

1 Title: Functionally overlapping variants control TB susceptibility in Collaborative Cross mice.

2

3 Running title: TB susceptibility in the Collaborative Cross

4

5 Clare M. Smith^{1#}, Megan K. Proulx^{1#}, Rocky Lai^{1#}, Michael C. Kiritsy¹, Timothy A Bell², Pablo
6 Hock², Fernando Pardo-Manuel de Villena^{2,3}, Martin T. Ferris,² Richard E. Baker¹, Samuel M. Behar¹
7 and Christopher M. Sassetti^{1*}

8

9 ¹Department of Microbiology and Physiological Systems, University of Massachusetts Medical
10 School, Worcester, MA

11 ²Department of Genetics, University of North Carolina at Chapel Hill

12 ³Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill

13

14 [#]Equal contributions

15 *Correspondence: Christopher.Sassetti@umassmed.edu (C.M. Sassetti)

16

17 **Abstract:**

18 Host genetics plays an important role in determining the outcome of *Mycobacterium tuberculosis* (Mtb)
19 infection. We previously found that Collaborative Cross mouse strains differ in their susceptibility to
20 Mtb, and that the CC042/GeniUnc (CC042) strain suffered from a rapidly progressive disease and
21 failed to produce the protective cytokine, IFN γ , in the lung. Here, we used parallel genetic and
22 immunological approaches to investigate the basis of CC042 susceptibility. Using a population
23 derived from a CC001/Unc (CC001) x CC042 intercross, we mapped four QTL underlying
24 Tuberculosis ImmunoPhenotypes (*Tip1-4*). These included 2 major effect QTL on Chromosome 7
25 (*Tip1* and *Tip2*) that were associated with bacterial burden. *Tip2*, along with *Tip3* (Chromosome 15)
26 and *Tip4* (Chromosome 16) also correlated with IFN γ production following infection, whereas *Tip1*
27 appeared to control an IFN γ -independent mechanism of bacterial control. Further immunological
28 characterization revealed that CC042 animals recruited relatively few antigen-specific T cells to the
29 lung and these T cells failed to express the Integrin alpha L (α_L ; i.e., CD11a), which contributes to T
30 cell activation and migration. These defects could be explained by a CC042 private variant in the
31 *Itgal* gene, which encodes CD11a, and is found within the *Tip2* interval. This 15bp deletion leads to
32 aberrant mRNA splicing and is predicted to result in a truncated protein product. The *Itgal*^{CC042}
33 genotype was associated with all measured disease traits, indicating that this variant is a major
34 determinant of susceptibility in CC042. The combined effect of functionally distinct *Tip* variants
35 likely explains the profound susceptibility of CC042 and highlights the multigenic nature of TB
36 control in the Collaborative Cross.

37

38 **Importance statement:**

39 The variable outcome of *Mycobacterium tuberculosis* infection observed natural populations is difficult
40 to model in genetically homogenous small animal models. The newly-developed Collaborative Cross

41 (CC) represents a reproducible panel of genetically-diverse mice that display a broad range of
42 phenotypic responses to infection. We explored the genetic basis of this variation, focusing on a CC
43 line that is highly susceptible to *M. tuberculosis* infection. This study identified multiple quantitative
44 trait loci associated with bacterial control and cytokine production, including one that is caused by a
45 novel loss-of-function mutation in the *Itgal* gene that is necessary for T cell recruitment to the
46 infected lung. These studies verify the multigenic control of mycobacterial disease in the CC panel,
47 identify genetic loci controlling diverse aspects of pathogenesis, and highlight the utility of the CC
48 resource.

49

50 **Introduction:**

51 Nearly one quarter of the world's population has been exposed to *Mycobacterium tuberculosis* (Mtb), yet
52 less than 10% of these exposures progress to clinical disease (1). The rational design of more
53 effective interventions requires understanding the factors that determine the outcome this
54 interaction. A large body of evidence supports an important role for host genetics in determining
55 disease progression, including classic twin studies (2, 3), linkage analyses (4-8), and both case-control
56 (9, 10) and genome-wide association studies (11, 12). However, the genetic variants that determine
57 the risk of adult pulmonary disease remain elusive due both to the complexity of factors influencing
58 clinical outcome and the lack of model systems that reflect the diversity of natural populations.

59

60 Much of the mechanistic insight into protective immunity against Mtb comes from mouse models of
61 infection. Resistant strains of mice, such as the commonly used C57BL/6J (B6), are able to restrict
62 the replication of Mtb for over a year (13). Protective immunity in B6 mice relies heavily on Th1
63 biased CD4+ T cell activation and the production of IFN γ in the infected tissue (14, 15). IFN γ
64 mediates its protective effect both by activating microbiocidal mechanisms in parasitized

65 macrophages (16-18) and by inhibiting the recruitment of granulocytes that have been shown to
66 exacerbate disease (19, 20). As these effects require local production of cytokine, the adhesion
67 molecules and chemokines required for T cell recruitment play a pivotal role in immunity. Studies in
68 knockout mice have shown that T cell expression of the integrin $\alpha L\beta 2$ and the chemokine receptors
69 CXCR3, CCR5, and CCR2 are important for the proper positioning of these T cells and the
70 expression of protective immunity in the lung (21-24).

71
72 Despite the wealth of mechanistic data that can be obtained in the mouse model, standard lab strains
73 of mice do not reproduce the diversity in pathogenesis observed in natural populations. Not only
74 does the relatively homogenous histopathology observed in these animals differ from the variable
75 disease seen in patients (21), but recent evidence suggests an unappreciated diversity in human
76 immune responses to Mtb (22). For example, it now appears that some humans have the capacity to
77 control Mtb infection in the absence of the IFN γ response that is critical in B6 mice (23), and
78 emerging evidence also suggests a possible protective role for antibodies that play little role in the
79 standard mouse model (24, 25). Much of the previous work to increase the diversity of TB disease
80 in mice has focused on relatively susceptible sub-strains that remain closely related to B6 mice (26).
81 While studies contrasting these strains have identified a number of quantitative trait loci (QTL)
82 associated with susceptibility (27-32), these highly-related strains still do not mimic the diversity
83 observed in an outbred population.

84
85 Recently, a number of new resources have become available to introduce additional genetic
86 variability into mouse model systems. For example, Diversity Outbred (DO) mice are an outbred
87 population of genetic mosaics based on eight inbred founders, including highly divergent wild-
88 derived strains (33). Mtb infection of DO mice produces a wide-range of disease manifestations

89 including extreme susceptibility, which is not observed in more standard lab strains (34). While the
90 DO population incorporates a great deal of diversity, each genotype is represented by a single
91 unique mouse, limiting the mechanistic characterization that is otherwise a strength of the mouse
92 system. The Collaborative Cross (CC) consists of recombinant inbred lines derived from the same
93 eight inbred founder strains as the DO (35). In contrast to the outbred DO, each CC strain
94 represents a reproducible mosaic of the founder genomes, and thus a reproducible model of disease
95 (36). We have shown that the range TB susceptibility observed in the DO population can be
96 recapitulated in CC mice (37). This previous work found that CC042/GeniUnc (CC042) animals
97 was highly susceptible to *Mtb* infection, in contrast to resistant strains such as CC001/Unc or B6
98 (37).

99

100 Here we investigated the basis TB susceptibility in the CC042 strain using a parallel genetic and
101 immunophenotyping approach. By producing an intercross population based on CC042 and the
102 resistant CC001 strains, we identified multiple QTL, named “Tuberculosis ImmunoPhenotype”
103 (*Tip1-4*), that were differentially associated with bacterial burden and/or IFN γ production. In this
104 population, canonical IFN γ -dependent immunity was controlled by a novel mutation in the *Itgal*
105 gene, which disrupts expression of the α L β 2 adhesion molecule and prevents the recruitment of
106 cytokine expressing T cells to the site of infection. Other *Tip* loci were driven by wild-derived
107 founder alleles that either reduce IFN γ production or control IFN γ -independent immunity.
108 Together, these observations explain the extreme susceptibility of CC042 and indicate that the CC
109 panel can be used to understand diverse mechanisms of protective immunity to *Mtb*.

110

111 **Results:**

112 *Control of Mtb infection in CC042 is lost upon the onset of adaptive immunity.*

113 In order to dissect the mechanisms underlying CC042 susceptibility to Mtb, we first profiled the
114 kinetics of disease in aerosol-infected CC042 animals compared to more resistant B6 mice. In the
115 standard B6 model, the peak of bacterial burden was observed around 21 days post infection,
116 coincident with the onset of robust Th1 immunity. While CC042 had 10-fold lower CFU in the
117 lung and spleen at 14 days, compared to B6 (Fig1A, B), CC042 animals ultimately failed to control
118 bacterial replication. By day 28 post-infection, the lungs of CC042 mice harbored 100-fold more
119 bacteria compared to B6. Similar trends in relative bacterial burden were observed in the spleen. All
120 CC042 mice had lost significant weight and required euthanization because of morbidity by day 33
121 post infection (Fig1C, D). Both male and female CC042 mice were similarly moribund at this
122 timepoint.

123
124 The superior control of bacterial replication by B6 mice correlated with IFN γ abundance in lung
125 homogenate. There was a significant increase in IFN γ levels starting on day 21, which peaked by
126 day 28 in all B6 mice (Fig1E). In contrast, the concentration of IFN γ in the lungs and spleens of
127 CC042 mice remained relatively low throughout the course of infection (Fig1E, F). Further
128 histological comparison found a cellular infiltration in B6 lung lesions that largely consisted of
129 macrophages and lymphocytes throughout the experiment, while necrosis and neutrophil infiltration
130 was apparent in CC042 lungs by 21 days, and was sustained until termination of the experiment (28
131 – 33 days post infection) (Fig 2). Together, these data suggested that the susceptibility of CC042
132 could be related to a defect in IFN γ production that promoted bacterial growth and granulocyte
133 infiltration.

