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Abstract

Previous research has shown that performance of a novice skill can be easily interfered
with by subsequent training of another skill. We address the open questions whether
extensively trained skills show the same vulnerability to interference as novice skills and
which memory mechanism regulates interference between expert skills. We developed a
recurrent neural network model of V1 able to learn from feedback experienced over the
course of a long-term orientation discrimination experiment. After first exposing the model
to one discrimination task for 3480 consecutive trials, we assessed how its performance
was affected by subsequent training in a second, similar task. Training the second task
strongly interfered with the first (highly trained) discrimination skill. The magnitude of
interference depended on the relative amounts of training devoted to the different tasks. We
used these and other model outcomes as predictions for a perceptual learning experiment in
which human participants underwent the same training protocol as our model. Specifically,
over the course of three months participants underwent baseline training in one orientation
discrimination task for 15 sessions before being trained for 15 sessions on a similar task
and finally undergoing another 15 sessions of training on the first task (to assess
interference). Across all conditions, the pattern of interference observed empirically closely
matched model predictions. According to our model, behavioral interference can be
explained by antagonistic changes in neuronal tuning induced by the two tasks.
Remarkably, this did not stem from erasing connections due to earlier learning but rather

from a reweighting of lateral inhibition.


https://doi.org/10.1101/783654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/783654; this version posted September 27, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

1 Introduction

Expert motor and perceptual skills have been reported to show little decay over periods of
months and even years, despite a lack of further practice (Fisk, Hertzog, Lee, Rogers, &
Anderson-Garlach, 1994; Hikosaka et al., 2002; Avi Karni & Sagi, 1993; Park, Dijkstra, &
Sternad, 2013). Overlearning, reaching automaticity, and fluency during acquisition have
been suggested to increase resistance to decay (Dougherty & Johnston, 1996; Farr, 1987;
Hagman & Rose, 1983; Healy et al., 1993; Healy, Fendrich, & Proctor, 1990). If true,
novice skills may be more vulnerable to interference than expert skills. The instability of
novice skills is supported by studies showing the erasure of gains acquired in a single
session of training in a first task, when another task is trained in a single session within ~4h
on the same day (Brashers-Krug, Shadmehr, & Bizzi, 1996; Krakauer, Ghilardi, & Ghez,
1999; Shadmehr, Brandt, & Corkin, 1998; Shadmehr & Holcomb, 1997). In these
experiments, retention of the first task was impaired on the next day of testing, an effect
referred to as behavioral interference. Related time-limited interference has been reported
in successive-learning studies involving training over only a few sessions, with interference
occurring for time intervals from 0 up to 4h (Seitz et al., 2005; Yotsumoto, Chang,
Watanabe, & Sasaki, 2009; J.-Y. Zhang et al., 2008). Caithness et al. (2004), interestingly,
showed interference among novice skills for much longer periods. Expert skills, however,
typically require extended practice over many more sessions (Ericsson & Lehmann, 1996;
Kaufman & Kaufman, 2007; Schoups, Vogels, & Orban, 1995; Schoups, Vogels, Qian, &
Orban, 2001; Simon & Chase, 1973; Vogels & Orban, 1985). In view of reports that expert
skills resist decay (Fisk et al., 1994; Hikosaka et al., 2002; Avi Karni & Sagi, 1993; Park et
al., 2013), the question arises whether highly trained skills are also resistant to interference,
perhaps because longer and repeated training as well as consolidation (Wickelgreen, 1972)

put expert skills in a ‘permastore’ (Bahrick, 1984).

To the best of our knowledge, no studies tested the stability of expertise by first applying
extensive training in one task to then test susceptibility to interference of the acquired skill
by extensive training in another task. Here, we trained human participants for 15 daily
sessions, spread over about a month, in a visual orientation discrimination task with a given

set of orientations (Task A). The participants had to judge whether a Gabor stimulus
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deviated clockwise or counterclockwise from a (never shown) reference orientation. We
then trained the participants for 15 sessions using a different set of orientations (Task B).
We tested whether returning to the original set of orientations (Task A) allowed
participants to return to the expert level of performance reached after the first training
period, and if not, whether further training would restore the originally reached
performance level. In addition to the above-described ABA design, we also used a BAB

design, as well as a control experiment in which no interference was expected.

To determine the conditions under which interference might occur, we used the finding that
extensive training in orientation discrimination until the phase where learning becomes
asymptotic, lastingly affects orientation tuning curves in early visual cortex (Raiguel,
Vogels, Mysore, & Orban, 2006; Schoups et al., 2001; Yang & Maunsell, 2004).
Specifically, as illustrated in figure 1a,b, the flanks of tuning curves overlapping with a
trained reference orientation steepen after extensive training in orientation discrimination
(Schoups et al., 2001), while the opposite flanks flatten (Teich & Qian, 2003). Steepened
flanks permit increased differential activity for stimuli around the trained reference,
supporting better discrimination. Accordingly, interference might be induced by additional
training with another reference overlapping with the flattened flank, because this can be
expected to undo the sharpening that supported the performance increase in the initial
training (figure 1b,c). Interference would hence be expected when two tasks are trained to
expert-levels that lead to plastic changes in low-level areas including V1, where the two

tasks require opposite tuning changes in the same neuronal population.

Although considering learning and interference in terms of neuronal tuning correlates is
instructive, it does not address how interference works at the level of memory traces
embedded in a neural network as patterns of connectivity strengths. If there were
interference, one possibility is that training in similar tasks requires incompatible network
connectivity in the same population of connections, such that training at one reference
orientation would erase the memory trace resulting from training at the other reference
orientation. This may explain findings in a different experimental design reported by Ni
and Maunsell (2010), and fits with ideas of ‘catastrophic interference’ in connectionist

models of cortical learning due to different tasks posing different requirements on the same
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set of connections (McClelland, McNaughton, & O’Reilly, 1995). However, our network
simulations suggest a radically different possibility, in which interference occurs without

erasing any prior synaptic changes.
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Figure 1. Schematic representation of synaptic and tuning curve changes due to training two similar orientations. a, A
population of seven neurons (bottom row) with different preferred orientations (indicated by white bars). The red curve
(top row) shows the tuning curve of the central neuron (red circle). The tuning curves of other neurons (gray circles) are
omitted for clarity. Black vertical lines indicate two reference orientations at which training may occur. Tuning of each
neuron results from broadly tuned feedforward input and excitatory (green) and inhibitory (red) recurrent connections
with other neurons in the population. Recurrent network interactions effectively pull the tuning curve of the central
neuron equally towards the left (blue horizontal arrows) and the right (turquoise horizontal arrows). b, Orientation
discrimination training at the left reference strengthens inhibitory connections among neurons in the left portion of the
network (red connections become thicker). This alteration of the recurrent interactions in the network effectively leads to
increased pulling of the central neuron’s tuning curve towards the left reference (increased thickness of blue horizontal
arrow). ¢, Orientation discrimination training at the right reference strengthens inhibitory connections among neurons in
the right portion of the network. This alteration of the recurrent interactions in the network effectively leads to increased
pulling of the central neuron’s tuning curve towards the right reference. This, in turn, rebalances the central neuron’s
tuning curve. While two training events may thus lead to accumulation (rather than erasure) of network changes, they
may cancel their respective effects on the shape of tuning curves.

Our neural network was inspired by Teich and Qian (2003) who simulated orientation
tuning in V1 by implementing thalamic feedforward input with broad orientation tuning
which is sharpened by recurrent excitatory and inhibitory synapses among neighboring V1
neurons. We modeled training-induced tuning changes by strengthening inhibitory
recurrent connections among orientation selective neurons in response to behavioral errors
according to an error-triggered Hebbian learning rule. The choice to increase inhibitory
connections, rather than reduce excitatory connections in line with an anti-Hebbian
learning rule (Koch, Ponzo, Lorenzo, Caltagirone, & Veniero, 2013), is based on findings
that learning changes the selectivity of inhibitory interneurons in V1 (Khan et al., 2018). In
the model, illustrated in figure 1 from the perspective of a single example neuron with an

orientation tuning curve shown in red, inhibitory and excitatory recurrent interactions are
5
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balanced prior to learning, yielding standard orientation tuning curves (figure 1a). Training
at a reference orientation overlapping with one flank of the example tuning curve triggers
locally restricted strengthening of inhibition among neurons best-tuned to the reference
orientation. The enhanced inhibitory interactions among these neurons (figure 1b, bottom)
will induce a collapse of the flank overlapping with the trained reference in the example
tuning curve, combined with a tendency for the peak to be pulled towards the trained
reference, and the opposite flank to become shallower. By analogy, subsequent training
with a reference orientation overlapping with the opposite (flattened) flank will be
associated with a matching enhancement of local inhibitory interactions (figure 1c),
pushing the peak orientation back to its original location and restoring the symmetry of the
example tuning curve. The restoration of the tuning curve symmetry in figure 1c is
associated with a loss of expertise carried by the asymmetry of the tuning curve in figure
1b. Importantly, in this model the loss of expertise (interference) is not due to erasure of
inhibitory connections that represent the memory trace. Rather, it is due to enhanced
inhibition in other parts of the network.

This model makes two main predictions. Firstly, extensive training in an orientation
discrimination task does not make it immune to interference by another task (figure 1b,c).
Secondly, the number of trials required to create the inhibitory imbalance that enables high
expertise equals the number of trials required to fully repair the inhibitory balance, which
then would cause full interference (figure 1c). In other words, the model predicts that when
two tasks are trained that require incompatible tuning curve shapes, discrimination
performance on the two tasks will depend on the balance of trials devoted to each task. Our
data support these model predictions; and hence also the idea that one skill can interfere
with an earlier acquired skill, without erasing the connections related to the earlier
established skill.

