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Abstract: 17 

Isogenic cells cultured in the same nutrient-rich environment show heterogeneity in their 18 

proliferation rate. To understand the differences between fast and slow-proliferating cells 19 

and to identify markers for proliferation rate that can be used at the single-cell level, we 20 

developed a method to sort cells by their proliferation rate, and performed RNA sequencing 21 

(RNA-Seq) on slow, medium and fast proliferating subpopulations of pluripotent mouse 22 

embryonic stem cells (mESCs) and immortalized mouse fibroblasts. We identified a core 23 

proliferation-correlated transcriptome that is common to both cell types, to yeast, and to 24 

cancer cells: fast proliferating cells have higher expression of genes involved in both protein 25 

synthesis and protein degradation. In contrast to cells sorted by proliferation rate, RNA-seq 26 

on cells sorted by mitochondria membrane potential revealed a highly cell-type specific 27 

mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast 28 

proliferating, while the opposite is true for fibroblasts. In addition, cell-to-cell variation in 29 

proliferation rate is highly predictive of pluripotency state in mESCs, with cells of more naïve 30 

pluripotent character having a slower proliferation rate. Finally, we show that the 31 

proliferation signature learned from sorted cells can predict proliferation from scRNAseq 32 

data in both mESCs and in the developing nematode. While the majority of the 33 

transcriptional-signature associated with cell-to-cell heterogeneity in proliferation rate is 34 

conserved from yeast to embryos to differentiated cells to cancer, the metabolic and 35 

energetic details of cell growth are highly cell-type specific. 36 

 37 

 38 

Introduction 39 

Rates of cell growth and division vary greatly, even among isogenic cells of a single 40 
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cell-type, cultured in the same optimal environment [1]. Cell-to-cell heterogeneity in 41 

proliferation rate has important consequences for population survival in bacterial antibiotic 42 

resistance, stress resistance in budding yeast, and chemo-resistance in cancer [2-10]. 43 

Time-lapse fluorescence microscopy has shown that cell-to-cell variability in the expression 44 

of some genes, such as p53 and p21, is associated with cell-to-cell variability in proliferation 45 

and survival [1, 11]. However, these methods can detect dynamic relationships between 46 

gene expression and cell fate, but are limited to measurements of one or two genes. 47 

Single-cell RNA sequencing measures transcriptome-level heterogeneity but does not 48 

directly link this to cell-biological heterogeneity in organelle state, or to dynamic 49 

heterogeneity in proliferation or drug resistance. Transcriptome-level approaches for 50 

understanding within-population cell-to-cell heterogeneity in proliferation and other 51 

dynamic processes are lacking. While the presence of intrapopulation variation in 52 

proliferation, transcriptome, and organelle-state in both steady-state and in differentiation 53 

populations is well established, the relationship among the three remains unclear. 54 

 55 

One possibility is that the proliferation-correlated gene expression program is the same, 56 

regardless of if one looks at interpopulation variation due to genetic or environmental 57 

differences, or intrapopulation heterogeneity due to epigenetic differences. However, in the 58 

budding yeast Saccharomyces cerevisiae, the expression program of intrapopulation 59 

heterogeneity in proliferation rate only partially resembles that of cells growing at different 60 

rates due to genetic or environmental perturbations [8]. The relation between gene 61 

expression and proliferation rate is much less well studied in mammalian cells. 62 

 63 

In yeast, in tumors, and in organs, genetic, environmental and developmental changes 64 

cause changes in proliferation rate, and changes in the expression of hundreds or possibly 65 

thousands of genes [12-16]. Unsurprisingly, many of the genes for which changes in 66 

expression are associated with changes in proliferation rate are associated with adverse 67 

clinical outcomes in cancer and with antibiotic and antifungal resistance [17, 18]. Within a 68 

population of microbes, and within a single multicellular organism, the correct balance of 69 

proliferation states and rates is essential. Yet measuring this heterogeneity is difficult, 70 

without which, understanding the consequences of this heterogeneity is impossible. 71 

 72 

Expression is associated with phenotype, but mRNAs themselves do not necessarily 73 

always cause phenotypes. Instead, they can often serve as markers for cell-biological 74 

differences between cells. Phenotypes are mostly driven by larger cell-biological differences 75 

between cells, such as differences in metabolic state. Cell-to-cell heterogeneity in 76 

mitochondria state has been linked to differences in transcription rates, growth rates, 77 

proliferation and developmental trajectories [19-21]. Both cancer cells and pluripotent stem 78 

cells have atypical metabolisms and use glycolysis to produce much of their ATP, instead of 79 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/782037doi: bioRxiv preprint 

https://doi.org/10.1101/782037
http://creativecommons.org/licenses/by-nc/4.0/


the mitochondria-based oxidative phosphorylation, which is the predominant form of 80 

ATP-generation in differentiated cells [22]. It is unknown if this inter-population variation in 81 

proliferation, transcriptome, and mitochondria extents to intra-population variation among 82 

single cells within a single isogenic population. 83 

 84 

Pluripotent stem cells exist in different pluripotency states called naïve or primed based 85 

on culture conditions and embryonic origin [23]. Mouse ESCs reflect the naïve pluripotency 86 

state of the blastocyst epiblast and can be cultured in either serum+LIF or 2i+LIF conditions, 87 

the latter involving inhibitors of FGF/ERK and GSK3 pathways. Culture in 2i+LIF conditions 88 

promotes a ground state more closely mirroring the in vivo situation with reduced 89 

heterogeneity in pluripotency gene expression and different cell cycle profile when 90 

compared to cells grown in serum+LIF [24-26]. Nevertheless, even in 2i+LIF conditions, 91 

mESCs display a certain amount of cell-to-cell heterogeneity [27, 28] and it is unclear, how 92 

this relates to heterogeneity in differentiated cell types when it comes to gene expression 93 