134
135 *Identifying TB susceptibility loci in a [CC001xCC042] intercross*

136 To investigate the genetic basis of CC042 susceptibility, we took an F₂ intercross approach to
137 segregate TB disease traits and map the causal genetic variants. CC001 was chosen as the CC cross
138 partner because of its relative TB resistance (similar to a B6) (37) and to match the CC042 H-2^b
139 locus. We crossed female CC001 with male CC042 mice to generate F₁ progeny (CC001xCC042)F₁,
140 which were then intercrossed to produce ~200 F₂ offspring. We infected male and female F₁ and F₂
141 progeny, along with parental strains, with Mtb (H37Rv) via low-dose aerosol. Mice were sacrificed
142 between 28-31 days post-infection, a timepoint that maximized phenotypic differences, while
143 minimizing morbidity. Measured phenotypes included lung colony forming units (CFU), spleen
144 CFU, and lung IFN γ levels.

145
146 For spleen CFU and lung IFN γ levels, F₁ mice showed an intermediate phenotype, and F₂ mice
147 displayed a distribution of values spanning the range of the parental strains (Fig 3A, B). In contrast,
148 overdominance was observed for lung CFU, as F₁ mice had higher bacterial burdens in the lung than
149 the susceptible CC042 mice (Fig 3C) and F₂ mice spanned this greater phenotypic range. The three
150 traits co-varied in a predictable manner (Fig 3D). Bacterial burden in lung and spleen were
151 positively correlated. Lung IFN γ levels were more strongly associated with CFU in spleen than
152 lung, consistent with the more prominent role of IFN γ -independent T cell functions in the lung
153 (38). The imperfect correlation between these traits, as well as the expansion of phenotypic ranges
154 in F₂ animals, suggested that multiple genes controlled the differences between CC001 and CC042.

155
156 In total, 169 F₂ mice were genotyped with the MiniMUGA array (39). We first validated our genetic
157 mapping protocol using a coat color trait (Supp Fig 1). CC042 have a white head spot (“blaze”) on
158 their forehead, a characteristic inherited from the WSB/EiJ (designated for Watkins Star Blaze;
159 WSB) founder strain. One in every four F₂ progeny carried a blaze, confirming autosomal recessive

160 inheritance (40). The blaze and base coat color (black from CC001 or agouti from CC042) assorted
161 independently in the F₂ offspring, as shown by the expected 9:3:3:1 ratio (Supp Fig 1). QTL
162 mapping on the presence or absence of white head spotting in the F₂ mice identified a highly
163 significant QTL on Chromosome 10 (Supp Fig 1). This interval contained kit ligand (*Kitl*, stem cell
164 factor), which was previously shown to underly this trait in the pre-CC population (40).

165

166 Next, we conducted QTL mapping on the tuberculosis-associated phenotypes Lung CFU, Spleen
167 CFU and IFN γ levels. Using batch and sex as covariates, we identified four significant QTL that
168 affect measured Tuberculosis ImmunoPhenotypes (*Tip1-4*) (Table 1 and Figure 4A, B).

169

170 Table 1. Tuberculosis ImmunoPhenotype (*Tip*) QTL in an CC001xCC042 F₂ cross. Low and High
171 haplotypes are provided at the peak logarithm of the odds (LOD) of each QTL. P value was
172 determined by permutation test. High and low haplotypes are provided relative to each specific trait.
173 Fraction of variance explained by each QTL (Variance (%)) was estimated by fitting a single QTL
174 model for each trait at the respective peak locations with sex and batch as covariates.

QTL	Chr	Trait	P value	Max LOD	Peak marker	Peak (Mb)	Bayes Interval (Mb)	Low haplotype	High haplotype	Inheritance mode	Variance (%)
Tip1	7	Spleen CFU	< 10 ⁻⁴	9.2	gUNC13104259	72.1	3.6 - 72.9	CAST	WSB	Additive	17.6
Tip2	7	Spleen CFU	< 10 ⁻⁴	12.3	gUNC13793270	125.4	124.7 - 127.3	NZO	WSB	recessive	22.5
Tip2	7	IFNg level	7 x 10 ⁻⁴	9.1	gUNC13793270	125.4	121.0 - 130.7	NZO	WSB	recessive	21.4
Tip3	15	IFNg level	0.011	5.4	mbackupUNC150396514	83.1	53.7 - 89.7	CAST	129	Ambiguous	13.5
Tip4	16	IFNg level	0.046	4.2	UNC26693650	40.8	4.5 - 44.7	WSB	CAST	Ambiguous	10.6

175

176

177 Spleen CFU mapped to two distinct QTL on Chromosome 7; proximal *Tip1* at 72Mb and distal *Tip2*
178 at 125Mb (Figure 4C). *Tip1* was inherited in an additive fashion, with heterozygous mice carrying

179 both CAST/Eij (CAST) and WSB haplotypes exhibiting an intermediate phenotype relative to both
180 homozygotes (Fig 4F). In contrast, the susceptibility phenotype associated with *Tip2* was recessive,
181 with mice homozygous for the WSB allele demonstrating a tenfold increase in spleen CFU on
182 average (Fig 4G). IFN γ production in the lung was associated with 3 distinct QTL. The main locus
183 explained 21.4% of the variation and was mapped to the *Tip2* region on chromosome 7 (Fig 4B),
184 evidence that the same variant likely controls IFN γ and bacterial burden at this locus. Two
185 additional QTL were also associated with IFN γ levels, mapping to Chromosomes 15 and 16 (*Tip3*
186 and *Tip4* respectively) (Fig 4A and B). A second potential QTL on proximal Chromosome 16 was
187 also associated with IFN γ , however its LOD did not reach genome wide significance at P<0.05. At
188 *Tip3*, low IFN γ levels were associated with haplotypes from the CAST (Fig 4D) founder, a strain
189 previously found to lack IFN γ expression in the lung upon infection with either Mtb or pox virus
190 (37, 41, 42). Notably, *Tip1* was associated with CFU, but not IFN γ , indicating that this variant was
191 functionally distinct from *Tip2*. No QTL were associated with lung CFU, suggesting that this trait is
192 under more complex genetic control than the others. In sum, these functionally and genetically
193 diverse QTL indicated that the immune response to Mtb was under multigenic control in these
194 strains.

195

196 Considering that *Tip1* and *Tip2* are both on Chromosome 7 and are driven by the WSB parent
197 haplotype, we tested the independence of these peaks by remapping spleen CFU using the
198 genotypes at *Tip1* as a covariate. After removing the variation explained by the proximal *Tip1* QTL,
199 the distal *Tip2* QTL still met the threshold for genome-wide significance (Supp Fig 2A). In addition,
200 fitting a three QTL model to the spleen CFU phenotypes showed that *Tip1*, *Tip2*, and *Tip3* all
201 contributed additively; removing any of them from the full model resulted in a significantly poorer

202 fit (Supp Fig 2B). Altogether, we identified four independent QTL in the F₂ cross, indicating
203 multigenic control of Mtb immunity in this F₂ population.

204

205 *T cell function and recruitment are impaired in CC042 mice*

206 Concurrent with our genetic mapping strategy, we enumerated changes in leukocyte cell types that
207 could alter the susceptibility of CC042 relative to B6 mice. Accumulation of T and B lymphocytes in
208 the lungs of B6 mice began between 14 and 21 days post-infection (Fig 5A, B). In contrast, the
209 numbers of T and B cells in the lungs of CC042 mice were significantly reduced. This paucity of
210 lymphocyte accumulation in the lungs of CC042 mice was mirrored a dramatic increase in
211 CD11b+Gr1+ granulocytes (Fig 5C), consistent with the neutrophilic infiltrates observed in the
212 lung histopathology (Figure 2). Significant differences in the CD11b+Gr1- monocytes/macrophage
213 subset between these mice was only apparent at the last timepoint, at which time the CC042 animals
214 had become moribund (Fig 5D).

215

216 The reduction in IFN γ production and paucity of pulmonary T cells in the lungs of CC042 mice
217 suggested that their susceptibility to Mtb might be related to a defect in T cell function. To assess
218 effector function, we isolated cells from the lungs of infected B6 and CC042 mice and stimulated
219 them with anti-CD3 to determine whether T cells from CC042 mice had differentiated into a distinct
220 T cell subset (e.g. Th1 vs. Th2, Th17, Treg). Using a standard intracellular cytokine staining (ICS)
221 approach, we found that CD4 and CD8 T cells from CC042 mice produced less IFN γ , TNF, IL-17a,
222 IL-2, IL-10 and CD107a upon stimulation in comparison to B6 T cells (Fig 6A, B). Thus, instead of
223 representing an altered T cell differentiation state, the lack of cytokine production by T cells from
224 the lungs of infected CC042 mice may indicated that there is an impairment in either T cell priming
225 or recruitment of T cells to the lung.

226

227 In order to distinguish between these possibilities, we counted the number of CD4 and CD8 T cells
228 in the lung, mediastinal lymph node (mLN) and spleen at 28 days post infection using flow
229 cytometry. At the same time, we enumerated the number of antigen specific CD4 and CD8 T cells
230 using ESAT-6 (CD4) and TB10.4 (CD8) tetramers. CC042 mice had fewer total CD4 and CD8 T
231 cells in the lung compared to B6 mice (Fig 6C). This was also true in the mLN but not the spleen
232 (Fig 6D, E). While we saw that CC042 mice had significantly fewer ESAT-6-specific CD4 and
233 TB10.4-specific CD8 T cells in the lung than B6 animals, both groups of mice had similar numbers
234 of antigen-specific T cells in the mLN and the spleen (Fig 6 F, G, H). When antigen-specific T cells
235 were considered as a fraction of total T cells, the frequencies of ESAT-6-specific T cells was similar
236 in the lung, spleen and mLN of B6 and CC042 mice, while the frequency of TB10.4-specific T cells
237 were lower in the lungs of CC042 mice but were higher in the spleen and mLN in comparison to B6
238 mice (Supp Fig 3). Taken together, this suggests that T cell priming of Mtb-specific CD4 and CD8 T
239 cells was occurring in the draining LN, and the diminished T cell numbers in the lungs of CC042
240 mice is due to an impairment in T cell recruitment. As such, we examined the cell surface expression
241 of CD44, CD69, CD62L and CD11a on CD4 and CD8 T cells from the lungs of infected CC042
242 and B6 mice, as these markers have been classically associated with either T cell activation or
243 migration (41, 42). We found that CD4 and CD8 T cells from the lungs of CC042 and B6 mice had
244 appropriately upregulated CD44 and CD69 and downregulated CD62L (Fig 6I). However, CD11a
245 was undetectable on both CD4 and CD8 T cells from CC042 mice. As CD11a is the α L component
246 of α L β 2, the principal β 2-integrin on T cells that is crucial for lymphocyte trafficking, this defect
247 could explain many of the immunological differences observed between CC042 and B6.

