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Abstract

Background: Medulloblastoma is the most common malignant pediatric brain tumor with high
fatality rate. Recent large-scale studies utilizing genome-wide technologies have sub-grouped
medulloblastomas into four major subgroups: wingless (WNT), sonic hedgehog (SHH), group 3,
and group 4. However, there has yet to be a global analysis of long non-coding RNAs, a crucial

part of the regulatory transcriptome, in medulloblastoma.

Methods and findings: We performed bioinformatic analysis of RNA-seq data from 175
medulloblastoma patients. Differential INCRNA expression sub-grouped medulloblastomas into
the four main molecular subgroups. Some of these INCRNAS were subgroup-specific, with a
random forest-based machine-learning algorithm identifying an 11-IncRNA diagnostic signature.
We also validated the diagnostic signature in patient derived xenograft (PDX) models. We
further identified a 17-IncRNA prognostic model using LASSO based penalized Cox” PH model

(low risk group HR=0.207, 95% CI=0.133-0.323, p-value= 2e-14).

Conclusions: Our analysis represents the first global IncRNA analysis in medulloblastoma. Our
results identify putative candidate IncRNAs that could be evaluated for their functional role in

medulloblastoma genesis and progression or as diagnostic and prognostic biomarkers.
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Introduction

Medulloblastoma (MB), characterized as WHO group IV, represents the most common malignant
pediatric central nervous system (CNS) tumor [1-4], representing 9.2% of all pediatric brain tumor
cases [1, 5] and roughly 500 new cases each year in the US. MBs originate in the cerebellum and
share molecular signatures with embryonic cerebellar lineages, with metastasis sites commonly

include parts of the brain, spinal cord, and, rarely, to extraneural sites [6-8].

Commonly used treatment strategies for MB include maximal safe surgical resection,
radiotherapy, and chemotherapy, which are poorly tolerated by pediatric patients who are usually
under seven years of age [9]. Appropriate treatment selection depends upon the clinical subgroup,
stage, extent of resection, location, and the patient’s ability to withstand treatment [10]. In efforts
to improve therapeutic outcomes, combined genetic and epigenetic approaches have refined MB
classification into four clinically and molecularly distinct subgroups: wingless (WNT), sonic
hedgehog (SHH), group 3, and group 4 [11]. Despite these significant advances, MB remains
deadly for many patients, with a ~30% fatality rate. Further, even successful eradication of the
tumor often results in a deteriorated overall quality of life due to side effects including organ
dysfunction, neurocognitive impairment, endocrine disabilities, and secondary tumors [10-13].
Even with these advances in molecular classification, group 3 and group 4 tumors are
heterogeneous groups that continue to make management challenging. There is an urgent need to
identify the underlying molecular mechanisms in these subgroups to drive precision medicine-

based approaches, improve quality of life, and increase our understanding of MB in general.
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Long non-coding RNAs (IncRNAs) represent a major part of the transcribed genome that do not
code for functional proteins. LncRNAs are more than 200 nucleotides in length and are transcribed
by RNA polymerase Il. While previously labelled as transcriptional “noise”, it is now understood
that IncRNAs are functional and play important roles in cellular physiology, development, and
disease progression. In humans, there are at least three times as many IncRNAs as protein-coding
genes [14]. Although the precise roles of the vast majority of identified or predicted INCRNAS
remain unknown [14], they are increasingly recognized as being involved in cis or trans
interactions regulating gene expression in the nucleus and protein interactions in the nucleus and
cytoplasm. Some of the functionally diverse roles of IncRNAs include transcriptional silencing
(e.g., XIST [15]), enhancers by regulating three-dimensional chromosomal structure to strengthen
interactions between enhancers and promoters (e.g., LUNAR1 [16]), and as microRNA sponges
that sequester microRNAs from their target sites (e.g., SNHG7 [17]). LncRNAs can also act as
scaffolds for protein-protein and protein-nucleic acid interactions [18]. They are potential
biomarkers and therapeutic targets in cancer, with several IncRNAs now studied for their
oncogenic or tumor suppressor potential in several cancer types through their regulation of the cell

cycle, cell death, senescence, metastasis, immunity, and cancer cell metabolism [19].

