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Abstract 11 

Most bacteria exchange genetic material through Horizontal Gene Transfer (HGT). The primary vehicles for HGT 12 
are plasmids and plasmid-borne transposable elements, though their population structure and dynamics remain 13 
poorly understood. Here, we quantified genetic similarity between more than 10,000 bacterial plasmids and 14 
reconstructed a network based on their shared k-mer content. Using a community detection algorithm, we assigned 15 
plasmids into cliques which are highly correlated with plasmid gene content, bacterial host range, GC content, as 16 
well as replicon and mobility (MOB) type classifications. Resolving the plasmid population structure further 17 
allowed identification of candidates for yet-undescribed replicon genes. Our work provides biological insights 18 
into the dynamics of plasmids and plasmid-borne mobile elements, with the latter representing the main drivers 19 
of HGT at broad phylogenetic scales. Our results illustrate the potential of network-based analyses for the bacterial 20 
‘mobilome’ and open up the prospect of a natural, exhaustive classification framework for bacterial plasmids.   21 
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Introduction 22 

Plasmids are extra-chromosomal DNA molecules found across all three Domains of Life. In bacteria, they are one 23 
of the main mediators of horizontal gene transfer (HGT) through the processes of conjugation and  24 
transformation1–3. Plasmids generally harbour non-essential genes that can modulate the fitness of their bacterial 25 
host. Some prominent examples include toxin-antitoxin systems, virulence factors, metabolic pathways, antibiotic 26 
biosynthesis, metal resistance and antimicrobial resistance (AMR) genes. These accessory genes can be located 27 
on transposable elements involved in gene transfer across genomes and can thus lead to a  highly mosaic structure 28 
of plasmid genomes4. The mix of vertical and horizontal inheritance of plasmids, together with exchanges of 29 
plasmid-borne genes, generates complex dynamics that are difficult to capture with classical population genetics 30 
tools and make it challenging to classify plasmids within a coherent universal framework. 31 

Currently, there are two well-established plasmid classification schemes which attempt to bin plasmids according 32 
to their propagation mechanisms, while indirectly capturing some features of the plasmid backbone. The first 33 
scheme is based on replicon types5 and the second on mobility (MOB) groups6. Replicon-based typing relies on 34 
relatively conserved genes of the replicon region which encode the plasmid replication and partitioning 35 
machinery5. Plasmids with matching replication or partitioning systems cannot stably coexist within the same cell. 36 
Conversely, MOB typing is used to classify self-transmissible and mobilizable plasmids into six MOB types6. 37 
The MOB typing scheme relies on the conserved N-terminal sequence of the relaxase, a site-specific DNA 38 
endonuclease which binds to the origin of transfer (oriT) cleaving at the nic site and is essential for plasmid 39 
conjugation. 40 

Despite being widely used and informative, these typing schemes only work within a limited taxonomic  41 
range7–9. Replicon typing is dependent on the availability of prior experimental evidence and remains restricted 42 
to culturable bacteria from the family Enterobacteriaceae and several well-studied genera of gram-positive 43 
bacteria1,10–12. Furthermore, this approach can lead to ambiguous classification, even for experimentally validated 44 
replicons, as recently demonstrated by the discovery of compatible plasmids assigned to the same replicon type, 45 
which led to the further subdivision of the IncK type into IncK1 and IncK213, and IncA/C type into IncA and  46 
IncC14. In addition, plasmids can carry genes from more than one replication machinery and are thus assigned to 47 
multiple replicon types, further reducing interpretability7,8. MOB typing schemes generate fewer multiple 48 
assignments and can cover a potentially wider taxonomic range, however they are not applicable to the 49 
classification of non-mobilizable plasmids. These two typing schemes have inspired several in silico classification 50 
tools, such as PlasmidFinder12, the plasmid MultiLocus Sequence Typing (MLST) database, and MOB-suite15. 51 
However, all of these tools intrinsically rely on the completeness of their reference sequence databases, which 52 
typically lack representatives from understudied and/or unculturable bacterial hosts. 53 

As bacterial plasmids undergo extensive recombination and HGT, their evolutionary history is not well captured 54 
by phylogenetic trees, which are designed for the analysis of point mutation in sequence alignments16,17. Network 55 
models offer an attractive alternative given they can incorporate both horizontal and vertical inheritance18, and 56 
can deal with point mutations as well as structural variants. Networks have gained much attention in the past 57 
decade as an alternative method for studying prokaryotic evolution, including plasmids3,8,18,19. Plasmid gene-58 
sharing networks have proven a useful means to track AMR and virulence dissemination yielding deeper insights 59 
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into HGT events17,20,21. However, the main drawback of previous work relying on plasmid sequence alignments 60 
is the exclusion of important non-coding elements such as non-coding RNAs, promoter regions, CRISPRs, 61 
stretches of homologous sequences, or putative, disrupted and currently unannotated genes. A more 62 
comprehensive approach could consider a plasmid network based on estimates of alignment-free sequence 63 
similarity22. A recently published Plasmid ATLAS tool by Jesus et al.23 provides an illustration of such an 64 
approach, with a network of plasmids constructed based on pairwise genetic distances estimated using alignment-65 
free k-mer matching methods implemented in Mash24. 66 