and its link to proliferation rate. 94 

 95 

To understand the relation between intra-population transcriptome heterogeneity and 96 

heterogeneity in proliferation, we developed a FACS-based method to sort cells by 97 

proliferation rate. We applied this method to mouse immortalized fibroblasts and to mESCs 98 

and performed RNA-seq on fast, medium and slow proliferating cell sub-populations. We find 99 

that ribosome-biogenesis (protein synthesis) and proteasome-related (protein degradation) 100 

genes are highly expressed in fast proliferating fibroblasts and ESCs. Moreover, the 101 

proliferation signature is conserved across cell-type and species, from yeast to cancer cells, 102 

allowing us to predict the relative proliferation rate from the transcriptome; we use the gene 103 

expression signature to correctly predict proliferation from scRNA-seq data not only in 104 

mESCs, but also during C. elegans development, in spite of no nematode data going into the 105 

initial model In contrast to the generality of this main transcriptional signature, many 106 

mitochondria-related genes were upregulated in fast proliferating fibroblasts, yet 107 

down-regulated in fast-proliferating mESCs. Consistent with this, the high mitochondria 108 

membrane potential is indicative of slow proliferating fibroblasts, while in mESCs it is 109 

characteristic of fast proliferating cells. Taken together, these results show the existence of a 110 

core protein-synthesis and protein-degradation expression program that is conserved across 111 

cell types and species, from yeast to mice, and a metabolic and energy-production program 112 

that is highly cell-type specific. 113 

 114 

Results 115 

A method to sort single mammalian cells by cell-to-cell heterogeneity in proliferation rate 116 

To understand the causes and consequences of intrapopulation cell-to-cell heterogeneity 117 
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in proliferation rate in mammalian cells we developed a method for sorting single 118 

mammalian cells by their proliferation rate (Figure 1). The cell-permeable dye 119 

carboxyfluorescein succinimidyl ester (CFSE) covalently binds to free amines within cells, 120 

thus staining most intracellular proteins at lysine residues. We reasoned that in cell types 121 

that divide symmetrically, such as embryonic stem cells and immortalized fibroblasts [29], 122 

the equal dilution of CFSE into the two daughter cells would enable us to count the number 123 

of divisions that each cell had undergone. To eliminate confounding effects due to 124 

differences in initial staining we used fluorescence-activated cell sorting (FACS) to obtain an 125 

initially homogeneous cell population of cells with identical CFSE signals (Figure 1A). Thus, 126 

the CFSE signal should be independent of cell-to-cell variation protein synthesis rates, as the 127 

initial signal in each cell is determined by the FACS gate and not by dye update or protein 128 

synthesis during staining. In addition, CFSECFR2 conjugates are stable and unable to exit the 129 

cell [30]; the dye signal is stable for over eight weeks in non-dividing lymphocytes [31]. The 130 

measured CFSE signal should be relatively insensitive to cell-to-cell variation in protein 131 

degradation. We cultured this sorted starting cell population for several generations, during 132 

which time the CFSE signal decreases with each cell division (Figure 1B). Consistent with the 133 

decrease in CFSE being mostly due to cell division, the population-level doubling time of 134 

each cell type can be calculated based on the decrease in CFSE signal over time (Figure 1C, 135 

D), and these doubling times are consistent with those reported by other methods [32, 33]. 136 

After five days for fibroblasts growing in MEF (mouse embryonic fibroblast) medium, and 137 

three for ESCs grown in pluripotent ground-state promoting 2i+LIF conditions [34], we used 138 

FACS to isolate cells with high, medium, and low CFSE signal, and performed RNA-seq on 139 

each sub-population. This allowed us to identify genes whose expression is positively or 140 

negatively correlated with proliferation rate within a single population (Figure 1E). 141 

 142 

Slow-proliferating ESCs are of more naïve pluripotent character than fast-proliferating ESCs 143 

Embryonic stem cells exhibit cell-to-cell heterogeneity in culture based on the 144 

expression of naïve pluripotency marker genes such as Nanog, Stella (Dppa3) or Rex1 (Zfp42) 145 

[35-37]. Although this heterogeneity is mostly apparent in ESCs cultured in serum+LIF, even 146 

when cultured in ground state-pluripotency-promoting 2i+LIF conditions, the sub-population 147 

of ESCs with low NANOG-levels displays propensity for lineage-priming and differentiation 148 

[28, 38]. To determine if cell-to-cell variation in proliferation rate was caused by a 149 

sub-population of mESCs initiating a differentiation program, we determined the fold-change 150 

in expression between slow and fast proliferating sub-populations for a set of genes that are 151 

upregulated during lineage commitment. We found no consistent enrichment of these 152 

differentiation genes in fast versus slow proliferating cells, as they could be found to be 153 

expressed in either population (Figure 2A). However, the slow proliferating sub-population 154 

did have higher expression of genes that are upregulated in naïve pluripotent cells, and in 155 
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2-cell stage embryos (Figure 2B,C), suggesting that slow proliferating mESCs are in a more 156 

naïve pluripotent cell state than their fast proliferating counterparts. 157 

 158 

 159 

Processes correlated with cell-to-cell heterogeneity in proliferation rate that are consistent 160 

across cell-types and species 161 

To identify functional groups of genes that are differentially expressed between fast and 162 

slow proliferating cells within a single population we performed gene set enrichment analysis 163 

(GSEA) [39, 40] (Figure 3A and 3B) on mRNA-seq data from fast and slow proliferating 164 

subpopulations. We found that, in both fibroblasts and ESCs, as well as in the budding yeast 165 