LncRNAs are also implicated in CNS tumors including glioblastoma and neuroblastoma [20, 21].
However, there has yet to be a genome-wide study of MB to identify dysregulated IncRNAs. With
this aim, we analyzed the transcriptomic profiles of 175 MB patients to map INCRNA expression
profiles and identify subgroup-specific InCRNAs. We show that the MB IncRNAome exhibits
significant heterogeneity that corresponds to the molecular subtypes. Using a random forest-based

machine-learning algorithm, we identify IncRNA signatures that could improve on present


https://doi.org/10.1101/783092
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/783092; this version posted September 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

diagnostic approaches, while penalized Cox-PH regression identifies prognostic IncRNAs. Taken
together, our analysis identifies candidate IncRNAs with subgroup-specific activity in MB and

with diagnostic and prognostic value.

Materials and methods

Datasets

Raw FASTQ files for RNA-seq data corresponding to 175 MB patients (referred to as the ICGC
dataset) belonging to four subgroups (accession number EGAS00001000215) were downloaded

from the European Genome-Phenome Archive (EGA, http://www.ebi.ac.uk/ega/) after obtaining

approval from the Institutional Review Board (IRB) (Table S1)[22]. Pre-analyzed microarray
expression datasets from 763 patients belonging to the four medulloblastoma subgroups were

obtained from the study published by Cavalli et al. (referred to as the MAGIC dataset) [23].

RNA-seq library preparation

RNA sequencing for patient derived xenograft (PDX) samples was undertaken at the Genetic
Resources Core Facility at the Johns Hopkins University, School of Medicine, Baltimore, MD.
Before sequencing, total RNA was extracted from PDX cell pellets using the Direct-zol RNA
miniprep kit (R2060, Zymo Research, Irvine, CA), with subsequent quantification using
Nanodrop (Thermo Fisher Scientific, Waltham, MA) and quality assessment with the Agilent
Bioanalyzer Nano Assay (Agilent Technologies, Santa Clara, CA). RNA-seq libraries were
constructed using the Illumina TruSeq Stranded Total RNA Library preparation Gold kit
(20020598, Illumina Inc., San Diego, CA) as per the instructions. The quality and quantity of the

libraries were analyzed using the Agilent Bioanalyzer and Kapa Biosystems gPCR (Sigma
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Aldrich, St. Louis, MO). Multiplexed libraries were pooled, and paired-end 50 base-pair
sequencing was performed on a NovaSeq6000. RNA-seq data are available at the Gene

Expression Omnibus (GEO) Accession Number GSE134248.

RNA-seq alignment, quantification, and differential gene expression analysis

Raw FASTQ files were quality checked for adapter contamination using FASTQC. FASTQ files
containing adapter sequences were trimmed by running through trim_galore in default mode.
The reads were mapped to the GRCh38/hg38 human genome assembly p12 (release 28,
www.gencodegenes.org) using HISAT2 and annotated using the corresponding release version
GENCODE comprehensive annotation file and LNCipedia 5.2 high confidence set annotation
file. Mapped reads were quantified using StringTie to obtain FPKM values, which were
converted to read counts using the prepDE.py script (provided in StringTie manual). For
variance-stabilized normalized reads and differential gene expression analysis, reads counts were

processed with DESeq2 in R [24].

Consensus clustering

Variance-stabilized expression levels of the top 10,000 variant INcCRNAs determined from
standard deviations of read counts normalized to library size were used as input to perform 1000
permutations of k-means-based consensus clustering using ConsensusClusterPlus R package

[25].
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Co-expression module detection and trait correlation analysis
Variance-stabilized expression of top 5000 variant IncRNAs was used to obtain a weighted
correlation network using the WGCNA R package [26]. The correlated INcCRNA cohorts were

associated with MB subgroups using the module-trait correlation algorithm as described [26].

