

1 Title: Genome sequence and characterisation of coliphage vB_Eco_SLUR29
2
3 Running title: coliphage vB_Eco_SLUR29
4
5 Authors: Ibrahim Besler¹, Pavelas Sazinas², Christian Harrison¹, Lucy Gannon¹, Tamsin Redgwell³,
6 Slawomir Michniewski², Steven P. Hooton⁴, Jon L. Hobman⁴ & Andrew Millard¹
7
8
9 1 Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
10 2 Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
11 3 School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
12 4 School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington,
13 Leicestershire, LE12 5RD, UK
14
15
16 Keywords : coliphage, phages , genomes
17

18 Authorship statement

19

20 JH and AM conceived the idea. IB, PS, CH, LG, TR, SM, SH were involved in practical aspects of ,
21 sample collection, phage isolation, genome sequencing, one step growth experiments, virulence
22 assays and analysis of raw data . LG, CH, TR and AM wrote the manuscript. All authors have
23 reviewed and approved of the manuscript prior to submission.

24

25 Author Disclosure statements

26

27 *No competing financial interests exist for any authors*

28 **Abstract**

29

30 Bacteriophage that infect *Escherichia coli* are relatively easily isolated, with greater than 600
31 coliphage genomes sequenced to date. Despite this there is still much to be discovered about the
32 diversity of coliphage genomes. Within this study we isolated a coliphage from cattle slurry
33 collected from a farm in rural England. Transmission electron microscopy identified the phage as
34 member of the *Siphoviridae* family. Phylogenetic analysis and comparative genomics further placed
35 it within the subfamily *Tunavirinae* and forms part of a new genus. Characterisation of the lytic
36 properties reveals that it is rapidly able to lyse its host when infected at high multiplicity of
37 infection, but not at low multiplicity of infection.

38 .

39

40

41 **Introduction**

42

43 Bacteriophages infecting *Escherichia coli* (coliphages) are readily isolated from a variety of
44 sources, with > 600 complete or near complete coliphage genomes publicly available (May 2019).
45 Coliphage genomes range in size from 3.39 kb ¹ to 386.44 kb ² and are represented in a number of
46 phage families including the *Leviviridae*, *Siphoviridae*, *Podoviridae*, *Myoviridae* and the
47 *Microviridae*. Currently within these families, there are 37 genera and 157 species that contain
48 coliphages, with the many taxa being poorly sampled ³. Therefore, there is still much to be
49 discovered by the continued isolation and sequencing of coliphage, with many new phage types and
50 taxa still to be discovered ³. Building on our previous research that has isolated coliphages from
51 animal slurries ^{4,5}, we aimed to further isolate phage from this system and characterise the
52 phenotypic properties.

53

54 **Materials and Methods**

55 Bacteriophage vB_Eco_SLUR29 was isolated from cattle slurry that was collected from a farm in
56 the East Midlands, in the United Kingdom. The double-agar overlay method was used for phage
57 isolation and the subsequent three rounds of purification using *E. coli* K-12 MG1655 as host, as has
58 been described previously. High titre lysate was produced by infection of ~50 ml of exponentially
59 growing *E. coli* MG1655 and incubated at 37°C with shaking at 300 rpm, until lysis had occurred.
60 Phage growth parameters (burst size, eclipse and latent period) were determined by performing one-
61 step growth experiments as described by Hyman and Abedon (2009), with free phages being
62 removed from the culture by pelleting the host cells via centrifugation at 10,000 g for 1 min,
63 removing the supernatant and re-suspending cells in fresh medium ⁶. Three independent replicates
64 were carried out for each experiment. The virulence index was calculated using the method
65 described by Storms and Sauvageau (2019) using a SPECTROstar Omega (BMG) plate reader. For
66 genome sequencing

67 DNA was extracted from 1 ml of bacteriophage lysate as previously described ⁷. One nanogram of
68 DNA was used as input for Nextera XT library preparation, following the manufacturer's
69 instructions. Sequencing was performed on an Illumina MiSeq (250 bp paired-end) with both the
70 genome sequence (accession: LR596614) and raw reads (accession: ERR3385641) submitted to the
71 ENA under Project accession: PRJEB32519

72

73 **Bioinformatics and comparative genomics**

74 Reads from sequencing were trimmed with Sickle v1.33 using default parameters ⁸. Assembly was
75 carried out with SPAdes v.3.6.0 using “--only-assembler” option ⁹. Genome assembly errors were