In this work, we have quantified the genetic similarity between more than 10,000 bacterial plasmids available on 67 
NCBI’s RefSeq database and constructed a network reflecting their relatedness based on shared k-mer content. 68 
Applying a community detection algorithm allowed us to cluster plasmids into statistically significant cliques 69 
(complete subgraphs), and revealed a strong underlying population structure. Cliques are highly correlated with 70 
the gene content of the plasmid backbone, bacterial host and GC content, as well as replicon and MOB types. 71 
Uncovering the structure of the full plasmid population allowed for the discovery of candidates for yet-72 
undescribed replicon genes and provided insights into broad-scale plasmid dynamics. Taken together, our results 73 
illustrate the potential of network-based analyses of plasmid sequences and open up the prospect of a natural, 74 
exhaustive classification framework for bacterial plasmids.  75 
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Results 76 

A dataset of complete bacterial plasmids 77 

A dataset of complete bacterial plasmids was assembled comprising 10,696 sequences found in bacteria from 22 78 
phyla and over 400 genera (Supplementary Table 1, Figure 1A, and Supplementary Figure 1). The composition 79 
of plasmid hosts reflects current research interests, with the Proteobacteria and Firmicutes phyla together 80 
representing over 84% of plasmid sequences. In total, 510,463 different Coding Sequences (CDSs) were identified 81 
in the plasmid dataset. 66.01% of the CDSs were predicted to encode a hypothetical protein, 27.9% had a known 82 
product with Gene Ontology (GO) biological process annotation, with the remaining 6.09% encoded a known 83 
protein product with unknown biological function (Figure 1B). There are 3,328,916 bacterial genes available in 84 
the RefSeq database (NCBI Gene Statistics accessed on June 19th 2019), meaning that roughly one in twenty of 85 
the currently known bacterial genes are plasmid-borne. The GO biological processes associated with plasmid 86 
CDSs are diverse. The dominant associated terms relate to catabolic and biosynthetic processes (20.64%), 87 
transposon mobility (17.09%) and positive and negative regulation of transcription (7.70%). Replicon-based 88 
typing classified 27.66% of the plasmids into 163 different replicon types (Figure 1C and Supplementary Figure 89 
2). However, 31.67% of these classified plasmids were assigned to multiple replicon types. MOB typing was more 90 
comprehensive, successfully classifying 32.63% of the plasmids into six MOB types of which 9.48% were 91 
assigned to multiple types (Figure 1C). Unsurprisingly, classification by these two methods performed best for 92 
well-studied plasmids of the phyla Proteobacteria and Firmicutes. 93 

Uncovering the population structure of plasmids using a network-based approach 94 

We constructed a network based on the plasmid pairwise sequence similarities. This represents a weighted, 95 
undirected network with plasmids (vertices) connected by edges indicating similarity (Supplementary Figure 3). 96 
Similarity was scored using the exact Jaccard index (JI), defined as the size of the intersection divided by the size 97 
of the union of two sets of k-mers. Plasmid pairs which shared less than 100 k-mers were considered to have a JI 98 
equal to zero. This cut-off value was implemented since the majority of CDSs found on plasmids have lengths 99 
greater than 100bp, thus only a fraction of the functional genome is common between plasmids with low shared 100 
k-mer count (Supplementary Figures 4 and 5). The majority of plasmid pairs shared little to no similarity (Figure 101 
1D). 6.14% (657) of the plasmids were singletons, whilst 3.31% (354) were connected to only one other plasmid, 102 
illustrating the high levels of diversity across bacterial plasmid genomes. It follows that plasmids with more  103 
k-mers in common are more likely to share the same functional genetic elements and hence participate in similar 104 
biological processes falling within the same host niche (Supplementary Figure 5). Such plasmids are presumed to 105 
form cliques with high internal JI score. 106 

Finding all the cliques of a network is a nondeterministic polynomial (NP)-complete problem25. This means that 107 
while a solution for a single clique can be quickly verified, the time required to find all possible cliques scales 108 
rapidly as the size of the network increases. In the case of our large network of plasmids, a full solution cannot be 109 
found within a reasonable timeframe given current computational limitations. As an alternative solution, a 110 
community detection algorithm OSLOM (Ordered Statistics Local Optimization Method) was implemented26. 111 
OSLOM detects communities (i.e. densely interconnected subgraphs) with statistical significance, meaning that 112 
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they have a low probability of being encountered by chance in a random network with similar features to the 113 
plasmid network. OSLOM is well suited for this task since it can be used to analyse undirected networks with 114 
overlapping communities or hierarchical structures. In addition, OSLOM shows similar performance to other 115 
widely used methods such as Infomap or Louvain26,27 which, unlike OSLOM, were unable to analyse this dataset 116 
due to size and memory limitations. 117 

