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Abstract

Most bacteria exchange genetic material through Horizontal Gene Transfer (HGT). The primary vehicles for HGT
are plasmids and plasmid-borne transposable elements, though their population structure and dynamics remain
poorly understood. Here, we quantified genetic similarity between more than 10,000 bacterial plasmids and
reconstructed a network based on their shared k-mer content. Using a community detection algorithm, we assigned
plasmids into cliques which are highly correlated with plasmid gene content, bacterial host range, GC content, as
well as replicon and mobility (MOB) type classifications. Resolving the plasmid population structure further
allowed identification of candidates for yet-undescribed replicon genes. Our work provides biological insights
into the dynamics of plasmids and plasmid-borne mobile elements, with the latter representing the main drivers
of HGT at broad phylogenetic scales. Our results illustrate the potential of network-based analyses for the bacterial

‘mobilome’ and open up the prospect of a natural, exhaustive classification framework for bacterial plasmids.
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Introduction

Plasmids are extra-chromosomal DNA molecules found across all three Domains of Life. In bacteria, they are one
of the main mediators of horizontal gene transfer (HGT) through the processes of conjugation and
transformation'. Plasmids generally harbour non-essential genes that can modulate the fitness of their bacterial
host. Some prominent examples include toxin-antitoxin systems, virulence factors, metabolic pathways, antibiotic
biosynthesis, metal resistance and antimicrobial resistance (AMR) genes. These accessory genes can be located
on transposable elements involved in gene transfer across genomes and can thus lead to a highly mosaic structure
of plasmid genomes*. The mix of vertical and horizontal inheritance of plasmids, together with exchanges of
plasmid-borne genes, generates complex dynamics that are difficult to capture with classical population genetics

tools and make it challenging to classify plasmids within a coherent universal framework.

Currently, there are two well-established plasmid classification schemes which attempt to bin plasmids according
to their propagation mechanisms, while indirectly capturing some features of the plasmid backbone. The first
scheme is based on replicon types® and the second on mobility (MOB) groups®. Replicon-based typing relies on
relatively conserved genes of the replicon region which encode the plasmid replication and partitioning
machinery®. Plasmids with matching replication or partitioning systems cannot stably coexist within the same cell.
Conversely, MOB typing is used to classify self-transmissible and mobilizable plasmids into six MOB types®.
The MOB typing scheme relies on the conserved N-terminal sequence of the relaxase, a site-specific DNA
endonuclease which binds to the origin of transfer (oriT) cleaving at the nic site and is essential for plasmid

conjugation.

Despite being widely used and informative, these typing schemes only work within a limited taxonomic
range’”. Replicon typing is dependent on the availability of prior experimental evidence and remains restricted
to culturable bacteria from the family Enterobacteriaceae and several well-studied genera of gram-positive
bacteria1%12, Furthermore, this approach can lead to ambiguous classification, even for experimentally validated
replicons, as recently demonstrated by the discovery of compatible plasmids assigned to the same replicon type,
which led to the further subdivision of the IncK type into IncK1 and IncK2'3, and IncA/C type into IncA and
IncC'*, In addition, plasmids can carry genes from more than one replication machinery and are thus assigned to
multiple replicon types, further reducing interpretability’”s. MOB typing schemes generate fewer multiple
assignments and can cover a potentially wider taxonomic range, however they are not applicable to the
classification of non-mobilizable plasmids. These two typing schemes have inspired several in silico classification
tools, such as PlasmidFinder!'?, the plasmid MultiLocus Sequence Typing (MLST) database, and MOB-suite'’.
However, all of these tools intrinsically rely on the completeness of their reference sequence databases, which

typically lack representatives from understudied and/or unculturable bacterial hosts.

As bacterial plasmids undergo extensive recombination and HGT, their evolutionary history is not well captured
by phylogenetic trees, which are designed for the analysis of point mutation in sequence alignments'®!”. Network
models offer an attractive alternative given they can incorporate both horizontal and vertical inheritance'8, and
can deal with point mutations as well as structural variants. Networks have gained much attention in the past
decade as an alternative method for studying prokaryotic evolution, including plasmids®®!%!°. Plasmid gene-

sharing networks have proven a useful means to track AMR and virulence dissemination yielding deeper insights
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into HGT events'72%2!, However, the main drawback of previous work relying on plasmid sequence alignments
is the exclusion of important non-coding elements such as non-coding RNAs, promoter regions, CRISPRs,
stretches of homologous sequences, or putative, disrupted and currently unannotated genes. A more
comprehensive approach could consider a plasmid network based on estimates of alignment-free sequence
similarity??. A recently published Plasmid ATLAS tool by Jesus et al.® provides an illustration of such an
approach, with a network of plasmids constructed based on pairwise genetic distances estimated using alignment-

free k-mer matching methods implemented in Mash?*.