Random forest model

Subgroup-specific diagnostic models were obtained by performing variable selection using
expression of differentially expressed InNcRNAs/ protein coding genes (PCGs) and the
randomForest R package (as described in [27]). For all models, variance-stabilized expression of
differentially expressed INCRNA/PCG genes were used as variables to obtained models to
classify patients into known subgroups. For the InNcRNA model distinguishing SHH, group 3, and
group 4, patient samples were divided into a 60% training set and 40% tuning set. Only
differentially expressed (|logFC| >1.5, padj <0.01) IncRNAs genes between SHH, group 3, and
group 4 were used to classify patients into known subgroups. The training model was used to
find important genes ranked based on the “mean decrease accuracy” parameter. Low ranking
genes with high expression correlation (>0.80) to high ranked genes were discarded. Gene
combinations based on the final ranked list were used in the tuning model to find the minimum
number of genes resulting in the minimum or comparatively lower error rate in the tuning set. A
similar approach was used to distinguish WNT from the other subgroups. For the training set, all
WNT samples were combined with 60% samples from SHH, group 3, and group 4 samples. For
the tuning set, all WNT samples were combined with 40% training set the remaining subgroups.
To distinguish group 3 and group 4, a similar 60%-40% training-tuning model was adapted for

classification.
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A random forest-based model for PCGs distinguishing WNT, SHH, group 3, and group 4 was
obtained as described above for INCRNAs. To validate the protein coding model, expression
levels of the obtained signature genes were used to classify patient samples from the MAGIC
dataset using the random forest model and tSNE plots.

Receiver operating characteristics (ROC) curves and area under the ROC curve (AUC) values
for one versus rest comparisons were computed based on a generalized linear model-based fit of
subgroup identity with normalized gene expression levels of signature genes as the variable

using the pROC R package.

Transcriptional network inference

A transcriptional inference network for putative regulation between candidate IncRNAs and
transcription factors was obtained using minet R package [28]. Regulatory interaction measures
were obtained based on the network obtained from CLR-, arcane-, and mrnet-based models.
Only edge connections predicted in all three approaches were analyzed further for first neighbor

connections of transcription factors with each candidate IncRNA.

Survival analysis

Expression of 621 IncRNAs included in the MAGIC microarray dataset for 612 patients with
survival information belonging to the four subgroups was used as input to find prognostic
signatures using penalized Cox’s proportional hazard (Cox-PH) model with the LASSO (o =1)
penalty using glment R package [29]. Smallest mean squared error and lambda.min was selected
from 100 random runs of the model fitting with 10 fold cross validation in each run. Variables

(IncRNAs) with non-zero coefficients associated with the lambda.min were selected as the
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prognostic model. Stability of the obtained model was verified by performing 1000 bootstraps
on the data using BootValidation R package. A risk score was calculated for each patient by
summing the value of the product of normalized expression and penalized Cox-PH coefficient of
a candidate IncRNA with that of all other candidate IncRNAs. Kaplan-Meier analysis was
conducted using the obtained risk score of a 17-IncRNA prognostic model for the MAGIC
dataset with survival information and 74 patients belonging to four subgroups with survival

information in the ICGC RNA-seq dataset.

Results

Long non-coding RNA signatures of medulloblastoma and subgroup-specific INcRNA
enrichment

To determine genome-wide expression profiles of INcRNAs in MB, we analyzed RNA-seq data
from 175 patient samples obtained from the ICGC PedBrain dataset. For comprehensive InNCRNA
annotation, we chose a combination of the GENCODE and LNCipedia datasets [30]: GENCODE
represents the largest manually curated IncRNA dataset and LNCipedia contains the maximum
number of high fidelity predicted IncRNA genes [30]. The expression of 52,128 unique INCRNAs
and 19,033 protein-coding genes (PCGs) were quantified (Fig 1A) in 18 WNT MBs, 45 SHH
MBs, 46 group 3 MBs, and 66 group 4 MBs. To better understand the role of INCRNAS in
different MB clinical and molecular subgroups, we investigated correlations between INCRNA
expression and subgroup type. First, we performed consensus clustering using the top 10,000
highly variant IncRNAs, which clustered the MBs into four different groups that highly
overlapped with the known molecular subgroups (Fig 1B, Fig S1), suggesting that InCRNAs

could contribute to subgroup-specific traits.
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Fig 1. Long non-coding RNA profiles of medulloblastoma. (A) Schematic of raw data
processing and analysis for medulloblastoma (MB) patients belonging to four subgroups: WNT,
SHH, group 3 and group 4. (B) Heatmap showing cluster stability obtained from 1000
permutations of k-mean based clustering of 175 MB patients with top 10,000 variably expressed
InNcRNAs as the variable. Color range depicts samples never clustered together (0, blue) to
always clustered together (1, red). (C) Heatmap showing correlations of identified INCRNA
cohorts (y-axis) from highly variable 5000 IncRNAs with MB subgroup pehnotype (x-axis).
Values in a cell show correlation level (above) and significance p-value (below in brackets). (D)
Heatmap showing scaled expression level of IncRNAs in the identified cohorts (y-axis) across

samples belonging to MB subgroups (x-axis).

