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Abstract 5

Animal behavior must constantly adapt to changes, for example when the statistical 6

properties of the environment change unexpectedly. For an agent that interacts with 7

this volatile setting, it is important to react accurately and as quickly as possible. It has 8

already been shown that when a random sequence of motion ramps of a visual target is 9

biased to one direction (e.g. right or left), human observers adapt to accurately 10

anticipate the expected direction with their eye movements. Here, we prove that this 11

ability extends to a volatile environment where the probability bias could change at 12

random switching times. In addition, we also recorded the explicit direction prediction 13

reported by observers as given by a rating scale. Both results were compared to the 14

estimates of a probabilistic agent that is optimal in relation to the event switching 15

generating model. Compared to the classical leaky integrator model, we found a better 16

match between our probabilistic agent and the behavioral responses, both for the 17

anticipatory eye movements and the explicit task. Furthermore, by titrating the level of 18

preference between exploration and exploitation in the model, we were able to fit each 19

individual experimental data-set with different levels of estimated volatility and derive a 20

common marker for the inter-individual variability of participants. These results prove 21

that in such an unstable environment, human observers can still represent an internal 22

belief about the environmental contingencies, and use this representation both for 23

sensory-motor control and for explicit judgments. This work offers an innovative 24

approach to more generically test the diversity of human cognitive abilities in uncertain 25

and dynamic environments. 26

Author summary 27

Understanding how humans adapt to changing environments to make judgments or plan 28

motor responses based on time-varying sensory information is crucial for psychology, 29

neuroscience and artificial intelligence. Current theories for how we deal with the 30

environment’s uncertainty most rely on the equilibrium behavior in response to the 31

introduction of some randomness change. Here we show that in the more ecological case 32

where the context switches at random times all along the experiment, an adaptation to 33

this volatility can be performed online. In particular, we show in two behavioral 34

experiments that humans can adapt to such volatility at the early sensorimotor level, 35

through their anticipatory eye movements, but also at a higher cognitive level, through 36

explicit ratings. Our results suggest that humans (and future artificial systems) can use 37

much richer adaptive strategies than previously assumed. 38
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1 Motivation 39

1.1 Volatility of sensory contingencies and the adaptation of 40

cognitive systems 41

We live in a fundamentally volatile world for which our cognitive system has to 42

constantly adapt. In particular, this volatility may be generated by processes with 43

different time scales. Imagine for instance you are a general practitioner and that you 44

usually report an average number of three persons infected by measles per week. 45

However, this rate is variable and over the past week you observe that the rate 46

increased to ten cases. As such, two alternative interpretations are available: the first 47

possibility is that there is an outbreak of measles and one should then estimate its 48

incidence (i.e. the rate of new cases) since the inferred outbreak’s onset, in order to 49

quantify the infection rate specific to this outbreak, but also to update the value of the 50

environmental volatility (as given by the probability of a new outbreak) at a longer time 51

scale. Alternatively, these cases are “unlucky” coincidences that originate from the 52

natural variability of the underlying statistical process which drive patients to the 53

doctor, but which are instances drawn from a stationary random process. In that 54

option, it may be possible to readjust the estimated baseline rate of infection with this 55

new data. This example illustrates one fundamental problem with which our cognitive 56

system is faced: when observing new sensory evidence, should I stay and continue to 57

exploit this novel data with respect to my current beliefs about the environment’s state 58

or should I go and explore a new hypothesis about the random process generating the 59

observations since the detection of a switch in the environment? 60

By definition, volatility measures the temporal variability of the sufficient 61

parameters of a random variable. Such meta-analysis of the environment’s statistical 62

properties is an effective strategy at the large scale level of our example, but also at all 63

levels which are behaviorally relevant, such as contextual changes in our everyday life. 64

Inferring near-future states in a dynamic environment, such that one can prepare to act 65

upon them ahead of their occurrence [1] — or at least forming beliefs as precise as 66

possible about a future environmental context — is an ubiquitous challenge for 67

cognitive systems [2]. In the long term, how the human brain dynamically manages this 68

trade-off between exploitation and exploration is essential to the adaptation of the 69

behavior through reinforcement learning [3]. In controlled experimental settings which 70

challenge visual perception or sensorimotor associations, such adaptive processes have 71

been mostly put in evidence by precisely analyzing the participants’ behavior in a 72

sequence of experimental trials, typically highlighting sequential effects at the time scale 73

of several seconds to minutes or even hours in the case of the adaptation to a persistent 74

sensorimotor relation. 75

Indeed, stimulus history of sensory events influences how the current stimulus is 76

perceived [4–8] and acted upon [9–12]. Two qualitatively opposite effects of the stimulus 77

history have been described: negative (adaptation), and positive (priming-like) effects. 78

Adaptation reduces the sensitivity to recurrently presented stimuli, thus yielding to a 79

re-calibrated perceptual experience [13–15]. Examples of negative biases in perceptual 80

discrimination are numerous (see for instance [6, 16]) and show that the visual system 81

tends to favor temporal and spatial stability of the stimulus. On the other hand, 82

priming is a facilitatory effect that enhances the identification of repeated 83

stimuli [17,18]. In sensorimotor control, the same stimulus presented several times could 84

indeed lead to faster and more accurate responses and, at the same time, lead to 85

critically suboptimal behavior when a presented stimulus is not coherent with the 86

participant’s expectations [19, 20]. This process is highly dynamic especially in complex 87

environments where new contingencies can arise at every moment. Interestingly, 88

priming effects at cognitive levels are sometimes paralleled by anticipatory motor 89
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responses which are positively correlated with the repetition of stimulus properties. A 90

well-known example of this behavior are anticipatory smooth eye movements (aSPEM), 91

as we will illustrate in the next section. 92

Overall, the ability to detect statistical regularities in the event sequence appears as 93

a fundamental ability for the adaptive behavior of living species. Importantly, few 94

studies have addressed the question of whether the estimate of such regularities is 95

explicit, and whether verbal reports of the dynamic statistical estimates would 96

eventually correlate to the measures of behavioral adaptation or priming. Here we aim 97

at investigating this question in the specific case of the processing of a target’s motion 98

direction. In addition, we attempt to palliate to the lack of a solid modeling approach 99

to best understand the computation underlying behavioral adaptation to the 100

environment’s statistics, and in particular how sequential effects are integrated within a 101

hierarchical statistical framework. As such, Bayesian inference offers an effective 102

methodology to deal with this question. In all generality, Bayesian methods allow to 103

define and quantitatively assess a range of hypotheses about the processing of (possibly 104

noisy) information by some formal agents [21–23]. A key principle in the Bayesian 105

inference approach is to introduce so-called latent variables which formalize how 106

different hypotheses predict synthetic or experimental measurements. Each stated 107

hypothesis is quantitatively formalized by defining a graph of probabilistic dependencies 108

between specific variables using a generative model for the prior knowledge about its 109

structure. In practice, the generative model is parameterized by structural variables 110

(such as weights or non-linear gain functions) such that, knowing incoming 111

measurements, beliefs about latent variables may be represented as probabilities. Then, 112

using the rules of probability calculus one can progressively update beliefs about the 113

latent variables, such that one can finally infer the hidden structure of received 114

inputs [24,25]. For instance, using Bayes’s rule, one can combine the likelihood of 115

observations given the generative model and the prior of these latent variables [26]. Of 116

particular interest for us is the possibility to quantitatively represent in this kind of 117

probabilistic model the predictive and iterative nature of a sequence of events. Indeed, 118

once the belief about latent variables is formed from the sensory input, this belief can 119

be used to update the prior over future beliefs [27]. In such models, the comparisons 120

between expectations and actual data produces constant updates to the estimates of the 121

latent variables but also on the validity of the model. There are numerous examples of 122

Bayesian approaches applied to the study of the adaptation to volatility. For 123

instance, [28] simulated a hierarchical Bayesian model over five previously published 124

datasets [29–33] in the domain of cognitive neuroscience. Their main conclusion was 125

that learning the local transition probabilities was sufficient to explain the large 126

repertoire of experimental effects reported in all these studies. Here we focus on an 127

extension of this approach to the study of motion processing and eye movements. 128

1.2 Anticipatory Smooth Pursuit Eye Movements (aSPEM) 129

Humans are able to accurately track a moving object with a combination of saccades 130

and Smooth Pursuit Eye Movements (SPEM, for a review see [34]). These movements 131

allow us to align and stabilize the object on the fovea, thus enabling high-resolution 132

visual processing. This process is delayed by different factors such as axonal 133

transduction, neural processing latencies and the inertia of the oculomotor system [35]. 134

When predictive information is available about target motion, anticipatory SPEM 135

(aSPEM) are efficiently generated before the target’s appearance [36–38] thereby 136

reducing visuomotor latency. Moreover, some experiments have demonstrated the 137

existence of prediction-based smooth pursuit during the transient disappearance of a 138

moving target [39–41]. Overall, although the initiation of SPEM is almost always driven 139

by a visual motion signal, it is now clear that smooth pursuit behavior can be 140
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modulated by extra-retinal, predictive information even in the absence of a direct visual 141

stimulation. The anticipatory smooth pursuit behavior is remarkable in different aspects. 142

First, its buildup is relatively fast, such that only a few trials are sufficient to pick up 143

some regularity in the properties of visual motion, such as speed or direction [11,42, 43]. 144

Second, it is in general an unconscious process of which participants are not aware of. 145

As such, this behavior is potentially a useful marker to study the internal representation 146

of motion expectancy and in particular to analyze how sensorimotor expectancy 147

interacts dynamically with contextual contingencies in shaping oculomotor behavior. 148

