

1 **LAX28 is required for assembly of the inner dynein arm I1 and**
2 **tether/tether head complex in the *Leishmania* flagellum**

3

4 Running Head: IDA f/I1 assembly factor LAX28

5 **Authors**

6 Tom Beneke¹, Katherine Banecki¹, Sophia Fochler¹ and Eva Gluenz^{1*}

7 **Affiliations**

8 ¹Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1
9 3RE, UK

10 *corresponding author: eva.gluenz@path.ox.ac.uk

11 **Abstract**

12 Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins yet the
13 mechanisms of dynein coordination and regulation are incompletely understood. The inner
14 dynein arm IDA f/I1 complex and the tether/tether head (T/TH) complex are thought to be key
15 regulators but, unlike IDA f/I1, T/TH proteins show limited conservation across flagellates. Here
16 we characterised T/TH-associated proteins in the protist *Leishmania mexicana*. Proteome
17 analysis of Δ CFAP44 mutant axonemes showed that they lacked IDA f/I1 protein IC140 and
18 a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between
19 LAX28 and the uncharacterised human sperm tail protein TEX47, sharing features with
20 sensory BLUF-domain proteins. *Leishmania* lacking LAX28, CFAP44 or IC140 retained some
21 motility albeit with reduced swimming speed and directionality and a propensity for flagellar
22 curling. Expression of tagged proteins in different null mutant backgrounds showed that the
23 axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations
24 of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in
25 motility and show mutual dependencies of IDA f/I1 and T/TH-associated proteins for axonemal
26 assembly in *Leishmania*.

27

28 **Summary Statement**

29 The inner dynein arm f/l1 complex is required for coordinating flagellar motility. Here we show
30 that LAX28 is needed for its function and localization in the flagellum of *Leishmania mexicana*.

31 **Introduction**

32 Eukaryotic cilia and flagella are highly conserved structures found in organism ranging from
33 the unicellular green algae *Chlamydomonas* and protists such as *Leishmania* to specialized
34 cells in metazoans, including humans. Even though cilia and flagella have highly conserved
35 microtubule arrangements, structural alterations generate diversity, allowing them to exhibit
36 different behaviours in the context of their biological function, such as signalling and motility.

37 Dysfunctions in motile and/or non-motile cilia in humans are linked to numerous diseases
38 collectively called ciliopathies. At least 187 ciliopathy-associated genes have been identified
39 (Reiter and Leroux, 2017); defects in motile cilia have been shown to cause hydrocephalus in
40 the brain, chronic respiratory problems and male infertility (Mitchison and Valente, 2017).

41 Motile axonemes typically have nine microtubule doublets, consisting of an A and B
42 microtubule, and a central pair complex of two singlet microtubules. Dynein motor proteins
43 arranged along the axoneme undergo a mechano-chemical cycle of pre- and post-power
44 stroke conformational changes powered through the hydrolysis of ATP (Lin and Nicastro,
45 2018) (King, 2018). Since doublet microtubules are connected by tektin protofilaments and
46 anchored in the basal body, conformational changes of dyneins cause the microtubules to
47 slide against each other, resulting in flagellar bending. What remains a topic of great interest
48 is to understand the spatio-temporal coordination of the different dynein isoforms to generate
49 the observed flagellar waveforms (reviewed in Lindemann and Lesich (2010)).

50 The axoneme is organized longitudinally in regular 96 nm repeat units. Outer dynein arms
51 (ODAs) are homogeneously spaced every 24 nm and provide the power by determining the
52 beat frequency. Inner dynein arms (IDAs) control size and shape of the forward and reverse
53 ciliary bend (bend amplitude). The seven subspecies of IDAs (dyneins a, b, c, d, e, f/l1 and g)
54 are each uniquely positioned within the 96 nm repeat unit (Bui et al., 2012; Heuser et al., 2012).

55 Additional complexes including the calmodulin and spoke associated complex (CSC) (Dymek
56 et al., 2011), the modifier of inner arms (MIA) complex (Yamamoto et al., 2013) and the nexin-
57 dynein regulatory complex (N-DRC) (Heuser et al., 2009; Huang et al., 1982; Oda et al., 2015;
58 Ralston and Hill, 2006) have been shown to control the function of IDAs. Radial spokes (RSP)
59 (Barber et al., 2012; Curry et al., 1992; Diener et al., 1993; Ralston and Hill, 2006; Williams et
60 al., 1989; Yang et al., 2006; Yang et al., 2004) and the central pair complex (CPC) (Adams et

61 al., 1981; Dawe et al., 2007; Dutcher et al., 1984; Lechtreck and Witman, 2007; Oda et al.,
62 2015) influence also directly or indirectly the activity of IDAs.
63 Each IDA isoform is thought to have its own role in flagellar motility (Kato-Minoura et al., 1997;
64 Kubo et al., 2018; Perrone et al., 1998). The IDA f/I1 complex has received particular attention
65 as the centre of a regulatory hub, thought to integrate mechano-chemical signals from the
66 CPC, RSP and other complexes (Heuser et al., 2012). IDA f/I1 is the only IDA that contains
67 two dynein heavy chains (DHC 1 α , DHC 1 β) and requires an ICLC complex for incorporation
68 into the flagellar axoneme (Heuser et al., 2012; Perrone et al., 1998; Viswanadha et al., 2014).
69 As highlighted in Kubo et al. (2018) the *Chlamydomonas* IDA f/I1 ICLC complex contains five
70 light chains (LC7a, LC7b, LC8, Tctex1 and Tctex2b), one accessory subunit FAP120 and two
71 intermediate chains IC140 and IC138 (DiBella et al., 2004a; DiBella et al., 2004b; Harrison et
72 al., 1998; Hendrickson et al., 2004; Ikeda et al., 2009; Myster et al., 1997; Myster et al., 1999;
73 Perrone et al., 1998; Piperno, 1990; Porter et al., 1992; Smith and Sale, 1991; Toba et al.,
74 2011). The intermediate chains have been shown to act either as regulators or assembly
75 factors for the IDA f/I1 complex. IC140 has been shown to preassemble with both heavy chains
76 in the cytoplasm before being transported by intraflagellar transport (IFT) proteins to the distal
77 end of a growing flagellum (Viswanadha et al., 2014), while IC138 has been proven to be an
78 important phosphorylation switch of IDA I1, regulating the beat amplitude, sliding velocities
79 between microtubules and the speed of bend propagation (Hendrickson et al., 2004;
80 VanderWaal et al., 2011).
81 The tether/tether head complex (T/TH) has recently emerged as a new complex linked to IDA
82 f/I1. It was first described in *Chlamydomonas*, where cryo-electron tomography identified the
83 T/TH structure as a link between the A-tubule and the 1 α HC motor domain of IDA f/I1 (Heuser
84 et al., 2012). T/TH proteins FAP44 and its parologue FAP43 were subsequently shown to be
85 required for assembly of the IDA f/I1 head, but not entire complex, and they are needed for
86 regulating conformational changes of IDAs, as well as transferring their activity into microtubule
87 sliding motion (Fu et al., 2018; Kubo et al., 2018; Urbanska et al., 2018).
88 FAP43 and FAP44 are part of a core group of 50 genes conserved in organisms with motile
89 flagella (Baron et al., 2007). Their human orthologues CFAP43 and CFAP44 have been linked
90 to non-syndromic male infertility (Krausz et al., 2015; Okutman et al., 2018; Tang et al., 2017)
91 and loss-of-function studies confirmed a role in motility in the protists *Trypanosoma brucei*
92 (Coutton et al., 2018) and *Leishmania mexicana* (Beneke et al., 2019). The conserved Fap57p
93 has also been proposed to be linked to the T/TH complex (Urbanska et al., 2018). Additional
94 components of the T/TH complex identified to date appear to be less widely conserved, such

95 as *Chlamydomonas* FAP244 (Fu et al., 2018), MOT7, FAP102 and Cre10.g452250 (Kubo et
96 al., 2018).

97 Since we found that *L. mexicana* *CFAP44* knockout mutants exhibited a strong motility defect,
98 characterized by reduced swimming speed, reduced directionality (velocity/speed) and a
99 propensity for flagellar curling (Beneke et al., 2019) we sought to identify other *Leishmania*
100 T/TH proteins through quantitative proteomics of flagellar skeleton preparations from *CFAP44*
101 null mutants and control cells. This identified a previously uncharacterized flagellar protein,
102 LAX28. Further characterisation showed that LAX28, CFAP44 and the IDA f/I1 protein IC140
103 show mutual dependencies for localization to the flagellar axoneme and loss of LAX28 causes
104 a similar motility defect as loss of the T/TH or IC140. Interestingly, sequence analysis identified
105 the human protein TEX47 as a putative orthologue of LAX28, suggesting a possible role for
106 this uncharacterised human protein in sperm motility.

107 **Results**

108 **Identification of proteins missing from Δ CFAP44 mutants axonemes**

109 To identify new components of the *L. mexicana* T/TH complex, attempts were made to perform
110 IP experiments with CFAP44. This was unsuccessful because CFAP44 remained associated
111 with the axoneme following cell lysis and detergent extraction and no suitable conditions could
112 be identified under which CFAP44 dissociated from the axoneme. CFAP44 remained
113 associated with the axoneme in a broad range of salt concentrations, including up to 2 M LiCl,
114 2 M CaCl₂, 3.2 M KCl and 4 M NaCl (Fig. S1). This stable association was then used to ask
115 whether there were any proteins that depended on CFAP44 for their axonemal localization by
116 comparing the protein composition of Δ CFAP44 mutant flagella (Beneke et al., 2019) with
117 those of the parental Cas9 T7 cell line (Beneke et al., 2017). To enrich for flagellar skeletons,
118 NaCl-extracted flagella (Robinson and Gull, 1991) were further purified by running them over
119 a sucrose gradient (Fig. 1 A, B and C), as this was previously shown to reduce *Leishmania*
120 cell body contamination (Beneke et al., 2019).

121 Liquid chromatography tandem mass spectrometry (MS) analysis of Δ CFAP44 flagella and
122 flagella from the *L. mex* Cas9 T7 parental cell line, for comparison (Fig. 1 C (iv)), identified a
123 total of 1162 proteins (Fig. 1 D; S2 Table). Proteins in the mutant and parental samples
124 overlapped well with those found in detergent-insoluble fractions of *L. mexicana*, analysed in
125 Beneke et al. (2019) (Fig. 1 E) and included well-characterised flagellar proteins, such as CPC,
126 N-DRC, IDA, ODA, RSP and paraflagellar rod (PFR) proteins. Whilst the mechanical method
127 for flagellum isolation employed in Beneke et al. (2019) separated the external part of the

128 motile flagellum form the cell body, the salt-extraction protocol preserved the connection with
129 the basal body (Robinson and Gull, 1991). Consequently, a large number of proteins
130 associated with the basal body, flagellar attachment zone (FAZ), intraflagellar transport (IFT)
131 and tripartite attachment complex (TAC) were also identified (S2 Table), further expanding the
132 inventory of *L. mexicana* flagellum-associated proteins.

133 To test for protein enrichment between the Δ CFAP44 and parental flagella, a label-free
134 normalized spectral index quantitation method SINQ (Trudgian et al., 2011) was used (S1 and
135 S2 Table). 65 proteins were exclusively identified in the parental controls cells, while 32
136 proteins were exclusively identified in Δ CFAP44 mutants.

137 Examination of the proteins missing from the Δ CFAP44 flagella confirmed the loss of CFAP44
138 itself and its close homologue CFAP43. This is consistent with observations made for deletions
139 and mutations on the T/TH complex in *Chlamydomonas* and *Tetrahymena* (Fu et al., 2018;
140 Kubo et al., 2018; Urbanska et al., 2018), showing co-dependence of these proteins.
141 Unexpectedly, the *L. mexicana* IDA f/l1 intermediate chain IC140 was also completely absent
142 from the Δ CFAP44 flagella. Moreover, the inner dynein arm beta and alpha heavy chains
143 were significantly reduced in Δ CFAP44 mutant flagella (DHC 1 α -55,6%; DHC 1 β -61.3%),
144 while ODA, CP, RSP and the main component of the PFR, PFR2, showed only small changes
145 (Table 1, S1 and S2). We confirmed depletion of IC140 from Δ CFAP44 mutant flagella by
146 tagging IC140 with eYFP and subsequently deleting CFAP44 in IC140::eYFP tagged cells (Fig.
147 2 A). Deletion of the open reading frame (ORF) was confirmed by PCR (Fig. S2 A-F). In the
148 tagged cell line, IC140::eYFP localized to the axoneme, as expected. By contrast, it was
149 undetectable in IC140::eYFP Δ CFAP44 mutants, thus confirming mass spectrometry results
150 indicating that flagellar localisation of IC140 depends on CFAP44 in *Leishmania* (Fig. 2 A).
151 We next focused on a hitherto uncharacterized protein that was completely absent from Δ
152 CFAP44 flagella (Table 1, S1 and S2): LmxM.24.1310 is a hypothetical protein of 254 amino
153 acids (MW: 28,257 Da; pl: 4.9), with no defined domains, which we named LAX28 (for
154 *Leishmania* axonemal protein, 28 kDa). It was enriched in the *L. mexicana* flagellar proteome
155 (Beneke et al., 2019) but had not previously been linked to T/TH or IDAs.

