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Humans adapt their anticipatory eye movements to
the volatility of visual motion properties
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Abstract

Animal behavior must constantly adapt to changes, for example when the statistical
properties of the environment change unexpectedly. For an agent that interacts with
this volatile setting, it is important to react accurately and as quickly as possible. It has
already been shown that when a random sequence of motion ramps of a visual target is
biased to one direction (e.g. right or left), human observers adapt to accurately
anticipate the expected direction with their eye movements. Here, we prove that this
ability extends to a volatile environment where the probability bias could change at
random switching times. In addition, we also recorded the explicit direction prediction
reported by observers as given by a rating scale. Both results were compared to the
estimates of a probabilistic agent that is optimal in relation to the event switching
generating model. Compared to the classical leaky integrator model, we found a better
match between our probabilistic agent and the behavioral responses, both for the
anticipatory eye movements and the explicit task. Furthermore, by titrating the level of
preference between exploration and exploitation in the model, we were able to fit each
individual experimental data-set with different levels of estimated volatility and derive a
common marker for the inter-individual variability of participants. These results prove
that in such an unstable environment, human observers can still represent an internal
belief about the environmental contingencies, and use this representation both for
sensory-motor control and for explicit judgments. This work offers an innovative
approach to more generically test the diversity of human cognitive abilities in uncertain
and dynamic environments.

Author summary

Understanding how humans adapt to changing environments to make judgments or plan
motor responses based on time-varying sensory information is crucial for psychology,
neuroscience and artificial intelligence. Current theories for how we deal with the
environment’s uncertainty most rely on the equilibrium behavior in response to the
introduction of some randomness change. Here we show that in the more ecological case
where the context switches at random times all along the experiment, an adaptation to
this volatility can be performed online. In particular, we show in two behavioral
experiments that humans can adapt to such volatility at the early sensorimotor level,
through their anticipatory eye movements, but also at a higher cognitive level, through
explicit ratings. Our results suggest that humans (and future artificial systems) can use
much richer adaptive strategies than previously assumed.
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1 Motivation

1.1 Volatility of sensory contingencies and the adaptation of
cognitive systems

We live in a fundamentally volatile world for which our cognitive system has to
constantly adapt. In particular, this volatility may be generated by processes with
different time scales. Imagine for instance you are a general practitioner and that you
usually report an average number of three persons infected by measles per week.
However, this rate is variable and over the past week you observe that the rate
increased to ten cases. As such, two alternative interpretations are available: the first
possibility is that there is an outbreak of measles and one should then estimate its
incidence (i.e. the rate of new cases) since the inferred outbreak’s onset, in order to
quantify the infection rate specific to this outbreak, but also to update the value of the
environmental volatility (as given by the probability of a new outbreak) at a longer time
scale. Alternatively, these cases are “unlucky” coincidences that originate from the
natural variability of the underlying statistical process which drive patients to the
doctor, but which are instances drawn from a stationary random process. In that
option, it may be possible to readjust the estimated baseline rate of infection with this
new data. This example illustrates one fundamental problem with which our cognitive
system is faced: when observing new sensory evidence, should I stay and continue to
exploit this novel data with respect to my current beliefs about the environment’s state
or should I go and explore a new hypothesis about the random process generating the
observations since the detection of a switch in the environment?

By definition, volatility measures the temporal variability of the sufficient
parameters of a random variable. Such meta-analysis of the environment’s statistical
properties is an effective strategy at the large scale level of our example, but also at all
levels which are behaviorally relevant, such as contextual changes in our everyday life.
Inferring near-future states in a dynamic environment, such that one can prepare to act
upon them ahead of their occurrence [1] — or at least forming beliefs as precise as
possible about a future environmental context — is an ubiquitous challenge for
cognitive systems [2]. In the long term, how the human brain dynamically manages this
trade-off between exploitation and exploration is essential to the adaptation of the
behavior through reinforcement learning [3]. In controlled experimental settings which
challenge visual perception or sensorimotor associations, such adaptive processes have
been mostly put in evidence by precisely analyzing the participants’ behavior in a
sequence of experimental trials, typically highlighting sequential effects at the time scale
of several seconds to minutes or even hours in the case of the adaptation to a persistent
sensorimotor relation.

Indeed, stimulus history of sensory events influences how the current stimulus is
perceived [4-8] and acted upon [9-12]. Two qualitatively opposite effects of the stimulus
history have been described: negative (adaptation), and positive (priming-like) effects.
Adaptation reduces the sensitivity to recurrently presented stimuli, thus yielding to a
re-calibrated perceptual experience [13-15]. Examples of negative biases in perceptual
discrimination are numerous (see for instance [6,16]) and show that the visual system
tends to favor temporal and spatial stability of the stimulus. On the other hand,
priming is a facilitatory effect that enhances the identification of repeated
stimuli [17,18]. In sensorimotor control, the same stimulus presented several times could
indeed lead to faster and more accurate responses and, at the same time, lead to
critically suboptimal behavior when a presented stimulus is not coherent with the
participant’s expectations [19,20]. This process is highly dynamic especially in complex
environments where new contingencies can arise at every moment. Interestingly,
priming effects at cognitive levels are sometimes paralleled by anticipatory motor
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responses which are positively correlated with the repetition of stimulus properties. A
well-known example of this behavior are anticipatory smooth eye movements (aSPEM),
as we will illustrate in the next section.

Overall, the ability to detect statistical regularities in the event sequence appears as
a fundamental ability for the adaptive behavior of living species. Importantly, few
studies have addressed the question of whether the estimate of such regularities is
explicit, and whether verbal reports of the dynamic statistical estimates would
eventually correlate to the measures of behavioral adaptation or priming. Here we aim
at investigating this question in the specific case of the processing of a target’s motion
direction. In addition, we attempt to palliate to the lack of a solid modeling approach
to best understand the computation underlying behavioral adaptation to the
environment’s statistics, and in particular how sequential effects are integrated within a
hierarchical statistical framework. As such, Bayesian inference offers an effective
methodology to deal with this question. In all generality, Bayesian methods allow to
define and quantitatively assess a range of hypotheses about the processing of (possibly
noisy) information by some formal agents [21-23]. A key principle in the Bayesian
inference approach is to introduce so-called latent variables which formalize how
different hypotheses predict synthetic or experimental measurements. Each stated
hypothesis is quantitatively formalized by defining a graph of probabilistic dependencies
between specific variables using a generative model for the prior knowledge about its
structure. In practice, the generative model is parameterized by structural variables
(such as weights or non-linear gain functions) such that, knowing incoming
measurements, beliefs about latent variables may be represented as probabilities. Then,
using the rules of probability calculus one can progressively update beliefs about the
latent variables, such that one can finally infer the hidden structure of received
inputs [24,25]. For instance, using Bayes’s rule, one can combine the likelihood of
observations given the generative model and the prior of these latent variables [26]. Of
particular interest for us is the possibility to quantitatively represent in this kind of
probabilistic model the predictive and iterative nature of a sequence of events. Indeed,
once the belief about latent variables is formed from the sensory input, this belief can
be used to update the prior over future beliefs [27]. In such models, the comparisons
between expectations and actual data produces constant updates to the estimates of the
latent variables but also on the validity of the model. There are numerous examples of
Bayesian approaches applied to the study of the adaptation to volatility. For
instance, [28] simulated a hierarchical Bayesian model over five previously published
datasets [29-33] in the domain of cognitive neuroscience. Their main conclusion was
that learning the local transition probabilities was sufficient to explain the large
repertoire of experimental effects reported in all these studies. Here we focus on an
extension of this approach to the study of motion processing and eye movements.

1.2 Anticipatory Smooth Pursuit Eye Movements (aSPEM)

Humans are able to accurately track a moving object with a combination of saccades
and Smooth Pursuit Eye Movements (SPEM, for a review see [34]). These movements
allow us to align and stabilize the object on the fovea, thus enabling high-resolution
visual processing. This process is delayed by different factors such as axonal
transduction, neural processing latencies and the inertia of the oculomotor system [35].
When predictive information is available about target motion, anticipatory SPEM
(aSPEM) are efficiently generated before the target’s appearance [36-38] thereby
reducing visuomotor latency. Moreover, some experiments have demonstrated the
existence of prediction-based smooth pursuit during the transient disappearance of a
moving target [39-41]. Overall, although the initiation of SPEM is almost always driven
by a visual motion signal, it is now clear that smooth pursuit behavior can be
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modulated by extra-retinal, predictive information even in the absence of a direct visual

stimulation. The anticipatory smooth pursuit behavior is remarkable in different aspects.

First, its buildup is relatively fast, such that only a few trials are sufficient to pick up

some regularity in the properties of visual motion, such as speed or direction [11,42,43].

Second, it is in general an unconscious process of which participants are not aware of.
As such, this behavior is potentially a useful marker to study the internal representation
of motion expectancy and in particular to analyze how sensorimotor expectancy
interacts dynamically with contextual contingencies in shaping oculomotor behavior.
Typically, an aSPEM is observed after a temporal cue and before target motion
onset [37,38,42]. It is generally assumed that the role of aSPEMs is to minimize as fast
as possible the visual impairment due to the amplitude of eye-to-target position and
velocity mismatch. Overall, anticipation can potentially reduce the typical sensorimotor
delay between target motion onset and foveation. In a previous study [44], we have
analyzed how forthcoming motion properties, such as target speed or direction, can be
predicted and anticipated with coherently oriented eye movements. It has been observed
that the strength of anticipation, as measured by the mean anticipatory eye velocity,
increases when the target repeatedly moves in the same direction [42,45,46]. We
similarly found a graded effect of both the speed and the direction-bias on the strength
of aSPEM. In particular, this effect is linearly related to the probability of motion’s
speed or direction. These results are coherent within previous oculomotor findings by
our and also other groups [47]. These results imply that the probability bias over a
target’s direction is one additional factor beyond other physical and cognitive
cues [12,47,48] that modulate the common predictive framework driving anticipatory
behavior.