S. cerevisiae, genes involved in ribosome-biogenesis and the proteasome are more highly 166 

expressed in fast proliferating cells (Figure 3C, 3D and Table S1). High expression of 167 

ribosomal genes is a common signature for fast proliferating cells [12, 41], and cancer cells 168 

often exhibit high proteasome expression [42-44], but it is not clear if this is related to 169 

proliferation in-and-of-itself or due to aneuploidy and other genetic alterations [45]. These 170 

results suggest that coordinated regulation of the ribosome and proteasome are a signature 171 

of fast proliferating cells across both cell-types and species. 172 

 173 

In addition to ribosome-biogenesis and the proteasome, several other gene sets are 174 

differentially expressed between fast and slow proliferating cells in both fibroblasts and ESCs 175 

(Figure 3C). mTORC1 (mammalian Target Of Rapamycin Complex 1) functions as a nutrient 176 

sensor and regulator of protein synthesis, and is regulated by nutrient and cytokine 177 

conditions that cause differences in proliferation [46, 47]. We find that, even in the absence 178 

of genetic and environmental differences, mTORC1 is more active in fast proliferating cells. 179 

Activation of mTORC1 can promote ribosome-biogenesis [46, 48], however, there is still 180 

controversy about the regulation of proteasome activity by mTORC1 [47, 49-53]. We 181 

observed in both fibroblasts and ESCs, that fast proliferating subpopulations exhibit a 182 

transcriptional signature of increased protein synthesis, protein degradation. 183 

 184 

Furthermore, we identified target genes of MYC to be more highly expressed in fast 185 

proliferating cells. MYC, a transcription factor frequently amplified in cancer, is estimated to 186 

regulate the transcription of at least 15% of all genes [54] and is a master regulator of cell 187 

growth [55]. Overexpression of MYC promotes ribosome-biogenesis and cell growth [56, 57], 188 

and active mTORC1 can promote MYC activation [58, 59]. Our data suggest that increased 189 

expression of MYC and increased mTORC1 activity are general properties of fast-proliferating 190 

cells, and those genetic or environmental perturbations are not necessary to cause 191 

differential expression of these pathways. 192 

 193 
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scRNA-seq of developing nematodes revleals that, compared to terminally differentiated cells, 194 

proliferating cells have higher expression of ribosome biogenesis and proteasome genes 195 

 Single-cell RNA sequencing is a powerful method for understanding cell-to-cell 196 

heterogeneity, but it suffers from high levels of technical noise at the single-gene level. In 197 

addition, most commonly used markers (PCNA, Ki67) for measuring proliferation rates in bulk 198 

populations are cell-cycle regulated genes; what is really being measured is the fraction of 199 

the population that is proliferating, usually the fraction that is in S phase. Thus, these 200 

markers cannot be used to predict proliferation rates from scRNAseq data. We reasoned that, 201 

as the average expression of large sets of genes, many of which are highly expressed and 202 

therefore have lower levels of technical noise, the ribosome biogenesis and proteasome 203 

gene sets would be ideal for differentiating proliferating vs non-proliferating cells in 204 

scRNA-sequencing data, indpenedent of the cell-cycle position of individual cells. To test this 205 

we used a new scRNA-seq dataset of 86,024 cells from C. elegans in which cells have been 206 

classified into terminally differentiated and preterminal cell-types[60]. We find that 207 

terminally differentiated cells have lower expression of ribosome biogenesis and proteasome 208 

genes (Figure 3E), consistent with terminally differentiated cells having proliferation rates of 209 

zero.  210 

 211 

Coordination of protein-synthesis and protein-degradation across cell types, organs and 212 

species. 213 

 214 

Significant enrichment results of proteasome and ribosome-biogenesis in fast 215 

proliferating fibroblasts, ESCs and yeast suggested that expression of the proteasome and 216 

ribosome-biogenesis may serve as cell-type independent reporters of growth rate. To test 217 

this hypothesis we analyzed RNA-seq data from 528 cancer cell lines in the Cancer Cell Line 218 

Encyclopedia [61] for which the doubling time is roughly known. As GSEA is a measure of 219 

differential expression, we created a single common control sample as the median 220 

expression of each gene across all 528 cancer cell lines, and used GSEA to calculate the NES 221 

(Normalized Enrichment Score) for all gene sets between the single control and each cancer 222 

cell line (Figure 4A).  223 

 224 

Ribosome and proteasome-related gene sets were among the gene sets most highly 225 

correlated with growth rate across all cancers (Figure 4B). The absolute values of the 226 

correlation of all gene sets with the reported doubling time were low, possibly because the 227 

doubling times of the cancer cell lines were not measured using exactly the same 228 

experimental conditions as were used for the RNA-seq experiments. We also calculated the 229 

correlation between measured doubling time and meta-PCNA [17, 62], an RNA-seq-based 230 

method for estimating growth rate at the population level that is independent of ribosomal 231 

or proteasomal gene expression, but found similar levels of correlation (Figure 4C). 232 

Interestingly, proteasome and ribosome gene sets were far more strongly correlated with 233 
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each other than with proliferation rate (Figure 4D), suggesting a strong mechanistic coupling 234 

between increased protein production and a need for increased protein degradation. 235 

 236 

Most functional groups enriched in both fast fibroblast and ESCs are positively 237 

correlated with each other across the 528 cancer cell lines (Figure 4D and Table S1). This is 238 

not the case for gene sets whose expression is negatively correlated with intra-population 239 

variation in proliferation rate. Several p53 related gene sets are strongly negatively correlated 240 

with proliferation within both fibroblasts and ESCs (Figure 4D and Table S1), but the results 241 

are much more heterogeneous across cancer cell lines, possibly reflecting the cancer-specific 242 

mutation status of genes in this pathway.  243 

 244 

To test if the coupling between ribosome biogenesis and proteasome expression holds 245 

across species, we analyzed the bulk RNA-seq data across developmental stages, covering 246 

multiple organs in seven species [16]. A high correlation between ribosome biogenesis genes 247 

expression and proteasome genes expression was found across all seven species (Figure 4E). 248 

