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Abstract 

Background: Medulloblastoma is the most common malignant pediatric brain tumor with high 

fatality rate. Recent large-scale studies utilizing genome-wide technologies have sub-grouped 

medulloblastomas into four major subgroups: wingless (WNT), sonic hedgehog (SHH), group 3, 

and group 4. However, there has yet to be a global analysis of long non-coding RNAs, a crucial 

part of the regulatory transcriptome, in medulloblastoma.  

Methods and findings: We performed bioinformatic analysis of RNA-seq data from 175 

medulloblastoma patients. Differential lncRNA expression sub-grouped medulloblastomas into 

the four main molecular subgroups. Some of these lncRNAs were subgroup-specific, with a 

random forest-based machine-learning algorithm identifying an 11-lncRNA diagnostic signature. 

We also validated the diagnostic signature in patient derived xenograft (PDX) models. We 

further identified a 17-lncRNA prognostic model using LASSO based penalized Cox’ PH model 

(low risk group HR= 0.207, 95% CI= 0.133-0.323, p-value= 2e-14). 

Conclusions: Our analysis represents the first global lncRNA analysis in medulloblastoma. Our 

results identify putative candidate lncRNAs that could be evaluated for their functional role in 

medulloblastoma genesis and progression or as diagnostic and prognostic biomarkers.  
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Introduction 

Medulloblastoma (MB), characterized as WHO group IV, represents the most common malignant 

pediatric central nervous system (CNS) tumor [1-4], representing 9.2% of all pediatric brain tumor 

cases [1, 5] and roughly 500 new cases each year in the US. MBs originate in the cerebellum and 

share molecular signatures with embryonic cerebellar lineages, with metastasis sites commonly 

include parts of the brain, spinal cord, and, rarely, to extraneural sites [6-8].  

 

Commonly used treatment strategies for MB include maximal safe surgical resection, 

radiotherapy, and chemotherapy, which are poorly tolerated by pediatric patients who are usually 

under seven years of age [9]. Appropriate treatment selection depends upon the clinical subgroup, 

stage, extent of resection, location, and the patient’s ability to withstand treatment [10]. In efforts 

to improve therapeutic outcomes, combined genetic and epigenetic approaches have refined MB 

classification into four clinically and molecularly distinct subgroups: wingless (WNT), sonic 

hedgehog (SHH), group 3, and group 4 [11]. Despite these significant advances, MB remains 

deadly for many patients, with a ~30% fatality rate. Further, even successful eradication of the 

tumor often results in a deteriorated overall quality of life due to side effects including organ 

dysfunction, neurocognitive impairment, endocrine disabilities, and secondary tumors [10-13]. 

Even with these advances in molecular classification, group 3 and group 4 tumors are 

heterogeneous groups that continue to make management challenging. There is an urgent need to 

identify the underlying molecular mechanisms in these subgroups to drive precision medicine-

based approaches, improve quality of life, and increase our understanding of MB in general.  
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Long non-coding RNAs (lncRNAs) represent a major part of the transcribed genome that do not 

code for functional proteins. LncRNAs are more than 200 nucleotides in length and are transcribed 

by RNA polymerase II. While previously labelled as transcriptional “noise”, it is now understood 

that lncRNAs are functional and play important roles in cellular physiology, development, and 

disease progression. In humans, there are at least three times as many lncRNAs as protein-coding 

genes [14]. Although the precise roles of the vast majority of identified or predicted lncRNAs 

remain unknown [14], they are increasingly recognized as being involved in cis or trans 

interactions regulating gene expression in the nucleus and protein interactions in the nucleus and 

cytoplasm. Some of the functionally diverse roles of lncRNAs include transcriptional silencing 

(e.g., XIST [15]), enhancers by regulating three-dimensional chromosomal structure to strengthen 

interactions between enhancers and promoters (e.g., LUNAR1 [16]), and as microRNA sponges 

that sequester microRNAs from their target sites (e.g., SNHG7 [17]). LncRNAs can also act as 

scaffolds for protein-protein and protein-nucleic acid interactions [18]. They are potential 

biomarkers and therapeutic targets in cancer, with several lncRNAs now studied for their 

oncogenic or tumor suppressor potential in several cancer types through their regulation of the cell 

cycle, cell death, senescence, metastasis, immunity, and cancer cell metabolism [19].  