76 corrected with two rounds of checking and polishing with Pilon v1.23 using default parameters ¹⁰.
77 The genome was annotated with Prokka 1.12 using a protein database constructed from accession
78 LR027385 ¹¹. The start of the genome was arbitrarily set at the gene encoding for the large
79 terminase subunit, for ease of comparison. For rapid comparison against all other phage genomes a
80 Mash database was constructed of all complete bacteriophage genomes available at the time of
81 analysis (~ 11,000, April 2019) using the following Mash setting: “–s 10000” using a previously
82 described method ¹². Closely related genomes were identified using this database and the `dist`
83 function. From this initial set of genomes, the *terL* gene was used to construct a phylogenetic tree
84 using IQ-TREE¹³. Following this, a more detailed analysis of the most closely related genomes was
85 carried out. Phage genomes that were found to be similar were re-annotated with Prokka to ensure
86 consistent gene calling between genomes for comparative analysis ¹¹ and the
87 GET_HOMOLOGUES pipeline used to identify core genes ¹⁴. For calculation of phage average
88 nucleotide identity, pyani was used with default settings ¹⁵. Core gene analysis for phages within
89 the putative genus *Swanvirus* was carried out with ROARY using “--e --mafft -p 32 -i 90” ¹⁶.

90

91 **Transmission Electron Microscopy**

92 TEM was carried out at the University of Leicester Core Biotechnology Services Electron
93 Microscopy using a previously described method ¹². Digital images were collected with a
94 Megaview III digital camera using iTEM software. Phage images were processed in ImageJ using
95 the measure tool, with the scale bar present used as a calibration to measure phage particle size ¹⁷.
96 The data presented in the mean of 15 phage particles.

97

98 **Results**

99 Bacteriophage vB_Eco_SLUR29 was isolated from animal slurry collected from a farm in the East
100 Midlands, United Kingdom using *E. coli* K-12 MG1655 as a host. The plaque morphology was
101 small (< 3 mm) clear plaques, suggestive of an obligately lytic phage. Imaging of phage
102 vB_Eco_SLUR29, using transmission electron microscopy, revealed a polyhedral head with a long
103 flexible non-contractile tail. The head was 57 nm (\pm 2.8) and 56.7 nm (\pm 6.7) in width and length
104 respectively, with a tail that was 12 nm (\pm 1.4) wide and 142 nm (\pm 23.2) long. The long non-
105 contractile tail allowed its classification within the *Siphoviridae* and the head length:width ratio
106 further classified vB_Eco_SLUR29 within subgroup B1 ¹⁸ (Fig. 1A).

107

108

109 The lytic properties of the phage vB_Eco_SLUR29 were determined using a one-step experiment
110 (Fig 1B). The latent period was determined to be ~ 21 mins, the eclipse period 17 mins, with a burst

111 size of 25 (+/-6). To further characterise the infection properties, killing curves were used to
112 investigate the ability of vB_Eco_SLUR29 to kill its host over a range of MOIs and also determine
113 the recently described virulence index ¹⁹. At an MOI of 1, there was rapid lysis of the culture with
114 near complete lysis after 100 minutes, followed by a steady increase in growth after 300 minutes.
115 When a very low MOI of 1×10^{-5} or lower was used, these cultures displayed growth comparable to
116 an un-infected control until the onset of lysis was observed at ~300 minutes (MOI 1×10^{-7}). Post 300
117 minutes a decrease in growth was observed, before a steady increase from 700 minutes onwards.
118 For calculation of the virulence index, the local virulence values at MOIs from 1 to 10^{-7} were
119 determined (Fig 1C). This further highlighted that phage vB_Eco_SLUR29 was inefficient at lysing
120 its host at very low MOIs (Fig 1C). The virulence index of phage vB_Eco_SLUR29 was calculated
121 to be 0.37 at 37 °C in LB medium.

122

123 **Genome Sequencing**

124 To further classify vB_Eco_SLUR29 beyond morphological similarity to other Siphoviruses, the
125 genome of vB_Eco_SLUR29 was sequenced. Genome sequencing resulted in a single chromosome
126 with an average coverage of 426x. The genome was 48,466 bp in length with a G+C content of 44.7
127 %, with 78 predicted genes and no tRNAs. Of the 78 predicted genes, functions could only be
128 predicted for 25 of the proteins they encode and the majority of these were phage structural
129 proteins. Comparing the genome sequence of vB_Eco_SLUR29 against current phage genomes
130 identified that it had the greatest similarity (Mash distance < 0.05) to the coliphages SECphi27,
131 vB_Eco_swan01, vB_EcoS-95, vB_Eco_mar001J1 and vB_Eco_mar002J2. These phages have
132 previously been found to form a monophyletic cluster, which represents a putative genus within the
133 subfamily Tunavirinae ¹². In addition, vB_Eco_SLUR29 showed some similarity to a group of
134 phages infecting *Campylobacter* (Mash distance < 0.25), that are not currently classified by the
135 ICTV.