In this work, we have quantified the genetic similarity between more than 10,000 bacterial plasmids available on
NCBI’s RefSeq database and constructed a network reflecting their relatedness based on shared k-mer content.
Applying a community detection algorithm allowed us to cluster plasmids into statistically significant cliques
(complete subgraphs), and revealed a strong underlying population structure. Cliques are highly correlated with
the gene content of the plasmid backbone, bacterial host and GC content, as well as replicon and MOB types.
Uncovering the structure of the full plasmid population allowed for the discovery of candidates for yet-
undescribed replicon genes and provided insights into broad-scale plasmid dynamics. Taken together, our results
illustrate the potential of network-based analyses of plasmid sequences and open up the prospect of a natural,

exhaustive classification framework for bacterial plasmids.
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76  Results

77 A dataset of complete bacterial plasmids

78 A dataset of complete bacterial plasmids was assembled comprising 10,696 sequences found in bacteria from 22
79 phyla and over 400 genera (Supplementary Table 1, Figure 1A, and Supplementary Figure 1). The composition
80  of plasmid hosts reflects current research interests, with the Proteobacteria and Firmicutes phyla together
81 representing over 84% of plasmid sequences. In total, 510,463 different Coding Sequences (CDSs) were identified
82 in the plasmid dataset. 66.01% of the CDSs were predicted to encode a hypothetical protein, 27.9% had a known
83 product with Gene Ontology (GO) biological process annotation, with the remaining 6.09% encoded a known
84 protein product with unknown biological function (Figure 1B). There are 3,328,916 bacterial genes available in
85 the RefSeq database (NCBI Gene Statistics accessed on June 19" 2019), meaning that roughly one in twenty of
86  the currently known bacterial genes are plasmid-borne. The GO biological processes associated with plasmid
87  CDSs are diverse. The dominant associated terms relate to catabolic and biosynthetic processes (20.64%),
88 transposon mobility (17.09%) and positive and negative regulation of transcription (7.70%). Replicon-based
89  typing classified 27.66% of the plasmids into 163 different replicon types (Figure 1C and Supplementary Figure
90  2). However, 31.67% of these classified plasmids were assigned to multiple replicon types. MOB typing was more
91 comprehensive, successfully classifying 32.63% of the plasmids into six MOB types of which 9.48% were
92  assigned to multiple types (Figure 1C). Unsurprisingly, classification by these two methods performed best for
93  well-studied plasmids of the phyla Proteobacteria and Firmicutes.

94  Uncovering the population structure of plasmids using a network-based approach

95 We constructed a network based on the plasmid pairwise sequence similarities. This represents a weighted,
96  undirected network with plasmids (vertices) connected by edges indicating similarity (Supplementary Figure 3).
97 Similarity was scored using the exact Jaccard index (JI), defined as the size of the intersection divided by the size
98 of the union of two sets of k-mers. Plasmid pairs which shared less than 100 k-mers were considered to have a JI
99 equal to zero. This cut-off value was implemented since the majority of CDSs found on plasmids have lengths
100 greater than 100bp, thus only a fraction of the functional genome is common between plasmids with low shared
101 k-mer count (Supplementary Figures 4 and 5). The majority of plasmid pairs shared little to no similarity (Figure
102 ID). 6.14% (657) of the plasmids were singletons, whilst 3.31% (354) were connected to only one other plasmid,
103 illustrating the high levels of diversity across bacterial plasmid genomes. It follows that plasmids with more
104 k-mers in common are more likely to share the same functional genetic elements and hence participate in similar
105 biological processes falling within the same host niche (Supplementary Figure 5). Such plasmids are presumed to

106  form cliques with high internal JI score.

107 Finding all the cliques of a network is a nondeterministic polynomial (NP)-complete problem?. This means that
108  while a solution for a single clique can be quickly verified, the time required to find all possible cliques scales
109 rapidly as the size of the network increases. In the case of our large network of plasmids, a full solution cannot be
110 found within a reasonable timeframe given current computational limitations. As an alternative solution, a
111 community detection algorithm OSLOM (Ordered Statistics Local Optimization Method) was implemented?®.

112 OSLOM detects communities (i.e. densely interconnected subgraphs) with statistical significance, meaning that
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113 they have a low probability of being encountered by chance in a random network with similar features to the
114 plasmid network. OSLOM is well suited for this task since it can be used to analyse undirected networks with
115 overlapping communities or hierarchical structures. In addition, OSLOM shows similar performance to other

26,27

116  widely used methods such as Infomap or Louvain®*»?” which, unlike OSLOM, were unable to analyse this dataset

117 due to size and memory limitations.