Despite the notable dissimilarity among plasmids, the network as a whole was too dense (network density = 118 
0.0438) to yield a consistent performance for every OSLOM run (Figure 2 and Supplementary Figures 3 and 6). 119 
Furthermore, a large proportion of communities detected did not form cliques, and thus had to be disregarded 120 
(Figure 2A). A JI threshold was therefore introduced to increase the sparsity of the network. A range of thresholds 121 
were assessed based on the following criteria: (i) the clique to community ratio (Figure 2A), (ii) the proportion of 122 
plasmids assigned to cliques (Figure 2B), (iii) the congruence with replicon-based typing (Figure 2C), and (iv) 123 
the consistency of OSLOM performance (Figure 2 and Supplementary Figure 6). The optimum threshold was 124 
consistently obtained at a JI of 0.3. This threshold was also corroborated by an alternative data driven approach 125 
introduced by Branger et al.28 called the giant component analysis. This method determines the optimal JI 126 
threshold by tracking the size of the giant component (i.e. the largest cluster) of the network, and the total number 127 
of components. In this case, the relative stability of the size of the giant component was reached at a JI threshold 128 
of 0.3 (Supplementary Figure 7). Edges with values lower than the threshold were removed from the network. 129 
The resulting sparse network is shown in Figure 3 (network density = 0.00128). 130 

Plasmid cliques agree with current typing schemes  131 

Analysis of the sparse network with OSLOM successfully assigned 50.21% (5371) of the plasmids into 561 132 
cliques (Figure 1C, Figure 3, and Supplementary Figure 10). 1.64% (88) of these plasmids were assigned to 133 
multiple cliques, and were found in the densest regions of the network and at the interfaces between cliques 134 
indicating the presence of ‘chimeric plasmids’ (i.e. hybrid plasmids generated through merging of two different 135 
plasmids), large-scale transposition or recombination events, or extensive repeated transposition/recombination 136 
(Figure 1C and Figure 3). In addition, this approach covered 564 plasmids from phyla other than the Proteobacteria 137 
and Firmicutes, namely from Spirochaetes, Chlamydiae, Actinobacteria, Tenericutes, Bacteroidetes, 138 
Cyanobacteria, and Fusobacteria. Interestingly, after applying the 0.3 JI threshold, 38.01% (4066) of plasmids 139 
were separated from the network as singletons, while 10.10% (1080) shared an edge with a single plasmid. Such 140 
plasmids could not be assigned to a clique. Therefore, only 1.67% (179) of plasmids were effectively left 141 
unassigned by the algorithm. 142 

Clique purity and Normalized Mutual Information (NMI) were used to assess the quality of clique-based 143 
classification (see Methods). These metrics were calculated for cliques comprising plasmids with identified 144 
replicon type, plasmids carrying a single identified replicon type, or plasmids with assigned MOB type. Untyped 145 
plasmids were disregarded. The observed purity scores were high (>85%) indicating the homogeneity of cliques 146 
for a particular plasmid type (Supplementary Figure 8). This was particularly the case for MOB types (purity = 147 
0.9887) and plasmids assigned to a single replicon type (purity = 0.9522). NMI provides an entropy-based measure 148 
of the similarity between two classification systems where a score equal to one indicates identical partitioning 149 
into classes while zero means independent classification. NMI penalizes differences in the number of assignment 150 
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classes which justifies the low score observed when assessing clique-based versus MOB-based typing (NMI = 151 
0.5223). Nevertheless, high NMI scores were obtained when considering a replicon-based classification scheme 152 
(NMI = 0.9044 all types, and NMI = 0.9336 for single replicon types). It follows that plasmids with the same 153 
replicon type often fall together within the same clique. This is also supported by the high correlation between the 154 
clique membership size and the number of plasmids assigned to the corresponding replicon class (Supplementary 155 
Figure 9, R2=0.862 for plasmids assigned to a single replicon types). However, there are exceptions where 156 
plasmids from larger replicon classes are further resolved into a few smaller evolutionary related cliques. 157 

Candidate replicon genes recovered from cliques of untyped plasmids 158 

The majority of plasmids with unknown replicon types formed small cliques (Supplementary Figure 10). In fact, 159 
81.02% of the smallest cliques (carrying three to five plasmids) contain exclusively untyped plasmids. Together 160 
with the aforementioned singletons and lone plasmid pairs, this trend highlights the many understudied and 161 
underrepresented plasmids in sequence databases. Accordingly, the next objective was to investigate the genetic 162 
content of untyped cliques to determine candidate replicon genes and further traits of biological relevance. 163 