 

LncRNAs are also implicated in CNS tumors including glioblastoma and neuroblastoma [20, 21]. 

However, there has yet to be a genome-wide study of MB to identify dysregulated lncRNAs. With 

this aim, we analyzed the transcriptomic profiles of 175 MB patients to map lncRNA expression 

profiles and identify subgroup-specific lncRNAs. We show that the MB lncRNAome exhibits 

significant heterogeneity that corresponds to the molecular subtypes. Using a random forest-based 

machine-learning algorithm, we identify lncRNA signatures that could improve on present 
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diagnostic approaches, while penalized Cox-PH regression identifies prognostic lncRNAs. Taken 

together, our analysis identifies candidate lncRNAs with subgroup-specific activity in MB and 

with diagnostic and prognostic value. 

 

Materials and methods 

Datasets 

Raw FASTQ files for RNA-seq data corresponding to 175 MB patients (referred to as the ICGC 

dataset) belonging to four subgroups (accession number EGAS00001000215) were downloaded 

from the European Genome-Phenome Archive (EGA, http://www.ebi.ac.uk/ega/) after obtaining 

approval from the Institutional Review Board (IRB) (Table S1)[22]. Pre-analyzed microarray 

expression datasets from 763 patients belonging to the four medulloblastoma subgroups were 

obtained from the study published by Cavalli et al. (referred to as the MAGIC dataset) [23]. 

 

RNA-seq library preparation 

RNA sequencing for patient derived xenograft (PDX) samples was undertaken at the Genetic 

Resources Core Facility at the Johns Hopkins University, School of Medicine, Baltimore, MD. 

Before sequencing, total RNA was extracted from PDX cell pellets using the Direct-zol RNA 

miniprep kit (R2060, Zymo Research, Irvine, CA), with subsequent quantification using 

Nanodrop (Thermo Fisher Scientific, Waltham, MA) and quality assessment with the Agilent 

Bioanalyzer Nano Assay (Agilent Technologies, Santa Clara, CA). RNA-seq libraries were 

constructed using the Illumina TruSeq Stranded Total RNA Library preparation Gold kit 

(20020598, Illumina Inc., San Diego, CA) as per the instructions. The quality and quantity of the 

libraries were analyzed using the Agilent Bioanalyzer and Kapa Biosystems qPCR (Sigma 
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Aldrich, St. Louis, MO). Multiplexed libraries were pooled, and paired-end 50 base-pair 

sequencing was performed on a NovaSeq6000. RNA-seq data are available at the Gene 

Expression Omnibus (GEO) Accession Number GSE134248. 

 

RNA-seq alignment, quantification, and differential gene expression analysis 

Raw FASTQ files were quality checked for adapter contamination using FASTQC. FASTQ files 

containing adapter sequences were trimmed by running through trim_galore in default mode. 

The reads were mapped to the GRCh38/hg38 human genome assembly p12 (release 28, 

www.gencodegenes.org) using HISAT2 and annotated using the corresponding release version 

GENCODE comprehensive annotation file and LNCipedia 5.2 high confidence set annotation 

file. Mapped reads were quantified using StringTie to obtain FPKM values, which were 

converted to read counts using the prepDE.py script (provided in StringTie manual). For 

variance-stabilized normalized reads and differential gene expression analysis, reads counts were 

processed with DESeq2 in R [24]. 

 

Consensus clustering 

Variance-stabilized expression levels of the top 10,000 variant lncRNAs determined from 

standard deviations of read counts normalized to library size were used as input to perform 1000 

permutations of k-means-based consensus clustering using ConsensusClusterPlus R package 

[25]. 
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Co-expression module detection and trait correlation analysis 

Variance-stabilized expression of top 5000 variant lncRNAs was used to obtain a weighted 

correlation network using the WGCNA R package [26]. The correlated lncRNA cohorts were 

associated with MB subgroups using the module-trait correlation algorithm as described [26]. 

