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Abstract

Gene co-expression network (GCN) mining identifies gene modules with highly
correlated expression profiles across samples/conditions. It helps to discover latent
gene/molecular interactions, identify novel gene functions, and extract molecular
features from certain disease/condition groups, thus help to identify disease
biomarkers. However, there lacks an easy-to-use tool package for users to mine GCN
modules that are relatively small in size with tightly connected genes that can be
convenient for downstream Gene Ontology (GO) enrichment analysis, as well as
modules that may share common members. To address this need, we develop a GCN
mining tool package TSUNAMI (Tools SUite for Network Analysis and MIning)
which incorporates our state-of-the-art IMQCM agorithm to mine GCN modules in
public and user-input data (microarray, RNA-seq, or any other numerical omics data),
then performs downstream GO and enrichment analysis based on the modules
identified. It has several features and advantages: (i) user friendly interface and the
real-time co-expression network mining through web server; (ii) direct access and
search of GEO and TCGA databases as well as user-input expression matrix
(microarray, RNA-seq, etc.) for GCN module mining; (iii) multiple co-expression
analysis tools to choose with highly flexible of parameter selection options; (iv)
identified GCN modules are summarized to eigengenes, which are convenient for user
to check their correlation with other clinical traits; (v) integrated downstream Enrichr
enrichment analysis and links to other GO tools; (vi) visualization of gene loci by
Circos plot in any step. The web service is freely accessible through URL:
http://spore.ph.iu.edu:3838/zhihuan/ TSUNAMI/.  Source code is available at
https://github.com/huangzhii/ TSUNAMI/.

KEYWORDS: Network mining; Gene co-expression network; Transcriptomic data
anaysis; ImQCM; Web server
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Introduction
Gene co-expression network (GCN) mining is a popular bioinformatics approach to
identify densely connected gene modules, which are linked by their highly correlated

expression profiles. It helps reveal latent gene/molecule interactions, identify novel

1

2

3

4

5 gene functions, disease pathways and biomarkers, as well as provide disease
6 mechanistic insights. GCN mining approaches such as WGCNA [1] and IMQCM [2]
7  have been used increasingly [3—7]. Compared to the more popularly used WGCNA
8 package, IMQCM is capable to mine smaller densely co-expressed GCN modules and
9 alow overlapped membership in the output modules. Those features reflect closely
10 therea biological networks in vivo, where the same genes may participate in multiple
11  pathways and a small group of genes are more likely to be synergistically regulated in
12 loca pathway functions. Besides, the generally smaller size of modules from ImQCM
13 usually generates more meaningful GO enrichment results, which has been
14  successfully applied to many diseases and cancer types [8-17].

15 There exist several online databases that curate transcriptomic data, for example,
16 PanglaoDB (https://panglaodb.sef) collected single-cell RNA-seq (scRNA-seq) data
17 from mouse and human. Cao et a. scCRNASeqDB [18] provides an scCRNA-seq
18 database for gene expression profiling in human. Recount2 [19] provides public
19 available analysisready gene and exon counts datasets. However, al of these
20 databases focus on data collection, to the best of our knowledge, there is no tool
21  offering the entire pipeline that can directly process transcriptomic data, mine GCN
22  modules, analyse GO enrichment, and visualized the results in a complete pipeline
23 fashion. To meet such needs, we released our web-based analysis tool suite
24  TSUNAMI (Tools SUite for Network Analysis and MIning).

25 For users’ convenience, TCGA mRNA-seq data (Illumina HiSeq RSEM genes
26 normalized from https://gdac.broadinstitute.org/) and NCBI Gene Expression
27  Ominbus (GEO) are directly incorporated into TSUNAMI, where GEO contains a
28  large number of microarray datasets. In addition, other data types such as miRNA-seq
29 and DNA methylation are also compatible with this suite. In fact, TSUNAMI can
30 handle any numerical matrix data regardless which omics data type it is from. In
31 TSUNAMI, it not only incorporates the newly released ImQCM algorithm, but also

32 includes WGCNA package for users to explore and compare their GCN modules from
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33 two different algorithms. We offer highly flexible parameter choices in each step to
34  users who may want to fine tune each algorithm to suit for their own data and goal.