156 **Axonemal localisation of LAX28 depends on CFAP44 and IC140**

157 To provide MS-independent evidence that the flagellar localization of LAX28 is dependent on
158 CFAP44, LAX28 was tagged with mNeonGreen (mNG) and tagged cells were then subjected
159 to deletion of either CFAP44, IC140, DRC2, Hydin, LC7, PF16 or RSP3 (Fig. 2 B). Deletion of
160 the open reading frame (ORF) was confirmed by PCR (Fig. S2 A, C-E). As predicted from the
161 proteome data, LAX28::mNG localized to the axoneme of the *L. mexicana* promastigote

162 flagellum, with some signal also in the cell body (Fig. 2B). The flagellar signal was completely
163 lost in $\Delta CFAP44$ and $\Delta IC140$ mutants; these mutants displayed strong fluorescent signal
164 only in the cell body and none in the flagellum. In contrast, deletion of *DRC2*, *Hydin*, *LC7*, *PF16*
165 or *RSP3* did not alter the localization of LAX28::mNG (Fig. 2 B). This is consistent with the
166 observed loss of the LAX28 protein from the $\Delta CFAP44$ flagellar protein samples (Table 1).
167 Furthermore, it showed that loss of IC140 had the same disruptive effect on LAX28 localisation
168 as loss of CFAP44.

169 **LAX28 is required for axonemal localization of CFAP44 and IC140**

170 We next tested whether loss of LAX28 would in turn affect CFAP44 and IC140 localisation.
171 LAX28 was deleted in cell lines expressing either *CFAP44::mNG* or *IC140::eYFP* and the
172 deletion was confirmed by PCR as above (Fig. S2 G-I). Additionally, an addback plasmid was
173 transfected to restore expression of LAX28 in null mutants. In the parental background,
174 *CFAP44::mNG* and *IC140::eYFP* both localized to the axoneme (Fig. 2 C and D). Following
175 *LAX28* deletion, the fluorescent signal was lost from the flagellum. Flagellar localization was
176 restored in the LAX28 addback cell lines (Fig. 2 C and D). Interestingly, deletion of *LAX28* in
177 *IC140::eYFP* cells resulted in a strong *IC140::eYFP* cell body signal. This was not observed
178 for *CFAP44::mNG* in $\Delta LAX28$ mutants or *IC140::eYFP* in $\Delta CFAP44$ mutants. The biological
179 significance of this is currently unclear. It is possible that this is a technical artefact.
180 Alternatively, it may reflect differences in turnover of unassembled CFAP44 or IC140 proteins.
181 Western blot analysis of the fluorescent fusion proteins (Fig. S3) showed that levels of the
182 respective *CFAP44::mNG* or *IC140::eYFP* reporter proteins remained comparable before and
183 after *LAX28* deletion, and following restoration of LAX28 expression (Fig. S3), indicating that
184 the steady-state levels of *CFAP44::mNG* and *IC140::eYFP* were largely independent of
185 LAX28.

186 Taken together these results suggest an essential function for LAX28 in the correct axonemal
187 localisation of CFAP44 and IC140. Transmission electron microscopy (TEM) was used to
188 compare the ultrastructure of $\Delta LAX28$ axonemes with flagella of parental cells. Multiple cross-
189 sections of the extracellular part of the promastigote flagellum were imaged and subjected to
190 rotational averaging (Gadelha et al., 2006; Wheeler et al., 2015). This revealed a clear lack of
191 electron density associated with IDAs (Fig. 3 A and B), supporting the conclusion that loss of
192 *LAX28* compromised IDA structures within the flagellar axoneme.

193 This raised the question whether LAX28 is required for assembly of T/TH and IDA proteins into
194 the axoneme, or whether the absence of LAX28 renders these structures unstable following
195 assembly. *Leishmania*, like trypanosomes, offer the opportunity to examine flagella that are

196 being actively assembled in a cell alongside the cell's old flagellum (Wheeler et al., 2011). The
197 localization of LAX28::mNG, CFAP44::mNG or IC140::eYFP was imaged at different points in
198 the cell cycle, at the end of G₁ or the beginning of S phase (i.e. cells with 1 kinetoplast (K), 1
199 nucleus (N) and 1 flagellum (F)), at the beginning of new flagellum growth (1K 1N 2F) and
200 following initiation of cytokinesis (2K 2N 2F) (Fig. 4 and S4). In the parental background, these
201 three fusion proteins all showed a strong fluorescent signal uniformly distributed along the
202 axonemes of old flagella and growing new flagella. Deletion of LAX28 in CFAP44::mNG or
203 IC140::eYFP expressing cells resulted in loss of the fusion protein from old and new flagella
204 equally (Fig. 4). If loss of LAX28 merely rendered the T/TH and IDA structures less stable post-
205 assembly, one might expect to find a stronger fluorescent signal in a growing new flagellum
206 compared to an old one. The fact that this was not the case suggests that loss of LAX28
207 prevented stable incorporation of these proteins into the axoneme. The same results were
208 obtained when CFAP44 or IC140 was deleted in cells expressing LAX28::mNG (Fig. S4):
209 neither the growing nor the old flagella showed any LAX28::mNG signal. *Chlamydomonas*
210 IC140 was previously shown to be required for assembly of the IDA f/I1 complex (Perrone et
211 al., 1998; Viswanadha et al., 2014) and FAP44 was shown to be required for assembly of the
212 T/TH complex (Fu et al., 2018; Kubo et al., 2018; Urbanska et al., 2018) but in these studies,
213 loss of FAP44 did not delocalise IDA f/I1. Here we show that *Leishmania* CFAP44, IC140 and
214 LAX28 are mutually dependent for their assembly into the axoneme.

215 **$\Delta LAX28$, $\Delta CFAP44$, $\Delta CFAP43$ and $\Delta IC140$ mutants have slower swimming 216 speeds and reduced directionality**

217 Based on the protein localisation patterns and dependencies described above, $\Delta CFAP44$, Δ
218 $IC140$ and $\Delta LAX28$ mutants should exhibit similar phenotypes linked to impaired IDA f/I1
219 function. To test this, their respective swimming speeds and velocities were measured and the
220 proportion of flagellar curls within the cell populations counted, comparing the characterised Δ
221 $CFAP44$, $\Delta CFAP43$ and $\Delta IC140$ lines (Beneke et al., 2019), and newly generated $\Delta LAX28$
222 (Fig. S5) and addback cell lines. All four deletion mutants showed higher flagellar curling rates
223 compared to the parental cell line and $\Delta LAX28$ addback cells (Fig. 5). The swimming speed
224 for $\Delta LAX28$ was $3.8 \mu\text{m/s} \pm 0.3 \mu\text{m/s}$; for $\Delta CFAP44$ $2.9 \mu\text{m/s} \pm 0.03 \mu\text{m/s}$; for $\Delta CFAP43$ 3.3
225 $\mu\text{m/s} \pm 0.2 \mu\text{m/s}$ and for $\Delta IC140$ $2.9 \mu\text{m/s} \pm 0.2 \mu\text{m/s}$ (Fig. 5 B and C). By contrast $\Delta LAX28$
226 addback cells showed swimming behaviours similar to parental cells (Fig. 5 B and C). In a plot
227 of swimming speed vs. directionality, these mutants clustered closely together, showing
228 reduced swimming speed and directionality compared to the parental controls. However, their
229 reduction in swimming speed was not as severe as that observed in $\Delta PF16$ and $\Delta Hydin$

230 mutants ($\Delta PF16$ $2.0 \mu\text{m/s} \pm 0.1 \mu\text{m/s}$; $\Delta Hydin$ $2.6 \mu\text{m/s} \pm 0.2 \mu\text{m/s}$ (Beneke et al., 2019)) and
231 the IDA and T/TH mutants showed more directionality compared to the uncoordinated $\Delta MBO2$
232 mutants (Beneke et al., 2019) (Fig. 5B). Thus, the IDA f/I1 and T/TH mutants retained residual
233 capacity for generation of a flagellar beat that results in displacement of cells, albeit at reduced
234 speed.

235 **LAX28 shows similarity to human testis expressed protein TEX47**

236 While LAX28 is clearly conserved across kinetoplastids, we noted a relatively low sequence
237 identity of only 31% between the syntenic orthologs from *L. mexicana* (LmxM.24.310) and *T.*
238 *brucei* (Tb927.8.6920) and initial simple protein BLAST searches did not identify any homologs
239 outside of this lineage. A Position-Specific Iterated BLAST (PSI BLAST; (Altschul et al., 1997))
240 search identified the uncharacterized human Testis-expressed protein 47 (UniProt Q8TBZ9,
241 gene TEX47 / C7orf62) as possible homologue. With a MW of 29.5 kDa, the human TEX47
242 protein was of a size similar to LAX28 but the sequence identity was only 16% between both
243 proteins (Fig. 6 A). TEX47 is so named since it was found predominantly expressed in human
244 testis (Fagerberg et al., 2014) and it was also identified in the human sperm tail proteome
245 (Amaral et al., 2013). Interestingly, MOT7 (gene CHLRE_01g038750v5), a 26 kDa
246 *Chlamydomonas* protein reported to interact with T/TH complex proteins (Kubo et al., 2018)
247 also shares low similarity (24% sequence identity) with TEX47 but PSI BLAST failed to identify
248 MOT7 when LAX28 was used as query sequence or *vice versa*. While the amino acid
249 sequence conservation between these proteins is too low to give convincing BLAST hits, we
250 found that LAX28, TEX47 and MOT7 are predicted by Phyre² modelling (Kelley et al., 2015)
251 to be able to adopt very similar 3D folds, as found in FAD-binding protein domains of the BLUF
252 family (Gomelsky and Klug, 2002) (Figure 6 B).

253 Taken together these results show that LAX28 is essential for normal flagellar motility and
254 indicate that the reduced flagellar motility in $\Delta LAX28$ knockout cells is linked to IDA f/I1
255 deficiency. Sequence comparisons suggest that TEX47 may have a similar function in human
256 sperm motility.

257 **Discussion**

258 **LAX28 is an inner dynein arm component required for assembly of IDA f/I1**

259 The aim of this study was to identify T/TH complex interactors in *Leishmania*. By comparing
260 flagellar skeleton preparations of $\Delta CFAP44$ null mutants and control cells, LAX28 was
261 identified as a new potential interactor of the IDA f/I1 T/TH complex. Localisation of fluorescent

262 fusion proteins in mutant and control cells showed clearly that LAX28 is an axonemal protein,
263 dependent for its localization on the presence of CFAP44 and IC140. Interestingly this
264 dependency was found to be reciprocal, as both CFAP44 and IC140 were lost from the
265 axoneme in $\Delta LAX28$ mutants. One likely explanation for these observations is that LAX28 is
266 required for incorporation of the IDA f/I1 and the T/TH complex into the 96 nm repeat. This
267 would also explain the loss of IDA electron density observed by TEM.

268 Tracking *in situ* tagged IC140 and CFAP44 proteins in $\Delta LAX28$ mutants through the cell cycle
269 provided supporting evidence for a role of LAX28 in IDA f/I1 assembly. In *Chlamydomonas*,
270 IC140 binds directly to both microtubules and plays a critical role in assembly, axonemal
271 targeting and regulation of the I1 dynein complex (Hendrickson et al., 2013). IC140 was shown
272 to be required for assembly of both heavy chains (DHC 1 α , DHC 1 β) and the IDA f/I1 ICLC
273 complex (Perrone et al., 1998; Viswanadha et al., 2014). IC140 and both heavy chains form a
274 20S complex and preassemble in the cytoplasm before being transported by IFT proteins to
275 the distal end of a growing flagellum (Viswanadha et al., 2014). If a similar mechanism
276 operates in *Leishmania*, the strong cell body signal in *IC140::eYFP* cells in the absence of
277 *LAX28* (Fig. 2 C) may show the preassembled IDA f/I1 complex that can't be incorporated at
278 the tip of the growing flagellum. The observed LAX28::mNG accumulation in the cell body of
279 $\Delta IC140$ or $\Delta CFAP44$ mutants may have a similar explanation (Fig. 2 B). This is in contrast to
280 the complete loss of CFAP44::mNG signal following loss of *LAX28* (Fig. 2 D) and complete
281 depletion of IC140::eYFP signal in $\Delta CFAP44$ mutants (Fig. 2 A). Setting aside the possibility
282 of technical variations, this could indicate that CFAP44 is not assembled into the IDA f/I1 20S
283 complex in the cytoplasm or subject to more rapid turnover in cells that lack LAX28 and that
284 IC140 is degraded more quickly in absence of CFAP44.

