

1 **A qPCR assay for *Bordetella pertussis* cells that enumerates both live and
2 dead bacteria.**

3

4 Stacy Ramkissoon^{ab}, Iain MacArthur^{ab}, Muktar Ibrahim^{cdef}, Hans de Graaf^{cdef}, Robert
5 C. Read^{cdef}, Andrew Preston^{ab#}

6

7 ^aMilner Centre for Evolution, University of Bath, Bath, UK

8 ^bDepartment of Biology and Biochemistry, University of Bath, Bath, UK

9 ^cFaculty of Medicine and Institute for Life Sciences, University of Southampton,
10 Southampton, UK

11 ^dSchool of Clinical Experimental Sciences, University Hospital Southampton NHS
12 Foundation Trust, University of Southampton, Southampton General Hospital,
13 Southampton, UK

14 ^eNIHR Clinical Research Facility, University Hospital Southampton NHS Foundation
15 Trust, University of Southampton, Southampton General Hospital, Southampton, UK
16 ^fNIHR Southampton Biomedical Research Centre, University Hospital Southampton
17 NHS Foundation Trust, University of Southampton, Southampton General Hospital,
18 Southampton, UK

19

20 Running Head: Enumerating viable *B. pertussis* using PMA-qPCR

21

22 #Address correspondence to Andrew Preston, a.preston@bath.ac.uk.

23

24

25 **Abstract**

26 *Bordetella pertussis* is the causative agent of whooping cough, commonly referred to
27 as pertussis. Although the incidence of pertussis was reduced through vaccination,
28 during the last thirty years it has returned to high levels in a number of countries.
29 This resurgence has been linked to the switch from the use of whole-cell to acellular
30 vaccines. Protection afforded by acellular vaccines appears to be short-lived
31 compared to that afforded by whole cell vaccines. In order to inform future vaccine
32 improvement by identifying immune correlates of protection, a human challenge
33 model of *B. pertussis* colonisation has been developed. Accurate measurement of
34 colonisation status in this model has required development of a qPCR-based assay
35 to enumerate *B. pertussis* in samples that distinguishes between viable and dead
36 bacteria. Here we report the development of this assay and its performance in the
37 quantification of *B. pertussis* from human challenge model samples. This assay has
38 future utility in diagnostic labs and in research where a quantitative measure of both
39 *B. pertussis* number and viability is required.

40

41 **Introduction**

42 Whooping cough, or pertussis, is a highly contagious respiratory tract infection of
43 humans caused by the gram-negative coccobacillus *Bordetella pertussis*. Clinical
44 manifestations of pertussis depend on age and immune status of the host and
45 include a low-grade fever, cyanosis, and paroxysmal cough accompanied by a high-
46 pitched “whoop” (1). Infants aged less than 1 year old present the highest incidence
47 of pertussis and are also at the greatest risk of severe disease and death (2).
48 The introduction of vaccination in the early 1950s significantly reduced the incidence
49 of pertussis in developed nations, however the number of reports of pertussis has

50 been progressively increasing over the last thirty years (3). For example, in the UK,
51 Public Health England has reported a greater than ten-fold increase in pertussis
52 cases over the eight-year period of 2005-2013 (4). This rise has been echoed in
53 other countries including Australia, the Netherlands, and the US (5-10).

54

55 The reason for this resurgence is not certain, however it has been strongly linked to
56 the switch from using whole-cell vaccines (WCVs) to using acellular vaccines
57 (ACVs). ACV-induced immunity appears to wane more quickly than WCV-induced
58 immunity. In baboons, compared to WCV-induced immunity, ACV-induced immunity
59 protects from disease, but does not prevent colonization by *B. pertussis* or prevent
60 transmission of the bacteria to other hosts (11-12). In addition, in many countries
61 using ACVs, there has been a dramatic increase in the isolation of *B. pertussis*
62 deficient for the production of the ACV-vaccine antigen pertactin. In ACV-immunised
63 hosts pertactin-deficient *B. pertussis* may have a fitness advantage over pertactin-
64 producing isolates, raising concern that the use of ACVs is selecting for vaccine
65 escape strains of *B. pertussis* (13). These issues have highlighted the need to better
66 understand the detailed differences between WCV and ACV induced immune
67 responses and the immune response to infection, and to identify biomarkers of
68 protective immunity to *B. pertussis* infection. This would aid the evaluation of the
69 efficacy of future *B. pertussis* vaccines that might be needed to combat *B. pertussis*
70 resurgence. To this end, a human challenge model of *B. pertussis* colonisation has
71 been developed as part of the EU-funded PERISCOPE Project (14-15). In this model
72 it is necessary to be able to monitor the colonisation status of participants at frequent
73 intervals. Current detection methods for *B. pertussis* include culture from
74 nasopharyngeal swabs or other nasopharyngeal samples. However, *B. pertussis* is

75 slow-growing and takes several days to produce visible growth on laboratory agar. A
76 more rapid method would improve safety for human challenge model volunteers.
77 Real-time PCR detection (qPCR) of *B. pertussis* DNA provides rapid identification of
78 *B. pertussis* within hours and for diagnosis of *B. pertussis* infection is regarded as
79 more sensitive than culture. However, traditional qPCR assays cannot distinguish
80 between viable and dead bacteria, which is essential to determine whether
81 participants are actively colonised.
82 Here we report the modification of a standard qPCR assay used for laboratory
83 diagnosis of *B. pertussis*, through treatment of samples with propidium monoazide
84 (PMA) that inhibits PCR-mediated amplification of DNA from dead cells and allows
85 distinguishing of viable from dead cells (16–20). The use of PMA involves an initial
86 incubation of samples with PMA in darkness, during which it diffuses into dead cells,
87 followed by light activation of PMA that permanently modifies the gDNA of dead
88 cells, preventing it from acting as a template in PCR. The optimisation of this assay
89 and its use to enumerate viable and dead *B. pertussis* from human challenge model
90 samples is described. In addition, this assay has wider uses in diagnostic and other
91 research settings where a quantitative measure of viable *B. pertussis* number is
92 required.

93

94 **Materials and methods**

95 **Bacterial strains and culture conditions.** *B. pertussis* strain BP1917 is a wild-type
96 strain considered representative of currently circulating *B. pertussis* (21). It was
97 cultured on charcoal agar at 37°C for 3 days for routine culture.

