis.  417 

 418 

Availability of data: This resource is available as a fully automated web-server at: 419 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html; R scripts, which underlie 420 

this bioinformatics pipeline, are free for download at the help-page. 421 
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