285 Loss of LAX28 reduces swimming speed and directionality to levels similar to those observed
286 for $\Delta IC140$ or $\Delta CFAP44$ mutants, consistent with a functional link between these proteins in
287 *Leishmania*. With respect to flagellar curling rates, the $\Delta LAX28$ cells (38% curling) do however
288 not fully phenocopy the $\Delta IC140$ cells (67% curling). There are at least two alternative
289 explanations that could account for this discrepancy: first, the loss of LAX28 reduced IC140
290 protein to levels below the detection limit of the fluorescence microscope, but it is possible that
291 a sufficiently small number of IC140 proteins remained in the axoneme, so that curling rates
292 in $\Delta LAX28$ mutants remained below those observed in an *IC140* null mutant. Alternatively, the
293 loss of LAX28 may affect other IDA-related structures in addition to IDA f/I1, either some of the
294 single-headed IDAs or accessory complexes. This loss may counteract the effect of IC140 loss
295 to some extent, so that the net result is an intermediate rate of curling.

296 While the reduction of TEM electron density at the location of IDAs in $\Delta LAX28$ mutants (Fig.
297 3) is consistent with an IDA f/I1 assembly defect, the residual electron density indicates that at
298 least some of the other IDA heavy chains (a-e and g) remain. This aligns with previous findings
299 in *Chlamydomonas*, where each IDA is independently targeted to its location within the 96 nm
300 repeat, causing gaps if assembly of one IDA fails. This gap will be reflected as reduced electron
301 density in thin sections, but not complete absence of signal (Bui et al., 2012; Heuser et al.,
302 2012; Piperno, 1990). In *Leishmania*, the flagella of IDA f/I1 deletion mutants are not
303 completely paralysed but their swimming speed and directionality is reduced compared to wild
304 type cells (Beneke et al., 2019) (Fig. 5 B and C). Similar observations have been made for Δ
305 *IC140* mutants and IDA f/I1 T/TH complex mutants in *Chlamydomonas*. $\Delta FAP44$ and $\Delta IC140$
306 mutants showed only moderate flagellar beat and swimming defects compared to other ODA-
307 or IDA- heavy chain deficient mutants which are more severe (Kato-Minoura et al., 1997; Kubo
308 et al., 2018; Perrone et al., 1998). While it is clear that LAX28 is required for normal motility
309 and function of the *Leishmania* flagellum, defining the precise IDA assembly defects and fate
310 of the other IDA heavy chains (a-e and g) and other ultrastructural changes will require cryo-
311 EM reconstructions of parental and $\Delta LAX28$ mutant axonemes.

312 **The IDA f/I1 and T/TH complex shows diversity across flagellated eukaryotes**

313 Biochemical studies and cryo-EM reconstructions of the *Chlamydomonas* T/TH complex
314 showed FAP44 to be a constituent of the tether, and demonstrated direct interactions between
315 FAP44, FAP43 and IDA f/I1 dynein motor domains I1 α and I1 β . (Fu et al., 2018; Kubo et al.,
316 2018). The tether is anchored to the axoneme through the C-terminal coiled-coil domains of
317 FAP44 and FAP43. Ultrastructural comparisons between wild type and a *fap44* mutants
318 suggested that the tether constrains the nucleotide-dependent movement of the IDA f/I1 head
319 domains (Kubo et al., 2018) and indicated a role for FAP44 in the assembly of the IDA f/I1
320 dynein motor but not the ICLC (Fu et al., 2018). This is in contrast to the results from *L.*
321 *mexicana*, where mass spectrometry data of salt extracted flagellar preparations and *in situ*
322 tagging showed a loss of IC140 in $\Delta CFAP44$ mutants as well as a reduction of both IDA I1 a
323 and β heavy chains (Table 1, Fig. 2 A). *L. mexicana* CFAP43 was also lost from $\Delta CFAP44$
324 mutant axonemes, in line with the finding that the *Chlamydomonas* T/TH complex requires
325 dimerization of C/FAP43 and C/FAP44 to be assembled (Fu et al., 2018; Urbanska et al.,
326 2018). Furthermore, our data show that *L. mexicana* CFAP44 and IC140 are both dependent
327 on LAX28. These data suggest the *Leishmania* T/TH complex cannot assemble in the absence
328 of the IDA f/I1 complex, contrary to the case in *Chlamydomonas* (Heuser et al., 2012) (Fu et
329 al., 2018). Further more detailed studies of the *L. mexicana* wild type axoneme ultrastructure

330 could help to define the precise location of LAX28 relative to the T/TH and IDA f/I1 complex
331 and define the fate of the T/TH structure in a range of defined IDA f/I1 mutants.
332 Of the known T/TH associated proteins, CFAP44, CFAP43 and Fap57p (Urbanska et al., 2018)
333 seem to be well conserved across flagellated eukaryotes, including *Trypanosoma*. Fap57p has
334 been identified to be a homologue of CMF6 and CMF7 in *T. brucei* (Baron et al., 2007). A
335 partial *CMF6* deletion mutant showed swimming patterns similar to $\Delta LAX28$, $\Delta CFAP44$ and
336 $\Delta IC140$ knockouts (Beneke et al., 2019). Other T/TH associated proteins reported to date
337 appear to be rather restricted to the taxa in which they were found: *Chlamydomonas* proteins
338 Cre10.g452250 (Kubo et al., 2018) and FAP244 were identified to be part of the T/TH complex
339 but have no homologue in *Tetrahymena* and other organisms (Fu et al., 2018). Interestingly,
340 CFAP44, CFAP43, Fap57p and FAP244 all share similar domain architectures, with N-terminal
341 WD40 repeats and C-terminal coiled-coil domains (Fu et al., 2018; Urbanska et al., 2018), and
342 FAP43 and FAP244 can functionally compensate for each other (Kubo et al., 2018). MOT7
343 (Kubo et al., 2018) shares some similarities with LAX28, but the sequence identity is too low
344 to conclude homology with confidence. LAX28, TEX47 and MOT7 do not show clear signatures
345 of known domains but may be able to adopt a similar 3D fold, as Phyre² modelling predicted a
346 beta-sheet with 4-5 strands and 2-3 alpha helices for all three proteins, revealing similarities
347 to FAD-binding domains of the BLUF family. BLUF domains were first identified in *Euglena*
348 (Iseki et al., 2002) and bacteria (Masuda and Bauer, 2002) and have been linked to sensing
349 blue-light (Gomelsky and Klug, 2002). Interestingly, the blue-light sensing protein identified in
350 *Euglena gracilis* has been characterised as a photoactivated adenylyl cyclase, containing two
351 BLUF domains, that regulates flagellar motility by controlling intraflagellar levels of cyclic AMP
352 (Iseki et al., 2002). A role in light-sensing for MOT7 seems worth exploring, since
353 *Chlamydomonas* clearly undergoes phototaxis (Bennett and Golestanian, 2015). While
354 *Leishmania* is not known to respond to light, BLUF domains may also function in redox-
355 dependent signal transduction (Gomelsky and Klug, 2002). Thus, whether LAX28 is required
356 only for IDA assembly or whether it contributes more directly to its regulatory role in the
357 axoneme remains to be studied.
358 Given the role of IDA f/I1 as a regulatory hub for the modulation of flagellar waveforms one
359 might perhaps predict that this is precisely where cell-type or species-specific proteins are
360 required. Their role might be to orchestrate the conserved basic mechanisms of flagellar bend
361 generation in biologically appropriate ways to produce the observed diversity of beating
362 patterns. Further work in this area will no doubt benefit from comparative studies between cell
363 types with a range of different behaviours.

364 While the precise phylogenetic relationship, if any, between LAX28, TEX47 and MOT7 remains
365 to be established, TEX47 should be followed up for a possible link to male infertility. Male
366 infertility affects about 7% of men and the genetic cause for this disease has been identified
367 for only 25%. While more than 3000 genes have been associated with spermatogenesis, less
368 than 0.01% of these have been linked to infertility (reviewed in Neto et al. (2016)). Compound-
369 heterozygous mutations and frameshift mutations in CFAP44 and CFAP43 have been
370 connected to male infertility (Tang et al., 2017). While to our knowledge mutations in TEX47
371 have not yet been linked to male infertility, the predominant expression of TEX47 in human
372 testis (Fagerberg et al., 2014) its presence in the human sperm tail proteome (Amaral et al.,
373 2013) and the results presented in this study for LAX28 suggest it may have a role in the
374 regulation of sperm motility.

375 Materials and Methods

376 **Cell culture**

377 Promastigote-forms of *L. mex Cas9 T7* (Beneke et al., 2017) (derived from *L. mexicana* WHO
378 strain MNYC/BZ/62/M379) were grown at 28°C in M199 medium (Life Technologies)
379 supplemented with 2.2 g/L NaHCO₃, 0.005% haemin, 40 mM 4-(2-Hydroxyethyl)piperazine-1-
380 ethanesulfonic acid (HEPES) pH 7.4 and 10% FCS. 50 µg/ml Nourseothricin Sulphate and 32
381 µg/ml Hygromycin B were included before transfection with pPLOT or pT cassettes. For
382 selection and maintenance of genetically modified *L. mex Cas9 T7* lines, the relevant selection
383 drugs were added to supplemented M199 medium as described in (Beneke et al., 2017).

384 **Salt extracted axonemes**

385 A widely utilized isolation protocol for *T. brucei* flagellar skeletons (Robinson and Gull, 1991)
386 was adapted for use in *L. mexicana*. Cells were first non-ionic detergent extracted in 1% octyl
387 glucoside to yield whole cell cytoskeletons and then salt extracted on ice using 1 M NaCl to
388 depolymerize subpellicular microtubules. To avoid proteolytic degradation, all procedures were
389 performed on ice or at 4°C during centrifugations. 1·10⁹ *L. mexicana* Δ CFAP44 mutants and
390 *L. mex Cas9 T7* parental cells were collected at 800g for 15 min and resuspended in 2.5 ml
391 phosphate buffered saline (PBS), containing a protease inhibitor cocktail [final concentration,
392 1x Halt Protease Inhibitor Cocktail (Thermo Fisher, containing 1 mM AEBSF•HCl, 0.8 µM
393 Aprotinin, 50 µM Bestatin, 15 µM E64, 20 µM Leupeptin, 10 µM Pepstatin A) supplemented
394 with 500 µM Phenylmethylsulfonyl fluoride (PMSF) and 5 mM EDTA]. 50 µl of cell suspension
395 was isolated and supplemented with 5 µl 20% SDS solution (Fig. 1 (i)). The remaining cell
396 suspension was centrifuged again and resuspended in 2.5 ml 10 mM PIPES [10 mM NaCl, 10

397 mM piperazine-N,N'-bis(2-ethanesulfonic acid, 1 mM CaCl₂, 1 mM MgCl₂, 0.32 M sucrose,
398 adjusted to pH 7.2], containing protease inhibitor cocktail and octylglucoside (1% (w/v) final
399 conc.). Cells were left on ice for 5 min and centrifuged for 10 min at 2000g. 50 μ l of supernatant
400 was isolated and supplemented with 5 μ l 20% SDS solution (Fig. 1 (s/n 1)). 1.25 ml cold 10
401 mM PIPES buffer, containing protease inhibitor cocktail, octylglucoside (1% (w/v) final conc.)
402 and 1 M NaCl was added to the pellet and vortexed for 60 sec. After incubation for 30 min on
403 ice, the solution was centrifuged at 12,200g for 20 min. 50 μ l of supernatant was isolated and
404 supplemented with 5 μ l 20% SDS solution (Fig. 1 (s/n 2)). The pellet was resuspended in 1 ml
405 cold 10 mM PIPES buffer, containing a protease inhibitor cocktail and 0.32 M sucrose. The
406 sample was loaded on top of a sucrose-bed containing one layer of 10 mM PIPES with 33%
407 w/v sucrose [10 mM NaCl, 10 mM piperazine-N,N'-bis(2-ethanesulfonic acid, 1 mM CaCl₂, 1
408 mM MgCl₂, adjusted to pH 7.2 with 0.96M sucrose] and centrifuged at 800g for 15 min. While
409 the top layer was centrifuged again at 12,200g for 20 min the remaining sucrose-bed was
410 discarded. After centrifugation the supernatant was discarded and the pellet resuspended in
411 100 μ l PBS containing protease inhibitor cocktail and 2% SDS (Fig. 1 (iv)). Proteins were
412 quantified using BCA assay. For Coomassie gels samples were mixed with 4x Laemmli buffer
413 (1x final concentration) and heated at 60°C for 10 minutes. For proteomic analysis ~4 μ g of
414 protein (~50 μ l) of the final fraction (iv) were analysed by liquid tandem mass spectrometry.