35 Prior to data mining, a data pre-processing interface is designed to address the
36  input data format difference and filter the data to remove noise for GCN mining. Each
37  step of the pre-processing is transparent to users and can be adjusted according to
38  their own preferences and needs.

39 Furthermore, our website directly incorporates GO enrichment analysis and Circos
40 plot function for researchers to explore the enriched biological terms and gene
41 locationsin the output GCN modules, as well as providing a tool for survival analysis
42  with respect to each GCN modul€e's eigengene values. All of the aforementioned
43  functions only need button clicks from user-side. The design of such user-friendly
44  implementations of our TSUNAMI pipeline provides a one-stop comprehensive
45 analysis tool suite for biological researchers and clinicians to perform transcriptomic
46 data anaysis themselves without any prior programming skill or data mining
47  knowledge.

48

49 Datainput

50 A flowchart that describes TSUNAMI pipeline is presented in Figure 1. The entire
51 pipeline is implemented in R language with Shiny server pages. In the future, it will
52  be upgraded with Python to improve the computing speed in module mining step.
53  Some front-end interfaces and functions are done by JavaScript. In TSUNAMI, users
54  can choose to use either TCGA RNA-seq expression data, GSE series matrix data, or
55  other RNA-seq data from GEO database, or local user-input numerical matrix data,
56  such as microarray, RNA-seq, scRNA-seq data, DNA methylation data, or any other
57  type of numeric matrix data. User can also choose specific omics data type on GEO
58 database if keywords are given to indicate the data type in the search window. Only
59 few GSE datais not able to be processed (for example, 12 out of first 1000 GSE data),
60 mostly are legacy microarray data, which contain too much missing data or too small
61 sample size. Other 98.80% of first 1000 GSE data can be processed. On the website,
62  various of example data from microarray to SCRNA-seq data are listed on TSUNAMI
63 for users’ reference. Instead of searching GEO database manually, TSUNAMI
64 provides afriendly interface for users to retrieve data from GEO by keywords, offers
65 flexible select tool to retrieve relevant GSE dataset to perform GCN analysis.
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66 TSUNAMI aso provides an upload bar for users to upload local files in various
67 formats (CSV, TSV, XLSX, TXT, etc.), the upload interface is shown in Figure 2A.
68 In this paper, one microarray dataset (GSE17537 from GEO) is chosen as an example
69 to present the features of TSUNAMI. GSE17537 contains microarray data of 55
70 colorectal cancer patients from Vanderbilt Medical Center (VMC), with 54,675
71  probesets[20, 21].

72

73 Online data pre-processing

74  One issue of GEO microarray data is that different platforms adopted different rules
75  when converting probeset IDs to gene symbols. To make this step easier for users,
76  probeset IDs in GSE data matrix from GEO can be converted to gene symbols using
77 R package “BiocGenerics’ [22] by only one click. For instance, for GSE17537, the
78  annotation platformis GPL570. TSUNAMI can aso automatically identify annotation
79 platforms of the data from GEO. During the conversion, TSUNAMI will (i) remove
80 rows with empty gene symbol; and (ii) select the rows with the largest mean
81 expression value when multiple probesets are matched with the same gene symbol.
82 Theinterface of data pre-processing step is shown in Figure 2B.