 

Random forest model  

Subgroup-specific diagnostic models were obtained by performing variable selection using 

expression of differentially expressed lncRNAs/ protein coding genes (PCGs) and the 

randomForest R package (as described in [27]). For all models, variance-stabilized expression of 

differentially expressed lncRNA/PCG genes were used as variables to obtained models to 

classify patients into known subgroups. For the lncRNA model distinguishing SHH, group 3, and 

group 4, patient samples were divided into a 60% training set and 40% tuning set. Only 

differentially expressed (|logFC| >1.5, padj <0.01) lncRNAs genes between SHH, group 3, and 

group 4 were used to classify patients into known subgroups. The training model was used to 

find important genes ranked based on the “mean decrease accuracy” parameter. Low ranking 

genes with high expression correlation (>0.80) to high ranked genes were discarded. Gene 

combinations based on the final ranked list were used in the tuning model to find the minimum 

number of genes resulting in the minimum or comparatively lower error rate in the tuning set. A 

similar approach was used to distinguish WNT from the other subgroups. For the training set, all 

WNT samples were combined with 60% samples from SHH, group 3, and group 4 samples. For 

the tuning set, all WNT samples were combined with 40% training set the remaining subgroups. 

To distinguish group 3 and group 4, a similar 60%-40% training-tuning model was adapted for 

classification.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/783092doi: bioRxiv preprint 

https://doi.org/10.1101/783092
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

A random forest-based model for PCGs distinguishing WNT, SHH, group 3, and group 4 was 

obtained as described above for lncRNAs. To validate the protein coding model, expression 

levels of the obtained signature genes were used to classify patient samples from the MAGIC 

dataset using the random forest model and tSNE plots. 

Receiver operating characteristics (ROC) curves and area under the ROC curve (AUC) values 

for one versus rest comparisons were computed based on a generalized linear model-based fit of 

subgroup identity with normalized gene expression levels of signature genes as the variable 

using the pROC R package. 

 

Transcriptional network inference  

A transcriptional inference network for putative regulation between candidate lncRNAs and 

transcription factors was obtained using minet R package [28]. Regulatory interaction measures 

were obtained based on the network obtained from CLR-, arcane-, and mrnet-based models. 

Only edge connections predicted in all three approaches were analyzed further for first neighbor 

connections of transcription factors with each candidate lncRNA. 

 

Survival analysis 

Expression of 621 lncRNAs included in the MAGIC microarray dataset for 612 patients with 

survival information belonging to the four subgroups was used as input to find prognostic 

signatures using penalized Cox’s proportional hazard (Cox-PH) model with the LASSO (α =1) 

penalty using glment R package [29]. Smallest mean squared error and lambda.min was selected 

from 100 random runs of the model fitting with 10 fold cross validation in each run. Variables 

(lncRNAs) with non-zero coefficients associated with the lambda.min were selected as the 
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prognostic model.  Stability of the obtained model was verified by performing 1000 bootstraps 

on the data using BootValidation R package. A risk score was calculated for each patient by 

summing the value of the product of normalized expression and penalized Cox-PH coefficient of 

a candidate lncRNA with that of all other candidate lncRNAs. Kaplan-Meier analysis was 

conducted using the obtained risk score of a 17-lncRNA prognostic model for the MAGIC 

dataset with survival information and 74 patients belonging to four subgroups with survival 

information in the ICGC RNA-seq dataset. 

 

Results  

Long non-coding RNA signatures of medulloblastoma and subgroup-specific lncRNA 

enrichment  

To determine genome-wide expression profiles of lncRNAs in MB, we analyzed RNA-seq data 

from 175 patient samples obtained from the ICGC PedBrain dataset. For comprehensive lncRNA 

annotation, we chose a combination of the GENCODE and LNCipedia datasets [30]: GENCODE 

represents the largest manually curated lncRNA dataset and LNCipedia contains the maximum 

number of high fidelity predicted lncRNA genes [30]. The expression of 52,128 unique lncRNAs 

and 19,033 protein-coding genes (PCGs) were quantified (Fig 1A) in 18 WNT MBs, 45 SHH 

MBs, 46 group 3 MBs, and 66 group 4 MBs. To better understand the role of lncRNAs in 

different MB clinical and molecular subgroups, we investigated correlations between lncRNA 

expression and subgroup type. First, we performed consensus clustering using the top 10,000 

highly variant lncRNAs, which clustered the MBs into four different groups that highly 

overlapped with the known molecular subgroups (Fig 1B, Fig S1), suggesting that lncRNAs 

could contribute to subgroup-specific traits.  
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Fig 1. Long non-coding RNA profiles of medulloblastoma. (A) Schematic of raw data 

processing and analysis for medulloblastoma (MB) patients belonging to four subgroups: WNT, 

SHH, group 3 and group 4. (B) Heatmap showing cluster stability obtained from 1000 

permutations of k-mean based clustering of 175 MB patients with top 10,000 variably expressed 

lncRNAs as the variable. Color range depicts samples never clustered together (0, blue) to 

always clustered together (1, red). (C) Heatmap showing correlations of identified lncRNA 

cohorts (y-axis) from highly variable 5000 lncRNAs with MB subgroup pehnotype (x-axis). 