98

99 **The preparation of heat-killed bacterial cell suspensions.** Plate-grown B1917
100 were resuspended in PBS to an OD₆₀₀ = 1.0 (approximately 10⁹ cfu/ml). To optimise
101 heat killing, 1 ml aliquots were heat-killed at 80°C for 1, 3 and 6 minutes in a pre-
102 heated heat block. Aliquots were placed on ice immediately after incubation.
103 Bacterial death was confirmed by the absence of growth after streaking 10 µl of
104 suspension onto charcoal agar plates and incubating at 37°C for 5 days. To
105 ascertain the integrity of heat-killed cells, samples were subjected to flow cytometry
106 (FACSCantoll, BD UK Ltd, Wokingham, U.K.). A detergent-lysed sample acted as a
107 positive control for lysis and a sample containing live cells was a positive control for
108 cell integrity.

109

110 **The preparation of THP-1 cells.** THP-1 (ATCC® TIB-202™) cells were maintained
111 in RPMI 1640 medium, fetal bovine serum (10%), 1% streptomycin, penicillin and
112 glutamine (ThermoFisher Scientific, Loughborough, UK) as per standard methods.
113 Heat-killed THP-1 cells were prepared by incubating cell suspensions at 10⁵ cells/ml
114 at 80°C for 6 minutes in a pre-heated heat block.

115

116 **Optimisation of PMA treatment conditions.** PMA Dye, 20 mM in H₂O (Cambridge
117 BioSciences, Cambridge, UK), was stored at -20°C in the dark, thawed on ice and
118 added to 2 ml clear centrifuge tubes containing 200 µl of cell suspensions to a final
119 concentration of 20 µM, 30 µM, or 50 µM. PMA-free samples served as controls for
120 each condition tested. Tubes were covered with aluminium foil and shaken on an
121 orbital shaker for 5, 10, 20, 30 or 70 minutes. Samples were then exposed to light
122 using the PMA-Lite LED Photolysis Device (Cambridge BioSciences, Cambridge,
123 UK) for 5, 10, 20, 30 or 40 minutes. Samples were pelleted using the Heraeus Pico

124 17 Centrifuge at 2000xg (ThermoFisher Scientific, Loughborough, UK) for 10
125 minutes at room temperature prior to DNA isolation.

126

127 **Genomic DNA Isolation.** Genomic DNA (gDNA) was isolated using the GenElute
128 Bacteria Genomic DNA Kit (Sigma- Aldrich, Dorset, UK) according to the
129 manufacturer's instructions and eluted with 200 μ l of elution buffer. gDNA was
130 purified from THP-1 cells using the QIAmp DNA mini and blood extraction kit
131 (QIAgen, Manchester, UK) as per the manufacturer's protocol. gDNA was quantified
132 using a Qubit 1.0 fluorometer (Invitrogen, Loughborough, UK) according to the
133 manufacturer's instructions.

134

135 **Quantitative PCR.** qPCR was performed using Sybr green PCR Master Mix
136 (Applied Biosystems, Loughborough, UK). The final reaction volume was 25 μ l
137 comprising of 12.5 μ l Sybr Green master mix, 7.3 μ l H₂O, 0.1 μ l of 100 nM stocks of
138 each primer, and 5 μ l of template sample. The reaction was run using a StepOne
139 Plus RT PCR System (Applied Biosystem, Loughborough, United Kingdom) with the
140 cycle conditions described in Table 1.

141

142 Alternatively, qPCR was performed using a fluorogenic probe (Eurofins, Ebersberg,
143 Germany). The reaction volume was 20 μ l comprising of 2 μ l of 1x Taqman Gene
144 Expression Mastermix (Applied Biosystems, Loughborough, UK), 2 μ l of 900 nM
145 stocks of each primer, 2 μ l of 150 nM stock of probe, 2 μ l of nuclease-free water and
146 2 μ l of template sample. The reactions were run using the StepOne Plus RT PCR
147 System using the cycling parameters found in Table 2. The sequence of primers and

148 probe were as described previously (22): forward primer
149 (5'ATCAAGCACCGCTTACCC 3'), reverse primer
150 (5' TTGGGAGTTCTGGTAGGTGTG 3') and probe (5'
151 AATGGCAAGGCCGAACGCTTCA 3') was labelled with FAM and Black Hole
152 Quencher.
153
154 **Calculating copy number from Ct values/ DNA Concentration.** The genome copy
155 number equivalent to the amount of template in a qPCR reaction was calculated
156 using the formula:
157 copy number = (amount of template in ng * 6.022x10²³) / (length of genome in bp x
158 1x10⁹ * 650). The genome of BP1917 is 4,102,186 bp (21).
159
160 **Preparation of bacterial and THP-1 cell suspensions.** To evaluate if eukaryotic
161 cells interfere with the enumeration of live *B. pertussis* cells using qPCR, 10³ live *B.*
162 *pertussis* were combined with THP-1 gDNA equivalent to 10843, 8414, 5385, 3446,
163 2804, 2316, 1868, 1503, 1251, 1023, 875, 746, 671, 507, 366, or 275, 141, 29 cells.
164 A sample without THP-1 DNA served as a control.
165
166 To evaluate the possible sequestration of PMA by eukaryotic DNA, 10⁶ heat-killed *B.*
167 *pertussis* were combined with either 100,000 heat-killed THP-1 cells, 100,000 live
168 THP-1 cells or without THP-1 cells and were then treated with the selected PMA
169 treatment. Non PMA-treated samples were run in parallel.
170
171 To determine if eukaryotic cells interfered with the action of PMA on dead bacterial
172 cells, 100,000 live THP-1 cells were combined with different ratios of viable *B.*

173 *pertussis* cells and heat-killed *B. pertussis* cells (final bacterial concentration was 10⁶
174 cfu/ml) in a clear Eppendorf tube, total volume 200 µl. These samples were then
175 subjected to the selected PMA treatment. A non-PMA treated control was included.
176 gDNA was extracted from each sample and used for qPCR.

177

178 **Statistical Analysis.** Unpaired T tests, corrected for multiple comparisons, and two-
179 way ANOVA using the Holm-Sidak method were used to evaluate statistical
180 significance. One-way ANOVA and Dunnett's multiple comparisons test, with a
181 single pooled variance was also used. A p value of <0.05 was defined as statistically
182 significant and is indicated by asterisks.

183

184 **Results**

185 **qPCR provides a lower limit of detection of 2 *B. pertussis* cells.** IS481 is often
186 used as the target for qPCR detection of *B. pertussis* as it is present at ~250 copies
187 per cell in *B. pertussis*, providing great sensitivity. To develop a PMA-qPCR assay,
188 the sensitivity of qPCR for detection of *B. pertussis* was tested over a range of
189 template gDNA concentrations. A linear relationship between Ct value and template
190 concentration was observed over the range of 2 to approximately 2.42x10⁶ B1917
191 cells for qPCR (Figure 1). Ct values greater than 35 were considered to be a
192 negative reaction. Probe based detection was more sensitive than sybr-green based
193 detection (data not shown). Thus, the assay is able to detect *B. pertussis* gDNA
194 equivalent to very few bacterial cells and is linear over a wide range of *B. pertussis*
195 concentrations.