118  Despite the notable dissimilarity among plasmids, the network as a whole was too dense (network density =
119  0.0438) to yield a consistent performance for every OSLOM run (Figure 2 and Supplementary Figures 3 and 6).
120 Furthermore, a large proportion of communities detected did not form cliques, and thus had to be disregarded
121 (Figure 2A). A J1 threshold was therefore introduced to increase the sparsity of the network. A range of thresholds
122 were assessed based on the following criteria: (i) the clique to community ratio (Figure 2A), (ii) the proportion of
123 plasmids assigned to cliques (Figure 2B), (iii) the congruence with replicon-based typing (Figure 2C), and (iv)
124 the consistency of OSLOM performance (Figure 2 and Supplementary Figure 6). The optimum threshold was
125 consistently obtained at a JI of 0.3. This threshold was also corroborated by an alternative data driven approach
126 introduced by Branger et al.?® called the giant component analysis. This method determines the optimal JI
127 threshold by tracking the size of the giant component (i.e. the largest cluster) of the network, and the total number
128 of components. In this case, the relative stability of the size of the giant component was reached at a JI threshold
129 of 0.3 (Supplementary Figure 7). Edges with values lower than the threshold were removed from the network.
130 The resulting sparse network is shown in Figure 3 (network density = 0.00128).

131  Plasmid cliques agree with current typing schemes

132 Analysis of the sparse network with OSLOM successfully assigned 50.21% (5371) of the plasmids into 561
133 cliques (Figure 1C, Figure 3, and Supplementary Figure 10). 1.64% (88) of these plasmids were assigned to
134 multiple cliques, and were found in the densest regions of the network and at the interfaces between cliques
135 indicating the presence of ‘chimeric plasmids’ (i.e. hybrid plasmids generated through merging of two different
136 plasmids), large-scale transposition or recombination events, or extensive repeated transposition/recombination
137 (Figure 1C and Figure 3). In addition, this approach covered 564 plasmids from phyla other than the Proteobacteria
138 and Firmicutes, namely from Spirochaetes, Chlamydiae, Actinobacteria, Tenericutes, Bacteroidetes,
139 Cyanobacteria, and Fusobacteria. Interestingly, after applying the 0.3 JI threshold, 38.01% (4066) of plasmids
140 were separated from the network as singletons, while 10.10% (1080) shared an edge with a single plasmid. Such
141 plasmids could not be assigned to a clique. Therefore, only 1.67% (179) of plasmids were effectively left
142 unassigned by the algorithm.

143 Clique purity and Normalized Mutual Information (NMI) were used to assess the quality of clique-based
144 classification (see Methods). These metrics were calculated for cliques comprising plasmids with identified
145 replicon type, plasmids carrying a single identified replicon type, or plasmids with assigned MOB type. Untyped
146 plasmids were disregarded. The observed purity scores were high (>85%) indicating the homogeneity of cliques
147 for a particular plasmid type (Supplementary Figure 8). This was particularly the case for MOB types (purity =
148 0.9887) and plasmids assigned to a single replicon type (purity = 0.9522). NMI provides an entropy-based measure
149 of the similarity between two classification systems where a score equal to one indicates identical partitioning

150 into classes while zero means independent classification. NMI penalizes differences in the number of assignment
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151 classes which justifies the low score observed when assessing clique-based versus MOB-based typing (NMI =
152 0.5223). Nevertheless, high NMI scores were obtained when considering a replicon-based classification scheme
153 (NMI = 0.9044 all types, and NMI = 0.9336 for single replicon types). It follows that plasmids with the same
154 replicon type often fall together within the same clique. This is also supported by the high correlation between the
155 clique membership size and the number of plasmids assigned to the corresponding replicon class (Supplementary
156 Figure 9, R>=0.862 for plasmids assigned to a single replicon types). However, there are exceptions where

157  plasmids from larger replicon classes are further resolved into a few smaller evolutionary related cliques.

158  Candidate replicon genes recovered from cliques of untyped plasmids

159 The majority of plasmids with unknown replicon types formed small cliques (Supplementary Figure 10). In fact,
160 81.02% of the smallest cliques (carrying three to five plasmids) contain exclusively untyped plasmids. Together
161 with the aforementioned singletons and lone plasmid pairs, this trend highlights the many understudied and
162 underrepresented plasmids in sequence databases. Accordingly, the next objective was to investigate the genetic

163 content of untyped cliques to determine candidate replicon genes and further traits of biological relevance.