The coordinated expression change with developmental stages between ribosome 249 

biogenesis genes and proteasome genes across different organs in seven species suggests 250 

that the coordination between protein synthesis and degradation is common across all 251 

species and cell-types (Figure S1). 252 

 253 

The major cell-type specific proliferation-correlated expression is in mitochondria and 254 

metabolism related genes. 255 

 256 

While the pattern of within-population proliferation-correlated expression in yeast, 257 

fibroblasts and ESCs was broadly similar with regard to genes involved in protein synthesis 258 

and degradation, the behavior of metabolic and mitochondria-related genes in fast and slow 259 

proliferating subpopulations was highly cell-type specific. Mitochondria membrane and 260 

respiratory chain-related gene sets were more highly expressed in fast proliferating 261 

fibroblasts, but not in fast proliferating ESCs (Table 1). These results are consistent with 262 

differential mitochondrial states in ESCs when compared to differentiated cells like 263 

fibroblasts [22], which suggest the existence of different types of metabolism and 264 

proliferation-related heterogeneity between pluripotent and differentiated cell-types. Fast 265 

proliferating sub-populations of different cell-types display differential importance and 266 

metabolic states related to mitochondria. We also observed cell-type specific differences in 267 

glycolysis, fatty acid metabolism, and other metabolic processes, suggesting fundamental 268 

differences in the metabolic pathways required for fast proliferation between pluripotent 269 

ESCs and differentiated cells like fibroblasts (Table 1). 270 

 271 

  272 
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Cell-to-cell heterogeneity in mitochondria state predicts variation in proliferation both in ESCs 273 

and fibroblasts, but in opposite directions.  274 

Mitochondrial membrane potential is a major predictor of cell-to-cell heterogeneity in 275 

proliferation rate in budding yeast [9]. Mitochondria-related genes are more highly 276 

expressed in the fast proliferating subpopulation of fibroblasts. In contrast, these genes are 277 

slightly more highly expressed in the slow proliferating subpopulation of ESCs. This suggests 278 

that the relation between cell-to-cell heterogeneity in mitochondria state and proliferation 279 

may be different in these two cell types. To test the ability of mitochondrial membrane 280 

potential to predict in proliferation rate in mammalian cells we used the mitochondria 281 

membrane potential-specific dye TMRE to stain fibroblasts and ESCs, and performed both 282 

RNA-seq and proliferation-rate assays on high and low TMRE sub-populations (Figure 5A). 283 

 284 

Unlike the proliferation-based sort (Figure 1), sorting ESCs and fibroblasts by 285 

mitochondria-state (Figure 5) resulted in highly divergent expression profiles. ESCs with high 286 

TMRE signal have high expression of ribosome-biogenesis, proteasome, MYC-targets and 287 

mitochondrial-related genes, while in fibroblasts these gene sets are more highly expressed 288 

in the low TMRE sub-population (Figure 5B, 5C and Table S2). This is consistent with the 289 

opposite behavior of mitochondria-related gene sets in proliferation-rate sorted cells from 290 

the two cell types. 291 

 292 

The relation between mitochondria and proliferation is highly cell-type specific. 293 

To understand the relationship between heterogeneity in proliferation and mitochondria 294 

state across cell types and species we performed principal component analysis (PCA) on 295 

RNA-seq data from all our experiments plus data from three additional studies including data 296 

from yeast sorted by both proliferation rate and mitochondria membrane potential (TMRE), 297 

and mouse CD8+ T-lymphocytes sorted by mitochondria membrane potential (TMRE) [8, 9, 298 

21] (Figure 6A). The first component is correlated with proliferation, and sorting yeast, ESCs 299 

and fibroblasts all results in sorting cells along the first PC, with fast cells from each cell type 300 

having positive values. The second component is correlated with mitochondria state; high 301 

TMRE cells from all four cell types have positive values. However, cells sorted by proliferation, 302 

while they behave similarly in PC1 (proliferation), exhibit opposite behaviors in PC2 303 

(mitochondria state), with fast fibroblasts and yeast cells having negative values, similar to 304 

low TMRE cells, while fast ESCs have positive values, similar to high TMRE cells (black boxes 305 

in Figure 6B). Thus, unlike the relationship between protein synthesis and degradation and 306 

proliferation, the relation between mitochondria and proliferation is highly cell-type specific. 307 

 308 

These expression data make the following prediction: ESCs with high TMRE should have a 309 

shorter doubling time, while fibroblasts with high TMRE should have a longer doubling time. 310 
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To test this we sorted fibroblasts and ESCs by TMRE, and measured the doubling time. In 311 

addition, we tested the effect of ascorbic acid (vitamin C, an antioxidant) and O2 levels 312 

(ambient 21% atmospheric vs. low 5% physiological levels). While there was no significant 313 

effect of either ascorbic acid or O2 in either cell type (Table S3), the transcriptome-data 314 

correctly predicted the results of the experiment, with high TMRE fibroblasts proliferating 315 

more slowly, while high TMRE ESCs proliferated more rapidly (Figure 6C). Thus, across yeast, 316 

ESCs and fibroblasts, while mitochondria state and proliferation rate co-vary within a single 317 

popopulation, the direction of this correlation is different between pluripotent ESCs and 318 

other cell types. 319 

 320 

Single mESCs proliferating at different rates due to media fall along the axis of mESCs sorted 321 

by proliferation rate.   322 

    The above suggests that we should be able to use PCA space to predict proliferation 323 

rates of single cells from scRNA-seq data. This is in contrast to current proliferation markers, 324 

such as PCNA and Ki67 which are cell-cycle regulated, and whose expression will not 325 

correlate with proliferation at the single-cell level. In addition, expression measurements for 326 

single genes are noisy; we reasoned that the position of a single cell in PCA space should be 327 

more robust, as it takes into account the expression of most genes in the cell. As a control we 328 

projected expression data from mESCs grown in either serum+LIF or 2i+LIF conditions [63] 329 

into the same PCA space from Figure 6. The slower-proliferating 2i+LIF grown cells are 330 

perfectly separated from faster-proliferating serum+LIF grown cells by PC1, and, indeed, fall 331 

exactly along the fast-slow sorted mESC expression axis (Figure 7A), consistent with the 332 

combination of PC1+PC2 representing cell-type specific cell-to-cell variation in 333 

proliferation-correlated gene expression. We observed an inter-population relation between 334 