In total, there are 388 cliques with no assigned replicon types. As the cliques tend to be homogeneous for a 164 
replicon type, only the core genes (i.e. genes occurring on all plasmids of a particular clique) found on untyped 165 
cliques were considered. Core genes were translated into protein sequences and screened against the translated 166 
PlasmidFinder database using TBLASTN29. A range of e-values were assessed to determine the threshold 167 
maximizing the discovery of replicon candidates while minimizing false positives (Supplementary Figure 11). 168 
The majority of plasmids were assigned to one replicon type with some plasmids having hits to a maximum of 169 
three to four different types. The optimal e-value threshold was selected when the total number of core gene hits 170 
started to diverge from the number of untyped cliques covered. With this in mind, a conservative e-value threshold 171 
of 0.001 was chosen which resulted in the identification of 105 candidate genes from 106 plasmid cliques 172 
(Supplementary Table 1). 173 

To verify the plausibility of the identified gene candidates, HMMER (version 3.2.1) was used to scan amino acid 174 
sequences for known protein domain families found in the Pfam database (version 32.0)30. 166 families, with  175 
e-values lower than 0.001, were identified on 97 protein sequences and were most commonly associated with 176 
replication initiation (Supplementary Figure 12). Moreover, the majority of functions associated with the 177 
discovered protein families relate to plasmid replicon proteins. For example, domains with helix-turn-helix motifs 178 
are important for DNA binding of replicon proteins and allow some proteins to regulate their own transcription31. 179 
Other examples of transcriptional regulators also exist in plasmid replicon regions, while the DNA primase 180 
activity has been found on the RepB replicon protein31. Interestingly, replicon proteins involved in rolling-circle 181 
replication (a mechanism of plasmid replication) share some of their motifs with proteins involved in plasmid 182 
transfer and mobilization31. This could explain why some of the discovered domain families are linked to plasmid 183 
mobilization. On the whole, the candidate replicon genes are highly specific to a particular clique of plasmids and 184 
should be useful for describing new incompatibility types. 185 
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Plasmids within cliques have a low variability in GC content and share a common 186 
bacterial host 187 

The unprocessed plasmid network exhibited a pronounced structure in terms of the plasmid nucleotide 188 
composition, measured by GC content (Supplementary Figure 3). This trend was also reflected in the clique 189 
composition (Supplementary Figure 13A). Within a clique, the standard deviation of GC content rarely exceeds 190 
0.02 and is weakly correlated with the clique size (R2 = 0.0155) (Supplementary Figure 13B). Furthermore, a 191 
significant difference in GC content is often found between cliques. Analysis of variance (ANOVA), followed by 192 
a Tukey test, found that 85.3% of the time the GC content between two cliques differs significantly (adjusted p-193 
value < 0.001). In contrast, the sequence lengths of plasmids within a clique are more variable, but are also not 194 
strongly correlated with clique size (R2 = 0.029) (Supplementary Figure 13C and 13D). Similarly, a Tukey test 195 
showed that a significant difference in plasmid length between cliques is observed less than 34% of the time 196 
(adjusted p-value < 0.001). 197 

Plasmid GC content has been shown to be strongly correlated to the base composition of the bacterial host’s 198 
chromosome32. Indeed, the cliques showed a very high homogeneity (purity) relative to their hosts (Supplementary 199 
Figure 14), a trend which has been identified in other plasmid network reconstruction efforts20. At higher 200 
taxonomic levels, cliques have near perfect purity scores (>0.99). The purity score slightly decreases at the level 201 
of the plasmid host family, reaching a value of 0.807 at the species level. Therefore, plasmids with high genetic 202 
similarity rarely transcend the level of the bacterial genus, which suggests a limited host range for the vast majority 203 
of plasmids. However, these results need to be carefully considered due to inherent biases in the dataset, especially 204 
in terms of the predominance of well-studied taxa. Overall, the plasmid cliques show a strong intrinsic propensity 205 
towards confined GC content and are found in a limited range of bacterial hosts. 206 

