

1 **TITLE**

2 Computational reconstruction of the complete Piezo1 structure reveals a unique footprint
3 and specific lipid interactions

4

5 **AUTHOR NAME AND AFFILIATIONS**

6 Jiehan Chong^{1±}, Dario De Vecchis^{1±}, Adam J Hyman^{1±}, Oleksandr V Povstyan¹, Jian Shi¹,
7 David J Beech^{*1}, Antreas C Kalli^{*1,2}

8 ¹School of Medicine, University of Leeds, Leeds LS2 9JT, UK

9 ²Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
10 LS2 9JT

11 [±] First author

12 * Corresponding authors

13

14 **ABSTRACT**

15 Piezo1 is a critical mechanical sensor in many cells. It is activated by mechanical force thus
16 allowing cells to sense the physical environment and respond to stress. Structural data have
17 suggested that Piezo1 has a curved shape. Here, we use computational approaches to model,
18 for the first time, the 3D structure of the full-length Piezo1 in an asymmetric membrane. A
19 number of novel insights emerge: (i) Piezo1 creates a dome in the membrane with a trilobed
20 topology that extends beyond the radius of the protein, (ii) Piezo1 changes the lipid
21 environment in its vicinity via specific interactions with cholesterol and PIP₂ molecules, (iii)
22 changes in cholesterol concentration that change the membrane stiffness result in changes in
23 the depth of the dome created by Piezo1, and iv) modelling of the N-terminal region that is
24 missing from current structures modifies Piezo1 membrane footprint, suggesting the
25 importance of this region in Piezo1 function.

26 **INTRODUCTION**

27 Piezo1 is a mechanosensitive ion channel found in many tissues. It plays key roles in the
28 circulation (Choi et al., 2019; Li et al., 2014; Nonomura et al., 2018; Ranade et al., 2014;
29 Retailleau et al., 2015; Rode et al., 2017), kidneys (Martins et al., 2016), red blood cells
30 (Andolfo et al., 2013; Cahalan et al., 2015), and the central nervous system (Segel et al.,
31 2019), acting in the development and maintenance of the mature organism, and ageing.
32 Pathological mutations of Piezo1 lead to dehydrated hereditary stomatocytosis through gain
33 of function (Albuission et al., 2013; Bae et al., 2013), and generalized lymphatic dysplasia
34 where there is loss of function (Fotiou et al., 2015; Lukacs et al., 2015).

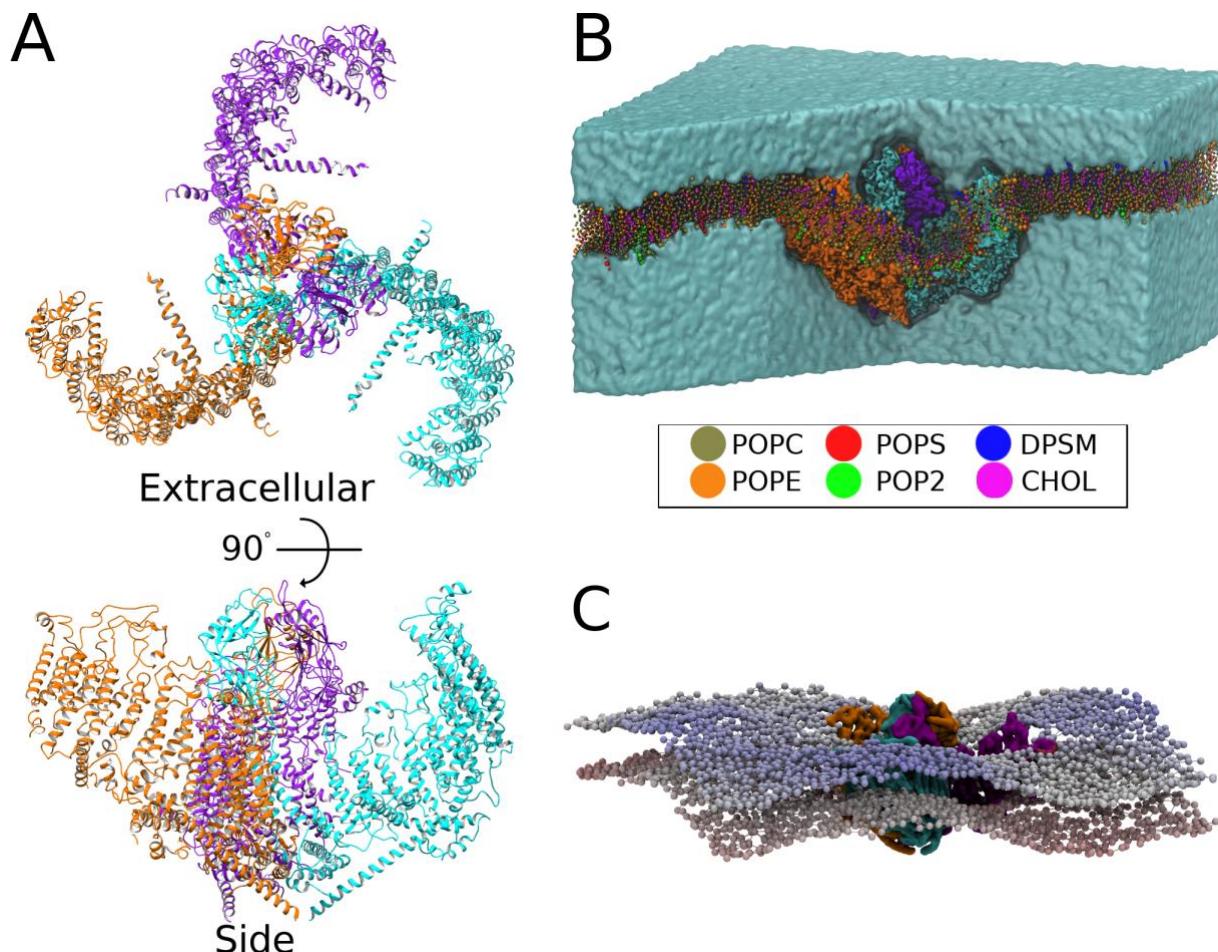
35 Piezo1 is inherently mechanosensitive (Syeda et al., 2016; Wu et al., 2017b, 2016), but how
36 it senses force remains largely unknown. Piezo1 is a non-selective cationic channel, with
37 single channel conductance of ~29 pS for mouse Piezo1 (mPiezo1) (Wu et al., 2017a).
38 Structures of mPiezo1, excluding the N-terminal and parts of its cytosolic region, have been
39 resolved by cryo-electron microscopy (cryo-EM) to resolutions of 3.7 – 4.8 Å (Ge et al., 2015;
40 Guo and MacKinnon, 2017; Saotome et al., 2018; Zhao et al., 2018). These structures showed
41 that Piezo1 adopts a trimeric configuration with a triskelion shape (Ge et al., 2015; Guo and
42 MacKinnon, 2017; Saotome et al., 2018; Zhao et al., 2018). The C-termini of Piezo1 converge
43 to form a central ion pore, while the N-termini extend from the central axis, forming “blades”
44 which spiral in plane with the cell membrane as they radiate outward, as well as curving

45 towards the extracellular surface (Figure 1). On the intracellular surface, a helical beam
46 connects the peripheral regions of the blades to the central regions (Ge et al., 2015). So far,
47 no structure for full-length Piezo1 has been published, thus limiting our ability to use structural
48 data in order to understand Piezo1 function.

49 Membrane lipids have been shown to regulate ion channel function (Rosenhouse-Dantsker et
50 al., 2012). In particular, cholesterol has the potential to affect the mechanogating of Piezo1,
51 due to its effect on membrane stiffness (Needham and Nunn, 1990). The effect of cholesterol
52 on other ion channel families is varied. Cholesterol addition has been reported to increase the
53 activity of Orai1 (Derler et al., 2016), Kv1.3 (Hajdú et al., 2003), Kir2 (Romanenko et al., 2002)
54 and the sodium inward current (Wu et al., 1995). In other studies, cholesterol depletion
55 reduces the activity of ENaC (Balut et al., 2005) and TRPC (Bergdahl et al., 2003) channels.
56 In a recent preprint study, lateral organization of cholesterol in the membrane is reported to
57 regulate Piezo1 activity (Ridone et al., 2019). Further indirect links between cholesterol and
58 Piezo1 function exist through STOML3, which tunes Piezo1 activity (Poole et al., 2014) as well
59 as membrane stiffness (Qi et al., 2015). Cholesterol has previously been shown to regulate
60 the activity of Ca^{2+} -permeable stretch-activated channels (Chubinskiy-Nadezhdin et al., 2011;
61 Morachevskaya et al., 2007), but it is not known whether these channels were Piezo1.
62 Additionally, PIP₂ has been suggested to regulate Piezo1 function (Borbiro et al., 2015).
63 Recent studies have also shown that molecules e.g. fatty acids that alter the membrane
64 structural properties regulate Piezo1 activity (Conrad et al., 2018; Romero et al., 2019).

65 A recent study has shown that the unique curved shape of Piezo1 induces a dome in the
66 membrane, possibly creating an energy store which may provide a basis for mechanogating
67 (Guo and MacKinnon, 2017). Using mechanical calculations in which the dome was modeled
68 as hemispherical it was suggested that membrane tension would flatten the dome, providing
69 energy which could open the Piezo1 channel. In addition to the membrane region curved by
70 direct contact with Piezo1, it was also suggested that the local Piezo1-induced curvature
71 generates a wider membrane footprint, which is hypothesized to amplify the sensitivity of
72 Piezo1 to mechanical force (Haselwandter and MacKinnon, 2018). The sensitivity of Piezo1
73 is tuned by membrane tension and stiffness, which may in turn be influenced by varying
74 membrane lipid composition (Lewis and Grandl, 2015; Qi et al., 2015; Romero et al., 2019). A
75 'force from lipids' model of mechanical activation has been proposed, in which nothing is
76 required for Piezo1 mechanosensation other than the cell membrane and Piezo1 itself (Lewis
77 and Grandl, 2015; Qi et al., 2015). Other proposed mechanisms for Piezo1 force sensing
78 include shear force deflection of the extracellular cap domain, membrane thinning in response
79 to stretch, and changes to membrane lipid composition (Wu et al., 2017a). In addition to
80 mechanical force, Piezo1 is also selectively activated by the chemical agonist, Yoda1 (Syeda
81 et al., 2015).

82 Despite the recent functional and structural evidence about Piezo1 our understanding of its
83 footprint in the membrane and how lipids may regulate its function is still limited. This is partly
84 because the structure of the full-length Piezo1 is not available, and partly due to the fact that
85 critical details about the topology of Piezo1 footprint in the membrane and about its interaction
86 with its lipid environment are currently missing. In this study, we used the available structural
87 data about Piezo1 to provide a three-dimensional (3D) full-length Piezo1 structural model. We
88 have used this model to perform molecular dynamics (MD) simulations and combined this with
89 lab-based methodologies to show, for the first time, the unique topology of the Piezo1
90 membrane footprint and how this is regulated by cholesterol concentration. Moreover, this
91 study demonstrates the critical role of the N-terminal region of Piezo1 in regulating its local
92 membrane environment and suggests interaction sites for anionic PIP₂ lipids, supporting their
93 proposed functional role (Borbiro et al., 2015).


94

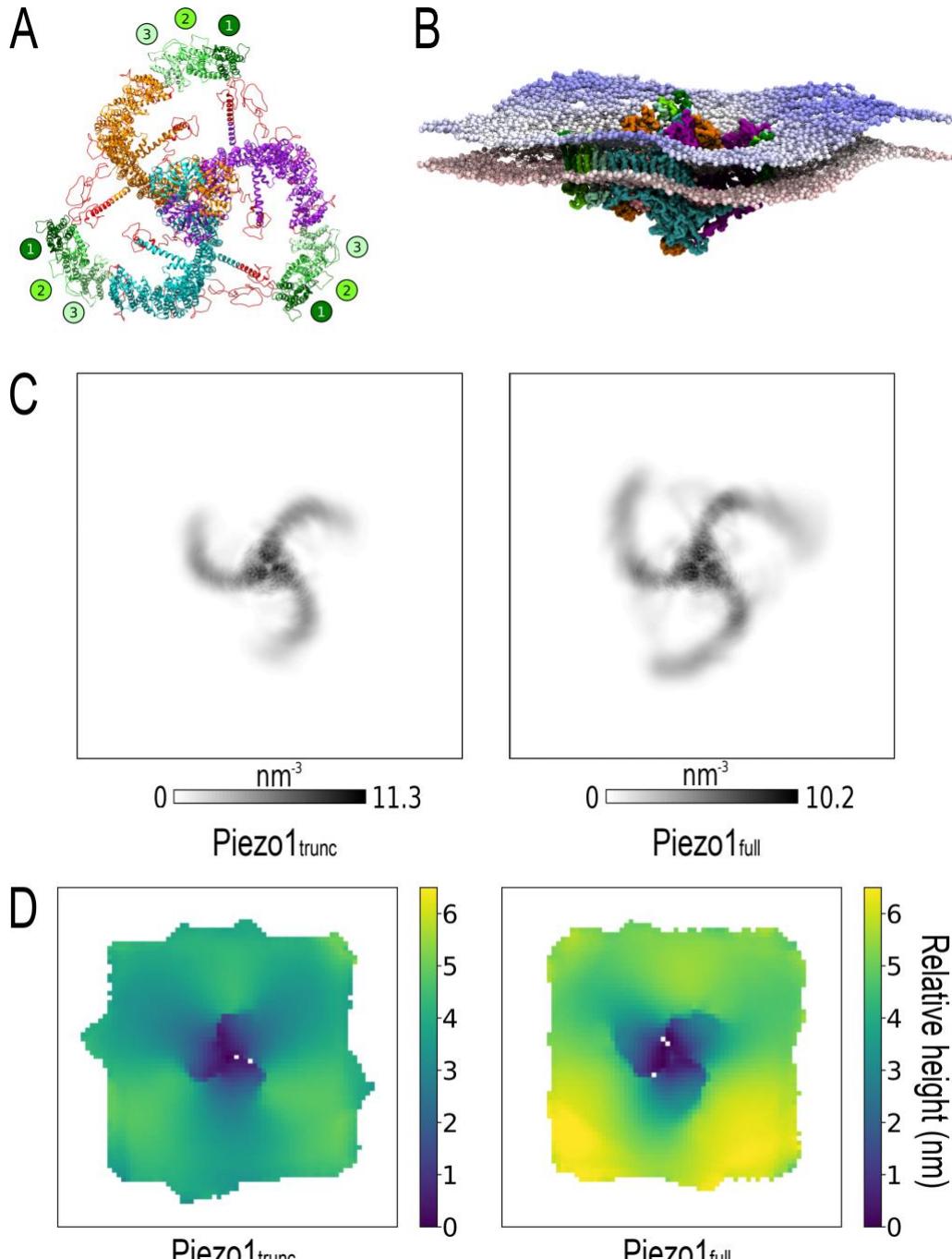
95 **RESULTS**

96

97 **Piezo1 generates a trilobular dome and extensive penumbra**

98 A structural model of the truncated Piezo1 ($\text{Piezo1}_{\text{trunc}}$) was generated by adding the missing
99 loops to the published structural data of the mouse protein (PDB: 6B3R; see Methods and
100 Figure 1A). We simulated $\text{Piezo1}_{\text{trunc}}$ using coarse-grained molecular dynamics (CG-MD)
101 simulations, in a complex lipid bilayer containing 20% cholesterol and a full complement of
102 phospholipids and sphingomyelin (see Supplementary Table 1). This lipid mixture mimics the
103 physiological endothelial membrane (Medow et al., 1989; Murphy et al., 1992; Takamura et
104 al., 1990). Although the $\text{Piezo1}_{\text{trunc}}$ model lacks the 3 distal 4-helical bundles in its blades, our
105 simulations suggest that it changes the curvature of the membrane in its immediate vicinity,
106 creating a stable membrane dome (Figure 1B). This local deformation results in a wider
107 membrane deformation with a complex three-dimensional topology, which extends beyond
108 the vicinity of $\text{Piezo1}_{\text{trunc}}$. This footprint creates elevated crests in the bilayer which radiate
109 outward from the blade tips of $\text{Piezo1}_{\text{trunc}}$ (Figure 1C, in blue), whilst depressed valleys radiate
110 from the regions between the arms (Figure 1C, in white). Therefore, despite the absence of
111 some of its N-terminal region $\text{Piezo1}_{\text{trunc}}$ creates a unique trilobed membrane topology that
112 extends outside the radius of $\text{Piezo1}_{\text{trunc}}$, that could potentially regulate its function and
113 interactions.