248

249 *A CC042 private mutation in *Itgal* explains *Tip2*-driven susceptibility.*

250 The gene encoding CD11a, *Itgal*, is located on chromosome 7, within the *Tip2* locus identified in our
251 intercross. The lack of CD11a expression on CC042 lymphocytes implicated *Itgal* variation as the
252 basis for *Tip2*. To investigate this possibility, CD11a expression was assayed in WSB and CC011
253 strains, which contain the susceptibility-associated WSB haplotype at *Tip2* (Fig 7a). We found that
254 WSB and CC011 splenocytes expressed similar CD11a levels as B6 mice, leading us to hypothesize
255 that CC042 had incurred a private mutation during inbreeding that impacts CD11a production.

256

257 Using whole genome sequences of representative CC strains, variants private to each have been
258 identified (43, 47). Using this dataset, we found that the CC042 genome sequence contains a 15 bp
259 deletion in the first intron of the *Itgal1* gene, which is not present in the ancestral WSB allele. This
260 deletion alters the canonical splice acceptor sequence ("AG") at the 3' terminus of intron 1
261 (http://Jul2019.archive.ensembl.org/Mus_musculus_WSB_EiJ/Transcript/Exons?db=core;g=MG_P_WSBEiJ_G0032170;r=7:131372531-131430694;t=MGP_WSBEiJ_T0085398). Although the
262 resultant mutant sequence ("TG") has been observed to function as a splice acceptor in certain
263 transcripts (43), we hypothesized that this mutation could alter splicing. Amplification and
264 sequencing of a fragment spanning exons 1 and 3 of the *Itgal* mRNA confirmed that the CC042
265 transcript lacked the exon 2 sequence that was contained in both the B6 and WSB mRNAs (Fig.
266 7B). The lack of exon 2 is predicted to produce a frameshift and premature termination (Fig. 7B).
267 While *Tip2* was only significantly associated with spleen CFU and lung IFN γ in the whole genome
268 scans, the lack of T cells in the lungs of CC042 animals suggested the CD11a deficiency also
269 influenced bacterial replication at this site. To test this hypothesis, we used the measured
270 phenotypes from the F₂ cross and found that the CC042 *Itgal* allele was significantly associated with

272 higher CFU values (Fig7 C-E). This analysis indicated that the *Itgal* mutation affects all metrics of
273 tuberculosis susceptibility in CC042.

274

275 **Discussion:**

276 In this work, we used a classic genetic strategy to investigate the diversity of responses to Mtb
277 infection observed in CC strains. Previous work identified a number of genetically-dissociable
278 immunophenotypes in Mtb-infected CC founder lines, including bacterial load and IFN γ production
279 (37). The intercross between two phenotypically divergent CC strains reported here supports the
280 independence of these traits and demonstrates that multiple phenotypes can be mapped
281 simultaneously using this strategy. Investigating the genetic architecture of TB disease in these
282 highly diverse mice revealed a number of new insights that would not have been apparent in
283 intercrosses between more genetically-homogenous lab strains.

284

285 A loss-of-function mutation in *Itgal* was found to account for the *Tip2* QTL and explain a significant
286 portion of the susceptibility of the CC042 line. We previously found that *Itgal* deletion in the B6
287 background resulted in a defect in T cell recruitment to the lung and increased pulmonary Mtb
288 burden (44), both traits that are associated with *Itgal*-deficiency in the CC001xCC042 intercross.

289 While *Tip2* was only significantly associated with spleen CFU and IFN γ production in whole
290 genome scans, *Itgal* genotype also correlated with lung CFU when examined in isolation. Thus, we
291 conclude that *Itgal* affects pathogenesis in both lung and spleen, and the lack of genome wide
292 association between *Itgal* and lung CFU is likely due to complex genetic factors, such as the observed
293 overdominance and the possible presence of additional variants that dilute the effect of the *Itgal*
294 mutation.

295

296 While the disease-promoting effect of CD11a deficiency was generally consistent between the B6
297 background and the recombinant CC genotype, the loss of *Itgal* is insufficient to explain the
298 susceptibility of the CC042 strain. These CC042 mice succumb to infection approximately five
299 months earlier than *Itgal*^{+/+} B6 mice (44), likely due to the more dramatic infiltration of granulocytes
300 and necrosis observed in the lung. The increased susceptibility of CC042 animals can be attributed,
301 at least in part, to *Tip1*. The variant(s) underlying *Tip1* appear to be functionally distinct from *Itgal*,
302 as the effect of *Tip1* and *Tip2* are additive, these traits differ in their mode of inheritance, and *Tip1* is
303 not associated with IFN γ levels. These data indicate that IFN γ -independent mechanisms, such as
304 those underlying *Tip1*, can act in an additive fashion to increase the susceptibility of animals with a
305 more canonical immunodeficiency that affects Th1 cell activity.

306

307 This intercross between two very diverse genotypes allowed the mapping of QTL that may be
308 associated with an additional trait previously identified in the CAST founder strain. Despite being
309 relatively resistant to Mtb infection, CAST mice do not produce detectable levels of IFN γ in the
310 lung (37). This observation is one of many indicating that IFN γ -independent immune mechanisms
311 play an important protective role, particularly in the lungs (38, 45, 46). *Tip1*, and *Tip3*, are likely
312 related to the IFN γ -deficient phenotype of CAST mice. This founder haplotype at *Tip3* is associated
313 with low IFN γ production, and the CAST allele at *Tip1* reduces CFU without influencing IFN γ
314 levels. Defining the basis of this phenotype, might represent an important step to understanding the
315 immune response to Mtb in the recently identified subset of humans that control Mtb infection in
316 the absence of a detectable IFN γ response (23).

317

318 The CC population was initially envisioned as a genetic mapping resource, based on the random
319 distribution of founder alleles between strains (47). While the CC panel been shown to be valuable
320 for this type of study, the *Itgal* mutation identified in this work was not derived from a founder line
321 and likely occurred during the process of inbreeding CC042. Such mutations in individual CC
322 strains provide an additional advantage to studies within the CC: both common variants, as well as
323 private variants (~28,000) circulate in this population and can drive disease responses (39, 48). While
324 these mutations are invisible in genetic association studies that are based on comparison of CC lines,
325 our work shows that their effect can be revealed through intercrosses and the molecular
326 characterization of these relatively rare variants can be rapidly achieved. This feature, in
327 combination with the variety of phenotypes that can be addressed in CCxCC intercrosses, highlight
328 the value of this approach.

329

330 The immune response to Mtb in natural populations is variable. Several lines of recent evidence
331 suggest the importance of mechanisms distinct from canonical Th1 immunity that dominate in the
332 classic “mouse model” of TB, which relies on a small number of genetically similar mouse lines.
333 Using a simple intercross strategy, we leveraged the genetic diversity of CC lines to define
334 chromosomal loci controlling three distinct TB-related traits; *Itgal*-dependent T cell recruitment
335 (*Tifp2*), IFN γ -independent bacterial control (*Tifp1*), and IFN γ production (*Tifp3-4*). All of these traits
336 associated with haplotypes that are absent from standard mouse strains, supporting the value of
337 genetic diversity to understand highly variable traits, such as TB susceptibility.

338

339 **Materials and Methods:**

340 *Ethics statements and experimental animals:*

341 C57BL/6J (#0664) (B6) mice were purchased from the Jackson labs. CC042/GeniUnc and
342 CC001/Unc mice were obtained from the Systems Genetics Core Facility at the University of North
343 Carolina (49), and bred at UMASS Medical School under specific pathogen-free conditions and in
344 accordance with the University of Massachusetts Medical School IACUC guidelines. F₁ mice were
345 generated from crossing CC001 females by CC042 males (CC001xCC042). The F₂ mice used for
346 QTL mapping were obtained from crossing these F₁ mice (e.g. all F₂ animals were
347 ((CC001xCC042)x(CC001xCC042))-F₂.

348

349 *Mycobacterium tuberculosis* infection:

350 Wild type *M. tuberculosis* strain H37Rv (PDIM positive) was used for all studies unless indicated.
351 Prior to infection, bacteria were cultured in 7H9 medium containing 10% oleic albumin dextrose
352 catalase growth supplement (OADC) enrichment (Becton Dickinson) and 0.05% Tween-80. For
353 aerosol infections, bacteria were resuspended in phosphate-buffered saline containing Tween-80
354 (PBS-T). Prior to infection, bacteria were sonicated then delivered via the respiratory route using an
355 aerosol generation device (Glas-Col). Groups of mice were sacrificed 24 hours post-infection to
356 enumerate infectious dose. The infectious dose for all experiments ranged from 50- 150 CFU. Both
357 male and female mice were used throughout the study, as indicated. All animals used for
358 experiments were 8-12 weeks old.

359

360 *CFU enumeration and cytokine quantification*

361 To determine CFU, mice were anesthetized via inhalation with isoflurane (Piramal) and euthanized
362 via cervical dislocation. The organs were aseptically removed and individually homogenized, and
363 viable bacteria enumerated by plating 10-fold serial dilutions onto 7H10 agar plates. Plates were
364 incubated at 37°C, and colonies were counted after 21 days. Cytokine concentrations in cell-free

365 lung homogenates were quantified using commercial enzyme-linked immunosorbent assay (ELISA)

366 kits (IFN γ Duo Set #DY485 R&D Systems) according to manufacturer instructions.

367

368 *Histology:*

369 Lung lobes from B6 and CC042 mice infected with *Mtb* were fixed in 10% neutral buffered
370 formalin, embedded in paraffin, and sectioned at 5 μ m. Sections were stained with hematoxylin and
371 eosin (H&E). All sectioning and staining was done by the Diabetes and Endocrinology Research
372 Center Morphology Core (DERC) at the University of Massachusetts Medical School. Images were
373 captured on a TissueGnostics TissueFAXS PLUS at 2X and 20X magnification.