2 Modd ssmulations
2.1 Modd of orientation discrimination

V1 orientation tuning was simulated using a recurrent model first described by Teich and

Qian (2003). Briefly, the model assumes that weakly orientation tuned feedforward


https://doi.org/10.1101/783654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/783654; this version posted September 27, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

information entering V1 from subcortical regions is sharpened by recurrent excitatory and
inhibitory synapses among V1 neurons. In accordance with the descriptions given in Teich
and Qian (2003) the model consists of N neurons with their preferred orientations 8 covering
180 degrees. The firing rate R(#, [, t) of each neuron with preferred orientation & and

presented with stimulus orientation _J at time t is given by
R =a max(V,0) (@)
where o is a gain factor and V is the membrane potential which evolves according to

N=V+I, +I . ®)

In equation 2, 7 is the membrane time constant, I; the feed-forward input to the neuron, and I,
the recurrent input a neuron receives from its neighbors. The feedforward input resulting

from presenting stimulus orientation 71 to a neuron with preferred orientation 6 is given

by

Zeﬂ(é‘—ﬂ’)]z
f (91¢):Jf €Xp _T 3

f

where J; and ot respectively determine the strength and width of the input and the
expression ~ e?“? ensures that the phase difference wraps around the half circle. The
recurrent input neuron j with preferred orientation ; is the total activation it receives from

neurons i with preferred orientations 6;

l;(6,.t)= ZWRGt (4)

where w;i is the weight from neuron i with preferred orientation 6; to neuron j with preferred

orientation ;. The weight wj;; is a composite of excitatory weight weycji and inhibitory

weight Winnji given by (w,,  —w

exc, ji inh, ji

). Before learning, excitatory and inhibitory weights

between two neurons i and j with respective preferred orientations & and g; are initialized as
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Wexc,ji = ‘JrE(a —6].)
Wi i = I, (9. _ej)

)

with J; controlling the connection strength and E(8) and 1(#) being the excitatory and

inhibitory connection probability distributions expressed by the periodic functions

E(8)=c,[cos(26) +1] ™
1 () =c [cos(26) +1]*

(6)

In equation 6, the exponents ac and & control the sharpness of the excitatory and inhibitory

distributions, respectively. The constants ceand ¢; are normalization factors ensuring that the

sum of each distribution equals unity.

Table 1: Parameters used in simulations.

Symbol Description Value

N Number of simulated neurons 512

T Membrane time constant 15 ms

a Gain of spike encoder 10 spikes/s/mV
Jr Strength of recurrent connections 1 mV/spikes/s
Ji Strength of feedforward connections 0.5mV/spikes/s
o Gaussian width of feedforward orientation bias ~ 45°

n Learning rate 1.4¢

k Scaling of variance in the signal detection process 1.05

C Criterion forpopulation decision 53%

2.2 Behavioral performance and learning

In order to compare the performance of the model with that of our participants, the

distribution of firing rates across neurons was translated into a decision of whether the

currently presented orientation was rotated clockwise or counterclockwise with respect to
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the reference orientation. This was done using signal detection theory (Green & Swets,
1966). Specifically, the mean response of a neuron with preferred orientation 8 to a stimulus
with orientation [ 1 is a function of the firing rate this stimulus evokes in the neuron R( 1) and
the duration of stimulation At

m(¢)=R(g)At. @)

Furthermore, the variance of the firing rate under identical stimulus conditions was

proportional to the mean response

var (¢) =kmR(¢) (8)

where k is a dimensionless constant between 1 and 4 (Peres & Hochstein, 1994; Shadlen &
Newsome, 1994; Snowden, Treue, & Andersen, 1992; Softky & Koch, 1993). The activity
X[km(Z1)] a neuron produces when presented with stimulus [J can be estimated by sampling

from the normal distribution N [m(¢), km(¢)} In order to make a decision whether a

probe stimulus [yrone Presented on a given trial was orientated clockwise or counterclockwise
with respect to a reference stimulus Ty, each neuron calculated the difference of activity
resulting from the two stimuli. Note that this implies that in the model, neural activity in
response to the reference stimulus was explicitly calculated while participants were never

explicitly presented with the reference stimulus. The difference [x(Cref) — x(Cprobe)]

follows the normal distribution N[ (Bres )= M (Bprove) \/k M (@ +m(¢probe))] A

neuron would make a correct decision either if it prefers [yer Over [pope and if [X(Zrer)
=X(Zprobe)] > 0, or if it prefers T prone OVEr Crer and if [X(TTrer) X(Tprove)] < 0. Taking these
two cases together the probability that a neuron makes a correct decision (Green & Swets,
1966; Teich & Qian, 2003) is given by

d/
p=erfc [E) 9

with
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, (g ) =m(Gse)

M0 )+ (D)

d

(10)

and G‘fC() being the complementary error function. A majority vote determined the

performance of the population on a given trial, with a decision deemed correct if the

percentage of all individual neurons making a correct decision exceeds a criterion C.

Learning, in our model, was a direct consequence of population performance within trials as
it was implemented in the form of an error-triggered Hebbian learning rule affecting
inhibitory connections (King, Zylberberg, & DeWeese, 2013). That is, whenever the
population made an incorrect decision, reflective of similar response patterns generated by
stimuli [ lrer and Iprope, iNhibitory weights between active neurons were strengthened in
order to decorrelate them and sensitize the population to stimuli around the reference
orientation (Khan et al., 2018; King et al., 2013). Specifically, after each incorrect decision

the weights were updated as follows
A\Ninh,ji = UR(QJ 7¢probe) R(9| ! ¢probe) (11)

where 7 is the learning rate. After correct decisions the weights remained unaltered.
Note that alternatively, we could have employed an anti-Hebbian learning rule,
reducing excitatory weights after error trials (c.f. Koch et al., 2013). Mathematically
these choices are identical in our model and lead to the same results (we confirmed this
with simulations). Please also note that it is in principle possible that decorrelations
occur additionally (or occur solely) after correct trials. Given an appropriately adjusted
learning rate, such a scenario would not significantly affect results. However, correct trials
imply that responses were already sufficiently dissimilar to allow for successful
discrimination, rendering further decorrelation unnecessary. We therefore chose to let error
trials drive the learning. Due to stochasticity in the decision-making process and hence in
learning, all simulations were repeated 25 times to obtain good estimates of learning
curves. The model is implemented in MATLAB (2015a, The MathWorks, Natick, MA)

and freely available from https://github.com/ccnmaastricht/LTI.

10
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Using the model we were able to reproduce learning curves reported for asymptotic
perceptual learning in Been et al. (2011) by fitting three free model parameters to the data:
a dimensionless constant k regulating the variance of neuron responses and hence affecting
baseline performance, the positive learning rate # controlling the weight change in the
Hebbian learning process, and a criterion C controlling the percentage of neurons that need to
individually make a correct decision to deem the population response correct (for parameter
values see table 1). Given the best fitting parameters, the root-mean-squared-error (RMSE)

between model and empirical learning curves was 0.058.
3 Behavioral Experiments
3.1 Participants

Eight participants (mean age 23.98, SD 3.84, 6 female), naive to the purpose of the study, were
recruited. The sample size was based on a power analysis given effect sizes observed for
interference training after a delay of 24 h in a previous study (Been et al., 2011; Cohen’s d ~
1.38), an & -level of 0.05, and a desired power of 0.95 for a one-sided repeated-measures t-
test. All participants had normal or corrected-to normal visual acuity. Informed, written and
verbal consent was obtained according to the Helsinki Declaration, after full information about
all procedures and the right to withdraw participation at any time. All procedures were
approved by the local Ethical Committee of the Faculty of Psychology and Neuroscience
(ECP). Participants received either monetary reward or credits to fulfill course

requirements.
3.2 Simuli, tasks and procedure

Stimuli used in the present study were Gabor patches (2.37 cycles/degree spatial frequency,
50% Michelson contrast, 56 cd/m?® average luminance, 3° diameter). They were pesiedon a
gray screen (56 cd/m?) at 6° eccentricity from a centrally placed, white fixation dot along
45° or 135° polar angle lines, in one of three possible quadrants of the visual field.
Participants were placed in a dimly lit room; their head was supported by a chin and head
rest keeping eye-screen distance constant at 57 cm. The screen used was a 19" Samsung
SyncMaster 940BF LCD monitor (Samsung, Seoul, South Korea; 60 Hz refresh rate,
1280x1024 resolution). The screen was covered by a gray mask with an oval aperture such

11
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that the screen borders were not visible to participants to prevent their utilization as
reference for the orientation discrimination task. Fixation was monitored with a Viewpoint
Eyetracker v.2.8.3 (Arrington Research, Inc., Scottsdale, Arizona, USA; 60 Hz sampling
rate, 37 pixel/degree spatial resolution). Stimulus presentation and response recording was
performed by Cortex v.5.9.6 (NIH freeware for psychophysical and neurophysiological

experimentation).