114


115 **Figure 1: Piezo1 generates a complex unique membrane footprint. (A)** Piezo1_{trunc} model,
116 shown from an extracellular and side view. Piezo1 chains are shown in cyan, orange, and

117 purple. **(B)** Snapshot from the end of the CHOL20_{trunc} simulation. Some of the solvent and
118 bilayer were removed to illustrate the curvature of the bilayer induced by the transmembrane
119 regions of Piezo1. Legend indicates colors for phosphatidylcholine (POPC),
120 phosphatidylethanolamine (POPE), phosphatidylserine (POPS), phosphatidyl-4,5-
121 biphosphate (PIP₂), sphingomyelin (SM), and cholesterol (CHOL). **(C)** A snapshot from one of
122 our CHOL20_{trunc} simulation. The Piezo1_{trunc} backbone is displayed in surface representation.
123 Phosphate beads are colored by their z-coordinates, from red at the bottom to blue at the top,
124 illustrating crests and troughs in the bilayer.

125 The precise function and structure of the Piezo1 N-terminal residues 1-576 remains uncertain
126 (Ge et al., 2015; Guo and MacKinnon, 2017; Zhao et al., 2018). Given that the presence of
127 the missing N-terminal region will extend the Piezo1 transmembrane region as suggested by
128 a recent structure of the homologous Piezo2 protein (PDB: 6KG7) we hypothesized that the
129 structurally unresolved N-terminal residues might impact on the dimensions and dynamics of
130 the Piezo1 footprint. To address this question, we built a full-length structural model for Piezo1.
131 Using secondary structure prediction tools (see Methods) we generated a topology for the N-
132 terminal bundles which extends the blades as previously suggested (Guo and MacKinnon,
133 2017). To build our model, we took advantage of the fact that the three 4-helical bundles that
134 are missing have the same structure/topology with the adjacent group of three 4-helical
135 bundles in Piezo1 blades i.e. residues 577-1129 (bundles 4-5-6) of the resolved Piezo1
136 structure (PDB: 6B3R) to model the missing N-terminal residues. This model completes the
137 Piezo1 structure by including cytoplasmic residues missing from the published structure (see
138 Methods). The resulting model for the full-length Piezo1 (Piezo1_{full}) is shown in Figure 2A,
139 providing the first 3D model of the full-length Piezo1.

140 In our Piezo1_{full} model each blade from a single chain is composed of 36 α -helices that form a
141 total of 9 4-helix bundles as previously suggested (Guo and MacKinnon, 2017)
142 (Supplementary Figure 1). The Piezo1_{full} model also comprises cytoplasmic residues not
143 resolved by cryo-EM (Guo and MacKinnon, 2017) (Figure 2A, red ribbons). The assignment of
144 loops to extracellular or intracellular positions agrees with previous experimental results, which
145 used a combination of myc tagging and phosphorylation sites to distinguish extracellular and
146 intracellular regions of Piezo1 (Coste et al., 2015) (Supplementary Figure 1C).

147

148

149 **Figure 2: The full-length Piezo1 model has flexible distal N-terminal blades and**
150 **enhances the footprint produced by the truncated mPiezo1 structure. A)** Extracellular
151 view of the full-length mPiezo1 model. Chains are colored as in Figure 1A. The modeled
152 transmembrane N-terminal bundles (residues 1-576) are numbered and colored from dark to
153 light green. Other residues not resolved in the cryo-EM structure are colored red. **B)** Final
154 snapshot from one of the CHOL20^{full} simulations. The Piezo1^{full} backbone particles are
155 displayed in surface representation. Phosphate beads are colored according to their z
156 coordinates from red at the bottom to blue at the top, illustrating the complex topology of the
157 bilayer footprint. **C)** 2-dimensional protein density of Piezo1_{trunc} and Piezo1_{full} during
158 CHOL20_{trunc} and CHOL20_{full} simulations respectively. Coordinates are fitted to the pore region
159 (residues 2105-2547). **D)** Height maps of CG phosphate beads corresponding to the
160 extracellular leaflet in CHOL20_{trunc} (left) and CHOL20_{full} (right) simulations, averaged across
161 all repeats.

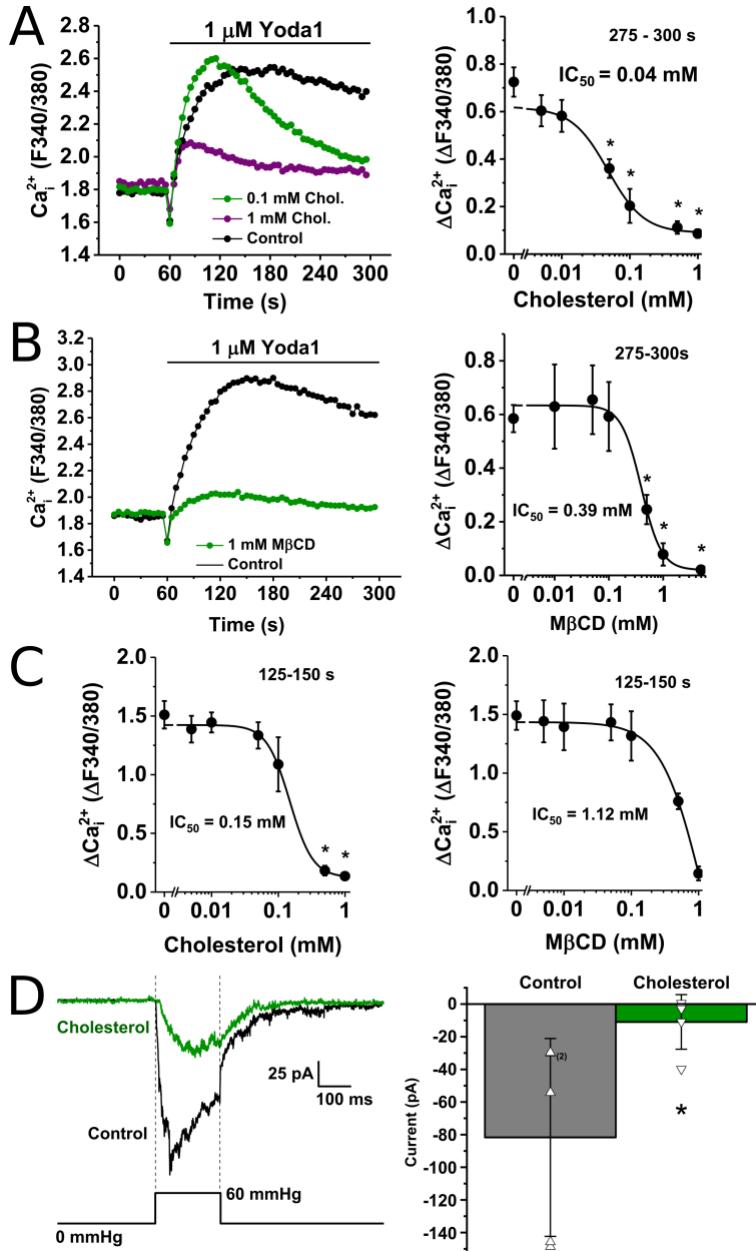
162 In order to assess how the full length Piezo1 will alter the membrane footprint, CG-MD
163 simulations with the Piezo1_{full} model inserted in a bilayer with identical lipid composition to
164 CHOL20_{trunc} (Supplementary Table 1) were performed. In all five repeat simulations performed,
165 the modeled N-terminal bundles remained embedded in the lipid bilayer (Figure 2B). To
166 inspect the extent of blade movement over the course of the simulation, we analyzed the 2-
167 dimensional protein density for both Piezo1_{trunc} and Piezo1_{full} structural models (Figure 2C).
168 We found that the protein density decreases in magnitude and becomes more diffuse as we
169 move outward from the proximal C-terminal pore region towards the distal N-terminal blades.
170 This effect is amplified in Piezo1_{full}, suggesting that the modelled N-terminal residues impart a
171 wider range of movement to the blades, especially to the N-terminal region. This might explain
172 why structural techniques were unable to resolve the structure of the N-terminal region of
173 Piezo1.

174 To analyze the topology of the Piezo1 footprint, we used a script that we developed (see
175 Methods) to generate an average height map of CG phosphate beads in each leaflet (Figure
176 2D). Surprisingly, this analysis reveals a footprint that is not uniformly circular, but trilobate as
177 seen for the Piezo1_{trunc}. In comparison to Piezo1_{trunc}, Piezo1_{full} produces a more pronounced
178 footprint, with maximum depth exceeding 6 nm. In addition, the Piezo1_{full} model produces a
179 footprint with wider crests, and narrower valleys. This result confirms the capacity of Piezo1
180 to indent the membrane and establishes a convoluted topology for the wider Piezo1
181 membrane footprint, to which the blades make an important contribution. Moreover, the
182 deepest point of the dome is on the pore region.

183 **The depth of the Piezo1 footprint varies with cholesterol concentration**

184 It is suggested that the dimensions of the Piezo1 footprint may affect the sensitivity of Piezo1
185 to mechanical stress (Haselwandter and MacKinnon, 2018). Changes in the percentage of
186 cholesterol are expected to affect the properties of the bilayer and in particular its curvature.
187 To determine whether membrane cholesterol concentration influences the dimensions of the
188 Piezo1 footprint, we performed further CG-MD simulations of Piezo1_{trunc} in a range of complex
189 bilayers with cholesterol concentrations of 0%, 5%, 10%, 30%, and 40%, and Piezo1_{full} in
190 cholesterol concentrations of 0%, 10%, 20%, and 30% (Supplementary Table 1). For each
191 cholesterol concentration, the depth of the Piezo1 footprint was analyzed using our script as
192 above (see Methods).

193 In the Piezo1_{trunc} system, the deepest footprint is observed at 0% cholesterol, with a secondary
194 peak at 30% cholesterol. The footprint is most shallow in between these peaks, at 10%
195 cholesterol. In the Piezo1_{full} system, the same reduction is observed between 0% and 10%
196 but unlike the Piezo1_{trunc} system the depth of the dome remains almost the same when
197 cholesterol concentration increases to 20% (Figure 3). Similar to the Piezo1_{trunc} system the
198 depth of the dome increases at 30% cholesterol. These data show that depth of the Piezo1
199 footprint varies non-linearly with cholesterol concentration, following an inverted unimodal
200 relationship with a minimum depth at 10% cholesterol for the Piezo1_{trunc} and 10 – 20%
201 cholesterol for Piezo1_{full}.


202

203 **Figure 3: The depth of the Piezo1 membrane dome varies with cholesterol**
204 **concentration.** Average depth of the Piezo1 membrane dome in the CG-MD simulation with
205 different membrane cholesterol concentrations. Systems and leaflets are indicated in the
206 figure legend.

207

208 **Changes of cholesterol concentration suppress Piezo1-dependent Ca_{2+} entry**

209 Ca_{2+} influx has been found to be an endogenous shear stress response of endothelial cells
210 that is dependent on Piezo1 (Li et al., 2014). Our simulations above suggest that cholesterol
211 concentration affects the depth of the Piezo1 footprint, possibly regulating its function
212 (Haselwandter and MacKinnon, 2018). To determine the effects of cholesterol we have
213 performed experiments with Yoda1 which is a Piezo1 channel agonist (Syeda et al., 2015).
214 To confirm an effect of Yoda1 on Piezo1 in human umbilical vein endothelial cells (HUVECs),
215 we tested the effect of Yoda1 on Ca_{2+} influx, with and without the presence of Piezo1 siRNA.
216 At a sub-maximal concentration, Yoda1 produced a large Ca_{2+} influx reaching a maximum at
217 90 seconds. This effect is suppressed by Piezo1 siRNA (Supplementary Figure 2).

218

219 **Figure 4: Cholesterol modulates Piezo1 responses to Yoda1 and mechanical activation.**
220 (A) Left, an example 96-well plate fura-2 measurement of the change in intracellular Ca^{2+}
221 concentration evoked by $1 \mu\text{M}$ Yoda1 in HUVECs pre-treated with 0 (control), 0.1, and 1 mM
222 cholesterol. Right, mean data for the average amplitude (at 275-300 seconds) of HUVEC
223 responses to Yoda1 with varying doses of cholesterol (0.005-1 mM) displayed as a Hill
224 Equation indicating the 50 % inhibitory effect (IC_{50}) at 0.04 mM. n/N=4/4. (B) Left, an example
225 96-well plate fura-2 measurement of the change in intracellular Ca^{2+} concentration evoked by
226 $1 \mu\text{M}$ Yoda1 in HUVECs pre-treated with 0 (control) and 1 mM M β CD. Right, mean data for
227 the average amplitude (at 275-300 seconds) of HUVEC responses to Yoda1 with varying
228 doses of M β CD (0-0.01 mM) displayed as a Hill Equation indicating the 50 % inhibitory effect
229 (IC_{50}) at 0.39 mM. n/N=4/4. (C) Left, mean data of peak amplitudes, taken between 125 –
230 250 seconds, of the response of Human Embryonic Kidney cells conditionally expressing
231 Piezo1 (P1 HEK T-Rex cells) to Yoda1 with varying doses of cholesterol (0.005 – 1 mM).
232 n/N=4/4. Right, mean data of peak amplitudes, taken between 125 – 250 seconds, of P1 HEK
233 T-Rex cell responses to Yoda1 with varying doses of M β CD (0.005 – 1mM). n/N=4/4. * = $P <$
234 0.05. (D) Recordings were made using outside-out patch configuration applied to mouse P1

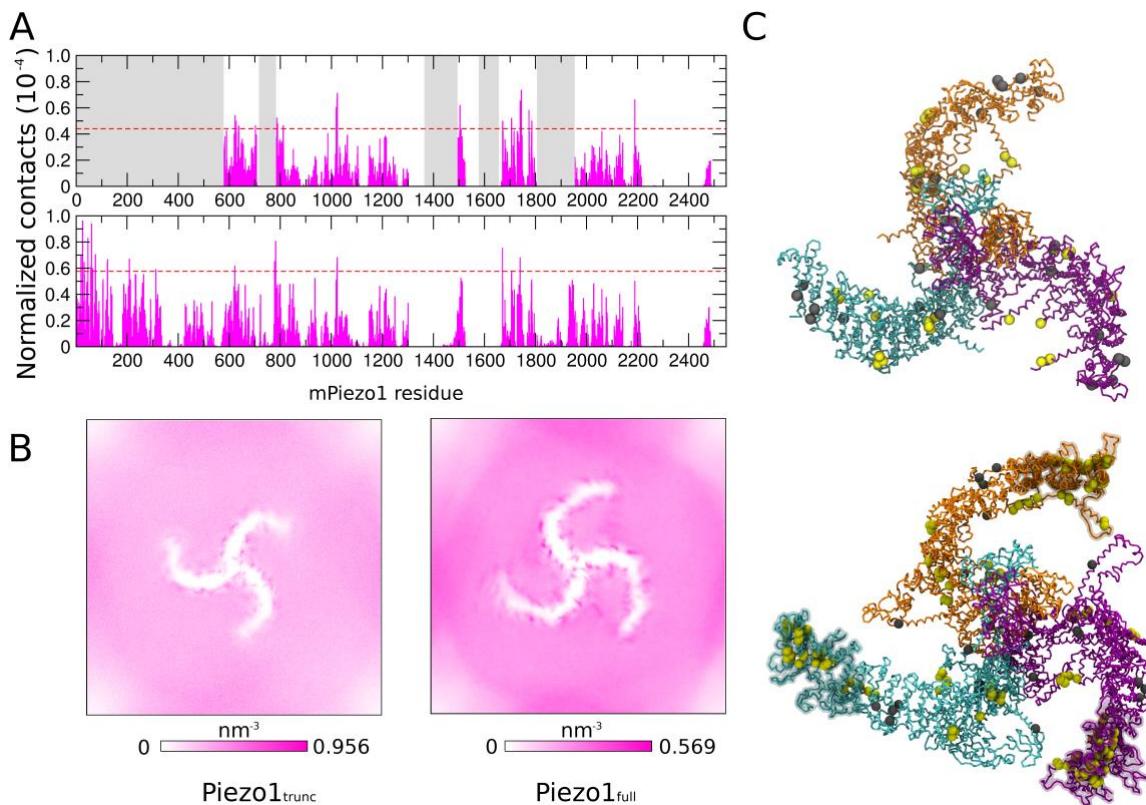
235 T-REx-293 cells. Currents were evoked by 200-ms positive pressure steps of 60 mmHg
236 applied to the patch pipette. The holding potential was -80 mV. Left, example current traces
237 recorded from two different patches pre-incubated with control solution (black trace) or solution
238 containing 0.1 mM cholesterol applied for 30 min at room temperature prior to recording (green
239 trace). Right, mean \pm s.d. of peak current for experiments of the type shown on the left, with
240 all original data points superimposed (n=5 for each group).