Values in a cell show correlation level (above) and significance p-value (below in brackets). (D) 

Heatmap showing scaled expression level of lncRNAs in the identified cohorts (y-axis) across 

samples belonging to MB subgroups (x-axis). 

 

With the objective of identifying highly variable lncRNAs specifically enriched in each 

subgroup, we performed weighted correlation analysis using WGCNA to find expressional co-

related lncRNAs and their subgroup specificity. Weighted co-expression analysis of the top 5000 

highly variable lncRNAs identified nine distinct cohorts after merging modules below the 

threshold. We next determined subgroup-specific module expression by performing module-trait 

association to obtain each module’s correlation and significance value (Fig 1C, Table S2). 

Module cohorts were significantly positively correlated with WNT (467 lncRNAs, A3), SHH 

(452 lncRNAs, A4), group 3 (629 lncRNAs, A9), and group 4 (760 lncRNAs, A8) MBs; 

respectively. Gene expression in each of the identified modules also showed that these genes are 

highly co-expressed in their respective groups compared to other groups (Fig 1D). In addition, 

cohorts enriched in group 3 and group 4 were more correlated than WNT and SHH MBs, and 
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vice versa. This suggests that similar to protein-coding gene expression and DNA methylation 

patterns, group 3 and group 4 patients also share similarities based on lncRNAs’ expression. 

 

A candidate diagnostic lncRNA signature for medulloblastoma subgroup classification 

WGCNA analysis suggested a number of lncRNAs with subgroup-specific expression. We 

therefore proceeded to identify the minimum number of lncRNAs that could faithfully classify 

MB subgroups. To achieve our objective, we used random forest based machine learning 

approach that has been shown to be a robust method for such classification objectives [27]. As 

patients were not evenly distributed between the four subgroups, we adopted a two-step 

approach: first, we identified a signature for groups with similar patient distributions i.e., SHH, 

group 3, and group 4; second, we identified a signature distinguishing WNT from the other 

subgroups (Fig 2A). Using this two-step approach, an 11-lncRNA signature was identified with 

an average <7% class error rate. Using the 11-lncRNA model, the 175 samples were re-classified 

into the already known subgroups with few misclassifications (Fig 2B), with individual lncRNA 

showing highly subgroup specific up/down expression (Fig 2C). Importantly, patient 

ICGC_MB23, which was classified as SHH in our random forest model but labeled WNT in the 

obtained dataset, was originally considered as an SHH MB in Kool et al. [31] and lacked the 

signature mutation in β-catenin. We also validated the 11-lncRNA based patient grouping using 

t-SNE based clustering (Fig 2D, that did not classify ICGC_MB23 as SHH) and specificity and 

sensitivity of the model using ROC/AUC analysis performing one versus rest comparison (Fig 

2E). 
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Fig 2. Random forest-based approach identifies an 11-lncRNA model to classify 

medulloblastoma subgroups. (A) Schematic depiction of the modeling process. First, a 9-

lncRNA model distinguishing SHH, group 3, and group 4 patients was obtained using a 60%-

40% training-tuning partition. Then, a 2-lncRNA model distinguishing WNT from the rest of the 

group was obtained by combining all WNT samples with a 60%-40% partition of the other 

subgroup patients in a training-tuning model. (B) MB patient subgroups as identified from the 

random forest model using only 11-lncRNA expression as variables. Dendrogram representing 

hierarchical clustering of dissimilarity values obtained from random forest-based classification. 

ICGC_MB23 is the sole WNT MB patient that clusters with the rest of the SHH MBs. Bottom 

color bars represent known clinical groupings (blue=WNT, green=SHH, black=group 3, 

red=group 4). (C) Boxplot showing distribution of normalized expression values of identified 11-

lncRNAs in each patient subgroup. Purple dots represent normalized expression values for a 

patient. (D) tSNE plot showing clustering of patients into four subgroups based on normalized 

expression level of identified 11-lncRNAs (blue=WNT, green=SHH, black=group 3, red=group 

4). (E) ROC analysis of the linear model based on normalized expression of the identified 11-

lncRNAs comparing one versus all (rest) classifications for each of the subgroups. 