Plasmids within cliques have uniform gene content 207 

The gene content of cliques was assessed for all genes occurring five or more times in the dataset. In total, 15,851 208 
out of 35,883 (44.17%) of the assessed genes were ‘core’ genes, meaning they had a within-clique frequency 209 
equal to one, suggesting an overall uniformity of gene content in cliques (Supplementary Figure 15). Furthermore, 210 
6,577 (18.33%) of the genes were ‘private’. Private genes are those found in only one clique, with a frequency of 211 
one, and their relatively high abundance in the dataset suggests the uniqueness of some cliques with respect to 212 
their gene content. However, there is an inherent bias. Plasmids within larger cliques tend to be more dissimilar 213 
and share proportionally fewer genes (Supplementary Figure 16). This pattern can in part be explained by the 214 
broader gene content of large cliques and the high sequence similarity required for same-gene clustering (95%) 215 
within the default implementation of the Prokka-Roary annotation pipeline. 31.94% of cliques containing five or 216 
more plasmids were found to have one to 10 core genes. However, cliques exhibited a wide range in the number 217 
of core genes with 7.74% of cliques carrying over 100 shared genes. Interestingly, 13.55% (42) of cliques had no 218 
core genes which could also be an artefact of the gene annotation pipeline sensitivity. For instance, plasmids from 219 
19 cliques carried no recognized genes from the pool of 35,883 assessed genes. Functionally, core genes were 220 
found to be more often associated with various metabolic processes, transcription regulation and transmembrane 221 
transport (Supplementary Figure 17) when compared to the overall distribution of GO terms, shown in Figure 1B. 222 
Similarly, fewer core genes were involved in transposon movement, pathogenesis, and resistance. 223 
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Inferring bacterial horizontal gene transfer through clique interactions 224 

Gene content was also considered in the context of clique structure and interconnectedness. To do so, the original 225 
network of plasmids (Supplementary Figure 3) was rearranged such that: (i) plasmids assigned to the same clique 226 
were clustered under a single vertex; (ii) plasmids assigned to multiple cliques were left as solitary vertices 227 
anchoring the cliques; (iii) unassigned plasmids were removed. The resulting network is shown in Figure 4. As 228 
highlighted earlier, large cliques generally show lower internal similarity compared to the smaller ones. It is 229 
important to note that an arbitrary JI threshold of 0.01 was introduced in Figure 4 to assist visual interpretation, 230 
but the unfiltered version of the network is provided in Supplementary Figure 18. 231 

The clustering of cliques in Figure 4 shows high concordance with the phylogenetic hierarchy of the bacterial 232 
hosts. On a global scale, there are four large interconnected clusters (three corresponding to cliques from the 233 
phylum Firmicutes and one from the Proteobacteria), eight disjointed clusters, and a dozen singled-out triplets 234 
and pairs. The clique clusters mostly contain plasmids from a specific genus with some minor deviations – hence 235 
the cluster naming. The only two exceptions are the large and diverse Proteobacteria cluster which harbours 236 
plasmids mainly from the genera Escherichia, Klebsiella, and Salmonella, and the Dairy bacteria. The majority 237 
of genes identified in these four large clusters were those functionally involved in transposition. Specifically, 238 
26.4% of the genes in the Proteobacteria cluster were transposition related. In addition, 9.66% of the genes in the 239 
Proteobacteria were involved in some form of AMR or metal resistance, and 7.38% in pathogenesis, which may 240 
reflect the high number of pathogens found in this phylum33. 241 

The core and shared gene content of the three Firmicutes clusters (Staphylococcus, Enterococcus and Dairy) was 242 
also assessed (Figure 4, Venn diagram). Gene sharing was most common between the plasmid clusters associated 243 
with Staphylococcus and Enterococcus potentially indicating a high frequency of HGT between them, and the 244 
least between the Staphylococcus and Dairy bacteria cluster. Analysing the content of these shared genes provides 245 
insight into both plasmid function and dynamics, such as the identification of HGT events. For example, the same 246 
lactose metabolism genes were found in both Staphylococcus and Dairy bacteria plasmids. Also, the trpF gene, 247 
involved in tryptophan biosynthesis and previously associated with the Tn3000 and Tn125 transposable 248 
elements34,35, was found on plasmids in all three clusters.  249 
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Discussion 250 

Using alignment-free sequence similarity comparison and subsequent network analysis we uncovered strong 251 
population structure in bacterial plasmids. This approach, applied to a comprehensive set of complete bacterial 252 
plasmids, yielded a network in which over half of the plasmids were assigned to statistically significant cliques. 253 
This is a significant improvement in coverage over existing plasmid typing methods. Additionally, the cliques 254 
capture biologically meaningful information. For example, plasmids assigned to the same clique show good 255 
accord with replicon and MOB typing schemes, high homogeneity in terms of their respective bacterial hosts, and 256 
similar GC and gene content.  257 

A network-based representation of plasmid sequence similarities condenses both vertical and horizontal 258 
evolutionary histories in a similar fashion to gene-sharing networks17,20,21, making it ideally suited for the 259 
identification of mobile genetic elements. The model employed here assigns plasmids to cliques, delineating 260 
clusters of plasmids with shared evolutionary history. This in turn allows for inference on the nature of HGT 261 
events and plasmid function. Moreover, the approach facilitates identification of new replicon gene candidates, 262 
as well as detailed investigation of the distribution of plasmid-borne genetic determinants of incompatibility, 263 
mobility, AMR, virulence, and transposon carriage. Such meta-information could be incorporated within the 264 
network framework thanks to a plethora of well-maintained bioinformatics tools, ever growing genetic databases, 265 
and gene ontology efforts to systematize gene annotation. 266 