374

375 *Flow cytometry analysis:*

376 Lung tissue was harvested in RPMI containing FBS and placed in C-tubes (Miltenyi). Collagenase
377 type IV/DNase I was added and tissues were dissociated for 10 seconds on a GentleMACS system
378 (Miltenyi). Tissues were incubated for 30 minutes at 37°C with oscillations and then dissociated for
379 an additional 30 seconds on a GentleMACS. Lung homogenates were passed through a 70-micron
380 filter. Cell suspensions were washed in RPMI, passed through a 40-micron filter and aliquoted into
381 96 well plates for flow cytometry staining. Non-specific antibody binding was first blocked using Fc-
382 Block, after which cells were then stained with CD3-BV785 (145-2CL1), CD8-APC-Fire 750 (53-
383 8.7), CD44- PerCP-Cy5.5 (IM7), CD11a-BV711 (M17/4), CD69-PE-Cy7 (H1.2F3) and CD62L-
384 BV570 (MEL-14) from Biolegend and CD4-Alexa Fluor 700 (RM4-5) from BD Biosciences. In
385 some experiments, intracellular cytokine staining was also performed. After surface marker staining,
386 cells were subsequently permeabilized using cytofix/cytoperm (BD Biosciences) and stained with
387 IFN-APC (XMG1.2), IL-2 PE-Cy7(JES6-5H4), IL-17a-BV650 (TC11-18H10.1), TNF-BV421
388 (MP6-XT22), IL-10 (JES5-16E3) and CD107a-PE (1D4B) from Biolegend and IL-4-Alexa Fluor

389 488 (11B11) from Invitrogen. Live cells were identified using fixable live dead aqua (Life
390 Technologies). Cells were stained for 30 minutes at room temperature and fixed in 1%
391 Paraformaldehyde for 60 minutes. All flow cytometry was run on either a MACSQuant Analyzer 10
392 (Miltenyi) or Aurora (Cytek) and was analyzed using FlowJo_V10 (Tree Star).

393

394 *Genotyping and QTL mapping:*

395 1500 nanograms of DNA was genotyped by Neogen Inc. using the the MiniMuga array. We filtered
396 markers to those that were consistent within a previously published set of CC042 and CC001
397 genotypes (39), and diagnostic between these strains (*i.e.*, CC001 genotype \neq CC042 genotype and F₁
398 genotype called heterozygous). After finding and removing misplaced markers, identified using the
399 dropmarker function of the R package qtl (R/qtl), regions of dense marker coverage were
400 thinned to a spacing of 0.1 cM. The final genetic map contained 1806 markers.

401

402 Genotype and phenotype data were imported into R (version 3.4.3) and reformatted for R/qtl
403 (version 1.42-8). Genotype probabilities were calculated at 0.25 cM spacing, and QTL mapping was
404 carried out using the scanone function using batch and sex as additive covariates. Significant LOD
405 thresholds were established by permutation test with 10,000 permutation replicates. Multi-QTL
406 models were fit using R/qtl's fitqtl function. LOD profiles and effect plots were generated using the
407 plotting functions of the R/qtl package.

408

409 *Ex vivo RNA isolation and qRT-PCR*

410 Bone marrow derived macrophages (BMDMs) from C57BL/6J, WSB/EiJ and CC042 mice were
411 generated. Briefly, marrow from femurs and tibia of age- and sex-matched mice was isolated and
412 cultured in high glucose DMEM (Gibco 11965092) supplemented with L-glutamine, 10% fetal

413 bovine serum (FBS, Sigma F4135), and 20% L929 conditioned media. After seven days,
414 differentiated cells were lifted with PBS with 10mM EDTA and seeded for subsequent
415 experimentation. RNA was isolated by lysing the cells in Trizol (ThermoFisher 15596018) and
416 purified using Direct-zol RNA Miniprep plus kit (Zymo Research, R2070) per the manufacturer's
417 recommendations. Following RNA quantification by Nanodrop, samples were diluted to 5ng/uL
418 and used for qRT-PCR with Luna One-Step Universal qPCR kit (NEB E3005). Gene specific
419 primers for target transcripts were used at a final concentration of 400uM with 15ng of RNA.
420 Primer sequences for B-actin (RT-Actb_1F 5' - GGCTGTATTCCCCCTCCATCG – 3' and RT-
421 Actb_1R 5'-CCAGTTGGTAACAATGCCATGT-3') and Itgal (RT-Itgal_1F 5'-
422 CCAGACTTTGCTACTGGGAC -3' and RT-Itgal_1R 5'-GCTTGTTCGGCAGTGATAGAG -
423 3') were designed using publicly available genomic sequences for C57BL/6J, WSB/EiJ and CC042
424 (48). Each reaction was performed in technical triplicates and Ct values were generated on a ViiA7
425 Real-time PCR machine (Life Technologies). Relative expression for *Itgal* was calculated by using
426 $\Delta\Delta Ct$ for each sample relative to B-actin. Itgal PCR products were separated by gel electrophoresis
427 on a 3% agarose gel and their sequences determined by Sanger sequencing.

428

429 **Statistical analysis:**

430 Statistical tests were performed using GraphPad Prism 7. Correlation between measured traits was
431 visualized using corrplot v0.77 in R version 3.2.4 (Pearson correlation ordered by hclust).

432

433 **Data availability:**

434 All relevant data to support the findings of this study are located within the paper and supplemental
435 files.

436

437 **Acknowledgements:**

438 We thank the Sassetti and Behar lab members for technical assistance, including Fred Boehm for
439 statistical expertise; the UMASS Department of Animal Medicine for expert technical services and
440 Christina Baer and the Sanderson Center for Optical Experimentation (SCOPE) imaging facility at
441 UMass Medical School for assistance with microscopy. The TissueGnostics TissueFAXS PLUS
442 slide scanning microscope was generously loaned to the SCOPE by TissueGnostics. This paper is
443 dedicated to Riley Kay Proulx (MKPxSLP F₁), whose gestation and arrival into the world coincided
444 with the making, genotyping and analysis of this cross.

445

446 **Funding sources:**

447 This work was supported by a grant from the National Institutes of Health (AI132130) to C.
448 Sassetti, F. Pardo-Manuel de Villena, S. Behar, and a fellowship from the Charles H. King
449 Foundation to C. Smith.

450

451

452 **Figure Legends**

453

454 **Figure 1. CC042 are susceptible to low-dose aerosol Mtb infection.** Lung CFU (A), Spleen
455 CFU (B), body weight (C, D), and total IFN γ levels in lung (E) or spleen (F) homogenate at 14, 21,
456 28, and 33 days post infection by low-dose aerosol (~50-100 CFU) of *Mtb* strain H37Rv. All mice
457 were infected in one batch and 3 males and 3 females for each strain were used for analysis at each
458 time point. Graphs represent mean \pm SD. One-way ANOVA with Sidak's multiple comparisons test
459 was used to determine significance, where p<0.05 *, p<0.01**, p<0.001***, and p<0.0001****.

460

461 **Figure 2. Changes in lung pathology during Mtb infection.** Hematoxylin and eosin staining of
462 lung lobes from B6 and CC042 mice at Day 21, 28, and 33 post infection. Images are representative
463 of 6 mice per strain per time point. Magnified insets from D33 images show lymphocytes (yellow
464 arrow), macrophages (red arrow) and neutrophils (green arrow).

465

466 **Figure 3. TB disease traits in a CC001 x CC042 F₂ intercross population.** At 28-31 days post
467 infection the following traits were quantified in parental strains, and F₁ and F₂ offspring: (A) Lung
468 CFU (B), spleen CFU (C) and total IFN γ from lung homogenate. The Pearson correlation between
469 measured traits is shown in (D). Data shown are from the following population sizes: F₂ (n = 201),
470 F₁ (n = 65), CC001 parent (n = 33) and CC042 parent (n = 37). Mice were infected in 4 batches and
471 values were adjusted for batch differences using coefficients from multiple regressions.

472

473 **Figure 4. QTL mapping identifies four loci underlying TB susceptibility.** QTL scan of lung
474 CFU, spleen CFU, and IFN γ abundance in the lung identify four Tuberculosis immune phenotype
475 (*Tifp*) loci on Chromosomes 7, 15, and 16 (A, B). Dotted lines in B represent 5% false discovery rate
476 for each trait based on permutation analysis. *Tifp* loci on each chromosome are indicated at the
477 marker with peak LOD. (F-J) Allele effect plots for the indicated *Tifp* loci. One hundred seventy
478 (170) F₂ mice were successfully genotyped and used for QTL mapping.

479

480 **Figure 5. Susceptibility of CC042 correlates with altered numbers of lung leukocytes.** Total
481 number of the following cells were enumerated in the lungs of B6 and CC042 mice: (A) T cells
482 (lymphocytes > single cells > CD3+ CD19-), (B) B cells (lymphocytes > single cells > CD3-
483 CD19+), (C) neutrophils (lymphocytes > single cells > Gr1+ CD11b+), and (D)
484 monocytes/macrophages (lymphocytes > single cells > Gr1- CD11b+). All mice were infected in

485 one batch and 3 males and 3 females for each strain used for analysis at each time point. Graphs
486 represent mean \pm SD. One-way ANOVA with Sidak's multiple comparisons test was used to
487 determine significance where $p < 0.05^*$, $p < 0.01^{**}$, $p < 0.001^{***}$, and $p < 0.0001^{****}$.

488

489 **Figure 6. CC042 have a defect in T cell recruitment to the lung and lack CD11a expression.**

490 Intracellular cytokine staining (ICS) of CD4 (A) and CD8 (B) T cells reveals a defect in the number of
491 cytokine-producing T cells in the lungs of CC042 mice. Total number of CD4 and CD8 T cells in
492 the lung (C), mediastinal lymph node (D), and spleen (E). Total number of ESAT6 (CD4) or TB10.4
493 (CD8) tetramer positive cells in the lung (F), mediastinal lymph node (G), and spleen (H). Bar plots
494 show mean \pm SD. Welch's t-test was used to determine significance where $p < 0.05^*$, $p < 0.01^{**}$.
495 Histograms (I) of CD4 (left) and CD8 (right) T cells stained for activation and migration markers
496 CD44, CD62L, CD69, and CD11a. Isotype control (top, light gray trace), CC042 (middle, teal), and
497 B6 (bottom, gray).