 

In the absence of an independent dataset containing expression levels of the 11 candidate 

lncRNAs to validate the model, we instead validated our random forest model building process. 

We performed a similar classification of 175 MB samples using protein-coding genes to produce 

a 14-PCG model with equivalent success to the lncRNA model in classifying patient samples 

into the four subgroups (Fig S2). We then validated the 14-PCG model using the independent 

MAGIC microarray dataset of 763 patient belonging to the four subgroups. As expected, the 14-
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PCG model performed well with an overall <4% class error rate, validating our random forest 

model building process (Fig S3). 

 

Group 3 and group 4 represent the two most heterogeneous yet closely related and difficult to 

distinguish MB subgroups, a pattern evident from diagnostic signature-based clustering (Fig 

2D). To identify lncRNAs that could distinguish group 3 and group 4 tumors, we again used our 

random forest model approach to select highly differentially regulated and discriminative genes 

(Table S3). Our analysis yielded an 8-lncRNA model that did not improve the overall efficiency 

of group 3 versus group 4 classification (Fig S4) compared to the 11-lncRNA model 

distinguishing all subgroups (Fig 2). Nevertheless, the analysis did reveal some lncRNAs with 

potential functional roles in group 3 or group 4 MBs (Fig S4B), some of which overlapped with 

the 11-lncRNA model (i.e., MIR100HG, USP2-AS1, and lnc-CFAP100-4). However, we also 

identified other candidate lncRNAs including ARHGEF7-AS2, lnc-HLX-1, lnc-EXPH5-2, lnc-

CH25H-2 and lnc-TDRP-3 that showed group-specific differential expression in group 3 or 

group 4 patients (Fig S4B). 

 

We further validated our random forest-based model in patient derived xenograft (PDX) samples 

derived from SHH (BT084, DMB012, RCMB32, and MED1712FH), group 3 (RCMB28, 

MB002, MB511H, and RCMB40), and group 4 (RCMB51, DMB006, RCMB45 and RCMB38) 

patients using the 9-lncRNA signature to classify SHH, group 3, and group 4 patients (Fig 2A), 

as WNT PDXs were not available for analysis. SHH, group 3, and group 4 samples were 

successfully identified using k-mean based clustering, principal component analysis (PCA) (Fig 

3A) and hierarchical clustering using normalized RNA-seq expression levels (Fig 3B), with the 
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exception of RCMB28 that was found to be more related to SHH PDXs. Quantitative expression 

of signature genes was validated by qPCR (Fig 3C and D) and closely resembled expression in 

patient RNA-seq data (Fig 2C).  

 

Fig 3. Candidate lncRNAs successfully classify PDX samples into medulloblastoma 

subgroups. PDX sample clustering obtained using normalized expression (RNA-seq) of 9-

lncRNAs (9-lncRNA model distinguishing SHH, group 3, and group 4) in each PDX sample as 

the variable via (A) k-means clustering superimposed on principal component analysis (PCA), 

and (B) hierarchical clustering. Boxplot distributions of expression levels of the identified 9-

lncRNAs from (C) RNA-seq and (D) qPCR analysis (-dCt = Ct (candidate) – Ct (ACTB)). Purple 

dots represent the expression level in a sample belonging to the known MB subgroup. 

 

In order to infer the physiological importance of the identified 11-lncRNA candidates, we used a 

combination of CLR, arcane, and mrnet transcriptional inference algorithms to identify potential 

interactions between the identified lncRNAs with the expressed transcription factors in MB 

patients. The identified lncRNAs could potentially interact with a number of transcription factors 

in a complex interconnected network with both highly positively and negatively correlated 

associations, suggesting putative biological cross-regulation (Fig S5). 