196

197 **Heat-killing *B. pertussis* at 80°C for 6 minutes maintained the integrity of cells.**

198 The ability of PMA to inhibit PCR-amplification from dead *B. pertussis* was tested
199 using heat-killed *B. pertussis*. It was envisaged that clinical samples may contain
200 dead, but intact, *B. pertussis*. Heat-killing may cause cell lysis which would not mimic
201 intact dead cells. Thus, the integrity of cells following heat killing was assessed using
202 flow cytometry. Incubation of *B. pertussis* suspensions at 80°C for 6 minutes resulted
203 in 100% killing, but with cells remaining intact and were the conditions used
204 throughout (Figure 2).

205

206 **Optimisation of PMA treatment.** The effect of PMA concentration on inhibition of
207 PCR amplification from dead *B. pertussis* was tested (Figure 3). Incubation of heat-
208 killed cells with 50 μ M of PMA resulted in a 97.42 % reduction in PCR signal
209 compared to that generated from untreated samples. Lower levels of PMA also
210 resulted in very similar levels of inhibition (Figure 3).

211

212 The optimal conditions for photo-activation of PMA were determined. Incubation
213 under dark conditions for 10 minutes followed by light activation for between 5 and
214 30 minutes resulted in greater than 99% reduction in PCR signal from dead cells
215 compared to untreated controls. Five minutes of light activation following 10 minutes
216 of darkness resulted in 99.64% reduction in detection of *B. pertussis* DNA (Figure 4).

217

218 From these optimisations, standard conditions of 50 μ M PMA and incubation in the
219 dark for 10 minutes followed by light activation for 5 minutes were selected as
220 minimal incubation times that achieved high levels of inhibition. Even though 20 μ M
221 PMA inhibited PCR amplification from dead cells, 50 μ M PMA was selected as the

222 concentration to use in the assay, as clinical samples will contain cells other than *B.*
223 *pertussis* that may sequester PMA, requiring an excess for consistent inhibition of
224 PCR signal from dead *B. pertussis*. These conditions were tested in four
225 independent assays. An average of 94.15% reduction in PCR signal was observed
226 compared to untreated controls (Figure 5).

227

228 **The effect of exogenous cells on the detection and PMA-mediated inhibition.**

229 Clinical samples are likely to contain cells other than *B. pertussis*, including
230 eukaryotic cells that contain very large amounts of DNA compared to *B. pertussis*
231 cells. Eukaryotic cells may interfere with the PMA-mediated inhibition of amplification
232 from dead *B. pertussis* preventing distinguishing between live and dead *B. pertussis*.
233 To test this, varying amounts of gDNA from THP-1 cells were combined with a
234 constant amount of *B. pertussis* gDNA, and Ct values were determined and
235 compared to samples containing *B. pertussis* only. No effect of THP-1 gDNA on
236 detection of *B. pertussis* was observed up to an equivalent of approximately 5500
237 THP-1 cells per assay (Figure 6).

238

239 It was possible that the presence of other cells would interfere with the PMA-
240 mediated inhibition of PCR signal from dead *B. pertussis*. Thus, the effect of heat-
241 killed or live THP-1 cells on PMA-mediated inhibition of PCR amplification from heat-
242 killed *B. pertussis* was tested. A 99.94% reduction in PCR signal was observed
243 indicating that THP-1 cells did not prevent PMA-mediated inhibition of PCR signal
244 from dead *B. pertussis* (Figure 7).

245

246 To test the assay's ability to distinguish between viable and dead *B. pertussis*, in the
247 presence of other cells, a constant number of THP-1 cells were combined with

248 different ratios of heat-killed and viable *B. pertussis* cells. The reduction in PCR
249 signal was proportional to the amount of heat-killed cells in each suspension (Figure
250 8) demonstrating that the assay was able to distinguish viable from dead *B.*
251 *pertussis*, even in the presence of human cells.

252

253 Collectively, these studies revealed that the THP-1 cells did not interfere with the
254 PMA-mediated inhibition of PCR signal from dead *B. pertussis* or prevent the
255 accurate enumeration of viable *B. pertussis* cells.

256

257 **Measuring the viability of *B. pertussis* during in vitro growth.** During
258 development of the assay, it was observed that PMA treatment of live *B. pertussis*
259 suspensions used as controls consistently reduced the PCR signal compared to
260 untreated samples. This suggested that *B. pertussis* colonies taken from plate grown
261 cultures contains both live and dead bacteria. To investigate this, and to determine
262 the proportion of live to dead *B. pertussis* in plate grown cultures over time,
263 suspensions of cells were made of *B. pertussis* grown on plates for either 3, 4, 5 or 8
264 days. The suspensions were treated with PMA and qPCR performed. The
265 percentage of PCR signal observed was compared to untreated controls, Figure 9.
266 *B. pertussis* is relatively slow growing and many protocols for plate growth involve
267 incubation for 72 hours to achieve visible colonies. However, at this point *B.*
268 *pertussis* viability was only 89%. Interestingly, although colony size continued to
269 increase between days 3 and 5, percentage viability decreased to 24%. Further
270 incubation resulted in further loss in viability. Thus, when using plate grown *B.*
271 *pertussis* in assays, suspensions will be a mixture of live and dead bacteria, and that
272 enumeration of *B. pertussis* by plating serial dilutions of a suspension and counting

273 the resulting CFU's will not be a measure of the total number of cells in the
274 suspension.