415 **Proteomics**

416 Protein samples were prepared using filter-aided sample preparation (FASP) digestion
417 (Wisniewski et al., 2009) (Vicacon500, Sartorius, VN01H02 10kDA). The FASP filter were
418 washed with 200 μ l 0.1 % trifluoroacetic acid (TFA) in 50 % acetonitrile (ACN) (14,300g, 10min)
419 and ~4 μ g of protein was loaded onto the filter. Samples were denatured with 200 μ l 8 M urea
420 in 100 mM TEAB (triethylammonium bicarbonate) for 30 min at RT, reduced with 10 mM TCEP
421 (Tris(2-carboxyethyl)phosphine hydrochloride) for 30 min at RT and alkylated with 50 mM CAA
422 (chloroacetamide) for 30min at RT in the dark. FASP columns were centrifuged (14,300g,
423 10min) and washed first multiple times with 200 μ l 6 M urea in 50 mM TEAB until no more
424 bubbles form and then washed twice with 200 μ l 1 M urea in 50 mM TEAB. FASP columns
425 were centrifuged again. Samples were digested with 200 ng trypsin in 300 μ l 50 mM TEAB
426 overnight at 37°C. Columns were centrifuged and flow through was kept. Columns were
427 washed with 200 μ l 0.1 % TFA and with 200 μ l 50 % ACN in 0.1 % TFA. The flow through was
428 collected from both washes. Samples were dried in a SpeedVac, resuspend in 50 μ l 5% formic
429 acid and 5% DMSO and then trapped on a C18 PepMap100 pre-column (300 μ m i.d. x 5mm,
430 100 Å, Thermo Fisher Scientific) using solvent A (0.1% Formic Acid in water) at a pressure of
431 500 bar and separated on an Ultimate 3000 UHPLC system (Thermo Fischer Scientific)

432 coupled to a QExactive mass spectrometer (Thermo Fischer Scientific). The peptides were
433 separated on an in- house packed analytical column (360 μ m x 75 μ m i.d. packed with ReproSil-
434 Pur 120 C18-AQ, 1.9 μ m, 120 Å, Dr. Maisch GmbH) and then electro sprayed directly into an
435 QExactive mass spectrometer (Thermo Fischer Scientific) through an EASY-Spray nano-
436 electrospray ion source (Thermo Fischer Scientific) using a linear gradient (length: 60 minutes,
437 15% to 38% solvent B (0.1% formic acid in acetonitrile), flow rate: 200 nL/min). The raw data
438 was acquired on the mass spectrometer in a data-dependent mode (DDA). Full scan MS
439 spectra were acquired in the Orbitrap (scan range 350-2000 m/z, resolution 70000, AGC target
440 3e6, maximum injection time 50 ms). After the MS scans, the 20 most intense peaks were
441 selected for HCD fragmentation at 30% of normalised collision energy. HCD spectra were also
442 acquired in the Orbitrap (resolution 17500, AGC target 5e4, maximum injection time 120 ms)
443 with first fixed mass at 180 m/z.

444 ***Proteomic analysis***

445 MS-data were analysed as previously described (Beneke et al., 2019). Briefly, MS-data was
446 converted from .RAW to .MGF file using ProteoWizard and uploaded to the Central Proteomics
447 Facilities Pipeline (CPFP (Trudgian et al.)). Protein lists were generated by using CPFP meta-
448 searches against the predicted *L. mexicana* proteome (gene models based on (Fiebig et al.,
449 2015)), followed by label-free SINQ quantification (S1 Table). Proteins that were exclusively
450 identified in Δ CFAP44 mutants were generally of low abundance (2 or 3 detected peptides;
451 S1 and S2 Table), with the exception of beta tubulin (LmxM.08.1230) for which 48 detected
452 peptides were recorded in Δ CFAP44 mutants. However, only 1 out of those 48 peptides was
453 unique (spectral count 1; S1 and S2 Table). This suggests that proteins exclusively identified
454 in the Δ CFAP44 mutants may represent false positives and they were not further analysed in
455 this study. The mass spectrometry proteomics data have been deposited to the
456 ProteomeXchange Consortium via the PRIDE (Vizcaino et al., 2016) partner repository with
457 the dataset identifier PXD014077.

458 ***Solubilisation experiments***

459 Solubilisation of CFAP44 was tested using a reporter cell line, expressing *in situ* tagged
460 CFAP44::eYFP fusion protein. 1·10⁷ cells were collected at 800g for 5 min and washed once
461 in PBS. Cells were pelleted again and resuspended in 100 μ l of 10 mM PIPES buffer (as
462 above), containing a protease inhibitor cocktail (as above) and octylglucoside (1% (w/v) final
463 conc.), as well as either 2 M LiCl, 2 M CaCl₂, 3.2 M KCl or 4 M NaCl. Lower concentrations
464 were also tested including: 0.01 - 0.75 M NaCl, 1 M LiCl or 0.25 - 1.5 M CaCl₂. Cell suspensions
465 were vortexed for 60 sec and incubated for 30 min on ice. The solution was centrifuged at

466 17,000g for 2 min and the pellet washed once in PBS. Cells were pelleted again, resuspended
467 in 10 mM PIPES buffer and pipetted onto a glass slide for viewing under a microscope.

468 ***CRISPR-Cas9 gene knockouts and tags***

469 Gene deletion and tagging was essentially done as described in Beneke et al. (2017). The
470 online primer design tool www.LeishGEedit.net was used to design primers for amplification of
471 the 5' and 3' sgRNA templates and for amplification of donor DNA from pT and pPLOT
472 plasmids. Following transfection with pPLOT-cassettes, limiting dilution was used to generate
473 clonal tagged cell lines (Beneke and Gluenz, 2019). These were then subjected to gene
474 deletions using two different pT cassettes and selected as populations.

475 ***Addback construction***

476 The ORF of LAX28 was amplified using primers F: 5'-TTAGCAACTAGTATGGAACAG
477 AAGCTGATCAGCGAAGAAGACCTGGAGCAAAAGCTCATTAGCGAGGAGGACCTCATGC
478 CTCCGCGCAAGTCAGA-3' and R: 5'-TTAGCACCATGGCGCGGGTTCATTTATCGT-3'
479 and cloned into pTadd (Beneke et al., 2017) using *Spe* I and *Nco* I cloning sites. 5 µg of circular
480 plasmid was transfected as described previously (Beneke et al., 2017) to allow episomal
481 expression of 2xMyc::LAX28. Drug resistant cells were selected using 25 µg/ml phleomycin.

482 ***Diagnostic PCR for knockout verification***

483 Extracted genomic DNA of drug-selected populations was subjected to diagnostic PCRs to
484 test for the presence of the target gene ORF in putative KO lines and the parental cell line as
485 described in (Beneke and Gluenz, 2019; Beneke et al., 2017) and using primer sequences
486 reported in Beneke et al. (2019). To show presence of genomic DNA in the test samples, a
487 second PCR reaction was performed using primers F: 5'-CGCAGAAGGAGAAGAGCGAG-3'
488 and R: 5'-GTTGTACACGGACAGCTCCA-3' to amplify the ORF of PFR2.

489 ***Light and electron microscopy***

490 *L. mexicana* expressing fluorescent fusion proteins were prepared as described in (Wheeler
491 et al., 2015) and immediately imaged live, with a Zeiss Axioimager.Z2 microscope with a 63×
492 numerical aperture (NA) 1.40 oil immersion objective and a Hamamatsu ORCA-Flash4.0
493 camera at the ambient temperature of 25–28°C. Micrographs were taken with a 3,000 ms
494 exposure time for the green fluorescent channel.

495 For transmission electron microscopy, cells were prepared with a chemical fixation protocol
496 similar to (Hoog et al.). Briefly, cells were fixed with 2.5% glutaraldehyde and 4%
497 paraformaldehyde in M199 culture medium for 2 hours at room temperature. Fixed cells were
498 washed six times for 10 min in 0.1 M PIPES buffer at pH 7.2. Wash four of six was supplement

499 with 50 mM glycine. Cells were embedded in 4% low melting point agarose and incubated in
500 1% osmium tetroxide and 1.5% potassium ferrocyanide in 0.1 M PIPES buffer at 4 °C for 1
501 hour in darkness. Samples were then washed five times with ddH₂O for 5 min each time and
502 stained with 0.5% uranyl acetate in darkness at 4°C overnight. Samples were dehydrated,
503 embedded in epoxy resin, sectioned and on-section stained as described previously (Hoog et
504 al., 2010). Electron micrographs were captured on a Tecnai 12 TEM (FEI) with an Ultrascan
505 1000 CCD camera (Gatan).

506 ***Image processing***

507 All micrographs were processed using Fiji (Schindelin et al., 2012). To allow comparison
508 between the fluorescent signal in tagged cell lines, the same settings were used to display the
509 green fluorescence channel. Channel settings were set for CFAP44::mNG tagged cell lines
510 7,000 to 20,000, for IC140::eYFP tagged cell lines 6,000 to 11,000 (except in Fig. 2 A, 17,000
511 to 22,000) and for LAX28::mNG tagged cell lines 5,000 to 12,000. Settings were identical for
512 the tagged cell line and additional knockouts and addbacks on top of the tagged cell lines.
513 For average rotation of axonemes in TEM images, nine sections from each cell line were
514 average rotated as previously described (Gadelha et al., 2006; Wheeler et al., 2015). The
515 resulting images were aligned using the "Align image by line ROI" function in Fiji (Schindelin
516 et al., 2012). A stack was generated from these aligned images and signals were averaged by
517 using the "Z projection" function.

518 ***Motility analysis***

519 Motility analysis was performed as previously described in Beneke et al. (2019) using the
520 method from Wheeler (2017). Directionality ([Velocity/Speed]) and mean speed was measured
521 for each mutant from three samples taken from cell cultures at a density of approximately 6·10⁶
522 cells/ml. 5 µl of cell culture was placed on a glass slide in a 250-µm deep chamber covered
523 with a # 1.5 cover slip and imaged using darkfield illumination with a 10x NA 0.3 objective and
524 a Hamamatsu ORCA-Flash4.0 camera on a Zeiss Axioimager.Z2 microscope at the ambient
525 temperature of 25–28°C.

526 ***Illumina sequencing***

527 *Leishmania* genomic DNA was prepared using the Illumina TruSeq Nano DNA Library kit
528 according to the manufacturer's instructions. The final sequencing pool was quantified by
529 qPCR using the NEB Library Quant Kit and library size was determined using the Agilent High
530 Sensitivity DNA Kit on a 2100 Bioanalyzer instrument. The final library was multiplexed with
531 other sequencing samples and the Illumina sequencer was loaded with 1.8 pM. Sequencing

532 was performed using a NextSeq 500/550 High Output Kit v2.5 (2x75 cycles, 6 and 8 cycles
533 index read).

534 NextSeq raw files were de-multiplexed using bcl2fastq (Illumina) with 0 nt mismatch for indexes
535 and assembled using the Burrows-Wheeler Aligner (Li and Durbin, 2009). Samtools (Li et al.,
536 2009) was used for sorting and indexing bam files. Bam files were viewed using the IGV
537 genome browser (Robinson et al., 2011).

538 **Acknowledgements**

539 We like to thank Svenja Hester and Philip Charles (Central Proteomics Facility) for help with
540 protein mass spectrometry, Errin Johnson and Raman Dhaliwal (Dunn School Bioimaging
541 Facility) for assistance with electron microscopy and Keith Gull (University of Oxford) for
542 sharing equipment funded by the Wellcome Trust.

543 **Funding statement**

544 EG was supported by a Royal Society University Research Fellowship (UF100435 and
545 UF160661).

546 This work was supported by PhD studentships to TB (MRC reference 15/16_MSD_836338)
547 and SF (Royal Society reference RGF\EA\180189) and Wellcome Trust grant [104627/Z/14/Z]
548 to Keith Gull.

549 The funders had no role in study design, data collection and analysis, decision to publish, or
550 preparation of the manuscript.

551 **Legends**

552 **Table 1. Quantitative proteomics of Δ CFAP44 mutant derived flagellar axonemes**

553 Table shows the spectral index of SINQ quantified detected proteins in this study and in
554 Beneke et al. (2019). Unique peptides are shown only for data from salt extracted axonemes.

555 **Figure 1. Protein composition of salt-extracted *L. mexicana* flagellar axonemes**

556 **(A)** Overview of the flagellar isolation protocol. Percentage sucrose concentration (w/v) and
557 isolation of supernatants (s/n) are indicated. **(B)** Micrographs show merged phase and Hoechst
558 DNA stain (red) for each isolation stage (i-iv) depicted in (A). **(i)** *L. mexicana* cells before
559 detergent extraction, **(ii)** cells after detergent extraction, **(iii)** axonemes after salt extraction
560 and **(iv)** isolated salt extracted axonemes after differential centrifugation. Scale bars represent
561 10 μ m. **(C)** Protein gel stained with Coomassie Blue. Numbers on the left indicate molecular
562 weight in kDa. Lane **(i)** and **(s/n 1)** were loaded with protein from $4 \cdot 10^6$ cells. Protein amounts
563 for lane **(i)** and **(iv)** are as follows: *Cas9 T7 parental* **(i)** 2.02 μ g and **(iv)** 0.74 μ g, Δ CFAP44 **(i)**
564 2.56 μ g and **(iv)** 0.82 μ g. 4 μ g of each sample in lane **(iv)** were submitted for mass
565 spectrometry analysis. **(D)** Venn diagram shows total number of all detected proteins (≥ 2
566 peptides detected, p-value > 0.95). **(E)** Proteins detected in salt extracted flagella mapped onto
567 the SINQ enrichment plot of proteins detected in N-octyl-glucoside soluble and insoluble
568 flagellar and cell body fractions of *L. mexicana* (Beneke et al., 2019). Each grey dot indicates
569 a protein detected in both studies, the number of proteins is also indicated.