164  In total, there are 388 cliques with no assigned replicon types. As the cliques tend to be homogeneous for a
165 replicon type, only the core genes (i.e. genes occurring on all plasmids of a particular clique) found on untyped
166 cliques were considered. Core genes were translated into protein sequences and screened against the translated
167  PlasmidFinder database using TBLASTN%. A range of e-values were assessed to determine the threshold
168 maximizing the discovery of replicon candidates while minimizing false positives (Supplementary Figure 11).
169 The majority of plasmids were assigned to one replicon type with some plasmids having hits to a maximum of
170 three to four different types. The optimal e-value threshold was selected when the total number of core gene hits
171 started to diverge from the number of untyped cliques covered. With this in mind, a conservative e-value threshold
172 of 0.001 was chosen which resulted in the identification of 105 candidate genes from 106 plasmid cliques
173 (Supplementary Table 1).

174 To verify the plausibility of the identified gene candidates, HMMER (version 3.2.1) was used to scan amino acid
175 sequences for known protein domain families found in the Pfam database (version 32.0)*°. 166 families, with
176 e-values lower than 0.001, were identified on 97 protein sequences and were most commonly associated with
177 replication initiation (Supplementary Figure 12). Moreover, the majority of functions associated with the
178 discovered protein families relate to plasmid replicon proteins. For example, domains with helix-turn-helix motifs
179 are important for DNA binding of replicon proteins and allow some proteins to regulate their own transcription’!.
180 Other examples of transcriptional regulators also exist in plasmid replicon regions, while the DNA primase
181 activity has been found on the RepB replicon protein®!. Interestingly, replicon proteins involved in rolling-circle
182 replication (a mechanism of plasmid replication) share some of their motifs with proteins involved in plasmid
183 transfer and mobilization®!. This could explain why some of the discovered domain families are linked to plasmid
184 mobilization. On the whole, the candidate replicon genes are highly specific to a particular clique of plasmids and

185  should be useful for describing new incompatibility types.
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186  Plasmids within cliques have a low variability in GC content and share a common
187  bacterial host

188 The unprocessed plasmid network exhibited a pronounced structure in terms of the plasmid nucleotide
189  composition, measured by GC content (Supplementary Figure 3). This trend was also reflected in the clique
190 composition (Supplementary Figure 13A). Within a clique, the standard deviation of GC content rarely exceeds
191 0.02 and is weakly correlated with the clique size (R?> = 0.0155) (Supplementary Figure 13B). Furthermore, a
192  significant difference in GC content is often found between cliques. Analysis of variance (ANOVA), followed by
193 a Tukey test, found that 85.3% of the time the GC content between two cliques differs significantly (adjusted p-
194 value < 0.001). In contrast, the sequence lengths of plasmids within a clique are more variable, but are also not
195 strongly correlated with clique size (R? = 0.029) (Supplementary Figure 13C and 13D). Similarly, a Tukey test
196  showed that a significant difference in plasmid length between cliques is observed less than 34% of the time

197  (adjusted p-value < 0.001).

198  Plasmid GC content has been shown to be strongly correlated to the base composition of the bacterial host’s
199  chromosome™. Indeed, the cliques showed a very high homogeneity (purity) relative to their hosts (Supplementary
200 Figure 14), a trend which has been identified in other plasmid network reconstruction efforts?®®. At higher
201 taxonomic levels, cliques have near perfect purity scores (>0.99). The purity score slightly decreases at the level
202 of the plasmid host family, reaching a value of 0.807 at the species level. Therefore, plasmids with high genetic
203 similarity rarely transcend the level of the bacterial genus, which suggests a limited host range for the vast majority
204  ofplasmids. However, these results need to be carefully considered due to inherent biases in the dataset, especially
205 in terms of the predominance of well-studied taxa. Overall, the plasmid cliques show a strong intrinsic propensity

206  towards confined GC content and are found in a limited range of bacterial hosts.