 

Prognostic lncRNAs in medulloblastoma 

To identify prognostic lncRNAs, we used the MAGIC microarray array dataset containing 

survival data for 612 (out of 763) patients. The microarray expression data contained expression 

levels of 621 lncRNAs that we used for multivariate Cox proportional hazards (Cox-PH) 
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regression analysis. For feature selection, we utilized a penalized multivariate Cox-PH model 

using the LASSO penalty (α = 1). We first used the entire dataset to select 17 lncRNAs as 

prognostic markers and their associated penalized coefficients (Table 1). Of these 17 lncRNAs, 

10 were markers of good prognosis and 7 were associated with poor prognosis. The 17-lncRNAs 

model was validated on 1000 bootstraps of the MAGIC dataset, that showed predictive stability 

of the proposed prognostic model. Using the penalized coefficients and log-normalized 

expression values for each lncRNA, we assigned a risk score to each patient. Kaplan-Meier 

analysis of 612 patients using the risk score as the input variable suggested that our risk score 

signature was a highly significant in prognostic value (Low risk HR= 0.207, 95% CI= 0.133-

0.323, logrank p-value= 2e-14) (Fig 4A). To validate our 17-lncRNA prognostic model in an 

independent dataset, we used ICGC RNA-seq data of 74 patients with survival information and 

used the penalized coefficients obtained from the MAGIC dataset analysis and variance 

stabilized expression from RNA-seq data to obtain an equivalent risk score. Again, Kaplan-

Meier analysis showed that prognostic significance of our 17-lncRNA model (Low risk HR= 

0.135 , 95% CI= 0.017-1.08, logrank p-value= 0.026)  (Fig 4B). These candidate lncRNAs could 

potentially be involved in MB development as pro or anti-tumorigenic factors. 

 

Table 1. Prognostic long non-coding RNA signature genes and associated penalized 

Cox-PH coefficient 

Ensembl Gene ID Gene Symbol Penalized coefficient 

ENSG00000124915 lnc-TMEM258-3 -0.47771 

ENSG00000130600 H19 0.102589 
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ENSG00000163009 lnc-RRM2-3 0.107783 

ENSG00000177993 ZNRF3-AS1 -0.24098 

ENSG00000186960 LINC01551 0.073539 

ENSG00000197251 LINC00336 0.042296 

ENSG00000205444 lnc-CDYL-1 0.198379 

ENSG00000231010 lnc-PRR34-1 -0.0379 

ENSG00000231160 KLF3-AS1 -0.05371 

ENSG00000234665 lnc-FOXD4L5-25 -0.03664 

ENSG00000235954 TTC28-AS1 -0.00891 

ENSG00000244620 lnc-TMEM121-3 -0.17041 

ENSG00000255650 FAM222A-AS1 0.007403 

ENSG00000256124 LINC01152 -0.0675 

ENSG00000267278 MAP3K14-AS1 -0.07358 

ENSG00000272841 AL139393.2 0.231787 

ENSG00000276399 AC209154.1 -0.01405 

 

 

Fig 4. Penalized Cox proportional hazards-based lncRNA model classifies medulloblastoma 

patients into high and low risk groups. (A) Patients (612 MAGIC dataset) were grouped into 

two groups based on risk score (above and below median risk score) derived from expression of 
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candidate prognostic lncRNAs significantly differing in their survival probability. (B) Risk score 

derived from the expression of the same candidate lncRNAs (except lnc-TMEM123-3, not 

detected in RNA-seq) in an independent patient cohort (74 patients in ICGC RNA-seq dataset). 

 

Discussion 

Long non-coding RNAs are increasingly recognized as important players in cancer research [19], 

particularly as biomarkers and/or therapeutic targets [32-36], including in brain tumors [20, 37-

40]. However, there is a lack of knowledge of lncRNAs’ involvement in MBs. Here we bridged 

this knowledge gap by proposing diagnostic and prognostic biomarkers candidates for further 

study in vitro and in vivo systems to understand their potential function in MB 

genesis/progression. 

 

Our study is the first genome-wide analysis of lncRNAs’ expression profile in MB and its 

subgroups. Overall lncRNAs’ expression dynamics mirrors the well-known MB heterogeneity 

seen in genetic and epigenetic analyses [23, 41]. MB subgroup clusters obtained using highly 

variable lncRNAs overlapped with existing clinical and molecular subgroups. Using variantly 

expressed lncRNAs and weighted correlations, we further identified subgroup-specific lncRNAs. 

These upregulated lncRNAs might represent functionally relevant genes and require further 

validation. The obtained lncRNA signature could be curated using transcriptional inference 

algorithms and proximity to or co-relation with known MB relevant protein coding genes for 

further functional validation in vitro and in vivo studies. 
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Presently, very few lncRNAs have been studied for their putative roles in MB or its subtypes. 

