

1 *C9orf72* arginine-rich dipeptide repeat proteins disrupt importin β -mediated nuclear import

2

3 Lindsey R. Hayes^{1,2}, Lauren Duan³, Kelly Bowen^{1,2}, Petr Kalab^{*4}, and Jeffrey D. Rothstein^{*1,2}

4

5 1-Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205

6 2-Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205

7 3-Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns
8 Hopkins University, Baltimore MD 21218

9 4-Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns
10 Hopkins University, Baltimore, MD 21218

11

12 *Co-senior authors

13

14 *Correspondence to: lhayes@jhmi.edu and petr@jhu.edu

15 **Abstract**

16 Disruption of nucleocytoplasmic transport (NCT), including mislocalization of the importin β
17 cargo, TDP-43, is a hallmark of amyotrophic lateral sclerosis (ALS), including ALS caused by a
18 hexanucleotide repeat expansion in *C9orf72*. However, the mechanism(s) remain unclear.
19 Importin β and its cargo adaptors have been shown to co-precipitate with the *C9orf72*-arginine-
20 containing dipeptide repeat proteins (R-DPRs), poly-glycine arginine (GR) and poly-proline
21 arginine (PR), and are protective in genetic modifier screens. Here, we show that R-DPRs
22 interact with importin β , disrupt its cargo loading, and inhibit nuclear import in permeabilized
23 mouse neurons and HeLa cells, in a manner that can be rescued by RNA. Although R-DPRs
24 induce widespread protein aggregation in this *in vitro* system, transport disruption is not due to
25 NCT protein sequestration, nor blockade of the phenylalanine-glycine (FG)-rich nuclear pore
26 complex. Our results support a model in which R-DPRs interfere with nuclear transport
27 receptors in the vicinity of the nuclear envelope.

28 **Introduction**

29 A GGGGCC hexanucleotide repeat expansion (HRE) in *C9orf72* is the most common
30 known cause of amyotrophic lateral sclerosis (ALS) and is also a major cause of frontotemporal
31 dementia (FTD) and the ALS /FTD overlap syndrome (DeJesus-Hernandez et al., 2011; Renton
32 et al., 2011; Majounie et al., 2012). The *C9orf72* HRE is thought to cause disease by a toxic
33 gain of function involving expanded repeat RNA and dipeptide repeat proteins (DPRs) produced
34 by repeat-associated (non-AUG) translation, although a modest reduction in C9ORF72 protein
35 is also seen (reviewed by Cook and Petrucelli, 2019). Predicted products of *C9orf72* HRE
36 translation in both the sense (poly-GP, poly-GA, poly-GR) and antisense (poly-GP, poly-PR,
37 poly-PA) directions have been identified in postmortem tissue (Zu et al., 2013; Ash et al., 2013;
38 Mackenzie et al., 2013), and overexpression of a subset of DPRs, including poly-GA and the
39 arginine-containing DPRs poly-GR and poly-PR (R-DPRs), is toxic in cell culture (May et al.,
40 2014; Wen et al., 2014) and animal models (Zhang et al., 2016; 2018; 2019).

41 Growing evidence suggests that disruption of nucleocytoplasmic transport (NCT), the
42 regulated trafficking of proteins and ribonucleoprotein complexes between the nucleus and
43 cytoplasm, is a major pathophysiologic mechanism in neurodegenerative diseases (reviewed
44 by Hutten and Dormann, 2019). Bidirectional NCT across the nuclear envelope occurs through
45 nuclear pore complexes (NPC), which are large (125 MDa) assemblies comprised of multiple
46 copies of ~30 different nucleoporins (Nups) (Reichelt et al., 1990). Whereas small cargoes
47 passively equilibrate across the NPC, larger cargoes are increasingly excluded by a matrix of
48 natively-unfolded phenylalanine-glycine (FG)-rich nucleoporins lining the central channel
49 (Timney et al., 2016; Frey et al., 2018; Mohr et al., 2009). Transport of restricted cargoes
50 requires nuclear transport receptors (importins, exportins, and transportins, aka NTRs or
51 karyopherins), which mediate the rapid transport of cargo through the FG-barrier (reviewed by
52 (Pemberton and Paschal, 2005). The small GTPase Ran dictates the directionality of transport
53 via a steep concentration gradient of RanGTP across the nuclear membrane, established by the

54 nuclear guanine nucleotide exchange factor RCC1 and the cytoplasmic GTPase-activating
55 protein RanGAP1. Nuclear RanGTP promotes importin-cargo unloading and exportin-cargo
56 complex assembly, while the cytoplasmic conversion of RanGTP to RanGDP disassembles
57 exportin-cargo complexes and enables importin-cargo binding. We and others have found
58 evidence of NCT disruption in postmortem tissue and animal models of *C9orf72*-ALS,
59 Alzheimer's disease, and Huntington's disease, including mislocalization and loss of Nups and
60 disruption of the Ran gradient (Zhang et al., 2015; Grima et al., 2017; Eftekharzadeh et al.,
61 2018).

62 Cytoplasmic mislocalization of the importin β cargo TDP-43, a predominantly nuclear
63 DNA/RNA-binding protein that undergoes nucleocytoplasmic shuttling (Pinarbasi et al., 2018), is
64 a major pathological hallmark of ALS, including *C9orf72*-ALS (Neumann et al., 2006; Mackenzie
65 et al., 2014). Although importin β directly imports a subset of cargoes, most (including TDP-43)
66 are recruited via a heterodimer with importin α , bound by its importin β -binding domain (IBB),
67 leading to formation of a trimeric import complex (cargo•importin α •importin β) (reviewed by
68 (Lott and Cingolani, 2011). Classical and non-classical nuclear localization signals (NLS) of
69 importin β cargoes and the IBB (a disordered region that is also a functional NLS), are enriched
70 in arginine and lysine residues that mediate high-affinity interactions within the import complex.
71 *C9orf72* genetic modifier screens have identified a beneficial role for NTRs, including importin β
72 and its importin α family of cargo adaptors (Zhang et al., 2015; Freibaum et al., 2015; Jovičić et
73 al., 2015; Boeynaems et al., 2016; Kramer et al., 2018). Moreover, multiple interactome screens
74 have shown that R-DPRs co-precipitate with importin β , indicating a possible direct interaction
75 (Lee et al., 2016; Lin et al., 2016; Yin et al., 2017). We hypothesized that R-DPRs may directly
76 interact with importin β by mimicking the arginine-and lysine-rich IBB, disrupting nuclear import
77 complex formation.

78 Here, we use FRET and biochemical assays to show that R-DPRs interact with importin
79 β , disrupt import complex formation, and confer dose- and length- dependent disruption of
80 importin β -mediated nuclear import in the permeabilized cell assay, which we adapted for
81 primary neurons. Addition of R-DPRs to the transport assay triggers rapid formation of insoluble
82 aggregates, which recruit numerous RNA-binding and ribosomal proteins, as well as NPC and
83 NCT proteins. However, by separating the soluble and insoluble phases of the reaction, we
84 show that transport disruption is not due to sequestration of NCT components, nor the ability of
85 R-DPRs to impede passage through the NPC, but due to perturbation of soluble transport
86 factors, an effect that is reversible by RNA. Taken together, these data support a model of R-
87 DPR-based NCT inhibition via disruption of importin α/β -heterodimer formation.

88

89 **Results**

90

91 **R-DPRs bind importin β and inhibit nuclear import**

92 Although importin β has been shown to co-precipitate with poly-GR and poly-PR, a direct
93 interaction between R-DPRs and importin β has not been demonstrated, and the consequences
94 for functional nuclear import are unknown. To test for an interaction between *C9orf72* DPRs and
95 importin β , we used a variant of the FRET sensor Rango (“Ran-regulated importin β cargo”)
96 (Kalab et al., 2006), which consists of the importin β -binding domain (IBB) of importin α 1
97 (KPNA2), flanked by CyPet (donor) and YPet (acceptor). When bound to importin β (KPNB1),
98 Rango FRET is low, but in the presence of RanGTP, importin β is displaced from the sensor
99 and FRET increases (Figure 1A-C). Since conserved arginine and lysine residues of the IBB
100 domain are required for binding to importin β (Görlich et al., 1996; Weis et al., 1996; Cingolani et
101 al., 1999), we hypothesized that the arginine-rich DPRs could bind to the corresponding sites on
102 importin β and compete with the IBB. Synthetic GP10, GA10, and PA10 peptides did not affect

103 Rango FRET even at high concentrations (Figure 1D). However, we observed a dose-
104 dependent increase in FRET with low-nanomolar PR10 and GR10, indicating these DPRs are
105 capable of binding to importin β and displacing the sensor. To further validate these
106 observations, we used GFP nanobody-coated beads to bind Rango and probe for co-
107 immunoprecipitation of importin β in the presence of increasing concentrations of GR10 and
108 PR10 (Figure 1E-F). Again, we observed the dose-dependent displacement of importin β from
109 the sensor at low nanomolar concentrations, confirming that Rango release was responsible for
110 the increases in FRET.

111 To test the functional consequence of R-DPR-importin β interactions for nuclear import,
112 we performed the permeabilized cell assay (Adam et al., 1990), in which the plasma membrane
113 of cultured cells is selectively permeabilized, leaving the nuclear membrane intact as verified by
114 nuclear exclusion of 70 kD dextran (Figure 1G). Fluorescent transport cargo is then added, with
115 energy regeneration mix and cell lysate to provide a source of importins and Ran for nuclear
116 import, which is measured by increasing nuclear fluorescence. Traditionally, this method uses
117 digitonin for permeabilization; however, when attempted with primary mouse cortical neurons,
118 we repeatedly found that even minimal concentrations of digitonin opened both the plasma and
119 nuclear membranes. Since the nuclear envelope is devoid of the digitonin target cholesterol
120 (Colbeau et al., 1971; Adam et al., 1990), we reasoned that its rupture in permeabilized
121 neuronal cells was caused by mechanical perturbation upon removal of cytoplasmic proteins.
122 Therefore, we developed a new protocol involving hypotonic cell opening in the presence of a
123 high concentration of BSA as a cushion, which facilitated the selective plasma membrane
124 opening of neurons (Figure 1-figure supplement 1).

125 Using this method, we performed live imaging of nuclear import of Rango, a direct
126 importin β cargo whose Ran-, importin β -, and energy-dependent nuclear translocation is
127 conferred by the IBB domain (Kalab et al., 2006). We verified that Rango import in
128 permeabilized neurons is indeed dependent on energy and cell lysate, and can be inhibited by

129 the importin β small molecule inhibitor, importazole (IPZ) in primary cortical neurons (Figure 1-
130 figure supplement 1) (Soderholm et al., 2011). Time-lapse imaging of Rango import for 30
131 minutes in permeabilized neurons showed no effect of GP10, GA10, or PA10 at up to 100 μ M,
132 whereas GR10 and PR10 showed dose-dependent inhibition of transport (Figure 1H-J). The
133 reaction was allowed to reach steady-state and fixed at 2 hours, at which point we observed
134 statistically-significant transport inhibition beginning at 25 μ M for both GR and PR (Figure 1K),
135 with estimated IC50s as shown in figure 1L. In contrast, only trace inhibition by GA10 and PA10
136 was seen even at 100 μ M, and there was no effect of 100 μ M GP10. To facilitate testing of a
137 broader range of cargoes and concentrations, we performed the assay in HeLa cells, with
138 similar results to those seen in neurons (Figure 1L and Figure 1-figure supplement 2). To verify
139 that the behavior of Rango in nuclear import signals indeed corresponds to endogenous
140 importin α/β complexes, we tested the effect of DPRs on import of GST-GFP-NLS (hereafter
141 referred to as GFP-NLS), a similarly-sized cargo that is loaded on importin β -bound importin α .
142 Consistent with the expected lower efficiency of tripartite nuclear import complex assembly, R-
143 DPRs perturbed GFP-NLS import even more strongly than that of Rango (Figure 1L and Figure
144 1-figure supplement 2).

145 The mechanisms of cargo recognition for importin β differ significantly even from its
146 structurally closest relative TNPO1 (KPNB2), whose cargos are marked by the PY-NLS motif
147 (Lee et al., 2006). However, since the sequence of the PY-NLS also contains basic residues, we
148 tested the effect of R-DPRs on the nuclear import of YFP-M9-CFP (hereafter referred to as M9),
149 a TNPO1 substrate based on the prototypic PY-NLS sequence of hnRNPA1 (Siomi and
150 Dreyfuss, 1995) (Figure 1L and Figure 1-figure supplement 2). All substrates showed selective
151 inhibition by GR and PR, which was more potent for PR and approximately 3-fold more potent
152 on average for 20mers than 10mers. These results confirm that R-DPRs inhibit both importin β -
153 and TNPO1-mediated nuclear import in this *in vitro* model system.

154

155 **R-DPRs interact with importin β in the bead halo assay**

156 To further validate the direct interaction between R-DPRs and importin β , we performed
157 the bead halo assay. This equilibrium-based binding assay is capable of identifying both low-
158 and high-affinity interactions between 'bait' proteins immobilized to beads, and fluorescent 'prey'
159 in the surrounding buffer, which forms a fluorescent halo on the bead surface (Patel et al., 2007;
160 Patel and Rexach, 2008). First, we examined the propensity for all five DPRs to interact with
161 biotinylated importin β , immobilized on the surface of neutravidin beads (Figure 2A). Controls
162 included bare beads and beads coated with biotinylated BSA. As a positive control, we
163 observed that the Rango sensor exclusively bound to full-length importin β -coated beads, and
164 not the control beads. Fluorescent dextran, the negative control, did not form a halo in any
165 conditions. AF488-labeled PR10 and GR10 (200 nM) both showed a modest degree of non-
166 specific binding to all controls which was equivalent to the binding seen to bare beads.
167 However, there was an approximately two-fold more intense halo around importin β -coated
168 beads versus controls (Figure 2B), as quantified by the ratio of the fluorescent rim of the beads
169 (the intensity around the surface of the beads at their equator) to the background fluorescence
170 (Figure 2-figure supplement 1). When we added 1 mg/ml neuronal lysate to test the stringency
171 of the interaction, all binding between GR10 and the beads, including importin β , was lost
172 (Figure 2C-D). For PR10, nonspecific binding decreased, but the intensity of the importin β halo
173 increased. These findings further support a direct interaction between R-DPRs and importin β ,
174 while indicating a higher relative selectivity of PR for importin β , compared to GR.

175

176 **R-DPRs accelerate passive nuclear influx**

177 To test if the disruption of nuclear import resulted from changes in the passive exclusion
178 limit of NPCs, we tested the effects of R-DPRs on the passive influx of small cargoes. Passive
179 diffusion of GFP and small fluorescent dextrans into nuclei of permeabilized HeLa cells was

180 imaged at 10-second intervals for 5 minutes, and nuclear fluorescence quantified over time. All
181 experiments were done in the context of energy and cell lysate, identical to the active transport
182 conditions, so as not to miss putative effects that may depend on simultaneous active transport
183 (i.e., recruitment of importins and DPRs to the NPC). Under these conditions, we observed the
184 expected differences in the rates of passive influx of 10-, 40-, and 70-kD dextrans, and verified
185 that addition of energy and lysate did not affect the baseline rate of passive influx of GFP (27
186 kD, no NLS) (Figure 3-supplemental figure 1). When we preincubated permeabilized nuclei with
187 high concentrations of R-DPR 10mers or 20mers for 30-60 minutes, we observed no slowing of
188 passive nuclear influx (Figure 3). Instead, R-DPRs accelerated the nuclear influx of both GFP
189 and 40-kD dextran.

190 The rate of passive transport is thought to be governed by the FG-Nup barrier in
191 conjunction with importin β and RanGTP (Ma et al., 2012; Kapinos et al., 2017). PR20 was
192 previously shown by super-resolution microscopy to localize to the central channel of *Xenopus*
193 oocyte NPCs, where it was hypothesized to inhibit both passive and active nuclear transport via
194 stabilization of FG-domains (Shi et al., 2017). To verify DPR-FG binding, we used the bead halo
195 assay to probe for interactions between all five *C9orf72* DPRs and yeast FG and GLFG
196 domains (Figure 3-supplemental figure 2). As in the importin β halo assay, we observed
197 moderate non-selective binding by the R-DPRs to all beads, including those coated with an F-
198 >A mutant construct. However, quantification of the halo intensities showed additional selective
199 binding of both GR10 and PR10 to FG-domains of Nup100 (yeast homolog of Nup98), but not
200 Nsp1 (yeast homolog of Nup62). For PR10, FG-binding could be augmented (to both Nup100
201 and Nsp1 fragments) by adding unlabeled importin β to the assay, suggesting that recruitment
202 of PR to FG domains at the NPC could be mediated in part by an indirect interaction through
203 importin β . Overall, these results support direct and indirect binding of R-DPRs to FG domains.
204 Importantly, based on our passive transport studies, these interactions do not confer an

205 impedance to transport as previously suggested, but rather a modest increase in NPC
206 permeability.

207

208 **R-DPR-induced aggregates recruit NCT proteins**

209 Upon addition of R-DPRs to cell lysate for the transport assays, we observed the rapid
210 formation of insoluble aggregates (Figure 4A). To identify the components of these aggregates
211 and determine their potential relevance for the nuclear import defect, we spun them down and
212 analyzed their protein content via mass spectrometry (Figure 4A-B; data uploaded to
213 <http://proteomecentral.proteomexchange.org>). 858 proteins were identified in each of two GR
214 replicates and 758 in two PR replicates, with 647 (67%) in common. Consistent with previous
215 reports, these included numerous nucleic acid-binding proteins and ribosomal subunits. Gene
216 ontology (GO) analysis confirmed enrichment of nucleolar proteins, ribonucleoproteins,
217 spliceosomal complex subunits, stress granule constituents, and others (Figure 4-figure
218 supplement 1). Among these, low complexity domain (LCD)-containing proteins implicated in
219 ALS/FTD were identified including TDP-43, FUS, Matrin-3, and hnRNPs. Multiple NCT proteins
220 including karyopherins, Nups, Ran cycle proteins, and THO complex proteins, which participate
221 in mRNA biogenesis and nuclear export (Rondón et al., 2010), were also found among the
222 identified targets (Figure 4A-B).

223 Next, we validated a subset of these identified proteins by Western blot, focusing on
224 NCT proteins, Nups, and LCD-containing proteins (Figure 4C-D and Figure 4-figure supplement
225 2). We compared supernatant versus pellet fractions for all five DPRs compared to control
226 lysates in which no DPRs were added, to assess the degree to which proteins were being
227 sequestered and depleted from the soluble fraction. We saw enrichment in the pellet for importin
228 β , RanGAP1, TNPO1, Ran, and importin α , with only minor decreases in the supernatant. RCC1
229 was not identified by mass spectrometry, and as predicted did not sediment with the DPRs,
230 serving as a negative control. We also confirmed deposition of nucleoporins 54, 62, 98, and 133

231 in the pellet (Figure 4C-D), along with the low complexity domain (LCD)-containing RNA binding
232 proteins TDP-43, FUS, Matrin-3, hnRNP A1, and hnRNP A2/B1, ribosomal protein RPS6, and
233 the ATP-dependent RNA helicase DDX3X (Figure 4-figure supplement 2). As opposed to the
234 NCT proteins, many of these LCD-containing proteins were markedly or completely depleted
235 from the supernatant.