207  Plasmids within cliques have uniform gene content

208 The gene content of cliques was assessed for all genes occurring five or more times in the dataset. In total, 15,851
209  out of 35,883 (44.17%) of the assessed genes were ‘core’ genes, meaning they had a within-clique frequency
210 equal to one, suggesting an overall uniformity of gene content in cliques (Supplementary Figure 15). Furthermore,
211 6,577 (18.33%) of the genes were ‘private’. Private genes are those found in only one clique, with a frequency of
212 one, and their relatively high abundance in the dataset suggests the uniqueness of some cliques with respect to
213 their gene content. However, there is an inherent bias. Plasmids within larger cliques tend to be more dissimilar
214 and share proportionally fewer genes (Supplementary Figure 16). This pattern can in part be explained by the
215 broader gene content of large cliques and the high sequence similarity required for same-gene clustering (95%)
216 within the default implementation of the Prokka-Roary annotation pipeline. 31.94% of cliques containing five or
217  more plasmids were found to have one to 10 core genes. However, cliques exhibited a wide range in the number
218 of core genes with 7.74% of cliques carrying over 100 shared genes. Interestingly, 13.55% (42) of cliques had no
219  core genes which could also be an artefact of the gene annotation pipeline sensitivity. For instance, plasmids from
220 19 cliques carried no recognized genes from the pool of 35,883 assessed genes. Functionally, core genes were
221 found to be more often associated with various metabolic processes, transcription regulation and transmembrane
222 transport (Supplementary Figure 17) when compared to the overall distribution of GO terms, shown in Figure 1B.

223 Similarly, fewer core genes were involved in transposon movement, pathogenesis, and resistance.
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224  Inferring bacterial horizontal gene transfer through clique interactions

225 Gene content was also considered in the context of clique structure and interconnectedness. To do so, the original
226 network of plasmids (Supplementary Figure 3) was rearranged such that: (i) plasmids assigned to the same clique
227  were clustered under a single vertex; (ii) plasmids assigned to multiple cliques were left as solitary vertices
228 anchoring the cliques; (iii) unassigned plasmids were removed. The resulting network is shown in Figure 4. As
229 highlighted earlier, large cliques generally show lower internal similarity compared to the smaller ones. It is
230 important to note that an arbitrary JI threshold of 0.01 was introduced in Figure 4 to assist visual interpretation,

231 but the unfiltered version of the network is provided in Supplementary Figure 18.

232 The clustering of cliques in Figure 4 shows high concordance with the phylogenetic hierarchy of the bacterial
233 hosts. On a global scale, there are four large interconnected clusters (three corresponding to cliques from the
234 phylum Firmicutes and one from the Proteobacteria), eight disjointed clusters, and a dozen singled-out triplets
235 and pairs. The clique clusters mostly contain plasmids from a specific genus with some minor deviations — hence
236 the cluster naming. The only two exceptions are the large and diverse Proteobacteria cluster which harbours
237  plasmids mainly from the genera Escherichia, Klebsiella, and Salmonella, and the Dairy bacteria. The majority
238 of genes identified in these four large clusters were those functionally involved in transposition. Specifically,
239 26.4% of the genes in the Proteobacteria cluster were transposition related. In addition, 9.66% of the genes in the
240 Proteobacteria were involved in some form of AMR or metal resistance, and 7.38% in pathogenesis, which may

241  reflect the high number of pathogens found in this phylum*.

242 The core and shared gene content of the three Firmicutes clusters (Staphylococcus, Enterococcus and Dairy) was
243 also assessed (Figure 4, Venn diagram). Gene sharing was most common between the plasmid clusters associated
244 with Staphylococcus and Enterococcus potentially indicating a high frequency of HGT between them, and the
245 least between the Staphylococcus and Dairy bacteria cluster. Analysing the content of these shared genes provides
246 insight into both plasmid function and dynamics, such as the identification of HGT events. For example, the same
247 lactose metabolism genes were found in both Staphylococcus and Dairy bacteria plasmids. Also, the trpF gene,
248 involved in tryptophan biosynthesis and previously associated with the Tn3000 and Tni25 transposable

249  elements***°, was found on plasmids in all three clusters.
p
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250 Discussion

251 Using alignment-free sequence similarity comparison and subsequent network analysis we uncovered strong
252 population structure in bacterial plasmids. This approach, applied to a comprehensive set of complete bacterial
253 plasmids, yielded a network in which over half of the plasmids were assigned to statistically significant cliques.
254 This is a significant improvement in coverage over existing plasmid typing methods. Additionally, the cliques
255 capture biologically meaningful information. For example, plasmids assigned to the same clique show good
256 accord with replicon and MOB typing schemes, high homogeneity in terms of their respective bacterial hosts, and
257  similar GC and gene content.

258 A network-based representation of plasmid sequence similarities condenses both vertical and horizontal

259  evolutionary histories in a similar fashion to gene-sharing networks!”2%2!