136

137 A phylogeny was reconstructed using *terL*, with the top 100 hits to the vB_Eco_SLUR29 *terL* based
138 on BLASTP analysis. The resultant phylogeny placed vB_Eco_SLUR29 within the subfamily
139 Tunavirinae, forming a clade with the coliphages vB_Eco_swan01 (acc: LT841304)²⁰ , SECphi27
140 (acc: LT961732) , vB_Eco_mar001J1 (acc: LR027388) , vB_Eco_mar002J2 (acc: LR027385) and
141 vB_EcoS-95 (acc: MF564201)²¹ which is a sister group to the clade containing phage pSF-1, the
142 sole representative of the genus *Hanrervirus* ²². To further clarify the position of
143 vB_Eco_SLUR29 within the subfamily Tunavirinae, a core-gene phylogeny was constructed for
144 phages that were closest to vB_Eco_SLUR29. This included phages of the genera *Tlsvirus*,
145 *Webervirus*, *Hanrervirus* and the large group of unclassified phages that infect *Campylobacter*

146 (Fig 2). Four core genes were identified in this set of phage (representative homologues are:
147 SLUR29_0019, SLUR29_0039, SLUR29_0053 and SLUR29_0059) using the
148 GET_HOMOLOGUES pipeline¹⁴. The resultant four genes were concatenated and used in further
149 phylogenetic analysis. This phylogeny confirmed that phage vB_Eco_SLUR29 formed a clade with
150 the coliphages vB_Eco_swan01 SECphi27, vB_EcoS-95, vB_Eco_mar001J1 and
151 vB_Eco_mar002J2 all of which were isolated on *E.coli* and likely represent a new genus. The
152 *Shigella* infecting phage pSf-1 again grouped with phage A16a, with this cluster being more closely
153 related to the group of unclassified phages infecting *Campylobacter* than it is to vB_Eco_SLUR29.
154

155 Comparative Genomics

156 Phages vB_Eco_SLUR29, vB_Eco_swan01, SECphi27, vB_EcoS-95, vB_Eco_mar001J1,
157 vB_Eco_mar002J2 all have average nucleotide identity (ANI) above 90% with each other and an
158 ANI of < 80% with pSF1 (Fig 3). Whole genome comparisons of vB_Eco_SLUR29,
159 vB_Eco_swan01, SECphi27, vB_EcoS-95, vB_Eco_mar001J1, vB_Eco_mar002J2 reveals they
160 have 51core genes (Fig 4) and have high degree of synteny across the genomes (Fig 4). Inclusion of
161 the phage pSF-1 in this analysis, results in only 1 core-gene.
162

163 Discussion

164
165 We have previously isolated coliphages from the same slurry tank and have found phages that are
166 representatives of the genera *T4virus* and *Seuratvirus*^{4,5}. This is the first report of phage from
167 within the subfamily *Tunavirinae* from this particular slurry tank environment. Whether this is a
168 reflection of their abundance or due to small sample sizes remains to be seen. Comparison of
169 vB_Eco_SLUR29 with its closest relatives, reveals they have all been isolated on *E.coli* K-12
170 MG1655, although many can infect other bacteria within the Enterobacteriaceae (Fig 3)^{12,21}.
171

172 Given the high sequence identity between vB_Eco_SLUR29 and its closest relatives, it was
173 unsurprising that it has similar morphological properties when examined by transmission electron
174 microscopy. Phylogenetic analysis clearly places vB_Eco_SLUR29 within the subfamily
175 *Tunavirinae*, in a clade that is sister to a clade that contains phages of the genus *TLsvirus* and
176 contains the phages vB_Eco_mar001J1, vB_Eco_mar002J2, vB_EcoS-95, vB_Eco_swan01 and
177 SECphi27. Previously, we have suggested SECphi27, vB_Eco_mar001J1, vB_Eco_mar002J2,
178 vB_Eco_swan01 and pSf1 are members of the same genus¹². Since then *Shigella* phage pSf1 has
179 been formally classified as the sole member of the genus *Hanrivervirus*. The addition of phages
180 vB_Eco_SLUR29, vB_EcoS-95 and *Campylobacter* infecting phages to the database further

181 clarifies the position of *Shigella* phage pSf1, into a separate clade from vB_Eco_mar001J1,
182 vB_Eco_mar002J2 and SECphi27. The current starting point for classification of phage species is
183 >95 % ANI²³. Using this criterion, vB_Eco_SLUR29, vB_Eco_mar001J1, vB_Eco_mar002J2,
184 vB_EcoS-95, vB_Eco_swan01, SECphi27 and vB_EcoS-95 would form a single species. This is
185 inconsistent with the phylogeny observed and a higher ANI cut-off of >97% might be more suitable
186 for this group of phages, as has previously been suggested for this and other phage groups^{5,12}. Thus
187 we propose this group of phages represents a new genus with four species, represented by the type
188 phages vB_Eco_mar001J1, vB_EcoS-95, vB_Eco_swan01 and SECphi27. With vB_Eco_SLUR29
189 being the same species as phage SECphi27, which was isolated first. We propose the genus is
190 named *Swanvirus* after the phage vB_Eco_swan01, which was the first isolated phage in the genus.
191