PC1 (proliferation) and the expression of pluripotency markers, but no intra-population 335 

relation (Figure 7B), which is inconsistent with our results of sorting by proliferation rate 336 

(Figure 2B). This may be due to possiblity that technical noise in single cell sequencing 337 

drowned out the heterogeneity in proliferation rate, incomparability across experiments and 338 

labs, or that PCA is not sufficient to separate by both proliferation and pluripoency. Cells 339 

grown in serum+LIF have higher cell-to-cell heterogeneity in gene sets associated with 340 

proliferation rate compared with cells grown in 2i+LIF (Figure 7C,D), reflecting the higher 341 

homogeneity associated with ground state pluripotency of 2i+LIF grown cells[24]. 342 

 343 

Discussion 344 

In summary, we have developed a method to sort cells by their proliferation rate and 345 

have examined the whole picture of gene expression patterns related to cell-to-cell 346 

heterogeneity in proliferation (Table S4). We found with that genes involved in protein 347 

synthesis (ribosome-biogenesis translation intitiation), and in protein degradation (the 348 
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proteasome and proteasome-related protein degradation) are highly expressed in fast 349 

proliferating mammalian cells and yeast cells. Previous studies have reported that high 350 

expression of the proteasome in fast-growing cells can degrade misfolded protein because 351 

the fast protein synthesis in fast-growing cells will produce more incorrectly folded proteins 352 

[47, 64, 65], which is consistent with our enrichment of proteasome-related gene sets in fast 353 

proliferating cells. 354 

 355 

In all non-cancer mammalian cells, we also found the mTORC1 signaling pathway 356 

enriched in fast proliferating cells and P53-targets enriched in slow proliferating cells. Our 357 

results show both upregulations of the mTORC1 signaling pathway and proteasome activity 358 

in fast proliferating cells, which is consistant with several previous studies [9, 12-15]. 359 

 360 

Our analysis of fast versus slow proliferating ESCs cultured in 2i+LIF conditions indicated 361 

at several levels that slow proliferating cells were of more naïve ground state pluripotent 362 

character than fast proliferating cells. First, this was supported by the fact that they displayed 363 

higher expression of naïve pluripotency marker genes and markers of 2C-like cells (Figure 364 

2B,C). Second, we observed enrichment of E2F targets and genes involved in G1 S cell cycle 365 

phase transition (Table 1) in our fast cycling ESC population, indicative of a shortened G1 366 

phase as described normally for ESCs cultured in serum+LIF conditions [26]. This is also 367 

consistant with the observation, that our ESC line proliferates much faster when cultured in 368 

serum+LIF, when compared to the 2i+LIF conditions used in this study (S.F.G., unpublished). 369 

Finally, although we could find differentiation genes to be expressed both in fast and slow 370 

proliferating cells (Figure 2A), we saw a number of differentiation pathways to be enriched 371 

specifically in fast dividing ESCs (Table 1). In summary, even when ESCs are cultured in 372 

ground-state pluripotency promoting 2i+LIF conditions, they display heterogeneity in 373 

proliferation rate, with the slow proliferating being of more naïve pluripotent character when 374 

compared to fast dividing cells. 375 

 376 

While we observed ESCs to behave similar to other cell types like fibroblasts or yeast 377 

when it comes to gene expression signatures characteristic of fast proliferating cells related 378 

to protein synthesis and turnover (Figure 3C), we found a very different behavior when it 379 

comes to regulation of metabolism. Although the growth rate can be predicted by 380 

mitochondrial membrane potential in Saccharomyces cerevisiae [23], where it is negatively 381 

correlated with proliferation rate like in fibroblasts as we show in this study, our results show 382 

mitochondrial membrane potential to be positively correlated with proliferation rate in ESCs 383 

(Figure 6), which suggests mitochondrial membrane potential has different functions in 384 

pluripotent cells when compared to differentiated cell types or yeast. This is corroborated by 385 

our gene expression analysis of cells with high vs. low mitochondrial membrane potential 386 

(Figure 5B-C), where we found pathways linked with fast proliferating cells to be enriched in 387 
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fibroblasts with low mitochondrial membrane potential but on the contrary enriched in ESCs 388 

with high mitochondrial membrane potential. Surprisingly, primed pluripotent stem cells 389 

have been described to rely more non-oxidative, glycolysis-based metabolism than naïve 390 

pluripotent stem cells [66-68], which appears in contradiction with our result that our slow 391 

proliferating, mitochondria activity low ESCs being more naïve-like. However, TMRE is not a 392 

direct measure of ATP generation by mitochondria; yeast cells that are repsiring and 393 

producing all of their ATP using their mitochondria, and yeast cells unable to respire and 394 

unable to produce any ATP using their mitochondria both have high TMRE signals[9]. 395 

Differentiated cells in general rely more on oxidative metabolism than pluripotent cells, 396 

therefore our fast proliferating ESCs could potentially reflect a more differentiated state. In 397 

conclusion, we were able to show that pluripotent ESCs behave similarly to other cell types 398 

in their relation between proliferation rate and aspects like protein turnover, but in the 399 

opposite direction when it comes to their metabolic state. For our full understanding of the 400 

pluripotent state it will be important to reveal why and how metabolism and proliferation 401 

rate are regulated so differently when compared to differentiated cells. 402 

 403 

 404 

MATERIALS AND METHODS 405 

 406 

Cell culture growth conditions 407 

Tail tip fibroblasts (TTFs) were isolated from a female newborn mouse from a Mus musculus 408 

x Mus Castaneus cross and immortalized with SV40 large T antigen [69]. The clonal line 409 