498

499 **Figure 7. A CC042 private mutation in *Itgal* explains *Tip2* driven susceptibility. (A)**

500 Histograms depicting CD11a staining in CD4 (left) and CD8 (right) T cells from B6 (gray shading),
501 WSB (purple shading), CC011 (light blue shading), and CC042 (teal shading). The isotype control
502 antibody staining is shown on each plot as a dotted gray trace. (B). PCR primers flanking the
503 putative private *Itgal* mutation were used to amplify cDNA from B6, WSB, and CC042 RNA. PCR
504 products were separated by gel electrophoresis on a 3% agarose gel. Lanes 2 and 3 show the 197bp
505 amplicons for B6 and WSB, the parental allele for CC042. The 100bp size decrease in the CC042-
506 derived product is consistent with the loss of exon 2 (lane 4 and schematic). Sanger sequencing traces
507 from the CC042 and WSB amplicons are shown. TB immunophenotypes were reevaluated in F₂
508 progeny of the CC001xCC042 that were homozygous for each parental allele at the *Itgal* locus

509 (probe UNC13811649): (C) Lung CFU, spleen (D) CFU, and (E) lung IFN γ levels Welch's t-test
510 was used to determine significance where $p < 0.05^*$, $p < 0.01^{**}$, $p < 0.001^{***}$, and $p < 0.0001^{****}$. Box
511 and whiskers plots indicate the median and min to max values.

512

513 **Table S1. Phenotype data for F₂ intercross mice.** Smith_et_al_phenotypes.xls

514

515 **Table S2. MiniMUGA Genotype data for CC001, CC042 and F₂ intercross mice.**

516 Smith_et_al_genotypes.xls

517

518

519 **References:**

520

- 521 1. **Houben RMGJ, Dodd PJ.** 2016. The Global Burden of Latent Tuberculosis Infection: A
522 Re-estimation Using Mathematical Modelling. PLoS Med **13**:e1002152.
- 523 2. **Comstock GW.** 1978. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev
524 Respir Dis **117**:621–624.
- 525 3. **Kallmann FJ.** 1943. Genetic mechanisms in resistance to tuberculosis. Psych Quar **17**:32–37.
- 526 4. **Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S,**
527 **Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong X-F,**
528 **Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins**
529 **JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P,**
530 **Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova J-L.** 2012. Mycobacterial disease
531 and impaired IFN- γ immunity in humans with inherited ISG15 deficiency. Science **337**:1684–
532 1688.
- 533 5. **Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal**
534 **CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E,**
535 **Jannière L, Besse C, Boland A, Brisseau J-M, Blanche S, Lortholary O, Fieschi C,**
536 **Emile J-F, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto**
537 **A, Dinauer MC, Abel L, Casanova J-L.** 2011. Germline CYBB mutations that selectively
538 affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial
539 disease. Nat Immunol **12**:213–221.

540 6. **Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, Jouanguy E, Boisson-Dupuis S, Fieschi C, Picard C, Casanova J-L.** 2006. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. *Seminars in Immunology* **18**:347–361.

544 7. **Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, Fortin A, Haniffa M, Ceron-Gutierrez L, Bacon CM, Menon G, Trouillet C, McDonald D, Carey P, Ginhoux F, Alsina L, Zumwalt TJ, Kong X-F, Kumararatne D, Butler K, Hubeau M, Feinberg J, Al-Muhsen S, Cant A, Abel L, Chaussabel D, Doffinger R, Talesnik E, Grumach A, Duarte A, Abarca K, Moraes-Vasconcelos D, Burk D, Berghuis A, Geissmann F, Collin M, Casanova J-L, Gros P.** 2011. IRF8 mutations and human dendritic-cell immunodeficiency. *N Engl J Med* **365**:127–138.

551 8. **Salem S, Gros P.** 2013. Genetic determinants of susceptibility to Mycobacterial infections: IRF8, a new kid on the block. *Adv Exp Med Biol* **783**:45–80.

553 9. **Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV.** 1998. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. *N Engl J Med* **338**:640–644.

556 10. **Curtis J, Luo Y, Zenner HL, Cuchet-Lourenço D, Wu C, Lo K, Maes M, Alisaac A, Stebbings E, Liu JZ, Kopanitsa L, Ignatyeva O, Balabanova Y, Nikolayevskyy V, Baessmann I, Thye T, Meyer CG, Nürnberg P, Horstmann RD, Drobniowski F, Plagnol V, Barrett JC, Nejentsev S.** 2015. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. *Nat Genet* **47**:523–527.

562 11. **Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E, Balabanova Y, Ehmen C, Muntau B, Ruge G, Sievertsen J, Gyapong J, Nikolayevskyy V, Hill PC, Sirugo G, Drobniowski F, van de Vosse E, Newport M, Alisjahbana B, Nejentsev S, Ottenhoff THM, Hill AVS, Horstmann RD, Meyer CG.** 2012. Common variants at 11p13 are associated with susceptibility to tuberculosis. *Nat Genet* **44**:257–259.

567 12. **Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong J, Sirugo G, Sisay-Joof F, Enimil A, Chinbuah MA, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC, Ngwira B, Teo YY, Small K, Rockett K, Kwiatkowski D, Fine PE, Hill PC, Newport M, Lienhardt C, Adegbola RA, Corrah T, Ziegler A, Morris AP, Meyer CG, Horstmann RD, Hill AVS.** 2010. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. *Nat Genet* **42**:739–741.

573 13. **Medina E, North RJ.** 1998. Resistance ranking of some common inbred mouse strains to *Mycobacterium tuberculosis* and relationship to major histocompatibility complex haplotype and Nramp1 genotype. *Immunology* **93**:270–274.

576 14. **Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM.** 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. *J Exp Med* **178**:2243–2247.

579 15. **Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR.** 1993. An essential
580 role for interferon gamma in resistance to *Mycobacterium tuberculosis* infection. *J Exp Med*
581 **178**:2249–2254.

582 16. **MacMicking JD, Taylor GA, McKinney JD.** 2003. Immune control of tuberculosis by
583 IFN-gamma-inducible LRG-47. *Science* **302**:654–659.

584 17. **Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG.** 1998. Cytokine
585 activation leads to acidification and increases maturation of *Mycobacterium avium*-containing
586 phagosomes in murine macrophages. *The Journal of Immunology* **160**:1290–1296.

587 18. **Desvignes L, Ernst JD.** 2009. Interferon-gamma-responsive nonhematopoietic cells regulate
588 the immune response to *Mycobacterium tuberculosis*. *Immunity* **31**:974–985.

589 19. **Nandi B, Behar SM.** 2011. Regulation of neutrophils by interferon- γ limits lung
590 inflammation during tuberculosis infection. *J Exp Med* **208**:2251–2262.

591 20. **Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W, Eugenin E, Smith CM, Phuah
592 JY, Long JE, Dubuke ML, Palace SG, Goguen JD, Baker RE, Nambi S, Mishra R,
593 Booty MG, Baer CE, Shaffer SA, Dartois V, McCormick BA, Chen X, Sasseotti CM.**
594 2017. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during
595 tuberculosis. *Nat Microbiol* **2**:17072.

596 21. **Smith CM, Sasseotti CM.** 2018. Modeling Diversity: Do Homogeneous Laboratory Strains
597 Limit Discovery? *Trends in Microbiology* **26**:892–895.

598 22. **Roy Chowdhury R, Vallania F, Yang Q, Lopez Angel CJ, Darboe F, Penn-Nicholson
599 A, Rozot V, Nemes E, Malherbe ST, Ronacher K, Walzl G, Hanekom W, Davis MM,
600 Winter J, Chen X, Scriba TJ, Khatri P, Chien Y-H.** 2018. A multi-cohort study of the
601 immune factors associated with *M. tuberculosis* infection outcomes. *Nature* **560**:644–648.

602 23. **Lu LL, Smith MT, Yu KKQ, Luedemann C, Suscovich TJ, Grace PS, Cain A, Yu WH,
603 McKittrick TR, Lauffenburger D, Cummings RD, Mayanja-Kizza H, Hawn TR, Boom
604 WH, Stein CM, Fortune SM, Seshadri C, Alter G.** 2019. IFN- γ -independent immune
605 markers of *Mycobacterium tuberculosis* exposure. *Nature Medicine* **25**:977–987.

606 24. **Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK,
607 Tafesse F, Martin C, Leung V, Mahan AE, Sips M, Kumar MP, Tedesco J, Robinson
608 H, Tkachenko E, Draghi M, Freedberg KJ, Streeck H, Suscovich TJ, Lauffenburger
609 DA, Restrepo BI, Day C, Fortune SM, Alter G.** 2016. A Functional Role for Antibodies in
610 Tuberculosis. *Cell* **167**:433–443.e14.

611 25. **Li H, Wang X-X, Wang B, Fu L, Liu G, Lu Y, Cao M, Huang H, Javid B.** 2017. Latently
612 and uninfected healthcare workers exposed to TB make protective antibodies against
613 *Mycobacterium tuberculosis*. *Proc Natl Acad Sci USA* **114**:5023–5028.

614 26. **Chackerian AA, Behar SM.** 2003. Susceptibility to *Mycobacterium tuberculosis*: lessons
615 from inbred strains of mice. *Tuberculosis* **83**:279–285.

616 27. **Nadezhda Logunova MKVPA**A. 2015. The QTL within the H2 Complex Involved in the
617 Control of Tuberculosis Infection in Mice Is the Classical Class II H2-Ab1 Gene 1–22.

618 28. **Kramnik I, Dietrich WF, Demant P, Bloom BR**. 2000. Genetic control of resistance to
619 experimental infection with virulent *Mycobacterium tuberculosis*. *Proc Natl Acad Sci USA*
620 97:8560–8565.

621 29. **Pan H, Yan B-S, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I**. 2005. *Ipr1* gene mediates innate immunity to tuberculosis. *Nature*
622 434:767–772.

624 30. **Sissons J, Yan B-S, Pichugin AV, Kirby A, Daly MJ, Kramnik I**. 2008. Multigenic control
625 of tuberculosis resistance: analysis of a QTL on mouse chromosome 7 and its synergism with
626 *sst1*. *Genes Immun* 10:37–46.