236 These data confirm that R-DPR aggregates can recruit NCT constituents in addition to a
237 host of nucleic acid-binding proteins. However, NCT proteins were not substantially depleted
238 from the supernatant even in the presence of 100 μ M GR10 and PR10, suggesting that
239 sequestration of critical NCT factors in these insoluble protein assemblies is unlikely to fully
240 explain the failure of nuclear import in the transport assays.

241

242 **R-DPR nuclear import blockade does not require aggregates and is rescued by RNA**

243 Cytoplasmic aggregate formation, a well-known pathological hallmark of
244 neurodegenerative disease, has been proposed as a general mechanism for impairment of NCT
245 (Woerner et al., 2016), although there is no evidence that such accumulation alters or
246 disorganizes the NPC. It is unclear whether it is the disordered proteins themselves, or the
247 process of aggregate formation, that may disrupt NCT. To address this question in the context
248 of R-DPR aggregates, we tested several approaches for preventing aggregate formation in our
249 model system. Addition of the aliphatic alcohol, 1,6-hexanediol, previously shown to disrupt GR-
250 and PR-induced protein assemblies (Lee et al., 2016), was incompatible with transport and
251 caused dose-dependent inhibition at baseline (Figure 5-figure supplement 1). This is likely due
252 to disruption of FG-domains within the central channel, as previously reported (Ribbeck and
253 Görlich, 2002). NTRs themselves, as hydrophobic interactors of aggregation-prone RNA binding
254 proteins, have been shown to promote solubility of their cargoes and may have evolved in part
255 as cytoplasmic chaperones (Jäkel et al., 2002; Guo et al., 2018; Hofweber et al., 2018;
256 Yoshizawa et al., 2018; Qamar et al., 2018). However, even low concentrations of exogenous,

257 full-length importin β inhibited nuclear import when added to the transport assay, likely due to
258 sequestration of RanGDP and available RanGTP. Moreover, neither 1,6-hexanediol nor
259 exogenous importin β could reverse mild nuclear import inhibition due to 25 μ M PR10 (Figure 5-
260 figure supplement 1).

261 Next, we tested the effect of increasing the concentration of RNA, based on the growing
262 evidence that RNA is an important factor in mediating solubility of RNA-binding proteins
263 (Maharana et al., 2018; Hondele et al., 2019; Mann et al., 2019). When total HEK cell RNA was
264 added to the transport reaction, we saw a dose-dependent rescue of the import defect that was
265 RNAse-sensitive (Figure 5A). However, this did not appear to be attributable to significant
266 reduction of the quantity of insoluble material in the reaction (Figure 5-figure supplement 2).
267 Instead, electrophoretic mobility shift assays showed that in a purified system, the RNA binds
268 directly to the DPRs (Figure 5-figure supplement 2).

269 To further test if DPR-induced aggregate formation is relevant to the mechanism of
270 nuclear import blockade, we performed a series of assays in which the supernatant was
271 separated from the insoluble pellet prior to initiating transport (diagrammed in figure 5B). We
272 reasoned that if aggregates sequester key transport factors, the remaining supernatant would
273 be insufficient to drive nuclear import. However, if the aggregates contain inhibitor(s) of nuclear
274 import or are themselves inhibitory, depleting them could rescue transport impairment. The
275 results were markedly different for GR versus PR (Figure 5C). For GR10, removing the
276 insoluble pellet restored nuclear import to normal, confirming that the inhibitory factor was
277 present in (or was) the aggregates. In contrast, nuclear import remained perturbed in the
278 supernatants of the PR10 aggregates, although it was restored by the addition of RNA.

279 Next, we monitored the location of the R-DPRs with respect to the aggregates by adding
280 AF488-labeled DPRs to the transport reactions. By confocal microscopy, we observed that the
281 transport disruption correlated with the presence of DPRs in the vicinity of the nuclear envelope
282 (Figure 5D). AF488-GR10 fully sedimented into the pellet, leaving no visible GR10 in the

283 supernatant, where transport proceeded normally. In contrast, a subset of AF488-PR10
284 remained in the supernatant and was present at the nuclear envelope, paralleling the persistent
285 inhibition of nuclear import by the PR10 supernatants. RNA dispersed AF488-R-DPRs from the
286 permeabilized cell nuclei in all conditions, restoring nuclear import. These results suggest that
287 the import inhibition depends on GR or PR acting directly, rather than through putative
288 intermediary factor(s), to inhibit nuclear import. The strikingly divergent segregation of GR10 vs.
289 PR10 between the soluble and insoluble phase indicated that, while both share importin β as
290 their target, the mechanisms and locations of their intracellular actions could differ significantly.

291 The critical steps of importin β -mediated nuclear import take place at NPCs via
292 interactions with FG-Nups. To test whether interaction between R-DPRs and the NPC is
293 sufficient to confer the block to import, we ran two parallel sets of import reactions (diagrammed
294 in figure 5E). In the “lysate preincubation” paradigm, as for previous active import assays, R-
295 DPRs were added to lysates used to supply transport factors, preincubated for 1 hour, and then
296 added to permeabilized cells along with Rango and energy to initiate the transport reaction. In
297 the “nuclei preincubation” set, we first exposed the permeabilized cell nuclei to R-DPRs (in the
298 presence of lysate and energy, but no fluorescent cargo). After 1 hour, the DPR-lysate mix was
299 removed from the nuclei, and fresh transport lysate, energy, and cargo added to initiate
300 transport (without R-DPRs). We hypothesized that, if the DPRs inhibited Rango import by
301 associating with and perturbing the NPC, we should see reduced import rate in the “nuclei
302 preincubation” group. However, transport proceeded normally (Figure 5F). These results
303 support a model in which the R-DPRs inhibit nuclear import by directly interfering with factor(s)
304 present in the soluble phase of the NCT machinery (Figure 5G), which is consistent with the
305 biochemical evidence for importin β as one of their direct targets.

306

307

308

309 **Discussion**

310 Importin β , together with its importin α family of cargo adaptors, is fundamentally
311 required for the nuclear import of NLS-containing proteins, including TDP-43, whose
312 cytoplasmic mislocalization is observed in $\geq 97\%$ of ALS cases, including *C9orf72*-ALS
313 (Neumann et al., 2006; Mackenzie et al., 2014). Here, we demonstrate that *C9orf72* R-DPRs
314 interact with importin β , which disrupts import complex formation and inhibits nuclear import in
315 permeabilized cell assays. R-DPRs induce aggregation in the transport assay, including NCT
316 proteins, although the association with aggregates does not substantially reduce the availability
317 of critical components required for nuclear import. Rather, the transport blockade appears to
318 depend on the ability of R-DPRs to interact with soluble nuclear transport receptors in the
319 vicinity of the NPC, an effect which can be rescued by RNA, and is consistent with disruption of
320 nuclear import complexes.

321 Members of the β karyopherin family have been consistently identified as genetic
322 modifiers of *C9orf72* toxicity in fly, yeast, and human cell screens (Zhang et al., 2015; Freibaum
323 et al., 2015; Jovićić et al., 2015; Boeynaems et al., 2016; Kramer et al., 2018), and shown to
324 coprecipitate with R-DPRs (Lee et al., 2016; Lin et al., 2016; Yin et al., 2017). Using purified
325 proteins, we demonstrate by FRET, bead halo, and co-immunoprecipitation, that R-DPRs bind
326 importin β with low-nanomolar affinities. Micromolar concentrations were required to observe
327 functional import blockade in the permeabilized cell assay, however 20mers were on average
328 3.3-fold more potent than 10mers across all cargoes, suggesting that longer DPRs, as are likely
329 observed in patients, may be significantly more potent. The true length of R-DPRs in patients is
330 unknown, although high molecular weight smears have been observed by SDS-PAGE (Zu et al.,
331 2013). GGGGCC repeat lengths in the 1000s have been reported in postmortem brain (van
332 Blitterswijk et al., 2013; Dols-Icardo et al., 2014; Nordin et al., 2015), although the processivity
333 of ribosomes along the repeat RNA, and what terminates non-AUG translation, is unclear. The
334 intracellular concentration of R-DPRs is also unknown. By ELISA, the poly-GP concentration in

335 postmortem motor cortex has been estimated at a median of 322 ng/mg protein (Gendron et al.,
336 2015), but comparable measurements for R-DPRs have been technically prohibitive in our
337 hands to date.

338 Importin β is composed of 19 tandem HEAT repeats, coiled into a superhelix with
339 exposed N-terminal RanGTP-binding domain and C-terminal importin α -binding domain
340 (Cingolani et al., 1999). We predicted that R-DPRs might mimic the arginine- and lysine-rich IBB
341 domain of importin α , forming an electrostatic interaction with acidic residues in the C-terminal
342 domain of importin β . Indeed, R-DPRs displaced importin β from the importin α -IBB (Rango)
343 FRET sensor at low nanomolar concentrations, supporting this hypothesis. At present, we
344 cannot exclude binding to importin β at other sites, and given the similarity in HEAT repeat
345 structure throughout the protein, multiple DPR-importin β interaction sites would not be
346 surprising. Based on the propensity of R-DPRs to bind and induce aggregation of intrinsically-
347 disordered proteins, the IBB domains of importins α and snurportin 1, both highly disordered
348 unless bound to importin β (<http://mobidb.bio.unipd.it/>; Lott and Cingolani, 2011; Piovesan et al.,
349 2018), could also be a target. It is conceivable that R-DPRs could perturb nuclear import by
350 targeting both the IBB- binding site on importin β , and the IBBs on the much less abundant
351 importins α (Görlich et al., 2003). Additional studies are needed to verify the precise domain(s)
352 on importin β to which the R-DPRs bind, and to investigate direct importin α -targeting.

353 PR20 was previously shown to localize to the central channel of the NPC in Xenopus
354 oocytes and inhibit nuclear import of NLS-BSA in permeabilized HeLa cells (Shi et al., 2017). In
355 this study, the import blockade was attributed to binding and stabilization of FG domains in a
356 polymerized state, creating a barrier to transport. We also observed modest R-DPR binding to
357 FG-domains by the bead halo assay, as may be predicted by the ability of arginine-rich domains
358 to undergo cation-pi interactions with aromatic phenylalanine rings. However, when we tested
359 the functional consequences of R-DPRs on passive nuclear influx, a rate that depends both on

360 the FG barrier and resident importin-cargo complexes (Kapinos et al., 2017), we observed
361 marked acceleration. The precise cause is unclear, although the width of the passive channel
362 has been shown to be modulated by the local concentration of importin β and RanGTP,
363 increasing when importin β concentrations are high (Ma et al., 2012). Alternatively, leakiness of
364 the passive barrier was reported in permeabilized cells where importin β /cargo complexes were
365 depleted from the NPC (Kapinos et al., 2017). Additional studies are needed to test these
366 possibilities. Nevertheless, incubation of permeabilized nuclei with high concentrations of R-
367 DPRs blocked neither passive nor active transport. Taken together, these data do not support
368 the hypothesis that alterations in the FG barrier account for R-DPR-mediated nuclear transport
369 blockade.

370 Recent interactome screens have shown that R-DPRs engage in a broad range of
371 protein-protein interactions (Lee et al., 2016; Lin et al., 2016; Yin et al., 2017) and can trigger
372 phase separation of a large set of proteins involved in RNA metabolism and stress granule
373 formation (Boeynaems et al., 2017). Even with 10mers, we similarly observed rapid alterations
374 in the solubility of proteins upon adding R-DPRs to our transport reactions, that sedimented up
375 to 10% of the cellular proteome and was markedly enriched for disordered nucleic acid-binding
376 proteins. Aromatic rings common to many LCD-containing proteins, including FG-Nups, mediate
377 their phase separation properties through cation-pi interactions with arginine residues (reviewed
378 by Banani et al., 2017), and are likely perturbed by the rapid influx of R-DPRs. Indeed, C9orf72
379 R-DPRs have been reported to disrupt phase separation properties of membrane-less
380 organelles (Lee et al., 2016). While our MS analysis did not permit quantitative comparison
381 between PR and GR, by Western blot we did observe varying selectivity for target proteins. Of
382 note, a recent comparison between modifiers of R-DPR toxicity in yeast noted unexpectedly low
383 overlap between GR- and PR-modifiers (Chai and Gitler, 2018), supporting the idea that they
384 may behave differently in a physiologic context.

385 Based on growing evidence that RNA is integral to the solubility of disordered protein
386 assemblies (Maharana et al., 2018; Langdon et al., 2018; Hondele et al., 2019), and polyU RNA
387 can specifically coordinate the liquid liquid phase separation of PR (Boeynaems et al., 2017),
388 we tested the effect of adding total cellular RNA to the transport reaction, and observed dose-
389 dependent rescue. Total protein aggregates were not strongly reduced by the RNA, however
390 significantly less AF488-labeled R-DPRs were observed in the vicinity of the nuclear envelope.
391 Our electrophoretic mobility shift assay shows that a broad range of cellular RNAs can bind to
392 R-DPRs directly, and previous evidence in a purified system showed that synthetic RNAs can
393 facilitate suspension of R-DPRs in a droplet-like state (Boeynaems et al., 2017). The direct
394 sequestration of R-DPRs by RNA could contribute to the reduced deposition of AF488 DPRs
395 along the nuclear envelope, and the beneficial effects on nuclear import. At the same time, RNA
396 could act indirectly to sequester the R-DPRs away from importins, by promoting the solubility of
397 abundant disordered and RNA-binding proteins, thus decreasing aggregate size and increasing
398 the availability of other R-DPR binding sites. While future studies will be needed to fully
399 elucidate the mechanisms of direct and indirect effects of RNA on R-DPRs, our data suggest
400 that, at least in the permeabilized cell model, RNA can mitigate aberrant protein-protein
401 interactions in a functionally meaningful way.

402 In summary, we propose a model in which R-DPRs bind and interfere with nuclear
403 import complex formation in the soluble phase of the nuclear transport reaction. Based on these
404 findings, we speculate that importin β disruption may contribute to pathological protein
405 mislocalization in *C9orf72*-mediated ALS/FTD, including TDP-43, for which links to downstream
406 neurodegeneration are beginning to be unraveled (Ling et al., 2015; Melamed et al., 2019; Klim
407 et al., 2019). Further investigation is warranted regarding disruption of importin β and other
408 karyopherins in *C9orf72* disease models, and the potential for use of RNA-based strategies to
409 mitigate aberrant R-DPR protein-protein interactions.

410

411 **Materials and methods**

412

413 **DPR synthesis**

414 10- and 20-mer dipeptide repeat proteins with C-terminal lysine (for solubility) and cysteine (for
415 fluorescent tagging, i.e. GPGPGPGPGPGPGPGPGPKC) were synthesized by Genscript
416 (Nanjing, China) and 21st Century Biochemicals (Marlborough, MA) and verified by mass
417 spectrometry to be free of trifluoroacetic acid adducts. Lyophilized powder was diluted in 0.1x
418 XB' buffer (5mM sucrose, 10mM KCl, 1 mM HEPES, pH 7.7) and frozen in single use 10 mM
419 aliquots at -80°C after snap freezing in liquid nitrogen.

420

421 **Cloning of recombinant constructs**

422 Restriction cloning was used to insert the ORF from pQE-ZZ-RanQ69L (Nachury and Weis,
423 1999) between the BamH1 and HindIII sites in pRSET A, resulting in pRSET ZZ-RanQ69L. The
424 pRSET zzRCC1 was created by inserting the PCR-amplified wild-type (WT) human RCC1 C-
425 terminally of the ZZ-tag in pRSET A. Site-directed mutagenesis and PCR cloning were used to
426 modify Rango-2 (Kalab and Soderholm, 2010) by removing the KPN1 sites from YPet and
427 CyPet (Nguyen and Daugherty, 2005) and replacing the Snurportin-1 IBB with the IBB amplified
428 from human importin α 1 (KPNA2). While doing so, the IBB-importin α 1 domain was inserted
429 either with (pK44) or without (pK188) flexible GGC GG linkers added between the 5' and 3' ends
430 of IBB and the fluorophores. Restriction cloning was used to combine the C-terminal biotin
431 acceptor peptide tag Avitag (GLNDIFEAQKIEWHE) from pAC-6 (Avidity, Aurora, CO) with WT
432 human importin β (Chi et al., 1997) in pRSET A vector, resulting in pRSET importin β -Avitag
433 (pKW1982; pK1099). Restriction cloning in the modified pRSET A with C-terminal Avitag was
434 used to create pRSET-EGFP-Avitag (pK803). The pGEX-2TK1 plasmid for the expression of the
435 *S. cerevisiae* Nsp1(497-608) FxFG domain was obtained from M. Rexach (Yamada et al.,
436 2010).

437 **Table 1. Recombinant DNA constructs**

DNA construct name	Reference or source
pRSET zzRanQ69L (pKW1234; pK1097)	this paper
pRSET zzRCC1 (pKW1907; pK1098)	this paper
pRSET Rango-2/α1+linkers (pK44)	this paper
pRSET Rango-2/α1 (pK188)	this paper
pRSET GFP-Avitag (pK803)	this paper
pRSET Importin β- Avitag (pKW1982; pK1099)	this paper
pAC-biotin ligase	Avidity
pRSET YFP-M9-CFP (pKW1006)	Soderholm et al., 2011
pET30a 6His-S-Importin β ₍₁₋₈₇₆₎ (pKW485)	Chi et al., 1997
pGEX GST-GFP-NLS (pMD49)	Levy and Heald, 2010
pGEX-2TK-Nup100 ₍₁₋₆₁₀₎	Onischenko et al., 2017
pGEX-2TK-Nup100 ₍₁₋₃₀₇₎	Onischenko et al., 2017
pGEX-2TK-Nup116 ₍₃₄₈₋₄₅₈₎	Onischenko et al., 2017
pGEX-2TK-Nup116 ₍₃₄₈₋₄₅₈₎ F>A	Onischenko et al., 2017
pGEX-2TK Nsp1 ₍₄₉₇₋₆₀₉₎ (pKW1609; pK1100)	Yamada et al., 2010

438

439 **Recombinant protein expression**

440 Unless otherwise specified, recombinant proteins were expressed in *E. coli* BL21(DE3) cells
441 (ThermoFisher, Waltham, MA) that were cultured in 1L batches of LB media contained in 2.8L
442 baffle-free Fehrnbach flasks. Protein expression was induced with 0.3mM IPTG. Centrifugation
443 was used to collect the cells and wash them in the ice-cold protein-specific buffer, as indicated
444 below. Unless otherwise specified, all buffers were pH 7.4. The washed cell pellets were flash-
445 frozen in liquid nitrogen and stored at -80°C, and lysed in ice-cold conditions and in the

446 presence of protease inhibitors, using French pressure cell or microfluidizers. After dialysis in
447 the protein-specific buffer, protein concentration was measured with the Bradford assay
448 (BioRad, Hercules, CA), and single-use aliquots of all proteins were stored at -80°C after flash-
449 freezing in liquid nitrogen.