192 All phages of the proposed genus *Swanvirus*, have a conserved and syntenous genome structure. In
193 contrast to the conservation of genes between phages, there is greater variation in phenotypic
194 properties. The burst size of vB_Eco_SLUR29 is 22, which is smaller than the reported values of
195 115, 78 and 51 for vB_Eco-S59, vB_Eco_swan01 and vB_Eco_mar002J2 respectively^{12,21}. There is
196 also considerable variation in the latent period for these phages, with vB_Eco_SLUR29 having a
197 substantially longer latent period (21 min) than the reported 4, 12 and 15 min for vB_Eco-S59,
198 vB_Eco_swan01 and vB_Eco_mar002J2^{12,21}. However, the reported 4 min latent period of
199 vB_Eco-S59 seems extraordinarily rapid and maybe an artefact of the method used.
200

201 Phage vB_Eco_SLUR29 was found to rapidly lyse its host when used at an MOI of 1, but was less
202 effective at lower MOIs. This was apparent in the local virulence index which is very close to zero
203 at MOIs of 1×10^{-6} and 1×10^{-7} when the integrated area of the curve of infected and control samples
204 are compared. To overcome this, we could have chosen a later point where lysis had occurred for
205 cells infected at low MOIs. However, this would be well into the stationary phase of growth in the
206 uninfected control so we chose to integrate from time zero to the onset of stationary phase as
207 described in the original method¹⁹. When compared to the virulence index of phages T7, T5 and
208 T4, it has a lower virulence index of 0.37¹⁹ than any of these phages under any condition,
209 suggesting it is not a particularly virulent phage.
210

211 A further observation of the properties of vB_Eco_SLUR29 infection, was the rapid recovery of
212 infected cells. When infected at high MOIs there was rapid lysis of host cells, with recovery of cell
213 numbers close to an un-infected control after 13 hrs. Whilst we did not explicitly test cells at the
214 end of the killing assay, it is most probable that this recovery in cell growth is due to the rapid
215 selection of resistant cells. The rapid development of resistance in *E. coli* to the closely related

216 phage vB_Eco_S59 has been reported, suggesting there might be a minimal cost to developing
217 resistance for this type of phage ²¹. However, the mechanism behind the development of resistance
218 still remains to be elucidated.

219

220 The sequencing of vB_Eco_SLUR29 has expanded and helped to further clarify the phylogeny of
221 phages within the genus *Tunavirinae*, with vB_Eco_SLUR29 a member of putative new genus that
222 is clearly separate from the phage pSf-1 (Fig 4). Furthermore, the characterisation of phenotypic
223 properties reveals that phages which are similar at the genomic level, have very different
224 phenotypic properties. This highlights the need to assess the lytic properties of phage that are
225 genetically similar, as it cannot always be assumed they will have similar infection properties. With
226 increasing interest in the use of phages as therapeutics, the lytic properties are important factors that
227 will need to be considered. In part, differences in lytic properties may result from the method used
228 for carrying out one-step experiments. Therefore, we utilised the recently developed virulence index
229 ¹⁹ which should allow more consistent comparison of the lytic properties of phages from different
230 laboratories in the future.

231

232

233 **Acknowledgements**

234

235 Bioinformatics analysis was carried out using MRC CLIMB Infrastructure MR/L015080/1. AM,
236 JH, and SH were funded by NERC AMR -EVAL FARMS (NE/N019881/1). T.R. and S.M. were in
237 receipt of PhD studentships funded by the Natural Environment Research Council (NERC) CENTA
238 DTP

239

240 **Figure 1.** Phenotypic properties of phage vB_Eco_SLUR29. A) TEM image of phage
241 vB_Eco_SLUR29, identifying the morphological features representative of a siphoviruses. B). One-
242 step growth experiment (n=3), samples treated with CHCl₃ are closed black circles, untreated
243 samples are stars. C) Local virulence index of vB_Ecol_SLUR29 at MOIs ranging from 1 - 1 x10⁻⁷.
244 D) Killing curves of vB_Eco_SLUR29 against *E.coli* K-12 MG1655 (n=3).

245

246 **Figure 2.** Phylogenetic analysis of vB_Eco_SLUR29. The phylogeny was created using the *terL*
247 gene as marker. Sequences were aligned with MAFFT²⁴ and trees constructed with IQ-TREE with
248 1000 bootstrap replicates¹³. Bootstrap values > 70 are marked with a black circle, with increasing
249 size proportional to the bootstrap values. The clades containing phages of the genera *Tlsvirus* and
250 *Webervirus* were collapsed for clarity.