570 **Figure 2. IC140 and CFAP44 are required for flagellar localization LAX28**

571 Fluorescence micrographs showing the following *L. mexicana* cell lines: **(A)** *L. mexicana*
572 *IC140::eYFP* and *L. mexicana IC140::eYFP* Δ CFAP44; **(B)** *L. mexicana LAX28::mNG* and
573 seven different gene deletion lines, as indicated, in the *L. mexicana LAX28::mNG* background;
574 **(C)** *L. mexicana IC140::eYFP*, *L. mexicana IC140::eYFP* Δ LAX28::mNG, and the addback cell
575 line *L. mexicana IC140::eYFP* Δ LAX28::mNG *pTadd-LmexTEX47*; **(D)** *L. mexicana*
576 *CFAP44::mNG*, *L. mexicana CFAP44::mNG* Δ LAX28::mNG, and the addback cell line *L.*
577 *mexicana CFAP44::mNG* Δ LAX28::mNG *pTadd-LmexTEX47*. Left column: Merged phase and
578 fluorescence channels; red, Hoechst-stained DNA, green, mNG or eYFP signal, respectively.
579 Right column: grayscale rendition of green fluorescence channel. Scale bar, 5 μ m.

580 **Figure 3. Loss of LAX28 affects IDA structure**

581 Rotational averages of transmission electron micrographs. 9 rotational averages are stack
582 averaged for each **(A)** *L. mex Cas9 T7 parental* cells and **(B)** Δ LAX28 mutants. Arrows point
583 to the position of the inner dynein arm.

584 **Figure 4. LAX28 is required for flagellar localization of IC140 and CFAP44**

585 Fluorescence micrographs showing *L. mexicana* cell lines expressing IC140::eYFP or
586 CFAP44::mNG reporter proteins, cell lines expressing these reporter proteins and carrying a
587 Δ LAX28 deletion, and deletion cell lines expressing an addbacks (AB) copy of LAX28, as
588 indicated on the left. Three different cell cycle stages are shown for each cell line, staged
589 according to the number of kinetoplasts (K), nuclei (N) and Flagella (F). Left column: Merged
590 phase and fluorescence channels; red, Hoechst-stained DNA, green, mNG or eYFP signal,
591 respectively. Right column: grayscale rendition of green fluorescence channel. Scale bar, 5
592 μ m.

593 **Figure 5. LAX28 is essential for normal flagellar motility**

594 **(A)** Histogram showing the proportion of cells with curled flagella in Δ IC140, Δ CFAP43, Δ
595 CFAP44 and Δ LAX28 mutants, the parental *L. mex Cas9 T7* cell line and Δ LAX28 expressing
596 a LAX28 addback copy (AB). Numbers above the bars indicate percentage of cells with curly
597 flagella. **(B)** Plot showing mean swimming speed and directionality (the ratio of velocity to
598 speed) for the indicated cell lines. Each point represents the average of three measurements.
599 Error bars represent the standard deviation of the three replicates. **(C)** Swimming paths used
600 for extracting mean swimming speed and directionality shown in (B); 200 paths are shown for
601 each cell line.

602 **Figure 6. Similarity between LAX28 and human Testis-expressed protein 47**

603 **(A)** Clustal omega protein sequence alignment (Sievers et al., 2011) of *L. mexicana* LAX28
604 (LmxM.24.1310) and human TEX47 (UniProt Q8TBZ9). **(B)** Results of remote homology
605 detection and 3D fold prediction by Phyre² (Kelley et al., 2015). Searches with LAX28, TEX47
606 or MOT7 (CHLRE_01g038750v5) all identified good matches with BLUF domain proteins,
607 returning an overlapping set of highest-ranking hits, with high confidence scores of >96%.

608 **Figure 7. LAX28 is required for assembly of the IDA f/I1 complex within the**
609 **flagellum**

610 Cartoon showing schematic cross-sectional view of the outer microtubule doublets (A and B
611 microtubule), radial spoke (RSP), outer dynein arms (ODA), inner dynein arms (IDA), T/TH
612 and IDA f/I1 complex, as well as the proposed position of LAX28. **(A)** In a wild type axoneme
613 the presence of LAX28 (red) facilitates assembly of fully functional T/TH (yellow) and IDA f/I1
614 complexes (violet and blue). **(B)** In Δ LAX28 mutants the T/TH and IDA f/I1 complex are not
615 assembled within the *Leishmania* axoneme. Both heavy chains (DHC 1 α , DHC 1 β) of the
616 IDA f/I1 complex and I1-ICLC are likely to be absent. It remains unknown which, if any, of the

617 other six IDA subspecies (dyneins a, b, c, d, e and g) are affected (green, dashed line) by the
618 loss of LAX28.

619

620 References

621 Adams, G.M., B. Huang, G. Piperno, and D.J. Luck. 1981. Central-pair microtubular complex
622 of *Chlamydomonas* flagella: polypeptide composition as revealed by analysis of
623 mutants. *The Journal of Cell Biology*. 91:69-76.

624 Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman.
625 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search
626 programs. *Nucleic Acids Research*. 25:3389-3402.

627 Amaral, A., J. Castillo, J.M. Estanyol, J.L. Ballesca, J. Ramalho-Santos, and R. Oliva. 2013.
628 Human sperm tail proteome suggests new endogenous metabolic pathways. *Mol Cell
629 Proteomics*. 12:330-342.

630 Barber, C.F., T. Heuser, B.I. Carbajal-Gonzalez, V.V. Botchkarev, Jr., and D. Nicastro. 2012.
631 Three-dimensional structure of the radial spokes reveals heterogeneity and
632 interactions with dyneins in *Chlamydomonas* flagella. *Molecular Biology of the Cell*.
633 23:111-120.

634 Baron, D.M., K.S. Ralston, Z.P. Kabututu, and K.L. Hill. 2007. Functional genomics in
635 *Trypanosoma brucei* identifies evolutionarily conserved components of motile flagella.
636 *Journal of Cell Science*. 120:478-491.

637 Beneke, T., F. Demay, E. Hookway, N. Ashman, H. Jeffery, J. Smith, J. Valli, T. Becvar, J.
638 Myskova, T. Lestinova, S. Shafiq, J. Sadlova, P. Volf, R.J. Wheeler, and E. Gluenz.
639 2019. Genetic dissection of a *Leishmania* flagellar proteome demonstrates requirement
640 for directional motility in sand fly infections. *PLoS Pathogens*. 15:e1007828.

641 Beneke, T., and E. Gluenz. 2019. LeishGEedit: A Method for Rapid Gene Knockout and Tagging
642 Using CRISPR-Cas9. *Methods Mol Biol*. 1971:189-210.

643 Beneke, T., R. Madden, L. Makin, J. Valli, J. Sunter, and E. Gluenz. 2017. A CRISPR Cas9
644 high-throughput genome editing toolkit for kinetoplastids. *Royal Society Open Science*.
645 4:170095.

646 Bennett, R.R., and R. Golestanian. 2015. A steering mechanism for phototaxis in
647 *Chlamydomonas*. *J R Soc Interface*. 12:20141164.

648 Bui, K.H., T. Yagi, R. Yamamoto, R. Kamiya, and T. Ishikawa. 2012. Polarity and asymmetry
649 in the arrangement of dynein and related structures in the *Chlamydomonas* axoneme.
650 *The Journal of Cell Biology*. 198:913-925.

651 Coutton, C., A.S. Vargas, A. Amiri-Yekta, Z.E. Kherraf, S.F. Ben Mustapha, P. Le Tanno, C.
652 Wambergue-Legrand, T. Karaouzene, G. Martinez, S. Crouzy, A. Daneshpour, S.H.
653 Hosseini, V. Mitchell, L. Halouani, O. Marrakchi, M. Makni, H. Latrous, M. Kharouf, J.F.
654 Deleuze, A. Boland, S. Hennebicq, V. Satre, P.S. Jouk, N. Thierry-Mieg, B. Conne, D.
655 Dacheux, N. Landrein, A. Schmitt, L. Stouvenel, P. Lores, E. El Khouri, S.P. Bottari, J.
656 Faure, J.P. Wolf, K. Pernet-Gallay, J. Escoffier, H. Gourabi, D.R. Robinson, S. Nef, E.
657 Dulioust, R. Zouari, M. Bonhivers, A. Toure, C. Arnoult, and P.F. Ray. 2018. Mutations
658 in CFAP43 and CFAP44 cause male infertility and flagellum defects in *Trypanosoma*
659 and human. *Nat Commun*. 9:686.

660 Curry, A.M., B.D. Williams, and J.L. Rosenbaum. 1992. Sequence analysis reveals homology
661 between two proteins of the flagellar radial spoke. *Molecular and Cellular Biology*.
662 12:3967-3977.

663 Dawe, H.R., M.K. Shaw, H. Farr, and K. Gull. 2007. The hydrocephalus inducing gene product,
664 Hydin, positions axonemal central pair microtubules. *BMC Biology*. 5:33.

665 DiBella, L.M., M. Sakato, R.S. Patel-King, G.J. Pazour, and S.M. King. 2004a. The LC7 light
666 chains of *Chlamydomonas* flagellar dyneins interact with components required for both
667 motor assembly and regulation. *Molecular Biology of the Cell*. 15:4633-4646.

668 DiBella, L.M., E.F. Smith, R.S. Patel-King, K. Wakabayashi, and S.M. King. 2004b. A novel
669 Tctex2-related light chain is required for stability of inner dynein arm I1 and motor
670 function in the *Chlamydomonas* flagellum. *The Journal of Biological Chemistry*.
671 279:21666-21676.

672 Diener, D.R., L.H. Ang, and J.L. Rosenbaum. 1993. Assembly of flagellar radial spoke proteins
673 in *Chlamydomonas*: identification of the axoneme binding domain of radial spoke
674 protein 3. *The Journal of Cell Biology*. 123:183-190.

675 Dutcher, S.K., B. Huang, and D.J. Luck. 1984. Genetic dissection of the central pair
676 microtubules of the flagella of *Chlamydomonas reinhardtii*. *The Journal of Cell Biology*.
677 98:229-236.

678 Dymek, E.E., T. Heuser, D. Nicastro, and E.F. Smith. 2011. The CSC is required for complete
679 radial spoke assembly and wild-type ciliary motility. *Molecular Biology of the Cell*.
680 22:2520-2531.

681 Fagerberg, L., B.M. Hallstrom, P. Oksvold, C. Kampf, D. Djureinovic, J. Odeberg, M. Habuka,
682 S. Tahmasebpoor, A. Danielsson, K. Edlund, A. Asplund, E. Sjostedt, E. Lundberg,
683 C.A. Szigyarto, M. Skogs, J.O. Takanen, H. Berling, H. Tegel, J. Mulder, P. Nilsson,
684 J.M. Schwenk, C. Lindskog, F. Danielsson, A. Mardinoglu, A. Sivertsson, K. von
685 Feilitzen, M. Forsberg, M. Zwahlen, I. Olsson, S. Navani, M. Huss, J. Nielsen, F.
686 Ponten, and M. Uhlen. 2014. Analysis of the human tissue-specific expression by
687 genome-wide integration of transcriptomics and antibody-based proteomics. *Mol Cell
688 Proteomics*. 13:397-406.

689 Fiebig, M., S. Kelly, and E. Gluenz. 2015. Comparative lifecycle transcriptomics revises
690 *Leishmania mexicana* genome annotation and links a chromosome duplication with
691 parasitism of vertebrates. *PLoS Pathogens*. 11:e1005186.

692 Fu, G., Q. Wang, N. Phan, P. Urbanska, E. Joachimiak, J. Lin, D. Wloga, and D. Nicastro.
693 2018. The I1 dynein-associated tether and tether head complex is a conserved
694 regulator of ciliary motility. *Molecular Biology of the Cell*. 29:1048-1059.

695 Gadelha, C., B. Wickstead, P.G. McKean, and K. Gull. 2006. Basal body and flagellum mutants
696 reveal a rotational constraint of the central pair microtubules in the axonemes of
697 trypanosomes. *Journal of Cell Science*. 119:2405-2413.

698 Gomelsky, M., and G. Klug. 2002. BLUF: a novel FAD-binding domain involved in sensory
699 transduction in microorganisms. *Trends Biochem Sci*. 27:497-500.

700 Harrison, A., P. Olds-Clarke, and S.M. King. 1998. Identification of the t complex-encoded
701 cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of
702 flagellar dyneins in meiotic drive. *The Journal of Cell Biology*. 140:1137-1147.

703 Hendrickson, T.W., J.L. Goss, C.A. Seaton, and H.W. Rohrs. 2013. The IC138 and IC140
704 intermediate chains of the I1 axonemal dynein complex bind directly to tubulin.
705 *Biochimica et Biophysica Acta*. 1833:3265-3271.

706 Hendrickson, T.W., C.A. Perrone, P. Griffin, K. Wuichet, J. Mueller, P. Yang, M.E. Porter, and
707 W.S. Sale. 2004. IC138 is a WD-repeat dynein intermediate chain required for light
708 chain assembly and regulation of flagellar bending. *Molecular Biology of the Cell*.
709 15:5431-5442.