450

451 Recombinant proteins with GFP-derived tags

452 For expression of proteins containing GFP variants, including Rango (pK44 and pK188),
453 YFP-M9-CFP, GST-GFP-NLS, and GFP-Avitag, the cells were first outgrown at 37°C until
454 reaching OD_{600nm}=0.1-0.3. The cultures were cooled to room temperature (22-25°C), and protein
455 expression was induced at 22-25°C for 12-14 h.

456 Cells expressing 6His-tagged fluorescent proteins (Rango pK44 and pK188, YFP-M9-
457 CFP, and GFP-Avitag) were washed and lysed in 10mM imidazole/PBS and purified with either
458 Ni-NTA agarose (Qiagen, Venlo, Netherlands) or HIS-Select HF Nickel Affinity Gel (Millipore
459 Sigma, St. Louis, MO). The lysates were clarified (40 min, 16000g, 4°C) and incubated with Ni
460 resin (30-60 min, 4°C). The resin was placed into small chromatography columns, washed with
461 ice-cold 10mM imidazole/PBS, and the proteins eluted with increasing concentration of
462 imidazole/PBS (25-300mM). SDS-PAGE was used to select and pool batches with the highest
463 purity, prior to dialysis in PBS or XB buffer (50mM sucrose, 100mM KCl, 10mM HEPES, 0.1 mM
464 CaCl₂, 1mM MgCl₂, pH 7.7).

465 Cells expressing GST-GFP-NLS were washed and lysed with TBSE (50mM Tris, 150mM
466 NaCl, 4mM EDTA, pH8.0), the lysate clarified, and the protein affinity-purified on glutathione
467 sepharose (Roche, Basel, Switzerland). After washes with TBSE, the proteins were eluted with
468 TBSE containing increasing concentrations of glutathione (2.5-10 mM). Proteins eluted with 2.5
469 and 5mM glutathione were pooled and dialyzed in PBS before storage.

470

471 FRET assay mix with importin β and Rango

472 Full length human importin β was expressed from pET30a-WT Importin β (pKW485; (Chi
473 et al., 1997)) at the Protein Expression Laboratory (PEL, National Cancer Institute, Frederick,
474 Maryland). The transformed BL21DE3 cells were grown at 37°C in an 80L Bioflow 500
475 bioreactor (New Brunswick Scientific, Edison, NJ) until $OD_{600\text{nm}} = 0.6$, cooled to 22°C and the
476 expression was induced with 0.3mM IPTG. After 12h induction, cells were harvested with the
477 CARR continuous flow centrifuge and lysed in PBS with 10mM imidazole and 5mM TCEP with a
478 110EH Microfluidizer (Microfluidics, Westwood, MA) using 2 passes at 10,000 PSI under chilled
479 conditions. The lysates were flash-frozen in liquid nitrogen and stored at -80°C. After thawing,
480 the lysates were clarified and incubated with HIS-Select HF Nickel Affinity beads. The beads
481 were washed with 10mM imidazole/PBS and the protein eluted with 200mM imidazole/PBS
482 before dialysis in XB. The purified importin β was combined with a freshly thawed aliquot of
483 Rango2- $\alpha 1$ (pK188) at 2.5:1 molar ratio ratio (12.5 μM importin β , 5 μM Rango) and
484 supplemented with 3% glycerol. Measurement of Rango fluorescence emission in a
485 spectrometer (see below) was used to verify the FRET-off state of the Rango/importin β mixture
486 before freezing.

487

488 FRET assay mix with zz-RCC1 and zz-RanQ69L

489 The expression of zz-RCC1 was induced at $OD_{600\text{nm}} = 0.4$, followed by incubation at 22°C
490 for 4 hours. The cells were washed with PBS, 10mM Imidazole, 1mM MgCl₂, 5mM TCEP,
491 0.2mM AEBSF, pH 8.0, and lysed by ice-cold microfluidizer. The clarified lysates were used to
492 isolate the zz-RCC1 proteins on HIS-Select HF Nickel Affinity beads, as described above.
493 Proteins eluted with 0.2M imidazole/PBS were dialyzed in PBS before storage. The zz-
494 RanQ69L (pKW1234; pK1097) was expressed from BL21DE3 cells at PEL in an 80L bioreactor,
495 using conditions described for importin β above, except that expression was induced with
496 0.3mM IPTG at 37°C for 3 hours, and lysis was performed in PBS with 10mM Imidazole, 5mM
497 TCEP, 2mM MgCl₂, and 1 mM GTP. The lysates were clarified and bound to HIS-Select HF

498 Nickel Affinity beads (Millipore Sigma). The Ni resin was washed with ice-cold 10mM
499 imidazole/PBS and the protein eluted with 0.2M imidazole/PBS, followed by dialysis in XB. After
500 measuring the concentration, 60 μ M zzRCC1 and 2.4 μ M zzRCC1 were combined in XB
501 containing 2mM GTP. Before aliquoting and storage, the measurement of Rango fluorescence
502 emission in a spectrometer (see below) was used to verify that the zzRanQ69L-GTP-containing
503 mix robustly induced Rango dissociation from importin β .

504

505 Importin β biotinylation

506 To prepare biotinylated WT importin β -Avitag (pKW1982, pK1099), BL21DE3 cells (New
507 England Biolabs, Ipswich, MA) were co-transfected with the respective plasmids together with
508 pAC-biotin ligase (Avidity), followed by plating and growth in LB media containing ampicillin and
509 chloramphenicol. After the 37°C cultures reached OD_{600nm} + 0.4-0.6, the cultures were cooled to
510 room temperature, supplemented with 100 μ M D-biotin, and the expression was induced with
511 0.3mM IPTG at room temperature for 8-11 hours (pKW762). Proteins were purified on Ni-NTA
512 resin as described for the non-biotinylated importin β fragments.

513

514 FG- and GLFG-nucleoporin fragments

515 The expression of GST- Nsp1₍₄₉₇₋₆₀₉₎ in BL21(DE3) cells grown in LB media was induced
516 at OD_{600nm}= 0.4-0.6, followed by incubation at 37°C for 3-5 hours. The GST-tagged *S. cerevisiae*
517 pGEX-Nup100₍₁₋₃₀₇₎, Nup100₍₁₋₆₁₀₎, Nup116₍₃₄₈₋₄₅₈₎ and Nup116₍₃₄₈₋₄₅₈₎ F>A were expressed in T7
518 Shuffle cells (NEB) that were grown in Dynamite media (Taylor et al., 2017) until OD_{600nm}= 0.9
519 before induction with IPTG at 37°C for 3 hours. All the GST-tagged Nup fragments were purified
520 using glutathione-sepharose affinity chromatography, as described for the GST-GFP-NLS
521 above, and dialyzed into PBS before storage.

522

523

524 **Importin β labeling with Alexa-647 and BSA biotinylation**
525 Purified WT importin β (pKW485) diluted to 10 μ M in XB was combined with 10-molar excess of
526 Alexa Fluor 647 NHS ester (ThermoFisher), using freshly-prepared 10mM dye in anhydrous
527 DMSO. After incubation on ice for 2 hours, the sample was dialyzed in PBS and concentrated
528 on 30kD MWCO filter (Millipore Sigma) before storage. A similar protocol was used to label BSA
529 with 10-molar excess Sulfo-NHS-LC-biotin (ThermoFisher), followed by dialysis in PBS.

530

531 **DPR labeling with Alexa-488-maleimide**

532 Just before labeling, Alexa Fluor 488 C5-maleimide (ThermoFisher) was diluted to 20 mM in
533 anhydrous DMSO and further diluted to 1.6 mM in XB' buffer. Freshly thawed 10mM aliquots of
534 DPRs were diluted to 2mM with 0.1x XB' and combined with an equal volume of 1.6 mM Alexa
535 Fluor 488 C5-maleimide and kept overnight at 4°C. The unreacted maleimide was quenched by
536 1:50 (v/v) 100mM DTT before aliquoting and storage at -80°C. To verify labeling, DPRs were
537 separated by SDS-PAGE followed by fluorescence detection.

538

539 **Rango FRET detection**

540 FRET assays for DPR-induced dissociation of the importin β -Rango complex were performed
541 using a mix of 5 μ M Rango-2/ α 1 (pK188) and 12.5 μ M importin β (pKW485) prepared as
542 described above. After thawing on ice, the mix was diluted to 20 nM Rango and 50 nM importin
543 β in TBS, pH 7.4, 0.005% Tween-20 (TTBS), supplemented with increasing DPR
544 concentrations, and mixed by brief vortexing at low speed. The positive control reactions for
545 RanGTP-induced Rango-importin β dissociation were prepared by adding increasing
546 concentrations of ZZ-RanQ69L-GTP to the samples, using a freshly thawed aliquot of 60 μ M
547 ZZ-RanQ69L, 2.4 μ M ZZ-RCC1, 2mM GTP in XB. The assay buffer alone was used as a blank.
548 A Fluoromax-2 spectrometer (Jobin Yvon Horiba, Piscataway, NJ) was used to detect the
549 Rango emission spectra (460-550nm, in 1nm increments) while exciting the samples at 435nm.

550 The excitation and emission bandpass were set to 5nm and integration time to 0.05s. Peak
551 emissions were recorded at 480nm (donor) and 535nm (acceptor) in all samples, and
552 background emission subtracted at the same wavelengths in the blank. The FRET signal was
553 calculated as the ratio of background-subtracted acceptor/donor emissions. The signal detected
554 in the untreated sample (20 nM Rango and 50 nM importin β -only, the lowest FRET), was then
555 subtracted from the resulting values. Prism v6 (Graphpad, San Diego, CA) was used to
556 calculate the non-linear fit with one site-specific binding model while using the D'Agostino and
557 Pearson K2 test to verify the normality of residuals and the Runs test to assure non-significant
558 deviation from the model.

559

560 **Biochemical pulldown assay for DPR-induced Rango-importin β dissociation**

561 An aliquot of 5 μ M Rango-2/ α 1 + 12.5 μ M importin β mix was diluted to 20 nM Rango and 50
562 nM importin β in TTBS, supplemented with increasing concentrations of GR10 or PR10, mixed
563 by vortexing, and incubated for 30 min at room temperature. GFP-Trap magnetic beads
564 (Chromotek, Planegg-Martinsried, Germany) were washed and resuspended in TTBS. At the
565 end of incubation, 8 μ l bead suspension was added to each sample and mixed by rotation for 15
566 min. The supernatant was removed and beads washed 3 times with TTBS before boiling in 20 μ l
567 SDS-PAGE sample buffer with 2% β -mercaptoethanol. Samples were separated by SDS-PAGE
568 and anti-GFP Western blot performed as detailed below to detect Rango. After detecting the
569 ECL signal, membranes were stained with Coomassie Brilliant R250 to detect importin β .
570 Background-subtracted signals were determined by Image Lab 6.01 (BioRad) and the Rango
571 ECL signal normalized to the importin β signal within each lane.

572

573 **Electrophoretic mobility gel shift assay for RNA-DPR interaction**

574 Aliquots of total HEK RNA (3 μ g) were mixed with either 4 μ l 50 μ M DPR-AF488 in 0.1x XB' or
575 with 1 μ l 0.2% SYBR Gold nucleic acid stain (ThermoFisher) diluted in water. After 5 min

576 incubation at room temperature, the samples were supplemented with Fast Digest loading
577 buffer (ThermoFisher; no nucleic acid stain) and separated by electrophoresis on native 1%
578 agarose gel in TBE, alongside with lanes containing HEK RNA (3 µg) or RNA ladder mixed with
579 SYBR Gold. Immediately after electrophoresis, the gels were photographed with Bio-Rad
580 ChemiDoc XRS+ using UV transillumination to simultaneously visualize the AF488-labeled R-
581 DPRs and SYBR Gold-labeled RNA signals (where added).

582

583 **Bead halo assay**

584 The bead halo assay was carried out as described with minor modifications (Patel and Rexach,
585 2008), using 6-8 µM polystyrene beads coated with neutravidin (for biotinylated proteins) or
586 glutathione (for GST-fusion proteins) (Spherotech, Lake Forest, IL). Beads were coated
587 overnight at 4°C at saturating concentrations per manufacturers' instructions and rinsed 2x in
588 binding buffer (20 mM HEPES [pH 7.4], 150 mM KOAc, 2 mM Mg(OAc)₂, 1 mM DTT, 0.1%
589 Tween-20). Immediately prior to the assay, fluorescent bait proteins and beads were combined
590 with 4x EHBN (40 mM EDTA, 2% 1,6-hexanediol, 40 mg/ml BSA, 500 mM NaCl) to a total of 40
591 µL per well, in optical glass-bottom 96 well plates (Cellvis, Mountain View, CA). Reactions were
592 allowed to equilibrate at room temperature for a minimum of 30 minutes prior to imaging at 100x
593 on an LSM800 confocal microscope (Zeiss, Oberkochen, Germany). Intensity profiles
594 comparing the maximum rim intensity to the background were plotted in ImageJ (NIH) by an
595 investigator blinded to experimental conditions.

596

597 **Mouse primary cortical neuron culture and permeabilization**

598 All animal procedures were approved by the Johns Hopkins Animal Care and Use Committee.
599 Timed pregnant C57BL/6J females (Jackson Laboratory, Bar Harbor, ME) were sacrificed by
600 cervical dislocation at E16, cortex dissociated, and cells plated at 50,000/well on poly-D-
601 lysine/laminin-coated, optical glass-bottom 96-well plates. Growth medium consisted of

602 Neurobasal supplemented with B27, Glutamax, and penicillin/streptomycin
603 (Gibco/ThermoFisher). At 5-7 days in vitro, neurons were rinsed in prewarmed PBS and
604 permeabilized for 4 min. at 37° in a hypotonic solution containing 0-40 μ M Tris-HCl pH 7.5 (to
605 cause osmotic swelling) and 50-150 mg/ml BSA (for molecular crowding/mechanical support).
606 Following permeabilization, cells were placed on ice and rinsed 2 x 5 minutes in transport buffer
607 (TRB, 20mM HEPES, 110mM KOAc, 2mM Mg(OAc)₂, 5mM NaOAc, 0.5mM EGTA, 250mM
608 sucrose, pH 7.3, with protease inhibitor cocktail). All rinse and assay buffers were supplemented
609 with 50 mg/mL BSA. The optimal hypotonic buffer and BSA concentration varied by batch, and
610 was optimized prior to each set of assays for ability to permeabilize the majority of plasma
611 membranes while maintaining nuclear exclusion of a 70 kD fluorescent dextran (ThermoFisher).
612

613 **HeLa cell culture and permeabilization**

614 A single cell-derived clone of HeLa cells (ATCC, Manassas, VA; mycoplasma negative and
615 validated by STR profiling) were maintained in OptiMEM (Gibco/ThermoFisher) with 4% FBS
616 and plated on uncoated optical glass-bottom 96 well plates, at appropriate densities to reach 70-
617 90% confluence on the day of the transport assay. To permeabilize, cells were rinsed for 2
618 minutes in ice-cold PBS, and permeabilized on ice for 10 minutes in 15-30 μ g/mL digitonin
619 (Calbiochem, San Diego, CA) in permeabilization buffer (PRB, 20mM HEPES, 110mM KOAc,
620 5mM Mg(OAc)₂, 0.5mM EGTA, 250mM sucrose, pH 7.5, with protease inhibitor cocktail).
621 Following permeabilization, cells were placed on ice and rinsed 3 x 5 minutes in transport buffer
622 (TRB, 20mM HEPES, 110mM KOAc, 2mM Mg(OAc)₂, 5mM NaOAc, 0.5mM EGTA, 250mM
623 sucrose, pH 7.3, with protease inhibitor cocktail). The optimal digitonin concentration varied by
624 cell density and passage number, and was optimized prior to each set of assays for the ability to
625 permeabilize the majority of plasma membranes while maintaining nuclear exclusion of a 70 kD
626 fluorescent dextran (ThermoFisher).
627

628 **Nuclear import assays**

629 Assay components:

630 Nuclear import was carried out essentially as described (Adam et al., 1990) with modified
631 sucrose-containing buffers (Zhu et al., 2015). Concentrated whole cell lysates were prepared
632 from HEK293T cells (ATCC, mycoplasma negative and validated by STR profiling), grown in
633 150 mm dishes and sonicated on ice in 1X TRB in the presence of protease inhibitor cocktail
634 (Roche). The lysates were clarified (15 min, 14000g, 4C), snap frozen in liquid nitrogen, and
635 stored in single use aliquots at -80C. Total HEK cell RNA was extracted using miRNEasy kits
636 according to the manufacturers' protocol, with DNase digestion (Qiagen). RNA concentration
637 was measured by Nanodrop (ThermoFisher), and all 260/280 ratios were verified to be >2.0.
638 Energy regeneration (ER) mix consisted of 100 μ M ATP, 100 μ M GTP, 4 mM creatine
639 phosphate, and 20 U/mL creatine kinase (Roche).

640

641 Standard assay setup:

642 Reaction mixes consisting of 2.5 mg/ml lysate, ER, fluorescent cargo (200 nM Rango and YFP-
643 M9-CFP, 500 nM GST-GFP-NLS), Hoechst, DPRs, RNA, or inhibitors (100 μ M importazole
644 (IPZ, Millipore Sigma); 0.8 mg/mL wheat germ agglutinin (WGA, Millipore Sigma) were
645 assembled on ice during cell permeabilization. DPRs or inhibitors were allowed to equilibrate in
646 cell lysate for at least 30 minutes prior to initiation of transport. Every plate included: (1) Cargo
647 alone: fluorescent cargo, but no ER or lysate, (2) Untreated controls: fluorescent cargo, ER, and
648 lysate, and (3) Inhibitor: fluorescent cargo, ER, lysate, and IPZ (Rango and GST-GFP-NLS
649 reactions) or WGA (YFP-M9-CFP). Preassembled transport reactions were then transferred
650 onto permeabilized cells via multichannel pipette, and allowed to proceed at room temperature
651 for 2 hours (Rango, YFP-M9-CFP) or 4 hours (GST-GFP-NLS). Cells were fixed in 4%
652 paraformaldehyde/PBS, rinsed 2x with PBS, and transferred to 50% glycerol/PBS for immediate
653 imaging.

654 Variations:

655 For a subset of neuron transport assays, transport was monitored live via time lapse imaging
656 every 5 minutes for 30 minutes. In a subset of HeLa assays, transport reactions were
657 centrifuged before use at 14000g x 15 minutes to separate soluble and insoluble fractions. In
658 another variation, the transport lysate + DPR and ER mix was allowed to preincubate on the
659 permeabilized HeLa cells for at least 30 minutes prior to initiation of transport, rinsed 1x with
660 TRB, and transport initiated with fresh lysate, cargo, and ER.