1.3 Contributions

The goal of this study is to generalize the adaptive process observed in the aSPEM
response in previous studies [44,47] to more ecological settings and also to broaden its
scope by showing that such adaptive processes occur at the conscious level as well. We
already mentioned that by manipulating the probability bias for target motion direction,
it is possible to modulate the direction and mean velocity of aSPEM. This suggests that
probabilistic information may be used to inform the internal representation of motion
prediction for the initiation of anticipatory movements. However, it is yet unclear what
generative model to use to dynamically manipulate the probability bias and generate an
ecologically relevant input sequence of target directions. A possible confound comes
from the fact that previous studies have used trial sequences (blocks) of fixed lengths,
stacked in a sequence of conditions defined by the different probability biases. Indeed,
observers may potentially pick up the information on the fixed block’s length to predict
the occurrence of a switch (a change in probability bias) during the experiment. Second,
we observed qualitatively that following a switch, the strength of aSPEM changed
gradually, consistently with other adaptation paradigms [49-51]. The estimate of the
characteristic temporal parameters for this adaptation mechanism may become
particularly challenging in a dynamic context, where the probabilistic contingencies vary
in time in an unpredictable way. Finally, whether and how the information processing
underlying the buildup of aSPEM and its dynamics is linked to an explicit estimate of
probabilities is still largely unknown.

To assess the dynamics of the adaptive processes which compensate for the variability
within sensory sequences, one may generate random sequences of Target Directions
(TDs) using a dynamic value for the probability bias p = Pr(TD is 'right’), with a
parametric mechanism controlling for the volatility at each trial. In the Hierarchical
Gaussian Filter model [52], for instance, volatility is controlled as a non-linear
transformation of a random walk (modeled itself by a Brownian motion with a given
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Fig 1. Smooth pursuit eye movements and explicit direction predictions in
a volatile switching environment (4) We tested the capacity of human
participants to adapt to a volatile environment by using a simple, 3-layered generative
model of fluctuations in target directions (TD) that we call the Binary Switching Model
(BSM). This TD binary variable is chosen using a Bernoulli trial of a given probability
bias. This probability bias is constant for as many trials until a switch is generated. At
a switch, the bias is chosen at random from a given prior. Switches are generated in the
third layer as binary events drawn from a Bernoulli trial with a given hazard rate
(defined here as 1/40 per trial). (B) The eye-movements task was an adapted version of
a task developed by [44]. Each one of 600 trials consisted of sequentially: a fixation dot
(of random duration between 400 and 800 ms), a blank screen (of fixed duration of
300 ms) and a moving ring-shaped target (with 15 °/s velocity) which the observers
were instructed to follow. The direction of the target (right or left) was drawn
pseudo-randomly according to the generative model defined above. (C) In order to
titrate the adaptation to the environmental volatility of target direction at the conscious
level, we invited each observer to perform on a different day a new variant of the
direction-biased experiment, where we asked participants to predict, before each trial,
their estimate of the forthcoming direction of the target. As shown in this sample
screenshot, this was performed by moving a mouse cursor (black triangle) on a
continuous rating scale between “sure left”, to “unsure” and finally “sure right”.
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diffusion coefficient). Ultimately, this hierarchical model allows to generate a sequence
of binary choices where the variability fluctuates along a given trajectory. Such a
forward probabilistic model is invertible using some simplifying assumptions and allows
to extract a time-varying inference of the agent’s belief about volatility [53]. Herein, to
analyze the effect of history length in all generality, we extended the protocol of [44]
such that the probability bias is still fixed within blocks but that these blocks have
variable lengths, that is, by introducing switches occurring at random times. Therefore,
similarly to [54], we will use a model where the bias p in target direction varies
according to a piecewise-constant function. In addition, in our previous study the range
of possible biases was finite. In the present work, we extended the paradigm by drawing
p as a continuous random variable within the whole range of possible probability biases
(that is, the segment [0, 1]). As a summary, we first draw random events (that we
denote as “switches”) with a given mean frequency and which controls the strength of
the volatility. Second, the value p of the bias only changes at the moment of a switch,
independently of the previous bias’ value and is stationary between two switches,
forming what we call an “epoch”. Third, target direction is drawn as a Bernoulli trial
using the current value of p. Such a hierarchical structure is presented in Figure 1-A,
where we show the realization of the target’s directions sequence, the trajectory of the
underlying probability bias (hidden to the observer), and the occurrences of switches.
Mathematically, this can be considered as a three-layered hierarchical model defining
the evolution of the model at each trial ¢ as the vector (x4, 2%, zf). At the topmost
layer, the occurrence x4 € {0,1} of a switch (1 for true, 0 for false) is drawn from a
Bernoulli trial B parameterized by its frequency h, or hazard rate. The value of 7 =
thus gives the average duration (in number of trials) between the occurrence of two
switches. In the middle layer, the probability bias p of target direction is a random
variable that we define as 2% € [0,1]. It is chosen at random from a prior distribution P

1
R

at the moment of a switch, and else it is constant until the next occurrence of a switch.

The prior distribution P can be for instance the uniform distribution ¢/ on [0, 1] or
Jeffrey’s prior J (see Appendix 8.3). Finally, a target moves either to the left or to the
right, and we denote this variable (target direction, TD) as zf € {0,1}. This direction
is drawn from a Bernoulli trial parameterized by the direction bias p = z{. In summary,
this is described according to the following equations:

Occurrence of a switch: xb oc B(1/7)
. e if 2t =0 then af=a!""
Dynamics of probabilistic bias p = z!: { else Qx’i P 1 1 (1)

Sequence of directions: zf o B(x})

In practice, we generated a sequence of 600 trials, and there is by construction a switch
at t = 0 (that is, 2 = 1). In addition, we imposed in our sequence that a switch occurs
after trial numbers 200 and 400, in order to be able to compare adaptation properties
across different chunks of the trials sequence. With such a three-layered structure, the
model generates the randomized occurrence of switches, itself generating epochs with
constant direction probability and finally the random sequence of Target Direction (TD)
occurrences at each trial. To sum up, the system of three equations defined
in Equation 1 defines the Binary Switching Model (BSM) which we used for the
generation of experimental sequences presented to human participants in the
experiments. We will use that generative model as the basis of an ideal observer model
inverting that model to predict probability biases from the observations (TDs) and
which we will test as a model for the adaptation of human behavior.

This paper is organized in five parts. After this introduction where we presented the
motivation for this study, the next section (Section 2) will present an inversion of the
BSM forward probabilistic model, coined the Binary Bayesian Change Point (BBCP)
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model. To our knowledge, such algorithm was not yet available, and we will here
provide with an exact analytical solution by extending previous results from [55] to the
case of binary data as in the BSM presented above (see Equation 1). In addition, the
proposed algorithm is biologically realistic as it uses simple computations and is online,
that is, that all computations on the sequence may be done using solely a set of
variables available at the present trial, compactly representing all the sequence history
seen in previous trials. We will also provide a computational implementation and a
quantitative evaluation of this algorithm. Then, we will present in Section 3 the analysis
of experimental evidence to validate the generalization of previous results with this
novel protocol. In one session, participants were asked to estimate “how much they are
confident that the target will move to the right or left in the next trial” and to adjust
the cursor’s position on the screen accordingly (see Figure 1-C). In the other
experimental session on a different day, we showed the same sequence of target
directions and recorded participants’ eye movements (see Figure 1-B). Indeed, in order
to understand the nature of the representation of motion regularities underlying this
adaptive behavior, it is crucial to collect both the recording of eye movements and the
verbal explicit judgments about expectations on motion direction. Another novelty of
our approach is to use that agent as a regressor which will allow us to match
experimental results with the BBCP and to compare its predictive power compared to
classical models such as the leaky integrator model. Hence, we will show that behavioral
results match well with the BBCP model. In Section 4, we will synthesize these results
by inferring the volatility parameters inherent to the models by best-fitting it to each
each individual participant. This will allow the analysis of inter-individual behavioral
responses for each session. In particular, we will test if one could predict observers’
prior (preferred) volatility, that is, a measure of the dynamic compromise between
exploration (“should I go?”) and exploitation (“should I stay?”) across the two different
sessions challenging predictive adaptive processes at the unconscious and conscious
levels. Finally, we will summarize and conclude this study and offer some perspectives
for future work in Section 5.

2 Results: Binary Bayesian Change Point (BBCP)
detection model

As we saw above, Bayesian methods provide a powerful framework for studying human
behavior and adaptive processes in particular. For instance, [52] first defined a
multi-layered generative model for sequences of input stimuli. By inverting this
stochastic forward process, they could extract relevant descriptors at the different levels
of the model and fit these parameters with the recorded behavior. Here, we use a similar

approach, focusing specifically on the BSM generative model, as defined in Equation 1.

To begin, we define a first ideal observer as a control, the leaky integrator (or forgetful
agent), which has an exponentially-decaying memory for the events that occurred in the
past trials. This agent can equivalently be described as one which assumes that
volatility is stationary with a fixed characteristic frequency of switches. Then, we will
extend this model to an agent which assumes the existence of (randomly occurring)
switches, that is, that the value of the probabilistic bias may change at specific (yet
randomly drawn) trials, as defined by the forward probabilistic model in Equation 1.