With the objective of identifying highly variable IncRNAs specifically enriched in each
subgroup, we performed weighted correlation analysis using WGCNA to find expressional co-
related INcRNAs and their subgroup specificity. Weighted co-expression analysis of the top 5000
highly variable IncRNAs identified nine distinct cohorts after merging modules below the
threshold. We next determined subgroup-specific module expression by performing module-trait
association to obtain each module’s correlation and significance value (Fig 1C, Table S2).
Module cohorts were significantly positively correlated with WNT (467 IncRNAs, A3), SHH
(452 IncRNAs, A4), group 3 (629 IncRNAs, A9), and group 4 (760 IncRNAs, A8) MBs;
respectively. Gene expression in each of the identified modules also showed that these genes are
highly co-expressed in their respective groups compared to other groups (Fig 1D). In addition,

cohorts enriched in group 3 and group 4 were more correlated than WNT and SHH MBs, and
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vice versa. This suggests that similar to protein-coding gene expression and DNA methylation

patterns, group 3 and group 4 patients also share similarities based on IncRNAs’ expression.

A candidate diagnostic INcRNA signature for medulloblastoma subgroup classification
WGCNA analysis suggested a number of IncRNAs with subgroup-specific expression. We
therefore proceeded to identify the minimum number of IncRNAs that could faithfully classify
MB subgroups. To achieve our objective, we used random forest based machine learning
approach that has been shown to be a robust method for such classification objectives [27]. As
patients were not evenly distributed between the four subgroups, we adopted a two-step
approach: first, we identified a signature for groups with similar patient distributions i.e., SHH,
group 3, and group 4; second, we identified a signature distinguishing WNT from the other
subgroups (Fig 2A). Using this two-step approach, an 11-IncRNA signature was identified with
an average <7% class error rate. Using the 11-IncRNA model, the 175 samples were re-classified
into the already known subgroups with few misclassifications (Fig 2B), with individual IncRNA
showing highly subgroup specific up/down expression (Fig 2C). Importantly, patient
ICGC_MB23, which was classified as SHH in our random forest model but labeled WNT in the
obtained dataset, was originally considered as an SHH MB in Kool et al. [31] and lacked the
signature mutation in B-catenin. We also validated the 11-IncRNA based patient grouping using
t-SNE based clustering (Fig 2D, that did not classify ICGC_MB23 as SHH) and specificity and
sensitivity of the model using ROC/AUC analysis performing one versus rest comparison (Fig

2E).

11
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Fig 2. Random forest-based approach identifies an 11-IncRNA model to classify
medulloblastoma subgroups. (A) Schematic depiction of the modeling process. First, a 9-
IncRNA model distinguishing SHH, group 3, and group 4 patients was obtained using a 60%-
40% training-tuning partition. Then, a 2-IncRNA model distinguishing WNT from the rest of the
group was obtained by combining all WNT samples with a 60%-40% partition of the other
subgroup patients in a training-tuning model. (B) MB patient subgroups as identified from the
random forest model using only 11-IncRNA expression as variables. Dendrogram representing
hierarchical clustering of dissimilarity values obtained from random forest-based classification.
ICGC_MB23 is the sole WNT MB patient that clusters with the rest of the SHH MBs. Bottom
color bars represent known clinical groupings (blue=WNT, green=SHH, black=group 3,
red=group 4). (C) Boxplot showing distribution of normalized expression values of identified 11-
IncRNASs in each patient subgroup. Purple dots represent normalized expression values for a
patient. (D) tSNE plot showing clustering of patients into four subgroups based on normalized
expression level of identified 11-IncRNAs (blue=WNT, green=SHH, black=group 3, red=group
4). (E) ROC analysis of the linear model based on normalized expression of the identified 11-

IncRNAs comparing one versus all (rest) classifications for each of the subgroups.