275

276 **Use of the assay to enumerate live and dead *B. pertussis* from human
277 challenge model samples.** The assay was developed in order to provide a method
278 for monitoring the colonisation status of participants in a novel human challenge
279 model of *B. pertussis* colonisation. During development of this model, a group of
280 participants were inoculated with 10⁵ CFU of *B. pertussis* and daily samples were
281 taken over a 14-day period to monitor colonisation (15). Samples types included
282 nasosorption fluids, pernasal swabs, throat swabs, and nasopharyngeal washes.
283 Samples were split and one portion was treated with PMA. *B. pertussis* were
284 enumerated from treated and untreated samples. In addition, portions of samples
285 were serially diluted and plated for enumeration of *B. pertussis* by traditional culture.
286 Under these conditions, 3 out of 5 participants were determined to be colonised by
287 culture of *B. pertussis* (data not shown). Samples obtained from volunteers on day 9
288 post-challenge were tested by PMA-qPCR which revealed that 4 out of 5 volunteers
289 were deemed to carry viable *B. pertussis* by this method (Figure 10). This was
290 observed after detectable viable *B. pertussis* were found in nasal washes and
291 pernasal swabs. Nasal washes from Day 11 samples also had detectable viable *B.*
292 *pertussis* in 2 of the 5 volunteers (Figure 10). Samples from positive volunteers
293 contained roughly the same number of viable and dead *B. pertussis*. Interestingly, on
294 Day 16 of sampling, two days after volunteers started azithromycin treatment to
295 eradicate the infection, all but one volunteer was negative for detectable *B. pertussis*
296 genomes. In this volunteer, the PMA-qPCR assay was able to detect low levels of

297 viable and dead *B. pertussis*, with a higher proportion of dead genomes detected
298 compared to viable genomes (Figure 10 F).

299

300 **Discussion.**

301 Ordinarily, the detection and quantification of viable *B. pertussis* is achieved through
302 culture on laboratory agar. However, the relatively slow growth rate of *B. pertussis*
303 means that the growth of countable colonies can take between 72 – 120 hours. The
304 development of a human challenge model for *B. pertussis* as part of the
305 PERISCOPE project requires that enumeration of viable *B. pertussis* be achieved in
306 a much shorter time than this, in order to be able follow colonisation closely.

307 In addition, simple enumeration of viable bacteria within a sample doesn't provide
308 the complete picture. In many scenarios, such as measuring bacterial load in an
309 infection model, it is of great interest to know the total bacterial number as
310 understanding the dynamics of bacterial growth that involves both cell division and
311 cell death is very important. Thus, while traditional qPCR provides a faster detection
312 method for *B. pertussis* than culture, the modification of a qPCR assay with the
313 introduction of PMA treatment of samples reported here enables both fast detection
314 of *B. pertussis* and the ability to distinguish viable from dead cells.

315

316 Here, we demonstrate that PMA inhibits PCR-mediated amplification from dead *B.*
317 *pertussis* and that inhibition of signal from dead cells occurs even in the presence of
318 high numbers of eukaryotic cells. This may be important for the detection of *B.*
319 *pertussis* from complex samples that contain a mix of cell types as seen in the
320 human challenge model. Samples obtained from volunteers that were identified as
321 positive for *B. pertussis* by culture, were also detected in our initial test of the PMA-

322 qPCR assay. The same volunteers were identified as being negative for *B. pertussis*
323 by both qPCR and culture, with the exception of a single sample that had low levels
324 of *B. pertussis* identified only by qPCR. Interestingly, PMA-qPCR detected
325 approximately equal numbers of viable and dead *B. pertussis*, demonstrating its use
326 to enumerate total bacteria rather than only viable. The full results of the human
327 challenge model are published elsewhere (15). Here we demonstrate that the PMA-
328 qPCR assay allowed for a determination of colonisation status within hours of
329 obtaining the samples compared to days when using culture.

330

331 The utility of the PMA-qPCR assay has been shown in the human challenge model,
332 but this assay has other uses. For example, in diagnostic laboratories, where
333 ascertaining if *B. pertussis* is viable or dead will facilitate whether to pursue culture
334 as a means to obtaining a live culture for characterisation. It is also of use in a range
335 of research and industrial settings enabling investigation of the dynamics of *B.*
336 *pertussis* growth by determining both cell division and cell death.

337

338 **Acknowledgments**

339 This work was supported by funding to the PERISCOPE Consortium. PERISCOPE
340 has received funding from the Innovative Medicines Initiative 2 Joint Undertaking
341 under grant agreement No 115910. This Joint Undertaking receives support from the
342 European Union's Horizon 2020 research and innovation programme and EFPIA and
343 BMGF.

344

345 **References**

346 1. Mattoo et al. 2005. Clinical Manifestations of Respiratory Infections Due to
347 *Bordetella pertussis* and Other *Bordetella* Subspecies Molecular
348 Pathogenesis, Epidemiology, and Clinical Manifestations of Respiratory
349 Infections Due to *Bordetella pertussis* and Other *Bordetella* Su. Clin Microbiol
350 Rev 18:326–382.

351 2. Kilgore PE, Salim AM, Zervos MJ, Schmitt H. 2016. Pertussis : Microbiology ,
352 Disease , Treatment , and Prevention. 29:449–486.

353 3. Wagner B, Melzer H, Freymüller G, Stumvoll S, Rendi-Wagner P, Paulke-
354 Korinek M, Repa A, Mooi FR, Kollaritsch H, Mittermayer H, Kessler HH,
355 Stanek G, Steinborn R, Duchêne M, Wiedermann U. 2015. Genetic variation of
356 *Bordetella pertussis* in Austria. PLoS One 10:1–13.

357 4. HPA. 2012. Confirmed pertussis cases (England and Wales). Heal Prot Rep 6.

358 5. Spokes PJ, Quinn HE, McAnulty JM. 2010. Review of the 2008–2009 pertussis
359 epidemic in NSW: notifications and hospitalisations. N S W Public Health Bull
360 21:167.

361 6. De Melker HE, Schellekens JFP, Neppelenbroek SE, Mooi FR, Rümke HC,
362 Conyn-Van Spaendonck MAE. 2000. Reemergence of pertussis in the highly
363 vaccinated population of the Netherlands: Observations on surveillance data.
364 Emerg Infect Dis 6:348–357.

365 7. Kanjia G, Raeven RHM, van der Maas L, Bindels THE, van Riet E, Metz B,
366 Soema PC, ten Have R, Frijlink HW, Amorij JP, Kersten GFA. 2018.
367 Development of a thermostable spray dried outer membrane vesicle pertussis
368 vaccine for pulmonary immunization. J Control Release 286:167–178.

369 8. Van der Maas NAT, Mooi FR, de Greeff SC, Berbers GAM, Spaendonck

370 MAEC van, de Melker HE. 2013. Pertussis in the Netherlands, is the current
371 vaccination strategy sufficient to reduce disease burden in young infants?
372 Vaccine 31:4541–4547.

373 9. Winter K, Harriman K, Zipprich J, Schechter R, Talarico J, Watt J, Chavez G.
374 2012. California Pertussis epidemic, 2010. J Pediatr 161:1091–1096.

375 10. Acosta AM, DeBolt C, Tasslimi A, Lewis M, Stewart LK, Misegades LK,
376 Messonnier NE, Clark TA, Martin SW, Patel M. 2015. Tdap Vaccine
377 Effectiveness in Adolescents During the 2012 Washington State Pertussis
378 Epidemic. Pediatrics 135:981–989.