Participants performed an orientation discrimination task with an unseen oblique
orientation as reference stimulus. They indicated the direction of the orientation offset by
pressing either the right or left arrow key for clockwise and counterclockwise rotations,
respectively (figure 2). Hence, we employed a forced-choice identification design in which
each stimulus required a ‘left’ vs ‘right’ decision. Each experimental trial started with a
time window of maximally 750ms during which accurate fixation was to be initiated (i.e.,
deviation <1.5° from fixation dot) and subsequently maintained for another 250ms to
trigger stimulus presentation as well as throughout presentation of the stimulus (500ms) in
one of the four quadrants of the visual field. Stimulus presentation was then followed by a
1000ms response window. Responses were given with the right middle and index fingers
indicating clockwise or counterclockwise deviations from the reference orientation,
respectively. Participants received feedback after each trial in the form of color changes
(green = correct; red = incorrect) of the fixation dot lasting 200ms. After feedback, the
fixation dot disappeared signifying the end of the trial, followed by a fixed 500ms inter-trial
interval. When a participant’s gaze fell outside the fixation window during the fixation
period, trials were aborted. Aborted trials were repeated at a randomly chosen time during

the experiment.

In the present study, we conducted three experiments, each in a different quadrant of the
visual field. Experiment 1 was a control experiment in which we tested whether 15-session
training at a 135° reference orientation (Task Ag) would be interfered with by subsequent
15-session training at an orthogonal reference orientation (45°; Task C), as tested in
subsequent training at the 135° reference orientation (Task Ar). Based on previous work
(Been et al., 2011) and model simulations we did not expect interference. Experiment 2

was designed to test whether a 15-session baseline training at a 135° reference orientation

12
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(Task Ag) would be interfered with by subsequent 15-session training at similar reference
orientations (105° & 165°; Task B). This was tested in an additional 15-session period at the
135° referenceorientation (Task Ar). Experiment 3 was designed to test whether a 15-session
training at reference orientations 105° and 165° (Task B) would interfere with subsequent
training at a 135° reference orientation (Task Ag). In addition, Experiment 3 permitted
testing whether Task A would interfere with subsequent learning in Task Br as
compared to Task Bg. The sequences of training at different reference orientations and the
orientation differences among reference orientations in the different experiments were
based on (Been et al., 2011).

13
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Experiment 1 - task sequence ACA
Experiment 2 - task sequence ABA
Experiment 3 - task sequence BAB

Part 1 (15 sessions)
Task Ag (135°) Task B (105° and 165°) Task Ag (1357)

Part 2 (15 sessions)
Task B {105° and 165°) Task At (135) Task C

= N
[ ] -
Z
Part 3 (15 sessions)
Task At (135°) Task B (105° and 165°) Task At (135°)

A\ —
N
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Figure 2 (previous page): a, Orientation discrimination task and stimuli. Thresholds were determined using an
identification design, with left key responses for counterclockwise orientation offsets from a 135° reference (dashed line,
not shown to participants), and right key responses for clockwise orientation offsets. Stimuli are enlarged for illustration.
b, Design of the study. The study was split in three periods (Parts 1-3) and each part consisted of four conditions. Parts 1,
2, and 3 lasted 15 sessions each and were done consecutively (order of conditions within each part was counterbalanced
over participants). In total, the study took 45 sessions. The conditions are hamed according to executed task, with Task A
referring to orientation discrimination at reference orientation 135°, Task B referring to the combined training at 105° and
165°, and Task C referring to orientation discrimination at reference orientation 45°. A learning curve in a Task can serve
as a Baseline against which the effect of interference is tested (indicated by subscript B in Task Ag and Task Bg). A
learning curve that has undergone the effect of interference represents a Test of interference (indicated by subscript T in
Task At and Task Bt) The frame color indicates conditions of stimuli presented at the same location, thus belonging to
the same experiment, with green, blue, and red frames corresponding to Experiments 1, 2, and 3, respectively. The second
frame in the upper row e is marked in both blue and red, to indicate that this condition provided a baseline measurement
for Task A for both Experiment 2 (blue frames) and 3 (red frames).

Figure 2b shows how these three experiments were combined into a single study design.
The study consisted of three parts, each lasting for 15 sessions. During each session,
participants completed all four conditions belonging to a Part, with each condition
representing training at a specific reference orientation and inaspecific visual field quadrant
location. For each condition (i.e. each frame in figure 2b), participants completed four
staircases, such that they performed 16 staircase measurements per session. Participants
spent 15 sessions performing Part 1, then 15 sessions performing Part 2, and then 15 sessions
performing Part 3. Figure 2b also makes clear that the assignment of conditions to
numbered experiments is conceptual, and unrelated to the time period in which the data
were collected. After performing the 45 sessions, all three planned experiments were
completed, and analysis was based on three separate selections of conditions representing
the three experiments (color-coded in figure 2b with green = Experiment 1; blue =

Experiment 2; red = Experiment 3).

In the execution of the study, there were two versions that determined in which visual field
location each of the three experiments were performed. In version A (illustrated in figure
2b), Experiment 1 was done in the right lower quadrant, Experiment 2 in the left upper
quadrant, and Experiment 3 in the right upper quadrant. Version B was mirror-reversed
relative to version A along the vertical meridian. Condition order within a Part was
counterbalanced across days/participants. In each session, irrespective of the part of the
study, participants performed the task on oblique stimuli (condition A using 135°, and C
using 45°) before they performed the task on flanking orientations (condition B, using 105°
and 165°). The order of the two conditions using oblique orientations was counterbalanced
within participants, as was the order of conditions using flanking orientations. Within
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participants, testing schedules were kept constant (i.e., at least three sessions per week, all at
the same time of day) for the duration of the study. Importantly, although each Part
comprised 15 daily sessions, the calendar length for the full training in each Part comprised 4
weeks (mean 28 days, SD 7.34 days), as there was no testing on weekends, and as
participants typically could be tested only 3 to 4 times per week. The whole study in each
participant therefore lasted 3 months (mean 90 days, SD 19.06 days on average; see table
2).

Table 2: Duration of experiment for individual participants.

Prt P1 A(1-2) P2 A(2-3) P3 total

1 25 2 25 0 34 86

2 29 5 29 0 3 99
3 33 0 18 26 52 129
4 24 0 21 0 26 71
5 29 0 38 1 25 93
6 20 0 19 2 25 67
7 3 0 27 0 23 85

§ 32 0 26 0 31 89

Duration of the different training conditions and the total experiment for each participant (Prt). The number of days for
each training part (1, 2, 3) in days are shown in columns P1’, ’P2’, and ’P3’, respectively. The number of days without
any training in between training parts is indicated in columns *A(1-2)" and *A(2-3)". * This break was longer due to
closure of the university building during Christmas holidays.

3.3 Threshold measurements

We used a Wetherill staircase tracking 84 % correct performance to acquire just-noticeable
differences (JND; Wetherill & Levitt, 1965). The staircase ended when either 14 reversal
points were acquired or 120 trials were completed. In total, each participant completed 16
staircases in each session, and a total of 720 staircases (or ~72000 trials) divided over 45
sessions. From each staircase, the last ten reversal points were selected to contribute to
threshold estimation. Since four staircases were done per quadrant in each session, we

determined the threshold per quadrant/session as the geometric mean of 40 reversal points.
16


https://doi.org/10.1101/783654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/783654; this version posted September 27, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Note that the threshold corresponds to the difference in the stimulus orientations that
participants could discriminate at 84% correct, and not the absolute deviation in angle
between the stimuli and the theoretical reference orientation as done in a number of other
studies (Schoups et al., 1995, 2001). Our thresholds would have to be divided by two to
compare them directly with these studies. On the other hand, our thresholds are directly
comparable to those reported in other studies (Raiguel et al., 2006; Yang & Maunsell,
2004). In the first session, the start level of each staircase was set to an orientation
difference of approximately 15°, which corresponds to the 84% orientation threshold
reached on average by naive participants in our task (see Been et al., 2011). In participants
for whom this difference is too small, a few error responses will immediately lead to much
larger differences that can serve as examples. For all subsequent sessions, the average
threshold of the previous session was taken as starting level. The orientation difference was
adapted to performance in a proportional manner, by either dividing or multiplying the
current orientation difference by a factor of 1.2, depending on performance criteria designed
for the staircase to converge on an 84 % correct level. All thresholds were In-transformed and
are publicly available (https://doi.org/10.5061/dryad.6djh9wOwn).

34 Satidtical analysis

We used repeated measures t-tests to assess whether the mean difference between In-
transformed JNDs observed for asymptotic performance before and after interference
training were significantly different from zero. In order to assess whether mean difference
between JNDs observed for two conditions were equivalent, we used two one-sided tests of
equivalence for paired samples (TOST-P; Seaman & Serlin, 1998).