NKX2-2AS was shown in vitro to modulate SHH-potentiated MB development by acting as a 

miRNA sponge for miR-103 and miR-107, thereby depressing their tumor suppressive targets 

BTG2 and LATS1 and inhibiting proliferation and migration [42]. CDKN2B-AS1 (ANRIL) has 

been shown to promote proliferation in vitro studies by sponging miR-323 and activating BRI3 

dependent p38-MAPK, AKT and WNT signaling [43], and in current analysis, it was found to be 

upregulated in group 4 patients compared to other MBs.  PVT1 is prevalently found fused to 

MYC and NDRG1 genes in group 3 tumors, leading to oncogenic transformation of these genes 

[44]. lnc-IRX3-80 (CRNDE) was also reported as an oncogenic lncRNA in vitro and in vivo 

studies [45]. Both PVT1 and lnc-IRX3-80 were upregulated in WNT and SHH MBs in our 

current analysis. Lnc-FAM84B-15 (CCAT1), which was found upregulated in WNT and group 3 

MBs, has also been shown to be involved in promoting tumor proliferation and metastasis by 

activating MAPK pathway [46]. MIR100HG (lnc-NeD125) has been shown to be overexpressed 

in group 4 MBs, again acting as an miRNA sponge for miR-19a-3p, miR-19b-3p and miR-106a-

5p, exerting an oncogenic function by de-repressing cell cycle target genes [47]. MIR100HG is 

also oncogenic in gastric cancer [48], breast cancer [49], and leukemia [50]. In our analysis, only 

MIR100HG (lnc-NeD125) was selected in our diagnostic signature, being highly expressed in all 

MBs but group 3 (Fig 2). In addition, our 11-lncRNAs model could complement existing 

molecular and clinical-based diagnostic approaches, particularly for group 3 and group 4 MBs. 

Some of the identified signature lncRNAs are highly subgroup-specific, such as: lnc-CCL2-2 

(WNT), lnc-ABCE1-5 (SHH), USP2-AS1 (group 3), and lnc-TBC1D16-3 (group 4). Mutual 

information-based network analysis also identified putative interacting transcription factors 
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involved in medulloblastoma and other cancers (Fig S5); for example, FOXO1 [51, 52], OTX2 

[53], NRL, CRX [54]  and TET3 [55]. 

 

Our 17-lncRNAs prognostic model represents another set of putative functionally important 

lncRNAs. Of the 17 lncRNAs, seven were associated with poor prognosis, including H19 (Table 

1). None of the candidate poor prognostic marker were specifically expressed in a particular 

subgroup of patients, suggesting independent prognostic value, although patients with high 

expression of the signature tended to be group 3 (Fig S6). H19 is a well-studied oncogenic 

lncRNA in various cancer systems including glioblastoma, where it has been shown to be 

promote cellular proliferation and metastasis [56-59]. LncRNA LINC01551 has been found to 

upregulate cellular proliferation and migration in non-CNS cancers such as hepatocellular 

carcinoma by interacting with the miR122-ADAM10 axis [60]. LINC00336 promoted lung 

cancer progression by inhibiting regulated cell death by knocking down miR-6852 function [61].  

 

Overall, our analysis proposes new lncRNAs candidates in MB with functional, diagnostic, and 

prognostic significance that warrant further investigation and validation. This is the first global 

analysis of lncRNAs in MB that will provide an invaluable resource for those working in the 

field to prioritize for further study. 
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SUPPLEMENTAL INFORMATION 

Supplementary Tables 

Table S1. List of 175 medulloblastoma patient samples and clinical information. 

Table S2. List of subgroup specific lncRNA cohorts identified by WGCNA analysis. 

Table S3. List of differentially expressed lncRNA between group 3 and group 4 patients. 

 

Supplementary Figures 

Fig S1. Medulloblastoma patients can be optimally subgrouped into 4 clusters based on long non-

coding RNA expression. (A) Heatmap depicting stability of k-means clusters, 2 to 6 (k=4, in Fig 1C), 

based on consensus clustering. Color range depicts samples never clustered together (0, blue) to always 

clustered together (1, red).  (B) Colored line depicting relationship between cumulative distribution 

function (CDF) and consensus index for each of the k-means values 2 to 6. (C) Graph showing relative 

change in area under the CDF curve (in B) comparing k to k-1 for k from 3 to 6. For k=2, the value is 

total area under the CDF curve in B. (D) Cluster consensus plot showing mean of pairwise consensus 

value for all cluster members. For k=4, the graph shows that each of the obtained clusters are of similar 

stability. 