379 11. Warfel JM, Merkel TJ. 2012. *Bordetella pertussis* infection induces a mucosal
380 IL-17 response and long-lived Th17 and Th1 immune memory cells in
381 nonhuman primates. Mucosal Immunol 6:787–796.

382 12. Ross PJ, Sutton CE, Higgins S, Allen AC, Walsh K, Misiak A, Lavelle EC,
383 McLoughlin RM, Mills KHG. 2013. Relative Contribution of Th1 and Th17 Cells
384 in Adaptive Immunity to *Bordetella pertussis*: Towards the Rational Design of
385 an Improved Acellular Pertussis Vaccine. PLoS Pathog 9.

386 13. Safarchi A, Octavia S, Luu LDW, Tay CY, Sintchenko V, Wood N, Marshall H,
387 McIntyre P, Lan R. 2015. Pertactin negative *Bordetella pertussis* demonstrates
388 higher fitness under vaccine selection pressure in a mixed infection model.
389 Vaccine 33:6277–6281.

390 14. Diavatopoulos DA, Mills KHG, Kester KE, Kampmann B, Silerova M, Heininger
391 U, van Dongen JJM, van der Most RG, Huijnen MA, Siena E, Mielcarek N,
392 Ochs MM, Denoël P, Berbers G, Buisman AM, de Jonge MI, Fenwick C,
393 Gorringe A, He Q, Kelly D, Le Grand R, Locht C, Mascart F, Mertsola J, Orfao
394 A, Pantaleo G, Pollard AJ, Preston A, Read R, Sebo P, van Els C, Vecerek B,

395 Londoño-Hayes P, de Groot R. 2019. PERISCOPE: road towards effective
396 control of pertussis. *Lancet Infect Dis* 19:e179–e186.

397 15. de Graaf H, Ibrahim M, Hill A, Gbesemete D, Vaughn A, Gorringe A, Preston
398 A, Buisman A, Faust S, Kester K, Berbers G, Diavotopoulos D, Read R.
399 Controlled human infection with *Bordetella pertussis* induces asymptomatic,
400 immunising colonisation. *Clinical Infectious Diseases*, in press.

401 16. Wu B, Liang W, Kan B. 2015. Enumeration of viable non-culturable *Vibrio*
402 *cholerae* using propidium monoazide combined with quantitative PCR. *J*
403 *Microbiol Methods* 115:147–152.

404 17. Nocker A, Cheung CY, Camper AK. 2006. Comparison of propidium
405 monoazide with ethidium monoazide for differentiation of live vs. dead bacteria
406 by selective removal of DNA from dead cells. *J Microbiol Methods* 67:310–320.

407 18. Taylor MJ, Bentham RH, Ross KE. 2014. Limitations of Using Propidium
408 Monoazide with qPCR to Discriminate between Live and Dead Legionella in
409 Biofilm Samples. *Microbiol insights* 7:15–24.

410 19. Ruike W, Higashimori A, Yaguchi J, Li Y -y. 2016. Use of real-time PCR with
411 propidium monoazide for enumeration of viable *Escherichia coli* in anaerobic
412 digestion. *Water Sci Technol* 74:1243–1254.

413 20. Nkuipou-Kenfack E, Engel H, Fakih S, Nocker A. 2013. Improving efficiency of
414 viability-PCR for selective detection of live cells. *J Microbiol Methods* 93:20–
415 24.

416 21. Bart MJ, Zeddeman A, van der Heide HG, Heuvelman K, van Gent M, Mooi
417 FR. 2014. *Complete Genome Sequences of Bordetella pertussis Isolates*
418 *B1917 and B1920, Representing Two Predominant Global Lineages*. *Genome*
419 *Announc* 2:2–3.

420 22. Probert WS, Ely J, Schrader K, Atwell J, Nossoff A, Kwan S. 2008.

421 Identification and evaluation of new target sequences for specific detection of

422 *Bordetella pertussis* by real-time PCR. J Clin Microbiol 46:3228–3231.

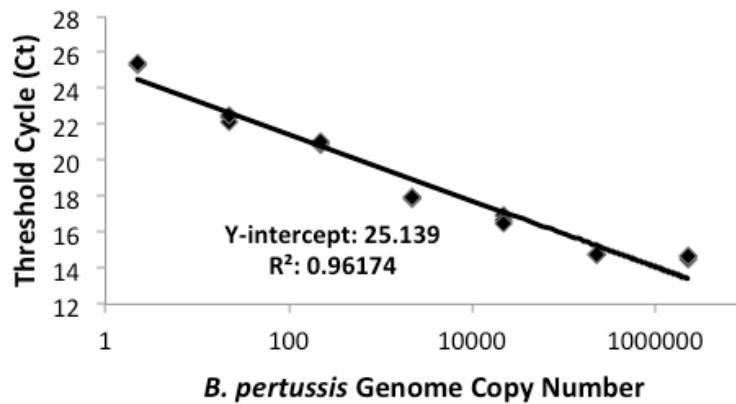
423

424

425 Tables

426 Table 1. Thermocycling Conditions for qPCR using Sybr Green:

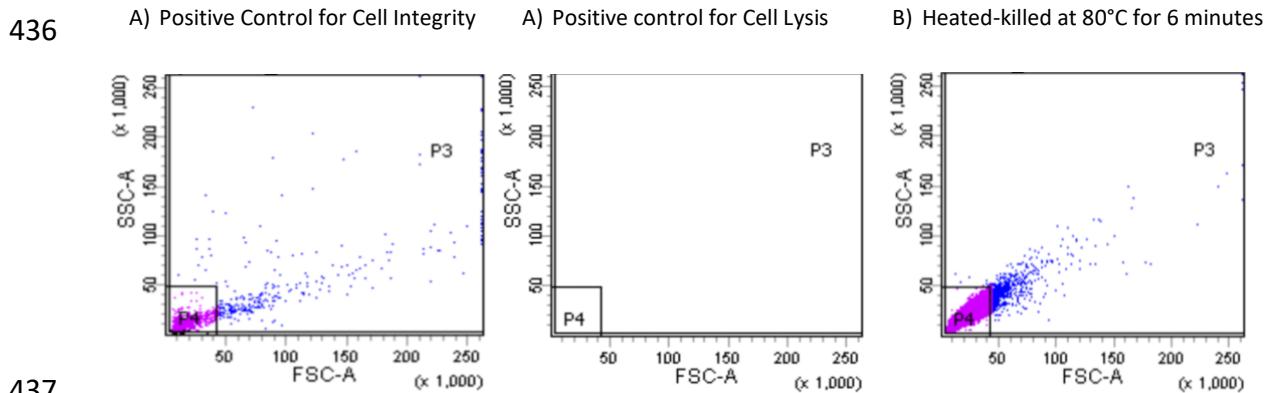
STEP	TEMP	TIME
Initial Denaturation	95°C	10 minutes
40 Cycles	95°C	15 s
	48°C	60 s
	60°C	60 s
Melt Curve Analysis	95°C	15 s
	48°C	60 s
	60°C	60 s