661

662 Imaging and data analysis:

663 Multiple non-overlapping fields per well (4 for time-lapse imaging, 9-16 for fixed imaging), were
664 captured at 40x on an ImageXpress Micro XLS high-content microscope (Molecular Devices,
665 San Jose, CA), and the ratio of nuclear to cytoplasmic fluorescence intensity was calculated
666 using the MetaXpress automated translocation-enhanced module. Raw data were filtered to
667 exclude autofluorescence and the mean N/C ratio from wells without ER or cell lysate was
668 subtracted from all values. Resulting N/C ratios were expressed as % untreated, to permit
669 comparisons across biological replicates.

670

671 **Passive import assays**

672 HeLa cells were permeabilized as above, rinsed 3 x TRB, and reaction mix containing 2.5 mg/ml
673 HEK lysate, ER (to mimic the active import conditions), Hoechst, and/or DPRs were added and
674 allowed to preincubate directly on the permeabilized cells for at least 30 minutes. 0.8 mg/ml
675 WGA was used as a positive control. Cells were mounted on a Zeiss LSM800 confocal
676 microscope, reaction mix withdrawn, and immediately replaced with fluorescent dextran
677 (ThermoFisher) or recombinant GFP (pK803) in fresh lysate/ER mix to initiate the passive
678 import reaction. A single 40x frame (containing 20-30 cells/well) was imaged per well, with
679 images collected every 10 seconds for 5 min. The ratio of nuclear fluorescence intensity to local

680 background at each timepoint was analyzed using Imaris (Bitplane, Zurich, Switzerland), and
681 values for each cell were expressed as a ratio of time 0 (1 = no influx, >1 = influx).

682

683 **Mass spectrometry**

684 50 μ M GR10 or 25 μ M PR10 (in duplicate) were added to 5 mg/ml HEK whole cell lysate (in
685 TRB with ER), incubated for 60 min at 37°C and aggregates were pelleted by centrifugation at
686 16000g for 10 min. Supernatants were removed and pellets washed 2x and resuspended in
687 MgCl₂- and CaCl₂- free DPBS (ThermoFisher), then flash-frozen in liquid nitrogen and stored at
688 -80°C before further processing and analysis by the Johns Hopkins Mass Spectrometry and
689 Proteomics core facility. Pellets were reduced/alkylated with DTT/IAA, reconstituted in
690 TEAB/acetonitrile, and sonicated for 15 min prior to overnight digestion with Trypsin/LysC
691 (Promega, Madison, WI) at 37°C. Some precipitate remained; supernatants were desalted and
692 analyzed by LC/MS/MS on a QExactive_Plus mass spectrometer (ThermoFisher). MS/MS
693 spectra were searched via Proteome Discoverer 2.2 (ThermoFisher) with Mascot 2.6.2 (Matrix
694 Science, London, UK) against the RefSeq2017_83_ human species database (NCBI). Protein
695 probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Protein
696 identifications were accepted if they contained at least 2 identified peptides at false discovery
697 rate less than 1.0%. Gene ontology analysis was carried out using the DAVID algorithm v6.8
698 (May 2016, <https://david.ncifcrf.gov/>) (Huang et al., 2009a;b). The mass spectrometry data have
699 been uploaded to the ProteomeXchange Consortium
700 (<http://proteomecentral.proteomexchange.org>) via the PRIDE partner repository (Vizcaino et al.,
701 2013), dataset identifier pending.

702

703 **DPR aggregation assay and Western blots**

704 Supernatant and pellet fractions (for all 5 DPRs, and control/buffer only) were prepared as in the
705 nuclear transport assays, by adding 100 μ M 10mers to 2.5 mg/ml HEK lysate in 100 μ L TRB.

706 Supernatants were boiled in Laemmli (BioRad) for 5 minutes. Pellets were boiled for 15 minutes
707 followed by sonication in order to fully disperse aggregates for SDS-PAGE. Equal volumes of
708 supernatant and pellet fractions were run on 4-12% Bolt Bis-Tris Plus gels (ThermoFisher),
709 transferred to nitrocellulose membrane using an iBlot2 dry blotting system (ThermoFisher).
710 Protein loading was analyzed by BLOT-Faststain (G-biosciences, St. Louis, MO), according to
711 the manufacturer's instructions. For immunodetection, membranes were blocked with 5% non-
712 fat milk in TBST and probed by sequential incubation with the primary antibodies as detailed in
713 the table below. Detection was by HRP-conjugated secondary antibodies/chemiluminescence
714 using an ImageQuant LAS 4000 system (GE, Chicago, IL). To permit sequential probing of
715 membranes without stripping, signals were quenched by incubation with prewarmed 30% H₂O₂
716 for 20 minutes (Sennepin et al., 2009). Band intensities were measured by ImageQuant
717 software. For pellet vs. supernatant fractions, all were expressed as percent untreated control.
718 For blots in figure 1E, samples were run on 4-20% SDS PAGE minigels (ThermoFisher and
719 blotted to PVDF membranes (Immun-Blot PVDF, Bio-Rad) using the Bio-Rad TransBlot Turbo
720 apparatus, and probed as above. The chemiluminescence signal was captured with a Bio-Rad
721 ChemiDoc XRS+ digital imaging system.

722

723 **Statistical analysis**

724 Data analysis, graphing, and statistical analyses were carried out using Prism v6-v8
725 (Graphpad), according to methods detailed under each experimental approach above and in the
726 figure legends.

727

728 **Antibodies**

Antibody	Manufacturer	Catalog number
Mouse anti-GFP	Santa Cruz Biotechnology	9996

Mouse anti-ribosomal protein 6 (RPS6)	Santa Cruz Biotechnology	74459
Mouse anti-Nup133	Santa Cruz Biotechnology	376699
Mouse anti-Ran	BD Bioscience	610341
Mouse anti-RanGAP1 (C-5)	Santa Cruz Biotechnology	sc-28322
Rabbit anti-RCC1	Genetex	GTX104590
Mouse anti-importin β	Sigma	I2534
Mouse anti-importin α	BD Bioscience	610485
Mouse anti-transportin 1	BD Bioscience	558660
Rat anti-Nup98 (2H10)	Santa Cruz Biotechnology	sc-101546
Rabbit anti-Nup54	Sigma	HPA035929
Rat anti-Nup62	Millipore	MABE1043
Mouse anti-TDP-43 (3H8)	Abcam	ab104223
Rabbit anti-Matrin 3	Abcam	ab151714
Rabbit anti-FUS	Bethyl	A300-302A
Mouse anti-hnRNP A1 (4B10)	Santa Cruz Biotechnology	sc-32301
Mouse anti-hnRNP A2/B1 (EF-67)	Santa Cruz Biotechnology	sc-53531
Rabbit anti-DDX3X	Sigma	HPA001648
Goat anti-rat, HRP linked	Cell Signaling Technology	7077S
Goat anti-rabbit, HRP-linked	Cell Signaling Technology	7074S
Horse anti-mouse, HRP-linked	Cell Signaling Technology	7076S

729

730 **Reagents**

Reagent	Manufacturer	Catalog number
GFP Trap Magnetic Agarose	Chromotek	Gtma-20

Dynabeads MyOne Streptavidin C1	ThermoFisher	65001
Sypro Ruby Protein Gel Stain	Millipore Sigma	S4942
SYBR Gold Nucleic Acid Stain	ThermoFisher Scientific	S11494
Importazole	Millipore Sigma	SML0341
Alexa Fluor 647 NHS ester	ThermoFisher Scientific	A37573
Alexa Fluor 488 C5 maleimide	ThermoFisher Scientific	A10254
Biotin-maleimide	Millipore Sigma	B1267
EZ-Link Sulfo-NHS-LC-biotin No-weigh format	ThermoFisher Scientific	A39257
Ribo Ruler High Range RNA ladder	ThermoFisher Scientific	SM1821
HIS-Select HF Nickel Affinity Gel	Millipore Sigma	HD537
Ni-NTA Agarose	Qiagen	30210
Glutathione Sepharose 4B	GE Healthcare	17-0756-01
Zeba Microspin columns, 40 kDa MWCO, 75 µl	ThermoFisher Scientific	87765
BSA, fatty acid-free	Roche	03117057001
Glutathione-coated polystyrene particles 6.0-8.0	Spherotech	GSHP-60-5
Neutravidin-coated polystyrene particles 6.0-8.0	Spherotech	NVP-60-5
Dextran, Texas Red, 10,000MW	ThermoFisher Scientific	D1863
Dextran, Texas Red, 40,000MW	ThermoFisher Scientific	D1829
Dextran, Texas Red, 70,000MW	ThermoFisher Scientific	D1864
Digitonin, high purity	Calbiochem	300410
Wheat germ agglutinin	Sigma	L0636
miRNeasy kit	Qiagen	217004
DNase (RNase free)	Qiagen	79254
RNase A	ThermoFisher Scientific	EN0531

732 **Acknowledgements**

733 Lin Xue and Svetlana Vidensky provided expert technical assistance. Robert Cole and Tatiana
734 Boronina in the Johns Hopkins Proteomics Core assisted with proteomics analysis and
735 interpretation. We gratefully acknowledge M. Rexach, M. Dasso, E. Onischenko and K. Weis for
736 providing expression plasmids. This work was supported by NIH/NINDS (K08NS104273 [LH],
737 R01NS094239 [JDR], P01NS099114 [JDR et al.]) and NIH/NIA (RF1AG062171 [JDR]). The
738 funding sources had no role in study design, data collection and interpretation, or the decision to
739 submit the work for publication.

740

741 **Author contributions**

742 LH: conceptualization, methodology, validation, formal analysis, investigation, data curation,
743 writing-original draft preparation, writing-review & editing, visualization, funding acquisition. LD:
744 investigation, formal analysis, writing-review & editing. KB: investigation, formal analysis,
745 writing-review & editing. PK: conceptualization, methodology, validation, formal analysis,
746 investigation, resources, data curation, writing-review & editing, visualization, supervision. JR:
747 conceptualization, writing-review & editing, supervision, project administration, funding
748 acquisition.

749

750 **The authors declare no competing interests.**

751 **Figure legends**

752

753 **Figure 1. R-DPRs bind importin β and inhibit nuclear import. A.** Schematic of Rango FRET

754 sensor, consisting of the importin β -binding domain (IBB) of importin $\alpha 1$ (KPNA2), flanked by

755 CyPET (donor) and YPet (acceptor). **B-C.** Rango spectral profile (**B**) and FRET ratio (**C**)

756 demonstrating increase in FRET by adding hydrolysis-deficient Ran-Q69L-GTP to importin β -

757 bound Rango (representative of 3 experiments). **D.** Change in Rango FRET ratio induced by

758 adding DPRs (10-mers) to importin β -bound Rango (representative of 5 experiments, data in C-

759 D fit to non-linear model with one binding site). **E.** GFP-trap co-immunoprecipitation of importin

760 β by Rango in the presence of GR10 and PR10. **F.** Quantification of bound importin β in (**E**),

761 normalized to Rango and expressed as a fraction of untreated lysate (mean \pm SD, two technical

762 replicates). **G.** Diagram of permeabilized cell nuclear import assay, which was adapted and

763 validated for primary neurons (**Figure 1-figure supplement 1**). **H.** Longitudinal wide-field

764 images of Rango import in permeabilized mouse primary cortical neurons. Scale bar=10 μ m. **I-J.**

765 Nuclear to cytoplasmic (N/C) ratio of Rango import in (**H**), calculated by automated high content

766 analysis. GR and PR graphs are separated for clarity; the control values are identical. All data

767 are normalized to cells lacking energy/lysate and expressed as percent untreated controls

768 (mean \pm SEM of n=4 biological replicates, 189 \pm 125 cells per data point). **K.** Steady state N/C

769 ratio of Rango in primary neurons fixed after 2 hours (mean \pm SEM of n=7 biological replicates,

770 409 \pm 202 cells per data point, * p <0.05, ** p <0.01, **** p <0.001 vs. untreated cells, one-way

771 ANOVA with Dunnett's post hoc test). **L.** IC50 of R-DPRs for inhibition of nuclear import of

772 designated cargoes, from (**K**) and **Figure 1-figure supplement 2**. 95% confidence intervals are

773 shown (n=3-6 biological replicates/condition, 409 \pm 202 cells/ replicate for neurons, 1290 \pm 305

774 cells/replicate for HeLa). See source file for raw data and exact p values.

775

776 **Figure 1-figure supplement 1. Validation of permeabilized cell assay.** **A.** Mouse primary
777 cortical neurons were permeabilized with hypotonic buffer + BSA cushion, and incubated for 2
778 hours with 200 nM Rango sensor in the indicated conditions. Scale bar = 5 μ m. **B.** Automated
779 method for N/C ratio calculates mean intensity at a defined distance inside and outside the
780 nuclear rim (as determined by Hoechst signal). **C.** Sample raw data for conditions in **(A)**, from a
781 single well of a 96-well plate.

782

783 **Figure 1-figure supplement 2. Extended nuclear import data.** Diagram of cargo import
784 mechanisms and HeLa nuclear import data in the presence of increasing concentrations of DPR
785 10- and 20-mers, at steady state (2h for Rango **(A-C)**, 4h for NLS-GFP **(D-F)**, and 2h for M9 **(G-I)**). These data correspond to those summarized in the table in figure 1L. Mean \pm SEM is shown,
786 n \geq 3 biological replicates for R-DPRs, n \geq 2 biological replicates for GP, GA, and PA. 1209 \pm 305
787 cells per replicate, *p<0.05, **p<0.01, ***p<0.001 vs. untreated cells, one-way ANOVA with
788 Dunnett's post-hoc test. See source file for raw data and exact p values.

789

790
791 **Figure 1-source data.** Raw data and p values for data in figure 1 and supplements.

792

793 **Figure 2. R-DPRs bind importin β in the bead halo assay.** **A.** Confocal images of AF488-
794 labeled C9orf72 DPRs added to neutravidin beads coated with biotinylated 'bait' proteins, in
795 binding buffer or in the presence of 1 mg/ml neuron lysate (at right). FITC-dextran = negative
796 control (-), Rango sensor = positive control (+). Scale bar = 4 μ m. **B.** Rim vs. background ratio in
797 binding buffer (see **Figure 2-figure supplement 1** for quantification method). **C-D.** Rim vs.
798 background ratio for GR10 **(C)** and PR10 **(D)** in 1 mg/ml neuron lysate. In **B-D**, mean \pm SEM is
799 shown for n=20 beads (5 intensity profiles/bead). **p<0.01, ***p<0.001 vs. control beads by two-
800 way ANOVA with Tukey post-hoc test. See source file for raw data and exact p values.

801

802 **Figure 2-figure supplement 1. Quantification method for bead halo assay.** Examples of line
803 intensity profiles for control versus PR10 beads (Fiji), with rim vs. background levels indicated.

804

805 **Figure 2-source data.** Raw data and *p* values for data in figure 2.

806

807 **Figure 3. PR and GR accelerate passive nuclear influx. A.** Confocal time-lapse imaging of
808 GFP nuclear influx in permeabilized HeLa cells following \geq 30 min. incubation with buffer
809 (untreated), 20 μ M GR20, 20 μ M PR20, or 0.8 mg/ml wheat germ agglutinin (WGA, positive
810 control). Scale bar = 10 μ m. **B-C.** Nuclear GFP (**B**) and 40 kD dextran (**C**) intensity normalized to
811 background fluorescence, expressed vs. time 0 (no influx = 1). GR and PR are separated for
812 clarity; the control values are identical. All experiments included lysate and energy, see **Figure**
813 **3-figure supplement 1** for validation of assay conditions, and **Figure 3-figure supplement 2**
814 for binding studies with FG-domains which contribute to the NPC selectivity barrier. Data are
815 mean \pm SEM for n=3-6 biological replicates/condition (20-30 cells/replicate). **p*<0.05, ***p*<0.01,
816 ****p*<0.001 vs. untreated cells at 5 minutes by one-way ANOVA with Dunnett's post hoc test.

817 See source file for raw data and exact *p* values.

818

819 **Figure 3-figure supplement 1. Validation of passive nuclear influx assay. A.** Confocal
820 images of permeabilized HeLa cells incubated with Texas Red-labeled dextrans of the indicated
821 molecular weight for 15 minutes. Scale bar = 10 μ m. **B.** Time lapse imaging of dextran nuclear
822 influx from 0-5 minutes. Nuclear intensity is normalized to time 0 for each cell (1=no influx).
823 Mean \pm SEM is shown for n=3 biological replicates (20-30 cells/replicate/condition). **C.** Time
824 lapse imaging of GFP nuclear influx, with or without lysate/energy, to verify passive transport of
825 this 27 kD, non-NLS-containing protein. A subset of cells were pre-incubated with 0.8 mg/ml
826 WGA as a positive control for impediment to transport. n=1 (20-30 cells/condition).

827

828 **Figure 3-figure supplement 2. R-DPRs show modest binding to FG-domains in the bead**
829 **halo assay, which can be augmented by importin β .** **A.** Confocal images of AF488-labeled
830 DPRs added to glutathione beads coated with yeast FG- and GLFG-domain GST-fusion
831 proteins, in binding buffer with or without added unlabeled importin β . FITC-dextran = negative
832 control (-), full length AF647-importin β = positive control (+). Scale bar = 4 μ m. **B.** Intensity
833 profiles (rim vs. background) across all beads tested, including the Nup116 F \rightarrow A mutant which
834 is used to define the background/non-specific binding level as indicated by the horizontal
835 dashed lines. Correspondence between yeast and human Nups is given in the inset. Mean \pm
836 SEM is shown, for n=20 beads (5 intensity profiles/bead). * p <0.05, ** p <0.01, *** p <0.001 vs.
837 Nup116 F \rightarrow A by two-way ANOVA with Tukey post-hoc test (*denotes GR statistics, # denotes
838 PR statistics, red arrows denote augmentation of binding by importin β (p <0.001)). See source
839 file for raw data and exact p values.

840

841 **Figure 3-source data.** Raw data and p values for data in figure 3 and supplements.

842

843 **Figure 4. R-DPR-induced aggregates recruit NCT proteins.** **A.** Aggregates formed by adding
844 R-DPRs to HEK cell lysate in transport buffer (before and after 15 min centrifugation). Venn
845 diagram indicates number of proteins identified by mass spectrometry analysis of pellets (n= 2
846 technical replicates). Enriched NCT-related GO terms are shown, with fold change and p value
847 calculated by the DAVID algorithm. Overall top GO terms are shown in **Figure 4-figure**
848 **supplement 1.** **B.** List of identified NCT-related proteins, in all 4 samples (black), n=2 GR10
849 samples (blue), and n=2 PR10 samples (red). Asterisk denotes samples seen in n=2 GR10
850 samples and only n=1 PR10 sample. **C.** Western blots for indicated NCT and Nup proteins in
851 pellet vs. supernatant fractions. RCC1 is marked with an asterisk, as this protein was not
852 identified in the MS results and serves as the negative control. All samples were loaded by

853 volume, see **Figure 4-figure supplement 2** for membrane protein stain and additional Western
854 blots of disordered RNA binding proteins. **D.** Quantification of blots in **(C)**. Mean \pm SD for two
855 technical replicates is shown (TP=TNPO1, β =importin β , α =importin α , RG = RanGAP1, RC =
856 RCC1, Ran = RanGTPase). See source file for raw data.