2.1 Forgetful agent model (Leaky integrator)

The leaky integrator ideal observer represents a classical, widespread and realistic model
of how trial-history shapes adaptive processes in human behavior. It is also well
adapted to model motion expectation in the direction-biased experiment which leads to

September 19, 2019

7/35

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286


https://doi.org/10.1101/784116
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/784116; this version posted September 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

anticipatory SPEMs. In this model, given the sequence of observations zf from trial 0
to t, the expectation p = 17! of the probability for the next trial direction can be
modeled by making a simple heuristic: This probability for an event is the weighted
average of the previously estimated probability, 2", with the new information x}, where
the weight corresponds to a leak term (or discount) by a factor (1 — h), with

h € [0,1] [56]. At trial ¢, this model can be expressed with the following equation:

AT =1 —h)- B+ h-ah (2)

where 217" is equal to some prior value (0.5 in the unbiased case), corresponding to the
best guess at ¢t = 0 (prior to the observation of any data).

In other words, the estimated probability ™! is computed from the integration of
previous instances with a progressive discount of past information. The value of the
scalar h represents a compromise between responding rapidly to changes in the
environment (h ~ 1) and not prematurely discarding information still of value for slowly
changing contexts (h & 0). As such, we will call this scalar the hazard rate. Similarly,
one can define 7 = 1/h as a characteristic time (in units of number of trials) for the
integration of information. Looking more closely at this expression, the “forgetful agent”
computed in Equation 2 consists of an exponentially-weighted moving average (see
Appendix 8.1). It may thus be equivalently written in the form of a time-weighted
average:

't =1 =m0k Y (=R (3)

0<i<t

The first term corresponds to the discounted effect of the prior value before any
observation and it tends to 0 when ¢ increases. More importantly, as 1 — h < 1, the
second term corresponds to the leaky integration of novel observations. Inversely, let us
now assume that the true probability bias for direction changes randomly with a mean
rate of once every 7 trials. As a consequence, the probability that the bias does not
change is Pr(xf = 0) =1 — h at each trial. Assuming independence of these
occurrences, the estimated probability p = #,'™! is thus proportional to the sum of the
past observations weighted by the belief that the bias has not changed during ¢ trials in
the past, that is, exactly as defined by the second term of the right-hand side

in Equation 3. This shows that assuming that changes occur at a constant rate

(arfgt = h) but ignoring the variability in the temporal occurrence of the switch, the
optimal solution to this inference problem is the ideal observer defined in Equation 3,
which finds an online recursive solution in Equation 2. We therefore proved here that
the heuristic derived from [56] is an ideal inversion of the two-layered generative model
which assumes a constant hazard rate for the probability bias.

The correspondence that we proved between the weighted moving average heuristic
and the forgetful agent model as an ideal solution to that generative model leads us to
several interim conclusions. First, the time series of inferred 2" values can serve as a
regressor for behavioral data to test whether human observers follow a similar strategy.
In particular, the free parameter h may be fitted to variations of the behavioral data
across the sequence, which itself is assumed to depend on the agents’ belief in the
weight decay. Now, since we have defined a first generative model and the
corresponding ideal observer (the forgetful agent), we next define a more complex
model, in order to overcome some of the limits of the leaky integrator. Indeed, a first
criticism could be that this model is too rigid and does not sufficiently account for the
dynamics of contextual changes [57] as the weight decay corresponds to assume a priori
a constant precision in the data sequence, contrary to more elaborate Bayesian
models [58]. It seems plausible that the memory size (or history length) used by the
brain to infer any event probability can vary, and that this variation could be related to
the environmental volatility inferred from past data. The model presented in Equation 3
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uses a constant weight (decaying with the distance to the current trial) for all trials,
while the actual precision of each trial can be potentially evaluated and used for
precision-weighted estimation of the probability bias. To address this hypothesis, our
next model is inspired by the Bayesian Change-point detection model [55] of an ideal
agent inferring both the trajectory in time of the probability bias (z¢) but also of the
probability Pr(zh = 1) of the occurrence of switches.

2.2 Binary Bayesian Change Point (BBCP) detection model

There is a crucial difference between the forgetful agent presented above and an ideal
agent which would invert the Binary Switching Model (BSM, see Equation 1). Indeed,
at any trial during the experiment, the agent may infer beliefs about the probability of
the volatility 4 which itself is driving the trajectory of the probability bias z¢.
Knowing that the latter is piece-wise constant, an agent may have a belief over the
number of trials since the last switch. This number, that is called the run-length rt, is
useful in two manners. First, it allows the agent to restrict the prediction o3 of mﬁ“
only based on those samples produced since the last switch, from ¢ — ¢ until ¢. Indeed,
the samples zf, which occurred before the last switch were drawn independently from
the present true value x! and thus cannot help estimating the latter. Second, it is
known that for this estimate, the precision (the inverse of variance) on the estimate
#1'! grows linearly with the number of samples: The longer the run-length, the
sharper the corresponding (probabilistic) belief. We have designed an agent inverting
the BSM by extending the Bayesian Change-Point (BCP) detection model [55]. The
latter model defines the agent as an inversion of a switching generative model for which
the observed data (input) is Gaussian. We present here an exact solution for the case of
the BSM, where the input is binary.

In order to define in all generality the switch detection model, we will initially
describe the fundamental steps leading to its construction, while providing the full
algorithmic details in Appendix 8.3. The goal of predictive processing is to infer the
probability Pr(zf™|x9%) of the next datum knowing what has been observed until trial
t (that we denote by )" = {29,...,2}}), as well the agent’s prior knowledge that data
is the output of a given (stochastic) generative model (here, the BSM). To derive a
Bayesian predictive model, we introduce the run-length as a latent variable which gives
to the agent the possibility to represent different parallel hypotheses about the input.
We therefore draw a computational graph (see Figure 2-A) where, at any trial, an
hypothesis is formed on as many “nodes” than there are run-lengths (and limited for
instance by the total number of trials). As a readout, we can use this knowledge of the
predictive probability conditioned on the run-length, such that one can compute the
marginal predictive distribution:

Pr(zbtadt) = Z Pr(zhtrt, 20 - t(r) (4)
rt>0

where Pr(zit|rt, 29%) is the Bernoulli trial modeling the probability of a future datum
x5t conditioned on the run-length and ﬁt(r) = Pr(rt|z$?) is the probability for each
possible run-length given the observed data. Note that Bﬁr) is scaled such that

>0 ﬁt(r) = 1. Indeed, we know that, at any trial, there is a single true value for this
variable r! and that BIET) thus represents the agent’s inferred probability distribution
over the run-length r.

With these premises, we define the BBCP as a prediction / update cycle which
connects nodes from the previous trial to that at the current trial. Indeed, we will

predict the probability ﬂfm at each node, knowing either an initial prior, or its value on
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Fig 2. Binary Bayesian Change Point (BBCP) detection model. (A) This
plot shows a synthesized sequence of 13 events, either a leftward or rightward movement
of the target (TD). Run-length estimates are expressed as hypotheses about the length
of a sub-block over which the probability bias was constant, that is, the number of trials
since the last switch. Here, the true probability bias switched from a value of .5 to .9 at
trial 7, as can be seen by the trajectory of the true run-length (blue line). The BBCP
model tries to capture the occurrences of a switch by inferring the probability of
different possible run lengths. At any new datum (trial), this defines a Hidden Markov
Model as a graph (treillis), where edges indicate that a message is being passed to
update each node’s probability (as represented by arrows from trial 13 to 14). Black
lines denote a progression of the run length at the next step (no switch), while gray
lines stand for the possibility that a switch happened: In this case the run length would
fall back to zero. The probability for each node is represented by the grey scale (darker
grey colors denote higher probability) and the distribution is shown in the inset for two
representative trials: 5 and 11. Overall, this graph shows how the model integrates
information to accurately identify a switch and produce a prediction for the next trial
(e.g. for t =14). (B) On a longer sequence of 200 trials, representative of a sub-block
of our experimental sequence (see Figure 1-A), we show the actual events which are
observed by the agent (TD), along with the (hidden) dynamics of the true probability
bias Piue (blue line), the value inferred by a leaky integrator (Pieaky, orange line) and
the results of the BBCP model in estimating the probability bias Pgpcp (green line),
along with .05 and .95 quantiles (shaded area). This shows that for the BBCP model,
the accuracy of the estimated value of the probability bias is higher than for the leaky
integrator. Below we show the belief (as grayscales) for the different possible run
lengths. The green and orange line correspond to the mean run-length which is inferred,
respectively, by the BBCP and leaky models: Note that in the BBCP, while it takes
some trials to detect switches, they are in general correctly identified (transitions
between diagonal lines) and that integration is thus faster than for the leaky integrator,
as illustrated by the inferred value of the probability bias.
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a previous trial. In particular, at the occurrence of the first trial, we know for certain
that there is a switch and initial beliefs are thus set to the values ﬁéo) =Pr(r'=0)=1
and Vr > 0, ﬂ(()r) = Pr(r® = r) = 0. Then, at any trial ¢t > 0, as we observe a new
datum zf, we use a knowledge of 6,@1 at trial ¢t — 1, the likelihood

7T£T) = Pr(zf|rt=1,23"") and the transition probabilities defined by the generative
model to predict the beliefs over all nodes:

o S B Pr(etlrtty n” (5)

rt=1>0

In the computational graph, Equation 5 corresponds to a message passing from the
nodes at time ¢t — 1 to that at time t. We will now detail how to compute the transition
probabilities and the likelihood.