241

242 Treating HUVECs with exogenous cholesterol reduced Ca_{2+} influx in response to Yoda1
243 (Figure 4A, left). The IC_{50} of cholesterol was 0.04 mM (Figure 4A, right). However, due to its
244 limited solubility, higher concentrations of cholesterol were not tested which may have given
245 a more complete block of Yoda1 responses.

246 As the results above suggest that addition of cholesterol has an inhibitory effect on Piezo1
247 activity, the importance of endogenous cholesterol in HUVEC membranes was investigated.
248 This was achieved by chemically depleting membrane cholesterol using methyl- β -cyclodextrin
249 (M β CD), a cholesterol-binding compound. M β CD reduced the amplitude of Yoda1 responses
250 in HUVECs (Figure 4B, left). High concentrations of M β CD reduced the amplitude of Yoda1
251 responses in HUVECs with an IC_{50} of 0.39 mM (Figure 4B, right). M β CD concentrations in
252 excess of 1mM reduced cell attachment, compromising the quality of Ca_{2+} measurement data.
253 Negative controls treated with α cyclodextrin, a compound with similar structure to M β CD but
254 which does not bind cholesterol, showed no change in Yoda1 responses (Supplementary
255 Figure 3).

256 To clarify whether the effect of cholesterol on Piezo1 is an inherent property of the protein, or
257 due to the specific HUVEC environment, the effect of cholesterol on Yoda1 responses was
258 tested in an overexpression system. In T-Rex HEK 293 cells with conditional human Piezo1
259 expression (P1 HEK T-Rex), the addition of exogenous cholesterol, and removal of cholesterol
260 using M β CD, reduces the amplitude of Yoda1 responses in a manner echoing our
261 observations in HUVECs (Figure 4C).


262 As Yoda1 activation of Piezo1 is modulated by cholesterol, we sought to determine if
263 mechanical activation is similarly affected by cholesterol. In HEK 293 cells stably expressing
264 mouse Piezo1, to exactly match the model of mouse Piezo1, the addition of exogenous
265 cholesterol inhibits mechanically activated currents (Figure 4D).

266 Together, these results suggest a bimodal relationship between cholesterol concentration and
267 Piezo1 activity, where either addition or removal of cholesterol leads to a reduction in Piezo1
268 activity.

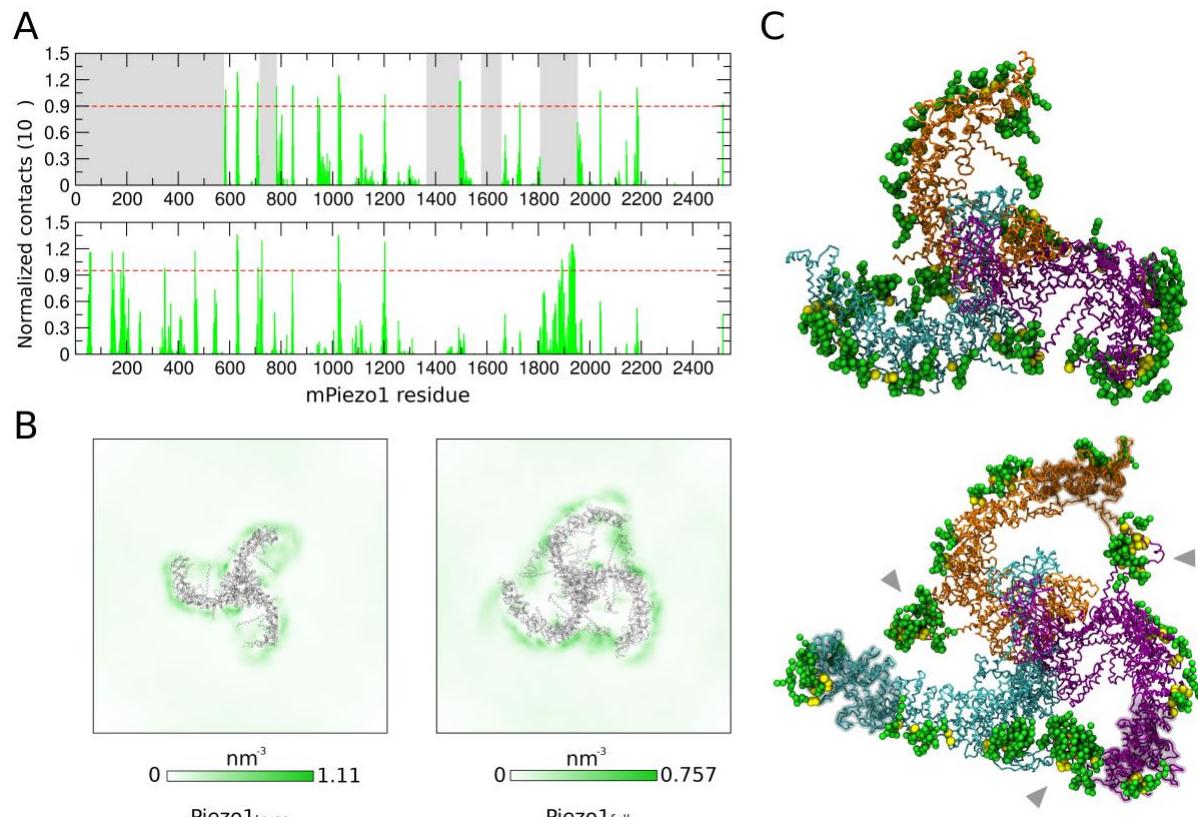
269 **Piezo1 interacts with cholesterol in a model bilayer**

270 To examine the interaction between cholesterol and Piezo1 in more detail, cholesterol density
271 and protein-cholesterol contacts were analyzed in our CG-MD simulations of Piezo1_{trunc} and
272 Piezo1_{full}. In our simulations, cholesterol clusters alongside structural regions, e.g. between
273 the helices TM30 and TM31, TM22 and TM27, and adjacent to TM15 (Figure 5A, B). Using
274 60% of maximum contacts as a cut-off, 64 Piezo1_{trunc} (Supplementary Table 2) and 62
275 Piezo1_{full} (Supplementary Table 3) residues have significant contacts with cholesterol in 1 or
276 more simulations. This regional clustering is observed across all cholesterol concentrations
277 tested (Supplementary Figure 4). The N-terminal region of Piezo1, which is not present in the
278 published structures, also makes significant interactions with cholesterol (Supplementary
279 Table 3).

280 CRAC and CARC consensus motifs are noted cholesterol-binding domains (Fantini and
281 Barrantes, 2013). To determine the relevance of these motifs to Piezo1-cholesterol
282 interactions, we searched for these motifs in the Piezo1 sequence (Supplementary Table 4).
283 19 CRAC and 40 CARC motifs were identified. Of these, 4 CRAC and 10 CARC sequences
284 overlap with residues with significant cholesterol interactions in either Piezo1_{full} or Piezo1_{trunc}
285 (Figure 5C, top, Supplementary Table 4).

286
287 **Figure 5: Piezo1 interactions with cholesterol in a complex model bilayer. (A)**
288 Normalized contacts between cholesterol and Piezo1_{trunc} (top) and Piezo1_{full} (bottom) in the
289 model bilayer containing 20% cholesterol. Normalization was done by dividing the number of
290 cholesterol contacts of each residue by the number of cholesterol molecules and total number
291 of frames analyzed. The greyed-out regions of the Piezo1_{trunc} plot represent residues absent
292 in Piezo1_{trunc}. Red dotted lines represent the cutoff of 60% of the contacts in each simulation.
293 **(B)** Two-dimensional density maps of cholesterol over 5 repeat simulations of CHOL20_{trunc} and
294 CHOL20_{full}, showing clustering of cholesterol along the Piezo1 blades. **(C)** Snapshots of
295 Piezo1_{trunc} (top) and Piezo1_{full} (bottom), with dynamic bonds between backbone residues
296 colored as in figure 1A. Cholesterol-interacting residues are displayed as yellow or grey
297 spheres. Residues in yellow made significant interactions with cholesterol. Residues in grey
298 spheres both made significant interactions with cholesterol and are part of CRAC/CARC
299 motifs. The modelled N-terminal regions of Piezo1_{full} are displayed as transparent surfaces

300


301 Predicted specific interaction of full-length Piezo1 with PIP₂

302 Lipid species other than cholesterol might also impact on Piezo1. For instance, phosphatidyl-
303 4,5-biphosphate (PIP₂), a minority membrane lipid, is an important regulator of ion channels
304 (Huang, 2007; Suh and Hille, 2008), including Piezo1 (Borbiro et al., 2015). The use of a
305 complex asymmetric bilayer (Supplementary Table 1) in our simulations allows us to also
306 examine the interactions of Piezo1 with other lipids. Interestingly, in our analysis, PIP₂ interacts
307 strongly with specific Piezo1 residues (Figure 6A). Across all simulations, there were 33
308 Piezo1_{trunc} residues (Supplementary Table 5) and 43 Piezo1_{full} residues (Supplementary Table

309 6) with contacts above the cutoff of 70% of the contacts in one or more systems. Of these, 17
310 are present in all Piezo1_{trunc} systems (Supplementary Table 5). 23 residues are over cutoff in
311 all Piezo1_{full} systems (Supplementary Table 6). These include missing loops and bundles that
312 have been modelled in Piezo1_{full}. 10 residues are above cutoff in all systems for both models
313 (R629, K630, R633, R844, R846, R1023, R1024, R1025, K1201, R1204). In simulations of
314 both Piezo1_{trunc} and Piezo1_{full}, PIP₂ lipids form an anionic annulus around Piezo1 in the inner
315 leaflet (Figure 6B). Similar specific PIP₂ clustering (Supplementary Figure 5) and annulus
316 formation (Supplementary Figure 6) is observed across all cholesterol concentrations tested.

317 Interestingly, the PIP₂ annulus around Piezo1_{full} differs significantly from that around
318 Piezo1_{trunc}. In Piezo1_{full} the PIP₂ clustering occurs at the interface between the helices that lie
319 in the plane of the inner leaflet, and the convex surface of the adjacent blade (Figure 6C,
320 bottom, grey arrows). There are regions of low PIP₂ density between the concavity of each
321 blade and the central core of Piezo1, which may be a consequence of PIP₂ being drawn
322 preferentially to the interfacial clusters (Figure 6B, right). This behavior of PIP₂ around
323 Piezo1_{full} is consistent across all cholesterol concentrations tested (Supplementary Figure 5)
324 and suggest that the presence of the N-terminal region of Piezo1 changes this shape of the
325 PIP₂ annulus around Piezo1.

326 Contact analysis of POPC (Supplementary Figure 7), POPE (Supplementary Figure 8), POPS
327 (Supplementary Figure 9), and sphingomyelin (SM) (Supplementary Figure 10) was
328 performed, as well as density mapping of all lipid species simulated (Supplementary Figure
329 5). We did not observe specific clustering or annulus formation for any lipid species other than
330 PIP₂.

331
332 **Figure 6: Piezo1 interactions with PIP₂ lipids.** (A) Normalized number of contacts between
333 PIP₂ and Piezo1_{trunc} (top) and Piezo1_{full} (bottom) in the CHOL20_{trunc} and CHOL20_{full}. Greyed
334 out regions represent residues absent in Piezo1_{trunc}. Red dotted lines represent the cutoff of
335 70% of the contacts in each simulation. (B) 2D density maps of PIP₂ lipids in CHOL20_{trunc} (left)

336 and CHOL20_{full} (right). **(C)** Snapshots from one of our CHOL20_{trunc} (top) or CHOL20_{full} (bottom) 337 simulations. The Piezo1 backbone are shown in the same colors as Figure 1A. Residues with 338 PIP₂ contacts exceeding the cutoff of 70% maximum contacts are displayed as yellow 339 spheres. PIP₂ lipids with head groups within 10 Å of the Piezo1 residues that forms significant 340 contacts with PIP₂ are displayed as green spheres. Grey arrows point to PIP₂ lipids clustering 341 at the interface between adjacent Piezo1_{full} blades.

342 DISCUSSION

343 In this study we model, for the first time, in molecular detail the Piezo1 full-length structure and 344 its membrane footprint. Although it has previously been suggested that in the inactive state 345 the Piezo1 N-terminal blades possibly flatten rather than continuing to curve (Guo and 346 MacKinnon, 2017), our approach of using the existing transmembrane bundles as a template 347 leads to a continuous curve in the modelled region. This result is supported by a recent cryo- 348 EM structure for the homologous mechanosensor Piezo2, in which the N-termini also continue 349 to curve (Wang et al., 2019). Comparison of our Piezo1_{full} model with the Piezo2 structure 350 shows that the overall structures are very similar (Supplementary Figure 1E). The N-terminal 351 region of the blades of the Piezo2 structure is more elevated relative to our Piezo1_{full} structure 352 (Supplementary Figure 1F), however the Piezo1 blades are highly flexible in response to force 353 (Lin et al., 2019), and the same is likely to be true of Piezo2. Therefore, differences between 354 these static structures may not represent dynamic differences *in vivo*.

355 Our results suggest that Piezo1 footprint has a trilobed topology with a dome facing into the 356 cytosolic region of Piezo1 that extends beyond the immediate vicinity of the protein. Uniquely, 357 our results also show that Piezo1 does not only change the membrane curvature around the 358 protein, but it also changes its local lipid environment by creating an anionic annulus in the 359 inner leaflet and by strong interactions with cholesterol. Interestingly, the full length Piezo1 360 structure alters this membrane footprint and its relationship with cholesterol, by increasing the 361 dome depth, by changing the profile of its peaks and troughs, and by modifying its interactions 362 with cholesterol and PIP₂. This hints that the N-terminal region plays a critical role in the 363 topology of the membrane surrounding Piezo1. Our results also provide novel insights into the 364 contribution of cholesterol to the depth of the dome created by Piezo1.

365 This unique Piezo1 footprint appears to be a long-range consequence of the immediate 366 membrane indentation induced by Piezo1. A study by Guo and Mackinnon (Guo and 367 MacKinnon, 2017) showed that the depth of the dome created by Piezo1 is ~6 nm. This is 368 consistent with the 6-7 nm seen in our simulations. We note that our results also suggest that 369 the depth of the dome in the full length Piezo1 is larger compared to the truncated, highlighting 370 the role of the N-terminal region of the blades in regulating the Piezo1 membrane deformation. 371 A wider perturbation of the membrane surrounding Piezo1 has also been hypothesized 372 (Haselwandter and MacKinnon, 2018) using mechanical calculation and approximating the 373 dome as a hemispherical dome. Our study shows that the Piezo1 footprint is far larger than 374 Piezo1 radius but for the first time suggests that it has a uniquely complex tri-lobed topology 375 with regions of varying curvature. This observation suggests that Piezo1 may be not only a 376 passive receptor of mechanical forces but could transmit physical effects at long range through 377 the membrane. This idea of Piezo1 applying force to the membrane while the membrane 378 applies force to the protein is supported by recent work from the MacKinnon and Scheuring 379 groups (Lin et al., 2019). The topology may also amplify Piezo1 tension sensitivity as 380 previously suggested (Guo and MacKinnon, 2017).