857

858 **Figure 4-figure supplement 1. Overall top GO terms enriched in R-DPR aggregates. A-B.**
859 Top molecular function GO terms for GR10 and PR10 aggregates according to *p* value (shown
860 as $-\log_{10}$) **(A)** and fold change **(B)**. In B, selected GO categories enriched in PR samples are
861 highlighted in red, and GR in blue.

862

863 **Figure 4-figure supplement 2. Western blots for selected low complexity-domain (LCD)-**
864 **containing proteins in R-DPR supernatant vs. pellet fractions. A.** Western blot for indicated
865 proteins identified by R-DPR aggregate mass spectrometry in supernatant vs. pellet, loaded by
866 volume. A representative post-transfer Faststain (total protein stain) is shown. **B.** Quantification
867 of blots in **(A)**. Mean \pm SD is shown for two technical replicates. See source file for raw data.

868

869 **Figure 4-source data.** Raw data and *p* values for data in figure 4 and supplements.

870

871 **Figure 5. R-DPR nuclear import blockade does not require aggregates and is rescued by**
872 **RNA. A.** Rango N/C ratio in permeabilized HeLa transport reactions with 100 μ M GR10 or PR10
873 and increasing concentrations of total HEK cell RNA +/- RNase. **B.** Schematic of fractionated
874 Rango transport assays, run with aggregates present or absent (supernatant only), followed by
875 addition of RNA to a subset of reactions. **C.** Rango N/C ratio from fractionated transport assays.
876 **D.** Confocal images of fractionated transport assays run in the presence of AF488-labeled R-
877 DPRs and AF647-labeled importin β . Arrows mark R-DPR collection around the nuclear

878 membrane in conditions where transport was inhibited. Acquisition parameters were kept
879 constant for all images (scale bar=10 μ m). **E**. Schematic of (1) lysate vs. (2) nuclei R-DPR
880 preincubation assays. **F**. Rango N/C ratio from preincubation assays. **G**. Working model: R-
881 DPRs block nuclear import by binding to importin β and preventing the formation of the importin
882 α •importin β •NLS cargo complex in the soluble phase of the transport reaction, which can be
883 alleviated by RNA. For **A,C,F** mean \pm SEM of $n \geq 3$ biological replicates are shown (each data
884 point represents 1462 ± 555 cells). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ vs. untreated cells by one-
885 way ANOVA with Dunnett's post-hoc test. See source file for raw data and exact p values.
886

887 **Figure 5-figure supplement 1. 1,6-HD and importin β do not rescue nuclear import in the**
888 **permeabilized cell assay. A-B.** 1,6-hexanediol (1,6-HD) (**A**) and WT importin β (**B**) cause
889 dose-dependent inhibition of Rango import in HeLa cells at baseline (mean \pm SEM for $n=2$
890 replicates is shown). **C.** No rescue of mild Rango import inhibition (25 μ M PR10) was seen for
891 either intervention ($n=1$ for 1,6-HD, and $n=2$ replicates for importin β , 1622 ± 271 cells/data
892 point). Note that values in C are not background corrected as some fell below the level
893 observed for cells without energy or lysate added. See source file for raw data.
894

895 **Figure 5-figure supplement 2. RNA modestly decreases R-DPR aggregates and binds R-**
896 **DPRs in an electrophoretic mobility shift assay. A.** Sypro Ruby-stained protein gels showing
897 effect of total HEK RNA on R-DPR-mediated aggregate formation (HEK lysate pellets were
898 prepared as for mass spec and Western blots in figure 4, +/- total HEK RNA). Only a modest
899 reduction of predominantly low molecular weight species was seen in the pellets (bracketed in
900 red). **B.** Electrophoretic mobility shift assay of AF488-labeled DPRs (10mers), +/- total HEK
901 RNA, imaged by UV transillumination to simultaneously visualize the AF488 and SYBR Gold

902 signals. Note the co-migration of AF488 R-DPRs with RNA, as visualized by AF488. No SYBR

903 Gold was added to these lanes (*).

904 **Figure 5-source data.** Raw data and *p* values for data in figure 5 and supplements.

905 **References**

906

907 Adam, S.A., R.S. Marr, and L. Gerace. 1990. Nuclear protein import in permeabilized
908 mammalian cells requires soluble cytoplasmic factors. *J Cell Biol.* 111:807–816.
909 doi:10.1083/jcb.111.3.807.

910 Ash, P.E.A., Ash, P.E.A., K.F. Bieniek, K.F. Bieniek, T.F. Gendron, T. Caulfield, T. Caulfield, W.-
911 L. Lin, W.-L. Lin, M. DeJesus-Hernandez, M.M. van Blitterswijk, M.M. van Blitterswijk, K.
912 Jansen-West, J.W. Paul, J.W. Paul, R. Rademakers, K.B. Boylan, D.W. Dickson, and L.
913 Petrucelli. 2013. Unconventional translation of C9ORF72 GGGGCC expansion generates
914 insoluble polypeptides specific to c9FTD/ALS. *Neuron.* 77:639–646.
915 doi:10.1016/j.neuron.2013.02.004.

916 Boeynaems, S., E. Bogaert, D. Kovacs, A. Konijnenberg, E. Timmerman, A. Volkov, M.
917 Guharoy, M. De Decker, T. Jaspers, V.H. Ryan, A.M. Janke, P. Baatsen, T. Vercruyse, R.-
918 M. Kolaitis, D. Daelemans, J.P. Taylor, N. Kedersha, P. Anderson, F. Impens, F. Sobott, J.
919 Schymkowitz, F. Rousseau, N.L. Fawzi, W. Robberecht, P. Van Damme, P. Tompa, and L.
920 Van Den Bosch. 2017. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress
921 Granule Dynamics. *Molecular Cell.* 65:1044–1055.e5. doi:10.1016/j.molcel.2017.02.013.

922 Boeynaems, S., E. Bogaert, E. Michiels, I. Gijsselinck, A. Sieben, A. Jovičić, G. De Baets, W.
923 Scheveneels, J. Steyaert, I. Cuijt, K.J. Verstrepen, P. Callaerts, F. Rousseau, J.
924 Schymkowitz, M. Cruts, C. Van Broeckhoven, P. Van Damme, A.D. Gitler, W. Robberecht,
925 and L. Van Den Bosch. 2016. Drosophila screen connects nuclear transport genes to DPR
926 pathology in c9ALS/FTD. *Sci Rep.* 6:20877. doi:10.1038/srep20877.

927 Chai, N., and A.D. Gitler. 2018. Yeast screen for modifiers of C9orf72 poly(glycine-arginine)
928 dipeptide repeat toxicity. *FEMS Yeast Res.* 18:913. doi:10.1093/femsyr/foy024.

929 Chi, N.C., E.J. Adam, and S.A. Adam. 1997. Different binding domains for Ran-GTP and Ran-
930 GDP/RanBP1 on nuclear import factor p97. *J. Biol. Chem.* 272:6818–6822.
931 doi:10.1074/jbc.272.10.6818.

932 Cingolani, G., C. Petosa, K. Weis, and C.W. Müller. 1999. Structure of importin-beta bound to
933 the IBB domain of importin-alpha. *Nature.* 399:221–229. doi:10.1038/20367.

934 Colbeau, A., J. Nachbaur, and P.M. Vignais. 1971. Enzymic characterization and lipid
935 composition of rat liver subcellular membranes. *Biochim. Biophys. Acta.* 249:462–492.
936 doi:10.1016/0005-2736(71)90123-4.

937 Cook, C., and L. Petrucelli. 2019. Genetic Convergence Brings Clarity to the Enigmatic Red
938 Line in ALS. *Neuron.* 101:1057–1069. doi:10.1016/j.neuron.2019.02.032.

939 DeJesus-Hernandez, M., I.R. Mackenzie, B.F. Boeve, A.L. Boxer, M. Baker, N.J. Rutherford,
940 A.M. Nicholson, N.A. Finch, H. Flynn, J. Adamson, N. Kouri, A. Wojtas, P. Sengdy, G.-Y.R.
941 Hsiung, A. Karydas, W.W. Seeley, K.A. Josephs, G. Coppola, D.H. Geschwind, Z.K.
942 Wszolek, H. Feldman, D.S. Knopman, R.C. Petersen, B.L. Miller, D.W. Dickson, K.B.
943 Boylan, N.R. Graff-Radford, and R. Rademakers. 2011. Expanded GGGGCC
944 hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked
945 FTD and ALS. *Neuron.* 72:245–256. doi:10.1016/j.neuron.2011.09.011.

946 Dols-Icardo, O., A. García-Redondo, R. Rojas-García, R. Sanchez-Valle, A. Noguera, E.
947 Gómez-Tortosa, P. Pastor, I. Hernández, J. Esteban-Pérez, M. Suárez-Calvet, S. Antón-
948 Aguirre, G. Amer, S. Ortega-Cubero, R. Blesa, J. Fortea, D. Alcolea, A. Capdevila, A.
949 Antonell, A. Llado, J.L. Muñoz-Blanco, J.S. Mora, L. Galán-Dávila, F.J. Rodríguez De
950 Rivera, A. Lleó, and J. Clarimón. 2014. Characterization of the repeat expansion size in
951 C9orf72 in amyotrophic lateral sclerosis and frontotemporal dementia. *Human Molecular
952 Genetics.* 23:749–754. doi:10.1093/hmg/ddt460.

953 Eftekharzadeh, B., J.G. Daigle, L.E. Kapinos, A. Coyne, J. Schiantarelli, Y. Carlomagno, C.
954 Cook, S.J. Miller, S. Dujardin, A.S. Amaral, J.C. Grima, R.E. Bennett, K. Tepper, M.
955 DeTure, C.R. Vanderburg, B.T. Corjuc, S.L. DeVos, J.A. Gonzalez, J. Chew, S. Vidensky,

956 F.H. Gage, J. Mertens, J. Troncoso, E. Mandelkow, X. Salvatella, R.Y.H. Lim, L. Petrucelli,
957 S. Wegmann, J.D. Rothstein, and B.T. Hyman. 2018. Tau Protein Disrupts
958 Nucleocytoplasmic Transport in Alzheimer's Disease. *Neuron*. 99:925–940.e7.
959 doi:10.1016/j.neuron.2018.07.039.

960 Freibaum, B.D., Y. Lu, R. Lopez-Gonzalez, N.C. Kim, S. Almeida, K.-H. Lee, N. Badders, M.
961 Valentine, B.L. Miller, P.C. Wong, L. Petrucelli, H.J. Kim, F.-B. Gao, and J.P. Taylor. 2015.
962 GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. *Nature*.
963 doi:10.1038/nature14974.

964 Frey, S., R. Rees, J. Schünemann, S.C. Ng, K. Fünfgeld, T. Huyton, and D. Görlich. 2018.
965 Surface Properties Determining Passage Rates of Proteins through Nuclear Pores. *Cell*.
966 174:202–217.e9. doi:10.1016/j.cell.2018.05.045.

967 Gendron, T.F., M. van Blitterswijk, K.F. Bieniek, L.M. Daugherty, J. Jiang, B.K. Rush, O.
968 Pedraza, J.A. Lucas, M.E. Murray, P. Desaro, A. Robertson, K. Overstreet, C.S. Thomas,
969 J.E. Crook, M. Castanedes-Casey, L. Rousseau, K.A. Josephs, J.E. Parisi, D.S. Knopman,
970 R.C. Petersen, B.F. Boeve, N.R. Graff-Radford, R. Rademakers, C. Lagier-Tourenne, D.
971 Edbauer, D.W. Cleveland, D.W. Dickson, L. Petrucelli, and K.B. Boylan. 2015. Cerebellar
972 c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72
973 repeat expansion carriers. *Acta Neuropathol.* 130:559–573. doi:10.1007/s00401-015-1474-
974 4.

975 Görlich, D., M.J. Seewald, and K. Ribbeck. 2003. Characterization of Ran-driven cargo transport
976 and the RanGTPase system by kinetic measurements and computer simulation. *EMBO J*.
977 22:1088–1100. doi:10.1093/emboj/cdg113.

978 Görlich, D., P. Henklein, R.A. Laskey, and E. Hartmann. 1996. A 41 amino acid motif in
979 importin-alpha confers binding to importin-beta and hence transit into the nucleus. *EMBO J*.
980 15:1810–1817.

981 Grima, J.C., J.G. Daigle, N. Arbez, K.C. Cunningham, K. Zhang, J. Ochaba, C. Geater, E.
982 Morozko, J. Stocksdale, J.C. Glatzer, J.T. Pham, I. Ahmed, Q. Peng, H. Wadhwa, O.
983 Pletnikova, J.C. Troncoso, W. Duan, S.H. Snyder, L.P.W. Ranum, L.M. Thompson, T.E.
984 Lloyd, C.A. Ross, and J.D. Rothstein. 2017. Mutant Huntingtin Disrupts the Nuclear Pore
985 Complex. *Neuron*. 94:93–107.e6. doi:10.1016/j.neuron.2017.03.023.

986 Guo, L., H.J. Kim, H. Wang, J. Monaghan, F. Freyermuth, J.C. Sung, K. O'Donovan, C.M. Fare,
987 Z. Diaz, N. Singh, Z.C. Zhang, M. Coughlin, E.A. Sweeny, M.E. DeSantis, M.E. Jackrel,
988 C.B. Rodell, J.A. Burdick, O.D. King, A.D. Gitler, C. Lagier-Tourenne, U.B. Pandey, Y.M.
989 Chook, J.P. Taylor, and J. Shorter. 2018. Nuclear-Import Receptors Reverse Aberrant
990 Phase Transitions of RNA-Binding Proteins with Prion-like Domains. *Cell*. 173:677–
991 692.e20. doi:10.1016/j.cell.2018.03.002.

992 Hofweber, M., S. Hutten, B. Bourgeois, E. Spreitzer, A. Niedner-Boblenz, M. Schifferer, M.-D.
993 Ruepp, M. Simons, D. Niessing, T. Madl, and D. Dormann. 2018. Phase Separation of FUS
994 Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. *Cell*. 173:706–
995 719.e13. doi:10.1016/j.cell.2018.03.004.

996 Hondele, M., R. Sachdev, S. Heinrich, J. Wang, P. Vallotton, B.M.A. Fontoura, and K. Weis.
997 2019. DEAD-box ATPases are global regulators of phase-separated organelles. *Nature*.
998 357:eaaf4382. doi:10.1038/s41586-019-1502-y.

999 Huang, D.W., B.T. Sherman, and R.A. Lempicki. 2009a. Systematic and integrative analysis of
1000 large gene lists using DAVID bioinformatics resources. *Nat Protoc*. 4:44–57.
1001 doi:10.1038/nprot.2008.211.

1002 Huang, D.W., B.T. Sherman, and R.A. Lempicki. 2009b. Bioinformatics enrichment tools: paths
1003 toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res*. 37:1–
1004 13. doi:10.1093/nar/gkn923.

1005 Hutten, S., and D. Dormann. 2019. Nucleocytoplasmic transport defects in neurodegeneration -
1006 Cause or consequence? *Seminars in Cell & Developmental Biology*.
1007 doi:10.1016/j.semcd.2019.05.020.

1008 Jäkel, S., J.M. Mingot, P. Schwarzmaier, E. Hartmann, and D. Görlich. 2002. Importins fulfil a
1009 dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic
1010 domains. *EMBO J.* 21:377–386. doi:10.1093/emboj/21.3.377.

1011 Jovičić, A., J. Mertens, S. Boeynaems, E. Bogaert, N. Chai, S.B. Yamada, J.W. Paul, S. Sun,
1012 J.R. Herdy, G. Bieri, N.J. Kramer, F.H. Gage, L. Van Den Bosch, W. Robberecht, and A.D.
1013 Gitler. 2015. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic
1014 transport defects to FTD/ALS. *Nat Neurosci.* 18:1226–1229. doi:10.1038/nn.4085.

1015 Kalab, P., A. Pralle, E.Y. Isacoff, R. Heald, and K. Weis. 2006. Analysis of a RanGTP-regulated
1016 gradient in mitotic somatic cells. *Nature*. 440:697–701. doi:10.1038/nature04589.

1017 Kalab, P., and J. Soderholm. 2010. The design of Förster (fluorescence) resonance energy
1018 transfer (FRET)-based molecular sensors for Ran GTPase. *Methods*. 51:220–232.
1019 doi:10.1016/j.ymeth.2010.01.022.

1020 Kapinos, L.E., B. Huang, C. Rencurel, and R.Y.H. Lim. 2017. Karyopherins regulate nuclear
1021 pore complex barrier and transport function. *The Journal of Cell Biology*. 216:3609–3624.
1022 doi:10.1083/jcb.201702092.

1023 Klim, J.R., L.A. Williams, F. Limone, I. Guerra San Juan, B.N. Davis-Dusenbery, D.A. Mordes,
1024 A. Burberry, M.J. Steinbaugh, K.K. Gamage, R. Kirchner, R. Moccia, S.H. Cassel, K. Chen,
1025 B.J. Wainger, C.J. Woolf, and K. Eggan. 2019. ALS-implicated protein TDP-43 sustains
1026 levels of STMN2, a mediator of motor neuron growth and repair. *Nat Neurosci.* 22:167–179.
1027 doi:10.1038/s41593-018-0300-4.

1028 Kramer, N.J., M.S. Haney, D.W. Morgens, A. Jovičić, J. Couthouis, A. Li, J. Ousey, R. Ma, G.
1029 Bieri, C.K. Tsui, Y. Shi, N.T. Hertz, M. Tessier-Lavigne, J.K. Ichida, M.C. Bassik, and A.D.
1030 Gitler. 2018. CRISPR–Cas9 screens in human cells and primary neurons identify modifiers
1031 of C9ORF72 dipeptide-repeat-protein toxicity. *Nat Genet.* 50:603–612. doi:10.1038/s41588-
1032 018-0070-7.

1033 Langdon, E.M., Y. Qiu, A. Ghanbari Niaki, G.A. McLaughlin, C.A. Weidmann, T.M. Gerbich, J.A.
1034 Smith, J.M. Crutchley, C.M. Termin, K.M. Weeks, S. Myong, and A.S. Gladfelter. 2018.
1035 mRNA structure determines specificity of a polyQ-driven phase separation. *Science*.
1036 360:922–927. doi:10.1126/science.aar7432.