Typically, an aSPEM is observed after a temporal cue and before target motion 149

onset [37, 38, 42]. It is generally assumed that the role of aSPEMs is to minimize as fast 150

as possible the visual impairment due to the amplitude of eye-to-target position and 151

velocity mismatch. Overall, anticipation can potentially reduce the typical sensorimotor 152

delay between target motion onset and foveation. In a previous study [44], we have 153

analyzed how forthcoming motion properties, such as target speed or direction, can be 154

predicted and anticipated with coherently oriented eye movements. It has been observed 155

that the strength of anticipation, as measured by the mean anticipatory eye velocity, 156

increases when the target repeatedly moves in the same direction [42,45,46]. We 157

similarly found a graded effect of both the speed and the direction-bias on the strength 158

of aSPEM. In particular, this effect is linearly related to the probability of motion’s 159

speed or direction. These results are coherent within previous oculomotor findings by 160

our and also other groups [47]. These results imply that the probability bias over a 161

target’s direction is one additional factor beyond other physical and cognitive 162

cues [12,47,48] that modulate the common predictive framework driving anticipatory 163

behavior. 164

1.3 Contributions 165

The goal of this study is to generalize the adaptive process observed in the aSPEM 166

response in previous studies [44,47] to more ecological settings and also to broaden its 167

scope by showing that such adaptive processes occur at the conscious level as well. We 168

already mentioned that by manipulating the probability bias for target motion direction, 169

it is possible to modulate the direction and mean velocity of aSPEM. This suggests that 170

probabilistic information may be used to inform the internal representation of motion 171

prediction for the initiation of anticipatory movements. However, it is yet unclear what 172

generative model to use to dynamically manipulate the probability bias and generate an 173

ecologically relevant input sequence of target directions. A possible confound comes 174

from the fact that previous studies have used trial sequences (blocks) of fixed lengths, 175

stacked in a sequence of conditions defined by the different probability biases. Indeed, 176

observers may potentially pick up the information on the fixed block’s length to predict 177

the occurrence of a switch (a change in probability bias) during the experiment. Second, 178

we observed qualitatively that following a switch, the strength of aSPEM changed 179

gradually, consistently with other adaptation paradigms [49–51]. The estimate of the 180

characteristic temporal parameters for this adaptation mechanism may become 181

particularly challenging in a dynamic context, where the probabilistic contingencies vary 182

in time in an unpredictable way. Finally, whether and how the information processing 183

underlying the buildup of aSPEM and its dynamics is linked to an explicit estimate of 184

probabilities is still largely unknown. 185

To assess the dynamics of the adaptive processes which compensate for the variability 186

within sensory sequences, one may generate random sequences of Target Directions 187

(TDs) using a dynamic value for the probability bias p = Pr(TD is ’right’), with a 188

parametric mechanism controlling for the volatility at each trial. In the Hierarchical 189

Gaussian Filter model [52], for instance, volatility is controlled as a non-linear 190

transformation of a random walk (modeled itself by a Brownian motion with a given 191
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Fig 1. Smooth pursuit eye movements and explicit direction predictions in
a volatile switching environment (A) We tested the capacity of human
participants to adapt to a volatile environment by using a simple, 3-layered generative
model of fluctuations in target directions (TD) that we call the Binary Switching Model
(BSM). This TD binary variable is chosen using a Bernoulli trial of a given probability
bias. This probability bias is constant for as many trials until a switch is generated. At
a switch, the bias is chosen at random from a given prior. Switches are generated in the
third layer as binary events drawn from a Bernoulli trial with a given hazard rate
(defined here as 1/40 per trial). (B) The eye-movements task was an adapted version of
a task developed by [44]. Each one of 600 trials consisted of sequentially: a fixation dot
(of random duration between 400 and 800 ms), a blank screen (of fixed duration of
300 ms) and a moving ring-shaped target (with 15 °/s velocity) which the observers
were instructed to follow. The direction of the target (right or left) was drawn
pseudo-randomly according to the generative model defined above. (C) In order to
titrate the adaptation to the environmental volatility of target direction at the conscious
level, we invited each observer to perform on a different day a new variant of the
direction-biased experiment, where we asked participants to predict, before each trial,
their estimate of the forthcoming direction of the target. As shown in this sample
screenshot, this was performed by moving a mouse cursor (black triangle) on a
continuous rating scale between “sure left”, to “unsure” and finally “sure right”.
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diffusion coefficient). Ultimately, this hierarchical model allows to generate a sequence 192

of binary choices where the variability fluctuates along a given trajectory. Such a 193

forward probabilistic model is invertible using some simplifying assumptions and allows 194

to extract a time-varying inference of the agent’s belief about volatility [53]. Herein, to 195

analyze the effect of history length in all generality, we extended the protocol of [44] 196

such that the probability bias is still fixed within blocks but that these blocks have 197

variable lengths, that is, by introducing switches occurring at random times. Therefore, 198

similarly to [54], we will use a model where the bias p in target direction varies 199

according to a piecewise-constant function. In addition, in our previous study the range 200

of possible biases was finite. In the present work, we extended the paradigm by drawing 201

p as a continuous random variable within the whole range of possible probability biases 202

(that is, the segment [0, 1]). As a summary, we first draw random events (that we 203

denote as “switches”) with a given mean frequency and which controls the strength of 204

the volatility. Second, the value p of the bias only changes at the moment of a switch, 205

independently of the previous bias’ value and is stationary between two switches, 206

forming what we call an “epoch”. Third, target direction is drawn as a Bernoulli trial 207

using the current value of p. Such a hierarchical structure is presented in Figure 1-A, 208

where we show the realization of the target’s directions sequence, the trajectory of the 209

underlying probability bias (hidden to the observer), and the occurrences of switches. 210

Mathematically, this can be considered as a three-layered hierarchical model defining 211

the evolution of the model at each trial t as the vector (xt2, xt1, xt0). At the topmost 212

layer, the occurrence xt2 ∈ {0, 1} of a switch (1 for true, 0 for false) is drawn from a 213

Bernoulli trial B parameterized by its frequency h, or hazard rate. The value of τ = 1
h 214

thus gives the average duration (in number of trials) between the occurrence of two 215

switches. In the middle layer, the probability bias p of target direction is a random 216

variable that we define as xt1 ∈ [0, 1]. It is chosen at random from a prior distribution P 217

at the moment of a switch, and else it is constant until the next occurrence of a switch. 218

The prior distribution P can be for instance the uniform distribution U on [0, 1] or 219

Jeffrey’s prior J (see Appendix 8.3). Finally, a target moves either to the left or to the 220

right, and we denote this variable (target direction, TD) as xt0 ∈ {0, 1}. This direction 221

is drawn from a Bernoulli trial parameterized by the direction bias p = xt1. In summary, 222

this is described according to the following equations: 223
Occurrence of a switch: xt2 ∝ B(1/τ)

Dynamics of probabilistic bias p = xt1:
{

if xt2 = 0 then xt1 = xt−1
1

else xt1 ∝ P
Sequence of directions: xt0 ∝ B(xt1)

(1)

In practice, we generated a sequence of 600 trials, and there is by construction a switch 224

at t = 0 (that is, x0
2 = 1). In addition, we imposed in our sequence that a switch occurs 225

after trial numbers 200 and 400, in order to be able to compare adaptation properties 226

across different chunks of the trials sequence. With such a three-layered structure, the 227

model generates the randomized occurrence of switches, itself generating epochs with 228

constant direction probability and finally the random sequence of Target Direction (TD) 229

occurrences at each trial. To sum up, the system of three equations defined 230

in Equation 1 defines the Binary Switching Model (BSM) which we used for the 231

generation of experimental sequences presented to human participants in the 232

experiments. We will use that generative model as the basis of an ideal observer model 233

inverting that model to predict probability biases from the observations (TDs) and 234

which we will test as a model for the adaptation of human behavior. 235

This paper is organized in five parts. After this introduction where we presented the 236

motivation for this study, the next section (Section 2) will present an inversion of the 237

BSM forward probabilistic model, coined the Binary Bayesian Change Point (BBCP) 238
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model. To our knowledge, such algorithm was not yet available, and we will here 239

provide with an exact analytical solution by extending previous results from [55] to the 240

case of binary data as in the BSM presented above (see Equation 1). In addition, the 241

proposed algorithm is biologically realistic as it uses simple computations and is online, 242

that is, that all computations on the sequence may be done using solely a set of 243

variables available at the present trial, compactly representing all the sequence history 244

seen in previous trials. We will also provide a computational implementation and a 245

quantitative evaluation of this algorithm. Then, we will present in Section 3 the analysis 246

of experimental evidence to validate the generalization of previous results with this 247

novel protocol. In one session, participants were asked to estimate “how much they are 248

confident that the target will move to the right or left in the next trial” and to adjust 249

the cursor’s position on the screen accordingly (see Figure 1-C). In the other 250

experimental session on a different day, we showed the same sequence of target 251

directions and recorded participants’ eye movements (see Figure 1-B). Indeed, in order 252

to understand the nature of the representation of motion regularities underlying this 253

adaptive behavior, it is crucial to collect both the recording of eye movements and the 254

verbal explicit judgments about expectations on motion direction. Another novelty of 255

our approach is to use that agent as a regressor which will allow us to match 256

experimental results with the BBCP and to compare its predictive power compared to 257

classical models such as the leaky integrator model. Hence, we will show that behavioral 258

results match well with the BBCP model. In Section 4, we will synthesize these results 259

by inferring the volatility parameters inherent to the models by best-fitting it to each 260

each individual participant. This will allow the analysis of inter-individual behavioral 261

responses for each session. In particular, we will test if one could predict observers’ 262

prior (preferred) volatility, that is, a measure of the dynamic compromise between 263

exploration (“should I go?”) and exploitation (“should I stay?”) across the two different 264

sessions challenging predictive adaptive processes at the unconscious and conscious 265

levels. Finally, we will summarize and conclude this study and offer some perspectives 266

for future work in Section 5. 267

2 Results: Binary Bayesian Change Point (BBCP) 268

detection model 269

As we saw above, Bayesian methods provide a powerful framework for studying human 270

behavior and adaptive processes in particular. For instance, [52] first defined a 271

multi-layered generative model for sequences of input stimuli. By inverting this 272

stochastic forward process, they could extract relevant descriptors at the different levels 273

of the model and fit these parameters with the recorded behavior. Here, we use a similar 274

approach, focusing specifically on the BSM generative model, as defined in Equation 1. 275

To begin, we define a first ideal observer as a control, the leaky integrator (or forgetful 276

agent), which has an exponentially-decaying memory for the events that occurred in the 277

past trials. This agent can equivalently be described as one which assumes that 278

volatility is stationary with a fixed characteristic frequency of switches. Then, we will 279

extend this model to an agent which assumes the existence of (randomly occurring) 280

switches, that is, that the value of the probabilistic bias may change at specific (yet 281

randomly drawn) trials, as defined by the forward probabilistic model in Equation 1. 282