In the absence of an independent dataset containing expression levels of the 11 candidate
IncRNAs to validate the model, we instead validated our random forest model building process.
We performed a similar classification of 175 MB samples using protein-coding genes to produce
a 14-PCG model with equivalent success to the INCcRNA model in classifying patient samples
into the four subgroups (Fig S2). We then validated the 14-PCG model using the independent

MAGIC microarray dataset of 763 patient belonging to the four subgroups. As expected, the 14-

12
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PCG model performed well with an overall <4% class error rate, validating our random forest

model building process (Fig S3).

Group 3 and group 4 represent the two most heterogeneous yet closely related and difficult to
distinguish MB subgroups, a pattern evident from diagnostic signature-based clustering (Fig
2D). To identify IncRNAs that could distinguish group 3 and group 4 tumors, we again used our
random forest model approach to select highly differentially regulated and discriminative genes
(Table S3). Our analysis yielded an 8-IncRNA model that did not improve the overall efficiency
of group 3 versus group 4 classification (Fig S4) compared to the 11-IncRNA model
distinguishing all subgroups (Fig 2). Nevertheless, the analysis did reveal some IncRNAs with
potential functional roles in group 3 or group 4 MBs (Fig S4B), some of which overlapped with
the 11-IncRNA model (i.e., MIR100HG, USP2-AS1, and Inc-CFAP100-4). However, we also
identified other candidate INCRNAs including ARHGEF7-AS2, Inc-HLX-1, Inc-EXPH5-2, Inc-
CH25H-2 and Inc-TDRP-3 that showed group-specific differential expression in group 3 or

group 4 patients (Fig S4B).

We further validated our random forest-based model in patient derived xenograft (PDX) samples
derived from SHH (BT084, DMB012, RCMB32, and MED1712FH), group 3 (RCMB28,
MB002, MB511H, and RCMB40), and group 4 (RCMB51, DMB006, RCMB45 and RCMB38)
patients using the 9-IncRNA signature to classify SHH, group 3, and group 4 patients (Fig 2A),
as WNT PDXs were not available for analysis. SHH, group 3, and group 4 samples were
successfully identified using k-mean based clustering, principal component analysis (PCA) (Fig

3A) and hierarchical clustering using normalized RNA-seq expression levels (Fig 3B), with the
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exception of RCMB28 that was found to be more related to SHH PDXs. Quantitative expression
of signature genes was validated by gPCR (Fig 3C and D) and closely resembled expression in

patient RNA-seq data (Fig 2C).

Fig 3. Candidate IncRNAs successfully classify PDX samples into medulloblastoma
subgroups. PDX sample clustering obtained using normalized expression (RNA-seq) of 9-
IncRNASs (9-IncRNA model distinguishing SHH, group 3, and group 4) in each PDX sample as
the variable via (A) k-means clustering superimposed on principal component analysis (PCA),
and (B) hierarchical clustering. Boxplot distributions of expression levels of the identified 9-
IncRNAs from (C) RNA-seq and (D) gPCR analysis (-dCt = Ct (candidate) — Ct (ACTB)). Purple

dots represent the expression level in a sample belonging to the known MB subgroup.

In order to infer the physiological importance of the identified 11-IncRNA candidates, we used a
combination of CLR, arcane, and mrnet transcriptional inference algorithms to identify potential
interactions between the identified INCRNAs with the expressed transcription factors in MB
patients. The identified IncRNAs could potentially interact with a number of transcription factors
in a complex interconnected network with both highly positively and negatively correlated

associations, suggesting putative biological cross-regulation (Fig S5).