68-5-11 [70] was established and maintained in DMEM supplemented with 10% serum 410 

(LifeTech), HEPES (30mM, Life Tech), Sodium Pyruvate (1mM, Life Tech), non-essential 411 

amminoacids (NEAA) (Life Tech), penicillin-streptomycin (Ibian Tech), 2-mercaptoethanol 412 

(0.1mM, Life Tech).  413 

The mouse embryonic stem cell (ESC) line EL16.7 (40XX, Mus musculus/M.castaneus hybrid 414 

background) [71] was maintained on gelatin coated tissue culture dishes in 2i+LIF medium. 415 

This contains a 1:1 mixture of DMEM/F12 supplemented with N2 (LifeTech) and neurobasal 416 

media (LifeTech) supplemented with glutamine (LifeTech), B27 (LifeTech), insulin (Sigma), 417 

penicillin-streptomycin (Ibian Tech), 2-mercaptoethanol (LifeTech), LIF (Orfgenetics), 418 

PD0325901 (Sigma) and CHIR9021 (Sigma).  419 

 420 

Proliferation and doubling time analysis  421 

ESCs and fibroblasts were plated on 10 cm plates at 5.3x106 and 7.3x105 concentration, 422 

respectively. Cells were expanded and counted for 7 days. To monitor distinct generations of 423 

proliferating cells, carboxyfluorescein succinimidyl ester (CFSE, Thermo Fisher Scientific) was 424 

used to stain the cells and the dilution of the dye was detected by flow cytometry every day. 425 
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CFSE was dissolved in dimethyl sulfoxide at a concentration of 5 mM as stock solution and 426 

CFSE was added to a 1 ml cell suspension, to a final concentration of 5uM or 10uM. After 427 

addition of CFSE, cells were incubated at 37°C for 20 min. Then the cells were washed twice 428 

with complete medium and maintained on ice until use in a buffer containing PBS, 2% serum 429 

and 1% pen-strep. Cell viability was determined by DAPI (Biogen Cientifica) staining. Dye 430 

signals were measured on an LSRII flow cytometer. 431 

 432 

RNA-seq 433 

To collect cells with different growth rates, cells were isolated by sorting at room 434 

temperature according to the CFSE signal (median and high CFSE signal). ESCs and fibroblasts 435 

were sorted into 1.5 ml Eppendorf tubes containing medium and were cultured for 3 days 436 

and 5 days respectively in specific culture conditions as described earlier. For each cell line 437 

three bins were sorted: the lowest 10%, the median 10% and the highest 10% CFSE. Cells 438 

were sorted into prechilled 1.5-ml Eppendorf tubes containing 200 μl medium each. Cells 439 

were then centrifuged at 1000 rpm for 5 min, the media removed and the resulting cell pellet 440 

was used for RNA extraction. All bins were treated identically throughout the process. 441 

Cellular RNA was extracted using the Maxwell RNA Purification Kit and processed for RNA 442 

sequencing.  443 

 444 

Mitochondrial Membrane Potential Measurements.  445 

The relative mitochondrial transmembrane potential (ΔΨm) was measured using with the 446 

membrane-potential-dependent fluorescent dye TMRE (Tetramethylrhodamine, Ethyl Ester, 447 

Perchlorate) (Molecular Probes, Thermo Fisher Scientific) [72]. For TMRE staining fibroblasts 448 

and ESCs were grown, washed in PBS, trypsinized and resuspended in PBS with 0.1% BSA and 449 

TMRE added at a final concentration of 50nM, from a 10uM stock dissolved in DMSO. Cells 450 

were incubated for 20min at 37C, washed with PBS and were analyzed by flow cytometry or 451 

sorted.  452 

 453 

Cell sorting  454 

For the CFSE sort (no TMRE), cells were stained with CFSE and DAPI, and we used FACS to 455 

obtain a population of viable cells the same CFSE signal. We then grew cells for 3 or 5 days, 456 

and every 24 hours measured the CFSE signal using flow cytometry. 457 

For the TMRE sort for proliferation rate, cells were stained with CFSE and TO-PRO-3, and we 458 

used FACS to obtain a population of G1 cells with the same CFSE signal. We then grow cells 459 

for 3 or 5 days, and every 24 hours measured the CFSE signal using flow cytometry. 460 

In order to have a homogeneous starting population, both cell types were stained with 461 

Hoechst (10 ug/ml, Life Technologies) to pick cells in G0/G1 phase. Within this population, 462 

cells were selected according to the proliferation rate on the peak of CFSE signal prior 463 

staining them with the dye. Then cells were sorted by TMRE into three bins: low, medium 464 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/782037doi: bioRxiv preprint 

https://doi.org/10.1101/782037
http://creativecommons.org/licenses/by-nc/4.0/


and high with a BD Influx cell sorter into prechilled 1.5 ml Eppendorf tubes containing 200 μl 465 

medium each. Cells were then centrifuged at 1000 rpm for 5 min, the cell pellet was washed 466 

with PBS and used for RNA extraction. All bins were treated identically throughout the 467 

process. Cellular RNA was extracted using the Maxwell RNA Purification Kit and processed for 468 

RNA sequencing. 469 

Cell viability was determined by TO-PRO-3 (Thermo Fisher Scientific) staining. 470 

 471 

To test the effect of O2 levels and ascorbic acid/vitamin C in both cell types, sorted cells from 472 

each bin were plated into each of the four different conditions (low O2 (5%), normal oxygen 473 

growing conditions, and with or without ascorbic acid/vitamin C (25 ug/ml, Sigma-Aldrich)) 474 

in duplicate. After one day of recovery from the sorting, the cells were washed in PBS, were 475 

trypsinized, and counted. After seeding the same initial number, the rest of the cells was 476 

analyzed on a BD Fortessa analyzer. Every day a sample from each condition and replicate 477 

was taken for counting, and stained with 50 nM TMRE, up to 3 days for ESCs and 5 days for 478 

fibroblasts, and both TMRE and CFSE were measured by flow cytometry.  479 

 480 

Gene set enrichment analysis (GSEA) 481 

GSEA was performed using the GSEA software and the MSigDB (Molecular Signature 482 