First, knowing that the data is generated by a switching model such as the BSM
(see Equation 1), the run-length is either null at the moment of a switch, or its length
(in number of trials) is incremented by 1 if no switch occurred:

if ahb=1, r'=0
{if xh=0, rt=r"141 (6)

This may be illustrated by a graph in which information will be represented at the
different nodes for each trial ¢. This defines the transition matrix Pr(rt|rt=!) as a
partition in two exclusive possibilities: Either there was a switch or not. It allows us to
compute the growth probability for each run-length. On the one hand, the belief of an
increment of the run-length at the next trial is:

r+1 1 T T

U= () (7)
where h is the scalar defining the hazard rate. On the other hand, it also allows to
express the change-point probability as:

D I LT (8)

r>0

with B such that 3, 8{" = 1. Note that 4" = h and thus B =Y, ., 8", - mi".
Knowing this probability strength and the previous value of the prediction, we can
therefore make a prediction for our belief of the probability bias at the next trial ¢ + 1,
prior to the observation of a new datum x(t)ﬂ and resume the prediction / update cycle
(see Equations 4, 7 and 8).

Integrated in our cycle, we update beliefs on all nodes by computing the likelihood
7rt ) of the current datum x} knowing the current belief at each node, that is, based on
observations from trials 0 to ¢ — 1. A major algorithmic difference with the BCP
model [55], is that here the observed data is a Bernoulli trial and not a Gaussian
random variable. The random variable x} is the probability bias used to generate the
sequence of events zf. We will infer it for all different hypotheses on 7!, that is,
knowing there was a sequence of r* Bernoulli trials with a fixed probability bias in that
epoch. Such an hypothesis will allow us to compute the distribution Pr(zh"(rt, 23%) by
a simple parameterization. Mathematically, a belief on the random variable z! is
represented by the conjugate probability distribution of the binomial distribution, that

is, by the beta-distribution B(z%; u, (T) ér)). It is parameterized here by its sufficient

September 19, 2019

11/35

381

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

412

413

414

415


https://doi.org/10.1101/784116
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/784116; this version posted September 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

statistics, the mean ui’") and sample size Vt(r) (see Appendix 8.2 for our choice of

parameterization). First, at the occurrence of a switch (for the node 7t = 0) beliefs are
) = Vprior- By
recurrence one can show that at any trial ¢t > 0, the sufficient statistics (M,E’“), Vt(r)) can
be updated from the previous trial following:

set to prior values (before observing any datum) H,EO) = Uprior and l/t(o

v =0 1 9)

As a consequence, Vr, t; I/t(r) is the sample size corrected by the initial condition.

I/t(r) =7+ Vprior. For the mean, the series defined by u?“’ is the average at trial ¢ over

the r + 1 last samples, which can also be written in a recursive fashion:

s 1 T r
" = e ) + ) (10)
p{r

This updates for each node the sufficient statistics of the probability density function at
the current trial. We can now detail the computation of the likelihood of the current
datum =z}, with respect to the current beliefs : 7" = Pr(x|p”,, v{"),). This scalar is
returned by the binary function £(r|o) which evaluates at each node r the likelihood of
the parameters of each node whenever we observe a counterfactual alternative outcome
o =1 or o =0 knowing a mean bias p = M§?1 and a sample size r = V(i)l. For each
outcome, the likelihood of observing an occurrence of o, is the probability of a binomial
random variable knowing an updated probability bias of pr‘flo, a number p - r + o of

trials going to the right and a number (1 — p) -7+ 1 — o of trials to the left. After some
algebra, this defines the likelihood as :

L(r|o) = % (p-r+ O)P-’r‘+0 ((L=p) r+1-— 0)(1717)-’r+170 (11)
with Z such that £(r|o =1) 4+ L(r|o = 0) = 1. The full derivation of this function is
detailed in Appendix 8.4. This provides us with the likelihood function and finally the
scalar value m'") = L(r|zb).

Finally, the agent infers at each trial the belief and parameters at each node and
uses the marginal predictive probability (see Equation 4) as a readout. This probability

bias is best estimated by its expected value 1" = Pr(zh™|29?) as it is marginalized

over all run-lengths:
L 02
r>0

Interestingly, it can be proven that if, instead of updating beliefs with Equations 7
and 8, we set nodes’ beliefs to the constant vector ﬁt(r) =h- (1 —h)", then the marginal
probability is equal to that obtained with the leaky integrator (see Equation 2). This
highlights again that, contrary to the leaky integrator, the BBCP model uses a
dynamical model for the estimation of the volatility. Still, as for the latter, there is only
one parameter h = % which informs the BBCP model that the probability bias switches
on average every T trials. Moreover, note that the resulting operations (see

Equations 4, 7, 8, 11 and 12) which constitute the BBCP algorithm can be implemented
online, that is, only the state at trial ¢ and the new datum zf are sufficient to predict
all probabilities for the next trial. Finally, this prediction/update cycle applied to the
BSM and using Equation 1 constitutes the Binary Bayesian Change Point (BBCP)
detection model.
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2.3 Quantitative analysis of the Binary Bayesian Change Point
detection algorithm

We have implemented the BBCP algorithm using a set of Python scripts. This
implementation provides also some control scripts to test the behavior of the algorithm
with synthetic data. Indeed, this allows to qualitatively and quantitatively assess this
ideal observer model against a ground truth before applying it on the trial sequence

that was used for the experiments and ultimately comparing it to the human behavior.

Figure 2-A shows a graph-based representation of the BBCP estimate of the run-length
for one instance of a short sequence (14 trials) of simulated data zf, of leftward and
rightward trials, with a switch in the probability bias of moving rightward occurring at
trial 7 (see figure caption for a detailed explanation). Figure 2-B, illustrates the
predicted probability 2 ¢, as well as the corresponding uncertainty (the shaded areas
correspond to .05 and .95 quantiles) when we applied respectively the BBCP (green
curve) and the forgetful agent (orange curve) model to a longer sequence of 200 trials,
characteristic of our behavioral experiments. In the bottom panel, we show the
dynamical evolution of the belief on the latent variable (run length), corresponding to
the same sequence of 200 trials. The BBCP model achieves a correct detection of the
switches after a short delay of a few trials.

Two main observations are noteworthy. First, after each detected switch, beliefs align
along a linear ridge, as our model best estimate of the current run-length is steadily
incremented by 1 at each trial until a new switch, and the probability 2;° is estimated
by integrating sensory evidence in this epoch (it ’stays’). Then, we observe that shortly
after a switch (hidden to the agent), the belief diffuses until the relative probability of a
continuously increasing run-length is lower that that assigned to a smaller run-length:
There is a transition to a new state (the model ’goes’). Such adaptation is similar to the
slow / fast heuristic model proposed in other studies [59]. Second, we can use this
information to readout the most likely probability bias and use it as a regressor for the
behavioral data. Note that the leaky integrator model is implemented by the agent
assuming a fixed run-length profile (see orange line in Figure 2-B), allowing for a simple
comparison of the BBCP model with the leaky integrator. Again, we see that a fixed
length model gives qualitatively a similar output but with two disadvantages compared
to the BBCP model, namely that there is a stronger inertia in the dynamics of the
model estimates and that there is no improvement in the precision of the estimates after
a switch. In contrast, after a correct switch detection in the BBCP model, the value of
the inferred probability converges rapidly to the true probability as the number of
observations steadily increases after a switch.

In order to quantitatively evaluate the algorithm and following a similar strategy
as [60], we computed an overall cost C as the negative log-likelihood (in bits) of the
estimated probability bias, knowing the true probability and averaged over all T trials:

C=7>,Clat, ") with C(zf, #,") = H(x!}, #,") — H(a}, 2}) 13
where H(z!, ") = —21 logy(£1") — (1 — 1) logy (1 — 41") (13)

The measure C(x}, ;flt) explicitly corresponds to the average score of our model, as the
Kullback-Leibler distance of #1* compared to the hidden true probability bias xi. We
have tested 100 blocks of 2000 trials for each read-out. In general, we found that the
inference is better for the BBCP algorithm (C = 0.171 £ 0.030) than for the leaky
integrator (C = 0.522 = 0.128), confirming that it provides overall a better description of
the data. Note that the only free parameter of this model is the hazard rate h assumed
by the agent (as in the fixed-length agent). Although more generic solutions

exist [61-63], we decided as a first step to keep this parameter fixed for our agent, and
evaluate how well it matches to the experimental outcomes at the different scales of the
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Fig 3. Raw behavioral results, qualitative overview. The top row represents
the sequence of target directions (TD) that were presented to observers in one sub-block
of 200 trials, as generated by the binary switching model (see Figure 1-A). Bottom two
rows show the raw behavioral results for two representative observers: The recorded
aSPEM strength as measured by the horizontal eye velocity estimated right before the
onset of the visually-driven SPEM (dark gray line); and the explicit ratings about the
expected target direction (or bet scores, red line). We also show the evolution of the
value of the probability bias Piue (blue line) which is hidden to observers and used to
generate the TD sequence above. We have overlaid the results of the BBCP model
(see Figure 2-B, green line). This shows qualitatively a good match between the
experimental evidence and the model. Note that short pauses occurred every 50 trials
(as denoted by vertical black lines, see main text), and we added the assumption in the
model that there was a switch at each pause. This is reflected by the reset of the green
curve close to the 0.5 level and the increase of the uncertainty after each pause.

protocol: averaged over all observers, for each individual observer or independently in
all individual sub-blocks. In a second step, by testing different values of h assumed by
the agent but for a fixed hazard rate h = 1/40 in the BSM, we found that the distance
given by Equation 13 is minimal for the true hazard rate used to generate the data. In
other words, this analysis shows that the agent’s inference is best for a hazard rate
equal to that implemented in the generative model and which is actually hidden to the
BBCP agent. This property will be important in a following section to estimate the
hazard rate implicitly assumed by an individual participant on the basis of the set of
responses given to the sequence of stimuli (see Section 4). As a summary, for each trial
of any given sequence, we obtain an estimate of the probability bias assumed by the
ideal observer and which we may use as a regressor. We will now present the analysis of
this model’s match to our experimental measures of anticipatory eye movements and
explicit guesses about target motion direction.

