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Abstract

Bordetella pertussis is the causative agent of whooping cough, commonly referred to
as pertussis. Although the incidence of pertussis was reduced through vaccination,
during the last thirty years it has returned to high levels in a number of countries.
This resurgence has been linked to the switch from the use of whole-cell to acellular
vaccines. Protection afforded by acellular vaccines appears to be short-lived
compared to that afforded by whole cell vaccines. In order to inform future vaccine
improvement by identifying immune correlates of protection, a human challenge
model of B. pertussis colonisation has been developed. Accurate measurement of
colonisation status in this model has required development of a qPCR-based assay
to enumerate B. pertussis in samples that distinguishes between viable and dead
bacteria. Here we report the development of this assay and its performance in the
guantification of B. pertussis from human challenge model samples. This assay has
future utility in diagnostic labs and in research where a quantitative measure of both

B. pertussis number and viability is required.

Introduction

Whooping cough, or pertussis, is a highly contagious respiratory tract infection of
humans caused by the gram-negative coccobacillus Bordetella pertussis. Clinical
manifestations of pertussis depend on age and immune status of the host and
include a low-grade fever, cyanosis, and paroxysmal cough accompanied by a high-
pitched “whoop” (1). Infants aged less than 1 year old present the highest incidence
of pertussis and are also at the greatest risk of severe disease and death (2).

The introduction of vaccination in the early 1950s significantly reduced the incidence

of pertussis in developed nations, however the number of reports of pertussis has
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been progressively increasing over the last thirty years (3). For example, in the UK,
Public Health England has reported a greater than ten-fold increase in pertussis
cases over the eight-year period of 2005-2013 (4). This rise has been echoed in

other countries including Australia, the Netherlands, and the US (5-10).

The reason for this resurgence is not certain, however it has been strongly linked to
the switch from using whole-cell vaccines (WCVSs) to using acellular vaccines
(ACVs). ACV-induced immunity appears to wane more quickly than WCV-induced
immunity. In baboons, compared to WCV-induced immunity, ACV-induced immunity
protects from disease, but does not prevent colonization by B. pertussis or prevent
transmission of the bacteria to other hosts (11-12). In addition, in many countries
using ACVs, there has been a dramatic increase in the isolation of B. pertussis
deficient for the production of the ACV-vaccine antigen pertactin. In ACV-immunised
hosts pertactin-deficient B. pertussis may have a fithess advantage over pertactin-
producing isolates, raising concern that the use of ACVs is selecting for vaccine
escape strains of B. pertussis (13). These issues have highlighted the need to better
understand the detailed differences between WCV and ACV induced immune
responses and the immune response to infection, and to identify biomarkers of
protective immunity to B. pertussis infection. This would aid the evaluation of the
efficacy of future B. pertussis vaccines that might be needed to combat B. pertussis
resurgence. To this end, a human challenge model of B. pertussis colonisation has
been developed as part of the EU-funded PERISCOPE Project (14-15). In this model
it is necessary to be able to monitor the colonisation status of participants at frequent
intervals. Current detection methods for B. pertussis include culture from

nasopharyngeal swabs or other nasopharyngeal samples. However, B. pertussis is
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slow-growing and takes several days to produce visible growth on laboratory agar. A
more rapid method would improve safety for human challenge model volunteers.
Real-time PCR detection (qPCR) of B. pertussis DNA provides rapid identification of
B. pertussis within hours and for diagnosis of B. pertussis infection is regarded as
more sensitive than culture. However, traditional gPCR assays cannot distinguish
between viable and dead bacteria, which is essential to determine whether
participants are actively colonised.

Here we report the modification of a standard gPCR assay used for laboratory
diagnosis of B. pertussis, through treatment of samples with propidium monoazide
(PMA) that inhibits PCR-mediated amplification of DNA from dead cells and allows
distinguishing of viable from dead cells (16—20). The use of PMA involves an initial
incubation of samples with PMA in darkness, during which it diffuses into dead cells,
followed by light activation of PMA that permanently modifies the gDNA of dead
cells, preventing it from acting as a template in PCR. The optimisation of this assay
and its use to enumerate viable and dead B. pertussis from human challenge model
samples is described. In addition, this assay has wider uses in diagnostic and other
research settings where a quantitative measure of viable B. pertussis number is

required.