1037 Lee, B.J., A.E. Cansizoglu, K.E. Süel, T.H. Louis, Z. Zhang, and Y.M. Chook. 2006. Rules for
1038 nuclear localization sequence recognition by karyopherin beta 2. *Cell*. 126:543–558.
1039 doi:10.1016/j.cell.2006.05.049.

1040 Lee, K.-H., P. Zhang, H.J. Kim, D.M. Mitrea, M. Sarkar, B.D. Freibaum, J. Cika, M. Coughlin, J.
1041 Messing, A. Mollie, B.A. Maxwell, N.C. Kim, J. Temirov, J. Moore, R.-M. Kolaitis, T.I.
1042 Shaw, B. Bai, J. Peng, R.W. Kriwacki, and J.P. Taylor. 2016. C9orf72 Dipeptide Repeats
1043 Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. *Cell*.
1044 167:774–788.e17. doi:10.1016/j.cell.2016.10.002.

1045 Levy, D.L., and R. Heald. 2010. Nuclear size is regulated by importin α and Ntf2 in Xenopus.
1046 *Cell*. 143:288–298. doi:10.1016/j.cell.2010.09.012.

1047 Lin, Y., E. Mori, M. Kato, S. Xiang, L. Wu, I. Kwon, and S.L. McKnight. 2016. Toxic PR Poly-
1048 Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers. *Cell*.
1049 167:789–802.e12. doi:10.1016/j.cell.2016.10.003.

1050 Ling, J.P., O. Pletnikova, J.C. Troncoso, and P.C. Wong. 2015. TDP-43 repression of
1051 nonconserved cryptic exons is compromised in ALS-FTD. *Science*. 349:650–655.
1052 doi:10.1126/science.aab0983.

1053 Lott, K., and G. Cingolani. 2011. The importin β binding domain as a master regulator of
1054 nucleocytoplasmic transport. *Biochimica et Biophysica Acta (BBA) - Molecular Cell*
1055 *Research*. 1813:1578–1592. doi:10.1016/j.bbamcr.2010.10.012.

1056 Ma, J., A. Goryaynov, A. Sarma, and W. Yang. 2012. Self-regulated viscous channel in the
1057 nuclear pore complex. *Proc. Natl. Acad. Sci. U.S.A.* 109:7326–7331.
1058 doi:10.1073/pnas.1201724109.

1059 Mackenzie, I.R., T. Arzberger, E. Kremmer, D. Troost, D. Troost, S. Lorenzl, S. Lorenzl, K. Mori,
1060 S.-M. Weng, C. Haass, H.A. Kretzschmar, D. Edbauer, M. Neumann, and M. Neumann.
1061 2013. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological
1062 correlations. *Acta Neuropathol.* 126:859–879. doi:10.1007/s00401-013-1181-y.

1063 Mackenzie, I.R.A., P. Frick, and M. Neumann. 2014. The neuropathology associated with repeat
1064 expansions in the C9ORF72 gene. *Acta Neuropathol.* 127:347–357. doi:10.1007/s00401-
1065 013-1232-4.

1066 Maharana, S., J. Wang, D.K. Papadopoulos, D. Richter, A. Pozniakovsky, I. Poser, M. Bickle, S.
1067 Rizk, J. Guillén-Boixet, T.M. Franzmann, M. Jahnel, L. Marrone, Y.-T. Chang, J.
1068 Sterneckert, P. Tomancak, A.A. Hyman, and S. Alberti. 2018. RNA buffers the phase
1069 separation behavior of prion-like RNA binding proteins. *Science.* 360:918–921.
1070 doi:10.1126/science.aar7366.

1071 Majounie, E., A.E. Renton, K. Mok, E.G.P. Dopper, A. Waite, S. Rollinson, A. Chiò, G.
1072 Restagno, N. Nicolaou, J. Simón-Sánchez, J.C. van Swieten, Y. Abramzon, J.O. Johnson,
1073 M. Sendtner, R. Pamphlett, R.W. Orrell, S. Mead, K.C. Sidle, H. Houlden, J.D. Rohrer, K.E.
1074 Morrison, H. Pall, K. Talbot, O. Ansorge, Chromosome 9-ALS/FTD Consortium, French
1075 research network on FTLD/FTLD/ALS, ITALSGEN Consortium, D.G. Hernandez, S.
1076 Arepalli, M. Sabatelli, G. Mora, M. Corbo, F. Giannini, A. Calvo, E. Englund, G. Borghero,
1077 G.L. Floris, A.M. Remes, H. Laaksovirta, L. McCluskey, J.Q. Trojanowski, V.M. Van Deerlin,
1078 G.D. Schellenberg, M.A. Nalls, V.E. Drory, C.-S. Lu, T.-H. Yeh, H. Ishiura, Y. Takahashi, S.
1079 Tsuji, I. Le Ber, A. Brice, C. Drepper, N. Williams, J. Kirby, P. Shaw, J. Hardy, P.J. Tienari,
1080 P. Heutink, H.R. Morris, S. Pickering-Brown, and B.J. Traynor. 2012. Frequency of the
1081 C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and
1082 frontotemporal dementia: a cross-sectional study. *Lancet Neurol.* 11:323–330.
1083 doi:10.1016/S1474-4422(12)70043-1.

1084 Mann, J.R., A.M. Gleixner, J.C. Mauna, E. Gomes, M.R. DeChellis-Marks, P.G. Needham, K.E.
1085 Copley, B. Hurtle, B. Portz, N.J. Pyles, L. Guo, C.B. Calder, Z.P. Wills, U.B. Pandey, J.K.
1086 Kofler, J.L. Brodsky, A. Thathiah, J. Shorter, and C.J. Donnelly. 2019. RNA Binding
1087 Antagonizes Neurotoxic Phase Transitions of TDP-43. *Neuron.*
1088 doi:10.1016/j.neuron.2019.01.048.

1089 May, S., D. Hornburg, M.H. Schludi, T. Arzberger, K. Rentzsch, B.M. Schwenk, F.A. Grässer, K.
1090 Mori, E. Kremmer, J. Banzhaf-Strathmann, M. Mann, F. Meissner, and D. Edbauer. 2014.
1091 C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity
1092 and Unc119 sequestration. *Acta Neuropathol.* 128:485–503. doi:10.1007/s00401-014-1329-
1093 4.

1094 Melamed, Z., J. López-Erauskin, M.W. Baughn, O. Zhang, K. Drenner, Y. Sun, F. Freyermuth,
1095 M.A. McMahon, M.S. Beccari, J.W. Artates, T. Ohkubo, M. Rodriguez, N. Lin, D. Wu, C.F.
1096 Bennett, F. Rigo, S. Da Cruz, J. Ravits, C. Lagier-Tourenne, and D.W. Cleveland. 2019.
1097 Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent
1098 neurodegeneration. *Nat Neurosci.* 22:180–190. doi:10.1038/s41593-018-0293-z.

1099 Mohr, D., S. Frey, T. Fischer, T. Gütler, and D. Görlich. 2009. Characterisation of the passive
1100 permeability barrier of nuclear pore complexes. *EMBO J.* 28:2541–2553.
1101 doi:10.1038/emboj.2009.200.

1102 Nachury, M.V., and K. Weis. 1999. The direction of transport through the nuclear pore can be
1103 inverted. *Proc. Natl. Acad. Sci. U.S.A.* 96:9622–9627. doi:10.1073/pnas.96.17.9622.

1104 Nesvizhskii, A.I., A. Keller, E. Kolker, and R. Aebersold. 2003. A statistical model for identifying
1105 proteins by tandem mass spectrometry. *Anal. Chem.* 75:4646–4658.
1106 doi:10.1021/ac0341261.

1107 Neumann, M., D.M. Sampathu, L.K. Kwong, A.C. Truax, M.C. Micsenyi, T.T. Chou, J. Bruce, T.
1108 Schuck, M. Grossman, C.M. Clark, L.F. McCluskey, B.L. Miller, E. Masliah, I.R. Mackenzie,
1109 H. Feldman, W. Feiden, H.A. Kretzschmar, J.Q. Trojanowski, and V.M.Y. Lee. 2006.
1110 Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral
1111 Sclerosis. *Science*. 314:130–133. doi:10.1126/science.1134108.

1112 Nguyen, A.W., and P.S. Daugherty. 2005. Evolutionary optimization of fluorescent proteins for
1113 intracellular FRET. *Nat Biotechnol*. 23:355–360. doi:10.1038/nbt1066.

1114 Nordin, A., C. Akimoto, A. Wuolikainen, H. Alstermark, P. Jonsson, A. Birve, S.L. Marklund, K.S.
1115 Graffmo, K. Forsberg, T. Brännström, and P.M. Andersen. 2015. Extensive size variability of
1116 the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18
1117 patients with ALS or FTD. *Human Molecular Genetics*. 24:3133–3142.
1118 doi:10.1093/hmg/ddv064.

1119 Onischenko, E., J.H. Tang, K.R. Andersen, K.E. Knockenhauer, P. Vallotton, C.P. Derrer, A.
1120 Kralt, C.F. Mugler, L.Y. Chan, T.U. Schwartz, and K. Weis. 2017. Natively Unfolded FG
1121 Repeats Stabilize the Structure of the Nuclear Pore Complex. *Cell*. 171:904–917.e19.
1122 doi:10.1016/j.cell.2017.09.033.

1123 Patel, S.S., and M.F. Rexach. 2008. Discovering novel interactions at the nuclear pore complex
1124 using bead halo: a rapid method for detecting molecular interactions of high and low affinity
1125 at equilibrium. *Mol. Cell Proteomics*. 7:121–131. doi:10.1074/mcp.M700407-MCP200.

1126 Patel, S.S., B.J. Belmont, J.M. Sante, and M.F. Rexach. 2007. Natively unfolded nucleoporins
1127 gate protein diffusion across the nuclear pore complex. *Cell*. 129:83–96.
1128 doi:10.1016/j.cell.2007.01.044.

1129 Pemberton, L.F., and B.M. Paschal. 2005. Mechanisms of receptor-mediated nuclear import
1130 and nuclear export. *Traffic*. 6:187–198. doi:10.1111/j.1600-0854.2005.00270.x.

1131 Pinarbasi, E.S., T. Cağatay, H.Y.J. Fung, Y.C. Li, Y.M. Chook, and P.J. Thomas. 2018. Active
1132 nuclear import and passive nuclear export are the primary determinants of TDP-43
1133 localization. *Sci Rep*. 8:7083. doi:10.1038/s41598-018-25008-4.

1134 Piovesan, D., F. Tabaro, L. Paladin, M. Necci, I. Micetic, C. Camilloni, N. Davey, Z. Dosztányi,
1135 B. Mészáros, A.M. Monzon, G. Parisi, E. Schad, P. Sormanni, P. Tompa, M. Vendruscolo,
1136 W.F. Vranken, and S.C.E. Tosatto. 2018. MobiDB 3.0: more annotations for intrinsic
1137 disorder, conformational diversity and interactions in proteins. *Nucleic Acids Res*. 46:D471–
1138 D476. doi:10.1093/nar/gkx1071.

1139 Qamar, S., G. Wang, S.J. Randle, F.S. Ruggeri, J.A. Varela, J.Q. Lin, E.C. Phillips, A.
1140 Miyashita, D. Williams, F. Ströhl, W. Meadows, R. Ferry, V.J. Dardov, G.G. Tartaglia, L.A.
1141 Farrer, G.S. Kaminski Schierle, C.F. Kaminski, C.E. Holt, P.E. Fraser, G. Schmitt-Ulms, D.
1142 Klenerman, T. Knowles, M. Vendruscolo, and P. St George-Hyslop. 2018. FUS Phase
1143 Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π
1144 Interactions. *Cell*. 173:720–734.e15. doi:10.1016/j.cell.2018.03.056.

1145 Reichelt, R., A. Holzenburg, E.L. Buhle, M. Jarnik, A. Engel, and U. Aebi. 1990. Correlation
1146 between structure and mass distribution of the nuclear pore complex and of distinct pore
1147 complex components. *J Cell Biol*. 110:883–894. doi:10.1083/jcb.110.4.883.

1148 Renton, A.E., E. Majounie, A. Waite, J. Simón-Sánchez, S. Rollinson, J.R. Gibbs, J.C.
1149 Schymick, H. Laaksovirta, J.C. van Swieten, L. Myllykangas, H. Kalimo, A. Paetau, Y.
1150 Abramzon, A.M. Remes, A. Kaganovich, S.W. Scholz, J. Duckworth, J. Ding, D.W. Harmer,
1151 D.G. Hernandez, J.O. Johnson, K. Mok, M. Ryten, D. Trabzuni, R.J. Guerreiro, R.W. Orrell,
1152 J. Neal, A. Murray, J. Pearson, I.E. Jansen, D. Sonderman, H. Seelaar, D. Blake, K. Young,
1153 N. Halliwell, J.B. Callister, G. Toulson, A. Richardson, A. Gerhard, J. Snowden, D. Mann, D.
1154 Neary, M.A. Nalls, T. Peuralinna, L. Jansson, V.-M. Isoviita, A.-L. Kaivorinne, M. Hölttä-
1155 Vuori, E. Ikonen, R. Sulkava, M. Benatar, J. Wuu, A. Chiò, G. Restagno, G. Borghero, M.
1156 Sabatelli, D. Heckerman, E. Rogaeva, L. Zinman, J.D. Rothstein, M. Sendtner, C. Drepper,
1157 E.E. Eichler, C. Alkan, Z. Abdullaev, S.D. Pack, A. Dutra, E. Pak, J. Hardy, A. Singleton,

1158 N.M. Williams, P. Heutink, S. Pickering-Brown, H.R. Morris, P.J. Tienari, and B.J. Traynor.
1159 2011. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome
1160 9p21-Linked ALS-FTD. *Neuron*. 72:257–268. doi:10.1016/j.neuron.2011.09.010.

1161 Ribbeck, K., and D. Görlich. 2002. The permeability barrier of nuclear pore complexes appears
1162 to operate via hydrophobic exclusion. *EMBO J.* 21:2664–2671.
1163 doi:10.1093/emboj/21.11.2664.

1164 Rondón, A.G., S. Jimeno, and A. Aguilera. 2010. The interface between transcription and
1165 mRNP export: from THO to THSC/TREX-2. *Biochim. Biophys. Acta*. 1799:533–538.
1166 doi:10.1016/j.bbagrm.2010.06.002.

1167 Sennepin, A.D., S. Charpentier, T. Normand, C. Sarré, A. Legrand, and L.M. Mollet. 2009.
1168 Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate,
1169 hydrogen peroxide. *Analytical Biochemistry*. 393:129–131. doi:10.1016/j.ab.2009.06.004.

1170 Shi, K.Y., E. Mori, Z.F. Nizami, Y. Lin, M. Kato, S. Xiang, L.C. Wu, M. Ding, Y. Yu, J.G. Gall,
1171 and S.L. McKnight. 2017. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat
1172 expansion block nuclear import and export. *Proc. Natl. Acad. Sci. U.S.A.* 201620293.
1173 doi:10.1073/pnas.1620293114.

1174 Siomi, H., and G. Dreyfuss. 1995. A nuclear localization domain in the hnRNP A1 protein. *J Cell
1175 Biol.* 129:551–560. doi:10.1083/jcb.129.3.551.

1176 Soderholm, J.F., S.L. Bird, P. Kalab, Y. Sampathkumar, K. Hasegawa, M. Uehara-Bingen, K.
1177 Weis, and R. Heald. 2011. Importazole, a small molecule inhibitor of the transport receptor
1178 importin- β . *ACS chemical biology*. 6:700–708. doi:10.1021/cb2000296.

1179 Taylor, T., J.-P. Denson, and D. Esposito. 2017. Optimizing Expression and Solubility of
1180 Proteins in *E. coli* Using Modified Media and Induction Parameters. *Methods Mol. Biol.*
1181 1586:65–82. doi:10.1007/978-1-4939-6887-9_5.

1182 Timney, B.L., B. Raveh, R. Mironksa, J.M. Trivedi, S.J. Kim, D. Russel, S.R. Wente, A. Sali, and
1183 M.P. Rout. 2016. Simple rules for passive diffusion through the nuclear pore complex. *The
1184 Journal of Cell Biology*. 215:57–76. doi:10.1083/jcb.201601004.

1185 van Blitterswijk, M., M.C. Baker, M. DeJesus-Hernandez, R. Ghidoni, L. Benussi, E. Finger, G.-
1186 Y.R. Hsiung, B.J. Kelley, M.E. Murray, N.J. Rutherford, P.E. Brown, T. Ravenscroft, B.
1187 Mullen, P.E.A. Ash, K.F. Bieniek, K.J. Hatanpaa, A. Karydas, E.M. Wood, G. Coppola, E.H.
1188 Bigio, C. Lippa, M.J. Strong, T.G. Beach, D.S. Knopman, E.D. Huey, M. Mesulam, T. Bird,
1189 C.L. White, A. Kertesz, D.H. Geschwind, V.M. Van Deerlin, R.C. Petersen, G. Binetti, B.L.
1190 Miller, L. Petrucelli, Z.K. Wszolek, K.B. Boylan, N.R. Graff-Radford, I.R. Mackenzie, B.F.
1191 Boeve, D.W. Dickson, and R. Rademakers. 2013. C9ORF72 repeat expansions in cases
1192 with previously identified pathogenic mutations. *Neurology*. 81:1332–1341.
1193 doi:10.1212/WNL.0b013e3182a8250c.

1194 Vizcaíno, J.A., R.G. Côté, A. Csordas, J.A. Dianes, A. Fabregat, J.M. Foster, J. Griss, E. Alpi,
1195 M. Birim, J. Contell, G. O'Kelly, A. Schoenegger, D. Ovelleiro, Y. Pérez-Riverol, F.
1196 Reisinger, D. Ríos, R. Wang, and H. Hermjakob. 2013. The PRoteomics IDEntifications
1197 (PRIDE) database and associated tools: status in 2013. *Nucleic Acids Res.* 41:D1063–9.
1198 doi:10.1093/nar/gks1262.

1199 Weis, K., U. Ryder, and A.I. Lamond. 1996. The conserved amino-terminal domain of hSRP1
1200 alpha is essential for nuclear protein import. *EMBO J.* 15:1818–1825. doi:10.1002/j.1460-
1201 2075.1996.tb00531.x.

1202 Wen, X., W. Tan, T. Westergard, K. Krishnamurthy, S.S. Markandaiah, Y. Shi, S. Lin, N.A.
1203 Schneider, J. Monaghan, U.B. Pandey, P. Pasinelli, J.K. Ichida, and D. Trott. 2014.
1204 Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic
1205 Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death. *Neuron*. 84:1213–
1206 1225. doi:10.1016/j.neuron.2014.12.010.

1207 Woerner, A.C., F. Frottin, D. Hornburg, L.R. Feng, F. Meissner, M. Patra, J. Tatzelt, M. Mann,
1208 K.F. Winklhofer, F.U. Hartl, and M.S. Hipp. 2016. Cytoplasmic protein aggregates interfere

1209 with nucleocytoplasmic transport of protein and RNA. *Science*. 351:173–176.
1210 doi:10.1126/science.aad2033.