381 Membrane curvature is believed to be not just a consequence of cellular processes, but also 382 a generator of downstream effects including membrane scission, fusion, protein sorting, and 383 enzyme activation (Chang-Ileto et al., 2011; McMahon and Boucrot, 2015; McMahon and 384 Gallop, 2005; Reynwar et al., 2007). The complex topology of the Piezo1 footprint, with regions

385 of different height and curvature, raises intriguing possibilities regarding how Piezo1 could
386 interact with membrane protein partners. Stable regions of differential curvature in the
387 membrane might effectively function as coplanar compartments, with segregation of cellular
388 processes by curvature. Membrane tension could be expected to alter the curvature difference
389 between compartments, leading to alterations in protein aggregation (Reynwar et al., 2007) or
390 lipid signalling (Chang-Ileto et al., 2011). Hence, the complex Piezo1 footprint offers an
391 alternative pathway for Piezo1-dependent mechanotransduction, beyond its properties as an
392 ion channel. This possibility could be investigated using CG-MD simulation on a larger scale,
393 or experimentally with imaging techniques such as Förster Resonance Energy Transfer
394 (FRET) microscopy or Stochastic Optical Reconstruction Microscopy (STORM).

395 The Piezo1_{full} model offers unique insight into Piezo1 structure. The high mobility of the N-
396 terminal residues in our simulations (Figure 2) may explain why to date, it has been
397 challenging to resolve the structure of this region by cryo-EM (Guo and MacKinnon, 2017;
398 Saotome et al., 2018; Zhao et al., 2018). Comparison of the transmembrane region of the
399 Piezo1_{full} model with the transmembrane region of the homologue Piezo2 demonstrates that
400 the two proteins have a very similar shape.

401 Furthermore, compared to Piezo1_{trunc}, Piezo1_{full} changes the effect on membrane curvature,
402 modulates the effect of cholesterol on footprint depth, and alters predicted lipid interactions
403 with PIP₂ and cholesterol. These differences highlight the importance of the N-terminal region
404 that is currently missing from the current structure. Extension of the Piezo1 blades increases
405 the depth of the Piezo1_{full} footprint relative to Piezo1_{trunc} (Figures 2D and 3). This observation
406 couples Piezo1 blade configuration to local membrane curvature and supports the idea that
407 the blades create, as well as sense, membrane curvature. Additionally, the high degree of
408 mobility at the N-terminal ends of the blades may supports a model in which Piezo1-induced
409 curvature is dynamic and can change in response to force.

410 The Piezo1_{full} model also includes extended unstructured loops on the cytoplasmic region that
411 are also missing from the published structure (Figure 2A, red ribbons). Despite their lack of
412 secondary structure, these loops contain numerous charged residues, and may represent
413 hotspots for cytoskeletal interactions or post-translational modification (e.g., phosphorylation)
414 as has been previous suggested (Coste et al., 2015). There is evidence that cytoskeletal
415 interaction is important in modulating mechanogating of Piezo1, with removal of the
416 cytoskeleton leading to a decrease in the pressure required for channel opening (Cox et al.,
417 2016).

418 Our simulations suggest that membrane cholesterol composition regulates the dimensions of
419 the dome created by Piezo1, with dome depth converging on a minimum at 10% cholesterol
420 in the truncated version of Piezo1 and at 10% and 20% in the full-length model of Piezo1 and
421 increasing at smaller or greater cholesterol concentrations. Our experimental results are in
422 good agreement with this relationship, with Piezo1 channel activity at a peak in the native
423 cholesterol composition of HUVECs and diminishing as cholesterol is added or removed. At
424 this stage it is unclear how the native cholesterol concentration of the HUVEC plasma
425 membrane relates to the cholesterol concentrations used in our simulations. Published data
426 suggests that cholesterol comprises 21% of total HUVEC lipids (Murphy et al., 1992). Our
427 analysis suggests that some of the interactions of Piezo1 with cholesterol occur in CRAC and
428 CARC motifs. It should be noted, however, that less than half of the CRAC or CARC on Piezo1
429 had significant cholesterol interactions. This may be due to the fact that although the
430 interaction of CRAC and CARC motifs with cholesterol has been shown in a number of
431 systems (Fantini and Barrantes, 2013), their predictive value for cholesterol binding is limited
432 due to the loose definition of the consensus sequence (Palmer, 2004). Experimentally verifying

433 the predictive value of these motifs would require mutating multiple stretches of amino acids
434 in association with functional studies involving cholesterol. Such extensive changes could
435 potentially have substantial structural effects, which would make it challenging to interpret
436 results.

437 The ability of proteins to modify their local lipid environment has been described both
438 computationally (Corradi et al., 2018) and experimentally (Prabudiansyah et al., 2015).
439 Uniquely, in addition to its effect on local membrane curvature, Piezo1 changes its local lipid
440 environment, by forming an annulus of PIP₂ through strong preferential interaction. This is a
441 demonstration of how a curved ion channel changes its local membrane environment both in
442 terms of its lipid composition and of its topology. The PIP₂ annulus around Piezo1 could affect
443 PIP₂ signaling by creating a hotspot around Piezo1 or acting as a PIP₂ sink to prevent PIP₂
444 signaling further way. This is especially so for the Piezo1_{full} model, where there is a high
445 number of PIP₂ contacts with the modelled W1806 – A1951 loop and N-terminal residues.
446 Moreover, the annulus formed around Piezo1_{full} has the additional feature of crossing the
447 interface between blades of adjacent chains, as well as relatively depleting PIP₂ around the
448 Piezo1 core. The concentration of PIP₂ at the interface between Piezo1 blades may serve to
449 stabilize their position, and relative paucity of PIP₂ around the core may tune PIP₂ sensitivity
450 in this region to lower PIP₂ concentrations. One site which could be thus regulated is K2183.
451 This site is homologous to K2167 on human Piezo1, which is the site of an in-frame deletion,
452 hPiezo1 K2166-2169del, which causes dehydrated hereditary stomatocytosis (DHS) (Andolfo
453 et al., 2013). PIP₂ has been reported to regulate Piezo1 channel activity experimentally
454 (Borbiro et al., 2015). Our data raises the possibility that this mutation may cause DHS through
455 loss of PIP₂ regulation.

456 In summary, this study proposes a 3D structure for the full-length Piezo1 channel, which has
457 proven challenging to obtain experimentally. The full-length structure is critical when studying
458 Piezo1 as it modifies the unique footprint of Piezo1 in a lipid bilayer. Piezo1 unique footprint
459 has a unique trilobed topology with specific interactions with lipids e.g. PIP₂. The footprint and
460 Piezo1 function are modified by cholesterol, which could be important in atherosclerotic
461 disease, a process in which both cholesterol and endothelial shear stress sensing, which
462 Piezo1 contributes to, play a key role. Therefore, our findings suggest novel ways by which
463 Piezo1 could act as an integrator of mechanical responses in health and disease.

464 MATERIALS AND METHODS

465 Molecular modelling of Piezo1_{trunc}

466 Missing loops were modelled on the published mPiezo1 structure (PDB: 6B3R) (Guo and
467 MacKinnon, 2017) using Modeller (v9.19) (Šali and Blundell, 1993). Five models were
468 generated, and the best model selected using the discrete optimized protein energy (DOPE)
469 method (Shen and Sali, 2006). Loops which remained unstructured after modelling were
470 removed from the model before simulation. These loops were located at residues 718 – 781,
471 1366 – 1492, 1579 – 1654, and 1808 – 1951.

472 Molecular modelling of Piezo1_{full}

473 Structural data were obtained from the published cryo-EM structure (PDB: 6B3R). Missing
474 residues were added with MODELLER (v 9.19) and the loop refinement tool (Fiser et al., 2000)
475 was used to remove a knot in one chain between residues 1490-1498. The best model was
476 selected out of 10 candidates according to the DOPE method. In order to model the missing
477 3 N-terminal bundles from the template 6B3R (i.e. residues 1-576), we first carried out a
478 transmembrane and structural prediction using MEMSAT-SVM (Nugent and Jones, 2012) and
479 PSIPRED webserver (Buchan and Jones, 2019; Jones, 1999). As a structural template we
480 used the bundles 4-5-6 from a Piezo1 blade (i.e. residues 577-1129) in combination with

481 MODELLER. The PSI/TM-Coffee web tool in slow/accurate homology extension mode was
482 used to obtain the target-template alignment. The final target-template alignment was carefully
483 checked and manually modified to avoid fragmentation of secondary structure elements and
484 transmembrane helices. During modeling we imposed canonical α -helix conformations for the
485 residues 2-12, 97-103 and 183-189. The loop modeling routine of MODELLER (Fiser et al.,
486 2000) was used to remove a knot between residues 149-182 and 294-317 selecting the best
487 loop out of 5 according the DOPE score. The position of the obtained bundles 1-2-3 with
488 respect to the rest of the protein was obtained by superposing the bundle 3 to the bundle 4
489 from a single chain using UCSF Chimera (Pettersen et al., 2004). Subsequently, bundles 1-2-
490 3 were manually moved to avoid superposition. This procedure ensured that the new modeled
491 bundles 1-2-3 followed a similar direction of the partial Piezo1 blade resolved by cryo-EM. We
492 then used UCSF Chimera to impose canonical α -helix conformation to cytoplasmic residues
493 567-587, 747-752, 776-806, 1420-1424, 1437-1446, 1449-1468, 1632-1635, 1645-1650 and
494 1926-1968 as predicted by PSIPRED. This full-length Piezo1 chain was superposed to the
495 others in 6B3R using UCSF Chimera obtaining the trimeric Piezo1 structure. The Piezo1 full-
496 length model obtained was energy minimized in vacuum with GROMACS 5.0.7 (Abraham et
497 al., 2015) prior simulations.

498 **Coarse-grained simulations.**

499 The Piezo1 models obtained were converted to a coarse-grained resolution using the
500 *martinize* script (De Jong et al., 2012) and further energy minimized in vacuum with
501 GROMACS 5.0.7. The CG-MD simulations were performed using the Martini 2.2 force field
502 (De Jong et al., 2012) and GROMACS 5.0.7. To model the protein secondary and tertiary
503 structure an elastic network model with a cut-off distance of 7 Å was used. The elastic network
504 restricts any major conformational change within the protein during the CG-MD simulations.
505 For the equilibration simulation Piezo1 models were inserted in a complex asymmetric bilayer
506 using the INSert membrANE tool (Wassenaar et al., 2015). The system compositions are
507 described in Supplementary Table 1. All systems were initially assembled in a simulation box
508 of size $44 \times 44 \times 24$ nm. The systems were neutralized with a 150 mM concentration of NaCl.
509 The models were further energy minimized and subsequently equilibrated with the protein
510 particles restrained (1000 $\text{kJmol}^{-1}\text{nm}^{-2}$) to allow the membrane bilayer to equilibrate around
511 the model. Equilibration time was 500 ns for Piezo1_{full}, 100 ns for Piezo1_{trunc}. These long CG-
512 MD equilibration steps were essential to equilibrate the lipid bilayer around Piezo1 and
513 reconstitute the dome previously hypothesized (Guo and MacKinnon, 2017). All simulations
514 were performed at 323 K, with protein, lipids and solvent separately coupled to an external
515 bath using the V-rescale thermostat (Bussi et al., 2007) (coupling constant of 1.0). Pressure
516 was maintained at 1 bar (coupling constant of 1.0) with semi-isotropic conditions and
517 compressibility of 3×10^{-6} using the Berendsen barostat (Berendsen et al., 1984) during
518 equilibrations and the Parrinello-Rahman barostat (Parrinello and Rahman, 1981) during
519 productions. Lennard-Jones and Coulombic interactions were shifted to zero between 9 and
520 12 Å, and between 0 and 12 Å, respectively. After the equilibration phase of the Piezo1 full-
521 length, we removed lipid molecules that flipped between leaflets in order to restore the
522 membrane asymmetry. After this step, the systems were further energy minimized and when
523 applicable, neutralized with counterions. A preliminary run of 5 ns using an integration step of
524 10 fs was carried out prior the production phase. For each Piezo1 model five unrestrained
525 repeat simulations of 3 μ s each were run using an integration step of 20 fs.

526 **Piezo1 footprint depth analysis**

527 A Python script was written to measure the depth of the Piezo1 dome. First, the simulation
528 trajectory is fitted to the protein coordinates using the GROMACS tool gmx trjconv. The
529 coordinates of CG phosphate head group residues in each frame of the fitted trajectory are
530 extracted by a Python script which performs the following analysis. The phosphate atoms are

531 then used to separate the bilayer leaflets bilayers using a branching network algorithm. Briefly,
532 this method starts with a single particle, and identifies the other head group particles which
533 are within a cutoff distance (2 nm) of the starting residue. The cutoff distance is selected to be
534 smaller than the separation between the bilayer leaflets. Head group particles identified in this
535 way are added to the same leaflet as the starting residue. This process iterates repeatedly
536 until no more new particles can be added, and remaining residues are assumed to be part of
537 the other leaflet. The process is then repeated starting in the other leaflet to confirm that the
538 leaflet identification is correct.

539 For each leaflet, the depth of the dome is calculated as the difference between the surface
540 level and the bottom of the dome. The surface level is taken to be the average z-coordinate
541 for the head group residues with z-coordinate in excess of the 90th centile. The average is
542 used here to minimise the effect of random fluctuation of the membrane. For the bottom of the
543 dome, the z-coordinate of the head group residue with the absolute lowest z-coordinate is
544 used. This is because the bottom of the dome is prone to far less fluctuation, being fixed to
545 Piezo1, which in turn is the fitting reference for the rest of the simulation.

546 To generate the height map of the bilayer leaflets, for each frame, CG phosphate beads were
547 binned along the x and y axes; 75 bins for each axis. The average z-coordinate of beads
548 contained in each bin was calculated and stored in a matrix for each frame. The matrices of
549 all frames are averaged to create the final height map, which is plotted using the PyPlot library.

550 Code used is available at: <https://github.com/jiehanchong/membrane-depth-analysis>

551 **Analysis of protein and lipid density**

552 The repeat simulations for each system were concatenated and fitted to the Piezo1 pore
553 (residues 2105-2547). gmx densmap from the GROMACS package was used to generate 2-
554 dimensional density map for protein and individual lipid species, with summation of density
555 along the z-axis.

556 **Analysis of protein-lipid contacts**

557 All 5 repeat simulations were concatenated for each system. Contact between CG lipid head
558 group beads and protein beads were calculated using gmx mindist from the GROMACS
559 package. The results were checked to ensure consistent results between each chain in the
560 trimer. The contacts for individual Piezo1 chains were added together. Data was plotted using
561 Grace (<http://plasma-gate.weiz-mann.ac.il/Grace/>).

562 **Cell culture**

563 HUVECs were purchased from Lonza and cultured in Endothelial Cell Basal Medium (EBM-
564 2) supplemented with 2% fetal calf serum (Sigma) and the following growth factors: 10 ng.ml-
565 1 vascular endothelial growth factor, 5 ng.ml-1 human basic fibroblast growth factor, 1 µg.ml-1
566 hydrocortisone, 50 ng.ml-1 gentamicin, 50 ng.ml-1 amphotericin B, and 10 µg.ml-1 heparin.
567 These growth factors were supplied as a bullet kit (Cell Media and Bullet Kit, Lonza). HUVECs
568 were passaged 2-6 times.

569 HEK 293 cells stably expressing human Piezo1 (P1) under a tetracycline inducible promoter
570 or stably expressing mouse Piezo1 without need for tetracycline induction were utilised. Cells
571 used for Yoda1 experiments were cultured in Dulbecco's modified Eagle's medium-F12
572 GlutaMAX (Invitrogen, Paisley, UK). Cells used in patch clamp experiments were cultured in
573 Dulbecco's Modified Eagle's medium (Invitrogen). All HEK cell culture media were
574 supplemented with 10% foetal calf serum (Sigma) and 1% Pen/Strep (Sigma-Aldrich). For
575 patch clamp experiments, the cells were plated on poly-lysine-coated coverslips in bath
576 solution (see Patch-clamp recording) 1 hr before experiments.

577 All cells were maintained at 37 °C in a humidified atmosphere containing 5 % CO₂.

578 **Short interfering (si) RNAs**

579 HUVECs were transfected at 90 % confluence with 50 nM siRNA using Lipofectamine 2000
580 in OptiMEM (Gibco) as per the manufacturer's instructions (Invitrogen). Medium was replaced
581 after 3-4 hr and cells were used for experimentation 48 hr post transfection. siRNA was
582 provided from Ambion. The sequence for Piezo1 is GCCUCGUGGUCUACAAGAUtt.
583 Scrambled negative control siRNA provided by Ambion was used as a control.