3 Results: Anticipatory eye movements and explicit
ratings
We used the BSM model to generate the (pseudo-)random sequence of the dot’s

directions (the alternation of leftward/rightward trials) as the sequence of observations
that were used in both sessions (see Figure 3). In one session, we recorded the
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participants’ eye movements and we show the anticipatory smooth pursuit velocity for
two representative participants (out of 12 participants), throughout a sub-block of 200
trials of the experimental sequence. Note that these participants were chosen as those
whose fitting score was nearest to the median score in the quantitative analysis that will
be illustrated below in Section 4. In the top panel of Figure 3 we show the actual
sequence of binary choices (TD, leftward or rightward) of the Bernoulli trials, whereas in
the bottom panels, we compare for each two participants the evolution of the recorded
aSPEM (grey line) with the true value of the hidden probability bias x; (step-like blue
curve), and the value inferred using the BBCP model (green line), along with the .05 to
.95 quantile range (green shaded area). Comparing the raw aSPEM results with the
BBCP agent predictions, it appears qualitatively that both traces evolve in good
agreement. First, one can observe a trend in the polarity of aSPEM velocity to be
negative for probability bias values below .5 and positive for values above .5. Moreover,
both curves (aSPEM and model) unveil similar delays in detecting and taking into
account a switch of the probability bias (while being hidden to the observers), reflecting
the time (in the order of a few trials) taken to integrate enough information to build up
the estimation of a novel expectation about the probability bias value parameterizing
the Bernoulli trial. In general, results are more variable when the bias is weak (p & .5)
than when it is strong (close to zero or one), consistent with the well-known dependence
of the variance of a Bernoulli trial upon the probabilistic bias (Var(p) =p- (1 —p)). In
addition, the precision (i.e. the inverse of the variance) of the inferred probability bias
21 seems to increase in longer epochs (inter-switch blocks) as information is integrated
over more trials. As a result, the inferred probability as a function of time seems
qualitatively to constitute a reliable regressor for predicting the strength of aSPEM.

In addition, the explicit ratings for the next trial’s expected motion direction (or bet
scores, red curve in Figure 3) provided in the other experimental session seem to
qualitatively follow the same trend. Indeed, similarly to the strength of aSPEM, we
qualitatively compare in Figure 3 the trace of the bet scores with the inferred
probability bias #7. As with aSPEM, the series of the participants’ bias guesses exhibits
a positive correlation with the true probability bias: The next outcome of zf will in
general be correctly inferred, as compared to a random choice, as reported
previously [64]. Moreover, we observe again that a stronger probability bias leads to a
lower variability in the bet scores, compared to bias values close to 0.5. Again, a
(hidden) switch in the value of the bias is most of the time correctly identified after only
a few trials. Finally, note that at every pause (black vertical bar in Figure 3),
participants tended to favor unbiased guesses, closer to 0.5 than at the end of a
sub-block of trials. We can speculate that this phenomenon could correspond to a
spontaneous resetting mechanism of the internal belief on the probability bias and
indeed we can introduce such an assumption in the model, as a reset of the internal
belief after each pause. To conclude, the experiment performed in this session shows
that the probability bias values that are explicitly estimated by participants are
qualitatively similar to the implicit (and largely unconscious) ones which supposedly
underlie the generation of anticipatory aSPEM with variable strength.

Quantitatively, we now compare the experimental results with the value of the
probability bias #; computed by the BBCP algorithm. Compiling results from all
participants, we have plotted in Figure 4 the aSPEM strength (panel A) and the bet
scores (panel B) as a function of the BBCP-inferred probability bias (we remind here
that the true value of the probability bias was coded at the second layer of the BSM
generative model and is hidden both to the agents and to the human observers). All
trials from all participants were pooled together and we show this joint data as an error
bar plot showing the median along with the .25 and .75 quantiles as computed for 5
equal partitions of the [0, 1] probability segment. As a comparison, the same method
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Fig 4. Behavioral results, quantitative analysis across participants. For all
participants and for all trials, we collected an estimate of the strength of aSPEM and a
bet score value. We analyze the relation between these experimental data with the
corresponding prediction Pggcp of the probability bias as inferred by the BBCP model.
We display these functional relations using an error-bar plot showing the median with
.25 and .75 quantiles over 5 equal partitions of the [0, 1] probability segment. The green
regression line illustrates the relationship between the BBCP regressor in abscissa and
in ordinate (A) the strength of aSPEM and (B) the bet score, respectively. As a
comparison, we have plotted in blue and orange colors the regression lines with
respectively the true probability (Pirue = xtl) and the probability bias estimates Feaky
obtained with a leaky integrator. Insets summarize the quantitative measure of this
match by computing the Pearson correlation coefficient r and the mutual information
(MI) over the whole data set. Dots correspond to these measures for each individual
observer. This shows quantitatively that for both experimental measures there is a
strong statistical dependency between the behavioral results and the prediction of the
BBCP model, but also that this dependency is significantly stronger than that obtained
with the true probability and with the estimates obtained with the leaky integrator (see
text).
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was applied to the true value P, and to the estimate obtained by the leaky integrator.

We quantitatively estimated the Pearson correlation coefficient and the mutual
information between the raw data and the different models. First, as we can see
in Figure 4-A, the probability bias Pgpcp estimated by the BBCP algorithm is linearly
correlated with the aSPEM velocity, both as computed on the whole data or for each
observer individually (see insets in the Figure). The respective values for the whole
dataset (r = 0.657 and M1 = 0.687) and across subjects (r = 0.673 + 0.079 and
M1I =0.707 £ 0.134) are slightly higher than that found by [44] and [12] for aSPEM
measures gathered across experimental blocks with fixed direction biases and
significantly! better than that estimated with the true probability (r = 0.613 = 0.069
with p = 0.002 and M = 0.562 £ 0.107 with p = 0.002) and for that estimated by the
leaky-integrator model (r = 0.600 & 0.079 with p = 0.003 and M = 0.622 + 0.102 with
p = 0.004), see inset). A similar analysis illustrates the relationship between the
model-estimated probability bias and the rating value, or bet score, about the expected
outcome, which was provided at each trial by participants and is shown in Figure 3.
Similarly to the aSPEM strength, the rating values are nicely correlated with the
probability bias given by the model, as quantified by the Pearson correlation coefficient
and mutual information across subjects (r = 0.813 + 0.091 and M T = 1.312 £ 0.364).
Importantly, this value is again higher for the BBCP model than for the leaky
integrator (r = 0.731 4+ 0.129 with p = 0.007 and M = 1.117 4 0.409 with p = 0.028),
or with the true probability (r = 0.694 + 0.086 with p = 0.002 and MI = 0.940 £ 0.255
with p = 0.002). Further notice that, in order to account for some specific changes
observed in the behavioral data after the short pauses occurring every 50 trials, we
added the assumption that there was a switch at each pause. However, removing this
assumption did not significantly change the conclusions about the match of the model
compared t0 Pirye OF Pleaky both for eye movements (Pggcp: m = 0.667 £ 0.078 and
MI = 0.712 £ 0.125, Peaky: 7 = 0.548 + 0.074 with p = 0.003 and M1 = 0.577 &+ 0.096
with p = 0.003 ; Pyye : 7 = 0.613 £ 0.069 with p = 0.002 and M = 0.562 + 0.107 with
p = 0.002) and the bet experiment (Pggcp: r = 0.802 £+ 0.090 and M T = 1.255 + 0.349,
Pieaky: 7 =0.641 £ 0.120 with p = 0.002 and M1 = 0.966 £ 0.300 with p = 0.002 ; Pirye
: 7 =0.694 £ 0.086 with p = 0.002 and M I = 0.940 £ 0.255 with p = 0.002). To
conclude, we deduce that the dynamic estimate of the probability bias produced by the
BBCP model is a powerful regressor to explain both the strength of anticipatory
smooth pursuit eye movements and the explicit ratings of human observers experiencing
a volatile context for visual motion.

This relatively strong correlation is surprising at a first sight as the epochs with
constant probability bias (between two switches) have random lengths, and participants
have to adapt to such a volatile environment. However, adaptivity to a volatile
environment is one of the most exquisite human skills: When faced with some new
observations, the observer has to constantly adapt his/her response to either exploit this
information by considering that this observation belongs to the same context of the
previous observations, or to explore a novel hypothesis about the context. This
compromise is one of the crucial component that we wished to explore and which is well
captured by the BBCP model. In particular, the model predicts different aspects of the
experimental results, from the variability as a function of the inferred probability, to the
dynamics of the behavior following a (hidden) switch.