Materials and methods
Bacterial strains and culture conditions. B. pertussis strain BP1917 is a wild-type
strain considered representative of currently circulating B. pertussis (21). It was

cultured on charcoal agar at 37°C for 3 days for routine culture.
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The preparation of heat-killed bacterial cell suspensions. Plate-grown B1917
were resuspended in PBS to an ODsoo = 1.0 (approximately 109 cfu/ml). To optimise
heat killing, 1 ml aliquots were heat-killed at 80°C for 1, 3 and 6 minutes in a pre-
heated heat block. Aliquots were placed on ice immediately after incubation.
Bacterial death was confirmed by the absence of growth after streaking 10 ul of
suspension onto charcoal agar plates and incubating at 370C for 5 days. To
ascertain the integrity of heat-killed cells, samples were subjected to flow cytometry
(FACSCantoll, BD UK Ltd, Wokingham, U.K.). A detergent-lysed sample acted as a
positive control for lysis and a sample containing live cells was a positive control for

cell integrity.

The preparation of THP-1 cells. THP-1 (ATCC® TIB-202™) cells were maintained
in RPMI 1640 medium, fetal bovine serum (10%), 1% streptomycin, penicillin and
glutamine (ThermoFisher Scientific, Loughborough, UK) as per standard methods.
Heat-killed THP-1 cells were prepared by incubating cell suspensions at 10s cells/ml

at 80°C for 6 minutes in a pre-heated heat block.

Optimisation of PMA treatment conditions. PMA Dye, 20 mM in H20 (Cambridge
BioSciences, Cambridge, UK), was stored at -20°C in the dark, thawed on ice and
added to 2 ml clear centrifuge tubes containing 200 pl of cell suspensions to a final
concentration of 20 uM, 30 uM, or 50 uM. PMA-free samples served as controls for
each condition tested. Tubes were covered with aluminium foil and shaken on an
orbital shaker for 5, 10, 20, 30 or 70 minutes. Samples were then exposed to light
using the PMA-Lite LED Photolysis Device (Cambridge BioSciences, Cambridge,

UK) for 5, 10, 20, 30 or 40 minutes. Samples were pelleted using the Heraeus Pico
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17 Centrifuge at 2000xg (ThermoFisher Scientific, Loughborough, UK) for 10

minutes at room temperature prior to DNA isolation.

Genomic DNA Isolation. Genomic DNA (gDNA) was isolated using the GenElute
Bacteria Genomic DNA Kit (Sigma- Aldrich, Dorset, UK) according to the
manufacturer’s instructions and eluted with 200 pl of elution buffer. gDNA was
purified from THP-1 cells using the QIAmp DNA mini and blood extraction kit
(QlAgen, Manchester, UK) as per the manufacturer’s protocol. gDNA was quantified
using a Qubit 1.0 fluorometer (Invitrogen, Loughborough, UK) according to the

manufacturer’'s instructions.

Quantitative PCR. gPCR was performed using Sybr green PCR Master Mix
(Applied Biosystems, Loughborough, UK). The final reaction volume was 25 pl
comprising of 12.5 pl Sybr Green master mix, 7.3 pl H20, 0.1 pl of 100 nM stocks of
each primer, and 5 ul of template sample. The reaction was run using a StepOne
Plus RT PCR System (Applied Biosystem, Loughborough, United Kingdom) with the

cycle conditions described in Table 1.

Alternatively, gPCR was performed using a fluorogenic probe (Eurofins, Ebersberg,
Germany). The reaction volume was 20 pl comprising of 2 pl of 1x Tagman Gene
Expression Mastermix (Applied Biosystems, Loughborough, UK), 2 ul of 900 nM
stocks of each primer, 2 yl of 150 nM stock of probe, 2 ul of nuclease-free water and
2 ul of template sample. The reactions were run using the StepOne Plus RT PCR

System using the cycling parameters found in Table 2. The sequence of primers and
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probe were as described previously (22): forward primer
(5’ATCAAGCACCGCTTTACCC 3), reverse primer

(5’ TTGGGAGTTCTGGTAGGTGTG 3’) and probe (5’
AATGGCAAGGCCGAACGCTTCA 3’) was labelled with FAM and Black Hole

Quencher.