584 **Intracellular Ca₂₊ measurement**

585 Cells were incubated with fura-2AM (2 µM) (Thermo Fisher Scientific) for 60 min at 37 °C
586 followed by a 30 min wash at room temperature. All cholesterol treatments were added prior
587 to the 30 min wash, for 30 min at 37 °C, and were present during Ca₂₊-measurements.
588 Measurements were made at room temperature on a 96-well plate reader (FlexStation,
589 Molecular Devices) or a Zeiss Axiovert fluorescent microscope equipped with x20 (NA 0.75)
590 Fluar objective. The change (Δ) in intracellular Ca₂₊ concentration was indicated as the ratio
591 of fura-2 emission (510 nm) intensities for 340 nm and 380 nm excitation (F340/380). The
592 recording solution (standard bath solution, SBS) contained (mM): 130 NaCl, 5 KCl, 8 D-
593 glucose, 10 HEPES, 1.2 MgCl₂, 1.5 CaCl₂, titrated to pH 7.4 with NaOH.

594 **Cholesterol treatment**

595 Water soluble cholesterol in poly(ethylene glycol) [PEG]-600, cholesterol in complex with
596 methyl β cyclodextrin (cholesterol at 40mg/g), methyl β cyclodextrin were purchased from
597 Sigma. Cells were incubated with cholesterol enriching or depleting agents for 30 minutes,
598 37°C, 0% CO₂ in SBS.

599 **Chemical reagents**

600 Yoda1 (Tocris) was prepared in stocks at 10 mM in DMSO (Sigma).

601 **Patch-clamp recording**

602 Macroscopic membrane currents through outside-out patches were recorded using standard
603 patch-clamp technique in voltage-clamp mode at room temperature (21-23 °C). The holding
604 voltage was -80 mV. Patch pipettes were fire-polished and had resistance of 4–7MΩ when
605 filled with pipette solution. The bath and pipette solutions were identical and contained (in
606 mM): NaCl 140, HEPES 10 and EGTA 5 (pH 7.4, NaOH). Recordings were made using an
607 Axopatch-200B amplifier (Axon Instruments, Inc., USA) equipped with Digidata 1550B and
608 pClamp 10.6 software (Molecular Devices, USA). Pressure steps of 200-ms duration were
609 applied to the patch pipette using a High Speed Pressure Clamp HSPC-1 System (ALA
610 Scientific Instruments, USA). Current records were analogue filtered at 1 kHz and digitally
611 sampled at 5 kHz.

612 **Statistical analysis**

613 The study was aimed at discovering components of a biological mechanism using various
614 cell/molecular studies to address a single hypothesis. In the absence of prior knowledge of
615 the mechanism, power calculations were not considered to be applicable. We selected
616 numbers of independent repeats of experiments base on prior experience of studies of this
617 type. In all cases the number of independent repeats was at least 4.

618 For Yoda1 experiments, OriginPro 9.1 was used for data analysis and graph production.
619 Averaged data are presented as mean±s.e.mean.

620 For patch clamp experiments, data were analysed and plotted using pClamp 10.6 and
621 MicroCal Origin 2018 (OriginLab Corporation, USA). Averaged data are presented as
622 mean±s.d.mean.

623 For both sets of experiments, most data were produced in pairs (test and control) and these
624 data pairs were compared statistically using *t* tests. One-way ANOVA followed by Tukey
625 posthoc test was used for comparing multiple groups. Statistically significant difference is
626 indicated by * ($P<0.05$) and no significant difference by NS ($P>0.05$). The number of
627 independent experiments is indicated by n.

628 Outlying data were not detected or excluded. The number of replicates per independent
629 experiment was 4 for Ca^{2+} assays and 1 for patch-clamp assays.

630

631 **ACKNOWLEDGEMENTS**

632 JC is funded by an MRC Clinical Research Training Fellowship, DJB by a Wellcome Trust
633 Investigator Award, AJH by a BBSRC PhD Studentship, JS by a BHF Intermediate Basic
634 Science Research Fellowship, and ACK and DDV by an Academy of Medical Sciences and
635 Wellcome Trust Springboard Award.

636 **COMPETING INTERESTS**

637 We have no competing interests to report.

638 **REFERENCES**

639 Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E. 2015. Gromacs: High
640 performance molecular simulations through multi-level parallelism from laptops to
641 supercomputers. *SoftwareX* **1–2**:19–25. doi:10.1016/j.softx.2015.06.001

642 Albuission J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, Fénéant-Thibault
643 M, Tertian G, De Jaureguiberry JP, Syfuss PY, Cahalan S, Garçon L, Toutain F, Simon
644 Rohrlich P, Delaunay J, Picard V, Jeunemaitre X, Patapoutian A. 2013. Dehydrated
645 hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated
646 PIEZO1 ion channels. *Nat Commun* **4**:1884. doi:10.1038/ncomms2899

647 Andolfo I, Alper SL, De Franceschi LD, Auriemma C, Russo R, De Falco LD, Vallefuoco F,
648 Esposito MR, Vandorpe DH, Shmukler BE, Narayan R, Montanaro D, D'Armiento M,
649 Vetro A, Limongelli I, Zuffardi O, Glader BE, Schrier SL, Brugnara C, Stewart GW,
650 Delaunay J, Iolascon A. 2013. Multiple clinical forms of dehydrated hereditary
651 stomatocytosis arise from mutations in PIEZO1. *Blood* **121**:3925–3935.
652 doi:10.1182/blood-2013-02-482489

653 Bae C, Gnanasambandam R, Nicolai C, Sachs F, Gottlieb PA. 2013. Xerocytosis is caused
654 by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. *Proc Natl
655 Acad Sci* **110**:E1162–E1168. doi:10.1073/pnas.1219777110

656 Balut C, Steels P, Radu M, Ameloot M, Driessche W Van, Jans D. 2005. Membrane
657 cholesterol extraction decreases Na^+ transport in A6 renal epithelia. *Am J Physiol
658 Physiol* **290**:C87–C94. doi:10.1152/ajpcell.00184.2005

659 Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR. 1984. Molecular
660 dynamics with coupling to an external bath. *J Chem Phys* **81**:3684–3690.
661 doi:10.1063/1.448118

662 Bergdahl A, Gomez MF, Dreja K, Xu S-Z, Adner M, Beech DJ, Broman J, Hellstrand P, Swärd
663 K. 2003. Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing
664 store-operated Ca^{2+} entry dependent on TRPC1. *Circ Res* **93**:839–47.
665 doi:10.1161/01.RES.0000100367.45446.A3

666 Borbiro I, Badheka D, Rohacs T. 2015. Activation of TRPV1 channels inhibits
667 mechanosensitive piezo channel activity by depleting membrane phosphoinositides. *Sci*

668 *Signal* **8**:ra15. doi:10.1126/scisignal.2005667

669 Buchan DWA, Jones DT. 2019. The PSIPRED Protein Analysis Workbench: 20 years on.
670 *Nucleic Acids Res.* doi:10.1093/nar/gkz297

671 Bussi G, Donadio D, Parrinello M. 2007. Canonical sampling through velocity rescaling. *J
672 Chem Phys* **126**:014101. doi:10.1063/1.2408420

673 Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. 2015. Piezo1 links
674 mechanical forces to red blood cell volume. *Elife* **4**. doi:10.7554/elife.07370

675 Chang-Ileto B, Frere SG, Chan RB, Voronov S V., Roux A, Di Paolo G. 2011. Synaptotjanin 1-
676 Mediated PI(4,5)P₂ Hydrolysis Is Modulated by Membrane Curvature and Facilitates
677 Membrane Fission. *Dev Cell* **20**:206–218. doi:10.1016/j.devcel.2010.12.008

678 Choi D, Park E, Jung E, Cha B, Lee Somin, Yu J, Kim PM, Lee Sunju, Hong YJ, Koh CJ, Cho
679 C-W, Wu Y, Li Jeon N, Wong AK, Shin L, Kumar SR, Bermejo-Moreno I, Srinivasan RS,
680 Cho I-T, Hong Y-K. 2019. Piezo1 incorporates mechanical force signals into the genetic
681 program that governs lymphatic valve development and maintenance. *JCI Insight* **4**.
682 doi:10.1172/jci.insight.125068

683 Chubinskiy-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. 2011. Cholesterol depletion-
684 induced inhibition of stretch-activated channels is mediated via actin rearrangement.
685 *Biochem Biophys Res Commun* **412**:80–85. doi:10.1016/j.bbrc.2011.07.046

686 Conrard L, Stommen A, Cloos AS, Steinkühler J, Dimova R, Pollet H, Tyteca D. 2018. Spatial
687 relationship and functional relevance of three lipid domain populations at the erythrocyte
688 surface. *Cell Physiol Biochem* **51**:1544–1565. doi:10.1159/000495645

689 Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, Moussatova A,
690 Degagné LJ, Sejdiu BI, Singh G, Wassenaar TA, Delgado Magnero K, Marrink SJ,
691 Tieleman DP. 2018. Lipid-Protein Interactions Are Unique Fingerprints for Membrane
692 Proteins. *ACS Cent Sci* **4**:709–717. doi:10.1021/acscentsci.8b00143

693 Coste B, Murthy SE, Mathur J, Schmidt M, Mechtioukhi Y, Delmas P, Patapoutian A. 2015.
694 Piezo1 ion channel pore properties are dictated by C-terminal region. *Nat Commun*
695 **6**:7223. doi:10.1038/ncomms8223

696 Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng CA, Sachs F,
697 Gottlieb PA, Martinac B. 2016. Removal of the mechanoprotective influence of the
698 cytoskeleton reveals PIEZO1 is gated by bilayer tension. *Nat Commun* **7**:10366.
699 doi:10.1038/ncomms10366

700 De Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer L V., Periole X,
701 Tieleman DP, Marrink SJ, Drew Bennett WF, Arnarez C, Wassenaar TA, Schäfer L V.,
702 Periole X, Peter D, Marrink SJ. 2012. Improved Parameters for the Martini Coarse-
703 Grained Protein Force Field. *J Chem Theory Comput* **9**:687–697. doi:10.1021/ct300646g

704 Derler I, Jardin I, Stathopoulos PB, Muik M, Fahrner M, Zayats V, Pandey SK, Poteser M,
705 Lackner B, Absolonova M, Schindl R, Groschner K, Ettrich RR, Ikura M, Romanin C.
706 2016. Cholesterol modulates Orai1 channel function. *Sci Signal* **9**:ra10.
707 doi:10.1126/scisignal.aad7808]

708 Fantini J, Barrantes FJ. 2013. How cholesterol interacts with membrane proteins: An
709 exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. *Front
710 Physiol.* doi:10.3389/fphys.2013.00031

711 Fiser A, Do RKG, Šali A. 2000. Modeling of loops in protein structures. *Protein Sci* **9**:1753–
712 1773. doi:10.1110/ps.9.9.1753

713 Fotiou E, Martin-Almedina S, Simpson MA, Lin S, Gordon K, Brice G, Atton G, Jeffery I, Rees
714 DC, Mignot C, Vogt J, Homfray T, Snyder MP, Rockson SG, Jeffery S, Mortimer PS,
715 Mansour S, Ostergaard P. 2015. Novel mutations in *PIEZ01* cause an autosomal
716 recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. *Nat
717 Commun* **6**:8085. doi:10.1038/ncomms9085

718 Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. 2015. Architecture of
719 the mammalian mechanosensitive Piezo1 channel. *Nature* **527**:64–69.
720 doi:10.1038/nature15247

721 Guo YRYR, MacKinnon R. 2017. Structure-based membrane dome mechanism for Piezo
722 mechanosensitivity. *Elife* **6**:e33660. doi:10.7554/elife.33660

723 Hajdú P, Varga Z, Pieri C, Panyi G, Gáspár R. 2003. Cholesterol modifies the gating of Kv1.3
724 in human T lymphocytes. *Pflügers Arch Eur J Physiol* **445**:674–682. doi:10.1007/s00424-
725 002-0974-y

726 Haselwandter CA, MacKinnon R. 2018. Piezo's membrane footprint and its contribution to
727 mechanosensitivity. *Elife* **7**:e41968. doi:10.7554/elife.41968

728 Huang C-L. 2007. Complex roles of PIP₂ in the regulation of ion channels and transporters.
729 *Am J Physiol Physiol* **293**:F1761–F1765. doi:10.1152/ajprenal.00400.2007

730 Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring
731 matrices. *J Mol Biol* **292**:195–202. doi:10.1006/jmbi.1999.3091

732 Lewis AH, Grandl J. 2015. Mechanical sensitivity of Piezo1 ion channels can be tuned by
733 cellular membrane tension. *Elife* **4**:e12088. doi:10.7554/elife.12088

734 Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L,
735 Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z,
736 Carter DAL, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad KR,
737 Evans PC, Ainscough JFX, Beech DJ. 2014. Piezo1 integration of vascular architecture
738 with physiological force. *Nature* **515**:279–282. doi:10.1038/nature13701

739 Lin Y-C, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. 2019. Force-induced
740 conformational changes in PIEZO1. *Nature* 1–5. doi:10.1038/s41586-019-1499-2

741 Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, Kim HJ, Bandell M,
742 Longo N, Day RW, Stevenson DA, Patapoutian A, Krock BL. 2015. Impaired PIEZO1
743 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. *Nat
744 Commun* **6**. doi:10.1038/ncomms9329

745 Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C, Picard N, Kurt B, Patel A, Honoré E,
746 Demolombe S. 2016. Piezo1-dependent regulation of urinary osmolarity. *Pflügers Arch -
747 Eur J Physiol* **468**:1197–1206. doi:10.1007/s00424-016-1811-z

748 McMahon HT, Boucrot E. 2015. Membrane curvature at a glance. *J Cell Sci* **128**:1065–1070.
749 doi:10.1242/jcs.114454

750 McMahon HT, Gallop JL. 2005. Membrane curvature and mechanisms of dynamic cell
751 membrane remodelling. *Nature* **438**:590–596. doi:10.1038/nature04396

752 Medow MS, Intrieri L, Moatter T, Gerritsen ME. 1989. Dexamethasone effects on
753 microvascular endothelial cell lipid composition. *Am J Physiol - Cell Physiol* **257**:C512–
754 C519. doi:10.1152/ajpcell.1989.257.3.C512

755 Morachevskaya E, Sudarikova A, Negulyaev Y. 2007. Mechanosensitive channel activity and
756 F-actin organization in cholesterol-depleted human leukaemia cells. *Cell Biol Int* **31**:374–
757 381. doi:10.1016/j.cellbi.2007.01.024

758 Murphy EJ, Joseph L, Stephens R, Horrocks LA. 1992. Phospholipid composition of cultured
759 human endothelial cells. *Lipids* **27**:150–153. doi:10.1007/BF02535816

760 Needham D, Nunn RS. 1990. Elastic deformation and failure of lipid bilayer membranes
761 containing cholesterol. *Biophys J* **58**:997–1009. doi:10.1016/S0006-3495(90)82444-9

762 Nonomura K, Lukacs V, Sweet DT, Goddard LM, Kanie A, Whitwam T, Ranade SS, Fujimori
763 T, Kahn ML, Patapoutian A. 2018. Mechanically activated ion channel PIEZO1 is required
764 for lymphatic valve formation. *Proc Natl Acad Sci* **115**:12817–12822.
765 doi:10.1073/pnas.1817070115

766 Nugent T, Jones DT. 2012. Detecting pore-lining regions in transmembrane protein
767 sequences. *BMC Bioinformatics* **13**:169. doi:10.1186/1471-2105-13-169

768 Palmer M. 2004. Cholesterol and the activity of bacterial toxins. *FEMS Microbiol Lett.*
769 doi:10.1016/j.femsle.2004.07.059

770 Parrinello M, Rahman A. 1981. Polymorphic transitions in single crystals: A new molecular
771 dynamics method. *J Appl Phys* **52**:7182–7190. doi:10.1063/1.328693

772 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004.
773 UCSF Chimera - A visualization system for exploratory research and analysis. *J Comput
774 Chem* **25**:1605–1612. doi:10.1002/jcc.20084