Database v6.2) [39, 40]. We use signal to noise (requires at least three replicates) or log2 483 

ratio of classes (for experiments with less than three replicates) to calculate the rank of each 484 

gene. The maximum number of genes in each gene set size was set to 500, the minimum to 485 

15, and GSEA was run with 1000 permutations. 486 

 487 

C.elegans scRNAseq data analysis 488 

Preterminal cell lineage and terminal cell type scRNAseq data of C.elegans were downloaded 489 

[60]. For each cell we calculate average log2(TPM+1) for genes in “GO preribosome” gene set 490 

and for genes in “GO proteasome complex” gene set, and a t-test was used to compare the 491 

mean expression of all cells in each of the two groups. 492 

 493 

Differential expression of pluripotency and lineage commitment-related genes in mESCs 494 

sorted by proliferation rate (CFSE) 495 

To see the corresponding pluripotent cell state of fast and slow proliferating mESCs, we 496 

calculated mean expression of naïve pluripotent markers in four fast-proliferating and four 497 

slow-proliferating replicates and log2(fast/slow) was calculated to compare genes expression 498 

in fast proliferating subpopulation and slow proliferating sub-population. The same method 499 

was applied to lineage commitment gene markers and 2C-like state gene markers. 500 

 501 

GSEA of cancer cell lines 502 

RNAseq data for cancer cell lines that have corresponding doubling time were obtained from 503 
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CCLE [61]. To perform GSEA on there cancer cell data, we create a “control” sample in which 504 

a gene’s expression is the median expression all 528 samples. Then we apply GSEA to each of 505 

these cancer cell lines with the “control” sample as control.  506 

Spearman correlation between each gene set NES and growth rate across 528 cancer cell 507 

lines was calculated to find the gene sets correlated with growth rate. Average expression 508 

level (log2(TPM+1)) of 11 proliferation marker genes (PCNA, ZWINT, RFC3, LBR, TFDP1, 509 

SNRPB, SMC4, NUSAP1, BIRC5, UBE2C, and TROAP) was calculated as meta-PCNA. To see the 510 

behavior of gene sets that belongs to the functional groups in Figure 2C in cancer cell data, 511 

we calculate spearman correlation of gene sets NES across 528 cancer cell lines.  512 

 513 

Principal Component Analysis (PCA) 514 

The GSEA results were first filtered to extract gene sets that at are significant (FDR<0.1) in at 515 

least one of the samples. The NES values of the selected gene sets served as the input into 516 

PCA without scaling or normalization. FactoMineR [73] was used to perform the PCA using a 517 

covariance matrix.  518 

 519 

Projection of scRNA-seq data into PCA space and calculation of weighted Euclidean 520 

distance 521 

To project scRNA-seq data into the PCA space, we first perform GSEA on the scRNA-seq data 522 

from publication [63]. Identical to the method we used for the GSEA of 528 cancer cell lines, 523 

we create a “control” sample, which is the average of the (median expression of serum+LIF 524 

grown cells and the median expression of 2i+LIF grown cells). GSEA for each single cell from 525 

both conditions, vs this single control, was used to get the NES for each gene set and for 526 

each single cell. We then used this NES matrix multiplied by the covariance matrix of the PCA 527 

to project the scRNA-seq data into the PCA space. 528 

The weighted Euclidean distance was calculated by set the percent of variance that the 529 

principal component can explain as the weight of the corresponding dimension of this 530 

principal component in PCA space, Euclidean distance was calculated between each two 531 

samples after every samples coordinates were multiplied with the corresponding weight. 532 

 533 

Coefficient of Variation (CV) of mESCs scRNA-seq data 534 

Gene sets in MSigDB were first filtered to remove gene sets with fewer than 15 genes or 535 

more than 500 genes, leaving 13794 gene sets for analysis. The expression level of each gene 536 

set was calculated as the mean of log2(TPM+1) for genes in the gene set and the CV for each 537 

gene set was calculated seperatly for both serum+LIF and 2i+LIF grown cells. 538 

 539 

 540 
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FIGURE LEGENDS AND TABLE 561 

 562 

Figure 1. A CFSE-based method to sort mammalian cells by proliferation rate. (A) Cells were 563 

stained with CFSE and a subpopulation of cells with identical CFSE levels was collected by 564 

FACS. Growth for several generations resulted in a heterogeneous cell population with a 565 

broad CFSE distribution, and cells with high, medium, and low CFSE signal (slow, medium and 566 

fast proliferation, respectively) were sorted by FACS for RNA-sequencing. (B) The change in 567 

the CFSE distribution over time, for fibroblasts and ESCs. (C, D) The population-level doubling 568 

time can be calculated by fitting a line to the median of the log2(CFSE) signal. We discard 569 

data from time 0, cells immediately after the sort, because the CFSE signal decreases in the 570 

initial hours, even in the absence of cell division, likely due to efflux pumps. (E) Examples of 571 

genes whose expression positively or negatively correlated with proliferation rate. Each line 572 

is one biological replicate, and the error bars are 95% confidence intervals for each 573 

expression value.  574 

 575 
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 576 

Figure 2. Slow-proliferating ESCs display a more naïve pluripotent stemness character than 577 

fast-proliferating ESCs. (A) Comparison of lineage commitment-related gene expression 578 

between fast and slow proliferating sub-populations. (B) Comparison of 579 

pluripotency-associated gene expression between fast and slow proliferating 580 

sub-populations. (C) Comparison of 2C-like state markers expression between fast 581 

proliferating subpopulation and slow proliferating sub-population. The dashed line in panels 582 