While the TOST-P, and equivalence testing in general, cannot establish exact
correspondence between two conditions, it can establish that differences fall within a pre-
determined interval reflecting negligible effect sizes. Specifically, the TOST-P specifies a

lower and an upper equivalence bound based on the smallest effect size (0) of interest and
performs two t-tests on the Null hypotheses HO, :0<—0d and HO,:0>0. If both Null

hypotheses can be rejected, the observed effect lies within the interval [—(‘)'],(‘)'}] and is

considered sufficiently small to be irrelevant. In line with a procedure outlined in (Mara &

17


https://doi.org/10.1101/783654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/783654; this version posted September 27, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Cribbie, 2012), taking sample size and variance of a specific data set into account, we
constructed an equivalence interval by first specifying a negligible difference and
constructing a 95% confidence interval around this difference. We regard a difference of
0.31 log units (~1.36°) sufficiently small to be negligible. We obtained this value by
examining the extremes of expected differences in identical conditions. This was done by
performing a blocked bootstrapping procedure. From N participants, we repeatedly
(100,000 times) sampled (with replacement) two learning curves (each comprising 15
sessions) obtained separately in each participant in equivalent conditions A and B. Prior to
drawing each sample, we randomly assigning the labels A or B to the two curves of each
participant. We then computed the performance difference between samples A and B either
for early (first three sessions) or asymptotic learning (last three sessions) for each sample.
We considered the 99™ percentile of the distribution of absolute performance differences to
be a good indicator of negligible differences given that conditions are indeed equivalent.
We performed this procedure using two sets of data. First, from the data set gathered for
this study, we used learning curves for baseline training at the 135° reference in
Experiments 1 and 2. Second, we used data from a previous study (Been et al., 2011).
Specifically, we used learning curves for training at a 135° reference in one of the two
upper visual field quadrants and the average of learning curves for training at 105° and
165° references in the other upper visual field quadrant. On average (28 participants, one
excluded because of lacking data), these 15-session learning curves were near-identical (for
a discussion of that result, see Been et al., 2011). From our own dataset we obtained
estimates of negligible difference for early learning (0.29 log units) and late learning
(0.33). From Been et al.’s (2011) data, we obtained similar estimates for early learning
(0.27) and late learning (0.35), respectively. Given the similarity of these values we used
the average of these four values as a single estimate of equivalence (0.31). To construct the
confidence interval, we estimated the standard error of the differences between the
empirical baseline learning curves in our Experiments 1 and 2 at the beginning and end of
the learning curves (which was 0.29 on average). This led to a final equivalence interval of
[-0.60,0.60] in log units, corresponding to [-1.83°,1.83°]). We thus consider two JNDs that
differ by 1.83° or less to be equivalent in the context of our experimental paradigm.
Goodness of fit between simulated and empirically observed asymptotic learning curves
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was measured by their root-mean-squared-error (RMSE).
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4 Results
4.1 V1tuning curve changes underlying perceptual learning and behavioral interference

Because V1 neurons show orientation tuning (Hubel & Wiesel, 1959; Schoups et al., 2001)
and are retinotopically organized (Daniel & Whitteridge, 1961; Gattass, Sousa, & Rosa,
1987), similarly oriented stimuli presented at the same visual field location will stimulate
overlapping neuronal populations, thus creating the preconditions for potential behavioral
interference. To enhance the relevance of V1 properties for hypothesis testing, we trained
participants to reach asymptotic levels of performance, during which the contribution of V1is
increased (Hochstein & Ahissar, 2002; A Karni & Bertini, 1997; Schoups et al., 2001).
Accordingly, the V1-inspired computational orientation discrimination model we used for
making quantified predictions of learning (and interference) was restricted to asymptotic
learning.

In our V1 model, tuning curves resulted from broadly tuned feedforward input sharpened by
recurrent excitatory and inhibitory connections (Teich & Qian, 2003), in line with known
mechanisms of orientation tuning (Ferster, Chung, & Wheat, 1996; Shapley, Hawken, &
Ringach, 2003; Sillito, 1975). Orientation tuning enabled the model to make decisions
regarding the rotation of an oriented stimulus relative to a reference orientation based on
differential responses to the two orientations. To simulate skill learning, we allowed the
model to learn from feedback regarding the correctness of its decisions, by adjusting
inhibitory recurrent connections according to an error-triggered Hebbian learning rule
(Khan et al., 2018; King et al., 2013; see section 2.2 for details). The resulting shift in the
excitatory-inhibitory ratio of recurrent connectivity led to sharpening and flattening in the
flanks of model neuron tuning curves in accordance with empirical studies showing lasting
tuning changes in low-to-mid-level visual areas after long-term asymptotic learning in
difficult discrimination tasks (Raiguel et al., 2006; Schoups et al., 2001; Yang & Maunsell,
2004). These tuning changes are driven by the fact that the flanks of tuning curves are most
informative in signaling small changes in stimulus orientation (Raiguel et al., 2006;
Schoups et al., 2001). Free model parameters were calibrated based on human asymptotic
learning curves for orientation discrimination from a separate study (Been et al., 2011; see
section 2 for details). Figure 3a illustrates the naive state of the network model by example
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tuning curves with preferred orientations of 90°, 105°, 120°, 135°, 150°, 165°, and 180°.
These tuning curves were equally spaced, identical and symmetric. Figure 3b shows the
expected network state after extensive training at a 135° reference orientation (Task A).
Tuning curve flanks that overlap with the trained reference orientation show training-

induced sharpening (see blue tuning curves in figure 3b).

Extending the reasoning based on figure 1, expertise accumulated at 135° (Task A) should
not be interfered with by following training at a 45° reference orientation (Task C). The
limited width of tuning curves ensures that training in the same location at these two
reference orientations would be based on non-overlapping neural populations. To test the
absence of interference when subsequent training periods use orthogonal reference
orientations, the model was subjected to a training sequence consisting of 15 sessions Task
A, followed by 15 sessions Task C, and 15 sessions Task A (ACA, Experiment 1). Model

simulations confirmed the absence of interference (not illustrated in figure 3).

Based on figure 1, an effective way to interfere with the expertise accumulated at reference
orientation 135° (Task A) would be to train at both the 105° and 165° reference
orientations (together referred to as Task B). Hence, we exposed our model to 15 sessions
of training in Task A, followed by 15 sessions Task B, and another 15 sessions Task A
(ABA, Experiment 2, figure 3b-d). Note that Task B will always recruit the full neural
population storing skill for Task A, but that Task A will recruit only about half of the neural
population storing the skill for Task B (see legend figure 3 for explanations). Hence, while
we expected Task B to interfere with Task A, Task A was expected to be relatively
ineffective in interfering with Task B (Vogels, 1990).

A detailed description of model simulations for sequence ABA is shown in Figures 3b-d.
After asymptotic training at reference orientation 135° (Task A), neurons originally tuned to
orientations deviating by ~+15° or ~-15° from the trained reference (blue tuning curves
figure 3), steepened their flanks facing the trained reference orientation and moved their
tops towards the reference. This, in turn, resulted in larger differential responses to similar
orientations thereby enabling better discrimination performance. The training-induced
asymmetry of the tuning curves reflects an imbalance of lateral inhibition (see also figure

1). For example, the changes for the blue tuning curve tuned to ~150° (figure 3b) stemmed
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from an imbalance in lateral inhibition in the network providing input to the 150°-tuned
neuron. Due to a training-induced increase in lateral inhibition among neurons with
preferred orientations in the 135°-150° range, inputs to the 150°-tuned neuron from
precisely those neurons that were less informative for discriminations around the 135°
reference (red tuning curve in fig 3b) were diminished. At the same time, the influence
from neurons with peak response to orientations >150°, whose role in the task was limited,
remained largely unaltered, thus creating the inhibition imbalance. Analogous reasoning
applies to neurons with tuning around 120°. A simulation of subsequent asymptotic learning
at 105° and 165° reference orientations (Task B, figure 3c) reversed the steepening effects
that took place in preceding learning and moved the tuning curve maxima back to their
original places, restoring the population to a quasi-naive distribution of tuning curves.
Hence, when baseline training of the model at 135° (Task A) was followed by training at
105° and 165° (Task B), original learning in Task A was erased. Importantly, synaptic
changes in response to initial training on Task A were not undone by subsequent training
on Task B. Rather, training-induced lateral inhibition increases around the 135° reference
after Task A were matched by an equal increase in lateral inhibition near references 105°
and 165° after Task B (figure 3c, inset shows the distribution of inhibitory weights). The
acquisition of two memory traces thus rendered both of them inconsequential due to the re-
balancing of lateral inhibition. Therefore, another period of asymptotic learning at 135°
was required to approach restored performance levels at this reference orientation (figure
3d). Thus, simulations confirmed the effectiveness of Task B to interfere with Task A.
Simulations also confirmed that Task A was rather ineffective in interfering with Task B.
The state of the population after training on Task A (figure 3b) did not prevent effective
learning of Task B. This is due to the fact that training in Task A left about half of the
neuronal tuning curves critical for the learning of Task B unaffected (orange curves in
figure 3Db).

Finally, we describe model simulations for sequence BA. Training in Task B (at 105° and

165°) created a state (figure 3e) that was highly unfavorable for following training in Task

A (at reference orientation 135°). In this case, training at 135° in Task A matched in duration

to Task B may at best undo the detrimental effects of preceding training in Task B by

reverting the tuning curve distribution back to a quasi-naive state (figure 3f). Behavioral
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interference according to our model is thus the result of competing demands placed on
tuning curve changes. The incompatibility of tuning curves in the neural network can be
appreciated by comparing figures 3b and 3e. Note additionally that enhanced inhibition in
subparts of the network after training Task B, is rebalanced by increased inhibition in an

additional part of the network (insets in figure 3e and f).