Jaccard index (i.e. the fraction of shared k-mers) was chosen as a measure of sequence similarity between pairs 267 
of plasmids due to it being a straightforward metric which considers genome sequences as a whole, embodying 268 
both point mutations and large-scale genome rearrangements. As a result, it is not biased by the ability to annotate 269 
genes, open reading frames, or other genetic elements. In addition, it is not prone to errors and biases intrinsically 270 
associated with alignment-based methods, such as: a priori assumptions about the sequence evolution, higher 271 
inaccuracy when comparing more dissimilar sequences, or suboptimal alignments22. JI can in principle provide 272 
fine-scale resolution when comparing small genomes, a characteristic common to the majority of plasmids. 273 
Conversely, JI is sensitive to varying genome sizes24 and plasmids are known to differ more than 1000-fold in 274 
sequence length7,36. While differences in plasmid genome size can lead to a drop in JI score even when high 275 
proportions of k-mers are shared, sequence length variation did not seem to impact our structuring into cliques 276 
which comprise plasmids of different lengths (Supplementary Figure 13C and D). 277 

Assessing the statistical significance of all resulting cliques is computationally intractable given the size of the 278 
network. Hence, the OSLOM community detection algorithm was employed to uncover cliques that are unlikely 279 
to be found in a random network. In an effort to optimize the performance of the OSLOM algorithm and maximize 280 
the number of biologically meaningful cliques, all edges with a JI value below 0.3 were removed from the 281 
network. This threshold was chosen to maximise compliance with replicon-based typing as well as several other 282 
criteria. The implementation of the 0.3 JI threshold somewhat allegorizes the average nucleotide identity (ANI), 283 
which was set over a decade ago at 95%, to define the species boundary for prokaryotes37. However, depending 284 
on the question pursued, enforcing a strict JI threshold may not be necessary, and it could be left to plasmid 285 
sequences in the network to solely inform the cut-offs. Some boundaries are likely to be blurrier than others, 286 
largely reflecting the extensive variation of genetic inheritance in different bacterial hosts. 287 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2019. ; https://doi.org/10.1101/785212doi: bioRxiv preprint 

https://doi.org/10.1101/785212
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

The strong underlying population structure we document for plasmids throughout bacteria suggests it should be 288 
possible to devise a ‘natural’, global sequence-based classification scheme for bacterial plasmids. This being said, 289 
our findings do not diminish the relevance of replicon and MOB typing schemes, rather they build upon these 290 
prior classification schemes and may even extend them to plasmids from understudied and uncultured bacteria. 291 
Beyond just plasmid classification, our network-based approach also has potential to infer key features of plasmid 292 
groupings. Indeed, plasmid clique assignment can be completely automated and inspection of any particular area 293 
of the network facilitates biological inference about plasmid dynamics and their biological features within various 294 
groups of bacterial hosts.  295 
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Methods 296 

Assembling a dataset of complete bacterial plasmids 297 

A dataset of complete plasmids was downloaded from NCBI’s RefSeq release repository38 on 26th of September 298 
2018. The metadata accompanying each plasmid sequence was parsed from the associated GenBank files 299 
(Supplementary Table 1). The resulting dataset was then systematically curated to include only those plasmids 300 
sequenced from a bacterial host and with a sequence description which implies a complete plasmid sequence 301 
(regular expression term used: “plasmid.*complete sequence”). This is a simpler, but similar approach 302 
to a previously reported curation effort by Orlek and collegues9. Nevertheless, a large portion of unsuitable entries, 303 
such as gene sequences, partial plasmid genomes, whole genomes, non-bacterial sequences and other poorly 304 
annotated sequences, were removed. The final dataset included 10,696 complete bacterial plasmids. 305 

Information about the taxonomic hierarchy of plasmid bacterial hosts was obtained with the ncbi_taxonomy 306 
module from the ETE 3 Python toolkit39. To determine the replicon and MOB types of plasmids included in the 307 
dataset we used the PlasmidFinder replicon database12 and MOBtyping software40. The PlasmidFinder database 308 
was screened using BLAST29 with a minimum coverage and percentage nucleotide identity of 95%. In cases 309 
where two or more replicon hits were found at overlapping positions on a plasmid, the one with higher percentage 310 
identity was retained. For determining the plasmid MOB type, MOBtyping software was used with the 311 
recommended settings of 14 PSI-BLAST iterations. 312 