Calculating copy number from Ct values/ DNA Concentration. The genome copy
number equivalent to the amount of template in a gPCR reaction was calculated
using the formula:

copy number = (amount of template in ng * 6.022x1023) / (length of genome in bp x

1x109* 650). The genome of BP1917 is 4,102,186 bp (21).

Preparation of bacterial and THP-1 cell suspensions. To evaluate if eukaryotic

cells interfere with the enumeration of live B. pertussis cells using gPCR, 103 live B.
pertussis were combined with THP-1 gDNA equivalent to 10843, 8414, 5385, 3446,
2804, 2316, 1868, 1503, 1251, 1023, 875, 746, 671, 507, 366, or 275, 141, 29 cells.

A sample without THP-1 DNA served as a control.

To evaluate the possible sequestration of PMA by eukaryotic DNA, 10s heat-killed B.
pertussis were combined with either 100,000 heat-killed THP-1 cells, 100,000 live
THP-1 cells or without THP-1 cells and were then treated with the selected PMA

treatment. Non PMA-treated samples were run in parallel.

To determine if eukaryotic cells interfered with the action of PMA on dead bacterial

cells, 100,000 live THP-1 cells were combined with different ratios of viable B.
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173  pertussis cells and heat-killed B. pertussis cells (final bacterial concentration was 10s
174  cfu/ml) in a clear Eppendorf tube, total volume 200 ul. These samples were then

175 subjected to the selected PMA treatment. A non-PMA treated control was included.
176  gDNA was extracted from each sample and used for gPCR.

177

178  Statistical Analysis. Unpaired T tests, corrected for multiple comparisons, and two-
179 way ANOVA using the Holm-Sidak method were used to evaluate statistical

180 significance. One-way ANOVA and Dunnett’s multiple comparisons test, with a

181  single pooled variance was also used. A p value of <0.05 was defined as statistically
182  significant and is indicated by asterisks.

183

184 Results

185 (PCR provides alower limit of detection of 2 B. pertussis cells. IS481 is often
186 used as the target for qPCR detection of B. pertussis as it is present at ~250 copies
187  per cell in B. pertussis, providing great sensitivity. To develop a PMA-gPCR assay,
188 the sensitivity of gPCR for detection of B. pertussis was tested over a range of

189 template gDNA concentrations. A linear relationship between Ct value and template
190 concentration was observed over the range of 2 to approximately 2.42x10es B1917
191 cells for gPCR (Figure 1). Ct values greater than 35 were considered to be a

192 negative reaction. Probe based detection was more sensitive than sybr-green based
193 detection (data not shown). Thus, the assay is able to detect B. pertussis gDNA

194  equivalent to very few bacterial cells and is linear over a wide range of B. pertussis
195  concentrations.

196
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Heat-killing B. pertussis at 80°C for 6 minutes maintained the integrity of cells.
The ability of PMA to inhibit PCR-amplification from dead B. pertussis was tested
using heat-killed B. pertussis. It was envisaged that clinical samples may contain
dead, but intact, B. pertussis. Heat-killing may cause cell lysis which would not mimic
intact dead cells. Thus, the integrity of cells following heat killing was assessed using
flow cytometry. Incubation of B. pertussis suspensions at 80°C for 6 minutes resulted
in 100% killing, but with cells remaining intact and were the conditions used

throughout (Figure 2).

Optimisation of PMA treatment. The effect of PMA concentration on inhibition of
PCR amplification from dead B. pertussis was tested (Figure 3). Incubation of heat-
killed cells with 50uM of PMA resulted in a 97.42 % reduction in PCR signal
compared to that generated from untreated samples. Lower levels of PMA also

resulted in very similar levels of inhibition (Figure 3).

The optimal conditions for photo-activation of PMA were determined. Incubation
under dark conditions for 10 minutes followed by light activation for between 5 and
30 minutes resulted in greater than 99% reduction in PCR signal from dead cells
compared to untreated controls. Five minutes of light activation following 10 minutes

of darkness resulted in 99.64% reduction in detection of B. pertussis DNA (Figure 4).