Note that in our model, training at a reference orientation leads to reduced responses in
neurons with preferred orientations at or near the reference orientation (e.g., compare
figures 3a-d). This is in line with a possible link between adaptation and learning as
suggested in empirical (Dragoi, Sharma, & Sur, 2000) and modeling studies (Teich &
Qian, 2003). In our model, the response decreases reflect enhanced lateral inhibition after
Hebbian learning (see insets in figure 3). Note also that when a new period of training
follows a previous period, (e.g., figure 3c and 3f) the strengthening of inhibitory
connections in a network subregion due to the new training could marginally overlap and
add to the pre-existing strengthened inhibitory connection weights set by the prior training.
Furthermore, re-learning a task after interference (figure 3d) involves re-creating an
inhibition imbalance by adding inhibition to the network subregion on top of pre-existing

inhibition from prior training in the same task.
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Figure 3 (previous page): Modeling of orientation tuning changes at the end of asymptotic learning in a \VV1-like cortical
area resulting from different learning sequences. Training-induced tuning changes are exaggerated for illustrative
purposes. Panels b-d represent consecutive periods of prolonged training at 135° (Task A), at 105° and 165° (Task B),
and finally again at 135° (Task A). Likewise, panels e-f represent consecutive periods of extended learning, first at 105°
and 165° (Task B), and then at 135° (Task A). Thin vertical lines at top of tuning curves indicate the position of the
reference orientations (dashed: 135° reference; dotted: 105° and 165° references). Insets in panels b-f graphically depict
the size of networks contributing to orientation discrimination of the three reference orientations. Training-induced
enhancement of inhibition is shown by a color-coded height of distribution on top of the network (saturated red = largest
increase in inhibition). a, Orientation tuning curves prior to any learning. b, Network state and tuning curves after 15
training sessions at the 135° reference orientation. Neurons with preferred orientations +15° away from the trained
reference show an increased slope of the flank overlapping with the trained reference (blue curves), paired with the tops
shifting somewhat towards the trained reference. Increasing the slope overlapping with the trained reference is useful in
generating larger differential responses for small orientation changes around the reference. The inset distribution displays
an increase in inhibitory weights with respect to the naive network state. All changes are clustered around 135°. c,
Network state and tuning curves after training at the 105° and 165° reference orientations. This pulls the blue curves back
into place, generating a distribution relatively similar to the naive state. Thus, Task B almost ‘resets’ all neuronal tuning
curves crucial for learning Task A, and effectively erases most of the skill at the 135° reference orientation built up during
initial learning. Changes in recurrent connectivity due to increased inhibition now extend to 105° and 165° (light blue-
yellow regions in inset). Thus, synaptic changes around 135° remain and merge with new changes. Note that the state
reached after training Task A (panel b) does not prevent the learning in Task B at reference orientations 105° and 165°
(panel c). Training in Task A flattens the tuning curve slopes contributing to learning at the 105° reference in about half
of the neurons (blue curves), but not the other half (orange curves). The same is true for the 165° reference. Hence, Task
A leaves intact about half of the neuronal tuning curves relevant for learning Task B. Therefore, no or only limited
interference of Task A upon Task B is expected. d, Restoration of skill at the 135° reference by new training, following
interference by 105° and 165°. Lateral inhibition around 135° exhibits additional increases (red color in inset). e, Network
state after an initial period of extensive training at the 105° and 165° references. f, Network state after extensive training
at the 135° reference when preceded by extensive training at the 105° and 165° references. Failure to reach the fully
trained state as in panel b corresponds to predicted interference.

4.2 Psychophysical demonstrations of interference between skills trained in 4-week long,

successive training periods

We trained eight human participants on an orientation discrimination task using a Gabor
stimulus of 3° diameter presented at 6° of eccentricity. They were exposed to the same
experiments as our model. Making use of position specificity of orientation discrimination at
least at the level of visual field quadrants (Been et al., 2011; De Weerd, Peralta, Desimone,
& Ungerleider, 1999; Schoups et al., 2001), three experiments (task sequences: ABA,
BAB, ACA) were distributed over different quadrants, allowing us to test interference
between the various tasks within each participant. Per experiment, tasks Aand B (or C) were
trained in three consecutive periods each lasting 15 sessions (spread in each participant
over 3 months in total). We tested whether skill buildup in Task A (135° reference) during
baseline training (referred to as Task Ag) suffered from training in Tasks B (105°/165°) and
C (45°) by testing (and training) again in Task A (referred to as Task Ar). We also tested

whether Task B suffered from prior training in Task A. Within each session, participants
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performed four 84 % correct threshold measurements per combination of task and quadrant

(see section 3 for details).

In the statistical evaluation of the psychophysical data, we considered effects of
interference on late learning (last three sessions of a learning curve) as well as on early
learning (first three sessions). While our model can be used to predict effects of late
learning, we have no model at present that predicts effects of interference on early learning.
A tentative interpretation of any interfering effects on early learning is deferred to the
Discussion.

In Experiment 1, using task sequence ACA (figure 4a-c), we did not expect interference of
Task C on Task A. Our results showed a trend for the asymptote in Task At to converge on
smaller thresholds than the asymptote in Task Ag. A planned one-sided t-test comparing
later learning in Tasks Ag and At only marginally failed to show this difference (t) = -
1.65, p = 0.07). In addition, the mean performance levels at the start of Task Ar (sessions
31-33) and the end of Task Ag (sessions 13-15) were significantly equivalent (ti7) = -
7.251, ty7y = 4.670, p=0.01). Together, these analyses confirmed that skill at 135° in Task
A was not interfered with by training at an orthogonal reference orientation in Task C.

Instead, there was a trend towards additional learning in Task Ar.

In Experiment 2, participants were trained in task sequence ABA (figure 4d-f).
Qualitatively, our model simulations for this sequence (figure 3b-d) predicted that in spite
of extensive baseline training in Task Ag at the 135° reference orientation, the intervening
training in Task B at 105° and 165° would interfere with performance in Task A in the test
period (figure 4). Planned t-tests revealed that mean performance at the end of Task Ar
(sessions 43-45) and the end of Task Ag (sessions 13-15) were significantly different (tz) =
2.144, p= 0.0346). In addition, performance thresholds at the end of Task At in
Experiment 2 were substantially elevated beyond those observed for Task At in
Experiment 1 (compare figs 4c and 4f; t7) = 3.823, p = 0.0065). Hence, Task B interfered

with late learning of Task A.

In addition, we found in Experiment 2 that average thresholds at the beginning of learning
in Task Ar (sessions 31-33) were significantly elevated above the end of asymptotic learning
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in Task Ag (sessions 13-15; t7 = -5.587, p « .001). We then tested whether
performance at the start of Task Ar (sessions 31-33) was the same as that at the start of Task
Ag (session 1-3). However, two one-sided tests of statistical equivalence for paired samples
with an equivalence interval of ([-1.83°,1.83°]) failed to show that these performance levels
were significantly equivalent (tyz) = -1.155, ty7 = 4.186, p = 0.143). Please note that failure
to reach significance in the equivalence test does not permit the conclusion that
performance levels are different. Indeed a post-hoc two-sided t-test failed to establish any
significant difference between these performance levels (t7) = 1.62, p = 0.149). Hence,
thresholds at the beginning of the learning curves for Task Ag and Task At were neither
significantly equivalent nor significantly different. In summary, Task B interfered with the
beginning of learning in Task A, in addition to interfering with late learning in that task.
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Figure 4: Learning curves in three different sequences of learning periods averaged over eight participants. A period
consisted of 15 sessions of orientation discrimination training spread over a month in Task A (reference 135°), Task B
(references 105° and 165°) or Task C (reference 45°). When Task A was trained first, it is referred to as a ’Baseline’
(Task Ag), and when it was trained last, it is referred to as a "Test’ (Task At). An analogous nomenclature is used for
Task B. We refer to the rows as Experiments 1 to 3 (top to bottom). A total of nine conditions were performed by each
participant, in a semi-random order illustrated in figure 2 in section 3.2. Colors of curves correspond to conditions in
figure 2b. a-c, Thresholds as a function of training session in Experiment 1 (Task sequence ACA). d-f, Learning curves in
Experiment 2 (Task sequence ABA). g-i, Learning curves in Experiment 3 (Task sequence BAB). In Task B, the coarser
dash corresponds to the 105° reference orientation. Insets schematically illustrate the different task conditions (stimuli
enlarged for illustration). Columns indicate the temporal order in which conditions were trained (with the conditions in
the left column trained in the first month, those in the middle column in the second month, and those in the right column

in the third month; see section 3.2, Methods).
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In Experiment 3, participants followed task sequence BAB (figures 4g-i). For the BA part
of the sequence, we expected that Task B (figure 4g) would proactively interfere with Task
A (figure 4h). In accordance with an interference effect (see also figure 3e-f), a one-sided
t-test showed that thresholds at the end of asymptotic learning at 135° in Task Ag
(sessions 28-30, figure 4h) were significantly elevated compared to those at the end of
asymptotic learning in the baseline condition (sessions 13-15;t) = 2.9238 p=.011; figure
4d). These data support substantial interference of Task B upon asymptotic learning in Task
A.