Plasmid CDSs were annotated using the Prokka41 (version 1.13.3) and Roary42 (version 3.12.0) pipelines run with 313 
default parameters. The identified CDSs were further associated with Gene Ontology (GO) terms43,44 to facilitate 314 
downstream gene content analysis. Since Prokka uses a variety of databases to annotate identified CDSs, different 315 
resources have been used to append the corresponding GO terms. For example, GO terms for CDSs with a known 316 
protein product have been obtained using Uniprot’s ‘Retrieve/ID Mapping’ tool45, while the GO terms for CDSs 317 
with just the HAMAP family were obtained with the hamap2go mapping table46 (version date: 2019/05/04). CDSs 318 
annotated with the ISfinder database were given GO terms GO:0070893 and GO:0004803 in order to associate 319 
them with transposition. Similarly, CDS annotated with Aragorn, MinCED, and BARRGD were given 320 
GO:0006412, GO:0099048, and GO0046677 terms respectively. 321 

Assessing similarity between pairs of plasmids 322 

The exact Jaccard index (JI) was used as a measure of similarity between all possible plasmid pairs. To do this, 323 
each plasmid sequence was converted to a set of 21 bp k-mers. The JI was then calculated as the fraction of shared 324 
k-mers between two sets. JI thus takes a value between 0 and 1, where 1 indicates 100% k-mer similarity, and 0 325 
indicates no k-mers shared. We applied Bindash47 to calculate the exact JI which resulted in the creation of a 326 
plasmid adjacency matrix which was used to build the network. 327 

Implementing OSLOM community detection algorithm 328 

OSLOM (Ordered Statistics Local Optimization Model version 2.5) was applied to identify statistically significant 329 
cliques (complete subgraphs) in the plasmid network26. OSLOM aims to identify highly cohesive clusters of 330 
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vertices (communities) which may or may not be cliques (complete subgraphs). The statistical significance of a 331 
cluster is measured as the probability of finding the cluster in a configuration model which is designed to build 332 
random networks while preserving the degrees (number of neighbours) of each vertex. The method locally 333 
optimizes the statistical significance with respect to vertices directly neighbouring a particular cluster. In brief, 334 
OSLOM starts by randomly choosing vertices from a network which are regarded as clusters of size one. These 335 
small clusters alongside their neighbouring vertices are assessed. Vertices are scored based on their connection 336 
strength with a particular cluster and are either added or removed from the cluster. The process continues until 337 
the entire network is covered. Due to the stochastic nature of the algorithm, this network assessment goes through 338 
many iterations after which the frequently emerging significant clusters (i.e. communities) are kept. The algorithm 339 
then proceeds to assess the clusters of the next hierarchical level; vertices belonging to the significant clusters are 340 
condensed into super-vertices with weighted edges connecting them. The process of cluster assessment is repeated 341 
at higher hierarchical levels until no more significant clusters are recovered. 342 

OSLOM was executed for an undirected and weighted network with the following parameters:  343 

oslom_undir -w -t 0.05 -r 50 -cp 0 -singlet -hr 0 -seed 1 344 

Clusters were considered significant if their p-value was lower than 0.05 ( -t 0.05 ). The number of iterations 345 
required before the recovery of significant clusters was set to 50 during the search for the optimally sparse network 346 
( -r 50 ), and 250 for the final network analysis after the introduction of the 0.3 JI threshold ( -r 250 ). After 347 
the iteration process, OSLOM considers merging similar significant clusters if the significance of their union is 348 
high enough. This feature can potentially yield less cliques and was suppressed with the coverage parameter set 349 
to zero ( -cp 0 ) thus forcing OSLOM to opt for the biggest and most significant cluster from a set of similar 350 
clusters. In addition, OSLOM tries to place all vertices of a network in clusters which is also unfavourable for 351 
clique recovery and was suppressed with option ( -singlet ). Lastly, significant cliques can only be recovered 352 
at the first hierarchical level. Therefore, the OSLOM analysis of the higher hierarchical levels was disregarded  353 
( -hr 0 ). 354 

As mentioned earlier, OSLOM is a non-deterministic algorithm and the initial single-vertex clusters are chosen at 355 
random. While looking for the optimally sparse network, five OSLOM runs were executed to assess every JI 356 
threshold and were given seeds for a random number generator ( -seed ) of 1, 5, 42, 93, and 212. The final 357 
network analysis was performed with a seed equal to 42, after which only cliques were considered with non-358 
complete communities disregarded. 359 

Scoring normalized mutual information (NMI) and purity 360 

The compliance of cliques with replicon and MOB typing schemes was assessed by measuring the Normalized 361 
Mutual Information (NMI) and purity between them. NMI is a commonly used method to assess the performance 362 
of clustering algorithms48. For the two clustering/classification schemes (C1 and C2) NMI is defined as49: 363 

 𝑵𝑴𝑰(𝑪𝟏, 𝑪𝟐) = 	
𝑰(𝑪𝟏, 𝑪𝟐)