251

252 **Figure 3.** Phylogenetic analysis of vB_Eco_SLUR29. The phylogeny was created using four
253 concatenated core-genes. Genes were aligned with MAFFT²⁴ and trees constructed with IQ-TREE
254¹³, using a SYM+R4 model of evolution. Bootstrap values > 70 are marked with a black circle, with
255 increasing size proportional to the bootstrap values. The clades containing phages of the genera
256 *Tlsvirus* and *Webervirus* were collapsed for clarity in presenting the tree.

257

258 **Figure 4.** Comparative genomics of vB_Eco_SLUR29 with phages SECphi27, vB_Eco_swan01,
259 vB_EcoS-95, vB_Eco_mar001J1 and vB_Eco_mar002J2. Alignments were constructed with
260 EasyFig using blastn²⁵. Selected genes are annotated for vB_Eco_SLUR29. Genes that are
261 coloured purple and green are core-genes and accessory respectively, and are only marked on phage
262 vB_Eco_SLUR29.

263

264

265

266

267

268

269

270

271 References

272

273

274 1. Friedman SD, Gentner FJ, Gentry J, et al. Gene Mapping and Phylogenetic Analysis of the
275 Complete Genome from 30 Single-Stranded RNA Male-Specific Coliphages (Family
276 Leviviridae). *J Virol* 2009;83:11233–11243.

277 2. Chinnadurai L, Eswaramoorthy T, Paramachandran A, et al. Draft Genome Sequence of
278 *Escherichia coli* Phage CMSTMSU, Isolated from Shrimp Farm Effluent Water. *Microbiol*
279 Resour Announc 2018;7:4–5.

280 3. Korf IHE, Meier-kolthoff JP, Adriaenssens EM, et al. Still Something to Discover□: Novel
281 Insights into *Escherichia coli* Phage Diversity and Taxonomy. *Viruses* 2019;1–30.

282 4. Smith R, O’Hara M, Hobman JL, et al. Draft Genome Sequences of 14 *Escherichia coli*
283 Phages Isolated from Cattle Slurry. *Genome Announc* 2015;3:e01364-15.

284 5. Sazinas P, Redgwell T, Rihtman B, et al. Comparative genomics of bacteriophage of the
285 genus *Seuratvirus*. *Genome Biol Evol* 2017;10:72–76.

286 6. Hyman P, Abedon ST. Practical methods for determining phage growth parameters. *Methods*
287 *Mol Biol* 2009;501:175–202.

288 7. Rihtman B, Meaden S, Clokie MRJ, et al. Assessing Illumina technology for the high-
289 throughput sequencing of bacteriophage genomes. *PeerJ* 2016;4:e2055.

290 8. Joshi NA, Fass JN, others. Sickle: A sliding-window, adaptive, quality-based trimming tool
291 for FastQ files (Version 1.33)[Software] Available from: <https://github.com/najoshi/sickle>.
292 2011.

293 9. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A New Genome Assembly Algorithm and Its
294 Applications to Single-Cell Sequencing. *J Comput Biol* 2012;19:455–477.

295 10. Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial
296 variant detection and genome assembly improvement. *PLoS One* 2014;9:e112963.

297 11. Seemann T. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 2014;30:2068–
298 2069.

299 12. Michniewski S, Redgwell T, Grigonyte A, et al. Riding the wave of genomics to investigate
300 aquatic coliphage diversity and activity. *Environ Microbiol* 2019;00:1462-2920.14590.

301 13. Nguyen L, Schmidt HA, von Haeseler A, et al. IQ-TREE: A fast and effective stochastic
302 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* 2015;32:268–274.

303 14. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for
304 scalable and robust microbial pangenome analysis. *Appl Environ Microbiol* 2013;79:7696–

305 7701.

306 15. Pritchard L, Glover RH, Humphris S, et al. Genomics and taxonomy in diagnostics for food
307 security: soft-rotting enterobacterial plant pathogens. *Anal Methods* 2016;8:12–24.

308 16. Page AJ, Cummins C a., Hunt M, et al. Roary: rapid large-scale prokaryote pan genome
309 analysis. *Bioinformatics* 2015;31:3691–3693.

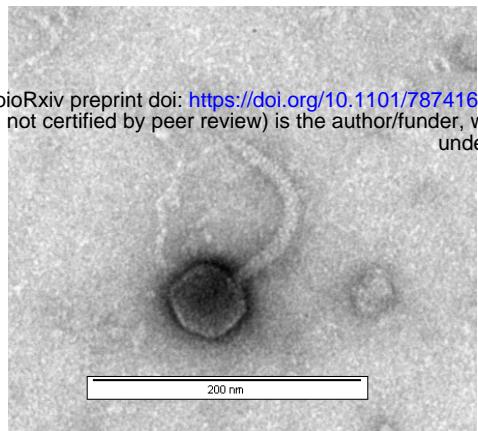
310 17. Rasband W. ImageJ. *U. S. National Institutes of Health, Bethesda, Maryland, USA*
311 2016://imagej.nih.gov/ij/.