L All following p-values are obtained from the Wilcoxon signed-rank test.
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4 Results: Analyzing inter-individual differences

So far, we have presented the qualitative behavior of individual participants and we
have reported the quantitative analysis of the group-pooled data for the fit between
experimental and model-inferred estimates of the hidden probability bias. For instance,
the experimental measures for two representative participants in Figure 3, support the
qualitative match between behavioral data and model predictions, which we then
confirmed quantitatively on the whole group of participants. It is important to note
that no model fitting procedure was used so far, but only the match of the results of the
BBCP-model applied to the sequence of binary target directions presented to the
human participants, as shown in Figure 2-B. However, we observed that in both sessions
the qualitative match between model and data varied across participants. This was best
characterized by differences in the variability of the responses, but also, for instance, by
the different characteristic delays after a switch. This reflects the spectrum of individual
behavioral choices between exploration versus exploration [57]. As a consequence, we
were interested in characterizing these individual preferences for each individual
participant, but also to investigate whether this preference co-varied across the two
experimental sessions (i.e. across implicit vs explicit response modalities). Crucially, we
have seen that the BBCP model is controlled by a single parameter, the hazard rate, or
equivalently by its inverse, the characteristic time 7. Also, we have shown that knowing
an observed sequence of behavioral responses, we could fit the value of A which would
best explain the observations, as quantified by the Pearson’s correlation coefficient or by
the mutual information. Thus, by extracting the best-fit parameters for each participant
and experimental session we expect to better understand the variety of inter individual
differences.

Hence, we have fitted the sequence of responses generated by each participant and
for each experimental session, that is for the eye movements and the rating scale
experiments. To avoid any possible bias from the fitting procedure, we tested 1600
linearly spaced values of 7 from 1 to 1600 trials. For each, we computed the correlation
coefficient with the BBCP-model responses parameterized by the value of the hazard
rate h = % We then extracted different estimates of h,spry and hpet, respectively for
aSPEM and the rating scale, by choosing the hazard rate value corresponding to that
with maximal correlation coefficient. To cross-validate our results for each individual
participant, we have fitted the BBCP model to each of the 3 sub-blocks of 200 trials.

This provides with 3 values of the best fitted hazard rate for each session and observer.

The scatter plot of the best fit values is shown in Figure 5. This figure suggests, in the
first place, that there is some variability in the best fitted value of the hazard rate in
both sessions. Overall, the value of correlation coefficient of the best fit hazard rate was
slightly higher than that computed in Figure 3 with » = 0.682 £ 0.080 for the eye
movement session and r = 0.811 + 0.089 for the rating scale session. A part of the
variability in the estimated hazard rates comes from the limited length of the data
blocks, while another part is due to intra-individual and inter-individual variabilities.
Overall, the median (with 25% and 75% quantiles) are hagprm = 0.069 (0.038,0.093) for
the aSPEM session and hper = 0.025 (0.011,0.093) for the rating scale. We observe that
these values are close to the (hidden) ground truth value (h = 1/40 = 0.025) used to
generate the sequence. In addition, the best-fit hazard rate value is higher for aSPEM
compared to the true value and the rating scale measures. In addition, we observed a
tendency for hazard rate to be higher in the eye movement recording session. As a
consequence, this analysis reveals that relaxing the free parameter of the BBCP model
improves the match of the model to the behavioral data and that we could represent the
distribution of individual differences in the choice behavior between exploration and
exploitation in both sessions for each subject.

The distribution of best-fitted values for each individual subject seemed to
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Fig 5. Analysis of inter-individual differences. We analyzed each participant’s
behavior individually, by searching the individual best value of the model’s single free
parameter, the hazard rate h. Estimates were performed independently on both
experiments, such that we extracted different estimates of h,sprym and hpet respectively
for the aSPEM strength and the rating value. The dots correspond to independent
estimates of the hazard rate in each 200 trial sub-block and data belonging to each
individual participant are joined by dotted lines. Dashed lines correspond to the median
for the full dataset (black line) or for each individual sub-block (colored line). These
should be compared to the values obtained for the BBCP model, showing a slight
variability over sub-blocks. Stars correspond to the observers displayed in Figure 3.
This plot shows that best fit hazard rates are in general higher than the ground truth
(blue line), and in general higher for eye movements (below the diagonal). Note that the
histograms of hazard-rate best-fit estimates (grey shaded areas) is much more narrower
for the eye movement session than for the bet experiment, as also illustrated by the
cumulative distributions (plain lines in black or colors). Such an analysis suggests that
participants ultimately have different mechanisms at the unconscious and conscious
levels for guiding their tendency of exploration versus exploitation.
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qualitatively cluster, but the dataset is still insufficiently large to support the
significance of such observation at a quantitative level. Moreover, there is a difference in
the distribution of observed hazard rates in both sessions. Indeed, we observed that the
marginal distribution for each session is different, with the distribution in the aSPEM
session being narrower than that observed for the rating scale session. In particular, we
also observed the same behavior for each sub-block independently, suggesting that the
origin of this variability mainly comes from inter-subject variability. Such an analysis
suggests that even though the predictive processes at work in both sessions may reflect
a common origin for the evaluation of volatility, this estimation is then more strongly

modulated by individual preferences when a more conscious cognitive process is at stake.

5 Discussion

The capacity to adapt our behavior to the environmental regularities has been
investigated in different research fields, from motor priming and sensory adaptation to
reinforcement learning, machine learning and economics. Several studies have aimed at
characterizing the typical time scale over which such adaptation occurs. However, the
pattern of environmental regularities could very well change in time, thereby making a
fixed time-scale for adaptation a suboptimal cognitive strategy. In addition, different
behaviors are submitted to different constraints and respond to different challenges,
thus it is reasonable to expect some differences in the way (and time scales) they adapt
to the changing environment. This study is an attempt to address these crucial open
questions. We have taken an original approach, by assuming a theoretically-defined
volatility in the properties of the environment (in the specific context of visual motion
tracking) and we have developed an optimal inferential agent, which best captures the
hidden properties of the generative model solely based on the trial sequence of target
motion. We have then compared the optimal agent’s prediction, as well as a more
classical forgetful agent, to two sets of behavioral data, one rooted in the early
visuomotor loop underlying anticipatory ocular tracking, and the other related to the
explicit, conscious estimate of the likelihood of a future event. Our results point to a
flexible adaptation strategy in humans, taking into account the volatility of the
environmental statistics. The time-scale of this dynamic adaptive process would thus
vary across time, but it would also be modulated by the specific behavioral task and by
inter-individual differences. In this section we discuss the present work and its
implications in view of the existing literature and some general open questions.

5.1 Environmental regularities, cognitive properties and visual
perception

The time-varying statistical regularities that characterize the environment are likely to
influence several cognitive functions. In this study, we have made the choice to focus on
a largely unconscious motor behavior (aSPEM), as well as on the explicit rating of
expectation for the forthcoming motion direction. In contrast, we have not addressed
the question of whether and how statistical learning affects visual motion perception
throughout our model-generated volatile sequences. In an empirical context similar to
ours, [11] have recently shown that perceptual adaptation for speed estimation occurs
concurrently to priming-based aSPEM throughout a sequence of motion tracking trials
with randomly varying speed. They actually found a robust repulsive adaptation effect,
with perceptual judgements biased in favor of faster percepts after seeing stimuli that
were slower and vice-versa. Concurrently, these authors also found a positive effect on
anticipatory smooth pursuit, with faster anticipation after faster stimuli, somehow in
agreement with the adaptive properties of aSPEM that we also report here. [11]
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quantified the trial-history effects on aSPEM and speed perception by fitting a
fixed-size memory model similar to the forgetful agent. They found that aSPEM and
speed perception change over different time scales, with the priming effects being
maximized for short-term stimulus history (around 2 trials) and adaptation for longer
stimulus history, around 15 trials. Their main conclusion was that perceptual
adaptation and oculomotor priming are the result of two distinct readout processes
using the same internal representation of motion regularities. Note that both these
history lengths can be considered short in comparison to the several hundreds of trials
that are commonly used in psychophysics and sensorimotor adaptation studies and that,
similar to the present study, the inferred characteristic times are even shorter for the
buildup of anticipatory eye movements. However, it is also important to note that in
the study by [11], the generative model underlying the random sequence of motion trials
was different and much simpler than in the present study: In particular the role of
environmental volatility was not directly addressed there. This makes a direct
comparison between their results and ours difficult beyond a qualitative level.

In spite of a multitude of existing studies investigating the dynamics of sequential
effects on visual perception (see for example [6,8]), only few of them have directly
addressed the role of the environmental volatility on the different behavioral
outcomes. [28] have compared the predictions of different models, featuring a dynamic
adaptation to the environment’s volatility (equivalent to our forgetful agent model)
versus a fixed belief model, on five sets of previously acquired data, including reaction
time, explicit reports and neurophysiological measures. Interestingly, [28] concluded
that the estimation of a time-varying transition probability matrix constitutes a core
building block of sequence knowledge in the brain, which then applies to a variety of
sensory modalities and experimental situations. As such, sequential effects in binary
sequences would be better explained by learning and updating transition probabilities
compared to the absolute item frequencies (as in the present work) or the frequencies of
their alternations. The critical difference lies in the content of what is learned
(transition probabilities versus item frequencies) in an attempt to capture human
behavior. Rather than on transition probabilities, here we focused on the analysis and
modeling of human behavior as a function of the frequency of presentation (and its
fluctuations in time) of a given event in a binary sequence of alternating visual motion
direction. We can speculate that different statistics can play a different role depending
on the context, but altogether the study by [28] and the present one converge to
highlight the importance of a dynamic estimate of the hierarchical statistical properties
of the environment for efficient behavior. There are also other limits to the agent that
we have defined. In this study we assume that data are provided as a sequence of
discrete steps. A similar approach using a Poisson point process allows to extend our
model to the continuous time domain, such as addressed by [65]: In their experiments,
the authors analyzed the licking behavior of rats in a dynamic environment. The
generalization to the time-continuous case is beyond the scope of our current protocol,
but it would consist in a natural extension of it to more complex and ecological settings.