2.1 Forgetful agent model (Leaky integrator) 283

The leaky integrator ideal observer represents a classical, widespread and realistic model 284

of how trial-history shapes adaptive processes in human behavior. It is also well 285

adapted to model motion expectation in the direction-biased experiment which leads to 286
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anticipatory SPEMs. In this model, given the sequence of observations xt0 from trial 0 287

to t, the expectation p = x̂1
t+1 of the probability for the next trial direction can be 288

modeled by making a simple heuristic: This probability for an event is the weighted 289

average of the previously estimated probability, x̂1
t, with the new information xt0, where 290

the weight corresponds to a leak term (or discount) by a factor (1− h), with 291

h ∈ [0, 1] [56]. At trial t, this model can be expressed with the following equation: 292

x̂1
t+1 = (1− h) · x̂1

t + h · xt0 (2)

where x̂1
t=0 is equal to some prior value (0.5 in the unbiased case), corresponding to the 293

best guess at t = 0 (prior to the observation of any data). 294

In other words, the estimated probability x̂1
t+1 is computed from the integration of 295

previous instances with a progressive discount of past information. The value of the 296

scalar h represents a compromise between responding rapidly to changes in the 297

environment (h ≈ 1) and not prematurely discarding information still of value for slowly 298

changing contexts (h ≈ 0). As such, we will call this scalar the hazard rate. Similarly, 299

one can define τ = 1/h as a characteristic time (in units of number of trials) for the 300

integration of information. Looking more closely at this expression, the “forgetful agent” 301

computed in Equation 2 consists of an exponentially-weighted moving average (see 302

Appendix 8.1). It may thus be equivalently written in the form of a time-weighted 303

average: 304

x̂1
t+1 = (1− h)t+1 · x̂1

t=0 + h ·
∑

0≤i≤t

(1− h)i · xt−i0 (3)

The first term corresponds to the discounted effect of the prior value before any 305

observation and it tends to 0 when t increases. More importantly, as 1− h < 1, the 306

second term corresponds to the leaky integration of novel observations. Inversely, let us 307

now assume that the true probability bias for direction changes randomly with a mean 308

rate of once every τ trials. As a consequence, the probability that the bias does not 309

change is Pr(xt2 = 0) = 1− h at each trial. Assuming independence of these 310

occurrences, the estimated probability p = x̂1
t+1 is thus proportional to the sum of the 311

past observations weighted by the belief that the bias has not changed during i trials in 312

the past, that is, exactly as defined by the second term of the right-hand side 313

in Equation 3. This shows that assuming that changes occur at a constant rate 314

(x̂2
t = h) but ignoring the variability in the temporal occurrence of the switch, the 315

optimal solution to this inference problem is the ideal observer defined in Equation 3, 316

which finds an online recursive solution in Equation 2. We therefore proved here that 317

the heuristic derived from [56] is an ideal inversion of the two-layered generative model 318

which assumes a constant hazard rate for the probability bias. 319

The correspondence that we proved between the weighted moving average heuristic 320

and the forgetful agent model as an ideal solution to that generative model leads us to 321

several interim conclusions. First, the time series of inferred x̂1
t+1 values can serve as a 322

regressor for behavioral data to test whether human observers follow a similar strategy. 323

In particular, the free parameter h may be fitted to variations of the behavioral data 324

across the sequence, which itself is assumed to depend on the agents’ belief in the 325

weight decay. Now, since we have defined a first generative model and the 326

corresponding ideal observer (the forgetful agent), we next define a more complex 327

model, in order to overcome some of the limits of the leaky integrator. Indeed, a first 328

criticism could be that this model is too rigid and does not sufficiently account for the 329

dynamics of contextual changes [57] as the weight decay corresponds to assume a priori 330

a constant precision in the data sequence, contrary to more elaborate Bayesian 331

models [58]. It seems plausible that the memory size (or history length) used by the 332

brain to infer any event probability can vary, and that this variation could be related to 333

the environmental volatility inferred from past data. The model presented in Equation 3 334
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uses a constant weight (decaying with the distance to the current trial) for all trials, 335

while the actual precision of each trial can be potentially evaluated and used for 336

precision-weighted estimation of the probability bias. To address this hypothesis, our 337

next model is inspired by the Bayesian Change-point detection model [55] of an ideal 338

agent inferring both the trajectory in time of the probability bias (xt1) but also of the 339

probability Pr(xt2 = 1) of the occurrence of switches. 340

2.2 Binary Bayesian Change Point (BBCP) detection model 341

There is a crucial difference between the forgetful agent presented above and an ideal 342

agent which would invert the Binary Switching Model (BSM, see Equation 1). Indeed, 343

at any trial during the experiment, the agent may infer beliefs about the probability of 344

the volatility xt2 which itself is driving the trajectory of the probability bias xt1. 345

Knowing that the latter is piece-wise constant, an agent may have a belief over the 346

number of trials since the last switch. This number, that is called the run-length rt, is 347

useful in two manners. First, it allows the agent to restrict the prediction x̂1
t+1 of xt+1

1 348

only based on those samples produced since the last switch, from t− rt until t. Indeed, 349

the samples xt0 which occurred before the last switch were drawn independently from 350

the present true value xt1 and thus cannot help estimating the latter. Second, it is 351

known that for this estimate, the precision (the inverse of variance) on the estimate 352

x̂1
t+1 grows linearly with the number of samples: The longer the run-length, the 353

sharper the corresponding (probabilistic) belief. We have designed an agent inverting 354

the BSM by extending the Bayesian Change-Point (BCP) detection model [55]. The 355

latter model defines the agent as an inversion of a switching generative model for which 356

the observed data (input) is Gaussian. We present here an exact solution for the case of 357

the BSM, where the input is binary. 358

In order to define in all generality the switch detection model, we will initially 359

describe the fundamental steps leading to its construction, while providing the full 360

algorithmic details in Appendix 8.3. The goal of predictive processing is to infer the 361

probability Pr(xt+1
0 |x0:t

0 ) of the next datum knowing what has been observed until trial 362

t (that we denote by x0:t
0 = {x0

0, . . . , x
t
0}), as well the agent’s prior knowledge that data 363

is the output of a given (stochastic) generative model (here, the BSM). To derive a 364

Bayesian predictive model, we introduce the run-length as a latent variable which gives 365

to the agent the possibility to represent different parallel hypotheses about the input. 366

We therefore draw a computational graph (see Figure 2-A) where, at any trial, an 367

hypothesis is formed on as many “nodes” than there are run-lengths (and limited for 368

instance by the total number of trials). As a readout, we can use this knowledge of the 369

predictive probability conditioned on the run-length, such that one can compute the 370

marginal predictive distribution: 371

Pr(xt+1
0 |x0:t

0 ) =
∑
rt≥0

Pr(xt+1
0 |rt, x0:t

0 ) · β(r)
t (4)

where Pr(xt+1
0 |rt, x0:t

0 ) is the Bernoulli trial modeling the probability of a future datum 372

xt+1
0 conditioned on the run-length and β(r)

t = Pr(rt|x0:t
0 ) is the probability for each 373

possible run-length given the observed data. Note that β(r)
t is scaled such that 374∑

r≥0 β
(r)
t = 1. Indeed, we know that, at any trial, there is a single true value for this 375

variable rt and that β(r)
t thus represents the agent’s inferred probability distribution 376

over the run-length r. 377

With these premises, we define the BBCP as a prediction / update cycle which 378

connects nodes from the previous trial to that at the current trial. Indeed, we will 379

predict the probability β(r)
t at each node, knowing either an initial prior, or its value on 380
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Fig 2. Binary Bayesian Change Point (BBCP) detection model. (A) This
plot shows a synthesized sequence of 13 events, either a leftward or rightward movement
of the target (TD). Run-length estimates are expressed as hypotheses about the length
of a sub-block over which the probability bias was constant, that is, the number of trials
since the last switch. Here, the true probability bias switched from a value of .5 to .9 at
trial 7, as can be seen by the trajectory of the true run-length (blue line). The BBCP
model tries to capture the occurrences of a switch by inferring the probability of
different possible run lengths. At any new datum (trial), this defines a Hidden Markov
Model as a graph (treillis), where edges indicate that a message is being passed to
update each node’s probability (as represented by arrows from trial 13 to 14). Black
lines denote a progression of the run length at the next step (no switch), while gray
lines stand for the possibility that a switch happened: In this case the run length would
fall back to zero. The probability for each node is represented by the grey scale (darker
grey colors denote higher probability) and the distribution is shown in the inset for two
representative trials: 5 and 11. Overall, this graph shows how the model integrates
information to accurately identify a switch and produce a prediction for the next trial
(e.g. for t = 14). (B) On a longer sequence of 200 trials, representative of a sub-block
of our experimental sequence (see Figure 1-A), we show the actual events which are
observed by the agent (TD), along with the (hidden) dynamics of the true probability
bias Ptrue (blue line), the value inferred by a leaky integrator (Pleaky, orange line) and
the results of the BBCP model in estimating the probability bias PBBCP (green line),
along with .05 and .95 quantiles (shaded area). This shows that for the BBCP model,
the accuracy of the estimated value of the probability bias is higher than for the leaky
integrator. Below we show the belief (as grayscales) for the different possible run
lengths. The green and orange line correspond to the mean run-length which is inferred,
respectively, by the BBCP and leaky models: Note that in the BBCP, while it takes
some trials to detect switches, they are in general correctly identified (transitions
between diagonal lines) and that integration is thus faster than for the leaky integrator,
as illustrated by the inferred value of the probability bias.
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a previous trial. In particular, at the occurrence of the first trial, we know for certain 381

that there is a switch and initial beliefs are thus set to the values β(0)
0 = Pr(rt = 0) = 1 382

and ∀r > 0, β(r)
0 = Pr(r0 = r) = 0. Then, at any trial t > 0, as we observe a new 383

datum xt0, we use a knowledge of β(r)
t−1 at trial t− 1, the likelihood 384

π
(r)
t = Pr(xt0|rt−1, x0:t−1

0 ) and the transition probabilities defined by the generative 385

model to predict the beliefs over all nodes: 386

β
(r)
t ∝

∑
rt−1≥0

β
(r)
t−1 · Pr(rt|rt−1) · π(r)

t (5)

In the computational graph, Equation 5 corresponds to a message passing from the 387

nodes at time t− 1 to that at time t. We will now detail how to compute the transition 388

probabilities and the likelihood. 389

First, knowing that the data is generated by a switching model such as the BSM 390

(see Equation 1), the run-length is either null at the moment of a switch, or its length 391

(in number of trials) is incremented by 1 if no switch occurred: 392{
if xt2 = 1, rt = 0
if xt2 = 0, rt = rt−1 + 1 (6)