83 Additional data filtering steps include: (i) convert “NA” value (not a number
84 value) to 0 in expression data, to ensure al the values are numeric and can be
85 interpreted by co-expression algorithms; (ii) perform log,(x + 1) transformation of
86 the expression values x if the original values have not been transformed previously;
87  (iii) remove lowest ] percentile rows (genes) with respect to mean expression values;
88 (iv) remove lowest K percentile rows with respect to expression values' variance.
89 These data filtering steps are necessary to reduce noise and to ensure the robustness
90 for the downstream correlational computation in ImQCM algorithm. The default
91 settingsare J = 50 and K = 50, by which genes with low expression and variance
92  across samples are filtered out. In our example with GSE17537, we deselect logarithm
93 conversion and NA value to 0 conversion, set / = 50, and K = 10, as shown in
94  Figure 2B. However, users can always adjust these parameters based on their own
95 needs and preferences. In Data Pre-processing section, we further provide
96 “Advanced’ panel to alow users select samples subgroup of their interest. After
97  finished the data pre-processing, a dialog box will appear to indicate how many genes
98  left after thefiltering process.
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99
100 Weighted networ k co-expression analysis
101  After data pre-processing, users can directly download pre-processed data or further
102  proceed to GCN analysis. In GCN analysis, we implemented ImMQCM agorithm as
103  well as WGCNA pipeline. We kept the mining steps concise and simple with default
104  parameter settings, while preserving the flexibility for users to select parameters in
105 each step. Guidelines for parameter selection are in method pages of the website.
106 Besides this article, we aso relesse the ImQCM package to CRAN
107  (https://CRAN.R-project.org/package=ImQCM). The R package “WGCNA” from
108 Bioconductor (http://bioconductor.org) was adopted to integrate the WGCNA
109 pipeline.
110 In the IMQCM method panel, users can adjust parameters such as initial edge
111 weight y, weight threshold controlling parameters 4, t, 8, and minimum cluster
112 sze (Figure 3). Pearson correlation coefficient (PCC) and Spearman's rank
113  correlation coefficient (SCC) are implemented separately for users to select. SCC is
114  recommended for analysing RNA-seq data due to the large range of data values, and it
115 is more robust than PCC to tolerate outliers. In our example with GSE17537, the
116  default settings were used (unchecked weight normalization, y = 0.7, A =1, t =1,
117 S = 0.4, minimum cluster size= 10, and PCC for correlation measure). The running
118 time of IMQCM depends on the number of genes after filtering process. A progress
119  bar is provided to show the program progress. Note that ImQCM will not work if the
120  data contain no clustering structure or the gene pair correlations are so poor that none
121 isabove theinitial mining starting threshold (y). In those cases, the program will stop
122  running and generate a warning message. However, if the data contain enough high
123  correlated gene pairs after filtering and with the default program settings, this should
124 not happen.
125 The WGCNA method panel is a two-step analysis: Step 1 helps users to specify
126  the hyper-parameter “power” in step 2, i.e., the soft thresholding in [1] by visualizing
127  theresulting plot (Figure 4A). Step 2 allows users to select the remaining parameters.
128 TSUNAMI alows users to customize the parameters of power, reassign threshold,
129  merge cut height, and minimum module size. After applying WGCNA, a hierarchical
130 clustering plot for getting the result modules is also shown in this panel (Figure 4B).
131  Theresulting plot in Figure 4B is from the example data GSE17537 with power= 10,
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132  set reassign threshold = 0, merge cut height = 0.25, and minimum module size
133 =10.

134 In the last step of GCN mining, two outputs are provided by TSUNAMI: (i)
135 merged gene clusters sorted by their sizes in descending order (Figure 5A with
136 ImQCM algorithm); (ii) an eigengene matrix, which is the expression values of each
137 GCN summarized into the first principal component using singular value
138  decomposition (Figure 5C with ImQCM algorithm). Eigengene values can be
139 regarded as the weighted average expressions of each GCN, thus each GCN is
140 summarized to a “super gene” with the first right singular vector as the expression
141  values. Such values are very useful for users to correlate GCN modules expression
142  profiles with various traits in the downstream analysis such as survival analysis. All
143  results can be downloaded in CSV or TXT format.

144

145 Downstream enrichment analysis

146  Enrichr [23, 24] is used as the tool for downstream GO enrichment analysis
147  implementation. By default, total 14 types of frequent used enrichment are performed.
148 They are (1) Biological Process; (2) Molecular Function; (3) Cellular Component; (4)
149  Jensen DISEASES; (5) Reactome; (6) KEGG; (7) Transcription Factor PPIs; (8)
150 Genome Browser PWMs; (9) TRANSFAC and JASPAR PWMs; (10) ENCODE TF
151 ChiIP-seg; (11) Chromosome Location (Cytoband); (12) miRTarBase;, (13)
152  TargetScan microRNA; (14) ChEA. Users can further customize the enrichment result
153 categories from the open source code avalable in  Github
154  (https://github.com/huangzhii/TSUNAMI).