, making it ideally suited for the
260 identification of mobile genetic elements. The model employed here assigns plasmids to cliques, delineating
261 clusters of plasmids with shared evolutionary history. This in turn allows for inference on the nature of HGT
262 events and plasmid function. Moreover, the approach facilitates identification of new replicon gene candidates,
263 as well as detailed investigation of the distribution of plasmid-borne genetic determinants of incompatibility,
264 mobility, AMR, virulence, and transposon carriage. Such meta-information could be incorporated within the
265 network framework thanks to a plethora of well-maintained bioinformatics tools, ever growing genetic databases,

266  and gene ontology efforts to systematize gene annotation.

267  Jaccard index (i.e. the fraction of shared k-mers) was chosen as a measure of sequence similarity between pairs
268 of plasmids due to it being a straightforward metric which considers genome sequences as a whole, embodying
269 both point mutations and large-scale genome rearrangements. As a result, it is not biased by the ability to annotate
270 genes, open reading frames, or other genetic elements. In addition, it is not prone to errors and biases intrinsically
271 associated with alignment-based methods, such as: a priori assumptions about the sequence evolution, higher
272 inaccuracy when comparing more dissimilar sequences, or suboptimal alignments?. JI can in principle provide
273 fine-scale resolution when comparing small genomes, a characteristic common to the majority of plasmids.
274 Conversely, JI is sensitive to varying genome sizes>* and plasmids are known to differ more than 1000-fold in
275  sequence length”*. While differences in plasmid genome size can lead to a drop in JI score even when high
276  proportions of k-mers are shared, sequence length variation did not seem to impact our structuring into cliques

277 which comprise plasmids of different lengths (Supplementary Figure 13C and D).

278 Assessing the statistical significance of all resulting cliques is computationally intractable given the size of the
279 network. Hence, the OSLOM community detection algorithm was employed to uncover cliques that are unlikely
280 to be found in a random network. In an effort to optimize the performance of the OSLOM algorithm and maximize
281  the number of biologically meaningful cliques, all edges with a JI value below 0.3 were removed from the
282 network. This threshold was chosen to maximise compliance with replicon-based typing as well as several other
283 criteria. The implementation of the 0.3 JI threshold somewhat allegorizes the average nucleotide identity (ANI),
284  which was set over a decade ago at 95%, to define the species boundary for prokaryotes’’. However, depending
285 on the question pursued, enforcing a strict JI threshold may not be necessary, and it could be left to plasmid
286  sequences in the network to solely inform the cut-offs. Some boundaries are likely to be blurrier than others,

287 largely reflecting the extensive variation of genetic inheritance in different bacterial hosts.
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288  The strong underlying population structure we document for plasmids throughout bacteria suggests it should be
289  possible to devise a ‘natural’, global sequence-based classification scheme for bacterial plasmids. This being said,
290 our findings do not diminish the relevance of replicon and MOB typing schemes, rather they build upon these
291 prior classification schemes and may even extend them to plasmids from understudied and uncultured bacteria.
292 Beyond just plasmid classification, our network-based approach also has potential to infer key features of plasmid
293 groupings. Indeed, plasmid clique assignment can be completely automated and inspection of any particular area
294 of the network facilitates biological inference about plasmid dynamics and their biological features within various

295 groups of bacterial hosts.

10
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296 Methods

297  Assembling a dataset of complete bacterial plasmids

298 A dataset of complete plasmids was downloaded from NCBI’s RefSeq release repository®® on 26th of September
299 2018. The metadata accompanying each plasmid sequence was parsed from the associated GenBank files
300 (Supplementary Table 1). The resulting dataset was then systematically curated to include only those plasmids
301 sequenced from a bacterial host and with a sequence description which implies a complete plasmid sequence
302  (regular expression term used: “plasmid.*complete sequence”). This is a simpler, but similar approach
303 to a previously reported curation effort by Orlek and collegues’. Nevertheless, a large portion of unsuitable entries,
304 such as gene sequences, partial plasmid genomes, whole genomes, non-bacterial sequences and other poorly

305 annotated sequences, were removed. The final dataset included 10,696 complete bacterial plasmids.

306  Information about the taxonomic hierarchy of plasmid bacterial hosts was obtained with the nchi_taxonomy
307 module from the ETE 3 Python toolkit*. To determine the replicon and MOB types of plasmids included in the
308  dataset we used the PlasmidFinder replicon database'> and MOBtyping software*’. The PlasmidFinder database
309  was screened using BLAST? with a minimum coverage and percentage nucleotide identity of 95%. In cases
310 where two or more replicon hits were found at overlapping positions on a plasmid, the one with higher percentage
311 identity was retained. For determining the plasmid MOB type, MOBtyping software was used with the
312 recommended settings of 14 PSI-BLAST iterations.