This may be illustrated by a graph in which information will be represented at the 393

different nodes for each trial t. This defines the transition matrix Pr(rt|rt−1) as a 394

partition in two exclusive possibilities: Either there was a switch or not. It allows us to 395

compute the growth probability for each run-length. On the one hand, the belief of an 396

increment of the run-length at the next trial is: 397

β
(r+1)
t = 1

B
· β(r)

t−1 · π
(r)
t · (1− h) (7)

where h is the scalar defining the hazard rate. On the other hand, it also allows to 398

express the change-point probability as: 399

β
(0)
t = 1

B
·
∑
r≥0

β
(r)
t−1 · π

(r)
t · h (8)

with B such that
∑
r≥0 β

(r)
t = 1. Note that β(0)

t = h and thus B =
∑
r≥0 β

(r)
t−1 · π

(r)
t . 400

Knowing this probability strength and the previous value of the prediction, we can 401

therefore make a prediction for our belief of the probability bias at the next trial t+ 1, 402

prior to the observation of a new datum xt+1
0 and resume the prediction / update cycle 403

(see Equations 4, 7 and 8). 404

Integrated in our cycle, we update beliefs on all nodes by computing the likelihood 405

π
(r)
t of the current datum xt0 knowing the current belief at each node, that is, based on 406

observations from trials 0 to t− 1. A major algorithmic difference with the BCP 407

model [55], is that here the observed data is a Bernoulli trial and not a Gaussian 408

random variable. The random variable xt1 is the probability bias used to generate the 409

sequence of events xt0. We will infer it for all different hypotheses on rt, that is, 410

knowing there was a sequence of rt Bernoulli trials with a fixed probability bias in that 411

epoch. Such an hypothesis will allow us to compute the distribution Pr(xt+1
0 |rt, x0:t

0 ) by 412

a simple parameterization. Mathematically, a belief on the random variable xt1 is 413

represented by the conjugate probability distribution of the binomial distribution, that 414

is, by the beta-distribution B(xt1;µ(r)
t , ν

(r)
t ). It is parameterized here by its sufficient 415
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statistics, the mean µ(r)
t and sample size ν(r)

t (see Appendix 8.2 for our choice of 416

parameterization). First, at the occurrence of a switch (for the node rt = 0) beliefs are 417

set to prior values (before observing any datum) µ(0)
t = µprior and ν(0)

t = νprior. By 418

recurrence one can show that at any trial t > 0, the sufficient statistics (µ(r)
t , ν

(r)
t ) can 419

be updated from the previous trial following: 420

ν
(r+1)
t = ν

(r)
t−1 + 1 (9)

As a consequence, ∀r, t; ν(r)
t is the sample size corrected by the initial condition. 421

ν
(r)
t = r+ νprior. For the mean, the series defined by µ(r+1)

t is the average at trial t over 422

the r + 1 last samples, which can also be written in a recursive fashion: 423

µ
(r+1)
t = 1

ν
(r+1)
t

· (ν(r)
t−1 · µ

(r)
t−1 + xt0) (10)

This updates for each node the sufficient statistics of the probability density function at 424

the current trial. We can now detail the computation of the likelihood of the current 425

datum xt0 with respect to the current beliefs : π(r)
t = Pr(xt0|µ

(r)
t−1, ν

(r)
t−1). This scalar is 426

returned by the binary function L(r|o) which evaluates at each node r the likelihood of 427

the parameters of each node whenever we observe a counterfactual alternative outcome 428

o = 1 or o = 0 knowing a mean bias p = µ
(r)
t−1 and a sample size r = ν

(r)
t−1. For each 429

outcome, the likelihood of observing an occurrence of o, is the probability of a binomial 430

random variable knowing an updated probability bias of p·r+o
r+1 , a number p · r + o of 431

trials going to the right and a number (1− p) · r + 1− o of trials to the left. After some 432

algebra, this defines the likelihood as : 433

L(r|o) = 1
Z
· (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o (11)

with Z such that L(r|o = 1) + L(r|o = 0) = 1. The full derivation of this function is 434

detailed in Appendix 8.4. This provides us with the likelihood function and finally the 435

scalar value π(r)
t = L(r|xt0). 436

Finally, the agent infers at each trial the belief and parameters at each node and 437

uses the marginal predictive probability (see Equation 4) as a readout. This probability 438

bias is best estimated by its expected value x̂1
t+1 = Pr(xt+1

0 |x0:t
0 ) as it is marginalized 439

over all run-lengths: 440

x̂1
t+1 =

∑
r≥0

µ
(r)
t · β

(r)
t (12)

Interestingly, it can be proven that if, instead of updating beliefs with Equations 7 441

and 8, we set nodes’ beliefs to the constant vector β(r)
t = h · (1− h)r, then the marginal 442

probability is equal to that obtained with the leaky integrator (see Equation 2). This 443

highlights again that, contrary to the leaky integrator, the BBCP model uses a 444

dynamical model for the estimation of the volatility. Still, as for the latter, there is only 445

one parameter h = 1
τ which informs the BBCP model that the probability bias switches 446

on average every τ trials. Moreover, note that the resulting operations (see 447

Equations 4, 7, 8, 11 and 12) which constitute the BBCP algorithm can be implemented 448

online, that is, only the state at trial t and the new datum xt0 are sufficient to predict 449

all probabilities for the next trial. Finally, this prediction/update cycle applied to the 450

BSM and using Equation 1 constitutes the Binary Bayesian Change Point (BBCP) 451

detection model. 452
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2.3 Quantitative analysis of the Binary Bayesian Change Point 453

detection algorithm 454

We have implemented the BBCP algorithm using a set of Python scripts. This 455

implementation provides also some control scripts to test the behavior of the algorithm 456

with synthetic data. Indeed, this allows to qualitatively and quantitatively assess this 457

ideal observer model against a ground truth before applying it on the trial sequence 458

that was used for the experiments and ultimately comparing it to the human behavior. 459

Figure 2-A shows a graph-based representation of the BBCP estimate of the run-length 460

for one instance of a short sequence (14 trials) of simulated data xt0 of leftward and 461

rightward trials, with a switch in the probability bias of moving rightward occurring at 462

trial 7 (see figure caption for a detailed explanation). Figure 2-B, illustrates the 463

predicted probability x̂1
t, as well as the corresponding uncertainty (the shaded areas 464

correspond to .05 and .95 quantiles) when we applied respectively the BBCP (green 465

curve) and the forgetful agent (orange curve) model to a longer sequence of 200 trials, 466

characteristic of our behavioral experiments. In the bottom panel, we show the 467

dynamical evolution of the belief on the latent variable (run length), corresponding to 468

the same sequence of 200 trials. The BBCP model achieves a correct detection of the 469

switches after a short delay of a few trials. 470

Two main observations are noteworthy. First, after each detected switch, beliefs align 471

along a linear ridge, as our model best estimate of the current run-length is steadily 472

incremented by 1 at each trial until a new switch, and the probability x̂1
t is estimated 473

by integrating sensory evidence in this epoch (it ’stays’). Then, we observe that shortly 474

after a switch (hidden to the agent), the belief diffuses until the relative probability of a 475

continuously increasing run-length is lower that that assigned to a smaller run-length: 476

There is a transition to a new state (the model ’goes’). Such adaptation is similar to the 477

slow / fast heuristic model proposed in other studies [59]. Second, we can use this 478

information to readout the most likely probability bias and use it as a regressor for the 479

behavioral data. Note that the leaky integrator model is implemented by the agent 480

assuming a fixed run-length profile (see orange line in Figure 2-B), allowing for a simple 481

comparison of the BBCP model with the leaky integrator. Again, we see that a fixed 482

length model gives qualitatively a similar output but with two disadvantages compared 483

to the BBCP model, namely that there is a stronger inertia in the dynamics of the 484

model estimates and that there is no improvement in the precision of the estimates after 485

a switch. In contrast, after a correct switch detection in the BBCP model, the value of 486

the inferred probability converges rapidly to the true probability as the number of 487

observations steadily increases after a switch. 488

In order to quantitatively evaluate the algorithm and following a similar strategy 489

as [60], we computed an overall cost C as the negative log-likelihood (in bits) of the 490

estimated probability bias, knowing the true probability and averaged over all T trials: 491{
C = 1

T

∑
t C(xt1, x̂1

t) with C(xt1, x̂1
t) = H(xt1, x̂1

t)−H(xt1, xt1)
where H(xt1, x̂1

t) = −x1
t log2(x̂1

t)− (1− x1
t) log2(1− x̂1

t) (13)

The measure C(xt1, x̂1
t) explicitly corresponds to the average score of our model, as the 492

Kullback-Leibler distance of x̂1
t compared to the hidden true probability bias xt1. We 493

have tested 100 blocks of 2000 trials for each read-out. In general, we found that the 494

inference is better for the BBCP algorithm (C = 0.171± 0.030) than for the leaky 495

integrator (C = 0.522± 0.128), confirming that it provides overall a better description of 496

the data. Note that the only free parameter of this model is the hazard rate h assumed 497

by the agent (as in the fixed-length agent). Although more generic solutions 498

exist [61–63], we decided as a first step to keep this parameter fixed for our agent, and 499

evaluate how well it matches to the experimental outcomes at the different scales of the 500
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Fig 3. Raw behavioral results, qualitative overview. The top row represents
the sequence of target directions (TD) that were presented to observers in one sub-block
of 200 trials, as generated by the binary switching model (see Figure 1-A). Bottom two
rows show the raw behavioral results for two representative observers: The recorded
aSPEM strength as measured by the horizontal eye velocity estimated right before the
onset of the visually-driven SPEM (dark gray line); and the explicit ratings about the
expected target direction (or bet scores, red line). We also show the evolution of the
value of the probability bias Ptrue (blue line) which is hidden to observers and used to
generate the TD sequence above. We have overlaid the results of the BBCP model
(see Figure 2-B, green line). This shows qualitatively a good match between the
experimental evidence and the model. Note that short pauses occurred every 50 trials
(as denoted by vertical black lines, see main text), and we added the assumption in the
model that there was a switch at each pause. This is reflected by the reset of the green
curve close to the 0.5 level and the increase of the uncertainty after each pause.

protocol: averaged over all observers, for each individual observer or independently in 501

all individual sub-blocks. In a second step, by testing different values of h assumed by 502

the agent but for a fixed hazard rate h = 1/40 in the BSM, we found that the distance 503

given by Equation 13 is minimal for the true hazard rate used to generate the data. In 504

other words, this analysis shows that the agent’s inference is best for a hazard rate 505

equal to that implemented in the generative model and which is actually hidden to the 506