155 To access Enrichr results, users can simply click the blue button “GO” in each
156  row adjacent to the GCN mining results (as shown in Figur e 5A). In each enrichment
157 analysisresult, it outputs the term (e.g., GO or pathway), P value, z-score, overlapped
158 genes, etc. Users can download multiple analysis results which are bundled in a ZIP
159 file. Besides, other popular GO analysis websites are also directly linked in
160 TSUNAMI to bring conveniences to users. In our example with GSE17537, we select
161 the 36™ GCN module with 15 genes generated by ImQCM to analyze the GO
162  enrichment, and each result table are sorted based on the P value that Enrichr
163  calculated. From the result in Table 1, we can see the 36™ GCN module is highly
164  overlapped with GO Biological Process term “type | interferon signaling pathway
165 (GO:0060337)" (9 out of 148 genes).
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166

167  Circos plot

168 TSUNAMI provides Circos plots [25] through any intermediate results or inputs in
169 the cases of human transcriptomic data. Circos plot is a very useful graph for
170 visualizing the positions of genes on chromosomes and gene-gene
171  relationships/interactions. The Circos plot function from the R package “circlize’ [25]
172  is adopted in this package for users to locate and visualize mined GCNs of human
173  genes.

174 In TSUNAMI, users can visualize the Circos plot via*“Circos Plots” section, either
175 Dby typing their own genes list separated by carriage return character (“\n”) directly, or
176  using the calculated GCN modules (for example, by clicking the yellow button right
177  next to the “GO” button in Figure 5A). TSUNAMI supports both human genomes
178 hg38 (GRCh38) and hgl9 (GRCh37). To match the gene symbol to chromosomes
179  sarting and ending sites, we use reference gene table from UCSC genome browser
180 [26]. If multiple starting/ending site are matched, we choose the longest one with
181 length calculated by:

182 length = ending_site — starting_site + 1 (D)

183 By updating the plots, users can also choose the size of the plots and decide
184  whether gene symbols and pair-wised links should be shown on the graph.

185 An example output of Circos plot in Figure 5B used the 36™ GCN module with
186 15 genesin the IMQCM result from GSE17537 series matrix (use a color set for texts
187 to get a clear visua effect), indicated by gene symbols of human genome hg38
188 (GRCh38). While the link between a pair of genes indicates that they belong to the
189  same co-expressed GCN module.

190 Circos plots can help users to visualize the GCN module's location on human
191  chromosomes from either IMQCM or WGCNA mining, help them to visualize GCNs
192  dueto copy number variation and other structural changes. In the future, genome from
193  mouse and other species will be incorporated for Circos plot.

194

195 Survival analysiswith respect to GCN modules

196 An optiona step of survival analysis follows the generation of the eigengene matrix.
197 It allows users to correlate the GCN module’s elgengene values with patient clinical

198  survival (or event-free survival), and such extension tool can be further customized as
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199 users need to correlate module elgengene values with other clinical traitsin the future
200  version. In our current version, we only implemented survival analysis as an example.
201 In the survival analysis, users can perform Overall Survival/Event-Free Survival
202 (OS/EFS) analysis based on the GCN modules’ eigengene values, and look for
203  significant GCNs that are capable for prognosis, athough depending on the group of
204  patients user specifies, such GCNs may not be identified all the time. TSUNAMI lets
205  user to select an eigengene row (corresponding to a GCN module). The program will
206  splits the patients into two groups by eigengene values' median, then tests two groups
207  against OSEFS by calculating the P value of the log-rank test [27, 28]. Before doing
208  so, users need to input the numerical survival time of OSEFS (either in months or in
209 days) with categorical events OSEFS status (1: deceased; O: censored). “survdiff”
210 function from R package “survival” is adopted to calculate the P value and plot the
211 Kaplan-Meier survival curve.

212 Take GSE17537 with full survival information as an example, the Kaplan-Meier
213  survival plot is generated according to the OS information by dichotomizing the 36™
214  GCN modul€e's eigengene values by its median to high and low group, as shown in
215 Figure 6. Such GCN module was generated from ImQCM method with default
216  settings as shown in Figure 3. This survival analysis offers researchers the tool to
217 immediately identify any GCN modules that reflects patients' survival difference,
218  thus allows researchers to further study their roles as potential prognosis biomarkers,
219 aswell asthe biological pathways that differentiate the patients.