In a secondary analysis, we also investigated in Experiment 3 whether performance in Task
A (figure 4h) interfered with previously built up skill in Task Bg, and thus would interfere
with subsequent training in task Br. We did not expect such interference. To test this, we
compared thresholds at the end of learning curves in Task Bt (figure 4i) and Task Bg
(figure 4g), and found them to be statistically equivalent (for 105° ty7 = -3.838, ty7) =
4.763, p= 0.003; for 165° ty7y = -6.372, ty7) = 4.170, p= 0.002). We further tested
whether performance at the beginning of Task Bt experienced interference from
training of Task A. As expected, a one-sided t-test revealed that thresholds at the
beginning of Task Bt (sessions 31-33) were significantly lower than those at the
beginning of Task Bg (sessions 1-3), despite intervening training on task A (tz) = -
3.523, p = 0.005 & ti7y = -2.340, p = 0.026 for reference orientations 105° and 165°,
respectively). This contrasts to the analogous comparison for Experiment 2, where the
beginning thresholds for Tasks Ag and Ar were difficult to distinguish. Finally, we tested
whether mean performance levels at the start of Task Bt (sessions 31-33) were significantly
equivalent to those at end of Task Bg (sessions 13-15). For the 105° this was indeed
the case (tyy = -6.167, tyzy = 2.709, p= 0.015). For 165° surprisingly, the
corresponding performance levels narrowly failed to reach significant equivalence (ty7) = -
9.913, ty7y = 1.415, p= 0.1). A post-hoc t-test revealed that these performance levels were
instead significantly different (t7y = -4.542, p = 0.003). The intervening training in Task A
thus had some, albeit small, effects upon beginning thresholds in Task B+. In sum, as
expected, this secondary analysis in Experiment 3 showed that Task A did not
interfere with asymptotic learning in Task B, and at best interfered only weakly with
the initial learning in Task B.
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When putting together the evidence from Experiments 2 and 3, we found that Task B (as
expected) showed a much stronger capacity to interfere with Task A than vice versa.
Specifically, with respect to late learning, Task B strongly interfered with Task A, but Task
A did not interfere with Task B. These results fit with a contribution of V1 (and other low-
level visual areas) to skill memory formation during late learning. The results on late
learning confirm that unless neural overlap between tasks is limited by choosing stimuli
encoded by distinct neural populations, behavioral interference will occur. With respect to
early learning, Task B strongly interfered with early learning in Task A, whereas Task A
produced no or only weak and inconsistent interference on Task B. The interference effects
involving early learning may thus involve mechanisms that go beyond early visual cortex
(see Discussion).

In agreement with other studies (De Weerd et al., 1999; Raiguel et al., 2006; Schoups et al.,
1995, 2001), we found that orientation discrimination learning is specific for reference
orientation and position (e.g., compare learning curves during Part 1 of training, left hand
column in figure 4). This predicts that the different interference effects also remain specific
for the quadrants in which they are elicited (Been et al., 2011). The third Part of training
(right hand column figure 4, sessions 31-45) lent itself to a statistical test of the location
specificity of interference. In the third Part, we compared performance in Task Ar in one
location exposed to training sequence ABA (figure 4f) to another location exposed to
training sequence (ACA) (figure 4c). If interference were position specific, threshold
measurements in Task Ar are expected to be elevated when preceded by Task B (figure
4e), but not when preceded by Task C (figure 4b). These predictions were confirmed by a
one-sided t-test both for early learning (sessions 31-33, tz = -9.060, p « 0.001), and for
late learning (sessions 43-45, t7) = -3.823, p = 0.003), thus indicating that interference is
position specific.

4.3 Quantitative model predictions of asymptotic learning

Next, we investigated the accuracy with which asymptotic learning in our empirical data
was quantitatively predicted by model simulations. We limited the test of model
predictions to the asymptotic part of the learning curves, as early learning likely involves

higher-level mechanisms that are not included in the model. As interfering effects of Task
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A on Task B are absent or limited, model predictions focused on interference by Task B on
Task A. We evaluated the agreement between simulated and empirical asymptotic learning
curves (sessions 8-15) in the baseline and test conditions for each of our experiments using

residual mean-squared error (RMSE).

We first show results from Experiment 1, in which no interference was expected. The
model predicted that test thresholds (Task Ag, solid light-green line figure 5a) would
decrease below baseline thresholds (Task Ag, dashed dark-green line figure 5a). This fits
with the expected absence of interference from Task B, and expected continuation of learning
in Task Ar from the level achieved in baseline measurements in Task Ag. The mean
difference of test minus baseline predicted by the model was -0.185 In-units (figure 5c,
dark-green dotted line). This prediction was close to the empirical data (figure 5c, light-
green dotted line) with a corresponding empirical mean difference of - 0.226 In-units (95 %
CI [-0.495 0.042]). The close correspondence of empirical and simulated data is also
evident in a direct comparison of simulated and empirical results in Task A, which agreed
well for baseline (RMSE = 0.056, dashed lines in figures 5a,b) and test (RMSE = 0.071,
solid lines figures 5a,b). For comparison, the RMSE between empirical baseline learning
curves in Experiments 1 and 2 was 0.115 (compare dashed lines between figures 4a and
4d), thus providing a ballpark estimate for good agreement. A one-sided t-test (t) = -1.65,
p = 0.07) marginally failed to show that the empirical mean difference Ar — Ag was

significantly below zero (see figure 5b and light-green dotted line figure 5c).

The model predicted for Experiment 2 (sequence ABA) that overall, asymptotic In-
transformed thresholds in Task Ar would be highly similar (though marginally larger) than
those observed in Task Ag (compare solid and dashed blue lines in figure 5d). Accordingly,
the empirical asymptotes for Tasks Arand Ag (figure 5e) were significantly equivalent (t17)
= -6.595, ty7) = 4.260, p = 0.002). The predicted mean difference (Amoder = 0.065, dotted
dark-blue line figure 5f) was statistically matched to the empirical mean difference (Agawa =
0.130, dotted light-blue dotted line figure 5f), and fell within the 95% confidence interval
of the empirical mean difference [-0.074 0.334]. A direct comparison of the empirical and
simulated results for Task Ag also showed good agreement with RMSE = 0.095
(compare dashed dark-blue lines in figure 5d,e), and the same held for Task Ar with RMSE
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= 0.087 (compare solid bright-blue lines in figures 5d,e). Overall, predictions and data
showed good agreement. Note that the model prediction of largely equivalent asymptotes
does not contrast with our earlier comparison of performance in the last three sessions. The
model also predicted that asymptotic thresholds in Task At in Experiment 2 (solid blue line
in figure 5d) would eventually diverge from asymptotic thresholds in Task Ag (dashed blue
line in figure 5d), which was confirmed by the psychophysical data (compare solid and

dashed lines in figure 5e, details in Section 4.2).

For Experiment 3 (BAB sequence), the model (see figure 5g) predicted a large increase of
test thresholds in Task Ar (solid red line) compared to baseline thresholds in Task Ag
(dashed dark-blue line, taken from Experiment 2, justification in legend figure 5). This was
confirmed by the empirical data (figure 5h). The predicted mean difference Amogel = 0.255
closely matched the empirical mean difference Agaa = 0.287 (figure 5i). This predicted
mean difference (figure 5i, dotted dark-red line) fell within the confidence interval for the
empirical mean difference (figure 5i, dotted light-red line) (95 % CI [0.045 0.530]). A one-
sided t-test revealed that the mean Ar — Ag difference between empirical asymptotes was
significantly larger than zero (t7 = 2.32, p = 0.027; figure 5h,i). A direct comparison of
empirical and simulated data for the test condition (Task Ar, solid red lines figures 4g,h)
showed excellent agreement (RMSE = 0.061), and the same was true for the baseline data

(identical to those used in Experiment 2, figures 4d.,e).
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Figure 5: Baseline and test learning curves for asymptotic learning. Model predictions (left column), observed learning
asymptotes (middle column) and In(JND) difference curves for Test-Baseline (right column). Baseline and test learning
curves for Task A (135° reference) are compared in Experiments 1 (panels a-c), Experiment 2 (panels d-f), and
Experiment 3 (panels g-i). Empirical baselines in e and h are the same (taken from Experiment 2). a-c, Predicted (panel a)
and observed (panel b) asymptotes for Task Ag (dashed line) and At (solid line) in Experiment 1, as well as a direct Test
minus Baseline comparison for model (dark dash) and empirical data (light dash; panel c). d-f, Empirical data versus
model comparison for Experiment 2, conventions as in a-c. g-i, Empirical data versus model comparison for Experiment
3, conventions as in a-c. *Please note that the model baseline learning curves in g and d as well as the empirical baseline
learning curves in h and e are identical (taken from Experiment 2, and therefore shown in blue). For model predictions,
the shaded areas represent SEM (the model was trained 25 times in each experiment, see section 2.2 for details); for
empirical data, the shaded area represents error (SEM/2). Error values are purely for illustration as all statistical tests were
within-subjects.
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4.4  Training balance predicts performance levels