BBCP agent. This property will be important in a following section to estimate the 507

hazard rate implicitly assumed by an individual participant on the basis of the set of 508

responses given to the sequence of stimuli (see Section 4). As a summary, for each trial 509

of any given sequence, we obtain an estimate of the probability bias assumed by the 510

ideal observer and which we may use as a regressor. We will now present the analysis of 511

this model’s match to our experimental measures of anticipatory eye movements and 512

explicit guesses about target motion direction. 513

3 Results: Anticipatory eye movements and explicit 514

ratings 515

We used the BSM model to generate the (pseudo-)random sequence of the dot’s 516

directions (the alternation of leftward/rightward trials) as the sequence of observations 517

that were used in both sessions (see Figure 3). In one session, we recorded the 518
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participants’ eye movements and we show the anticipatory smooth pursuit velocity for 519

two representative participants (out of 12 participants), throughout a sub-block of 200 520

trials of the experimental sequence. Note that these participants were chosen as those 521

whose fitting score was nearest to the median score in the quantitative analysis that will 522

be illustrated below in Section 4. In the top panel of Figure 3 we show the actual 523

sequence of binary choices (TD, leftward or rightward) of the Bernoulli trials, whereas in 524

the bottom panels, we compare for each two participants the evolution of the recorded 525

aSPEM (grey line) with the true value of the hidden probability bias x1 (step-like blue 526

curve), and the value inferred using the BBCP model (green line), along with the .05 to 527

.95 quantile range (green shaded area). Comparing the raw aSPEM results with the 528

BBCP agent predictions, it appears qualitatively that both traces evolve in good 529

agreement. First, one can observe a trend in the polarity of aSPEM velocity to be 530

negative for probability bias values below .5 and positive for values above .5. Moreover, 531

both curves (aSPEM and model) unveil similar delays in detecting and taking into 532

account a switch of the probability bias (while being hidden to the observers), reflecting 533

the time (in the order of a few trials) taken to integrate enough information to build up 534

the estimation of a novel expectation about the probability bias value parameterizing 535

the Bernoulli trial. In general, results are more variable when the bias is weak (p ≈ .5) 536

than when it is strong (close to zero or one), consistent with the well-known dependence 537

of the variance of a Bernoulli trial upon the probabilistic bias (Var(p) = p · (1− p)). In 538

addition, the precision (i.e. the inverse of the variance) of the inferred probability bias 539

x̂1 seems to increase in longer epochs (inter-switch blocks) as information is integrated 540

over more trials. As a result, the inferred probability as a function of time seems 541

qualitatively to constitute a reliable regressor for predicting the strength of aSPEM. 542

In addition, the explicit ratings for the next trial’s expected motion direction (or bet 543

scores, red curve in Figure 3) provided in the other experimental session seem to 544

qualitatively follow the same trend. Indeed, similarly to the strength of aSPEM, we 545

qualitatively compare in Figure 3 the trace of the bet scores with the inferred 546

probability bias x̂1. As with aSPEM, the series of the participants’ bias guesses exhibits 547

a positive correlation with the true probability bias: The next outcome of xt0 will in 548

general be correctly inferred, as compared to a random choice, as reported 549

previously [64]. Moreover, we observe again that a stronger probability bias leads to a 550

lower variability in the bet scores, compared to bias values close to 0.5. Again, a 551

(hidden) switch in the value of the bias is most of the time correctly identified after only 552

a few trials. Finally, note that at every pause (black vertical bar in Figure 3), 553

participants tended to favor unbiased guesses, closer to 0.5 than at the end of a 554

sub-block of trials. We can speculate that this phenomenon could correspond to a 555

spontaneous resetting mechanism of the internal belief on the probability bias and 556

indeed we can introduce such an assumption in the model, as a reset of the internal 557

belief after each pause. To conclude, the experiment performed in this session shows 558

that the probability bias values that are explicitly estimated by participants are 559

qualitatively similar to the implicit (and largely unconscious) ones which supposedly 560

underlie the generation of anticipatory aSPEM with variable strength. 561

Quantitatively, we now compare the experimental results with the value of the 562

probability bias x̂1 computed by the BBCP algorithm. Compiling results from all 563

participants, we have plotted in Figure 4 the aSPEM strength (panel A) and the bet 564

scores (panel B) as a function of the BBCP-inferred probability bias (we remind here 565

that the true value of the probability bias was coded at the second layer of the BSM 566

generative model and is hidden both to the agents and to the human observers). All 567

trials from all participants were pooled together and we show this joint data as an error 568

bar plot showing the median along with the .25 and .75 quantiles as computed for 5 569

equal partitions of the [0, 1] probability segment. As a comparison, the same method 570
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Fig 4. Behavioral results, quantitative analysis across participants. For all
participants and for all trials, we collected an estimate of the strength of aSPEM and a
bet score value. We analyze the relation between these experimental data with the
corresponding prediction PBBCP of the probability bias as inferred by the BBCP model.
We display these functional relations using an error-bar plot showing the median with
.25 and .75 quantiles over 5 equal partitions of the [0, 1] probability segment. The green
regression line illustrates the relationship between the BBCP regressor in abscissa and
in ordinate (A) the strength of aSPEM and (B) the bet score, respectively. As a
comparison, we have plotted in blue and orange colors the regression lines with
respectively the true probability (Ptrue = xt1) and the probability bias estimates Pleaky
obtained with a leaky integrator. Insets summarize the quantitative measure of this
match by computing the Pearson correlation coefficient r and the mutual information
(MI) over the whole data set. Dots correspond to these measures for each individual
observer. This shows quantitatively that for both experimental measures there is a
strong statistical dependency between the behavioral results and the prediction of the
BBCP model, but also that this dependency is significantly stronger than that obtained
with the true probability and with the estimates obtained with the leaky integrator (see
text).
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was applied to the true value Ptrue and to the estimate obtained by the leaky integrator. 571

We quantitatively estimated the Pearson correlation coefficient and the mutual 572

information between the raw data and the different models. First, as we can see 573

in Figure 4-A, the probability bias PBBCP estimated by the BBCP algorithm is linearly 574

correlated with the aSPEM velocity, both as computed on the whole data or for each 575

observer individually (see insets in the Figure). The respective values for the whole 576

dataset (r = 0.657 and MI = 0.687) and across subjects (r = 0.673± 0.079 and 577

MI = 0.707± 0.134) are slightly higher than that found by [44] and [12] for aSPEM 578

measures gathered across experimental blocks with fixed direction biases and 579

significantly1 better than that estimated with the true probability (r = 0.613± 0.069 580

with p = 0.002 and MI = 0.562± 0.107 with p = 0.002) and for that estimated by the 581

leaky-integrator model (r = 0.600± 0.079 with p = 0.003 and MI = 0.622± 0.102 with 582

p = 0.004), see inset). A similar analysis illustrates the relationship between the 583

model-estimated probability bias and the rating value, or bet score, about the expected 584

outcome, which was provided at each trial by participants and is shown in Figure 3. 585

Similarly to the aSPEM strength, the rating values are nicely correlated with the 586

probability bias given by the model, as quantified by the Pearson correlation coefficient 587

and mutual information across subjects (r = 0.813± 0.091 and MI = 1.312± 0.364). 588

Importantly, this value is again higher for the BBCP model than for the leaky 589

integrator (r = 0.731± 0.129 with p = 0.007 and MI = 1.117± 0.409 with p = 0.028), 590

or with the true probability (r = 0.694± 0.086 with p = 0.002 and MI = 0.940± 0.255 591

with p = 0.002). Further notice that, in order to account for some specific changes 592

observed in the behavioral data after the short pauses occurring every 50 trials, we 593

added the assumption that there was a switch at each pause. However, removing this 594

assumption did not significantly change the conclusions about the match of the model 595

compared to Ptrue or Pleaky both for eye movements (PBBCP: r = 0.667± 0.078 and 596

MI = 0.712± 0.125, Pleaky: r = 0.548± 0.074 with p = 0.003 and MI = 0.577± 0.096 597

with p = 0.003 ; Ptrue : r = 0.613± 0.069 with p = 0.002 and MI = 0.562± 0.107 with 598

p = 0.002) and the bet experiment (PBBCP: r = 0.802± 0.090 and MI = 1.255± 0.349, 599

Pleaky: r = 0.641± 0.120 with p = 0.002 and MI = 0.966± 0.300 with p = 0.002 ; Ptrue 600

: r = 0.694± 0.086 with p = 0.002 and MI = 0.940± 0.255 with p = 0.002). To 601

conclude, we deduce that the dynamic estimate of the probability bias produced by the 602

BBCP model is a powerful regressor to explain both the strength of anticipatory 603

smooth pursuit eye movements and the explicit ratings of human observers experiencing 604

a volatile context for visual motion. 605

This relatively strong correlation is surprising at a first sight as the epochs with 606

constant probability bias (between two switches) have random lengths, and participants 607

have to adapt to such a volatile environment. However, adaptivity to a volatile 608

environment is one of the most exquisite human skills: When faced with some new 609

observations, the observer has to constantly adapt his/her response to either exploit this 610

information by considering that this observation belongs to the same context of the 611

previous observations, or to explore a novel hypothesis about the context. This 612

compromise is one of the crucial component that we wished to explore and which is well 613

captured by the BBCP model. In particular, the model predicts different aspects of the 614

experimental results, from the variability as a function of the inferred probability, to the 615

dynamics of the behavior following a (hidden) switch. 616

1All following p-values are obtained from the Wilcoxon signed-rank test.
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4 Results: Analyzing inter-individual differences 617

So far, we have presented the qualitative behavior of individual participants and we 618

have reported the quantitative analysis of the group-pooled data for the fit between 619

experimental and model-inferred estimates of the hidden probability bias. For instance, 620

the experimental measures for two representative participants in Figure 3, support the 621

qualitative match between behavioral data and model predictions, which we then 622

confirmed quantitatively on the whole group of participants. It is important to note 623

that no model fitting procedure was used so far, but only the match of the results of the 624