(A-C) separates genes expressed preferentially in slow- (left of dashed line) or in 583 

fast-proliferating (right of dashed line) ESCs. 584 

  585 
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 586 

Figure 3. Functional pathways for which cell-to-cell heterogeneity in proliferation 587 

correlates with expression rate across cell types and species. (A) In Gene Set Enrichment 588 

Analysis, genes are sorted by their fast/slow expression value (left panel, bottom), and each 589 

gene is represented by a single black line (left panel middle). The enrichment score is 590 

calculated as follows: for each gene not in the gene set, the value of the green line decreases, 591 

and for each gene in the gene set, the value of the green line increases. The ES score will be 592 

near zero if the genes in a gene set are randomly distributed across the sorted list of genes, 593 

positive if most genes are to the left, and negative if most genes are to the right. (B) The 594 

heatmap (right panel) shows the expression (z-scored read counts) of preribosome genes in 595 

fibroblasts across four biological replicates of the CFSE sorting experiment. (C) Gene sets 596 

enriched (FDR<0.1) in both fibroblasts and ESCs were mapped as a network of gene sets 597 

(nodes) related by mutual overlap (edges), where the color (red or blue) indicates if the gene 598 

set is more highly expressed in fast (red) or slow (blue) proliferating cells. Node size is 599 

proportional to the total number of genes in each set and edge thickness represents the 600 

number of overlapping genes between sets. (D) GSEA results (FDR<0.1) of S. cerevisiae (van 601 

Dijk et al., 2015) sorted by cell-to-cell heterogeneity in proliferation rate. (E) Comparison of 602 

ribosome biogenesis and proteasome genes expression in preterminal cell lineage and 603 

terminal cell type. 604 

 605 
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606 

Figure 4. Expression of genes involved in ribosome-biogenesis and the proteasome are 607 

correlated with proliferation rate in cancer cell lines. (A) A cartoon of GSEA on 528 cancer 608 

cell lines. (B) Grey violins show the distribution of Spearman correlation coefficients of NES 609 

and growth rate for all genes sets across all 528 cancer cell lines. Points show the correlation 610 

of growth rate and the NES of gene sets involved in protein synthesis (left), or protein 611 

degradation (right). (C) Correlation of measured growth rate and predicted growth rate 612 

using meta-PCNA. (D) Spearman correlations of NES values among representative functional 613 

groups of gene sets. (E) Pearson correlations of mean expression (average of log2(TPM+1)) 614 

of ribosome biogenesis genes vs proteasome genes across organ developmental time course 615 

(see also Fig S1). 616 
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 617 

Figure 5. Expression of proliferation-related gene sets in cells sorted by intra-population 618 

heterogeneity in mitochondria membrane potential. (A) Cells were stained with Hoechst 619 

and CFSE and a homogenous population of equally sized cells cells in G1 with equal CFSE was 620 

obtained by FACS. These cells were stained with TMRE sorted by TMRE, and then used for 621 

RNA-seq, or allowed to proliferate to measure the doubling time of each TMRE 622 

sub-population. (B,C) Enrichment maps of fibroblasts and ESCs sorted by TMRE. 623 

  624 
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 625 

 626 

Figure 6. The relation between mitochondria and proliferation is highly cell-type specific 627 

(A) A biplot of principal component analysis (PCA) of the Normalized Enrichment Scores (NES) 628 

values from the Gene Set Enrichment Analysis (GSEA) for all cell types sorted by 629 

intra-population heterogeneity in either proliferation or mitochondria state. Fast and slow 630 

were determined experimentally for all samples except CD8+ T cells, for which Ki67 staining 631 

was used as a proxy for proliferation. (B) The weighted Euclidean distance in PC space 632 

between all sorted populations. (C) The doubling time for fibroblasts and ESCs sorted by 633 

TMRE. Points (circle or square) show the mean doubling time for high, medium, and low 634 

TMRE cells. Error bars are the standard deviation across the eight samples for each TMRE 635 

level.  636 

 637 
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638 

Figure 7. Prediction of proliferation in single cells using data from sorted bulk populations. 639 

(A) Single cell RNA-seq data of mESCs grown in either serum+LIF (fast) or 2i+LIF (slow) were 640 

projected into the PCA space from Figure 6. (B) Scatter plot showing the mean expression 641 

(average of log2(TPM+1)) of pluripotency markers (genes in Figure 2B) vs predicted 642 

proliferation rate (the PC1 described in Figure 6A) for each single cell. (C) Barplot show 643 

higher coefficient of variation (CV) in serum+LIF grown cells compare with 2i+LIF grown cells 644 

in four example gene sets. (D) CV across of all single cells for the mean expression (average 645 

of log2(TPM+1)) of genes in each gene set for cells grown in serum+LIF (y-axis) vs 2i+LIF 646 

(x-axis). 647 

  648 
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 649 

 650 

Table 1. Gene sets whose expression exhibits opposite correlations with growth between 651 

fibroblasts and ESCs. Shown are representative gene sets whose expression is significantly 652 

correlated with proliferation in either fibroblasts or ESCs, but whose expression changes with 653 

proliferation in opposing directions.  654 

 655 
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SUPPLEMENTAL FIGURE LEGENDS 656 

 657 

Figure S1. Correlated changes in the expression of ribosome biogenesis and proteasome 658 

related genes during organ development.  659 

Change of average expression of log2(TPM+1) of genes in ribosome biogenesis (Go 660 

preribosome) gene set and proteasome complex (Go proteasome complex) gene set with 661 

developmental stages across different organs in seven species [16]. Points (circle and triangle) 662 

are the mean expression of replicates, error bars represent the maximum and minimum 663 

value in the replicates. 664 

 665 

 666 

 667 

 668 
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