710 Heuser, T., C.F. Barber, J. Lin, J. Krell, M. Rebesco, M.E. Porter, and D. Nicastro. 2012.
711 Cryoelectron tomography reveals doublet-specific structures and unique interactions in
712 the I1 dynein. *Proceedings of the National Academy of Sciences of the United States
713 of America*. 109:E2067-2076.

714 Heuser, T., M. Raytchev, J. Krell, M.E. Porter, and D. Nicastro. 2009. The dynein regulatory
715 complex is the nexin link and a major regulatory node in cilia and flagella. *The Journal
716 of Cell Biology*. 187:921-933.

717 Höög, J.L., E. Gluenz, S. Vaughan, and K. Gull. 2010. Ultrastructural investigation methods
718 for *Trypanosoma brucei*. *Methods in Cell Biology*. 96:175-196.

719 Huang, B., Z. Ramanis, and D.J. Luck. 1982. Suppressor mutations in *Chlamydomonas* reveal
720 a regulatory mechanism for flagellar function. *Cell*. 28:115-124.

721 Ikeda, K., R. Yamamoto, M. Wirschell, T. Yagi, R. Bower, M.E. Porter, W.S. Sale, and R.
722 Kamiya. 2009. A novel ankyrin-repeat protein interacts with the regulatory proteins of
723 inner arm dynein f (I1) of *Chlamydomonas reinhardtii*. *Cell motility and the*
724 *Cytoskeleton*. 66:448-456.

725 Iseki, M., S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi,
726 T. Hori, and M. Watanabe. 2002. A blue-light-activated adenylyl cyclase mediates
727 photoavoidance in *Euglena gracilis*. *Nature*. 415:1047-1051.

728 Kato-Minoura, T., M. Hirono, and R. Kamiya. 1997. *Chlamydomonas* inner-arm dynein mutant,
729 ida5, has a mutation in an actin-encoding gene. *The Journal of Cell Biology*. 137:649-
730 656.

731 Kelley, L.A., S. Mezulis, C.M. Yates, M.N. Wass, and M.J. Sternberg. 2015. The Phyre² web
732 portal for protein modeling, prediction and analysis. *Nature Protocols*. 10:845-858.

733 King, S.M. 2018. Turning dyneins off bends cilia. *Cytoskeleton (Hoboken)*. 75:372-381.

734 Krausz, C., A.R. Escamilla, and C. Chianese. 2015. Genetics of male infertility: from research
735 to clinic. *Reproduction*. 150:R159-174.

736 Kubo, T., Y. Hou, D.A. Cochran, G.B. Witman, and T. Oda. 2018. A microtubule-dynein
737 tethering complex regulates the axonemal inner dynein f (I1). *Molecular Biology of the*
738 *Cell*. 29:1060-1074.

739 Lechtreck, K.F., and G.B. Witman. 2007. *Chlamydomonas reinhardtii* hydin is a central pair
740 protein required for flagellar motility. *The Journal of Cell Biology*. 176:473-482.

741 Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler
742 transform. *Bioinformatics*. 25:1754-1760.

743 Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R.
744 Durbin, and S. Genome Project Data Processing. 2009. The Sequence Alignment/Map
745 format and SAMtools. *Bioinformatics*. 25:2078-2079.

746 Lin, J., and D. Nicastro. 2018. Asymmetric distribution and spatial switching of dynein activity
747 generates ciliary motility. *Science*. 360.

748 Lindemann, C.B., and K.A. Lesich. 2010. Flagellar and ciliary beating: the proven and the
749 possible. *Journal of Cell Science*. 123:519-528.

750 Masuda, S., and C.E. Bauer. 2002. AppA is a blue light photoreceptor that antirepresses
751 photosynthesis gene expression in *Rhodobacter sphaeroides*. *Cell*. 110:613-623.

752 Mitchison, H.M., and E.M. Valente. 2017. Motile and non-motile cilia in human pathology: from
753 function to phenotypes. *J Pathol*. 241:294-309.

754 Myster, S.H., J.A. Knott, E. O'Toole, and M.E. Porter. 1997. The *Chlamydomonas* Dhc1 gene
755 encodes a dynein heavy chain subunit required for assembly of the I1 inner arm
756 complex. *Molecular Biology of the Cell*. 8:607-620.

757 Myster, S.H., J.A. Knott, K.M. Wysocki, E. O'Toole, and M.E. Porter. 1999. Domains in the
758 1alpha dynein heavy chain required for inner arm assembly and flagellar motility in
759 *Chlamydomonas*. *The Journal of Cell Biology*. 146:801-818.

760 Neto, F.T., P.V. Bach, B.B. Najari, P.S. Li, and M. Goldstein. 2016. Genetics of Male Infertility.
761 *Curr Urol Rep*. 17:70.

762 Oda, T., H. Yanagisawa, and M. Kikkawa. 2015. Detailed structural and biochemical
763 characterization of the nexin-dynein regulatory complex. *Molecular Biology of the Cell*.
764 26:294-304.

765 Okutman, O., M.B. Rhouma, M. Benkhaliifa, J. Muller, and S. Viville. 2018. Genetic evaluation
766 of patients with non-syndromic male infertility. *J Assist Reprod Genet*. 35:1939-1951.

767 Perrone, C.A., P. Yang, E. O'Toole, W.S. Sale, and M.E. Porter. 1998. The *Chlamydomonas*
768 IDA7 locus encodes a 140-kDa dynein intermediate chain required to assemble the I1
769 inner arm complex. *Molecular Biology of the Cell*. 9:3351-3365.

770 Piperno, G. 1990. Functional diversity of dyneins. *Cell motility and the Cytoskeleton*. 17:147-
771 149.

772 Porter, M.E., J. Power, and S.K. Dutcher. 1992. Extragenic suppressors of paralyzed flagellar
773 mutations in *Chlamydomonas reinhardtii* identify loci that alter the inner dynein arms.
774 *The Journal of Cell Biology*. 118:1163-1176.

775 Ralston, K.S., and K.L. Hill. 2006. Trypanin, a component of the flagellar Dynein regulatory
776 complex, is essential in bloodstream form African trypanosomes. *PLoS Pathogens*.
777 2:e101.

778 Reiter, J.F., and M.R. Leroux. 2017. Genes and molecular pathways underpinning ciliopathies.
779 *Nature Reviews Molecular Cell Biology*. 18:533-547.

780 Robinson, D.R., and K. Gull. 1991. Basal body movements as a mechanism for mitochondrial
781 genome segregation in the trypanosome cell cycle. *Nature*. 352:731-733.

782 Robinson, J.T., H. Thorvaldsdottir, W. Winckler, M. Guttman, E.S. Lander, G. Getz, and J.P.
783 Mesirov. 2011. Integrative genomics viewer. *Nature Biotechnology*. 29:24-26.

784 Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch,
785 C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri,
786 P. Tomancak, and A. Cardona. 2012. Fiji: an open-source platform for biological-image
787 analysis. *Nature Methods*. 9:676-682.

788 Sievers, F., A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M.
789 Remmert, J. Soding, J.D. Thompson, and D.G. Higgins. 2011. Fast, scalable
790 generation of high-quality protein multiple sequence alignments using Clustal Omega.
791 *Mol Syst Biol*. 7:539.

792 Smith, E.F., and W.S. Sale. 1991. Microtubule binding and translocation by inner dynein arm
793 subtype I1. *Cell motility and the Cytoskeleton*. 18:258-268.

794 Tang, S., X. Wang, W. Li, X. Yang, Z. Li, W. Liu, C. Li, Z. Zhu, L. Wang, J. Wang, L. Zhang, X.
795 Sun, E. Zhi, H. Wang, H. Li, L. Jin, Y. Luo, J. Wang, S. Yang, and F. Zhang. 2017.
796 Biallelic Mutations in CFAP43 and CFAP44 Cause Male Infertility with Multiple
797 Morphological Abnormalities of the Sperm Flagella. *American Journal of Human
798 Genetics*. 100:854-864.

799 Toba, S., L.A. Fox, H. Sakakibara, M.E. Porter, K. Oiwa, and W.S. Sale. 2011. Distinct roles
800 of 1alpha and 1beta heavy chains of the inner arm dynein I1 of *Chlamydomonas*
801 flagella. *Molecular Biology of the Cell*. 22:342-353.

802 Trudgian, D.C., G. Ridlova, R. Fischer, M.M. Mackeen, N. Ternette, O. Acuto, B.M. Kessler,
803 and B. Thomas. 2011. Comparative evaluation of label-free SINQ normalized spectral
804 index quantitation in the central proteomics facilities pipeline. *Proteomics*. 11:2790-
805 2797.

806 Trudgian, D.C., B. Thomas, S.J. McGowan, B.M. Kessler, M. Salek, and O. Acuto. 2010.
807 CPFP: a central proteomics facilities pipeline. *Bioinformatics*. 26:1131-1132.

808 Urbanska, P., E. Joachimiak, R. Bazan, G. Fu, M. Poprzeczko, H. Fabczak, D. Nicastro, and
809 D. Wloga. 2018. Ciliary proteins Fap43 and Fap44 interact with each other and are
810 essential for proper cilia and flagella beating. *Cell Mol Life Sci*. 75:4479-4493.

811 VanderWaal, K.E., R. Yamamoto, K. Wakabayashi, L. Fox, R. Kamiya, S.K. Dutcher, P.V.
812 Bayly, W.S. Sale, and M.E. Porter. 2011. bop5 Mutations reveal new roles for the IC138
813 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms.
814 *Molecular Biology of the Cell*. 22:2862-2874.

815 Viswanadha, R., E.L. Hunter, R. Yamamoto, M. Wirschell, L.M. Alford, S.K. Dutcher, and W.S.
816 Sale. 2014. The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and
817 transported by IFT before axonemal docking. *Cytoskeleton (Hoboken)*. 71:573-586.

818 Vizcaino, J.A., A. Csordas, N. Del-Toro, J.A. Dianes, J. Griss, I. Lavidas, G. Mayer, Y. Perez-
819 Riverol, F. Reisinger, T. Ternent, Q.W. Xu, R. Wang, and H. Hermjakob. 2016. 2016
820 update of the PRIDE database and its related tools. *Nucleic Acids Research*. 44:11033.

821 Wheeler, R.J. 2017. Use of chiral cell shape to ensure highly directional swimming in
822 trypanosomes. *PLoS Computational Biology*. 13:e1005353.

823 Wheeler, R.J., E. Gluenz, and K. Gull. 2011. The cell cycle of *Leishmania*: morphogenetic
824 events and their implications for parasite biology. *Molecular Microbiology*. 79:647-662.
825 Wheeler, R.J., E. Gluenz, and K. Gull. 2015. Routes to a 9+0 flagellum: Basal body
826 multipotency and axonemal plasticity. *Nature Communications*. 6:8964.
827 Williams, B.D., M.A. Velleca, A.M. Curry, and J.L. Rosenbaum. 1989. Molecular cloning and
828 sequence analysis of the *Chlamydomonas* gene coding for radial spoke protein 3:
829 flagellar mutation pf-14 is an ochre allele. *The Journal of Cell Biology*. 109:235-245.
830 Wisniewski, J.R., A. Zougman, N. Nagaraj, and M. Mann. 2009. Universal sample preparation
831 method for proteome analysis. *Nature Methods*. 6:359-362.
832 Yamamoto, R., K. Song, H.A. Yanagisawa, L. Fox, T. Yagi, M. Wirschell, M. Hirono, R. Kamiya,
833 D. Nicastro, and W.S. Sale. 2013. The MIA complex is a conserved and novel dynein
834 regulator essential for normal ciliary motility. *The Journal of Cell Biology*. 201:263-278.
835 Yang, P., D.R. Diener, C. Yang, T. Kohno, G.J. Pazour, J.M. Dienes, N.S. Agrin, S.M. King,
836 W.S. Sale, R. Kamiya, J.L. Rosenbaum, and G.B. Witman. 2006. Radial spoke proteins
837 of *Chlamydomonas* flagella. *Journal of Cell Science*. 119:1165-1174.
838 Yang, P., C. Yang, and W.S. Sale. 2004. Flagellar radial spoke protein 2 is a calmodulin
839 binding protein required for motility in *Chlamydomonas reinhardtii*. *Eukaryotic Cell*.
840 3:72-81.