From these optimisations, standard conditions of 50uM PMA and incubation in the
dark for 10 minutes followed by light activation for 5 minutes were selected as
minimal incubation times that achieved high levels of inhibition. Even though 20uM

PMA inhibited PCR amplification from dead cells, 50uM PMA was selected as the
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concentration to use in the assay, as clinical samples will contain cells other than B.
pertussis that may sequester PMA, requiring an excess for consistent inhibition of
PCR signal from dead B. pertussis. These conditions were tested in four
independent assays. An average of 94.15% reduction in PCR signal was observed

compared to untreated controls (Figure 5).

The effect of exogenous cells on the detection and PMA-mediated inhibition.
Clinical samples are likely to contain cells other than B. pertussis, including
eukaryotic cells that contain very large amounts of DNA compared to B. pertussis
cells. Eukaryotic cells may interfere with the PMA-mediated inhibition of amplification
from dead B. pertussis preventing distinguishing between live and dead B. pertussis.
To test this, varying amounts of gDNA from THP-1 cells were combined with a
constant amount of B. pertussis gDNA, and Ct values were determined and
compared to samples containing B. pertussis only. No effect of THP-1 gDNA on
detection of B. pertussis was observed up to an equivalent of approximately 5500

THP-1 cells per assay (Figure 6).

It was possible that the presence of other cells would interfere with the PMA-
mediated inhibition of PCR signal from dead B. pertussis. Thus, the effect of heat-
killed or live THP-1 cells on PMA-mediated inhibition of PCR amplification from heat-
killed B. pertussis was tested. A 99.94% reduction in PCR signal was observed
indicating that THP-1 cells did not prevent PMA-mediated inhibition of PCR signal

from dead B. pertussis (Figure 7).

To test the assay’s ability to distinguish between viable and dead B. pertussis, in the

presence of other cells, a constant number of THP-1 cells were combined with

10
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different ratios of heat-killed and viable B. pertussis cells. The reduction in PCR
signal was proportional to the amount of heat-killed cells in each suspension (Figure
8) demonstrating that the assay was able to distinguish viable from dead B.

pertussis, even in the presence of human cells.

Collectively, these studies revealed that the THP-1 cells did not interfere with the
PMA-mediated inhibition of PCR signal from dead B. pertussis or prevent the

accurate enumeration of viable B. pertussis cells.

Measuring the viability of B. pertussis during in vitro growth. During
development of the assay, it was observed that PMA treatment of live B. pertussis
suspensions used as controls consistently reduced the PCR signal compared to
untreated samples. This suggested that B. pertussis colonies taken from plate grown
cultures contains both live and dead bacteria. To investigate this, and to determine
the proportion of live to dead B. pertussis in plate grown cultures over time,
suspensions of cells were made of B. pertussis grown on plates for either 3, 4,5 or 8
days. The suspensions were treated with PMA and gPCR performed. The
percentage of PCR signal observed was compared to untreated controls, Figure 9.
B. pertussis is relatively slow growing and many protocols for plate growth involve
incubation for 72 hours to achieve visible colonies. However, at this point B.
pertussis viability was only 89%. Interestingly, although colony size continued to
increase between days 3 and 5, percentage viability decreased to 24%. Further
incubation resulted in further loss in viability. Thus, when using plate grown B.
pertussis in assays, suspensions will be a mixture of live and dead bacteria, and that

enumeration of B. pertussis by plating serial dilutions of a suspension and counting

11
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the resulting CFU’s will not be a measure of the total number of cells in the

suspension.

Use of the assay to enumerate live and dead B. pertussis from human
challenge model samples. The assay was developed in order to provide a method
for monitoring the colonisation status of participants in a novel human challenge
model of B. pertussis colonisation. During development of this model, a group of
participants were inoculated with 10s CFU of B. pertussis and daily samples were
taken over a 14-day period to monitor colonisation (15). Samples types included
nasosorption fluids, pernasal swabs, throat swabs, and nasopharyngeal washes.
Samples were split and one portion was treated with PMA. B. pertussis were
enumerated from treated and untreated samples. In addition, portions of samples
were serially diluted and plated for enumeration of B. pertussis by traditional culture.
Under these conditions, 3 out of 5 participants were determined to be colonised by
culture of B. pertussis (data not shown). Samples obtained from volunteers on day 9
post-challenge were tested by PMA-gPCR which revealed that 4 out of 5 volunteers
were deemed to carry viable B. pertussis by this method (Figure 10). This was
observed after detectable viable B. pertussis were found in nasal washes and
pernasal swabs. Nasal washes from Day 11 samples also had detectable viable B.
pertussis in 2 of the 5 volunteers (Figure 10). Samples from positive volunteers
contained roughly the same number of viable and dead B. pertussis. Interestingly, on
Day 16 of sampling, two days after volunteers started azithromycin treatment to
eradicate the infection, all but one volunteer was negative for detectable B. pertussis