 

Fig S2. Random forest-based approach identifies a 14-PCG model to classify medulloblastoma 

subgroups. (A) Schematic depiction of the modeling process. First, an 11-PCG model distinguishing 

SHH, group 3, and group 4 patients was obtained using a 60%-40% training-tuning partition. Then, a 3-

PCG model distinguishing WNT from the rest of the group was obtained by combining all WNT samples 

with a 60%-40% partition of the other subgroup patients in a training-tuning model. (B) MB patient 

subgroups as identified from the random forest model using only 14-PCG expression as variables. 

Dendrogram represents hierarchical clustering of dissimilarity values obtained from random forest-based 
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classification. Bottom color bars represent known clinical groupings (blue=WNT, green=SHH, 

black=group 3, red=group 4). The obtained clustering and misclassification are similar to that in Fig 2B. 

(C) Boxplot showing distribution of normalized expression values of identified 14-PCGs in each patient 

subgroup. Purple dots represent normalized expression value for a patient. D) tSNE plot showing 

clustering of patients into four subgroups based on normalized expression level of identified 14-PCGs 

(blue=WNT, green=SHH, black=group 3, red=group 4). The obtained clustering is similar to that in Fig 

3D, except for sample ICGC_MB23 that cluster with SHH subgroup. (E) ROC analysis of linear model 

based on normalized expression of identified 14-PCGs comparing one versus all (rest) classifications for 

each of the subgroups. The AUC values for 11-lncRNAs model and 14-PCGs model are comparable. 

 

Fig S3. 14-PCG model classifies independent medulloblastoma patient samples with high efficiency. 

(A) MB patient subgroups as identified in the Cavalli17 dataset on applying a random forest model using 

only 14-PCG expression as variables. Dendrogram represents hierarchical clustering of dissimilarity 

values obtained from random forest-based classification. Bottom color bars represent known clinical 

grouping (blue=WNT, green=SHH, black=group 3, red=group 4). (B) Boxplot showing distribution of 

normalized expression values of identified 14-PCGs in each patient subgroup. Purple dots represent 

normalized expression value for a patient. The normalized expression distribution for the 14-PCGs are 

similar to that in RNA-seq analysis (Fig S2C).  (D) tSNE plot showing clustering of patients into four 

subgroup based on normalized expression level of identified 14-PCGs (blue=WNT, green=SHH, 

black=group 3, red=group 4). (D) ROC analysis of linear model based on normalized expression of 

identified 14-PCGs comparing one versus all (rest) classifications for each of the subgroups.  

 

Fig S4. Random forest-based approach identifies an 8-lncRNA model to classify group 3 and group 

4 patents. (A) MB patient subgroups as identified from a random forest model using 8-lncRNA 

expression as variables. Dendrogram represents hierarchical clustering of dissimilarity values obtained 

from random forest-based classification. Bottom color bars represent known clinical groupings 
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(black=group 3, red=group 4). (B) Boxplot showing distribution of normalized expression values of 

identified 8-lncRNAs in group 3 and group 4 MBs. Purple dots represent normalized expression value for 

a patient. (D) tSNE plot showing clustering of group 3 and group 4 patients into two heterogeneous 

clusters based on normalized expression levels of identified 8-lncRNAs (black=group 3, red=group 4). 

(E) ROC analysis of linear model based on normalized expression of identified 8-lncRNAs comparing 

group 3 versus group 4 samples. 

 

Fig S5. Putative interaction network of identified 11-lncRNAs with transcription factors. Interaction 

network between the 11-lncRNAs and transcription factors based on a consensus of mutual information 

analysis using CLR, arcane, and mrnet-based approaches. 

 

Fig S6. Expression distribution of identified bad prognostic markers. Box plot representing 

expression distribution of candidate bad prognostic markers in (A) MAGIC microarray dataset and (B) 

ICGC RNA-seq dataset in each subgroup. None of the identified lncRNAs is expressed specifically in a 

subgroup; however, patients expressing high levels were primarily in group 3. 
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FIGURES 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 
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