Prognostic IncRNAs in medulloblastoma
To identify prognostic IncRNAs, we used the MAGIC microarray array dataset containing
survival data for 612 (out of 763) patients. The microarray expression data contained expression

levels of 621 IncRNAs that we used for multivariate Cox proportional hazards (Cox-PH)

14
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regression analysis. For feature selection, we utilized a penalized multivariate Cox-PH model
using the LASSO penalty (o = 1). We first used the entire dataset to select 17 IncRNAs as
prognostic markers and their associated penalized coefficients (Table 1). Of these 17 INCRNAsS,
10 were markers of good prognosis and 7 were associated with poor prognosis. The 17-IncRNAs
model was validated on 1000 bootstraps of the MAGIC dataset, that showed predictive stability
of the proposed prognostic model. Using the penalized coefficients and log-normalized
expression values for each INcRNA, we assigned a risk score to each patient. Kaplan-Meier
analysis of 612 patients using the risk score as the input variable suggested that our risk score
signature was a highly significant in prognostic value (Low risk HR=0.207, 95% CIl=0.133-
0.323, logrank p-value= 2e-14) (Fig 4A). To validate our 17-IncRNA prognostic model in an
independent dataset, we used ICGC RNA-seq data of 74 patients with survival information and
used the penalized coefficients obtained from the MAGIC dataset analysis and variance
stabilized expression from RNA-seq data to obtain an equivalent risk score. Again, Kaplan-
Meier analysis showed that prognostic significance of our 17-IncRNA model (Low risk HR=
0.135, 95% CI=0.017-1.08, logrank p-value= 0.026) (Fig 4B). These candidate INCcRNAs could

potentially be involved in MB development as pro or anti-tumorigenic factors.

Table 1. Prognostic long non-coding RNA signature genes and associated penalized

Cox-PH coefficient

Ensembl Gene ID Gene Symbol Penalized coefficient
ENSG00000124915 Inc-TMEM258-3 -0.47771
ENSG00000130600 H19 0.102589
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ENSG00000163009 Inc-RRM2-3 0.107783
ENSG00000177993 ZNRF3-AS1 -0.24098
ENSG00000186960 LINCO01551 0.073539
ENSG00000197251 LINC00336 0.042296
ENSG00000205444 Inc-CDYL-1 0.198379
ENSG00000231010 Inc-PRR34-1 -0.0379

ENSG00000231160 KLF3-AS1 -0.05371
ENSG00000234665 Inc-FOXDA4L5-25 -0.03664
ENSG00000235954 TTC28-AS1 -0.00891
ENSG00000244620 Inc-TMEM121-3 -0.17041
ENSG00000255650 FAM222A-AS1 0.007403
ENSG00000256124 LINCO01152 -0.0675

ENSG00000267278 MAP3K14-AS1 -0.07358
ENSGO00000272841 AL139393.2 0.231787
ENSG00000276399 AC209154.1 -0.01405

Fig 4. Penalized Cox proportional hazards-based IncRNA model classifies medulloblastoma
patients into high and low risk groups. (A) Patients (612 MAGIC dataset) were grouped into

two groups based on risk score (above and below median risk score) derived from expression of
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candidate prognostic IncRNAs significantly differing in their survival probability. (B) Risk score
derived from the expression of the same candidate IncRNAs (except Inc-TMEM123-3, not

detected in RNA-seq) in an independent patient cohort (74 patients in ICGC RNA-seq dataset).

Discussion

Long non-coding RNAs are increasingly recognized as important players in cancer research [19],
particularly as biomarkers and/or therapeutic targets [32-36], including in brain tumors [20, 37-
40]. However, there is a lack of knowledge of INCRNASs’ involvement in MBs. Here we bridged
this knowledge gap by proposing diagnostic and prognostic biomarkers candidates for further
study in vitro and in vivo systems to understand their potential function in MB

genesis/progression.

Our study is the first genome-wide analysis of INCRNAs’ expression profile in MB and its
subgroups. Overall IncRNAs’ expression dynamics mirrors the well-known MB heterogeneity
seen in genetic and epigenetic analyses [23, 41]. MB subgroup clusters obtained using highly
variable INcRNAs overlapped with existing clinical and molecular subgroups. Using variantly
expressed INcCRNAs and weighted correlations, we further identified subgroup-specific IncRNAs.
These upregulated IncRNAs might represent functionally relevant genes and require further
validation. The obtained IncRNA signature could be curated using transcriptional inference
algorithms and proximity to or co-relation with known MB relevant protein coding genes for