BBCP-model applied to the sequence of binary target directions presented to the 625

human participants, as shown in Figure 2-B. However, we observed that in both sessions 626

the qualitative match between model and data varied across participants. This was best 627

characterized by differences in the variability of the responses, but also, for instance, by 628

the different characteristic delays after a switch. This reflects the spectrum of individual 629

behavioral choices between exploration versus exploration [57]. As a consequence, we 630

were interested in characterizing these individual preferences for each individual 631

participant, but also to investigate whether this preference co-varied across the two 632

experimental sessions (i.e. across implicit vs explicit response modalities). Crucially, we 633

have seen that the BBCP model is controlled by a single parameter, the hazard rate, or 634

equivalently by its inverse, the characteristic time τ . Also, we have shown that knowing 635

an observed sequence of behavioral responses, we could fit the value of h which would 636

best explain the observations, as quantified by the Pearson’s correlation coefficient or by 637

the mutual information. Thus, by extracting the best-fit parameters for each participant 638

and experimental session we expect to better understand the variety of inter individual 639

differences. 640

Hence, we have fitted the sequence of responses generated by each participant and 641

for each experimental session, that is for the eye movements and the rating scale 642

experiments. To avoid any possible bias from the fitting procedure, we tested 1600 643

linearly spaced values of τ from 1 to 1600 trials. For each, we computed the correlation 644

coefficient with the BBCP-model responses parameterized by the value of the hazard 645

rate h = 1
τ . We then extracted different estimates of haSPEM and hbet, respectively for 646

aSPEM and the rating scale, by choosing the hazard rate value corresponding to that 647

with maximal correlation coefficient. To cross-validate our results for each individual 648

participant, we have fitted the BBCP model to each of the 3 sub-blocks of 200 trials. 649

This provides with 3 values of the best fitted hazard rate for each session and observer. 650

The scatter plot of the best fit values is shown in Figure 5. This figure suggests, in the 651

first place, that there is some variability in the best fitted value of the hazard rate in 652

both sessions. Overall, the value of correlation coefficient of the best fit hazard rate was 653

slightly higher than that computed in Figure 3 with r = 0.682± 0.080 for the eye 654

movement session and r = 0.811± 0.089 for the rating scale session. A part of the 655

variability in the estimated hazard rates comes from the limited length of the data 656

blocks, while another part is due to intra-individual and inter-individual variabilities. 657

Overall, the median (with 25% and 75% quantiles) are haSPEM = 0.069 (0.038, 0.093) for 658

the aSPEM session and hbet = 0.025 (0.011, 0.093) for the rating scale. We observe that 659

these values are close to the (hidden) ground truth value (h = 1/40 = 0.025) used to 660

generate the sequence. In addition, the best-fit hazard rate value is higher for aSPEM 661

compared to the true value and the rating scale measures. In addition, we observed a 662

tendency for hazard rate to be higher in the eye movement recording session. As a 663

consequence, this analysis reveals that relaxing the free parameter of the BBCP model 664

improves the match of the model to the behavioral data and that we could represent the 665

distribution of individual differences in the choice behavior between exploration and 666

exploitation in both sessions for each subject. 667

The distribution of best-fitted values for each individual subject seemed to 668
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Fig 5. Analysis of inter-individual differences. We analyzed each participant’s
behavior individually, by searching the individual best value of the model’s single free
parameter, the hazard rate h. Estimates were performed independently on both
experiments, such that we extracted different estimates of haSPEM and hbet respectively
for the aSPEM strength and the rating value. The dots correspond to independent
estimates of the hazard rate in each 200 trial sub-block and data belonging to each
individual participant are joined by dotted lines. Dashed lines correspond to the median
for the full dataset (black line) or for each individual sub-block (colored line). These
should be compared to the values obtained for the BBCP model, showing a slight
variability over sub-blocks. Stars correspond to the observers displayed in Figure 3.
This plot shows that best fit hazard rates are in general higher than the ground truth
(blue line), and in general higher for eye movements (below the diagonal). Note that the
histograms of hazard-rate best-fit estimates (grey shaded areas) is much more narrower
for the eye movement session than for the bet experiment, as also illustrated by the
cumulative distributions (plain lines in black or colors). Such an analysis suggests that
participants ultimately have different mechanisms at the unconscious and conscious
levels for guiding their tendency of exploration versus exploitation.

September 19, 2019 19/35

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/784116doi: bioRxiv preprint 

https://doi.org/10.1101/784116
http://creativecommons.org/licenses/by/4.0/


qualitatively cluster, but the dataset is still insufficiently large to support the 669

significance of such observation at a quantitative level. Moreover, there is a difference in 670

the distribution of observed hazard rates in both sessions. Indeed, we observed that the 671

marginal distribution for each session is different, with the distribution in the aSPEM 672

session being narrower than that observed for the rating scale session. In particular, we 673

also observed the same behavior for each sub-block independently, suggesting that the 674

origin of this variability mainly comes from inter-subject variability. Such an analysis 675

suggests that even though the predictive processes at work in both sessions may reflect 676

a common origin for the evaluation of volatility, this estimation is then more strongly 677

modulated by individual preferences when a more conscious cognitive process is at stake. 678

5 Discussion 679

The capacity to adapt our behavior to the environmental regularities has been 680

investigated in different research fields, from motor priming and sensory adaptation to 681

reinforcement learning, machine learning and economics. Several studies have aimed at 682

characterizing the typical time scale over which such adaptation occurs. However, the 683

pattern of environmental regularities could very well change in time, thereby making a 684

fixed time-scale for adaptation a suboptimal cognitive strategy. In addition, different 685

behaviors are submitted to different constraints and respond to different challenges, 686

thus it is reasonable to expect some differences in the way (and time scales) they adapt 687

to the changing environment. This study is an attempt to address these crucial open 688

questions. We have taken an original approach, by assuming a theoretically-defined 689

volatility in the properties of the environment (in the specific context of visual motion 690

tracking) and we have developed an optimal inferential agent, which best captures the 691

hidden properties of the generative model solely based on the trial sequence of target 692

motion. We have then compared the optimal agent’s prediction, as well as a more 693

classical forgetful agent, to two sets of behavioral data, one rooted in the early 694

visuomotor loop underlying anticipatory ocular tracking, and the other related to the 695

explicit, conscious estimate of the likelihood of a future event. Our results point to a 696

flexible adaptation strategy in humans, taking into account the volatility of the 697

environmental statistics. The time-scale of this dynamic adaptive process would thus 698

vary across time, but it would also be modulated by the specific behavioral task and by 699

inter-individual differences. In this section we discuss the present work and its 700

implications in view of the existing literature and some general open questions. 701

5.1 Environmental regularities, cognitive properties and visual 702

perception 703

The time-varying statistical regularities that characterize the environment are likely to 704

influence several cognitive functions. In this study, we have made the choice to focus on 705

a largely unconscious motor behavior (aSPEM), as well as on the explicit rating of 706

expectation for the forthcoming motion direction. In contrast, we have not addressed 707

the question of whether and how statistical learning affects visual motion perception 708

throughout our model-generated volatile sequences. In an empirical context similar to 709

ours, [11] have recently shown that perceptual adaptation for speed estimation occurs 710

concurrently to priming-based aSPEM throughout a sequence of motion tracking trials 711

with randomly varying speed. They actually found a robust repulsive adaptation effect, 712

with perceptual judgements biased in favor of faster percepts after seeing stimuli that 713

were slower and vice-versa. Concurrently, these authors also found a positive effect on 714

anticipatory smooth pursuit, with faster anticipation after faster stimuli, somehow in 715

agreement with the adaptive properties of aSPEM that we also report here. [11] 716

September 19, 2019 20/35

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/784116doi: bioRxiv preprint 

https://doi.org/10.1101/784116
http://creativecommons.org/licenses/by/4.0/


quantified the trial-history effects on aSPEM and speed perception by fitting a 717

fixed-size memory model similar to the forgetful agent. They found that aSPEM and 718

speed perception change over different time scales, with the priming effects being 719

maximized for short-term stimulus history (around 2 trials) and adaptation for longer 720

stimulus history, around 15 trials. Their main conclusion was that perceptual 721

adaptation and oculomotor priming are the result of two distinct readout processes 722

using the same internal representation of motion regularities. Note that both these 723

history lengths can be considered short in comparison to the several hundreds of trials 724

that are commonly used in psychophysics and sensorimotor adaptation studies and that, 725

similar to the present study, the inferred characteristic times are even shorter for the 726

buildup of anticipatory eye movements. However, it is also important to note that in 727

the study by [11], the generative model underlying the random sequence of motion trials 728

was different and much simpler than in the present study: In particular the role of 729

environmental volatility was not directly addressed there. This makes a direct 730

comparison between their results and ours difficult beyond a qualitative level. 731

In spite of a multitude of existing studies investigating the dynamics of sequential 732

effects on visual perception (see for example [6, 8]), only few of them have directly 733

addressed the role of the environmental volatility on the different behavioral 734

outcomes. [28] have compared the predictions of different models, featuring a dynamic 735

adaptation to the environment’s volatility (equivalent to our forgetful agent model) 736

versus a fixed belief model, on five sets of previously acquired data, including reaction 737

time, explicit reports and neurophysiological measures. Interestingly, [28] concluded 738

that the estimation of a time-varying transition probability matrix constitutes a core 739

building block of sequence knowledge in the brain, which then applies to a variety of 740

sensory modalities and experimental situations. As such, sequential effects in binary 741

sequences would be better explained by learning and updating transition probabilities 742

compared to the absolute item frequencies (as in the present work) or the frequencies of 743

their alternations. The critical difference lies in the content of what is learned 744

(transition probabilities versus item frequencies) in an attempt to capture human 745

behavior. Rather than on transition probabilities, here we focused on the analysis and 746

modeling of human behavior as a function of the frequency of presentation (and its 747

fluctuations in time) of a given event in a binary sequence of alternating visual motion 748

direction. We can speculate that different statistics can play a different role depending 749

on the context, but altogether the study by [28] and the present one converge to 750

highlight the importance of a dynamic estimate of the hierarchical statistical properties 751

of the environment for efficient behavior. There are also other limits to the agent that 752

we have defined. In this study we assume that data are provided as a sequence of 753

discrete steps. A similar approach using a Poisson point process allows to extend our 754

model to the continuous time domain, such as addressed by [65]: In their experiments, 755

the authors analyzed the licking behavior of rats in a dynamic environment. The 756

generalization to the time-continuous case is beyond the scope of our current protocol, 757

but it would consist in a natural extension of it to more complex and ecological settings. 758

The way expectations act on cognitive processes in general has been investigated in a 759

wide range of domains such as predictive coding [66], active inference [67], motor 760

control [68] and reinforcement learning [12,57, 62]. Non-stationary observations can also 761

explain why both local and global effects emerge and why local effects persist in the 762

long run even within purely random sequences [20,32]. This constant update of a 763

general belief on the world can be a consequence of the constant attempt to learn the 764

non-stationary structure of the environment that can change at unpredictable times [20]. 765