627 31. **Mitsos L-M, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P**. 2003. Susceptibility to
628 tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates *Mycobacterium tuberculosis*
629 replication in the lungs. *Proc Natl Acad Sci USA* 100:6610–6615.

630 32. **Marquis JF, LaCourse R, Ryan L, North RJ, Gros P**. 2009. Genetic and Functional
631 Characterization of the Mouse Trl3 Locus in Defense against Tuberculosis. *The Journal of
632 Immunology* 182:3757–3767.

633 33. **Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA**. 2012. High-resolution genetic mapping using the Mouse
634 Diversity outbred population. *Genetics* 190:437–447.

636 34. **Niazi MKK, Dhulekar N, Schmidt D, Major S, Cooper R, Abeijon C, Gatti DM, Kramnik I, Yener B, Gurcan M, Beamer G**. 2015. Lung necrosis and neutrophils reflect
637 common pathways of susceptibility to *Mycobacterium tuberculosis* in genetically diverse,
638 immune-competent mice. *Dis Model Mech* 8:1141–1153.

640 35. **Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap
641 JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E,
642 Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC,
643 Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D,
644 Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL,
645 Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu H-C, Iraqi FA, Ivandic B,
646 Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G,
647 Kendzierski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle J-M, Lowenstein
648 PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR,
649 Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R,
650 Nadeau JH, Nagase H, Nowakowski RS, O'Hara BF, Osadchuk AV, Page GP,
651 Paigen B, Paigen K, Palmer AA, Pan H-J, Peltonen-Palotie L, Peirce J, Pomp D,
652 Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk
653 LC, Seltzer Z, Shimomura K, Shou S, Sillanpää MJ, Siracusa LD, Snoeck H-W,
654 Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena
655 FP-M, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M,**

656 **Zou F, Complex Trait Consortium.** 2004. The Collaborative Cross, a community resource
657 for the genetic analysis of complex traits. *Nat Genet* **36**:1133–1137.

658 36. **Collaborative Cross Consortium.** 2012. The genome architecture of the Collaborative
659 Cross mouse genetic reference population. *Genetics* **190**:389–401.

660 37. **Smith CM, Proulx MK, Olive AJ, Laddy D, Mishra BB, Moss C, Gutierrez NM,**
661 **Bellerose MM, Barreira-Silva P, Phuah JY, Baker RE, Behar SM, Kornfeld H, Evans**
662 **TG, Beamer G, Sassetti CM.** 2016. Tuberculosis Susceptibility and Vaccine Protection Are
663 Independently Controlled by Host Genotype. *mBio* **7**:e01516–16.

664 38. **Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, Barber DL.**
665 2016. CD4 T Cell-Derived IFN- γ Plays a Minimal Role in Control of Pulmonary
666 Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent
667 Lethal Disease. *PLoS Pathog* **12**:e1005667.

668 39. **Shorter JR, Najarian ML, Bell TA, Blanchard M, Ferris MT, Hock P, Kashfeen A,**
669 **Kirchoff KE, Linnertz CL, Sigmon JS, Miller DR, McMillan L, Pardo-Manuel de**
670 **Villena F.** 2019. Whole Genome Sequencing and Progress Toward Full Inbreeding of the
671 Mouse Collaborative Cross Population. *G3: Genes | Genomes | Genetics* **9**:1303–
672 1311.

673 40. **Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, Ferris MT,**
674 **Frelinger JA, Heise M, Frieman MB, Gralinski LE, Bell TA, Didion JD, Hua K,**
675 **Nehrenberg DL, Powell CL, Steigerwalt J, Xie Y, Kelada SNP, Collins FS, Yang IV,**
676 **Schwartz DA, Branstetter LA, Chesler EJ, Miller DR, Spence J, Liu EY, McMillan L,**
677 **Sarkar A, Wang J, Wang W, Zhang Q, Broman KW, Korstanje R, Durrant C, Mott R,**
678 **Iraqi FA, Pomp D, Threadgill D, de Villena FP-M, Churchill GA.** 2011. Genetic analysis
679 of complex traits in the emerging Collaborative Cross. *Genome Research* **21**:1213–1222.

680 41. **Baaten BJJG, Li C-R, Deiro MF, Lin MM, Linton PJ, Bradley LM.** 2010. CD44 regulates
681 survival and memory development in Th1 cells. *Immunity* **32**:104–115.

682 42. **Seder RA, Darrah PA, Roederer M.** 2008. T-cell quality in memory and protection:
683 implications for vaccine design. *Nat Rev Immunol* **8**:247–258.

684 43. **Szafranski K, Schindler S, Taudien S, Hiller M, Huse K, Jahn N, Schreiber S,**
685 **Backofen R, Platzer M.** 2007. Violating the splicing rules: TG dinucleotides function as
686 alternative 3' splice sites in U2-dependent introns. *Genome Biol* **8**:R154–11.

687 44. **Ghosh S, Chackerian AA, Parker CM, Ballantyne CM, Behar SM.** 2006. The LFA-1
688 adhesion molecule is required for protective immunity during pulmonary Mycobacterium
689 tuberculosis infection. *The Journal of Immunology* **176**:4914–4922.

690 45. **Sallin MA, Kauffman KD, Riou C, Bruyn Du E, Foreman TW, Sakai S, Hoft SG, Myers**
691 **TG, Gardina PJ, Sher A, Moore R, Wilder-Kofie T, Moore IN, Sette A, Lindestam**
692 **Arlehamn CS, Wilkinson RJ, Barber DL.** 2018. Host resistance to pulmonary
693 Mycobacterium tuberculosis infection requires CD153 expression. *Nat Microbiol* **3**:1198–
694 1205.

695 46. **Gopal R, Monin L, Slight S, Uche U, Blanchard E, A Fallert Junecko B, Ramos-Payan R, Stallings CL, Reinhart TA, Kolls JK, Kaushal D, Nagarajan U, Rangel-Moreno J, Khader SA.** 2014. Unexpected Role for IL-17 in Protective Immunity against Hypervirulent Mycobacterium tuberculosis HN878 Infection. *PLoS Pathog* **10**:e1004099–14.

696

697

698

699 47. **Threadgill DW, Churchill GA.** 2012. Ten years of the Collaborative Cross. *Genetics* **190**:291–294.

700

701 48. **Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, Kashfeen A, McMullan RC, Williams LH, Giusti-Rodríguez P, Ferris MT, Sullivan P, Hock P, Miller DR, Bell TA, McMillan L, Churchill GA, de Villena FP-M.** 2017. Genomes of the Mouse Collaborative Cross. *Genetics* **206**:537–556.

702

703

704

705 49. **Welsh CE, Miller DR, Manly KF, Wang J, McMillan L, Morahan G, Mott R, Iraqi FA, Threadgill DW, de Villena FP-M.** 2012. Status and access to the Collaborative Cross population. *Mamm Genome* **23**:706–712.

706

707

708

Fig. 1

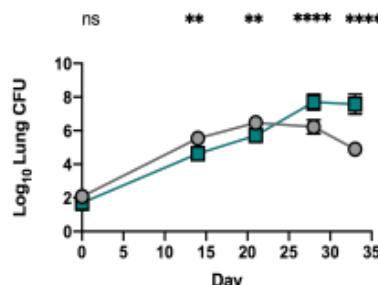
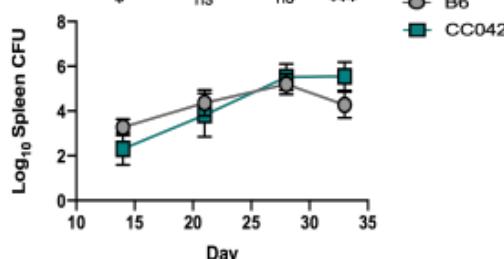
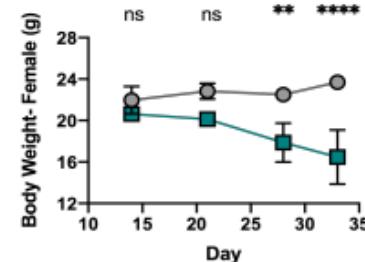
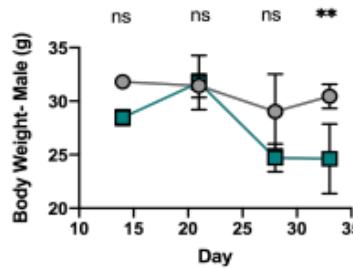
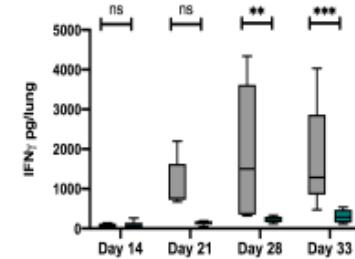
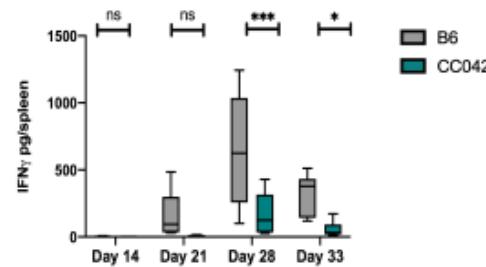
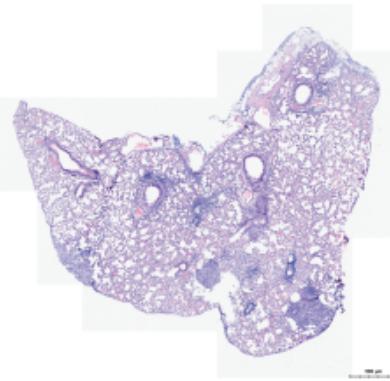
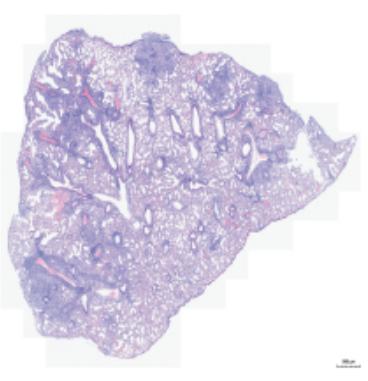
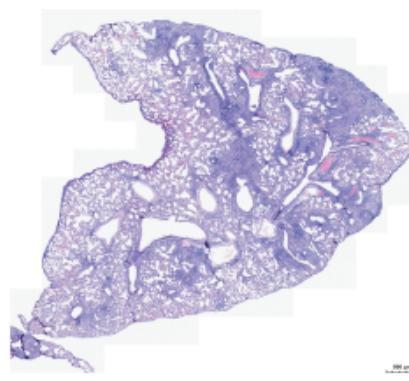
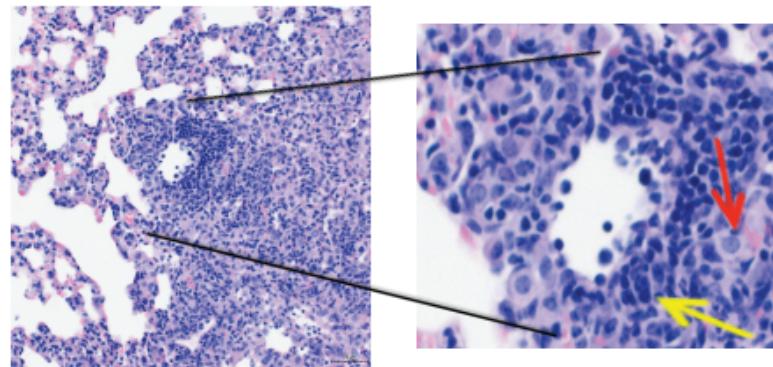