1211 Yamada, J., J.L. Phillips, S. Patel, G. Goldfien, A. Calestagne-Morelli, H. Huang, R. Reza, J.
1212 Acheson, V.V. Krishnan, S. Newsam, A. Gopinathan, E.Y. Lau, M.E. Colvin, V.N. Uversky,
1213 and M.F. Rexach. 2010. A bimodal distribution of two distinct categories of intrinsically
1214 disordered structures with separate functions in FG nucleoporins. *Molecular & Cellular
1215 Proteomics*. 9:2205–2224. doi:10.1074/mcp.M000035-MCP201.

1216 Yin, S., R. Lopez-Gonzalez, R.C. Kunz, J. Gangopadhyay, C. Borukha, S.P. Gygi, F.-B. Gao,
1217 and R. Reed. 2017. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2
1218 snRNP to Cause Mis-splicing in ALS/FTD Patients. *Cell Reports*. 19:2244–2256.
1219 doi:10.1016/j.celrep.2017.05.056.

1220 Yoshizawa, T., R. Ali, J. Jiou, H.Y.J. Fung, K.A. Burke, S.J. Kim, Y. Lin, W.B. Peebles, D.
1221 Saltzberg, M. Soniat, J.M. Baumhardt, R. Oldenbourg, A. Sali, N.L. Fawzi, M.K. Rosen, and
1222 Y.M. Chook. 2018. Nuclear Import Receptor Inhibits Phase Separation of FUS through
1223 Binding to Multiple Sites. *Cell*. 173:693–705.e22. doi:10.1016/j.cell.2018.03.003.

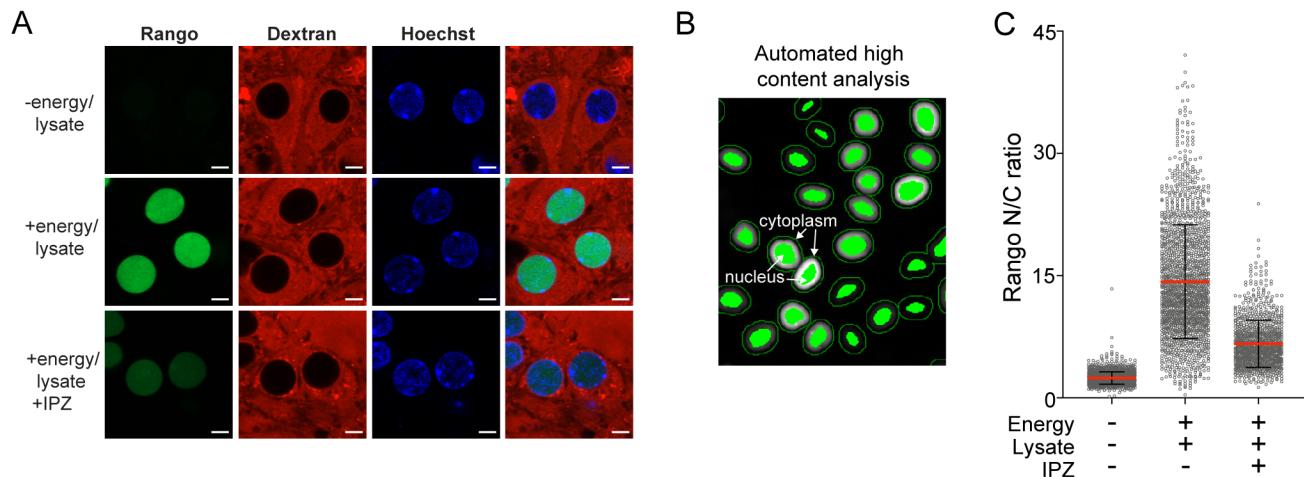
1224 Zhang, K., C.J. Donnelly, A.R. Haeusler, J.C. Grima, J.B. Machamer, P. Steinwald, E.L. Daley,
1225 S.J. Miller, K.M. Cunningham, S. Vidensky, S. Gupta, M.A. Thomas, I. Hong, S.-L. Chiu,
1226 R.L. Huganir, L.W. Ostrow, M.J. Matunis, J. Wang, R. Sattler, T.E. Lloyd, and J.D.
1227 Rothstein. 2015. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.
1228 *Nature*. 525:56–61. doi:10.1038/nature14973.

1229 Zhang, Y.-J., L. Guo, P.K. Gonzales, T.F. Gendron, Y. Wu, K. Jansen-West, A.D. O'Raw, S.R.
1230 Pickles, M. Prudencio, Y. Carlomagno, M.A. Gachechiladze, C. Ludwig, R. Tian, J. Chew,
1231 M. DeTure, W.-L. Lin, J. Tong, L.M. Daugherty, M. Yue, Y. Song, J.W. Andersen, M.
1232 Castanedes-Casey, A. Kurti, A. Datta, G. Antognetti, A. McCampbell, R. Rademakers, B.
1233 Oskarsson, D.W. Dickson, M. Kampmann, M.E. Ward, J.D. Fryer, C.D. Link, J. Shorter, and
1234 L. Petrucelli. 2019. Heterochromatin anomalies and double-stranded RNA accumulation
1235 underlie C9orf72 poly(PR) toxicity. *Science*. 363:eaav2606. doi:10.1126/science.aav2606.

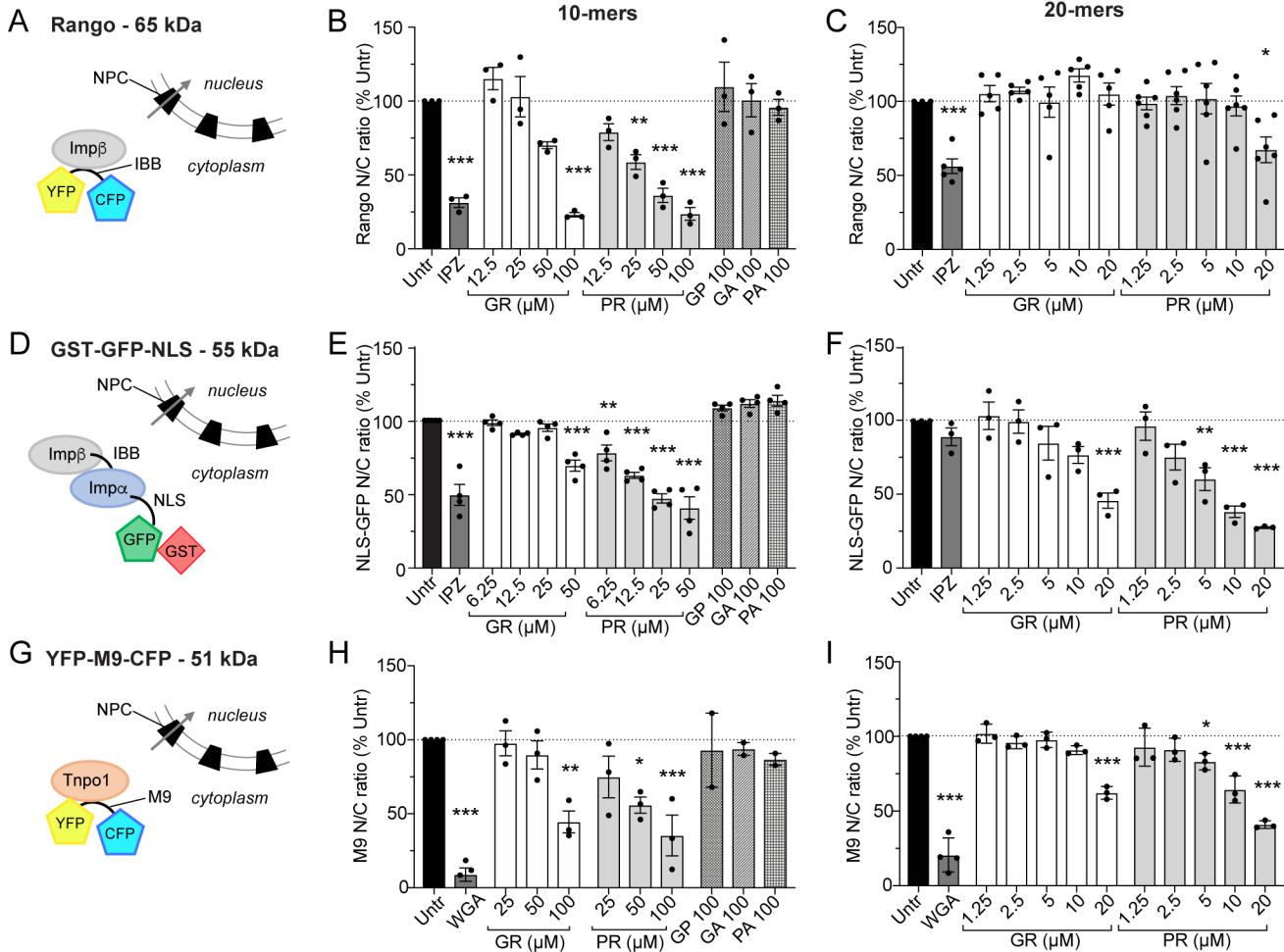
1236 Zhang, Y.-J., T.F. Gendron, J.C. Grima, H. Sasaguri, K. Jansen-West, Y.-F. Xu, R.B. Katzman,
1237 J. Gass, M.E. Murray, M. Shinohara, W.-L. Lin, A. Garrett, J.N. Stankowski, L. Daugherty, J.
1238 Tong, E.A. Perkerson, M. Yue, J. Chew, M. Castanedes-Casey, A. Kurti, Z.S. Wang, A.M.
1239 Liesinger, J.D. Baker, J. Jiang, C. Lagier-Tourenne, D. Edbauer, D.W. Cleveland, R.
1240 Rademakers, K.B. Boylan, G. Bu, C.D. Link, C.A. Dickey, J.D. Rothstein, D.W. Dickson,
1241 J.D. Fryer, and L. Petrucelli. 2016. C9ORF72 poly(GA) aggregates sequester and impair
1242 HR23 and nucleocytoplasmic transport proteins. *Nat Neurosci*. doi:10.1038/nn.4272.

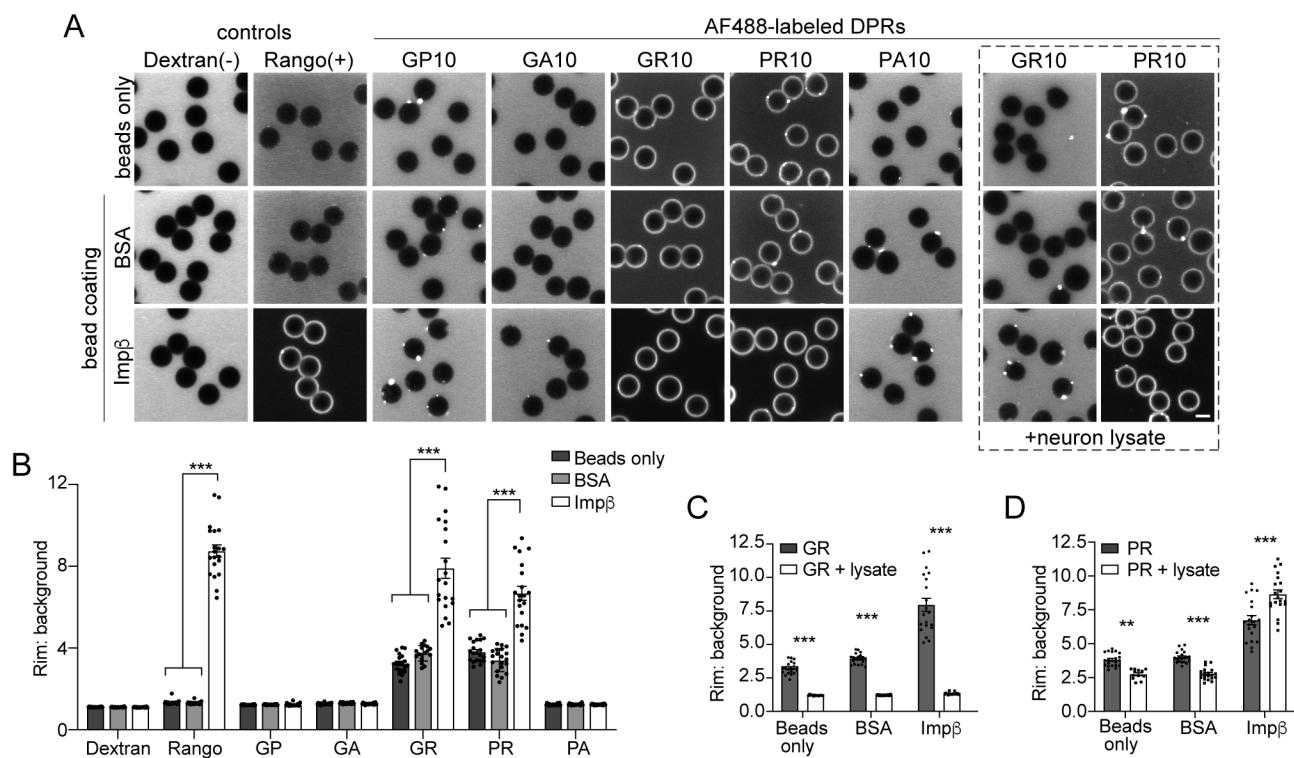

1243 Zhang, Y.-J., T.F. Gendron, M.T.W. Ebbert, A.D. O'Raw, M. Yue, K. Jansen-West, X. Zhang, M.
1244 Prudencio, J. Chew, C.N. Cook, L.M. Daugherty, J. Tong, Y. Song, S.R. Pickles, M.
1245 Castanedes-Casey, A. Kurti, R. Rademakers, B. Oskarsson, D.W. Dickson, W. Hu, A.D.
1246 Gitler, J.D. Fryer, and L. Petrucelli. 2018. Poly(GR) impairs protein translation and stress
1247 granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral
1248 sclerosis. *Nature Medicine* 2018. 24:1136–1142. doi:10.1038/s41591-018-0071-1.

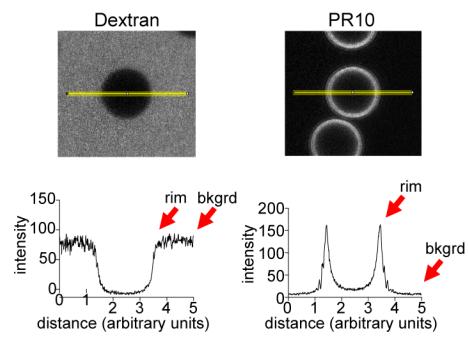
1249 Zhu, Y., T. Liu, Z. Madden, S.A. Yuzwa, K. Murray, S. Cecioni, N. Zachara, and D.J. Vocadlo.
1250 2015. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and
1251 maintenance of the pore selectivity filter. *J Mol Cell Biol*. 8:mjv033–16.
1252 doi:10.1093/jmcb/mjv033.

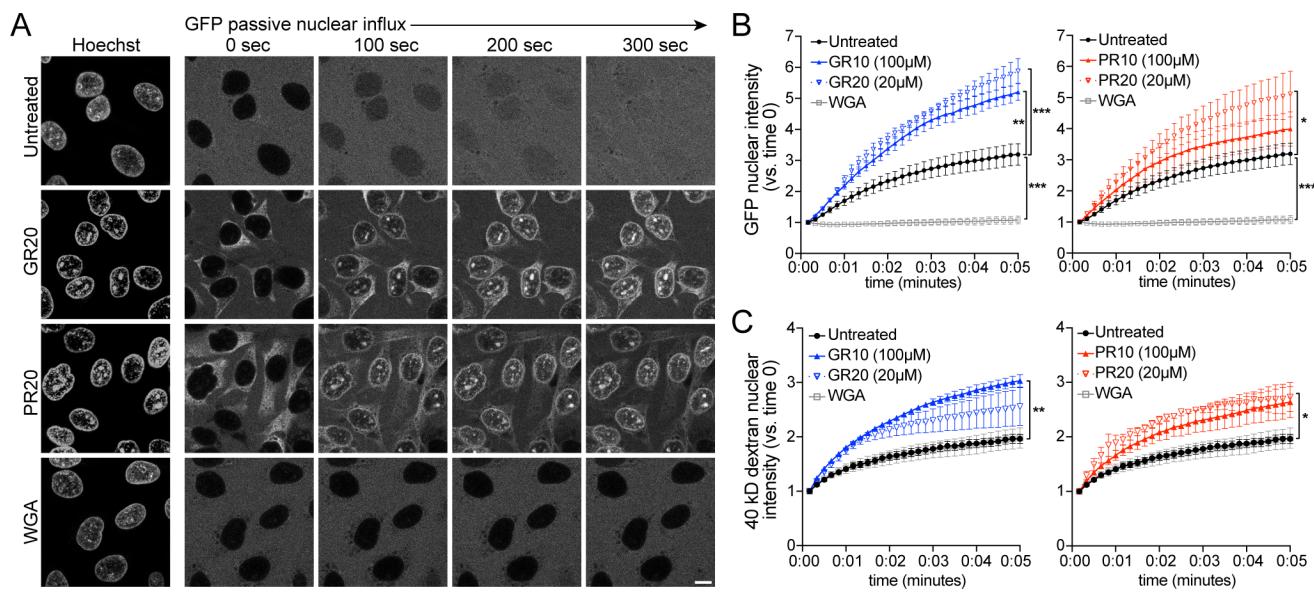

1253 Zu, T., Y. Liu, M. Bañez-Coronel, T. Reid, O. Pletnikova, J. Lewis, T.M. Miller, M.B. Harms, A.E.
1254 Falchook, S.H. Subramony, L.W. Ostrow, J.D. Rothstein, J.C. Troncoso, and L.P.W.
1255 Ranum. 2013. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and
1256 frontotemporal dementia. *Proceedings of the National Academy of Sciences*. 110:E4968–
1257 77. doi:10.1073/pnas.1315438110.