427

428 Table 2. TaqMan Thermocycling Conditions for qPCR:

STEP	TEMP	TIME
Step 1 Holding Stage	50°C	2 minutes
Step 2	95°C	10 minutes
40 Cycles	95°C	15 s
	60°C	60 s

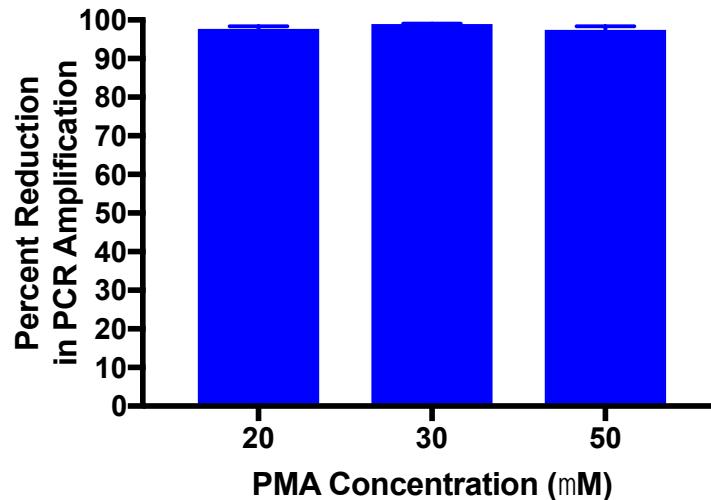
429


430 Figures

431

432 **Figure 1. Standard curve of Ct value versus template concentration.** Template
433 DNA concentration is expressed as B1917 genome copy number. The linearity was
434 determined to be from 2 to approximately 2.42×10^6 B1917 genomes for qPCR.

435

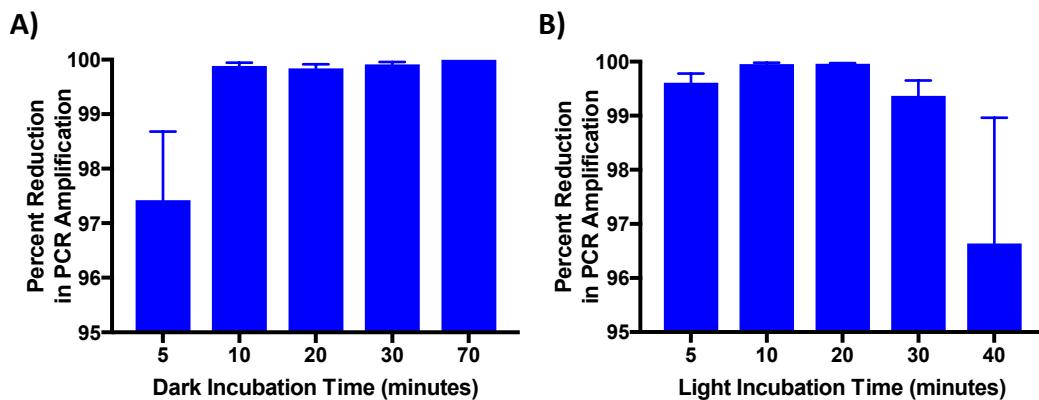


438

439 **Figure 2. The effect of heat killing on the integrity of *B. pertussis* cells,**
440 **measured by flow cytometry.** A) Positive control for cell integrity – a suspension of
441 live *B. pertussis*; B) Positive control for cell lysis – detergent lysed *B. pertussis*; C)
442 Heat-killed *B. pertussis* suspension. The heat-killed *B. pertussis* suspension
443 incubated for 6 minutes at 80°C displayed similar scatter as the live cell suspension.
444 No particles were detected in a suspension of detergent-lysed *B. pertussis*.

445 Therefore, cells remained intact in the heat-killed *B. pertussis* suspension incubated
446 for 6 minutes at 80°C when compared to the positive cell integrity control.

447

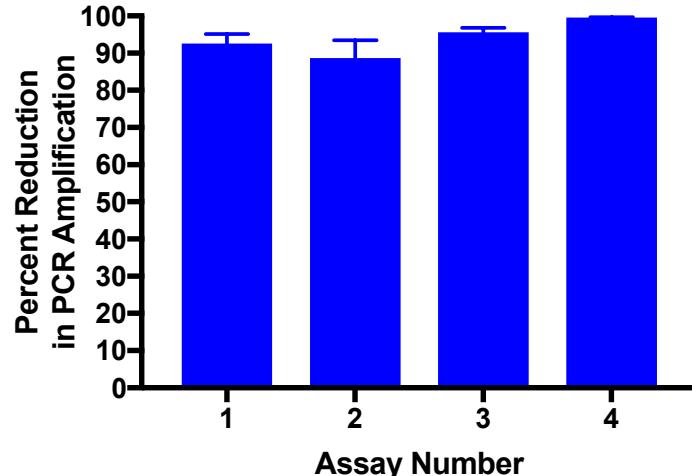


448

449 **Figure 3. The effect of PMA concentration on the reduction of the PCR
450 amplification signal from heat-killed cells.** Treatment of samples with either 20
451 μM , 30 μM , or 50 μM of PMA produced a $\geq 97\%$ reduction in the PCR amplification
452 signal compared to untreated samples. Error bars represent standard deviations
453 from two biological replicates. Data from a representative experiment repeated three
454 times.