The way expectations act on cognitive processes in general has been investigated in a
wide range of domains such as predictive coding [66], active inference [67], motor
control [68] and reinforcement learning [12,57,62]. Non-stationary observations can also
explain why both local and global effects emerge and why local effects persist in the
long run even within purely random sequences [20,32]. This constant update of a
general belief on the world can be a consequence of the constant attempt to learn the
non-stationary structure of the environment that can change at unpredictable times [20].
Many studies have actually already pointed out the brain’s ability to apprehend
non-stationary states in environments [64,69]. Future work will be needed to address
the amplitude and dynamics of modulations of visual perception and other cognitive
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functions in a model-based volatile environment like the one we formally defined in this
study, and to compare them to other implicit and explicit behavioral measures (like
anticipatory eye movements and explicit expectation ratings).

5.2 Hierarchical Bayesian inference in the brain

When we perceive the physical world, make a decision or take an action to interact with
it, our brain must deal with an ubiquitous property of it, uncertainty. Uncertainty can
arise at different levels and be structured around different characteristic time scales.
During the past decades, modern science seems to have completed an epistemological
transition, from struggling to reduce or neglect uncertainly to engaging in
understanding it as a crucial constituent of the world. In the cognitive neurosciences
this transition has been formalized in the theoretical framework of Bayesian
probabilistic inference, which has become very popular as a benchmark of optimal
behavior in perceptual, sensorimotor and cognitive tasks [70] and gives a unified
framework for studying the brain [67]. Furthermore, plausible hypotheses about the
implementation of Bayesian computations —or approximations of them— in the activity
of neuronal populations have been proposed [71-73].

However, one should be careful when evaluating the quality of fit of Bayesian
inference models for behavioral data, and avoid any over-interpretation of the results.
Note that, if we assume that the inversion of the generative model is perfect (that is, if
no algorithmic approximation has been done, like in the present study), this means that
by fitting different ideal observers to the data, one evaluates as a matter of fact the
adequacy of a specific generative model, not of the probabilistic calculus in its detailed
implementation. There is a common confusion around the idea of a “Bayesian brain”.
We actually believe that the challenge here is not to validate the hypothesis that the
brain uses or not the Bayes’ theorem, or a more complex hierarchical combinations of
inferential computations, but rather to test different hypotheses about the different
generative models that agents may use. This methodological point will be essential in
designing future experimental protocols, and in evaluating quantitatively the results.
The brain is probably only “weakly Bayesian” (it does not care about equations but
more about sugar, after all!). One remaining question though, is to understand why in
cognitive systems the adaptation to hierarchical probabilistic fluctuations occurs and in
particular why it may deviate in some pathological disorders such as
schizophrenia [5,74] or across the natural variability of autistic traits [75].

While it was not our original objective, we have analyzed in this study the individual
best-fit parameters (hazard rates) of the BCCP model: despite a consistent variability
of such parameters across sub-blocks of the trial sequence, we highlighted some
noteworthy tendencies for participants to cluster around specific properties of the
dynamic adaptation to a volatile probabilistic environment. Most important, this
analysis corroborates and strengthens some recent attempts to realize a computational
phenotyping of human participants. However, more extensive studied should be
conducted to be able to quantitatively titrate inter-individual tendencies.

5.3 Non-linearities in the adaptation to probabilistic
environments

Finally, neuroeconomists have pointed out a generic aversion to risk [76] such that the
value of a possible outcome is weighted by the precision of the inference, leading in
general to an under-weighting of high gains and losses. Importantly, [77] compared a
classical economic decision task with a motor decision task: they found that
participants were more risk seeking in the motor task compared to the first one. More
recently, in a task similar to ours, where the behavioral choice was not specifically
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associated to a reward schedule, [47] found a weak non-linearity in the dependence of
aSPEM upon the probability of motion direction, yielding an overweight of the extreme
values of probability, whereas an opposite non-linearity (underweight) was observed
when the target direction was visually-cued with a given probability of validity. In our
data we have not found consistent evidence suggesting a clear non-linearity in either
sense. Further work is needed to disentangle the possible specificities (e.g. non
linearities), in this respect, of different cognitive tasks, as well as to investigate the
dependence of non-linearities upon the environmental volatility.

6 Conclusions

e We have developed a Bayesian model of an agent estimating the probability bias
of a volatile environment with changing points (switches), such that the agent
may decide to stay on the current hypothesis about the environment, or to go for
a novel one. This allows to dynamically infer the probability bias across time and
directly compare model predictions and experimental data, such as measures of
human behavior.

e We applied such a framework to the case of a probability bias in a visual motion
task where we manipulated the target direction probability. We observed a good
match between the largely unconscious anticipatory smooth eye movements and
the results of the model, replicating and providing a novel solid theoretical
framework for previous findings [12,44,47].

e We also found a good match between model predictions and the explicit rating of
the expected target motion direction, a novel result suggesting that this model
captures some of the brain computations underlying expectancy based motion
prediction, both at the unconscious and conscious level.

e Finally, we found that the experimental data of each different participant matched
to different types of belief about the volatile environment, some being more or less
conservative than others. Interestingly, each of the two experiments (namely for
the unconscious anticipatory eye movements and the conscious rating) provided
different distributions, opening the perspective for future computational
phenotyping using such a volatile setting.

7 Material and Methods

7.1 Participants, visual stimuli and experimental design

Twelve observers (29 years old +£5.15, 7 female) with normal or corrected-to-normal
vision took part in these experiments. They gave their informed consent and the
experiments had received ethical approval from the Aix-Marseille Ethics Committee
(approval 2014-12-3-05), in accordance with the declaration of Helsinki.

Visual stimuli were generated using PsychoPy 1.85.2 [78] on a Mac running OS 10.6.8
and displayed on a 22" Samsung SyncMaster 2233 monitor with 1680 x 1050 pixels
resolution at 100 Hz refresh rate. Experimental routines also written using PsychoPy
controlled the stimulus display. Observers sat 57 cm from the screen in a dark room.

The moving target used in our experiments was a white ring (0.35° outer diameter
and 0.27° inner diameter) with a luminance of 102 c¢d/m2 that moved horizontally on a
grey background (luminance 42 cd/m?). Each trial started with a central fixation point
displayed for a random duration drawn from a uniform distribution ranging between 400
and 800 ms. Then a fixed-duration 300 ms gap occurred between the offset of the
fixation point and the onset of the moving target, which was presented slightly offset
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from the fixation location [79] and immediately started moving horizontally at a
constant speed of 15°/s, either to the right or to the left for 1000 ms. The probability p
of rightward trials was a time-varying random variable which was constant within an
epoch of the sequence of a given random size (see main text for the description of the
generative model).

The paradigm included two experimental sessions performed on two distinct (in
general consecutive) days by each participant. The two sessions involved the
presentation of the same sequence of trials, while collecting a different behavioral
response: explicit rating judgments in the first session (the bet experiment), and eye
movement recordings in the second session. Asked after the experiment, no observer
noticed that the same (pseudo-)random sequence of target directions was used in both
experiments.

7.2 Eye movements experiment

Eye movements were recorded continuously with an eye tracking system (Eyelink 1000,
SR Research Ltd., sampled at 1000 Hz), using the Python module Pylink 0.1.0 provided
by PsychoPy. Horizontal and vertical eye position data were transferred, stored, and
analyzed offline using programs written using Jupyter notebooks. To minimize
measurement errors, the participant’s head movements were restrained using a chin and
forehead rest, so that the eyes in primary gaze position were directed towards the center
of the screen. In order to enforce accuracy in gaze position and tracking, we
implemented an automatic procedure of fixation control. If the distance between the
gaze position and the central fixation point during the fixation epoch exceeded 2° of
visual angles, the fixation point started flickering and the counter for the fixation
duration was reset to 0.

The recorded horizontal and vertical raw gaze position data were numerically
differentiated to obtain velocity measures. We adopted an automatic conjoint
acceleration and velocity threshold method (the default saccade detection implemented
by SR Research) to detect ocular saccades. Saccades and eye-blinks were excluded from
eye velocity traces (and replaced by Not-a-Number values in the numerical arrays)
before trial averaging and data fitting for the extraction of the oculomotor parameters
of interest. In order to extract the relevant parameters of the oculomotor responses, we
developed new tools based on a best-fitting procedure of predefined oculomotor patterns
and in particular the typical smooth pursuit velocity profile that was recorded in our
experiment. A piecewise-defined function was fitted to the different epochs of the eye
velocity traces: a constant function during fixation, a ramp-like linear function during
smooth pursuit anticipation, an increasing sigmoid-function during the initiation of
visually-guided smooth pursuit, reaching its saturating value during the pursuit
steady-state. This analysis was applied to each trial individually and it allowed in
particular to estimate the anticipatory smooth pursuit velocity. Some trials were
excluded from the analysis as the proportion of missing data-points, due to eye blinks or
saccades was considered too large, namely when the missing data exceeded 45 ms
during the gap or one third of the total target motion epoch (4.36% of all trials). In
addition, trials were also excluded when the eye-movement fitting procedure did not
converge, after visual inspection, to a satisfactory match with the data (3.25% of all
trials). The python scripts used to analyze eye movements are available at
https://github.com/invibe/ANEMO.