The model predicted that asymptotic performance at the 135° reference orientation during
baseline (Task Ag) or test (Task Art) should depend on the balance of training quantity
between Task A (135°) and B (105° & 165°). Figure 6a shows that the lowest thresholds
were expected (grey bars) and observed (black bars) for Task Ar in Experiment 1 (Ar |
E1). This is because in Experiment 1, there was no interference in the second training
period, such that the asymptotic performance at the 135° reference orientation resulted
from 30 sessions of training, countered by O sessions of interference (30:0 data point in
figure 6b). Slightly higher thresholds were predicted and observed in Task Ag in
Experiments 1 and 3 (Ag | E1 and Ag | E3 in figure 6a), where the asymptote resulted from
15 training sessions not countered by any interference (15:0 in figure 6b). A further
threshold increase was predicted and observed for Task Ar in Experiment 2 (Ar | E2 in
figure 6a), because in this case asymptotic performance resulted from 30 training sessions
in Task A, countered however by 15 interfering training sessions in Task B (30:15 in
figure 6b). The highest predicted and empirical thresholds were encountered for task Ar in
Experiment 3 (Ar | E3 in figure 6a), where 15 sessions in Task B preceded 15 session in
Task Ar (15:15 in figure 6b). In figure 6a, all predicted values fell within the 95 %
confidence intervals of the corresponding empirical data. In figure 6b, the model predicted
a log-linear relationship between asymptotic threshold levels and the balance of training
between Tasks A and B, with a predicted slope Bmoger Of 0.10. This was almost identical to
the empirically observed slope (Bua = 0.11, 95 % CI [0.05 0.17]). A repeated measures
linear trend analysis on the In-transformed empirical data also confirmed the log-linear
trend in our data (Fa7 = 11.608, p = .011). These results affirm the view that the most

extensively trained skills will dominate tuning curve shapes, at the cost of other, less

trained skills.
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Figure 6: Comparison of performance in different experiments, highlighting the role of the relative amount of training on
each task. Task A asymptotes are obtained at reference 135°, during baseline (Task Ag) or test (Task At) periods. Task B
corresponds to training at reference of 105° and 165°. a, Mean threshold levels for asymptotic learning (session 8-15) at a
135° reference orientation in Task Ag and Task Ay of Experiment 1 (E1), as well as Task Ag and Task A of Experiment
2 (E2), and Task Ar of Experiment 3 (E3; see figure2 in section 3.2 for task conditions). b, The balance in number of
sessions performed in Task A vs B determines thresholds in Task A. The more the balance is in favor of Task A, the
lower the asymptotic thresholds are in Task A. The log-linear trend predicted by the model (grey plot) was similar to that
present in the empirical data (black line, grey region shows SEM). Note that the 15:0 balance is equally exhibited by Task
Ag in E1 and E2 and we only included data of E1 in our analyses to keep sample sizes consistent (choosing Task Ag of
E2 instead does not alter the effect).

5 Discussion

Our data indicate that highly trained skills have no intrinsic longevity and can be erased by
training another, sufficiently similar skill. Our psychophysical data on orientation
discrimination learning and previously observed tuning curve changes (Raiguel et al., 2006;
Schoups et al., 2001) can be well understood by a computational model in which learning of
an initial task is due to enhanced inhibition within a part of a neural network and in which
interference (resulting from training in a slightly different task) is due to added inhibition in an
adjacent part of the network. Hence, interference was created without erasing the connections
left behind by original learning. In addition, in line with the incremental nature of the Hebbian
learning rule used in our model, the balance of inhibition among parts in the network recruited
by different tasks was expected to be related to the difference in trials devoted to each task.
This idea was supported by our empirical finding that the efficacy of behavioral interference
depended on the difference in the number of sessions devoted to the originally trained task
and to the interfering task. Hence, even expert skills are vulnerable to interference, the
magnitude of which depends on the extent of training on the similar, interfering skill.
Remarkably, the data in our paradigm were excellently predicted by a computational model in
which interference occurred without erasing existing connectivity from the originally learned
expert skill.

This is the first study that tested interference among skills trained sequentially in a
considerable number of sessions. In several previous studies, interference was investigated
among two skills trained in a single day. These studies have reported widely ranging time
intervals over which interference occurs, from 1-4h (Brashers-Krug et al., 1996; Shadmehr
& Brashers-Krug, 1997; J.-Y. Zhang et al., 2008) up to several days (Caithness et al., 2004;
Goedert & Willingham, 2002; Yotsumoto, Watanabe, Chang, & Sasaki, 2013). The short-

lasting time window following training amenable for eliciting behavioral interference fits
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roughly with the expression window of late genes controlling synaptic plasticity (Caroni,
Chowdhury, & Lahr, 2014; Igaz, Bekinschtein, Vianna, Izquierdo, & Medina, 2004). This
can be seen as support for the idea that time-limited latent consolidation is the basis for
behavioral interference. By contrast, studies reporting interference over days (Caithness et
al., 2004; Goedert & Willingham, 2002; Yotsumoto et al., 2013) have been used to support
a view of consolidation in which modified connections remain malleable at all times. This
idea has been proposed both in the domain of hippocampal learning (Forcato et al., 2007;
Hupbach, Gomez, & Nadel, 2009; Lewis, 1979) and skill learning (Walker, Brakefield,
Hobson, & Stickgold, 2003) and holds that memory traces can at any time become
modified when reactivated through new experiences. The flexible modulation of neural
connectivity through spine dynamics (Hofer, Mrsic-Flogel, Bonhoeffer, & Hiibener, 2006;
Smith, Heynen, & Bear, 2009) is certainly in support of the modifiability of memory
traces. The difficulty of pattern separation in cortex (McClelland et al., 1995; O’Reilly &
Rudy, 2001) combined with the malleability of synaptic connectivity could thus form the

basis for interference.

In addition to interference with ongoing consolidation, and interference due to the
malleability of consolidated synapses, behavioral interference could also rely on a third
mechanism. We suggest this mechanism exploits the balance of inhibition within lateral
networks that influence the neuronal tuning to relevant values on a particular task-relevant
dimension (here, orientation). Because orientation tuning is to a significant extent derived
from interactions of any given neuron with its neighbors (Shapley et al., 2003; Sillito,
1975), changes of inhibitory connections in a subpart of the network can produce
asymmetric tuning curves that enhance psychophysical performance. Changes in another
subpart of the network (due to another task) can restore the balance of inhibitory inputs,
thus interfering with prior learning. Thus, for a given tuning curve, two sufficiently similar
tasks would pull it in opposite directions (see figure 1). These opposite effects are achieved
by strengthening the lateral inhibition in separate subsets of connections among the
neighbors influencing a given neuron’s tuning curve, rather than by erasing inhibitory
connections already set by the first learning experience. This mechanism may be most
strongly recruited in low-level visual areas during and after asymptotic skill learning, as
suggested by tuning changes following prolonged training in orientation discrimination
36


https://doi.org/10.1101/783654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/783654; this version posted September 27, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

(Raiguel et al., 2006; Schoups et al., 2001; Yang & Maunsell, 2004).

The mechanism of balancing network inhibition provides a new perspective on why some
studies showed behavioral interference over long time intervals of a day or more (Been et
al., 2011; Caithness et al., 2004; Goedert & Willingham, 2002; Yotsumoto et al., 2013),
rather than the short intervals of a few hours reported in other studies (Brashers-Krug et al.,
1996; Shadmehr & Brashers-Krug, 1997; J.-Y. Zhang et al., 2008). For example, Been et
al. (2011) alternated daily training between two orientation discrimination tasks (which we
here referred to as Task A and B) and found the same interference for delays between tasks
from Oh up to 24h. This is not in line with the notion of time-limited consolidation, but
could be due to the fact that performance in the two tasks relies on the modification of
different subsets of inhibitory connections in the contributing neural network. Likewise,
Caithness et al.’s (2004) finding of interference among different visuo-motor tasks trained
in sessions separated by up to a week, may be due to the balancing out of inhibition in a
task-relevant network of direction-tuned motor neurons (Georgopoulos, Schwartz, &
Kettner, 1986). The same explanatory model may also help to understand data from other
studies demonstrating interference over long time intervals (Goedert & Willingham, 2002;
Yotsumoto et al., 2013).

How exactly the balancing of network inhibition is achieved in the cortex remains an open
question. In the light of evidence that inhibition shapes orientation tuning (Sillito, 1975),
and that inhibitory interneurons in V1 become increasingly selective with learning (Khan et
al., 2018), we modeled (re-)balancing as an increase in inhibitory connections. We could
have achieved the same effect if instead we had chosen to decrease excitatory connections
(cf. Teich & Qian, 2003). Our model consists of a set of rate neurons forming both
excitatory and inhibitory connections with each other. This is a considerable simplification
because neurons are distinctly excitatory or inhibitory, as expressed in Dale’s law (Eccles,
1976). In a more realistic network model, balancing of network inhibition might be
achieved by a) reducing synaptic coupling among excitatory neurons, b) increasing
synaptic coupling from excitatory to inhibitory neurons, c) increasing synaptic coupling
from inhibitory to excitatory neurons, or d) reducing synaptic coupling among inhibitory
neurons. We implicitly assumed either b) or c) to be the case. However, which of these
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mechanisms regulates network inhibition is a question that requires further research.

A related question pertains to how learning could occur in response to negative as opposed
to positive feedback; i.e. after incorrect as opposed to correct trials. The latter is typically
assumed to result from reward-related neuromodulators such as dopamine gating plasticity
(Glimcher, 2011). The former would require a punishment-related neuromodulator. A
candidate neurotransmitter potentially able to fulfill this role is serotonin whose levels are
elevated in response to cues reflective of punishment and aversive stimuli (Cools,
Nakamura, & Daw, 2011; Crockett, Clark, & Robbins, 2009; Evers et al., 2005).
Vasoactive intestinal peptide expressing (VIP+) interneurons in early visual cortex express
the serotonin receptor 5HT3aR (van Versendaal & Levelt, 2016) and may thus be activated
by serotonin released in response to incorrect trials. Given that VIP+ interneurons inhibit
somatostatin expressing (SOM) interneurons, which in turn inhibit pyramidal cells as well
as parvalbumin expressing (PV+) interneurons (Xu, Jeong, Tremblay, & Rudy, 2013),
disinhibition of pyramidal cells or PV+ interneurons in response to increased VIP+ neuron
activity has been suggested to modulate experience-dependent plasticity in early visual
cortex (van Versendaal & Levelt, 2016). Balancing of network inhibition either according
to mechanisms b) or ¢) could thus potentially be modulated by serotonin. We do not wish
to claim that this particular mechanism explains how error-triggered Hebbian learning is
implemented in visual cortex. Rather, we only wish to highlight that our modeling choice is
biologically plausible as this or a comparable mechanism is principally conceivable given

current evidence.