455

456



457

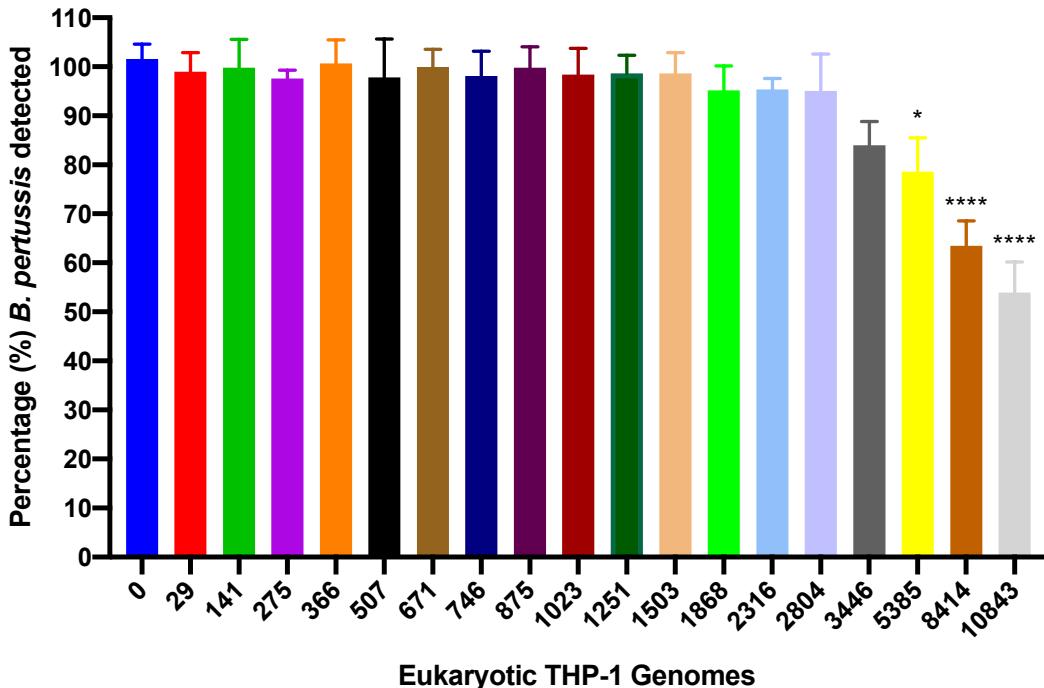
458

459 **Figure 4. The effect of dark and light exposure times on PMA-inhibition of PCR**
460 **amplification. A) Dark incubation B) Light Incubation.** PMA and untreated heat-killed
461 suspensions were incubated for 10, 20, 30, and 70 minutes in the dark followed by
462 exposure to 5 minutes of light. 10 minutes or longer of incubation in the dark
463 produced a $\geq 99\%$ reduction in the PCR amplification signal. Optimal light incubation
464 periods were determined by incubating untreated and PMA treated heat-killed
465 suspensions in the dark for 10 minutes followed by light exposure for 5, 10, 20, 30,
466 and 40 minutes. Incubating PMA treated heat-killed samples under light for periods
467 of 5, 10, 20, and 30 minutes produced a 99% or greater reduction in the PCR
468 amplification signal. Five minutes was selected as the standard light incubation
469 period. Error bars represent standard deviation from two biological replicates. The
470 experiment was repeated with the same result.

471

472

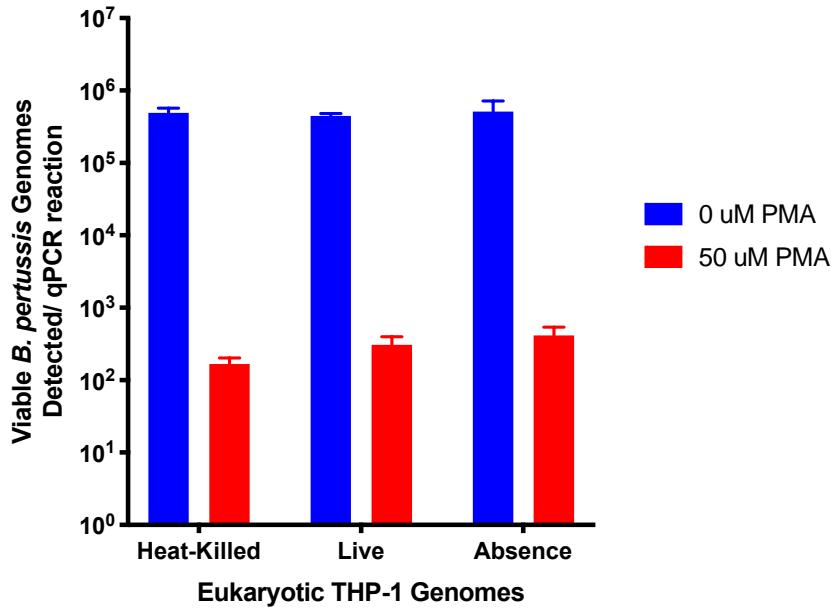
473 **Figure 5. Selected assay conditions gave reproducible inhibition of PCR signal**


474 **from dead cells.** Heat-killed samples were treated with 50 μ M of PMA and

475 incubated in the dark for 10 minutes followed by 5 minutes of light activation. A

476 94.15% reduction in the PCR amplification signal was observed. Error bars represent

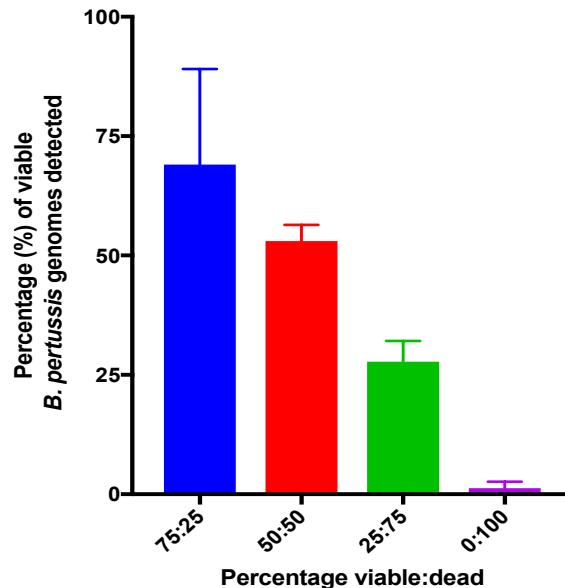
477 standard deviations from five biological replicates.


478

479

480 **Figure 6. Effect of eukaryotic gDNA on detection of *B. pertussis*.** Varying
481 amounts of gDNA from THP-1 cells were combined with gDNA equivalent to 10^3 *B.*
482 *pertussis* cells. No interference in detection of *B. pertussis* was observed up to the
483 equivalent of 3446 THP-1 cells, after which the sensitivity of detection was reduced
484 when compared to viable *B. pertussis* detected in the presence of 0 THP-1 cells.
485 *: $p < 0.05$, determined by one-way ANOVA and Dunnett's multiple comparisons test,
486 with a single pooled variance. Error bars represent standard deviations from three
487 biological replicates.