220

221  Conclusion

222  We released the TSUNAMI online tool package for gene co-expression modules
223  identification with direct link to TCGA RNA-seq database and GEO transcriptomic
224  database as well as users' input data. It is a one-stop comprehensive tool package
225 which has several advantages such as flexibility of parameter selections,
226  comprehensive GCN mining tools, direct link to downstream GO enrichment analysis,
227  Circos plot visualization, and survival analysis, with downloadable results in each
228  step. All of which bring tremendous convenience to biological researchers.

229 Besides, TSUNAMI can not only process microarray, RNA-seq, and single-cell
230 RNA-seq transcriptomic data, but aso be capable for processing any type of the

231  numerical valued matrix for weighted network module mining. If the users upload an
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232  adjacency matrix of any supported format with numerical values as the edge weights,
233 TSUNAMI can be used to mine any correlational network modules or even beyond
234  that. This extension will be implemented in version 2.0.
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335 Figurelegends

336 Figurel Flowchart of TSUNAMI.

337 In this flowchart representation of TSUNAMI pipeline, blue rectangles represent
338  pipeline operations; rounded rectanglesin pink represent download processes.

339 Figure2 Dataset Selection and Pre-processing Panel

340 A. Datacan be uploaded manually, or chosen from NCBI GEO database (not shown
341 inthefigure). When uploading the data, the maximum file size that TSUNAMI allows
342  is 300 Megabytes. Header, separators and quote methods can be adjusted by users. B.
343  The Data Pre-processing Panel includes several pre-processing steps.

344  Figure3 ImQCM Method Panel Data Pre-processing Panel.

345 The ImQCM algorithm panel which allows users to choose various of parameters. In
346  this paper, experiment runs with unchecked weight normalization, y = 0.7, 1 =1,
347 t=1, B=04, mnimum cluster size =10, and adopted Pearson correlation
348  coefficient.

349 Figure 4 Choosing the Power in WGCNA and the Hierarchical Clustering
350 Graph of WGCNA

351 A. Thehyper-parameter “power” that chosen from the value above the blue horizontal
352 line. B. The result hierarchical clustering graph with color bar indicating result
353 modules with GSE17537 series matrix as an example, use parameters power= 10,
354  reassign threshold = 0, merge cut height = 0.25, minimum module size = 10 in
355 WGCNA.

356 Figure5 Merged ClustersResult Generated by ImMQCM

357 A. The merged GCN module results, sorted in descending order based on the length
358 of each cluster. Figure only shows part of the results (cluster 35~39) with part of
359 genes. B. The Circos plot result from the 36™ GCN module with 15 genes. C. The
360 screenshot of the eigengene matrix (rounded to 4 decima places for better
361 visualization). Figure only shows part of the results (cluster 1~16) with part of
362 samples (GSM437270~GSM437274). All subfigures use ImQCM algorithm with
363 default parameters (unchecked weight normalization, y =0.7, A=1, t=1,
364 B = 0.4, minimum cluster size = 10, and adopted Pearson correlation coefficient)
365  with GSE17537 series matrix as an example.

366 Figure6 Survival Analysisusing GCN Module Eigenvalues
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367  Survival analysis using the 36™ GCN module eigenvalues generated from ImQCM
368 agorithm, with default parameters (unchecked weight normalization, y = 0.7, 1 =
369 1, t=1, f =04, mnimum cluster size = 10, and adopted Pearson correlation
370  coefficient) with GSE17537 series matrix as an example. 55 samples are used with
371 Overal Survival information.
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372 Tables

373 Tablel Thepartial resultsof GO enrichment analysis

374  Note: This table contains partial rows and columns from original result (active panel:
375 GO Biological Process) from the 36" GCN module with 15 genes generated by
376 ImQCM with GSE17537 series matrix as data. GO terms are sorted by P value. We
377 refer readers to explore other P values and scores from TSUNAMI webpage and
378  Enrichr package.
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