775 Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR. 2014. Tuning Piezo ion channels to detect
776 molecular-scale movements relevant for fine touch. *Nat Commun* **5**:3520.
777 doi:10.1038/ncomms4520

778 Prabudiansyah I, Kusters I, Caforio A, Driessens AJM. 2015. Characterization of the annular
779 lipid shell of the Sec translocon. *Biochim Biophys Acta - Biomembr* **1848**:2050–2056.
780 doi:10.1016/J.BBAMEM.2015.06.024

781 Qi Y, Andolfi L, Frattini F, Mayer F, Lazzarino M, Hu J. 2015. Membrane stiffening by STOML3
782 facilitates mechanosensation in sensory neurons. *Nat Commun* **6**:8512.
783 doi:10.1038/ncomms9512

784 Ranade SS, Qiu Z, Woo S-H, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M,
785 Coste B, Li Y-SJ, Chien S, Patapoutian A. 2014. Piezo1, a mechanically activated ion
786 channel, is required for vascular development in mice. *Proc Natl Acad Sci* **111**:10347–
787 10352. doi:10.1073/pnas.1409233111

788 Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C,
789 Offermanns S, Feng Y, Demolombe S, Patel A, Honoré E. 2015. Piezo1 in Smooth
790 Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. *Cell Rep*
791 **13**:1161–1171. doi:10.1016/j.celrep.2015.09.072

792 Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M. 2007. Aggregation
793 and vesiculation of membrane proteins by curvature-mediated interactions. *Nature*
794 **447**:461–464. doi:10.1038/nature05840

795 Ridone P, Pandzic E, Vassalli M, Cox CD, Macmillan A, Gottlieb PAA, Martinac B. 2019.
796 Disruption of membrane cholesterol organization impairs the concerted activity of
797 PIEZO1 channel clusters, bioRxiv. Biophysics. doi:<https://doi.org/10.1101/604488>

798 Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ, Lotteau SJ, Bailey MA, Yuldasheva NY,
799 Ludlow MJ, Cubbon RM, Li J, Futers TS, Morley L, Gaunt HJ, Marszalek K,
800 Viswambharan H, Cuthbertson K, Baxter PD, Foster R, Sukumar P, Weightman A,
801 Calaghan SC, Wheatcroft SB, Kearney MT, Beech DJ. 2017. Piezo1 channels sense
802 whole body physical activity to reset cardiovascular homeostasis and enhance
803 performance. *Nat Commun* **8**:1. doi:10.1038/s41467-017-00429-3

804 Romanenko VG, Rothblat GH, Levitan I. 2002. Modulation of endothelial inward-rectifier K⁺
805 current by optical isomers of cholesterol. *Biophys J* **83**:3211–3222. doi:10.1016/S0006-
806 3495(02)75323-X

807 Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales
808 JF, Vásquez V. 2019. Dietary fatty acids fine-tune Piezo1 mechanical response. *Nat
809 Commun* **10**:1–14. doi:10.1038/s41467-019-09055-7

810 Rosenhouse-Dantsker A, Mehta D, Levitan I. 2012. Regulation of ion channels by membrane
811 lipids *Comprehensive Physiology*. Hoboken, NJ, USA: John Wiley & Sons, Inc. pp. 31–
812 68. doi:10.1002/cphy.c110001

813 Šali A, Blundell TL. 1993. Comparative Protein Modelling by Satisfaction of Spatial Restraints.
814 *J Mol Biol* **234**:779–815. doi:10.1006/jmbi.1993.1626

815 Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. 2018. Structure
816 of the mechanically activated ion channel Piezo1. *Nature* **554**:481–486.
817 doi:10.1038/nature25453

818 Segel M, Neumann B, Hill MFE, Weber IP, Visconti C, Zhao C, Young A, Agley CC, Thompson
819 AJ, Gonzalez GA, Sharma A, Holmqvist S, Rowitch DH, Franze K, Franklin RJM, Chalut
820 KJ. 2019. Niche stiffness underlies the ageing of central nervous system progenitor cells.
821 *Nature* 1–5. doi:10.1038/s41586-019-1484-9

822 Shen M, Sali A. 2006. Statistical potential for assessment and prediction of protein structures.
823 *Protein Sci* **15**:2507–2524. doi:10.1110/ps.062416606

824 Suh B-C, Hille B. 2008. PIP₂ Is a Necessary Cofactor for Ion Channel Function: How and
825 Why? *Annu Rev Biophys* **37**:175–195. doi:10.1146/annurev.biophys.37.032807.125859

826 Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B, Patapoutian A. 2016.
827 Piezo1 Channels Are Inherently Mechanosensitive. *Cell Rep* **17**:1739–1746.
828 doi:10.1016/j.celrep.2016.10.033

829 Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, Matzen J, Lao J, Tully DC, Engels IH,
830 Michael Petraschi H, Schumacher AM, Montal M, Bandell M, Patapoutian A. 2015.
831 Chemical activation of the mechanotransduction channel Piezo1. *eLife* **4**.
832 doi:10.7554/eLife.07369

833 Takamura H, Kasai H, Arita H, Kito M. 1990. Phospholipid molecular species in human
834 umbilical artery and vein endothelial cells. *J Lipid Res* **31**:709–717.

835 Wang L, Zhou H, Zhang M, Liu W, Deng T, Zhao Q, Li Y, Lei J, Li X, Xiao B. 2019. Structure
836 and mechanogating of the mammalian tactile channel PIEZO2. *Nature* 1–5.
837 doi:10.1038/s41586-019-1505-8

838 Wassenaar TA, Ingólfsson HI, Böckmann RA, Tielemans DP, Marrink SJ. 2015. Computational
839 lipidomics with insane: A versatile tool for generating custom membranes for molecular
840 simulations. *J Chem Theory Comput* **11**:2144–2155. doi:10.1021/acs.jctc.5b00209

841 Wu C-CC, Su M-JJ, Chi J-FF, Chen W-JJ, Hsu H-CC, Lee Y-TT. 1995. The effect of
842 hypercholesterolemia on the sodium inward currents in cardiac myocyte. *J Mol Cell
843 Cardiol* **27**:1263–1269. doi:10.1016/S0022-2828(05)82388-0

844 Wu J, Goyal R, Grandl J. 2016. Localized force application reveals mechanically sensitive
845 domains of Piezo1. *Nat Commun* **7**:12939. doi:10.1038/ncomms12939

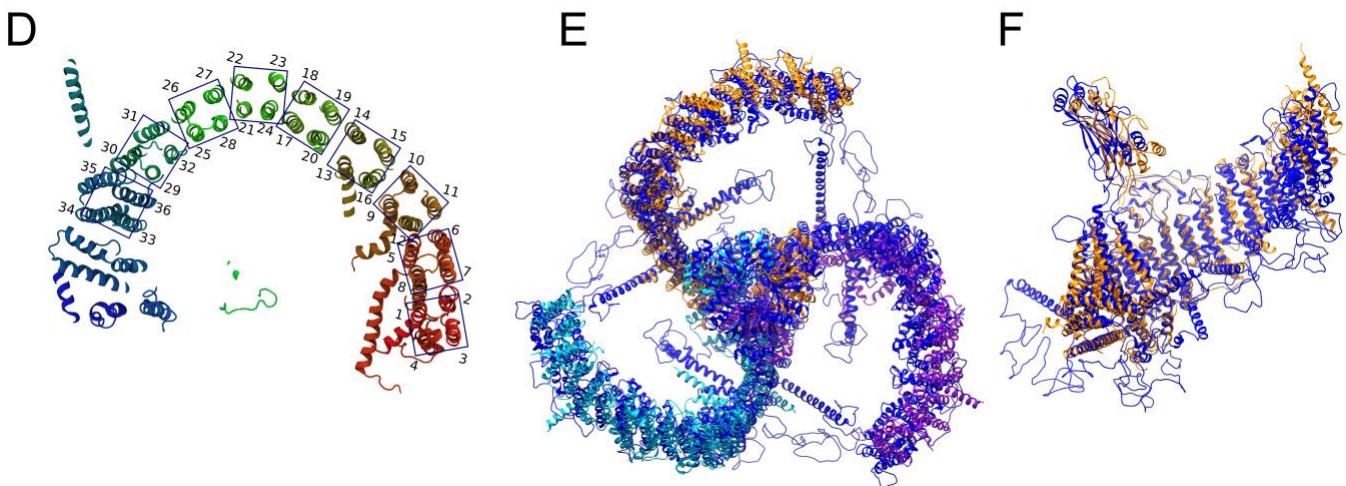
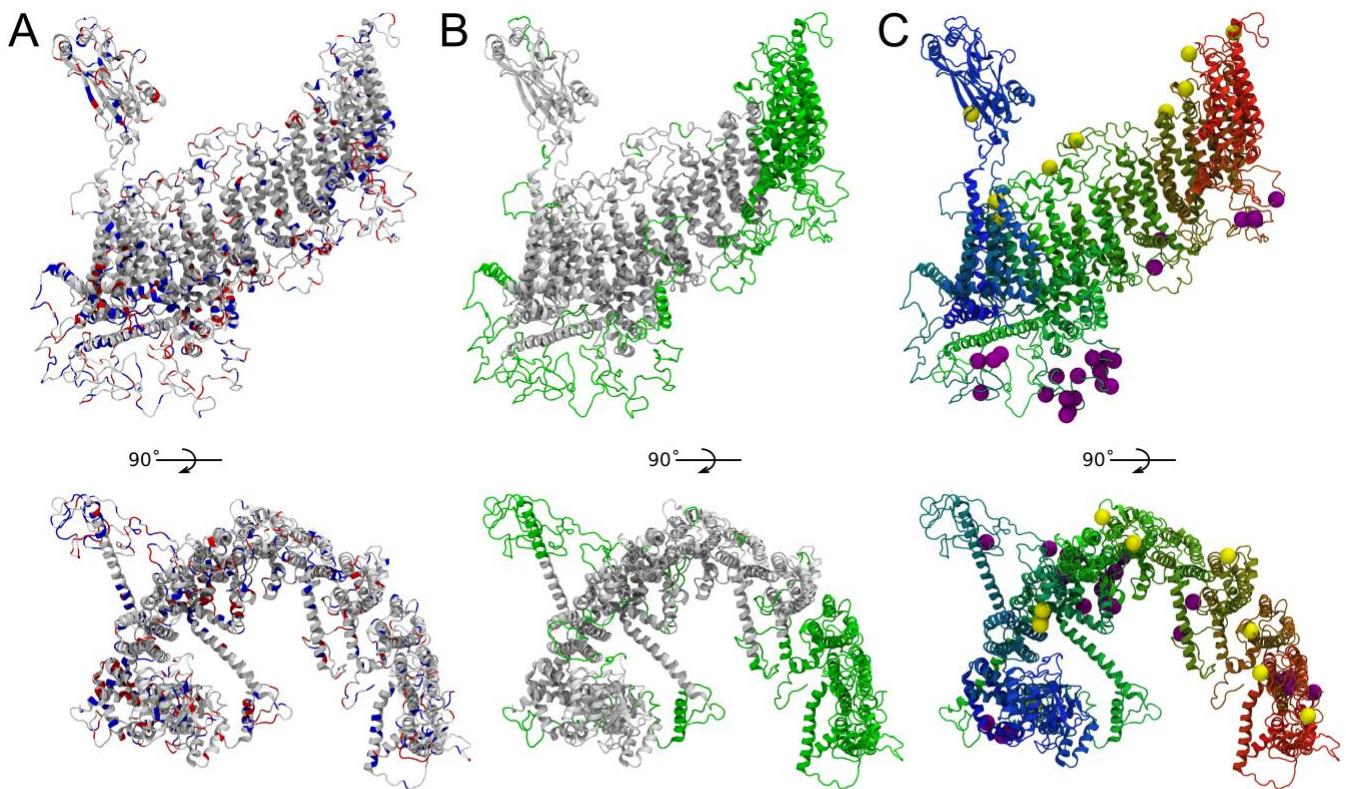
846 Wu J, Lewis AH, Grandl J. 2017a. Touch, Tension, and Transduction – The Function and
847 Regulation of Piezo Ion Channels. *Trends Biochem Sci* **42**:57–71.
848 doi:10.1016/j.tibs.2016.09.004

849 Wu J, Young M, Lewis AH, Martfeld AN, Kalmeta B, Grandl J. 2017b. Inactivation of
850 Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal
851 Extracellular Domain and the Inner Pore Helix. *Cell Rep* **21**:2357–2366.
852 doi:10.1016/j.celrep.2017.10.120

853 Zhao Q, Zhou H, Chi S, Wang Y, Wang Jianhua, Geng J, Wu K, Liu W, Zhang T, Dong MQ,
854 Wang Jiawei, Li X, Xiao B. 2018. Structure and mechanogating mechanism of the Piezo1
855 channel. *Nature* **554**:487–492. doi:10.1038/nature25743

856

1 **Supplementary information**

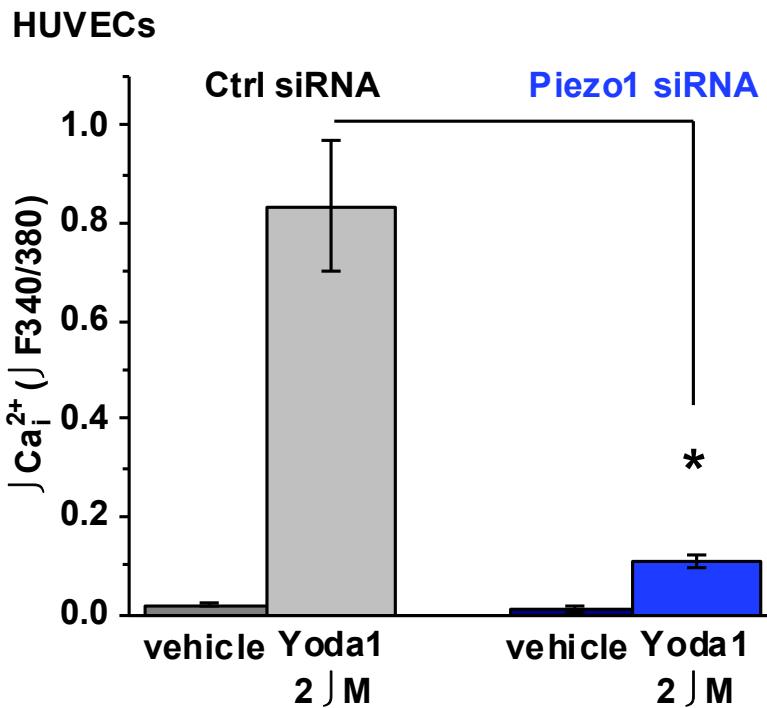


2

Supplementary Table 1: Membrane lipid compositions used for the CG-MD simulations

Name	Extracellular leaflet				Cytoplasmic leaflet				
	PC	PE	SM	CHOL	PC	PE	PS	PIP2	CHOL
CHOL0 _{trunc}	75	20	5	0	70	20	5	5	0
CHOL5 _{trunc}	70	20	5	5	65	20	5	5	5
CHOL10 _{trunc}	65	20	5	10	60	20	5	5	10
CHOL20 _{trunc}	55	20	5	20	50	20	5	5	20
CHOL30 _{trunc}	45	20	5	30	40	20	5	5	30
CHOL40 _{trunc}	35	20	5	40	30	20	5	5	40
CHOL0 _{full}	75	20	5	0	70	20	5	5	0
CHOL10 _{full}	65	20	5	10	60	20	5	5	10
CHOL20 _{full}	55	20	5	20	50	20	5	5	20
CHOL30 _{full}	45	20	5	30	40	20	5	5	30