312 18. Ackermann HW, Krisch HM. A catalogue of T4-type bacteriophages. *Arch Virol*
313 1997;142:2329–2345.

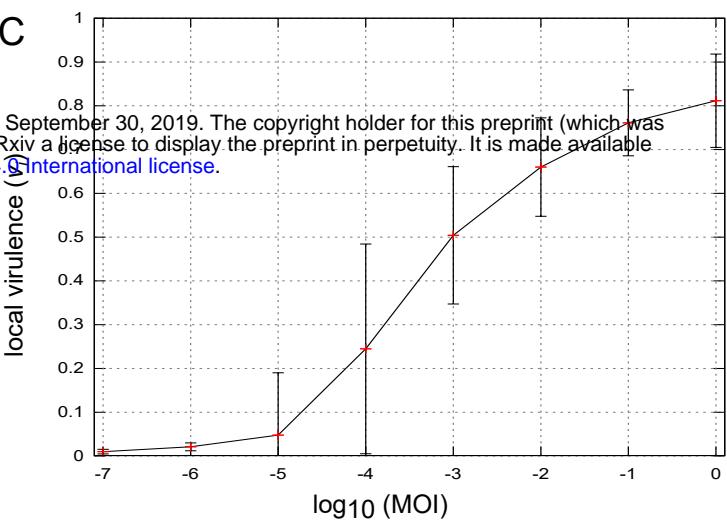
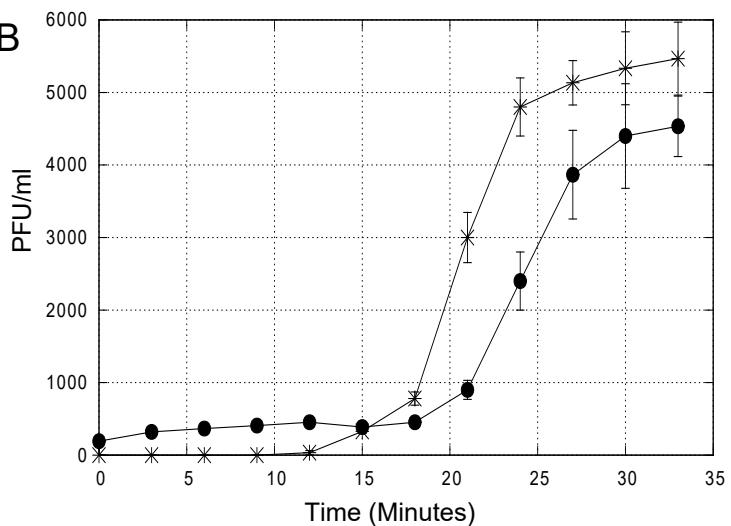
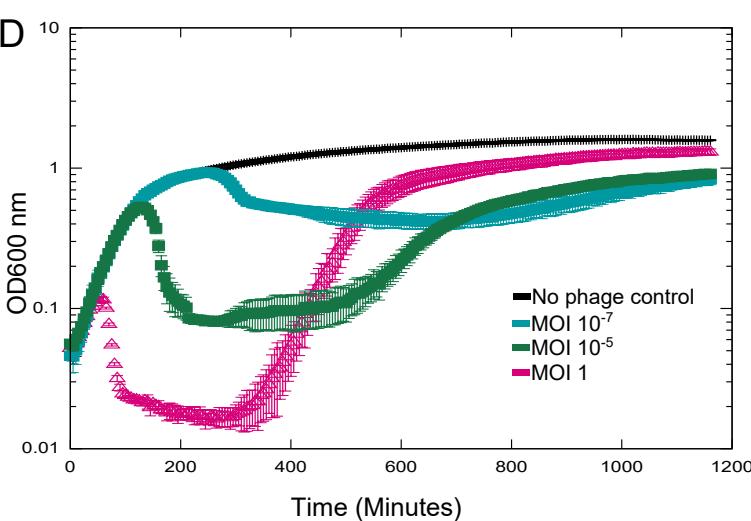
314 19. Storms Z, Sauvageau D. The Virulence Index□: A Metric for Quantitative Analysis of Phage
315 Virulence.