genomes. In this volunteer, the PMA-gPCR assay was able to detect low levels of

12
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viable and dead B. pertussis, with a higher proportion of dead genomes detected

compared to viable genomes (Figure 10 F).

Discussion.

Ordinarily, the detection and quantification of viable B. pertussis is achieved through
culture on laboratory agar. However, the relatively slow growth rate of B. pertussis
means that the growth of countable colonies can take between 72 — 120 hours. The
development of a human challenge model for B. pertussis as part of the
PERISCOPE project requires that enumeration of viable B. pertussis be achieved in
a much shorter time than this, in order to be able follow colonisation closely.

In addition, simple enumeration of viable bacteria within a sample doesn’t provide
the complete picture. In many scenarios, such as measuring bacterial load in an
infection model, it is of great interest to know the total bacterial number as
understanding the dynamics of bacterial growth that involves both cell division and
cell death is very important. Thus, while traditional gPCR provides a faster detection
method for B. pertussis than culture, the modification of a gPCR assay with the
introduction of PMA treatment of samples reported here enables both fast detection

of B. pertussis and the ability to distinguish viable from dead cells.

Here, we demonstrate that PMA inhibits PCR-mediated amplification from dead B.
pertussis and that inhibition of signal from dead cells occurs even in the presence of
high numbers of eukaryotic cells. This may be important for the detection of B.
pertussis from complex samples that contain a mix of cell types as seen in the
human challenge model. Samples obtained from volunteers that were identified as

positive for B. pertussis by culture, were also detected in our initial test of the PMA-

13
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322 gPCR assay. The same volunteers were identified as being negative for B. pertussis
323 by both qPCR and culture, with the exception of a single sample that had low levels
324  of B. pertussis identified only by gPCR. Interestingly, PMA-gPCR detected

325 approximately equal numbers of viable and dead B. pertussis, demonstrating its use
326 to enumerate total bacteria rather than only viable. The full results of the human

327 challenge model are published elsewhere (15). Here we demonstrate that the PMA-
328 (PCR assay allowed for a determination of colonisation status within hours of

329 obtaining the samples compared to days when using culture.

330

331 The utility of the PMA-gPCR assay has been shown in the human challenge model,
332  but this assay has other uses. For example, in diagnostic laboratories, where

333 ascertaining if B. pertussis is viable or dead will facilitate whether to pursue culture
334 as a means to obtaining a live culture for characterisation. It is also of use in a range
335 of research and industrial settings enabling investigation of the dynamics of B.

336  pertussis growth by determining both cell division and cell death.

337
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425 Tables

426  Table 1. Thermocycling Conditions for gPCR using Sybr Green:

STEP TEMP TIME
Initial Denaturation 95°C 10 minutes
40 Cycles 95°C 15s

48°C 60 s

60°C 60 s
Melt Curve Analysis 95°C 15s

48°C 60 s

60°C 60 s

427

428 Table 2. TagMan Thermocycling Conditions for gPCR:

STEP TEMP TIME
Step 1
Holding Stage 50°C 2 minutes
Step 2 95°C 10 minutes
40 Cycles 95°C 15s

60°C 60 s

429
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Figure 1. Standard curve of Ct value versus template concentration. Template
DNA concentration is expressed as B1917 genome copy number. The linearity was

determined to be from 2 to approximately 2.42x10e B1917 genomes for gPCR.

A) Positive Control for Cell Integrity A) Positive control for Cell Lysis B) Heated-killed at 80°C for 6 minutes
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Figure 2. The effect of heat killing on the integrity of B. pertussis cells,
measured by flow cytometry. A) Positive control for cell integrity — a suspension of
live B. pertussis; B) Positive control for cell lysis — detergent lysed B. pertussis; C)
Heat-killed B. pertussis suspension. The heat-killed B. pertussis suspension
incubated for 6 minutes at 80°C displayed similar scatter as the live cell suspension.