7.3 The Bet experiment

The aim of the Bet experiment was to collect data related to the individual conscious
estimates of the probability of target motion direction. At the beginning of each trial,
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before the presentation of the moving target, participants had to answer to the question
“How sure are you that the target will go left or right”. This was performed by adjusting
a cursor on the screen using the mouse (see Figure Figure 1-C). The cursor could be
placed at any point along a horizontal segment representing a linear rating scale with
three ticks labeled as “Left”, “Right” (at the extreme left and right end of the segment
respectively), and “Unsure” in the middle. Participants had to validate their choice by
clicking on the mouse left-button and the actual target motion was shown thereafter.
The rationale to collect rating responses on a continuous scale instead of a simple binary
prediction (Right/Left) was to be able to infer the individual estimate of the direction
bias at the single trial scale (in analogy to the continuous interval for the strength of
aSPEM velocity). We called this experiment the “Bet” experiment, as participants
were explicitly encouraged to make reasonable rating estimates, as though they had to
bet money on the next trial outcome. Every 50 trials, a “score” was displayed on the
screen, corresponding to the proportion of correct direction predictions (Right or Left of
the “Unsure” tick) weighted by the confidence attributed to each answer (the distance
of the cursor from the center).
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8 Supporting information

8.1

Appendix : leaky integrator

Given a series of observations {zf }o<;<; with Vi, z} € {0, 1}, we defined

A= (1= 1) =y > A= 1n)

0<i<t

— (1 _ h)t—i—l .fltzo +h- Z (1 _ h)z _x(t)—i

0<i<t
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If we write it for trial ¢ — 1, we have

B =1 =n) A e Y (1= h)

0<i<t—1
=@ =n)""=" 4 he Y (A —h) T ag
1<5<t
(I=h)-ar = =n" a0 b Yy (1—h)ag
1<i<t

As such, the integrative formula above becomes an iterative relation:

B =1 =nF AT R Y (1= 1) g
0<i<t
=Q=h)" A =0 pheaf+he Y (1-h) - af
1<i<t

=h-azb4+(1—h) 5!

such that finally

=0 —h) & 4 h-ah

As such, the definitions in Equation 2 and Equation 3 are equivalent.

8.2 The Bernoulli, binomial and Beta distributions

Let us define some basic concepts. A Bernoulli trial is the outcome of a binary random
variable z knowing a probability bias p (with 0 > > 1) and can be formalized as:

Pr(zlp) = p - (1—-p)'="

The binomial distribution is defined as the probability that the sum X of v
independent Bernoulli trials is k:

14

Pr(ksvopt) = Pr(X = k) = (k) 1k

Knowing such a model for X it can be of interest to find an estimate of the
parameter of the Bernoulli trial, that is of the probability bias pu. This distribution
function is called the conjugate of the binomial distribution which is the
Beta-distribution. For example, the beta distribution can be used in Bayesian analysis
to describe initial knowledge concerning probability of success such as the probability
that a product will successfully complete a stress test. The beta distribution is a
suitable model for the random behavior of percentages and proportions.

It is usually defined using shape parameters « and :

1
B(a, B)
Note that here, the variable is the probability bias p. The normalization constant
B(a, B) is given by the beta function. By definition:

Pr(pla, B) = p*(1—p)ft
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a=p-v
B=00-p) v
Inversely,a—i—ﬁ:yanduzﬁzl_o%ﬁ

8.3 Appendix 2: BBCP algorithm

To summarize, the algorithm that we presented is an implementation of the “Bayesian
Online Changepoint Detection” by [55] extended for the class of binary inputs. Using

the definition of the run-length Section 2.2, the flow-chart of the algorithm is:

1. Initialize

e P(rg>0)=0o0r P(ro =0) =1 and
0 0
° M(() ) = Mprior and V(g ) = Vprior
2. Observe New Datum zf € {0,1},

(a) Evaluate Predictive Probability 7rt(r) = P(x}] uﬁ), vt(r)).

(b) Calculate Growth Probabilities
P(ry = ri—1 + 1, 20:) = P(re—1, 201w (1= h),
(c¢) Calculate Changepoint Probabilities
P(ry=0,204) = Y, , P(re—1,z0:4—1)m(" - I,
(d) Calculate Evidence P(zo.) =, | P(re, o),

(e) Determine Run Length Distribution P(r¢|xo.t) = P(r¢, xo.t)/P(xo.t)-
3. Update sufficient statistics
e at a switch /J,E?r)l = Mprior, Vt(9r)1 = Vprior,
o else, ut(_ﬁl) =" +1 and ut(f{l) -,ugril) ="l

4. Return to step 2.

In the following, we detail some intermediate steps and highlight some key

differences with their implementation. We also provide a python implementation of the

algorithm, which is openly available on GitHub.

8.3.1 Initialization

Note that the prior distribution is itself a Beta distribution: P o« B(p; tiprior, Vprior)- It
will by symmetry be unbiased: fiprior = .5. Concerning the shape, it can be for instance
the uniform distribution U on [0, 1], that is vpror = 2 or Jeffrey’s prior J, that is
Vprior = 1. We chose the latter for the generation of trials as the uniform distribution
would yield more sample around .5. Qualitatively, this would result in more difficult
task in discriminating a probability bias from another. Jeffrey’s prior was more adapted

to that task.
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8.3.2 Prediction: run-length distribution

The steps to achieve the update rule are:

Pr(zpleg"™") =Y Priaglr, a5 ") - 5"
Pr(ahlag*™") = 3 Priaplr,f* ") - Pr(r'lef*™)

with  Pr(rf|zd*!) o Z Pr(rtrt=t) - Pr(af|rt=t 2yt - Pr(rt ot ?)

pt—1

Finally we obtain Equation 5:

B o 3 Pr(rtirt =) - Pr(ablr =t agt ) - 57

rt—1

8.3.3 Prediction: sufficient statistics

The recursive formulation in Equation 9 and Equation 10 comes from the expression

t—1
A= S

i=t—r—1
and therefore
t+1-1
(r+1)  (r+1) _ i
Viv1 " Mgy ™ = E Lo

i=t+1—r—1—1
t
_ i
= E Lo
i=t—r—1

= Vt(r) . uﬁ” + xf)

8.3.4 Quantitative evaluation

To quantitatively evaluate our results with respect to another probability bias, we
computed in Equation 13 the cost as the Kullback-Leibler divergence KL(p|p) between
samples p and model p under the hypothesis of a Bernoulli trial:

KL(plp) = - log (g) +(1-p)-log (l‘p) . (14)

8.4 Appendix: likelihood function

We want to compute L£(r|o) = Pr(o|p,r) where o € {0,1} such that we can evaluate
Predictive Probability 7., = P(z}| ,utr), l/t(r)) in the algorithm above with MET) and Vt(T)
the sufficient statistics at trial ¢ for node (r). The likelihood of observing o = 1 is that
of a binomial (conjugate of a Beta distribution) of

p-r+o
r+1

o mean rate of choosing hypothesis o = 1 equal to

e number of choices where 0 = 1 equals to p-r + 1.

p-r+o

More generally, by observing o, the new rate is p = e
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8.4.1 Mathematical derivation 1228

The likelihood will give the probability of this novel rate given the known parameters 12
and their update (in particular » =r + 1): 1230

p.?"+0 p-r+o 1 p'r+0>’r'+o—(p~7"+0)

L(rlo) =
(7n|()) ( r 1 r 1

1 ! —p)-r —

@‘7yﬂ?0TT+®p””%U—p%r+1—@“P)+10

since both likelihood sum to 1, the likelihood of drawing o in the set {0,1} is equal to  1n

L
L(r|o) = (rlo)
L(rlo=1)+ L(rlo=0)
B (p 4 O)P-r+o ) ((1 _p) r41— O)(lfp)'TJrlfo
(por+ 1) (= p) ) ()T (L= ) )T
=0 ) (=p) )T o (e )P (1= p) )P
(per+ 17 (U =p) ) () (L= p) )T
This can also be written by isolating the part which depends on o and for a given 1232
run-length and knowing sufficient statistics describing the sufficient statistics at each 1233
node 7r: 1234
1 . —p)ertl—
Lrlo) = - - (p-r+0)" " (1 =p)-r+1—0) 777170 (15)
with Z such that £L(r|o =1) + L(r|o = 0) = 1, that is Equation 11. 1235
8.4.2 Python code 1236
1237
def likelihood(o, p, r): 1238
nmnn 1239
Knowing $p$ and $r$, the sufficient statistics of the beta distribution 1240
$B(\alpha, \beta)$ : 1241
$$ 1242
alpha = p*r 1243
beta = (1-p)*r 1244
$$ 1245
the likelihood of observing o=1 is that of a binomial of 1246
1247
- mean rate of choosing hypothesis "o=1" = (p*r + o)/ (r+1) 1248
- number of choices where "o=1" equals to p*r+il 1249
1250
since both likelihood sum to 1, the likelihood of drawing o in the set {0, 1251
1} 1252
is equal to 1253
1254
nnn 1255
def L(o, p, 1): 1256
P= (1-0) * (1. -1/ (p *xr + 1) )*x(p*r) * ((1-p) * r + 1) 1257
P+= o x (1. -1/ ((1-p) * r + 1) )*x((1-p)*r) * (p * r + 1) 1258
return P 1250
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L_yes = L(o, p, 1)
L_no = L(1-0, p, 1)
return L_yes / (L_yes + L_no)

8.4.3 Properties

This function has some properties, notably symmetries:
o for certain outcomes, Vr > 0, L(o|p=0,r) =1 —o0 and L(olp=1,7r) = o,
o if 7 =0, the likelihood is uniform £(0) = 1/2,
o Pr(olp,r) = Pr(1—oll —p,r).

Note also that as r grows, the likelihood gets sharper.
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