Many studies have actually already pointed out the brain’s ability to apprehend 766

non-stationary states in environments [64,69]. Future work will be needed to address 767

the amplitude and dynamics of modulations of visual perception and other cognitive 768
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functions in a model-based volatile environment like the one we formally defined in this 769

study, and to compare them to other implicit and explicit behavioral measures (like 770

anticipatory eye movements and explicit expectation ratings). 771

5.2 Hierarchical Bayesian inference in the brain 772

When we perceive the physical world, make a decision or take an action to interact with 773

it, our brain must deal with an ubiquitous property of it, uncertainty. Uncertainty can 774

arise at different levels and be structured around different characteristic time scales. 775

During the past decades, modern science seems to have completed an epistemological 776

transition, from struggling to reduce or neglect uncertainly to engaging in 777

understanding it as a crucial constituent of the world. In the cognitive neurosciences 778

this transition has been formalized in the theoretical framework of Bayesian 779

probabilistic inference, which has become very popular as a benchmark of optimal 780

behavior in perceptual, sensorimotor and cognitive tasks [70] and gives a unified 781

framework for studying the brain [67]. Furthermore, plausible hypotheses about the 782

implementation of Bayesian computations —or approximations of them— in the activity 783

of neuronal populations have been proposed [71–73]. 784

However, one should be careful when evaluating the quality of fit of Bayesian 785

inference models for behavioral data, and avoid any over-interpretation of the results. 786

Note that, if we assume that the inversion of the generative model is perfect (that is, if 787

no algorithmic approximation has been done, like in the present study), this means that 788

by fitting different ideal observers to the data, one evaluates as a matter of fact the 789

adequacy of a specific generative model, not of the probabilistic calculus in its detailed 790

implementation. There is a common confusion around the idea of a “Bayesian brain”. 791

We actually believe that the challenge here is not to validate the hypothesis that the 792

brain uses or not the Bayes’ theorem, or a more complex hierarchical combinations of 793

inferential computations, but rather to test different hypotheses about the different 794

generative models that agents may use. This methodological point will be essential in 795

designing future experimental protocols, and in evaluating quantitatively the results. 796

The brain is probably only “weakly Bayesian” (it does not care about equations but 797

more about sugar, after all!). One remaining question though, is to understand why in 798

cognitive systems the adaptation to hierarchical probabilistic fluctuations occurs and in 799

particular why it may deviate in some pathological disorders such as 800

schizophrenia [5, 74] or across the natural variability of autistic traits [75]. 801

While it was not our original objective, we have analyzed in this study the individual 802

best-fit parameters (hazard rates) of the BCCP model: despite a consistent variability 803

of such parameters across sub-blocks of the trial sequence, we highlighted some 804

noteworthy tendencies for participants to cluster around specific properties of the 805

dynamic adaptation to a volatile probabilistic environment. Most important, this 806

analysis corroborates and strengthens some recent attempts to realize a computational 807

phenotyping of human participants. However, more extensive studied should be 808

conducted to be able to quantitatively titrate inter-individual tendencies. 809

5.3 Non-linearities in the adaptation to probabilistic 810

environments 811

Finally, neuroeconomists have pointed out a generic aversion to risk [76] such that the 812

value of a possible outcome is weighted by the precision of the inference, leading in 813

general to an under-weighting of high gains and losses. Importantly, [77] compared a 814

classical economic decision task with a motor decision task: they found that 815

participants were more risk seeking in the motor task compared to the first one. More 816

recently, in a task similar to ours, where the behavioral choice was not specifically 817
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associated to a reward schedule, [47] found a weak non-linearity in the dependence of 818

aSPEM upon the probability of motion direction, yielding an overweight of the extreme 819

values of probability, whereas an opposite non-linearity (underweight) was observed 820

when the target direction was visually-cued with a given probability of validity. In our 821

data we have not found consistent evidence suggesting a clear non-linearity in either 822

sense. Further work is needed to disentangle the possible specificities (e.g. non 823

linearities), in this respect, of different cognitive tasks, as well as to investigate the 824

dependence of non-linearities upon the environmental volatility. 825

6 Conclusions 826

• We have developed a Bayesian model of an agent estimating the probability bias 827

of a volatile environment with changing points (switches), such that the agent 828

may decide to stay on the current hypothesis about the environment, or to go for 829

a novel one. This allows to dynamically infer the probability bias across time and 830

directly compare model predictions and experimental data, such as measures of 831

human behavior. 832

• We applied such a framework to the case of a probability bias in a visual motion 833

task where we manipulated the target direction probability. We observed a good 834

match between the largely unconscious anticipatory smooth eye movements and 835

the results of the model, replicating and providing a novel solid theoretical 836

framework for previous findings [12,44,47]. 837

• We also found a good match between model predictions and the explicit rating of 838

the expected target motion direction, a novel result suggesting that this model 839

captures some of the brain computations underlying expectancy based motion 840

prediction, both at the unconscious and conscious level. 841

• Finally, we found that the experimental data of each different participant matched 842

to different types of belief about the volatile environment, some being more or less 843

conservative than others. Interestingly, each of the two experiments (namely for 844

the unconscious anticipatory eye movements and the conscious rating) provided 845

different distributions, opening the perspective for future computational 846

phenotyping using such a volatile setting. 847

7 Material and Methods 848

7.1 Participants, visual stimuli and experimental design 849

Twelve observers (29 years old ±5.15, 7 female) with normal or corrected-to-normal 850

vision took part in these experiments. They gave their informed consent and the 851

experiments had received ethical approval from the Aix-Marseille Ethics Committee 852

(approval 2014-12-3-05), in accordance with the declaration of Helsinki. 853

Visual stimuli were generated using PsychoPy 1.85.2 [78] on a Mac running OS 10.6.8 854

and displayed on a 22" Samsung SyncMaster 2233 monitor with 1680× 1050 pixels 855

resolution at 100 Hz refresh rate. Experimental routines also written using PsychoPy 856

controlled the stimulus display. Observers sat 57 cm from the screen in a dark room. 857

The moving target used in our experiments was a white ring (0.35° outer diameter 858

and 0.27° inner diameter) with a luminance of 102 cd/m2 that moved horizontally on a 859

grey background (luminance 42 cd/m2). Each trial started with a central fixation point 860

displayed for a random duration drawn from a uniform distribution ranging between 400 861

and 800 ms. Then a fixed-duration 300 ms gap occurred between the offset of the 862

fixation point and the onset of the moving target, which was presented slightly offset 863
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from the fixation location [79] and immediately started moving horizontally at a 864

constant speed of 15°/s, either to the right or to the left for 1000 ms. The probability p 865

of rightward trials was a time-varying random variable which was constant within an 866

epoch of the sequence of a given random size (see main text for the description of the 867

generative model). 868

The paradigm included two experimental sessions performed on two distinct (in 869

general consecutive) days by each participant. The two sessions involved the 870

presentation of the same sequence of trials, while collecting a different behavioral 871

response: explicit rating judgments in the first session (the bet experiment), and eye 872

movement recordings in the second session. Asked after the experiment, no observer 873

noticed that the same (pseudo-)random sequence of target directions was used in both 874

experiments. 875

7.2 Eye movements experiment 876

Eye movements were recorded continuously with an eye tracking system (Eyelink 1000, 877

SR Research Ltd., sampled at 1000 Hz), using the Python module Pylink 0.1.0 provided 878

by PsychoPy. Horizontal and vertical eye position data were transferred, stored, and 879

analyzed offline using programs written using Jupyter notebooks. To minimize 880

measurement errors, the participant’s head movements were restrained using a chin and 881

forehead rest, so that the eyes in primary gaze position were directed towards the center 882

of the screen. In order to enforce accuracy in gaze position and tracking, we 883

implemented an automatic procedure of fixation control. If the distance between the 884

gaze position and the central fixation point during the fixation epoch exceeded 2° of 885

visual angles, the fixation point started flickering and the counter for the fixation 886

duration was reset to 0. 887

The recorded horizontal and vertical raw gaze position data were numerically 888

differentiated to obtain velocity measures. We adopted an automatic conjoint 889

acceleration and velocity threshold method (the default saccade detection implemented 890

by SR Research) to detect ocular saccades. Saccades and eye-blinks were excluded from 891

eye velocity traces (and replaced by Not-a-Number values in the numerical arrays) 892

before trial averaging and data fitting for the extraction of the oculomotor parameters 893

of interest. In order to extract the relevant parameters of the oculomotor responses, we 894

developed new tools based on a best-fitting procedure of predefined oculomotor patterns 895

and in particular the typical smooth pursuit velocity profile that was recorded in our 896

experiment. A piecewise-defined function was fitted to the different epochs of the eye 897

velocity traces: a constant function during fixation, a ramp-like linear function during 898

smooth pursuit anticipation, an increasing sigmoid-function during the initiation of 899

visually-guided smooth pursuit, reaching its saturating value during the pursuit 900

steady-state. This analysis was applied to each trial individually and it allowed in 901

particular to estimate the anticipatory smooth pursuit velocity. Some trials were 902

excluded from the analysis as the proportion of missing data-points, due to eye blinks or 903

saccades was considered too large, namely when the missing data exceeded 45 ms 904

during the gap or one third of the total target motion epoch (4.36% of all trials). In 905

addition, trials were also excluded when the eye-movement fitting procedure did not 906

converge, after visual inspection, to a satisfactory match with the data (3.25% of all 907

trials). The python scripts used to analyze eye movements are available at 908

https://github.com/invibe/ANEMO. 909

7.3 The Bet experiment 910

The aim of the Bet experiment was to collect data related to the individual conscious 911

estimates of the probability of target motion direction. At the beginning of each trial, 912
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before the presentation of the moving target, participants had to answer to the question 913

“How sure are you that the target will go left or right”. This was performed by adjusting 914

a cursor on the screen using the mouse (see Figure Figure 1-C). The cursor could be 915

placed at any point along a horizontal segment representing a linear rating scale with 916

three ticks labeled as “Left”, “Right” (at the extreme left and right end of the segment 917

respectively), and “Unsure” in the middle. Participants had to validate their choice by 918

clicking on the mouse left-button and the actual target motion was shown thereafter. 919

The rationale to collect rating responses on a continuous scale instead of a simple binary 920

prediction (Right/Left) was to be able to infer the individual estimate of the direction 921

bias at the single trial scale (in analogy to the continuous interval for the strength of 922

aSPEM velocity). We called this experiment the “Bet” experiment, as participants 923

were explicitly encouraged to make reasonable rating estimates, as though they had to 924

bet money on the next trial outcome. Every 50 trials, a “score” was displayed on the 925

screen, corresponding to the proportion of correct direction predictions (Right or Left of 926

the “Unsure” tick) weighted by the confidence attributed to each answer (the distance 927

of the cursor from the center). 928
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8.1 Appendix : leaky integrator 1159