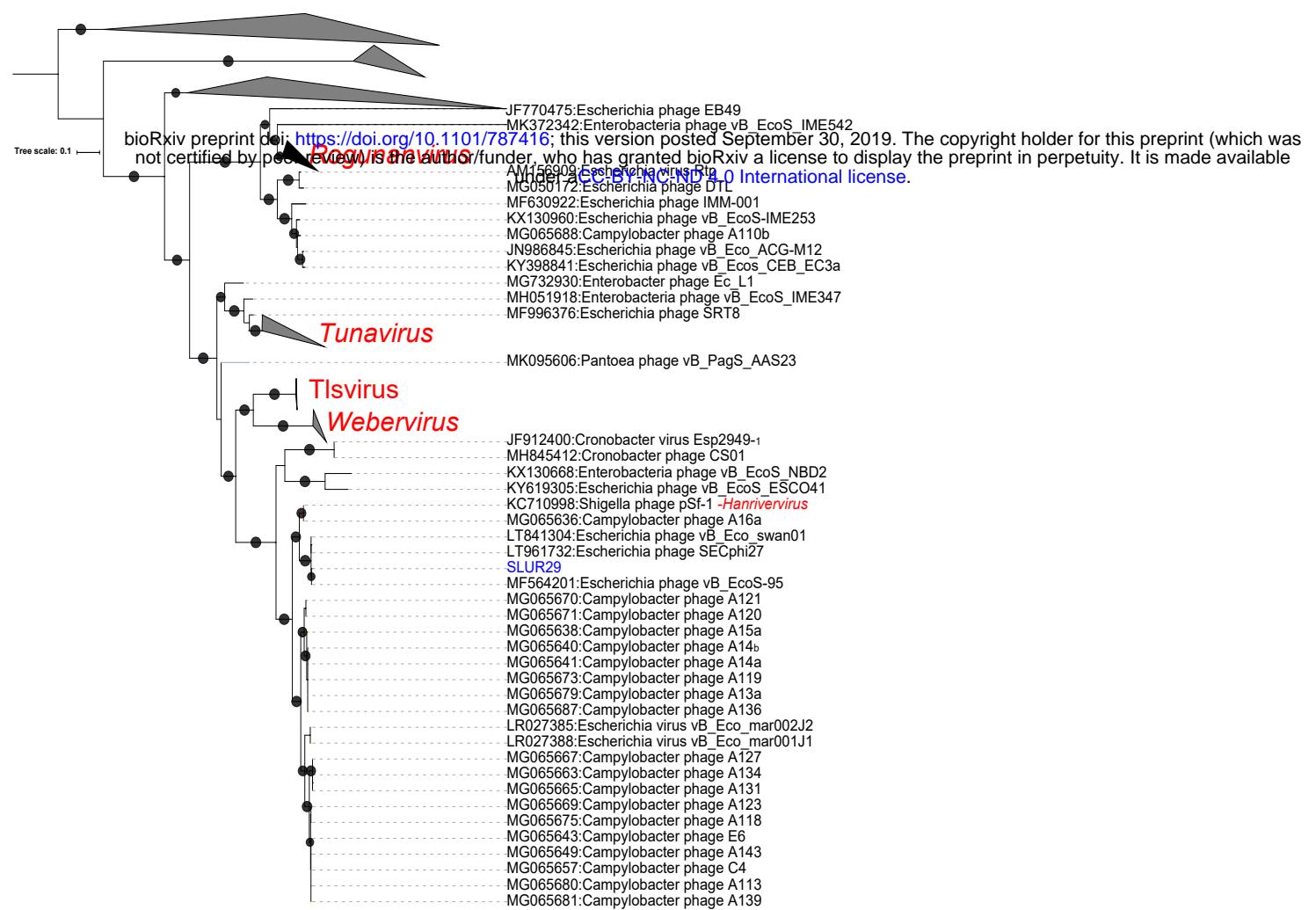
316 20. Michniewski S, Redgwell T, Scanlan DJ, et al. Draft Genome Sequence of Bacteriophage
317 vB_Eco_swan01. *Genome Announc*;5 . Epub ahead of print July 13, 2017. DOI:
318 10.1128/genomeA.00501-17.

319 21. Topka G, Bloch S, Nejman-Falenczyk B, et al. Characterization of bacteriophage vB-EcoS-
320 95, isolated from urban sewage and revealing extremely rapid lytic development. *Front
321 Microbiol* 2019;10:1–15.

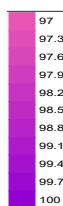

322 22. Jun JW, Kim JH, Shin SP, et al. Characterization and complete genome sequence of the
323 *Shigella* bacteriophage pSf-1. *Res Microbiol* 2013;164:979–986.

324 23. Adriaenssens E, Brister JR. How to Name and Classify Your Phage: An Informal Guide.
325 *Viruses*;9.




326 24. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:
327 Improvements in Performance and Usability. *Mol Biol Evol* 2013;30:772–780.