		Salt extracted axonemes of <i>Cas9 T7 parental</i> vs <i>ΔCFAP44</i> in this study			Flagellar promastigote proteome of <i>L. mexicana</i> (Beneke et al., 2019)			
GenelD	Protein	Unique peptides	SINQ spectral count		SINQ spectral count			
			<i>Cas9 T7 parental</i>	<i>ΔCFAP44</i>	Cell body insoluble	Cell body soluble	Flagellar insoluble	Flagellar soluble
LmxM.14.1430	CFAP44	38	47	0	5	0	77	0
LmxM.30.3150	CFAP43	31	38	0	9	0	107	0
LmxM.27.1630	IC140	3	3	0	0	0	14	0
LmxM.24.1310	LAX28	5	7	0	1	0	8	0
<hr/>								
LmxM.32.2630	IC138	Not detected			0	0	19	0
LmxM.33.3880	DHC 1 α	90	99	42	78	4	256	7
LmxM.23.1310	DHC 1 β	62	75	29	85	7	238	5
LmxM.13.1650	α DHC/ODA11 (Lm β DHC)	121	131	118	201	60	433	143
LmxM.25.0980	γ DHC/ODA2 (Lm α DHC)	121	135	132	226	45	546	108
LmxM.16.1430	PFR2	68	294	341	153	83	340	155
LmxM.28.0050	DRC2	25	20	28	4	0	28	0
LmxM.29.1810	Hydin	6	4	4	5	0	104	2
LmxM.20.1400	PF16	20	32	32	9	0	36	3
LmxM.18.1010	LC7	Not detected			4	1	9	6
LmxM.27.0520	RSP3	17	19	22	3	1	27	1
LmxM.24.0840	p28	5	5	4	5	0	14	0

Table 1

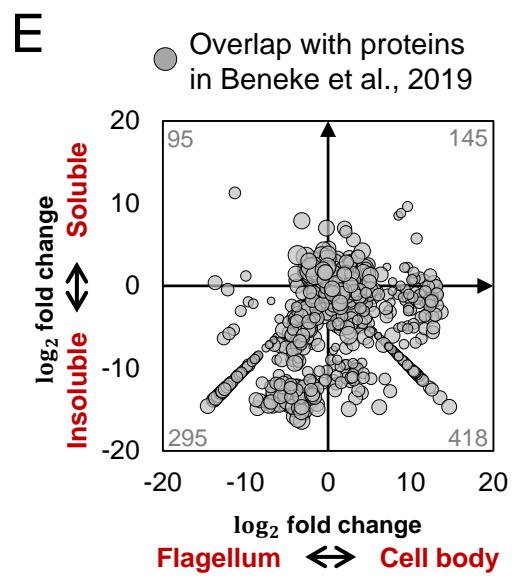
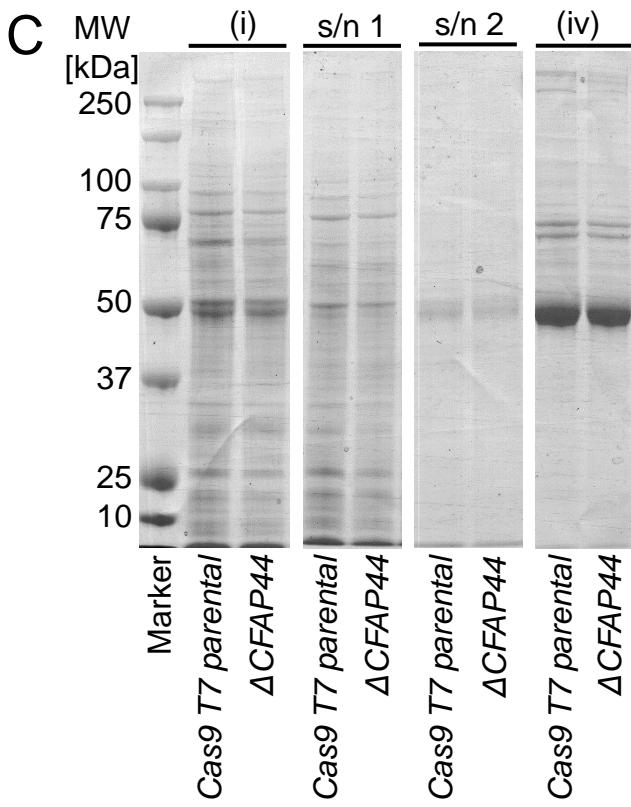
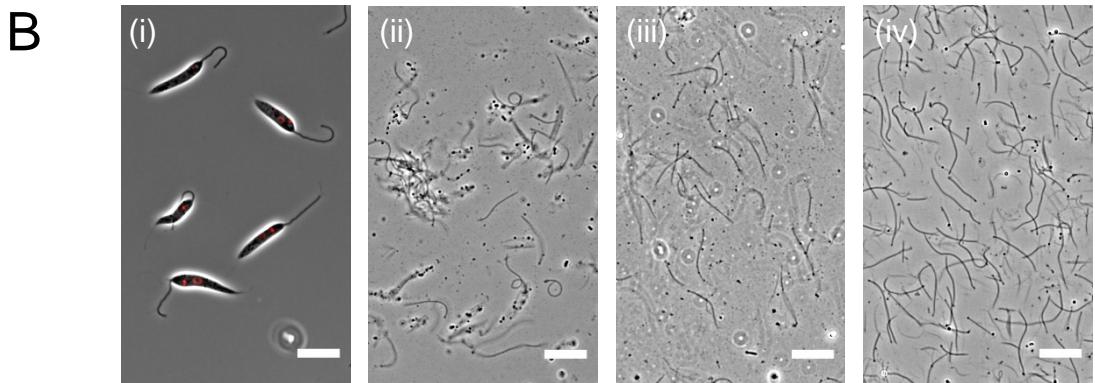
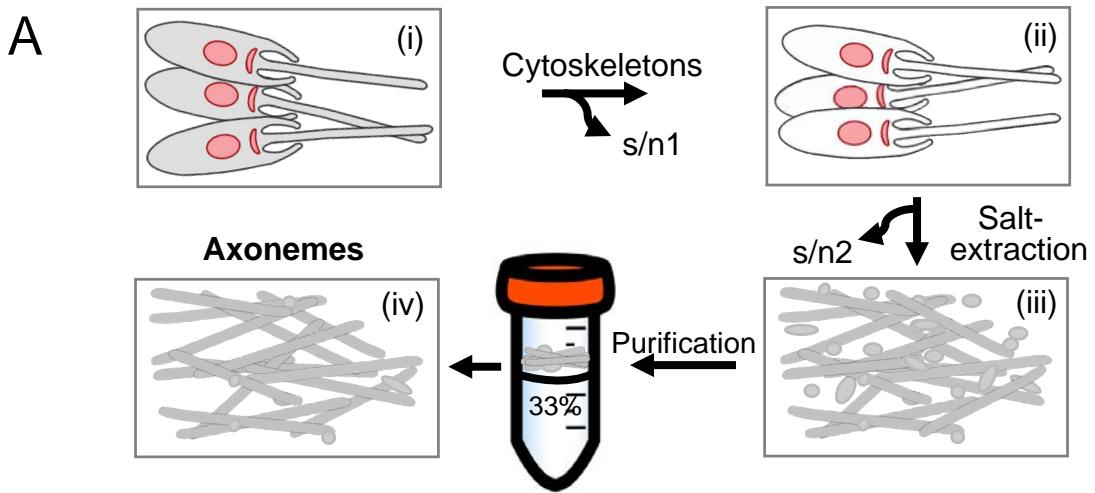
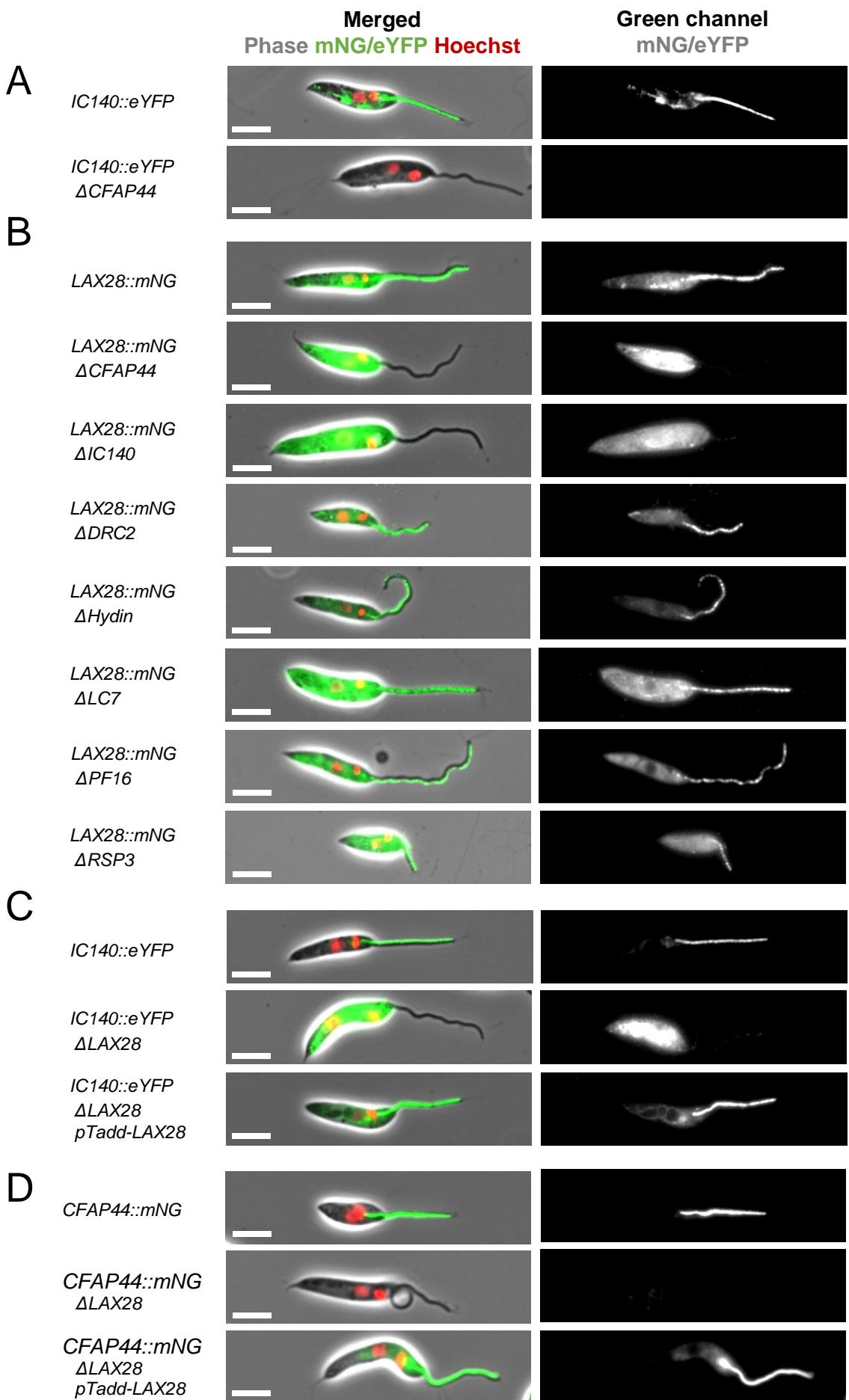
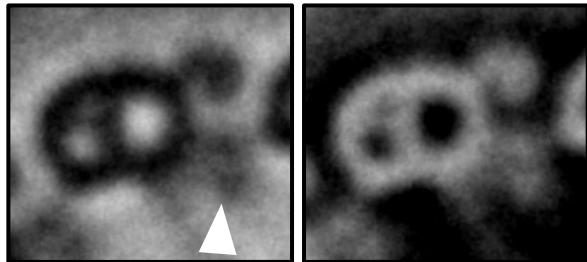
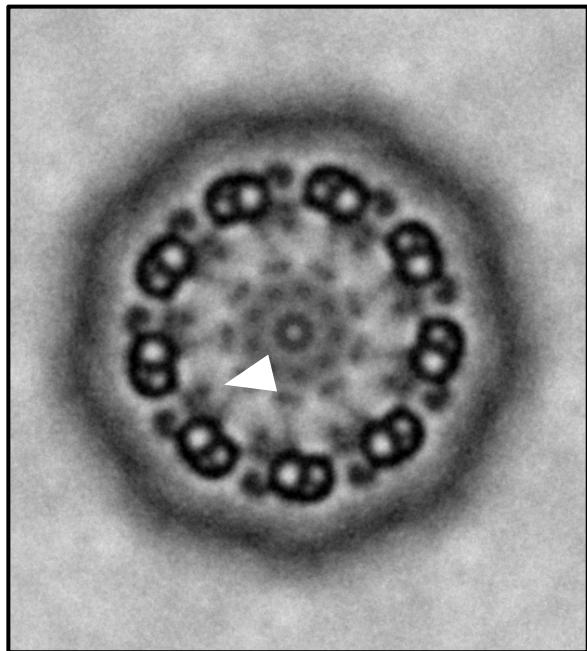
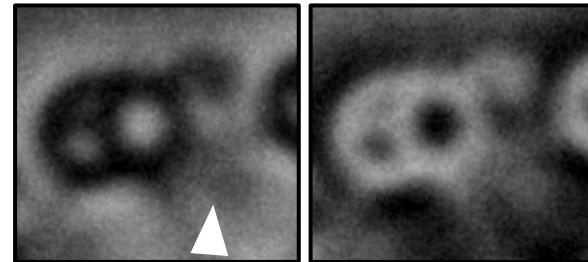
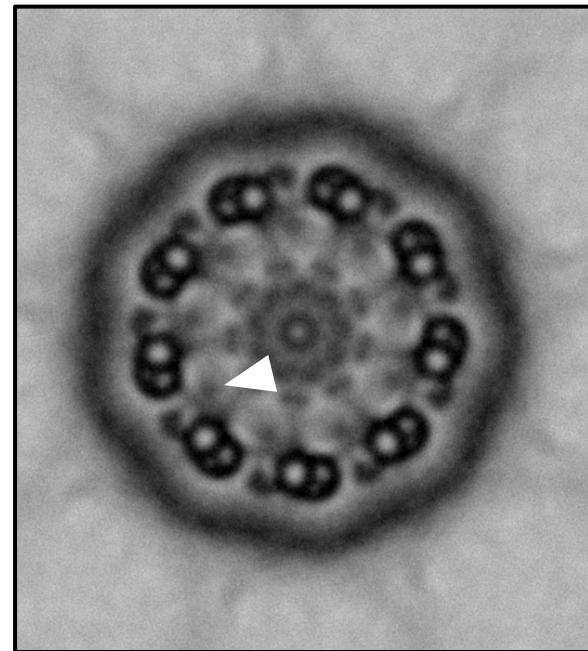