A**B****C****D****E****F**

Fig.2


Day 21


Day 28

Day 33

B6

CC042

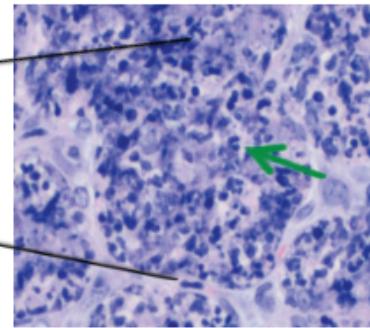
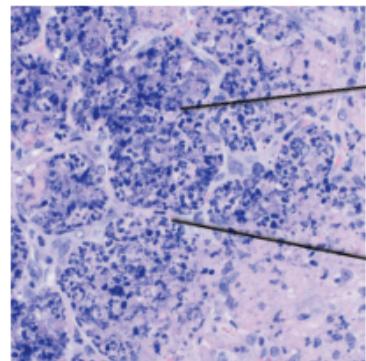
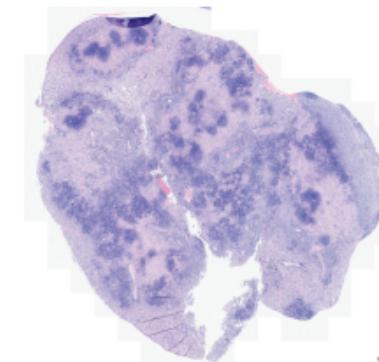
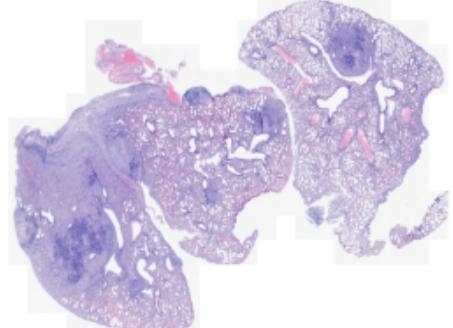
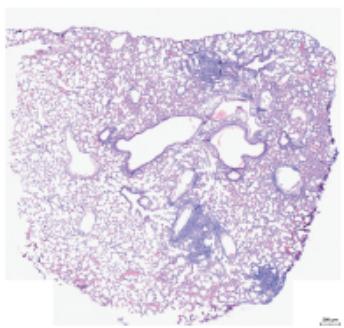
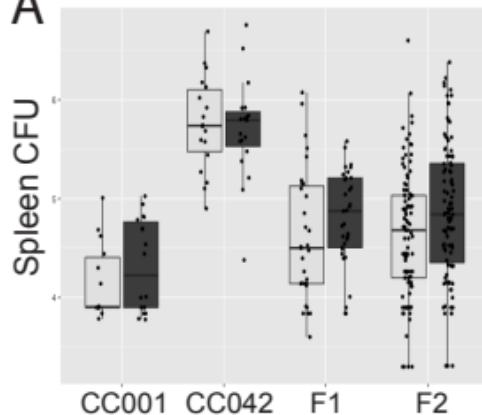
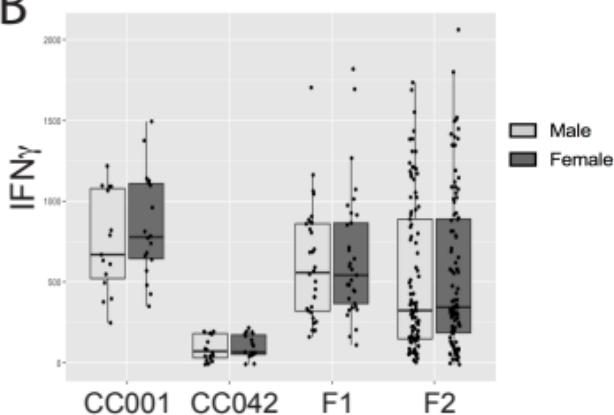
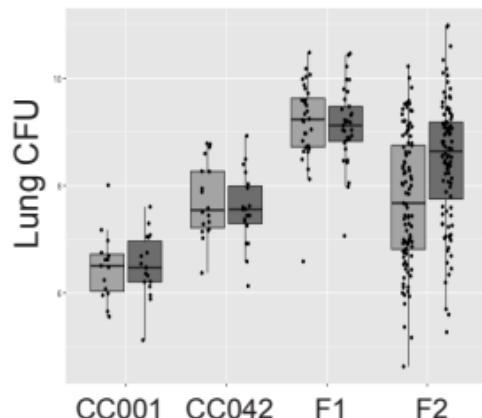








Fig.3


A

B

C

D

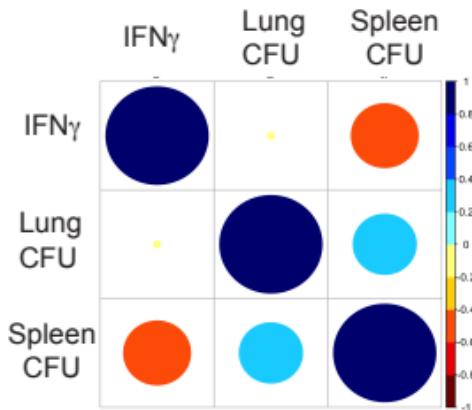
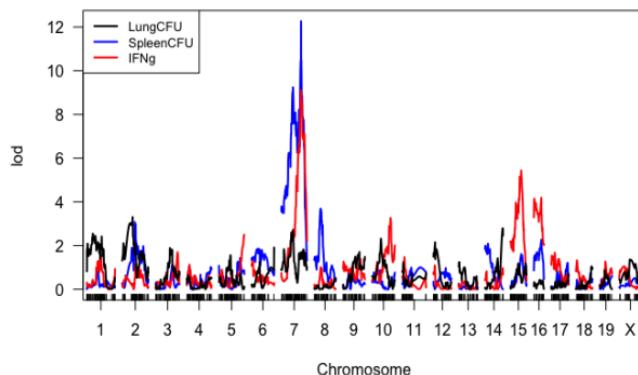
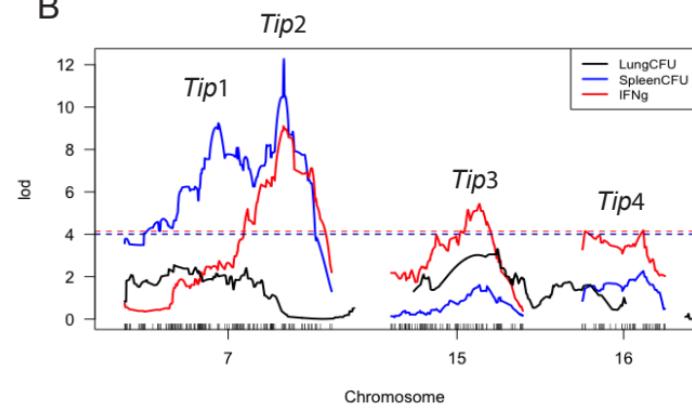
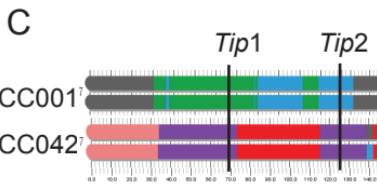
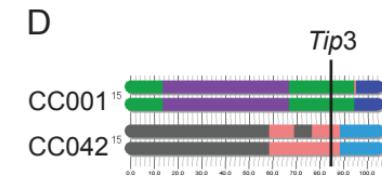
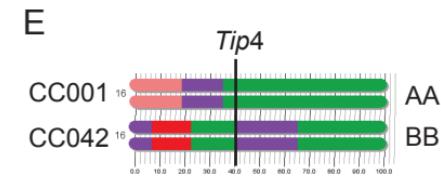




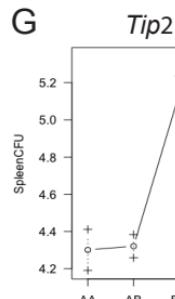
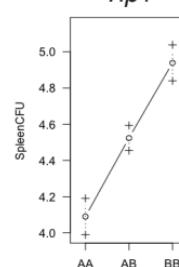
Fig.4

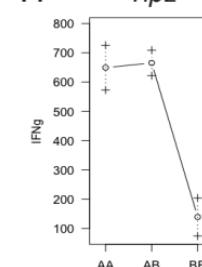

A


B

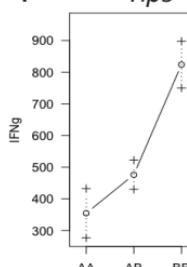

C

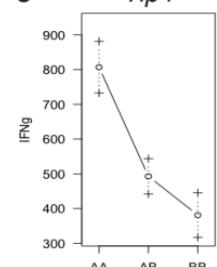
D



E

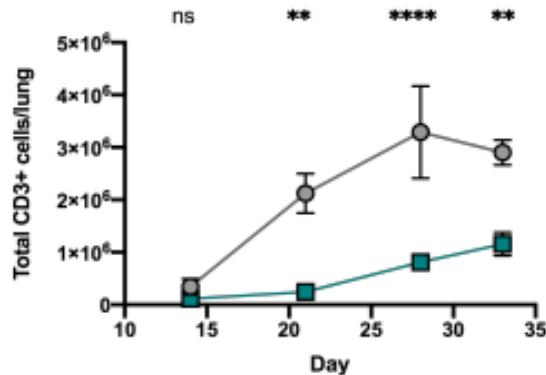

Key:

- AJ
- B6
- 129
- NOD
- NZO
- CAST
- PWK
- WSB


F


H

I



J

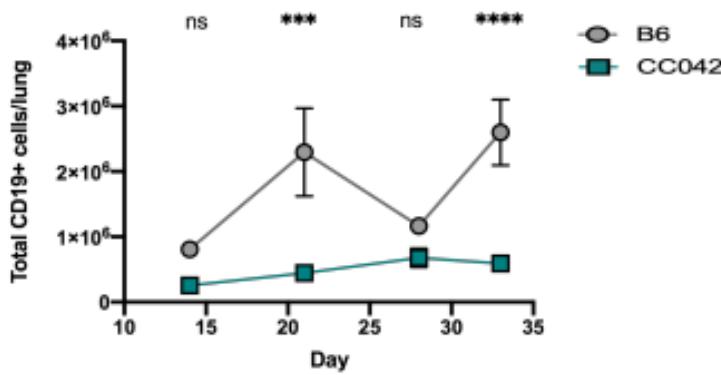
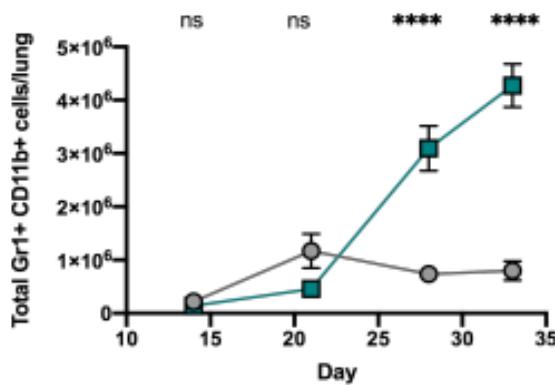


Fig.5


A

B

C

D

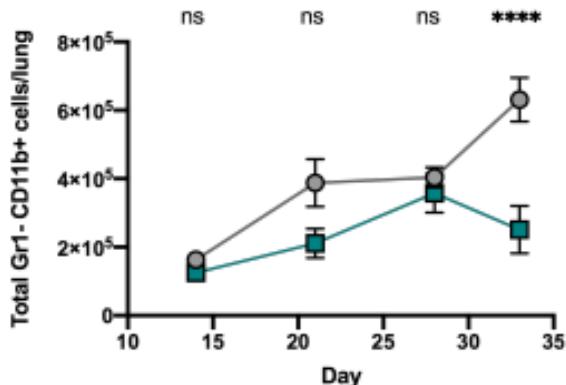
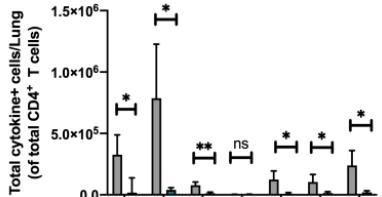
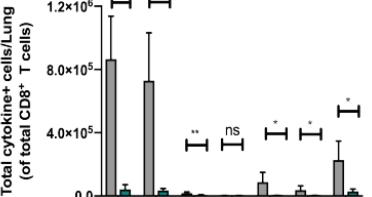
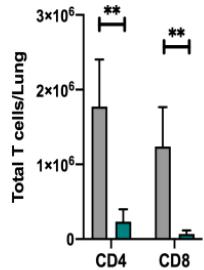
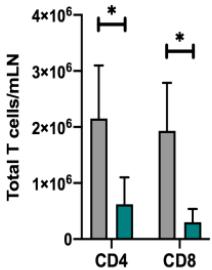
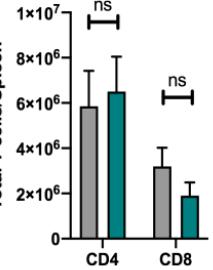
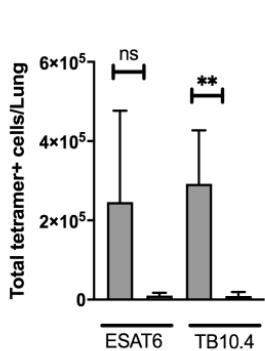




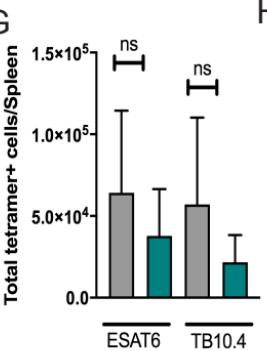
Fig.6

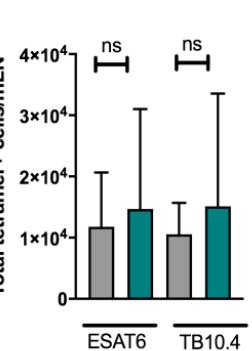

A


B


C


D


E


F

G

H

I

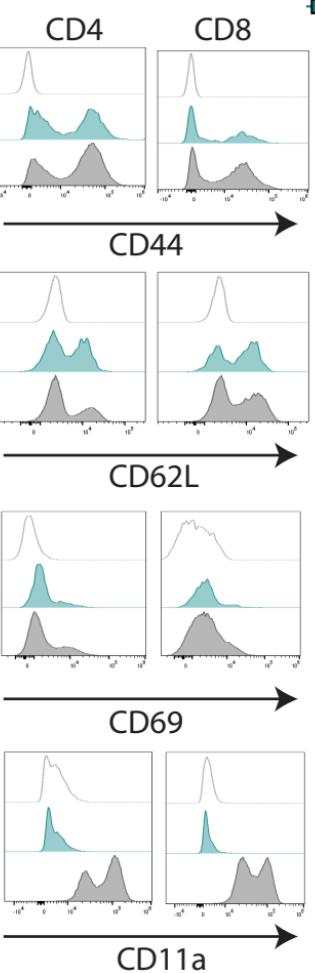
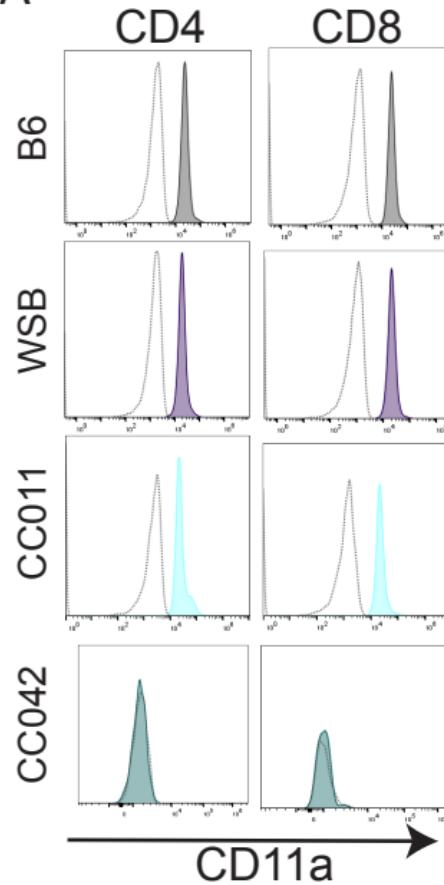
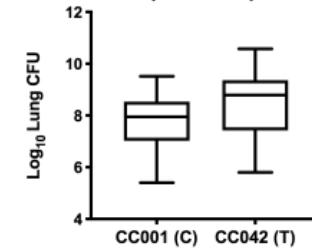
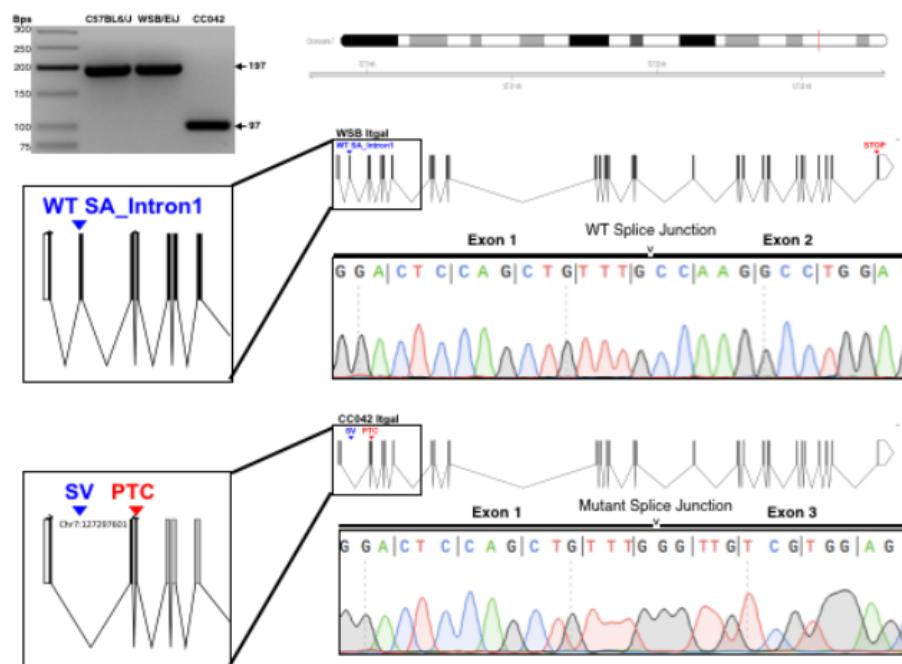
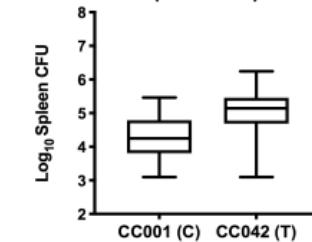
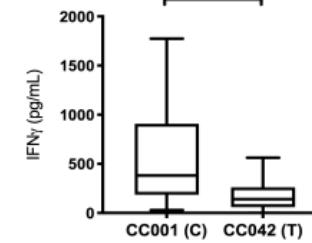





Fig. 7


A


B

D

E