313 Plasmid CDSs were annotated using the Prokka*! (version 1.13.3) and Roary*? (version 3.12.0) pipelines run with
314 default parameters. The identified CDSs were further associated with Gene Ontology (GO) terms** to facilitate
315 downstream gene content analysis. Since Prokka uses a variety of databases to annotate identified CDSs, different
316 resources have been used to append the corresponding GO terms. For example, GO terms for CDSs with a known
317  protein product have been obtained using Uniprot’s ‘Retrieve/ID Mapping’ tool*, while the GO terms for CDSs
318  with just the HAMAP family were obtained with the hamap2go mapping table*® (version date: 2019/05/04). CDSs
319  annotated with the ISfinder database were given GO terms GO:0070893 and GO:0004803 in order to associate
320 them with transposition. Similarly, CDS annotated with Aragorn, MinCED, and BARRGD were given
321  GO:0006412, GO:0099048, and GO0046677 terms respectively.

322 Assessing similarity between pairs of plasmids

323 The exact Jaccard index (JI) was used as a measure of similarity between all possible plasmid pairs. To do this,
324  each plasmid sequence was converted to a set of 21 bp k-mers. The JI was then calculated as the fraction of shared
325 k-mers between two sets. JI thus takes a value between 0 and 1, where 1 indicates 100% k-mer similarity, and 0
326  indicates no k-mers shared. We applied Bindash*’ to calculate the exact JI which resulted in the creation of a

327  plasmid adjacency matrix which was used to build the network.

328 Implementing OSLOM community detection algorithm

329  OSLOM (Ordered Statistics Local Optimization Model version 2.5) was applied to identify statistically significant
330  cliques (complete subgraphs) in the plasmid network?. OSLOM aims to identify highly cohesive clusters of
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331  vertices (communities) which may or may not be cliques (complete subgraphs). The statistical significance of a
332 cluster is measured as the probability of finding the cluster in a configuration model which is designed to build
333 random networks while preserving the degrees (number of neighbours) of each vertex. The method locally
334 optimizes the statistical significance with respect to vertices directly neighbouring a particular cluster. In brief,
335 OSLOM starts by randomly choosing vertices from a network which are regarded as clusters of size one. These
336 small clusters alongside their neighbouring vertices are assessed. Vertices are scored based on their connection
337 strength with a particular cluster and are either added or removed from the cluster. The process continues until
338 the entire network is covered. Due to the stochastic nature of the algorithm, this network assessment goes through
339 many iterations after which the frequently emerging significant clusters (i.e. communities) are kept. The algorithm
340  then proceeds to assess the clusters of the next hierarchical level; vertices belonging to the significant clusters are
341 condensed into super-vertices with weighted edges connecting them. The process of cluster assessment is repeated

342 at higher hierarchical levels until no more significant clusters are recovered.
343  OSLOM was executed for an undirected and weighted network with the following parameters:
344 oslom undir -w -t 0.05 -r 50 -cp 0 -singlet -hr 0 -seed 1

345 Clusters were considered significant if their p-value was lower than 0.05 (-t 0.05 ). The number of iterations
346  required before the recovery of significant clusters was set to 50 during the search for the optimally sparse network
347 ( =r 50 ), and 250 for the final network analysis after the introduction of the 0.3 JI threshold ( -x 250 ). After
348 the iteration process, OSLOM considers merging similar significant clusters if the significance of their union is
349  high enough. This feature can potentially yield less cliques and was suppressed with the coverage parameter set
350 to zero ( —cp 0 ) thus forcing OSLOM to opt for the biggest and most significant cluster from a set of similar
351 clusters. In addition, OSLOM tries to place all vertices of a network in clusters which is also unfavourable for
352 clique recovery and was suppressed with option ( —singlet ). Lastly, significant cliques can only be recovered
353 at the first hierarchical level. Therefore, the OSLOM analysis of the higher hierarchical levels was disregarded
354  (-hr 0).

355 As mentioned earlier, OSLOM is a non-deterministic algorithm and the initial single-vertex clusters are chosen at
356 random. While looking for the optimally sparse network, five OSLOM runs were executed to assess every JI
357 threshold and were given seeds for a random number generator ( —seed ) of 1, 5, 42, 93, and 212. The final
358 network analysis was performed with a seed equal to 42, after which only cliques were considered with non-

359  complete communities disregarded.