Figure 1



Figure 2

A

Cas9 T7 parental

B

$\Delta LAX28$

Figure 3

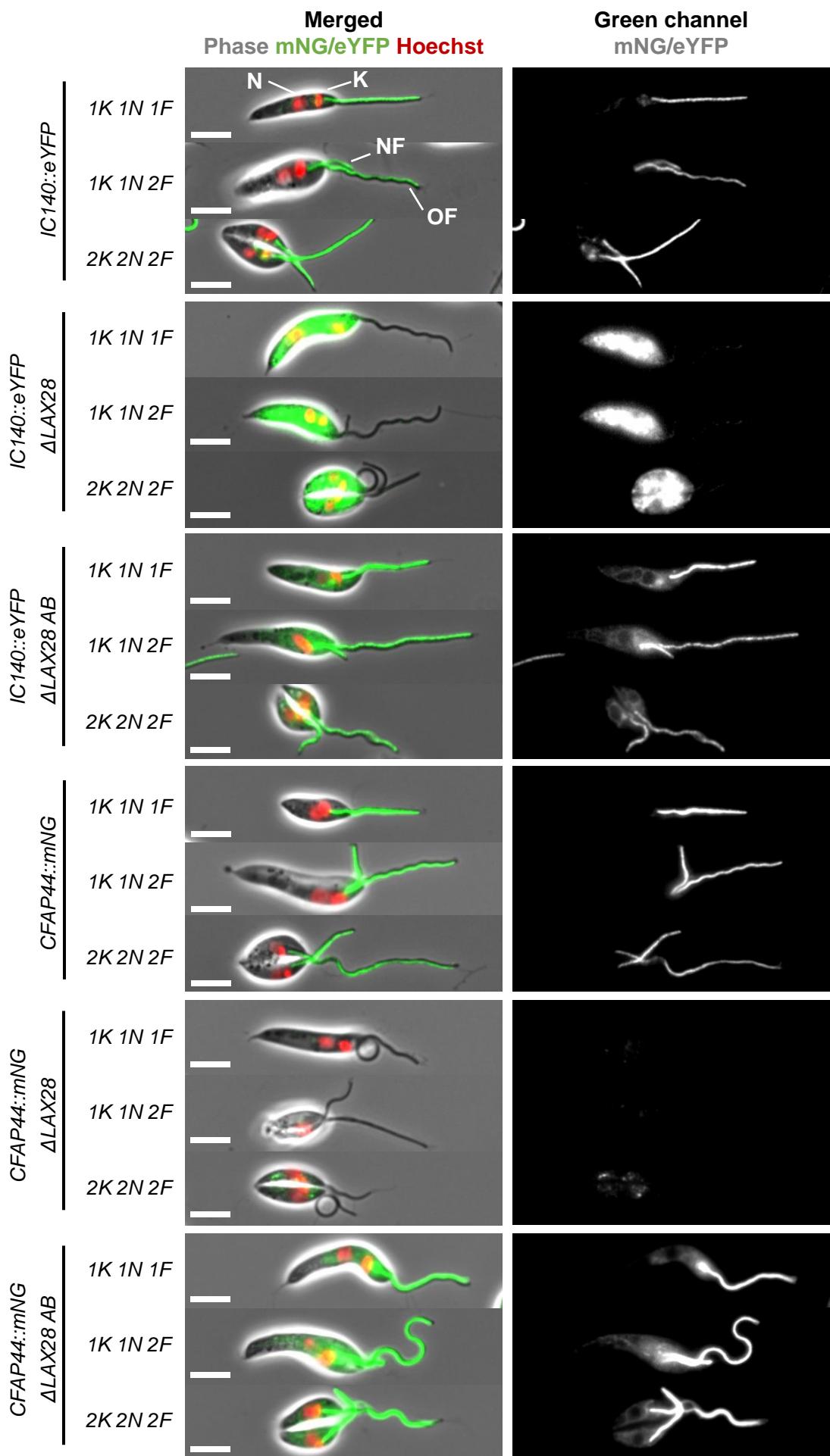


Figure 4

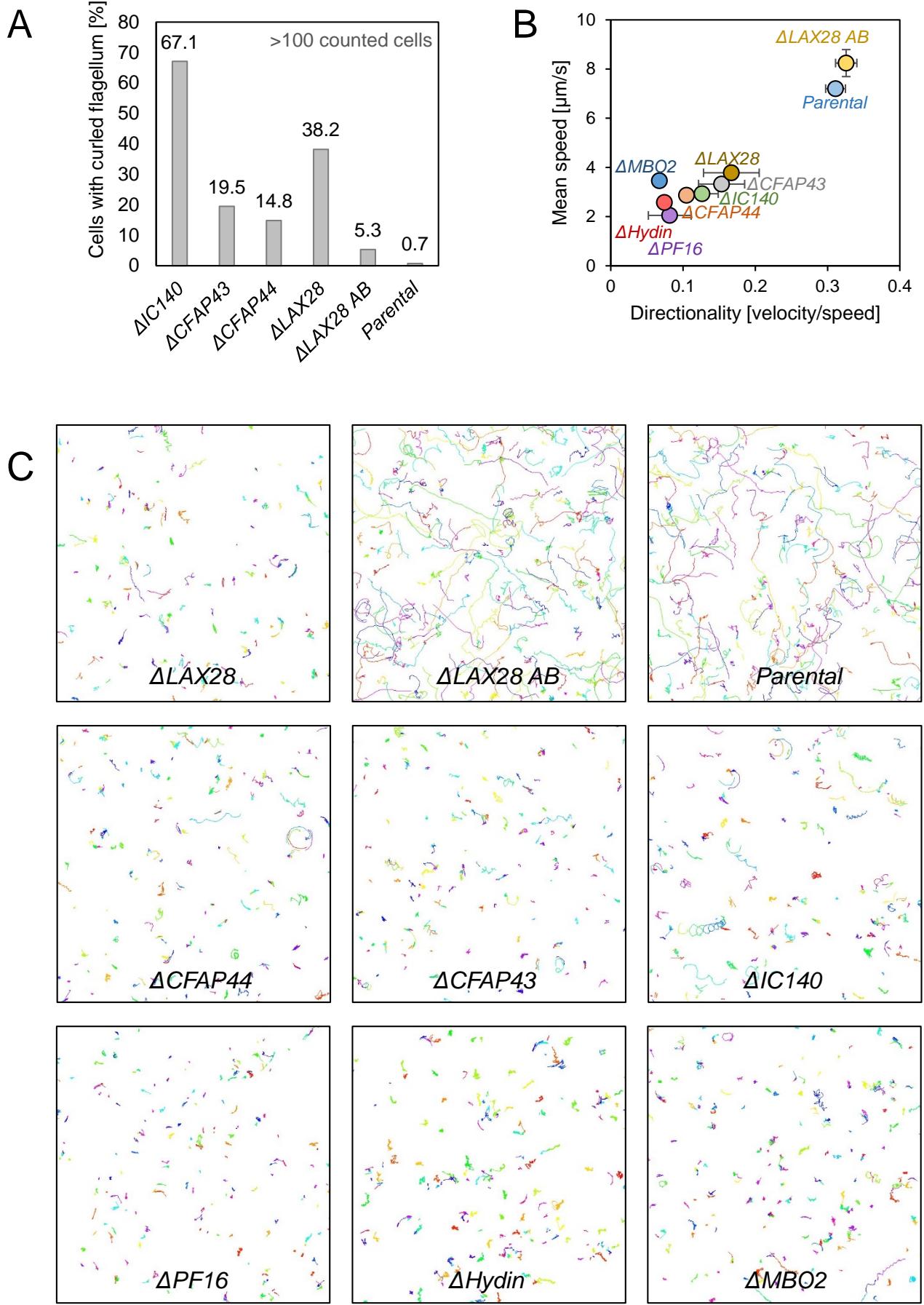
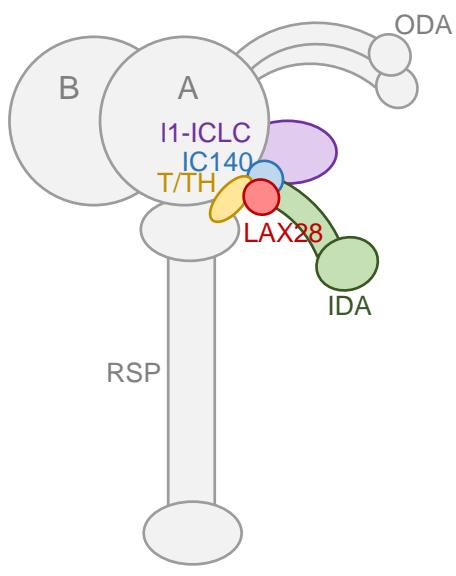
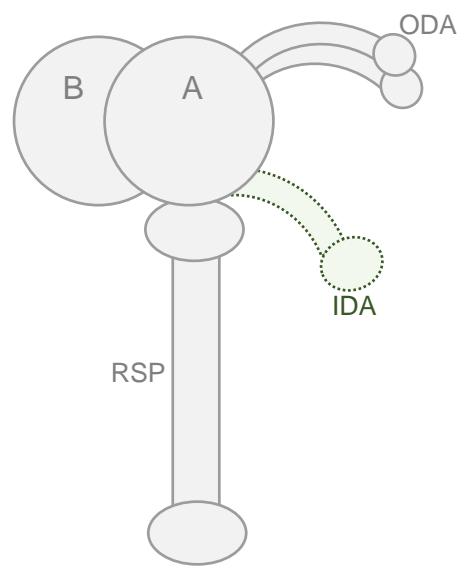


Figure 5


A

LAX28	----MPPRKSDAQSVVVEK----	IVERPSVLDVTL--AKIDVNQYNAAFPFLRLRVLLCGR	50
TEX47	MSFSVHNQKGSKRPLPLEPLLFLQVPRSNYLFQEEKQRLHLKKFLDRMFLVA-KIQAN		59
	: : * . : : * * * . * .. : : : : : * : : ..		
LAX28	KKRSSFDDAWEKLVAEVKLQCDKANPFCTASQSSQLGSLIMDYGEYFLQIVEGPEAYVFR		110
TEX47	VERKDADYYEQMFQSVL-----KHHGEAVTGLLIYPTSLIHLILESSSDTLYK		109
	: * . . * : * : . * . . . : . * : * : * : * . . : : ..		
LAX28	F----AEEMKSVPVLVDTNSVRILFLDDDPNTICVGITL-IDKVPSSLVASSAEKSTEE		165
TEX47	VLLDYIGHVKDETVFFIQQMKGIVLISHNIPMRLFMQWHVSVIKVPMYLLDDVTQSQSLKE		169
	. : * . . : : : * : : * : : : : * * * * : . : * : * ..		
LAX28	VAQG---VTHDLSSILELA-YQGNSQTGRLKSVFSENAKVNHPKLFPKVDMLEAYINSDS		221
TEX47	VITDFLTQTHKLSLYLCQTMKVGTKG-----GDNLHQVAPDLLLPEQIIKYLCKSEE		222
	* . . * * . * : * .. . : * : * . * : : : : : * : ..		
LAX28	FFTLGEFVDNFCKPAHLARDEEINHPPAADPLKH	254	
TEX47	FMDPATFINMYNRPITHITLDSEVVWPAPSRF--	253	
	* : . * : : : * : * : * . : * * . : ..		


B

Template ID	Query sequence (% confidence / rank)	Template ID		
		LAX28	TEX47	MOT7
c2hfnJ	Molecule: <i>synechocystis</i> photoreceptor	96.7 / 1	98.6 / 1	98.2 / 3
d1x0pa1	Fold: Ferredoxin-like; Superfamily: Acylphosphatase/BLUF domain-like	96.6 / 2	98.5 / 2	98.3 / 1
d1yrxa1	Fold: Ferredoxin-like; Superfamily: Acylphosphatase/BLUF domain-like	96.6 / 3	98.3 / 6	98.3 / 2

Figure 6

A

Parental

B

$\Delta LAX28$

Figure 7