further functional validation in vitro and in vivo studies.
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Presently, very few IncRNAs have been studied for their putative roles in MB or its subtypes.
NKX2-2AS was shown in vitro to modulate SHH-potentiated MB development by acting as a
miRNA sponge for miR-103 and miR-107, thereby depressing their tumor suppressive targets
BTG2 and LATS1 and inhibiting proliferation and migration [42]. CDKN2B-AS1 (ANRIL) has
been shown to promote proliferation in vitro studies by sponging miR-323 and activating BRI3
dependent p38-MAPK, AKT and WNT signaling [43], and in current analysis, it was found to be
upregulated in group 4 patients compared to other MBs. PVTL1 is prevalently found fused to
MYC and NDRG1 genes in group 3 tumors, leading to oncogenic transformation of these genes
[44]. Inc-IRX3-80 (CRNDE) was also reported as an oncogenic INcRNA in vitro and in vivo
studies [45]. Both PVT1 and Inc-IRX3-80 were upregulated in WNT and SHH MBs in our
current analysis. Lnc-FAM84B-15 (CCAT1), which was found upregulated in WNT and group 3
MBs, has also been shown to be involved in promoting tumor proliferation and metastasis by
activating MAPK pathway [46]. MIR100HG (Inc-NeD125) has been shown to be overexpressed
in group 4 MBs, again acting as an miRNA sponge for miR-19a-3p, miR-19b-3p and miR-106a-
5p, exerting an oncogenic function by de-repressing cell cycle target genes [47]. MIR100HG is
also oncogenic in gastric cancer [48], breast cancer [49], and leukemia [50]. In our analysis, only
MIR100HG (Inc-NeD125) was selected in our diagnostic signature, being highly expressed in all
MBs but group 3 (Fig 2). In addition, our 11-IncRNAs model could complement existing
molecular and clinical-based diagnostic approaches, particularly for group 3 and group 4 MBs.
Some of the identified signature INcCRNAs are highly subgroup-specific, such as: Inc-CCL2-2
(WNT), Inc-ABCE1-5 (SHH), USP2-AS1 (group 3), and Inc-TBC1D16-3 (group 4). Mutual

information-based network analysis also identified putative interacting transcription factors
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involved in medulloblastoma and other cancers (Fig S5); for example, FOXOL1 [51, 52], OTX2

[53], NRL, CRX [54] and TET3 [55].

Our 17-IncRNAs prognostic model represents another set of putative functionally important
IncRNAs. Of the 17 IncRNAs, seven were associated with poor prognosis, including H19 (Table
1). None of the candidate poor prognostic marker were specifically expressed in a particular
subgroup of patients, suggesting independent prognostic value, although patients with high
expression of the signature tended to be group 3 (Fig S6). H19 is a well-studied oncogenic
IncRNA in various cancer systems including glioblastoma, where it has been shown to be
promote cellular proliferation and metastasis [56-59]. LncRNA LINCO01551 has been found to
upregulate cellular proliferation and migration in non-CNS cancers such as hepatocellular
carcinoma by interacting with the miR122-ADAM10 axis [60]. LINC00336 promoted lung

cancer progression by inhibiting regulated cell death by knocking down miR-6852 function [61].

Overall, our analysis proposes new IncRNAs candidates in MB with functional, diagnostic, and
prognostic significance that warrant further investigation and validation. This is the first global
analysis of IncRNAs in MB that will provide an invaluable resource for those working in the

field to prioritize for further study.
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SUPPLEMENTAL INFORMATION

Supplementary Tables

Table S1. List of 175 medulloblastoma patient samples and clinical information.
Table S2. List of subgroup specific INcRNA cohorts identified by WGCNA analysis.

Table S3. List of differentially expressed INCRNA between group 3 and group 4 patients.

Supplementary Figures

Fig S1. Medulloblastoma patients can be optimally subgrouped into 4 clusters based on long non-
coding RNA expression. (A) Heatmap depicting stability of k-means clusters, 2 to 6 (k=4, in Fig 1C),
based on consensus clustering. Color range depicts samples never clustered together (0, blue) to always
clustered together (1, red). (B) Colored line depicting relationship between cumulative distribution
function (CDF) and consensus index for each of the k-means values 2 to 6. (C) Graph showing relative
change in area under the CDF curve (in B) comparing k to k-1 for k from 3 to 6. For k=2, the value is
total area under the CDF curve in B. (D) Cluster consensus plot showing mean of pairwise consensus
value for all cluster members. For k=4, the graph shows that each of the obtained clusters are of similar

stability.