360  Scoring normalized mutual information (NMI) and purity

361 The compliance of cliques with replicon and MOB typing schemes was assessed by measuring the Normalized
362  Mutual Information (NMI) and purity between them. NMI is a commonly used method to assess the performance

363  of clustering algorithms*®. For the two clustering/classification schemes (C; and C2) NMI is defined as*:

1(C4,Cy)
[H(Cy) + H(C)] ° (1)
2

NMI(Cy,Cy) =
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364  In equation (1), the mutual information, also known as the information gain and denoted as /(C1,C>), is an
365 information theory concept which measures the reduction of uncertainty around C; given knowledge about the
366 (2, and vice versa. It is normalized by the averaged Shannon entropy (H) between C; and Cz. Shannon entropy
367  tends to be larger as the number of classes in C; or Cz approach the size of the dataset in question. Consequently,
368  the NMI is sensitive to differences in the number of classes between C; and C>, and to extensively fragmented
369 classifications. The NMI equals one if the two classifications yield identical partitioning of the dataset, whereas a
370  value of zero indicates complete incoherence. The NMI was measured using the R package NMI (version 2.0;

371 https://CRAN.R-project.org/package=NMI). During the assessment, plasmids which were not classified by

372 replication or MOB typing schemes were disregarded.

373 Purity was used to estimate the homogeneity of cliques for replicon or MOB types, and plasmid host taxa. For a

374 set of cliques C, and a plasmid typing scheme 7, purity is defined as:

. 1
purity(C,T) = NZ lggflci nt| (2)

cieC

375 where N is the total number of plasmids covered by a set of cliques, C= { c1, c2, ..., ¢ } is a set of cliques in which
376  plasmids were placed, and T = { 15, t5, ..., 4; } are the types associated with plasmids. Similar to NMI, the purity
377 scores a value between 0 and 1 with high purity indicating high homogeneity of classes in the dataset for a given
378 set of plasmid types. The purity was only assessed for cliques which contain at least one typed plasmid. Untyped

379 plasmids found within the assessed cliques were disregarded.
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504 Figure 1. Summary of the dataset of complete bacterial plasmids. (A) The distribution of host phylum
505 represented in the plasmid dataset. (B) Functional annotation of plasmid-borne genes. The pie chart shows
506 the proportion of CDSs with hypothetical function as predicted by Prokka*, and CDSs (genes) with
507 known/unknown biological function based on GO annotation. The bar chart provides the most common
508 biological functions associated with plasmid-borne genes also considering the respective frequency of
509 these genes on plasmid genomes. (C) The percentage of plasmids covered by the three classification
510 methods: replicon and MOB typing schemes, and clique assignment. (D) The distribution of pairwise
511 plasmid similarities (Jaccard Index).
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514
515 Figure 2. Searching for the optimally sparse plasmid network. A range of Jaccard Index (JI) thresholds
516 were applied to the original plasmid network (Supplementary Figure 3) prior to OSLOM analysis. During
517 the process, several criteria were considered: (A) clique to community ratio; (B) percentage of plasmids
518 covered by the cliques; (C) the congruence with replicon typing measured by NMI score. NMI was
519 calculated for all cliques containing plasmids assigned to a single or multiple replicon types (legend: All)
520 and just to a single replicon type (legend: Single). Error bars (A and B) and light-coloured shading (C)
521 provide two standard deviations of uncertainty. The dashed vertical line indicates the selected optimal JI
522 threshold of 0.3.
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Figure 3. Sparse network of plasmids assigned to cliques by OSLOM algorithm (network density =
0.00128). The network includes 5371 plasmids (nodes) assigned into 561 cliques (connected sub-graphs).
5,008 unassigned plasmids, which formed disjoined singletons and pairs, were removed from the network.

Coloured nodes indicate plasmids assigned to a single clique.
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529
530

531 Figure 4. The network of cliques. Cliques, represented as vertices, are connected with an edge if the average
532 Jaccard Index (JI) between plasmids of two cliques is higher than 0.01. The colour of the edges indicates the
533 average JI while the width is proportional to the number of connections between a pair of cliques. The shape
534 and colour of the cliques indicates the phylum of the predominant bacterial host. The size and the transparency
535 are proportional to the clique size and the internal JI respectively. The cliques form multiple clusters which
536  have been named based on the genus of the bacterial host characteristic for a particular cluster. There are two
537  exceptions — the Proteobacteria and the Dairy (Lactic) cluster whose respective genera distributions have been
538  provided. The most common GO biological functions of the genes found on plasmids of Proteobacteria,
539 Staphylococcus, Enterococcus and Dairy clusters were further assessed. During the assessment, the respective
540 frequencies of the genes were considered. In case of Proteobacteria, the bar chart distribution of the biological
541 functions is provided. The shared and core gene content of Staphylococcus, Enterococcus and Dairy clusters

542 is presented in the Venn diagram with the numbers in the diagram indicating the number of core and shared

543  genes.
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