No particles were detected in a suspension of detergent-lysed B. pertussis.
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445  Therefore, cells remained intact in the heat-killed B. pertussis suspension incubated
446  for 6 minutes at 80°C when compared to the positive cell integrity control.

447
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448

449  Figure 3. The effect of PMA concentration on the reduction of the PCR

450 amplification signal from heat-killed cells. Treatment of samples with either 20
451  uM, 30 uM, or 50 uM of PMA produced a >97% reduction in the PCR amplification
452  signal compared to untreated samples. Error bars represent standard deviations
453  from two biological replicates. Data from a representative experiment repeated three
454  times.

455
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Figure 4. The effect of dark and light exposure times on PMA-inhibition of PCR
amplification. A) Dark incubation B) Light Incubation. PMA and untreated heat-killed
suspensions were incubated for 10, 20, 30, and 70 minutes in the dark followed by
exposure to 5 minutes of light. 10 minutes or longer of incubation in the dark
produced a >99% reduction in the PCR amplification signal. Optimal light incubation
periods were determined by incubating untreated and PMA treated heat-killed
suspensions in the dark for 10 minutes followed by light exposure for 5, 10, 20, 30,
and 40 minutes. Incubating PMA treated heat-killed samples under light for periods
of 5, 10, 20, and 30 minutes produced a 99% or greater reduction in the PCR
amplification signal. Five minutes was selected as the standard light incubation
period. Error bars represent standard deviation from two biological replicates. The

experiment was repeated with the same result.
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473  Figure 5. Selected assay conditions gave reproducible inhibition of PCR signal
474  from dead cells. Heat-killed samples were treated with 50 uM of PMA and

475 incubated in the dark for 10 minutes followed by 5 minutes of light activation. A

476  94.15% reduction in the PCR amplification signal was observed. Error bars represent
477  standard deviations from five biological replicates.
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479 Eukaryotic THP-1 Genomes

480 Figure 6. Effect of eukaryotic gDNA on detection of B. pertussis. Varying

481 amounts of gDNA from THP-1 cells were combined with gDNA equivalent to 103 B.
482  pertussis cells. No interference in detection of B. pertussis was observed up to the
483  equivalent of 3446 THP-1 cells, after which the sensitivity of detection was reduced
484  when compared to viable B. pertussis detected in the presence of 0 THP-1 cells.
485  *: p<0.05, determined by one-way ANOVA and Dunnett’s multiple comparisons test,
486  with a single pooled variance. Error bars represent standard deviations from three
487  biological replicates.

488
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Figure 7. Eukaryotic THP-1 gDNA did not interfere with enumeration of B.
pertussis. gDNA from 10e heat-killed B. pertussis were combined with either 10s
heat-killed THP-1 cells, 10s live THP-1 cells or a no THP-1 cell control and treated
with PMA. Non PMA-treated samples were run in parallel. The presence of live or
dead THP-1 cells did not interfere with the action of PMA on dead B. pertussis cells.

Error bars represent standard deviations from three biological replicates.
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Figure 8. Percentage of live B. pertussis cells enumerated from PMA treated
samples in the presence of eukaryotic cells. 100,000 THP-1 cells were combined
with suspensions of different ratios of heat-killed and viable B. pertussis cells. The
assay accurately distinguished viable from dead B. pertussis in each suspension.

Error bars represent standard deviations from three biological replicates.
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508 Figure 9. The viability of B. pertussis decreases during growth on agar plates.
509 The viability of B. pertussis growing on agar plates was measured over time. Viability
510 decreased as the incubation time increased with only 24% of cells being viable after
511 5 days of incubation. Error bars represent standard deviations from three biological
512 replicates.
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518 Figure 10. PMA-gPCR detected viable B. pertussis from Human Challenge

519 Model samples within hours. Viable and dead B. pertussis were enumerated in
520 samples from 5 volunteers in the Human Challenge Model, collected Day 9 (A-D),
521 Day 11 (E) and Day 16 (F) after inoculation, from the sample type indicated. 200ul of
522 samples were processed. Day 16 samples are taken two days after volunteers

523  started azithromycin treatment to clear infection. Values below the lower limit of

524  detection were considered undetectable and given a value of O.

525
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