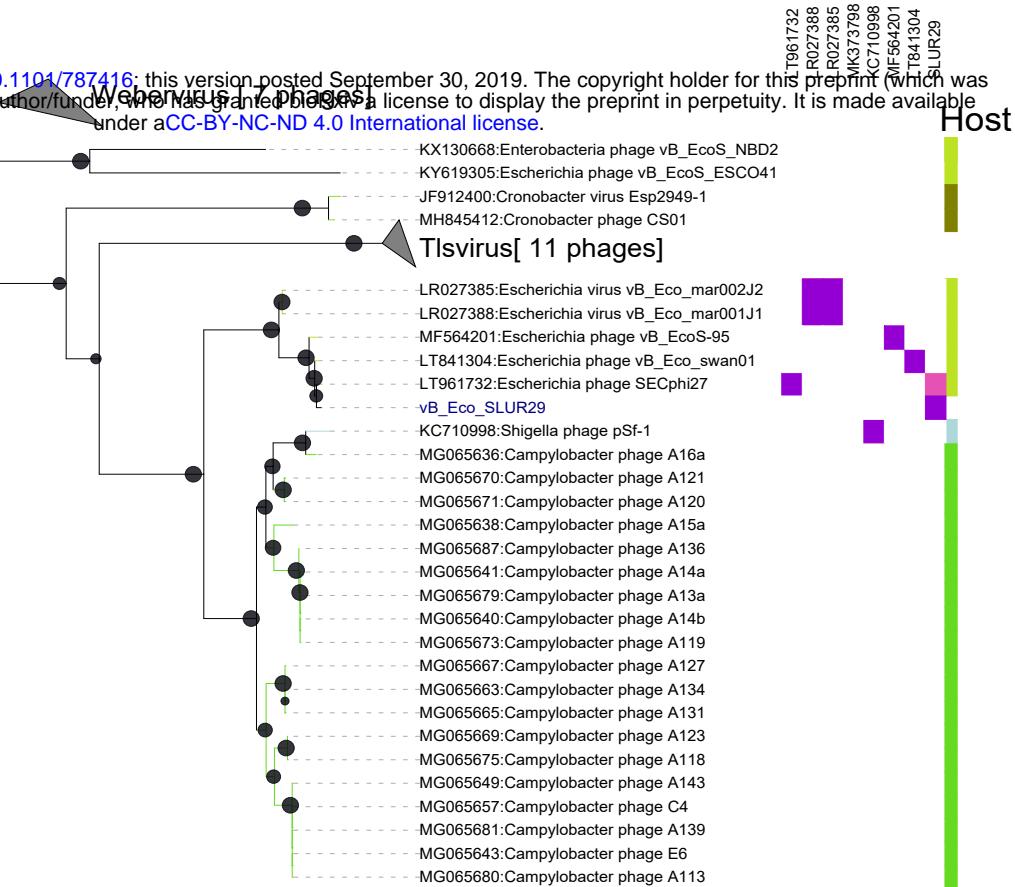

328 25. Sullivan MJ, Petty NK, Beatson SA. Easyfig: A genome comparison visualizer.
329 *Bioinformatics* . Epub ahead of print 2011. DOI: 10.1093/bioinformatics/btr039.

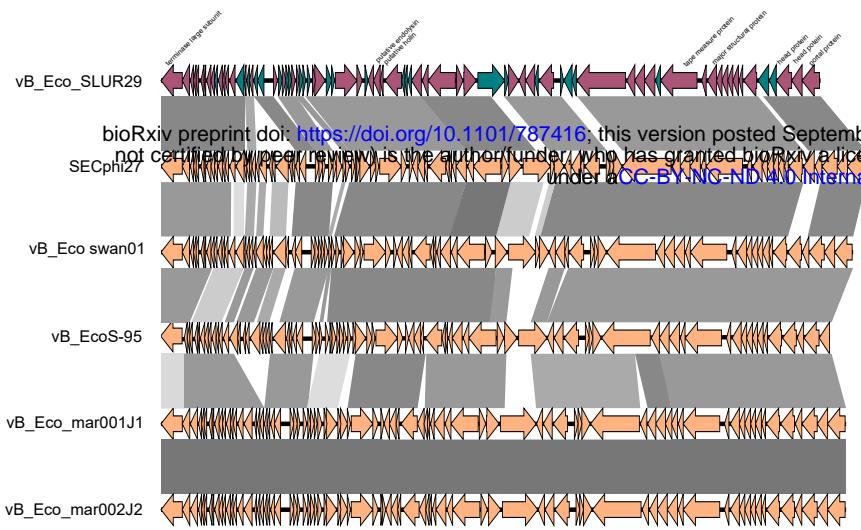
330


A

bioRxiv preprint doi: <https://doi.org/10.1101/787416>; this version posted September 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C**B****D**


ANI



Host

Legend for host bacteria:

- Escherichia
- Shigella
- Campylobacter
- Chronobacter