Lipid composition is expressed in molar percentages

3

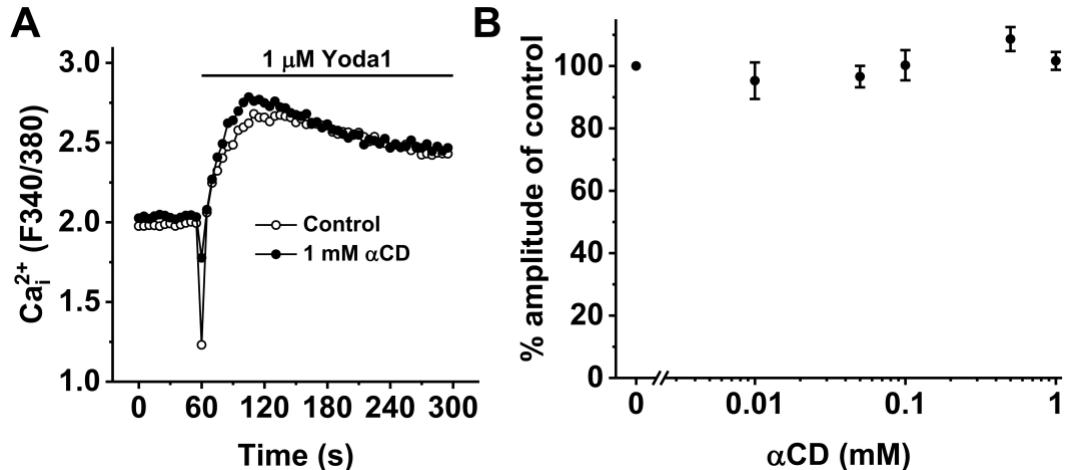


4

5 **Supplementary Figure 1: Characterization of a single full-length chain Piezo1 mouse**
6 **model. (A)** A single full-length chain is shown as ribbon with positively (His, Lys, Arg) and
7 negatively (Asp, Glu) charged residues colored in blue and red, respectively. **(B)** A single full-
8 length chain is shown as ribbon with modelled missing residues from the PDB 6B3R,
9 highlighted in green. **(C)** A single full-length chain is shown as ribbon and colored rainbow
10 from N-terminal (red) to C-terminal (blue). Spheres are C α atoms from residues previously
11 identified as exposed to the extracellular side (Myc tagged, yellow) and phosphorylated
12 (purple) (Coste et al., 2015). Myc tagged residues are: 102, 304, 508, 669, 897, 1071, 1765,
13 2071, 2075 and 2336. Phosphorylated residues are: 351, 396, 397, 399, 738, 758, 1385, 1389,
14 1390, 1593, 1600, 1604, 1608, 1610, 1612, 1617, 1626, 1627, 1631, 1640, 1644, 1646 and
15 1837. **(D)** Cropped visualization of a single Piezo1 full-length chain. The numbering and
16 position of each of the 36 bundles is indicated. **(E)** Structural superposition between the Piezo1
17 full-length model (blue) and the Piezo2 cryo-EM structure (chains are in orange, purple and
18 cyan; PDB: 6KG7) performed with UCSF Chimera over the C α atoms. **(F)** A single chain from
19 the Piezo2 cryo-EM structure (orange) and a Piezo1 full-length model superposed with UCSF
20 Chimera over their C α atoms. The long loops in the cytoplasm (residues 718-781, 1366-1492,
21 1579-1654, 1808-1951, 542-568, 337-418, 145-182) were not considered in this alignment.

22
23

24



25

26 **Supplementary Figure 2: Yoda1 specifically activates Piezo1 in human umbilical**
27 **vein endothelial cells (HUVECs).** Shown are mean \pm s.e.mean data for the change
28 (Δ) in the intracellular Ca^{2+} concentration evoked by vehicle (dimethylsulphoxide) or
29 vehicle plus 2 μM Yoda1 in HUVECs transfected with either control siRNA (Ctrl siRNA)
30 or Piezo1 siRNA ($n=3$ for each). The Yoda1 response was significantly smaller in the
31 Piezo1 siRNA group ($P < 0.05$).

32

33

34
35 **Supplementary Figure 3: Alpha cyclodextrin (α CD) has no effect on Piezo1**
36 **activation. (A)** an example measurement of the change in intracellular Ca^{2+}
37 concentration evoked by 1 μM Yoda1 in HUVECs pre-treated with 0 (control) and 1
38 mM α CD. **(B)** mean data of peak amplitudes of HUVEC responses to increasing doses
39 of α CD (1-0.01 mM). n/N=3/4.

40

Supplementary Table 2: Piezo1_{trunc} residues with cholesterol contacts exceeding cutoff of 60% of maximum contacts.

Y582^e	Q703^e	D1211_{cef}	M1731_{cef}
V583^{def}	H705^f	L1215_{ef}	T1732_{ce}
V589^{def}	Y706_{ef}	M1494_f	V1735_c
T619^e	Y782^f	M1495_f	E1738_f
Q622^{bcdef}	L786^{def}	A1499_f	M1740_{bcde}
T626^{ef}	S789^{def}	Q1503_{ef}	T1743_{bdf}
L627^{bcde}	F800_{ef}	F1504^{bcdef}	K1744_{bcd}
W636^{ef}	H808_{cf}	L1508_{ef}	L1774_d
W637^{def}	K811_{cdef}	G1509_{ce}	G1775_b
L647^e	F986^e	T1512_e	K1784_{ef}
V650^e	A1019^{bcdef}	R1671_{cdef}	Y1785^{def}
Y651^{ef}	T1022^{bcdef}	T1672_{cef}	F2028^e
F655^{ef}	R1023^{bcdef}	Y1680_{cef}	W2060_{ef}
F687^f	Y1062^{ef}	A1706_d	V2141_f
A699^e	Y1190_f	W1717_f	W2142_{ef}
L702^{def}	V1208_{ef}	R1728_{cef}	Y2189_{cdef}

The simulated cholesterol concentration in which the residue exceeds cutoff is represented by superscript letters after each residue. Key: b – 5%, c – 10%, d – 20%, e – 30%, f – 40%. Residues which were above cut-off at all simulated cholesterol concentrations are in bold. Residues coinciding with CRAC or CARC motifs are shown in blue. Residues also exceeding cut-off in Piezo1_{full} simulations are underlined.

41

42

Supplementary Table 3: Piezo1_{full} residues with cholesterol contacts exceeding cut-off of 60% of maximum contacts.

L20_{cde}	H74 _e	T209_{cde}	L778 _{de}	T1512 _e	F1932 _e
R26_{cde}	A76 _{de}	V233 _e	R782_{cde}	V1513 _e	Q1944_e
L32 _{de}	F77 _e	L235 _e	L786_e	R1671_{cde}	I1988 _e
V33 _e	C80 _e	A236 _e	S789_e	A1706 _{de}	F2028_e
P42 _{ce}	I105 _e	C261 _e	F800_e	L1716 _e	W2060_e
W43 _{ce}	A123_{cde}	G265 _e	A1019 _{ce}	W1717_{ce}	F2130_e
P47_{cde}	P124_{cde}	T313_{cde}	T1022_{cde}	M1740 _{ce}	Y2189_e
R58 _{de}	R187 _e	W533 _e	R1023_{cde}	T1743 _e	
R61_{cde}	R188 _e	Q622_{de}	Y1190 _e	K1744 _e	
A62 _e	T205 _e	L627_e	L1508 _e	K1784_e	
C65 _{de}	S206 _e	W637_e	G1509 _e	Y1785_e	

The simulated cholesterol concentration in which the residue exceeds cut-off is represented by superscript letters after each residue. Key: c – 10%, d – 20% and e – 30%. Residues which were above cut-off at all simulated cholesterol concentrations are in bold. Residues coinciding with CRAC or CARC motifs are shown in blue.

Residues also exceeding cut-off in Piezo1_{trunc} simulations are underlined.

43

Supplementary Table 4: CRAC and CARC motifs in mPiezo1

CRAC	CARC
577 LVTGIYVK ₅₈₄	113 KDIFNTTRLV ₁₂₂
618 LTFQVYYTLWRK ₆₃₀	290 RLFGLKNFV ₂₉₈
702 LQLHYFHR ₇₀₉	314 KHAWPIYVSPGIL ₃₂₆
840 LPYPRFR ₈₄₆	537 RQFVKEKLL ₅₄₅
862 VCKMLYQLK ₈₇₀	602 RLVVYKIV ₆₀₉
935 VFEAVVYRR ₉₄₃	629 RKLLRVFWWLVV ₆₄₀
1058 LCIDY PWRWSK ₁₀₆₈	663 RNLTGFTDEQL ₆₇₃
1076 LIKWL YLPDFFR ₁₀₈₇	709 RPFMQLTDL ₇₁₇
1252 VCTVKGYYDPK ₁₂₆₂	796 RIQVFVRRLL ₈₀₅
1602 LSTGYNTR ₁₆₀₉	811 KLVALYTVWVAL ₈₂₂
1758 VVLRRYENK ₁₇₆₆	864 KMLYQLKIV ₈₇₂
1776 LEKTDSYIK ₁₇₈₄	915 RKGYPNL ₉₂₁
1950 LAQSFYQPLQR ₁₉₆₀	979 KYFINFF FYKFG ₉₉₁
2032 VIDRALYLRK ₂₀₄₁	1005 RMNFMVIL ₁₀₁₂
2078 VAQLWYFVK ₂₀₈₆	1031 RLWPNYCLFLTL ₁₀₄₂
2092 LSAYQIR ₂₀₉₈	1147 RSYLDMLKV ₁₁₅₅
2333 VEYTNEK ₂₃₃₉	1159 RYLFWLVLVV ₁₁₆₈
2371 LFPKYIR ₂₃₇₇	1176 RISIFGLGYLL ₁₁₈₆
2521 LEEEELYAK ₂₅₂₈	1294 RRIFLSHYFL ₁₃₀₃
	1318 RGFALYNAANL ₁₃₂₈
	1674 RLLRAGYQCV ₁₆₈₃
	1724 RPSKRFWMTAIV ₁₇₃₅
	1762 RYENKPYFPPRIL ₁₇₇₄
	1778 KTDSYIKYDLV ₁₇₈₈
	1797 RSQLLCYGL ₁₈₀₅
	1941 RRLQSFCVSL ₁₉₅₀
	1960 RFFHDIL ₁₉₆₆
	1971 RAATDVYALMFL ₁₉₈₂
	2035 RALYLRKTVL ₂₀₄₄
	2046 KLAFQVVLVV ₂₀₅₅
	2071 RMFSQNAV ₂₀₇₈
	2086 KCIYFAL ₂₀₉₂
	2098 RCGYPTRIL ₂₁₀₆
	2112 KKYNHLNL ₂₁₁₉
	2126 RLVPFLVEL ₂₁₃₄
	2183 KKKIVKYGMGGL ₂₁₉₄
	2231 KLGGYEPL ₂₂₃₈
	2318 RFTWNFQRDL ₂₃₂₇
	2422 KASDFLEWWV ₂₄₃₁
	2505 KLCQDIFLV ₂₅₁₃

Residue numbers are indicated. Residues with significant cholesterol interactions in any simulation are in bold and colored magenta.

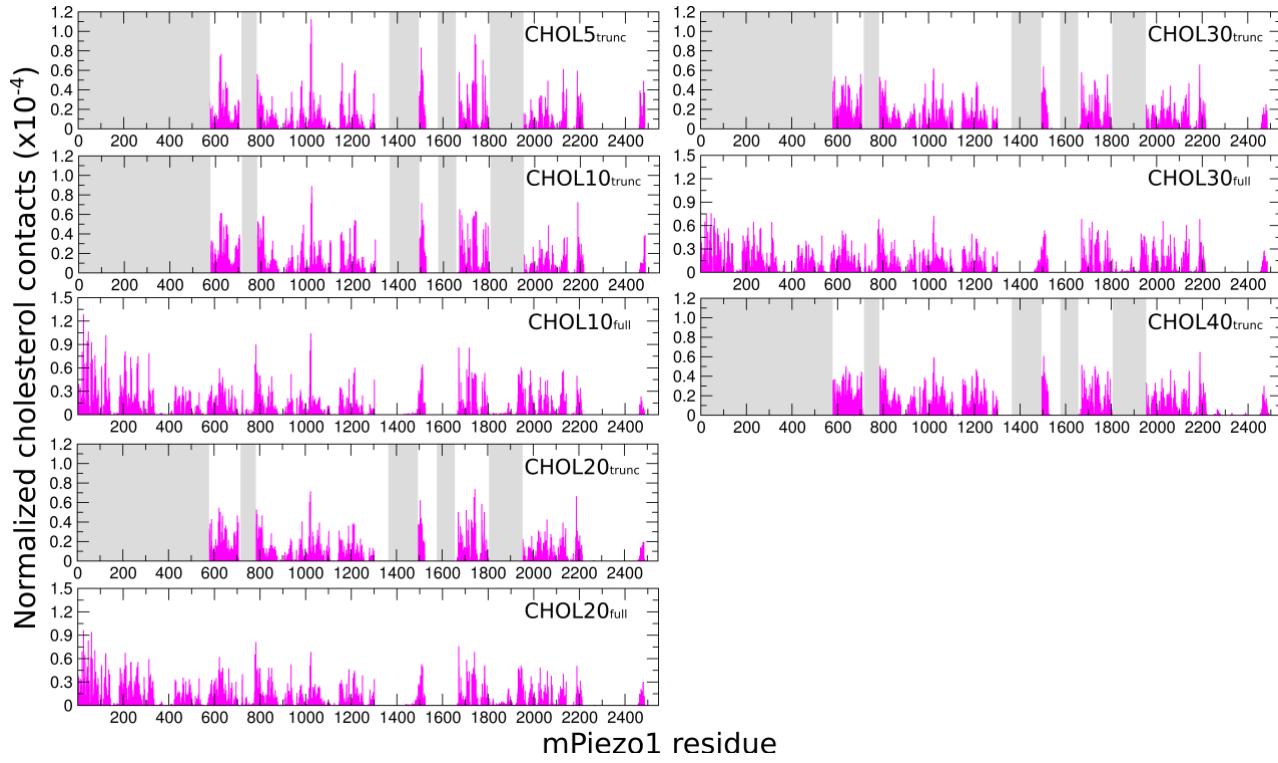
Supplementary Table 5: Piezo1_{trunc} residues with PIP₂ contacts exceeding cut-off of 70% of maximum contacts.

L577 _{ef}	R844 _{abcdef}	Q1496 _e
T579 _{abcdef}	R846 _{abcdef}	R1497 _{abcdef}
K584 _{abcdef}	R942 _{abcdef}	K1727 _{abcde}
L627 _{cef}	R949 _{bcde}	R1728 _{abce}
W628 _{abcdef}	R1023 _{abcdef}	Q1952 _b
R629 _{abcdef}	R1024 _{abcdef}	R2040 _{acd}
K630 _{abcdef}	R1025 _{abcdef}	K2183 _{acde}
R633 _{abcdef}	R1031 _{abcdef}	K2184 _{abde}
H708 _{df}	K1201 _c	K2185 _{acde}
R709 _{abcdef}	R1204 _{abcdef}	G2188 _c
R782 _{abcdef}	H1493 _{abcdef}	R2517 _{cd}

The simulated cholesterol concentration of systems in which the residue exceeds the cutoff is indicated by superscript letters as follow: a – 0%, b – 5%, c – 10%, d – 20%, e – 30%, f – 40%. Residues which were above the cutoff in all the Piezo1_{trunc} systems are in bold. Residues also exceeding cut-off in Piezo1_{full} simulations are underlined.

45
46
47

Supplementary Table 6: Piezo1_{full} residues with PIP₂ contacts exceeding cut-off of 70% of maximum contacts.