Retinotopic areas other than V1 may show training-induced orientation tuning changes
(Raiguel et al., 2006; Yang & Maunsell, 2004). Hence, V1 is not the sole contributor to the
observed asymptotic learning and interference (as also recognized in Schoups et al., 2001).
The modelled tuning changes during asymptotic learning in our V1-inspired model may thus
have been larger than what we might have seen if other areas had been included in the model.
Nevertheless, the ability of our relatively simple model to accurately predict major aspects of
learning and behavioral interference indicates that our observations to a significant extentare
mediated by orientation tuning changes due to altered recurrent interactions in mid-to-low
levelsofthe visual system.
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As an alternative to altering recurrent interactions within low-level visual areas during
asymptotic learning, learning by altering feedforward connections may also lead to
behavioral interference. However, the expected interference from such a feedforward
learning model likely differs not only quantitatively but also qualitatively from what we
observed here. Models relying on feedforward mechanisms to sharpen tuning curves have
been shown to fail to explain the shift in the peak of orientation tuning curves towards the
reference orientation (Teich & Qian, 2010). Given that these shifts account, at least in part,
for flattening of tuning curve flanks facing away from the reference orientation, they are
likely to shape interference effects. Furthermore, if the same feedforward weights need to
be sharpened to increase sensitivity around similar orientations, it is likely that extensive
initial training at one set of orientations will interfere with subsequent learning using other
orientations. In this scenario, there would be strong interference irrespective of the order of
Tasks A and B. In contrast, the recurrent mechanism employed here does not predict such
generalized proactive interference, and it is indeed also absent from our psychophysical
data (in figure 4 compare panels d and e, and panels g and h). This argument extends to
read-out effects, which are similarly likely to produce proactive interference if
discrimination around different references needs to rely on a single, shared set of
feedforward weights. In a more complicated read-out scenario with multiple read-out units
that do not share feedforward weights, no interference at all is expected, which also
conflicts with our empirical data. Notably, it has recently been shown that exposing a
purely feedforward convolutional neural network to orientation discrimination training can
sharpen tuning curves in early layers of the model (reflecting V1- and V2-like processing;
Wenliang & Seitz, 2018). The convolutional neural network has, however, not been used to
investigate interference. Given that it uses a large number of independent filters at all
hierarchical levels of the network, we suspect it would not exhibit the qualitative
interference effects observed in our study. Thus, while read-out effects likely would have
contributed to learning in our study (Hochstein & Ahissar, 2002; Law & Gold, 2008), they
cannot easily account for the interference effects we observed in the later, asymptotic parts
of the learning curves. These interference effects are parsimoniously explained by
assuming recurrent interactions among orientation-tuned neurons (Teich & Qian, 2003)
restricted to mid-to-low levels in the visual system (A Karni & Bertini, 1997; Avi Karni &
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Sagi, 1993; Schoups et al., 2001), and compatible with views that permit learning-induced
changes in both lower and higher levels of the visual system (Dosher, Jeter, Liu, & Lu,
2013; Hochstein & Ahissar, 2002). Nevertheless, future efforts to model the observed
behavioral interference should combine learning-induced plasticity in low-level sensory

cortex with a plastic read-out mechanism.

The psychophysical data showed that following training in Task A, intervening training in
Task B led to a substantial threshold increase in the first sessions of returning to Task A
(figure 4, d-f). It is possible that the elevated thresholds indicate a ‘reset’ in which
performance depends again on mid to high-level visual areas that can support coarse
orientation discrimination (Hochstein & Ahissar, 2002). Alternatively, it is possible that
upon returning to Task A, information continues to be read out from the lowest level, and
that the quasi-naive network state at low levels (figure 3c) is the reason why thresholds are
high immediately after returning to Task A. This is another open question that should be

investigated in models that combine low-level and read-out plasticity.

The behavioral interference effects in our study during asymptotic learning were specific to
the manipulations imposed in different visual field quadrants (compare asymptotes in
figure 4c and 4f). This appears to conflict with studies showing substantial or complete
generalization of visual skill learning (e.g., Xiao et al., 2008; J.-Y. Zhang et al., 2010; T.
Zhang, Xiao, Klein, & Levi, 2010). However, experiments in orientation discrimination
that showed generalization among peripheral locations were limited to early learning (T.
Zhang et al., 2010), and other experiments indicated that generalization among peripheral
locations does not include progress made during asymptotic learning (Lange & De Weerd,
2018). In addition, studies showing strong generalization (e.g., Xiao et al., 2008; J.-Y.
Zhang et al., 2010; T. Zhang, Xiao, Klein, & Levi, 2010) often limited the length of
learning curves, or used particular training procedures that we did not apply in the present
study (for a full discussion, see Lange & De Weerd, 2018). At present, there is no evidence
indicating that the asymptotic performance enhancements in expert orientation
discrimination acquired after prolonged learning (15 sessions or more) show substantial
generalization among peripheral visual field locations. Hence, we suggest there is no
conflict between the position specific interference during late learning in our study and the
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findings of generalization in other studies using other paradigms (e.g., Xiao et al., 2008; J.-
Y. Zhang et al., 2010; T. Zhang, Xiao, Klein, & Levi, 2010). Asymptotic learning, rather
than being amenable to substantial generalization, has been demonstrated to induce
localized plasticity in low-level visual areas (Raiguel et al., 2006; Schoups et al., 2001;
Yang & Maunsell, 2004), as well as skill that is specific for visual field position (Lange &
De Weerd, 2018; Lange, Lowet, Roberts, & De Weerd, 2018; Schoups et al., 1995, 2001).
The specificity of interference effects on asymptotic learning of orientation discrimination
IS in accordance with the specificity of asymptotic learning itself.

We also found position specificity of the interference effects in the early part of the
learning curves of Experiment 1 (compare sessions 31-33 in figure 4c and 4f). To the
extent that the lower-level network immediately following the return to Task A (figure 4f,
first sessions) is close to its naive state (figure 3c), this position specific interference effect
may simply reflect the accompanying reduction in informativeness of tuning curves and
hence rely on low-level visual cortex. It is possible, however, that this observation instead
reveals a contribution to position specificity from read-out networks extending beyond low
levels of the visual system. Earlier work has shown that during early perceptual learning,
low-level visual areas may already be included in a larger network supporting skill
acquisition and memory formation (De Weerd et al., 2012; Schwartz, Maquet, & Frith,
2002; Yotsumoto, Sasaki, et al., 2009; Sarabi et al., 2018). It is possible that when the
context of the training makes a given position relevant, read-out itself may develop
position specificity. This view is in line with the general idea that the read-out mechanisms
in perceptual learning are flexible and rule-based (Xiao et al., 2008; J.-Y. Zhang et al.,
2010; T. Zhang et al., 2010), and can be shaped to optimize read-out in a single or multiple
locations depending on task requirements (Eckstein, Abbey, Pham, & Shimozaki, 2004).
Hence, it is possible that different magnitudes of interference in different visual field
locations are embedded at least partly in specific cortico-cortical connectivity that links the
task-relevant retinotopic regions in low-level visual cortex with one (or possibly more)
read-out mechanisms. Further research is required to test the contributions of higher and
lower levels of the visual system during different learning phases to position specificity of

acquisition, performance and interference.

41


https://doi.org/10.1101/783654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/783654; this version posted September 27, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

The present study has several limitations. It did not include a read-out mechanism, which
in future work should be added to the recurrent mechanism modeled in a prototypical
lower-level visual area. Future modeling should also entail a more biologically plausible
implementation of the decision process. This may be modeled by a winner-take-all attractor
neural network as put forth by Wang (2002), potentially supplemented by a criterion (c.f.
Insabato, Pannunzi, Rolls, & Deco, 2010) reflecting the internal reference. In the present
study, orientation discrimination decisions were performed using signal detection theory
(Green & Swets, 1966), which constitutes an approach to the behavioral manifestation of

the decision, but not of the decision process itself.

Despite limitations, our empirical and model data yielded several insights. First, our data
suggest that highly trained skills are not more stable than less trained skills. Rather, the
stability of highly trained skills is conditional on the lack of interfering expertise.
Specifically, highly trained skills may remain stable simply because in most domains of
skill learning it is unlikely that new skills would be trained that are similar enough and
trained for long enough to interfere with established expertise. However, when a new skill
Is trained that accesses a neuronal population strongly overlapping with the neuronal
population where the older expertise is stored, the older expert skill will become damaged
to the extent that more training is devoted to the new skill. Second, our results also
highlight the importance of separately considering perceptual skill in terms of altered
neuronal tuning, and in terms of the altered network connectivity that corresponds to the
‘memory trace’, as the insights from one perspective do not necessarily translate directly to
the other perspective. In the present study, a V1 model accurately predicting interference
between two orientation discrimination tasks indicates that although interference can undo
previously established changes of neuronal tuning curves, this does not necessarily
translate into erasure of previously established neuronal connectivity. Third, our empirical
and modeling work further indicates that memory traces understood as altered synaptic
interactions do not exert their influence in isolation but only in the context of other
memory traces. This is because neuronal tuning curves sample these changes in
connectivity induced by new learning in the context of other connectivity that may reflect
older learning experiences. Tuning curves hence form the interface between discrimination
behavior and connectivity patterns representing the perceptual skill. Therefore, further
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investigations of the precise relationships between local network connectivity changes and
neuronal tuning may increase our understanding of the mechanisms of skill learning as
well as the way in which skills can interfere with each other.
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