Fig S2. Random forest-based approach identifies a 14-PCG model to classify medulloblastoma
subgroups. (A) Schematic depiction of the modeling process. First, an 11-PCG model distinguishing
SHH, group 3, and group 4 patients was obtained using a 60%-40% training-tuning partition. Then, a 3-
PCG model distinguishing WNT from the rest of the group was obtained by combining all WNT samples
with a 60%-40% partition of the other subgroup patients in a training-tuning model. (B) MB patient
subgroups as identified from the random forest model using only 14-PCG expression as variables.

Dendrogram represents hierarchical clustering of dissimilarity values obtained from random forest-based
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classification. Bottom color bars represent known clinical groupings (blue=WNT, green=SHH,
black=group 3, red=group 4). The obtained clustering and misclassification are similar to that in Fig 2B.
(C) Boxplot showing distribution of normalized expression values of identified 14-PCGs in each patient
subgroup. Purple dots represent normalized expression value for a patient. D) tSNE plot showing
clustering of patients into four subgroups based on normalized expression level of identified 14-PCGs
(blue=WNT, green=SHH, black=group 3, red=group 4). The obtained clustering is similar to that in Fig
3D, except for sample ICGC_MB23 that cluster with SHH subgroup. (E) ROC analysis of linear model
based on normalized expression of identified 14-PCGs comparing one versus all (rest) classifications for

each of the subgroups. The AUC values for 11-IncRNAs model and 14-PCGs model are comparable.

Fig S3. 14-PCG model classifies independent medulloblastoma patient samples with high efficiency.
(A) MB patient subgroups as identified in the Cavallil7 dataset on applying a random forest model using
only 14-PCG expression as variables. Dendrogram represents hierarchical clustering of dissimilarity
values obtained from random forest-based classification. Bottom color bars represent known clinical
grouping (blue=WNT, green=SHH, black=group 3, red=group 4). (B) Boxplot showing distribution of
normalized expression values of identified 14-PCGs in each patient subgroup. Purple dots represent
normalized expression value for a patient. The normalized expression distribution for the 14-PCGs are
similar to that in RNA-seq analysis (Fig S2C). (D) tSNE plot showing clustering of patients into four
subgroup based on normalized expression level of identified 14-PCGs (blue=WNT, green=SHH,
black=group 3, red=group 4). (D) ROC analysis of linear model based on normalized expression of

identified 14-PCGs comparing one versus all (rest) classifications for each of the subgroups.

Fig S4. Random forest-based approach identifies an 8-IncRNA model to classify group 3 and group
4 patents. (A) MB patient subgroups as identified from a random forest model using 8-IncRNA
expression as variables. Dendrogram represents hierarchical clustering of dissimilarity values obtained

from random forest-based classification. Bottom color bars represent known clinical groupings
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(black=group 3, red=group 4). (B) Boxplot showing distribution of normalized expression values of
identified 8-IncRNAs in group 3 and group 4 MBs. Purple dots represent normalized expression value for
a patient. (D) tSNE plot showing clustering of group 3 and group 4 patients into two heterogeneous
clusters based on normalized expression levels of identified 8-IncRNAs (black=group 3, red=group 4).
(E) ROC analysis of linear model based on normalized expression of identified 8-IncRNAs comparing

group 3 versus group 4 samples.

Fig S5. Putative interaction network of identified 11-IncRNAs with transcription factors. Interaction
network between the 11-IncRNAs and transcription factors based on a consensus of mutual information

analysis using CLR, arcane, and mrnet-based approaches.

Fig S6. Expression distribution of identified bad prognostic markers. Box plot representing
expression distribution of candidate bad prognostic markers in (A) MAGIC microarray dataset and (B)
ICGC RNA-seq dataset in each subgroup. None of the identified IncRNAs is expressed specifically in a

subgroup; however, patients expressing high levels were primarily in group 3.
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Figure S6

A MAGIC microarray B ICGC RNA-seq
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