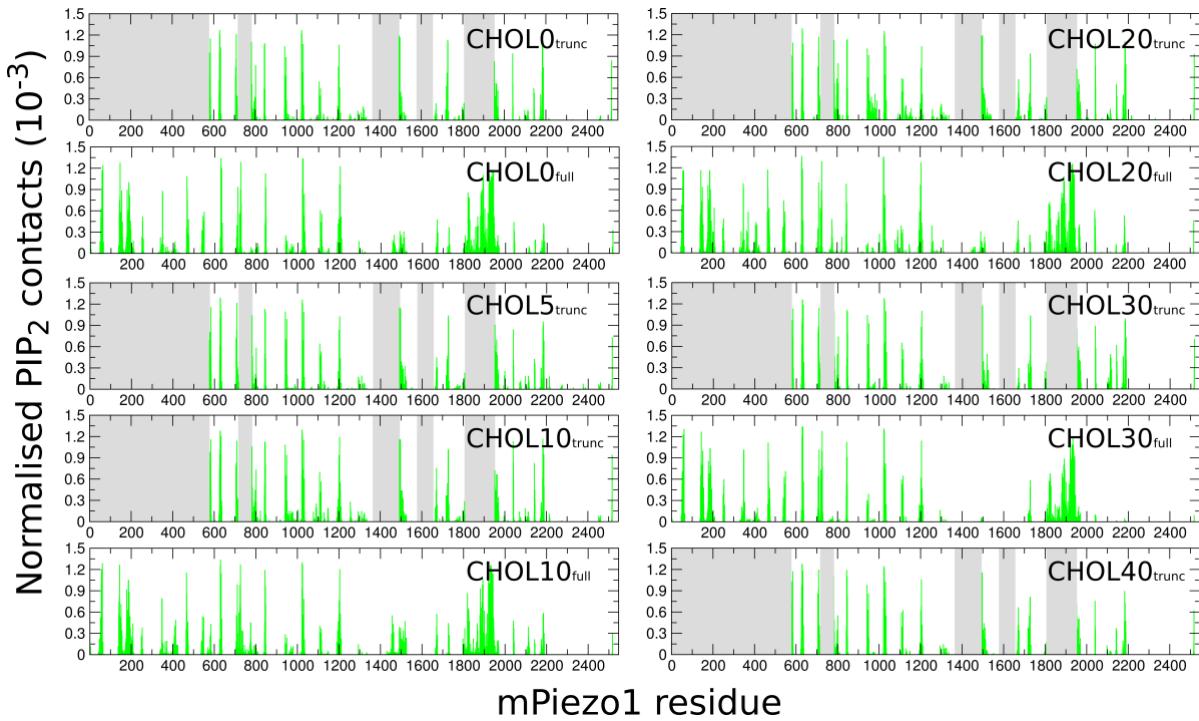

T56 _{ce}	R466 acde	R1024 acde	R1924 _{acd}
G57 acde	R629 acde	R1025 acde	H1925 _{ac}
R58 acde	K630 acde	K1201 _{ad}	K1929 acde
L60 _{ac}	L632 acde	R1204 acde	S1930 _{cd}
R61 acde	R633 acde	R1891 _{acd}	K1931 _{acd}
R144 acde	F711 _{cde}	R1892 _{acd}	R1933 acde
R151 _e	G724 _{ce}	R1893 _{acd}	R1935 acde
K186 acde	R726 acde	K1894 _{cd}	K1937 acde
R187 acde	R844 acde	R1920 acde	R1941 _{acd}
R348 _{de}	R846 _c	K1921 acde	R1942 _{acd}
K349 _e	R1023 acde	R1922 _{cd}	

The cholesterol concentration of systems in which the residue exceeds the cut-off is indicated by superscript letters as follow: a – 0%, c – 10%, d – 20% and e – 30%.

Residues which were above the cut-off in all the Piezo1_{full} systems are in bold.

Residues also exceeding cut-off in Piezo1_{trunc} simulations are underlined.

49



50
51

52 **Supplementary Figure 4: Histograms of Piezo1-cholesterol contacts in all simulations.**
53 Each histogram is labelled with the corresponding simulation. Grey bars represent the
54 residues missing from Piezo1_{trunc}.

55

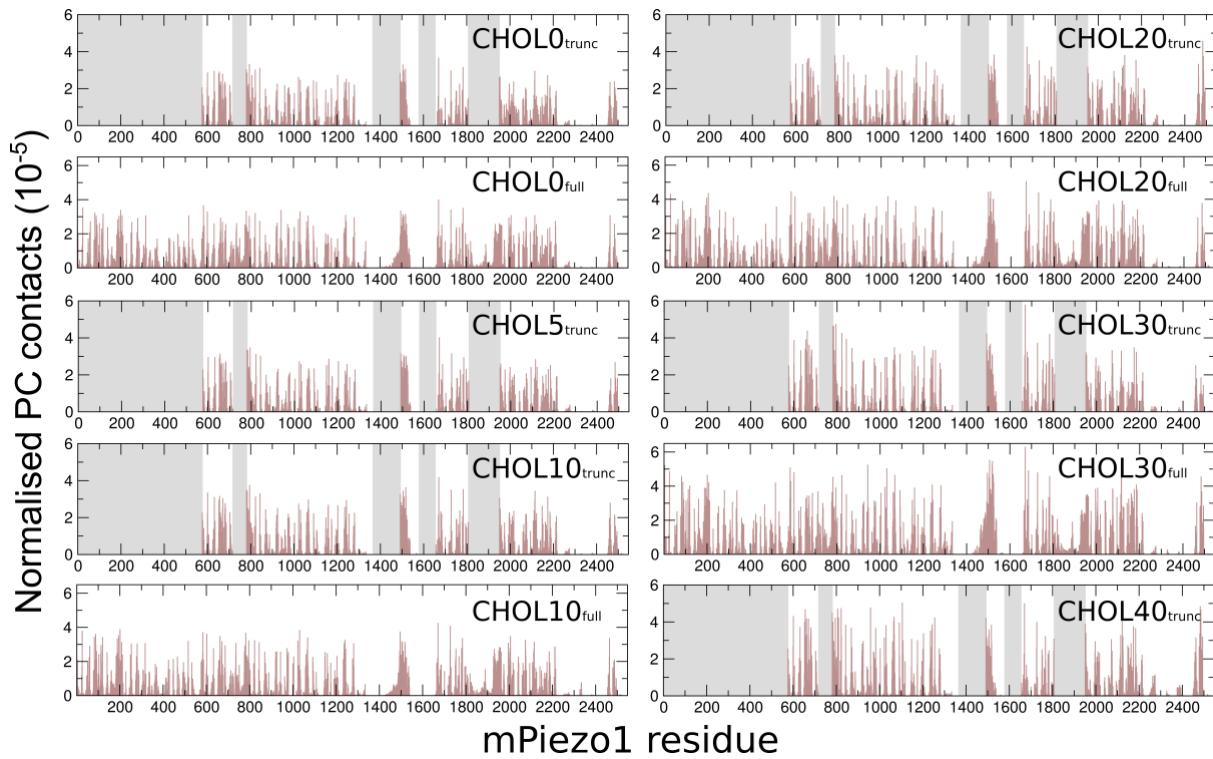
56

57
58

59 **Supplementary Figure 5: Histograms of Piezo1-PIP₂ contacts in all simulations.** Each
60 histogram is labelled with the corresponding simulation. Grey bars represent the residues
61 missing from Piezo1_{trunc}.

62

63

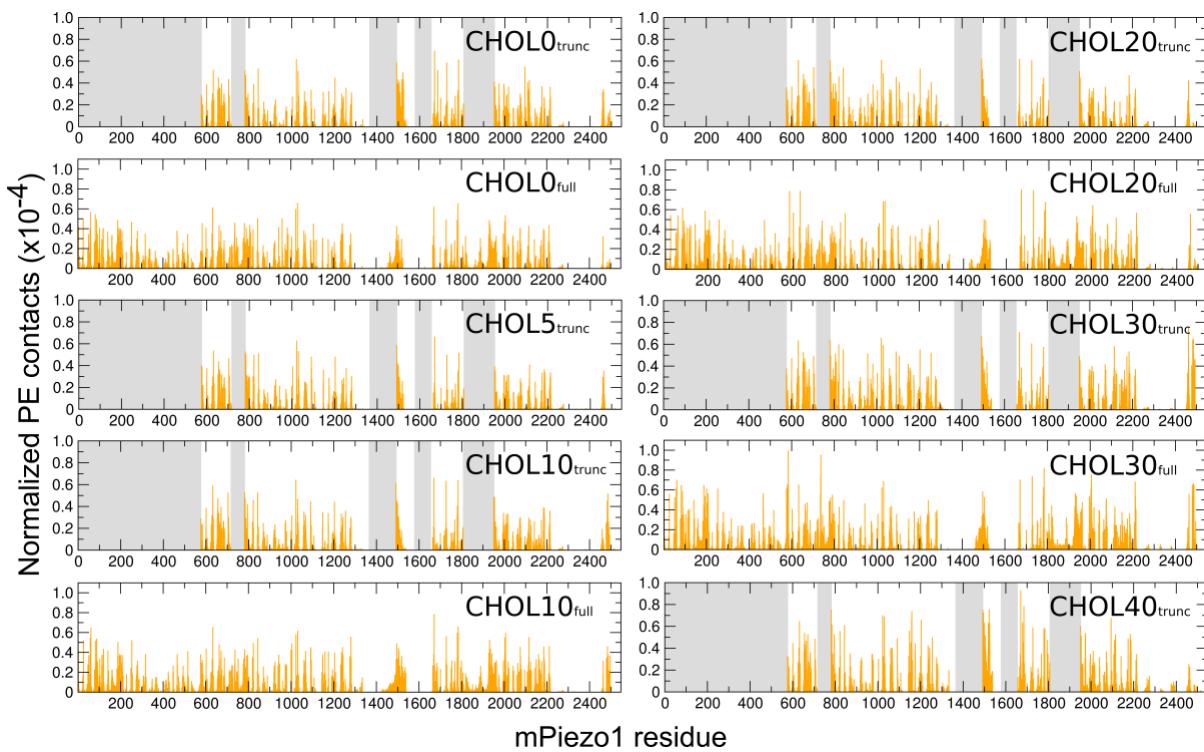


64

65 **Supplementary Figure 6: Matrix of lipid density maps for all simulations conducted.**

66 Lipids are color coded as cholesterol – magenta, PIP₂ – green, POPC – tan, POPE – orange,
67 POPS – red, SM – blue.

68
69

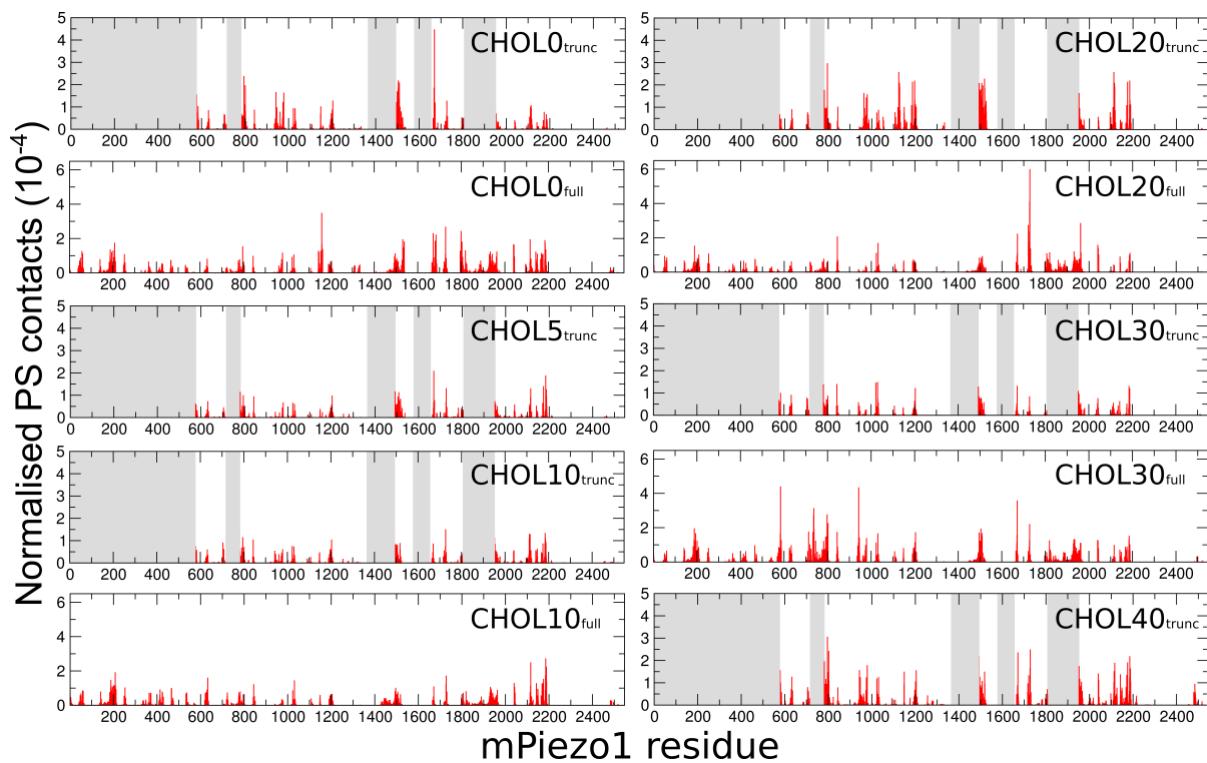


70
71

72 **Supplementary Figure 7: Histograms of Piezo1-POPC contacts in all simulations.** Each
73 histogram is labelled with the corresponding simulation. Grey bars represent the residues
74 missing from Piezo1_{trunc}.

75

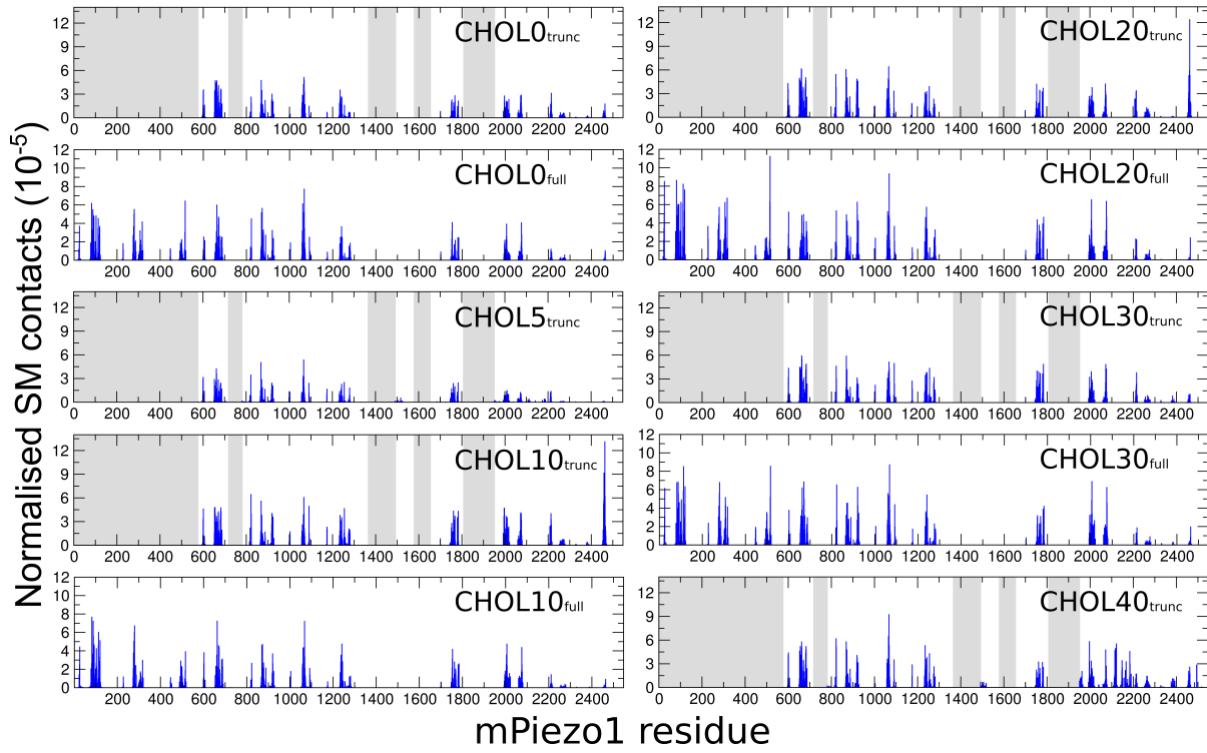
76



77
78

79 **Supplementary Figure 8: Histograms of Piezo1-POPE contacts in all simulations.** Each
80 histogram is labelled with the corresponding simulation. Grey bars represent the residues
81 missing from Piezo1_{trunc}.

82


83

84
85

86 **Supplementary Figure 9: Histograms of Piezo1-POPS contacts in all simulations.** Each
87 histogram is labelled with the corresponding simulation. Grey bars represent the residues
88 missing from Piezo1_{trunc}.

89

90
91

92 **Supplementary Figure 10: Histograms of Piezo1-SM contacts in all simulations.** Each
93 histogram is labelled with the corresponding simulation. Grey bars represent the residues
94 missing from Piezo1_{trunc}.