488

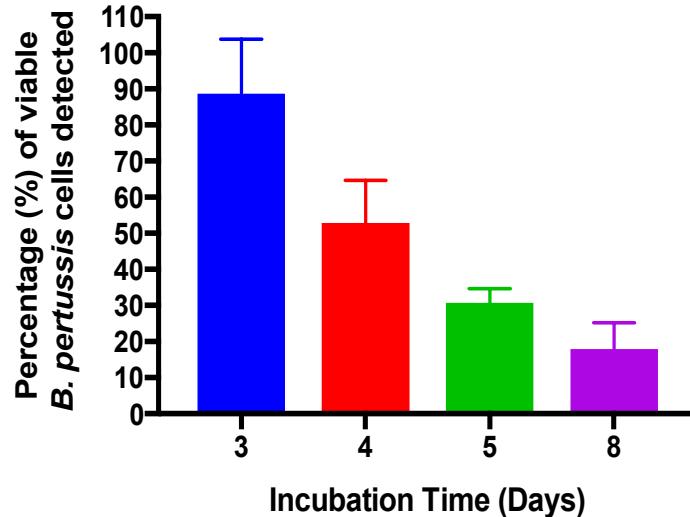

489

490

491 **Figure 7. Eukaryotic THP-1 gDNA did not interfere with enumeration of *B.***

492 ***pertussis*.** gDNA from 10^6 heat-killed *B. pertussis* were combined with either 10^5
493 heat-killed THP-1 cells, 10^5 live THP-1 cells or a no THP-1 cell control and treated
494 with PMA. Non PMA-treated samples were run in parallel. The presence of live or
495 dead THP-1 cells did not interfere with the action of PMA on dead *B. pertussis* cells.
496 Error bars represent standard deviations from three biological replicates.

497



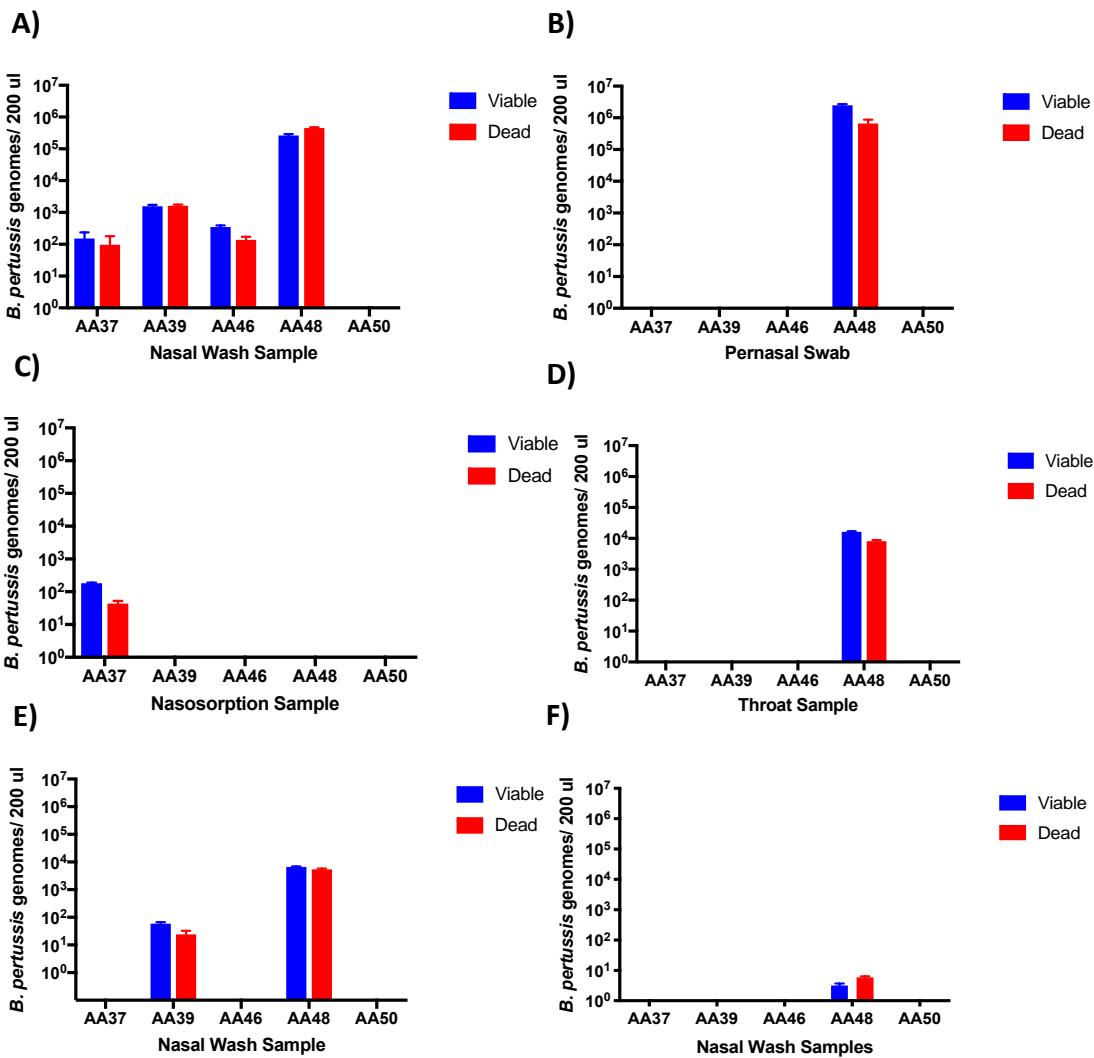
498

499

500 **Figure 8. Percentage of live *B. pertussis* cells enumerated from PMA treated**
501 **samples in the presence of eukaryotic cells.** 100,000 THP-1 cells were combined
502 with suspensions of different ratios of heat-killed and viable *B. pertussis* cells. The
503 assay accurately distinguished viable from dead *B. pertussis* in each suspension.
504 Error bars represent standard deviations from three biological replicates.

505

506


507

508 **Figure 9. The viability of *B. pertussis* decreases during growth on agar plates.**

509 The viability of *B. pertussis* growing on agar plates was measured over time. Viability
510 decreased as the incubation time increased with only 24% of cells being viable after
511 5 days of incubation. Error bars represent standard deviations from three biological
512 replicates.

513

514

515

516

517

518 **Figure 10. PMA-qPCR detected viable *B. pertussis* from Human Challenge**

519 **Model samples within hours.** Viable and dead *B. pertussis* were enumerated in
520 samples from 5 volunteers in the Human Challenge Model, collected Day 9 (A-D),
521 Day 11 (E) and Day 16 (F) after inoculation, from the sample type indicated. 200ul of
522 samples were processed. Day 16 samples are taken two days after volunteers
523 started azithromycin treatment to clear infection. Values below the lower limit of
524 detection were considered undetectable and given a value of 0.

525