[𝑯(𝑪𝟏) +𝑯(𝑪𝟐)]
𝟐

		. (1) 
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In equation (1), the mutual information, also known as the information gain and denoted as I(C1,C2), is an 364 
information theory concept which measures the reduction of uncertainty around C1 given knowledge about the 365 
C2, and vice versa. It is normalized by the averaged Shannon entropy (H) between C1 and C2. Shannon entropy 366 
tends to be larger as the number of classes in C1 or C2 approach the size of the dataset in question. Consequently, 367 
the NMI is sensitive to differences in the number of classes between C1 and C2, and to extensively fragmented 368 
classifications. The NMI equals one if the two classifications yield identical partitioning of the dataset, whereas a 369 
value of zero indicates complete incoherence.  The NMI was measured using the R package NMI (version 2.0; 370 
https://CRAN.R-project.org/package=NMI). During the assessment, plasmids which were not classified by 371 
replication or MOB typing schemes were disregarded. 372 

Purity was used to estimate the homogeneity of cliques for replicon or MOB types, and plasmid host taxa. For a 373 
set of cliques C, and a plasmid typing scheme T, purity is defined as: 374 

 𝒑𝒖𝒓𝒊𝒕𝒚(𝑪, 𝑻) = 	
𝟏
𝑵
8𝐦𝐚𝐱

𝒕𝒋∈𝑻
>𝒄𝒊 ∩ 𝒕𝒋>

𝒄𝒊∈𝑪

 (2) 

where N is the total number of plasmids covered by a set of cliques, C = { c1, c2, …, ci } is a set of cliques in which 375 
plasmids were placed, and T = { t1, t2, …, tj } are the types associated with plasmids. Similar to NMI, the purity 376 
scores a value between 0 and 1 with high purity indicating high homogeneity of classes in the dataset for a given 377 
set of plasmid types. The purity was only assessed for cliques which contain at least one typed plasmid. Untyped 378 
plasmids found within the assessed cliques were disregarded.  379 
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Figures 500 
 501 

 502 
 503 

Figure 1. Summary of the dataset of complete bacterial plasmids. (A) The distribution of host phylum 504 
represented in the plasmid dataset. (B) Functional annotation of plasmid-borne genes. The pie chart shows 505 
the proportion of CDSs with hypothetical function as predicted by Prokka41, and CDSs (genes) with 506 
known/unknown biological function based on GO annotation. The bar chart provides the most common 507 
biological functions associated with plasmid-borne genes also considering the respective frequency of 508 
these genes on plasmid genomes. (C) The percentage of plasmids covered by the three classification 509 
methods: replicon and MOB typing schemes, and clique assignment. (D) The distribution of pairwise 510 
plasmid similarities (Jaccard Index). 511 
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 512 

 513 
 514 

Figure 2. Searching for the optimally sparse plasmid network. A range of Jaccard Index (JI) thresholds 515 
were applied to the original plasmid network (Supplementary Figure 3) prior to OSLOM analysis. During 516 
the process, several criteria were considered: (A) clique to community ratio; (B) percentage of plasmids 517 
covered by the cliques; (C) the congruence with replicon typing measured by NMI score. NMI was 518 
calculated for all cliques containing plasmids assigned to a single or multiple replicon types (legend: All) 519 
and just to a single replicon type (legend: Single). Error bars (A and B) and light-coloured shading (C) 520 
provide two standard deviations of uncertainty. The dashed vertical line indicates the selected optimal JI 521 
threshold of 0.3. 522 
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 523 
 524 

Figure 3. Sparse network of plasmids assigned to cliques by OSLOM algorithm (network density = 525 
0.00128). The network includes 5371 plasmids (nodes) assigned into 561 cliques (connected sub-graphs). 526 
5,008 unassigned plasmids, which formed disjoined singletons and pairs, were removed from the network. 527 
Coloured nodes indicate plasmids assigned to a single clique. 528 
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 529 
 530 
Figure 4. The network of cliques. Cliques, represented as vertices, are connected with an edge if the average 531 
Jaccard Index (JI) between plasmids of two cliques is higher than 0.01. The colour of the edges indicates the 532 
average JI while the width is proportional to the number of connections between a pair of cliques. The shape 533 
and colour of the cliques indicates the phylum of the predominant bacterial host. The size and the transparency 534 
are proportional to the clique size and the internal JI respectively. The cliques form multiple clusters which 535 
have been named based on the genus of the bacterial host characteristic for a particular cluster. There are two 536 
exceptions – the Proteobacteria and the Dairy (Lactic) cluster whose respective genera distributions have been 537 
provided. The most common GO biological functions of the genes found on plasmids of Proteobacteria, 538 
Staphylococcus, Enterococcus and Dairy clusters were further assessed. During the assessment, the respective 539 
frequencies of the genes were considered. In case of Proteobacteria, the bar chart distribution of the biological 540 
functions is provided. The shared and core gene content of Staphylococcus, Enterococcus and Dairy clusters 541 
is presented in the Venn diagram with the numbers in the diagram indicating the number of core and shared 542 
genes. 543 
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