Given a series of observations {xi0}0≤i≤t with ∀i, xi0 ∈ {0, 1}, we defined 1160

x̂1
t = (1− 1/τ)t+1 · x̂1

t=0 + 1/τ ·
∑

0≤i≤t

(1− 1/τ)i · xt−i0

= (1− h)t+1 · x̂1
t=0 + h ·

∑
0≤i≤t

(1− h)i · xt−i0
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If we write it for trial t− 1, we have 1161

x̂1
t−1 = (1− h)t · x̂1

t=0 + h ·
∑

0≤i≤t−1
(1− h)i · xt−1−i

0

= (1− h)t · x̂1
t=0 + h ·

∑
1≤j≤t

(1− h)j−1 · xt−j0

(1− h) · x̂1
t−1 = (1− h)t+1 · x̂1

t=0 + h ·
∑

1≤i≤t

(1− h)i · xt−i0

As such, the integrative formula above becomes an iterative relation: 1162

x̂1
t = (1− h)t+1 · x̂1

t=0 + h ·
∑

0≤i≤t

(1− 1/τ)i · xt−i0

= (1− h)t+1 · x̂1
t=0 + h · xt0 + h ·

∑
1≤i≤t

(1− h)i · xt−i0

= h · xt0 + (1− h) · x̂1
t−1

such that finally 1163

x̂1
t = (1− h) · x̂1

t−1 + h · xt0
As such, the definitions in Equation 2 and Equation 3 are equivalent. 1164

8.2 The Bernoulli, binomial and Beta distributions 1165

Let us define some basic concepts. A Bernoulli trial is the outcome of a binary random 1166

variable x knowing a probability bias µ (with 0 ≥ µ ≥ 1) and can be formalized as: 1167

Pr(x|µ) = µx · (1− µ)1−x

The binomial distribution is defined as the probability that the sum X of ν 1168

independent Bernoulli trials is k: 1169

Pr(k; ν, µ) = Pr(X = k) =
(
ν

k

)
· µk · (1− µ)ν−k

Knowing such a model for X it can be of interest to find an estimate of the 1170

parameter of the Bernoulli trial, that is of the probability bias µ. This distribution 1171

function is called the conjugate of the binomial distribution which is the 1172

Beta-distribution. For example, the beta distribution can be used in Bayesian analysis 1173

to describe initial knowledge concerning probability of success such as the probability 1174

that a product will successfully complete a stress test. The beta distribution is a 1175

suitable model for the random behavior of percentages and proportions. 1176

It is usually defined using shape parameters α and β: 1177

Pr(p|α, β) = 1
B(α, β) · p

α−1 · (1− p)β−1

Note that here, the variable is the probability bias p. The normalization constant 1178

B(α, β) is given by the beta function. By definition: 1179
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α = µ · ν
β = (1− µ) · ν

Inversely, α+ β = ν and µ = α
α+β = 1− β

α+β 1180

8.3 Appendix 2: BBCP algorithm 1181

To summarize, the algorithm that we presented is an implementation of the “Bayesian 1182

Online Changepoint Detection” by [55] extended for the class of binary inputs. Using 1183

the definition of the run-length Section 2.2, the flow-chart of the algorithm is: 1184

1. Initialize 1185

• P (r0 > 0) = 0 or P (r0 = 0) = 1 and 1186

• µ
(0)
0 = µprior and ν(0)

0 = νprior 1187

2. Observe New Datum xt0 ∈ {0, 1}, 1188

(a) Evaluate Predictive Probability π(r)
t = P (xt0|µ

(r)
t , ν

(r)
t ). 1189

(b) Calculate Growth Probabilities 1190

P (rt = rt−1 + 1, x0:t) = P (rt−1, x0:t−1)π(r)
t (1− h), 1191

(c) Calculate Changepoint Probabilities 1192

P (rt = 0, x0:t) =
∑
rt−1

P (rt−1, x0:t−1)π(r)
t · h, 1193

(d) Calculate Evidence P (x0:t) =
∑
rt−1

P (rt, x0:t), 1194

(e) Determine Run Length Distribution P (rt|x0:t) = P (rt, x0:t)/P (x0:t). 1195

3. Update sufficient statistics 1196

• at a switch µ(0)
t+1 = µprior, ν(0)

t+1 = νprior, 1197

• else, ν(r+1)
t+1 = ν

(r)
t + 1 and ν(r+1)

t+1 · µ(r+1)
t+1 = ν

(r)
t · µ

(r)
t + xt0. 1198

4. Return to step 2. 1199

In the following, we detail some intermediate steps and highlight some key 1200

differences with their implementation. We also provide a python implementation of the 1201

algorithm, which is openly available on GitHub. 1202

8.3.1 Initialization 1203

Note that the prior distribution is itself a Beta distribution: P ∝ B(p;µprior, νprior). It 1204

will by symmetry be unbiased: µprior = .5. Concerning the shape, it can be for instance 1205

the uniform distribution U on [0, 1], that is νprior = 2 or Jeffrey’s prior J , that is 1206

νprior = 1. We chose the latter for the generation of trials as the uniform distribution 1207

would yield more sample around .5. Qualitatively, this would result in more difficult 1208

task in discriminating a probability bias from another. Jeffrey’s prior was more adapted 1209

to that task. 1210
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8.3.2 Prediction: run-length distribution 1211

The steps to achieve the update rule are: 1212

Pr(xt0|x0:t−1
0 ) =

∑
rt

Pr(xt0|rt, x0:t−1
0 ) · β(r)

t

Pr(xt0|x0:t−1
0 ) =

∑
rt

Pr(xt0|rt, x0:t−1
0 ) · Pr(rt|x0:t−1

0 )

with Pr(rt|x0:t−1
0 ) ∝

∑
rt−1

Pr(rt|rt−1) · Pr(xt0|rt−1, x0:t−1
0 ) · Pr(rt−1|x0:t−2

0 )

Finally we obtain Equation 5:

β
(r)
t ∝

∑
rt−1

Pr(rt|rt−1) · Pr(xt0|rt−1, x0:t−1
0 ) · β(r)

t−1

8.3.3 Prediction: sufficient statistics 1213

The recursive formulation in Equation 9 and Equation 10 comes from the expression 1214

ν
(r)
t · µ

(r)
t =

t−1∑
i=t−r−1

xi0

and therefore 1215

ν
(r+1)
t+1 · µ(r+1)

t+1 =
t+1−1∑

i=t+1−r−1−1
xi0

=
t∑

i=t−r−1
xi0

= ν
(r)
t · µ

(r)
t + xt0

8.3.4 Quantitative evaluation 1216

To quantitatively evaluate our results with respect to another probability bias, we 1217

computed in Equation 13 the cost as the Kullback-Leibler divergence KL(p̂|p) between 1218

samples p̂ and model p under the hypothesis of a Bernoulli trial: 1219

KL(p̂|p) = p̂ · log
(
p̂

p

)
+ (1− p̂) · log

(
1− p̂
1− p

)
. (14)

8.4 Appendix: likelihood function 1220

We want to compute L(r|o) = Pr(o|p, r) where o ∈ {0, 1} such that we can evaluate 1221

Predictive Probability π0:t = P (xt0|µ
(r)
t , ν

(r)
t ) in the algorithm above with µ(r)

t and ν(r)
t 1222

the sufficient statistics at trial t for node (r). The likelihood of observing o = 1 is that 1223

of a binomial (conjugate of a Beta distribution) of 1224

• mean rate of choosing hypothesis o = 1 equal to p·r+o
r+1 , 1225

• number of choices where o = 1 equals to p · r + 1. 1226

More generally, by observing o, the new rate is p′ = p·r+o
r+1 . 1227
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8.4.1 Mathematical derivation 1228

The likelihood will give the probability of this novel rate given the known parameters 1229

and their update (in particular r′ = r + 1): 1230

L(r|o) = (p · r + o

r + 1 )
p·r+o

· (1− p · r + o

r + 1 )r+o−(p·r+o)

= 1
(r + 1)r+1 · (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o

since both likelihood sum to 1, the likelihood of drawing o in the set {0, 1} is equal to 1231

L(r|o) = L(r|o)
L(r|o = 1) + L(r|o = 0)

= (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o

(p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r + (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1

= (1− o) · (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1 + o · (p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r

(p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r + (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1

This can also be written by isolating the part which depends on o and for a given 1232

run-length and knowing sufficient statistics describing the sufficient statistics at each 1233

node r: 1234

L(r|o) = 1
Z
· (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o (15)

with Z such that L(r|o = 1) + L(r|o = 0) = 1, that is Equation 11. 1235

8.4.2 Python code 1236

1237
def likelihood(o, p, r): 1238

""" 1239

Knowing $p$ and $r$, the sufficient statistics of the beta distribution 1240

$B(\alpha, \beta)$ : 1241

$$ 1242

alpha = p*r 1243

beta = (1-p)*r 1244

$$ 1245

the likelihood of observing o=1 is that of a binomial of 1246

1247

- mean rate of choosing hypothesis "o=1" = (p*r + o)/(r+1) 1248

- number of choices where "o=1" equals to p*r+1 1249

1250

since both likelihood sum to 1, the likelihood of drawing o in the set {0, 1251

1} 1252

is equal to 1253

1254

""" 1255

def L(o, p, r): 1256

P = (1-o) * ( 1. - 1 / (p * r + 1) )**(p*r) * ((1-p) * r + 1) 1257

P += o * ( 1. - 1 / ((1-p) * r + 1) )**((1-p)*r) * (p * r + 1) 1258

return P 1259

September 19, 2019 34/35

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/784116doi: bioRxiv preprint 

https://doi.org/10.1101/784116
http://creativecommons.org/licenses/by/4.0/


1260

L_yes = L(o, p, r) 1261

L_no = L(1-o, p, r) 1262

return L_yes / (L_yes + L_no) 12631264

8.4.3 Properties 1265

This function has some properties, notably symmetries: 1266

• for certain outcomes, ∀r > 0, L(o|p = 0, r) = 1− o and L(o|p = 1, r) = o, 1267

• if r = 0, the likelihood is uniform L(o) = 1/2, 1268

• Pr(o|p, r) = Pr(1− o|1− p, r). 1269

Note also that as r grows, the likelihood gets sharper. 1270
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