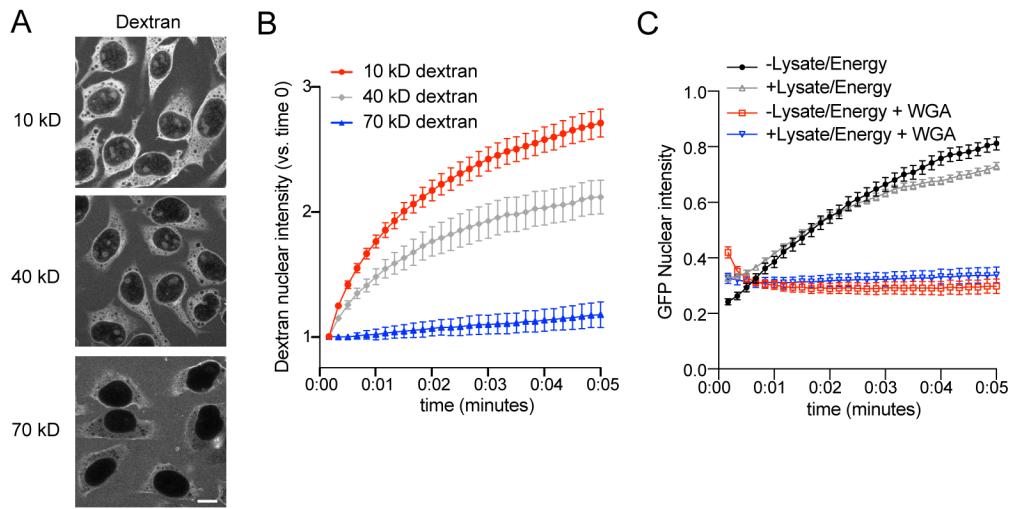
1258

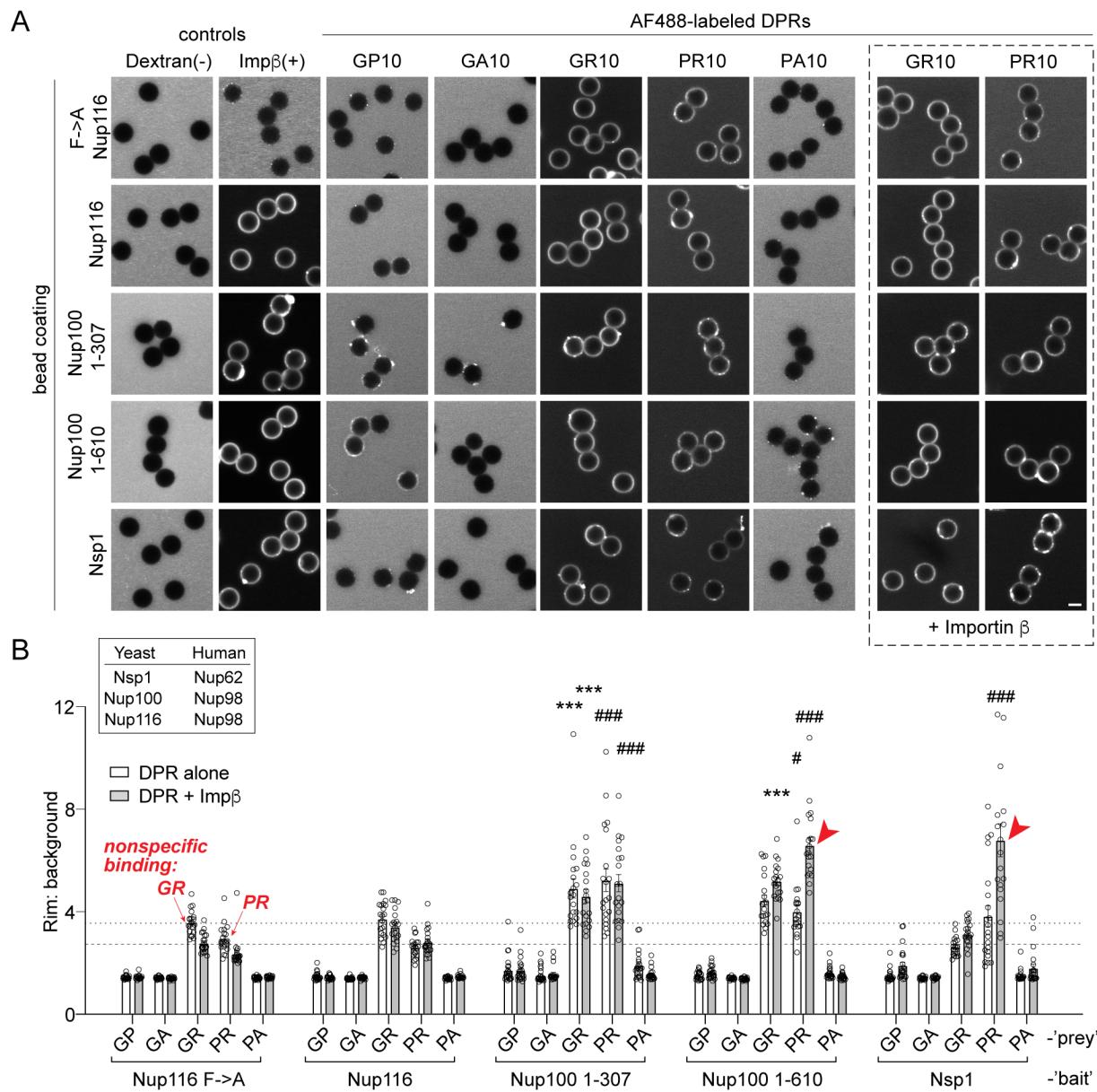

Figure 1

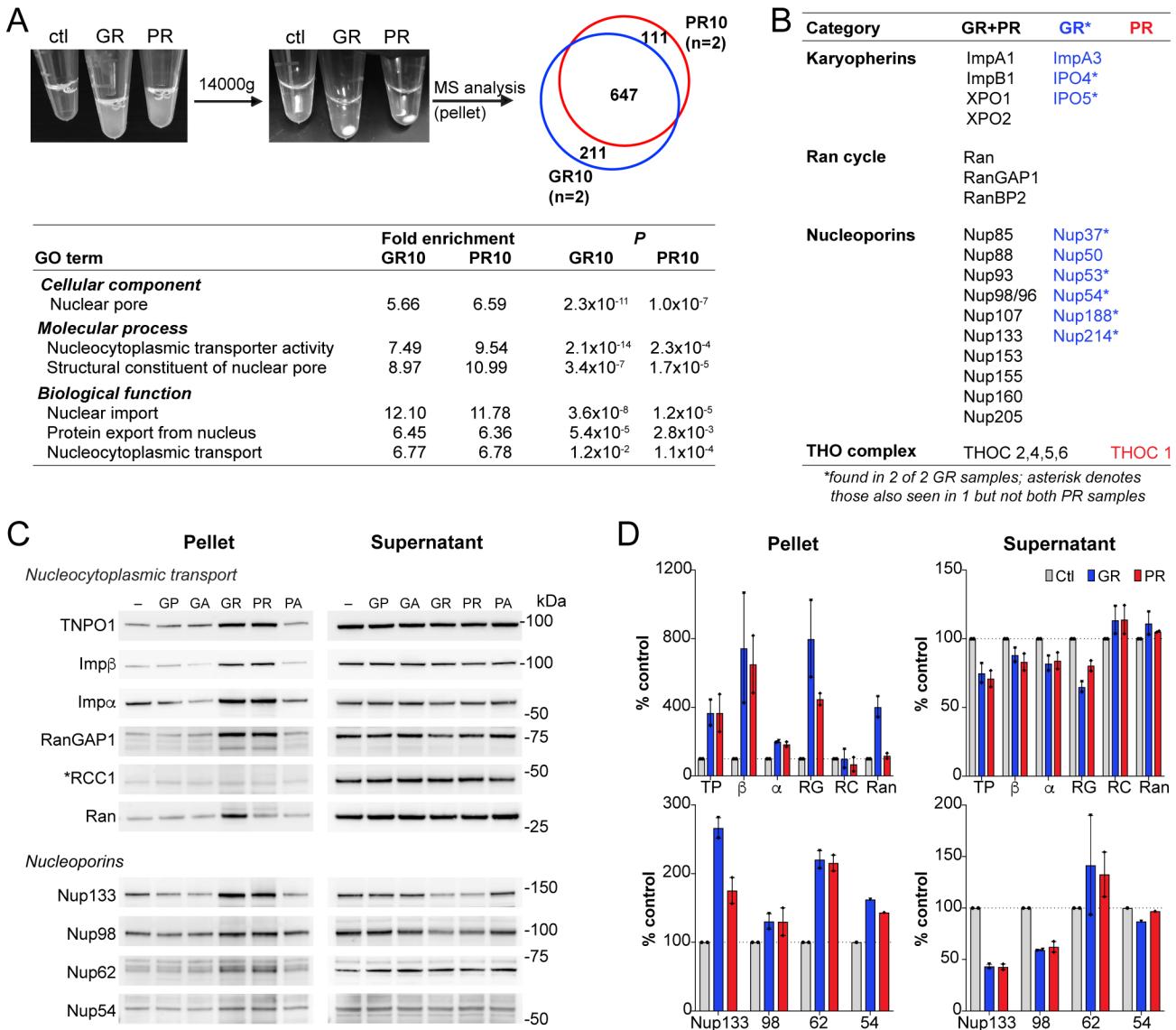

Figure 1 - figure supplement 1

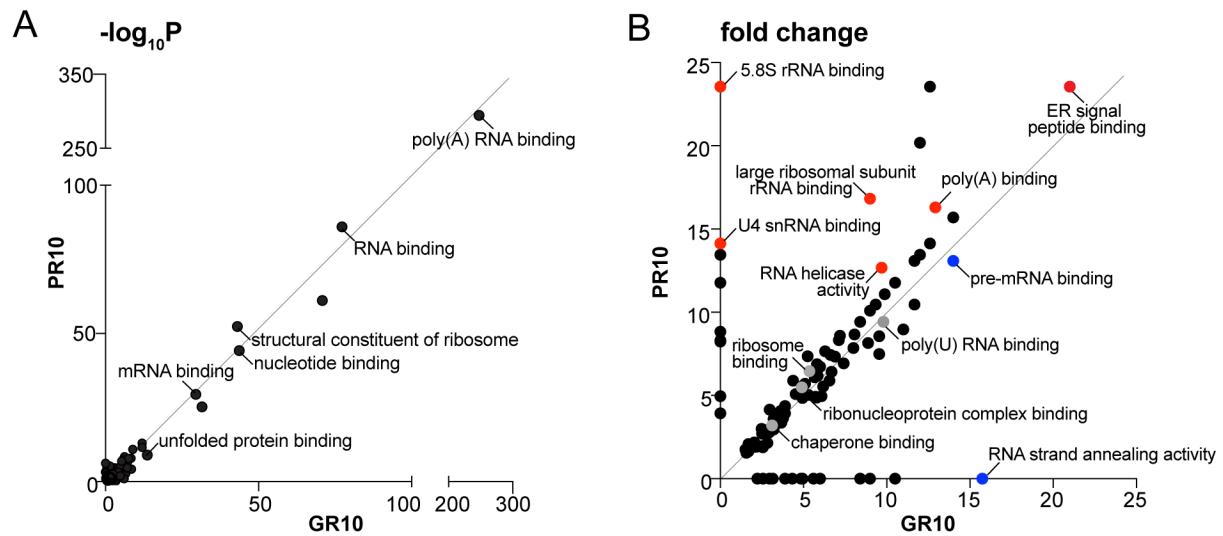

Figure 1 - figure supplement 2

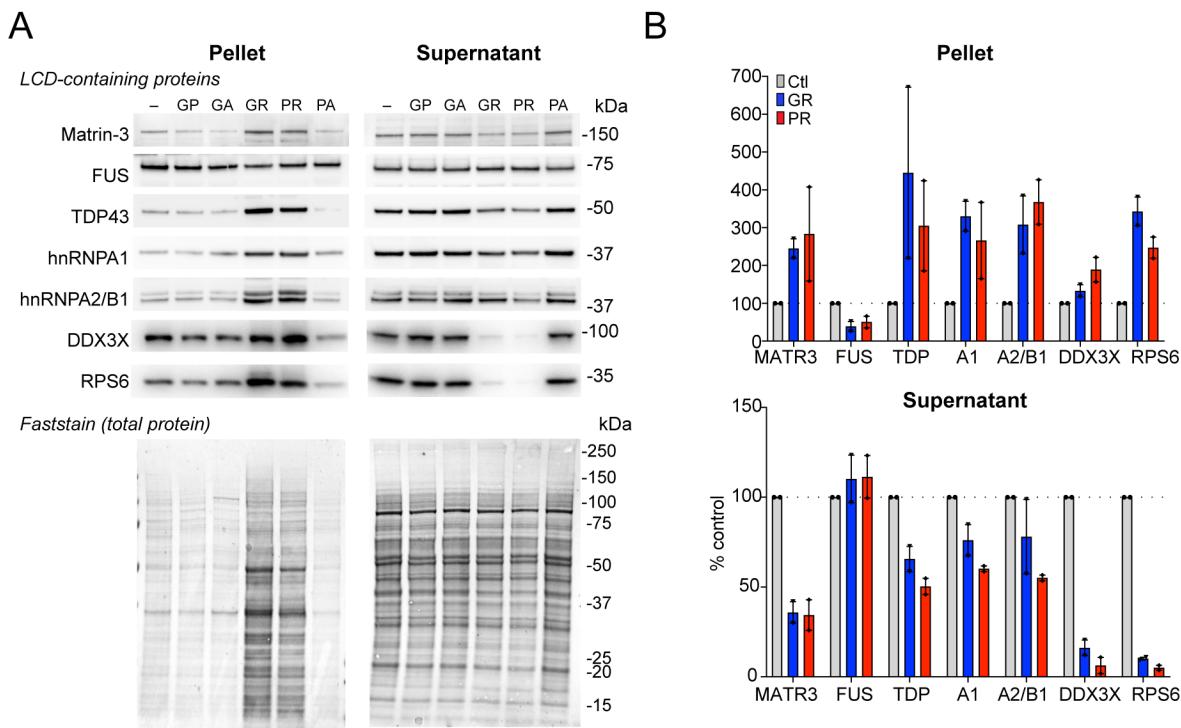

Figure 2


Figure 2 - figure supplement 1


Figure 3


Figure 3 - figure supplement 1


Figure 3 - figure supplement 2


Figure 4

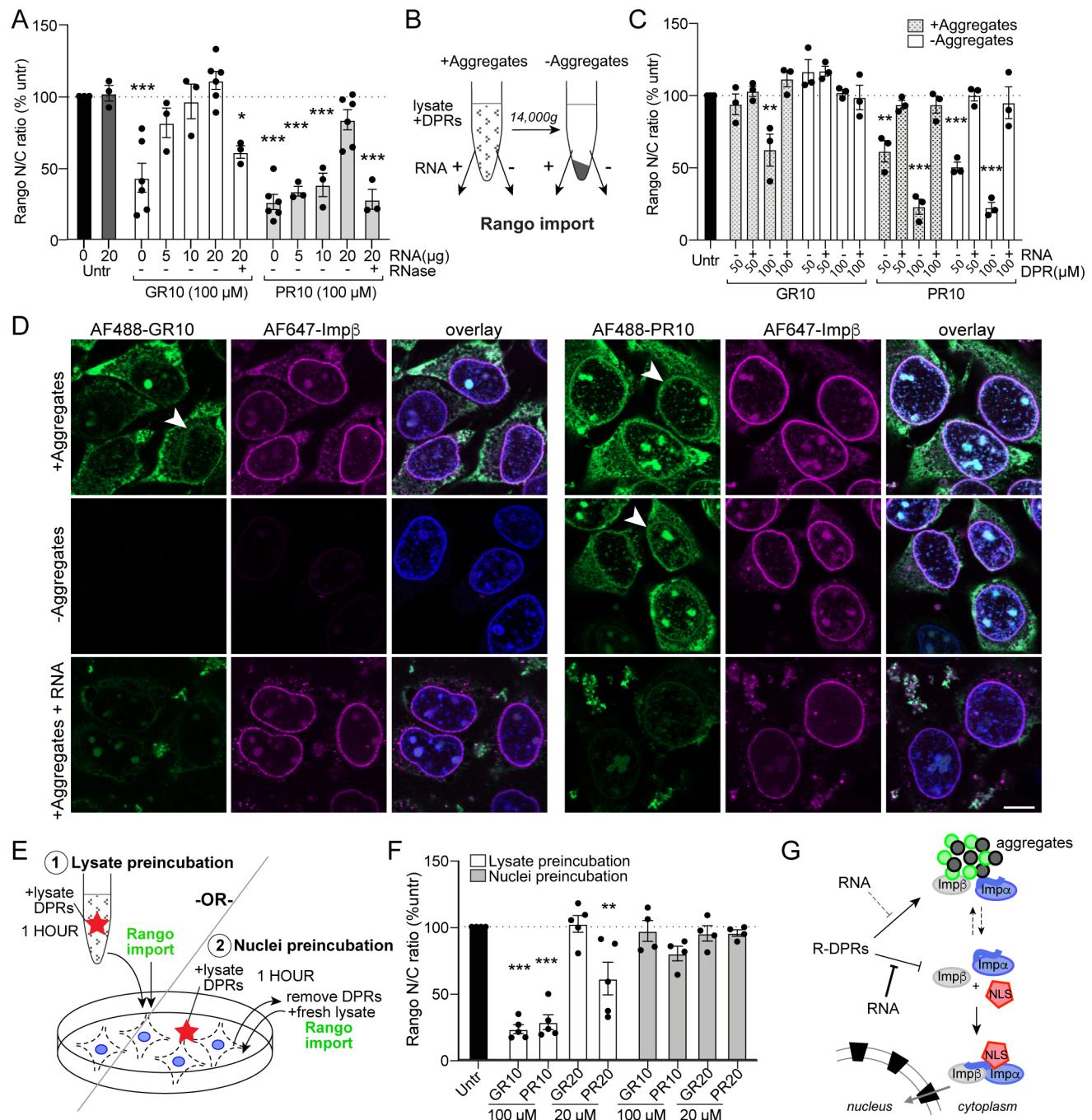

Figure 4 - figure supplement 1

Figure 4 - figure supplement 2

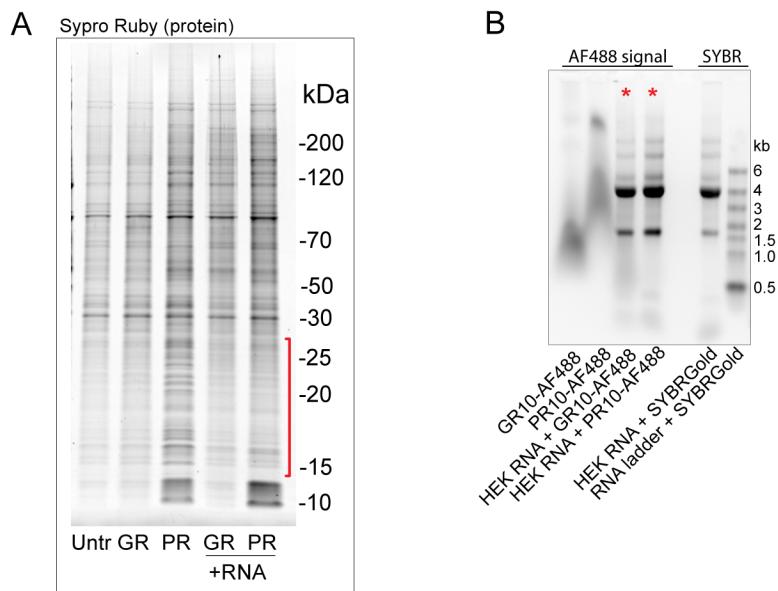

Figure 5

Figure 5 - figure supplement 1

Figure 5 - figure supplement 2

