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17  Abstract:

18 Isogenic cells cultured in the same nutrient-rich environment show heterogeneity in their
19  proliferation rate. To understand the differences between fast and slow-proliferating cells
20  and to identify markers for proliferation rate that can be used at the single-cell level, we
21 developed a method to sort cells by their proliferation rate, and performed RNA sequencing
22 (RNA-Seq) on slow, medium and fast proliferating subpopulations of pluripotent mouse
23 embryonic stem cells (mESCs) and immortalized mouse fibroblasts. We identified a core
24 proliferation-correlated transcriptome that is common to both cell types, to yeast, and to
25 cancer cells: fast proliferating cells have higher expression of genes involved in both protein
26 synthesis and protein degradation. In contrast to cells sorted by proliferation rate, RNA-seq
27  on cells sorted by mitochondria membrane potential revealed a highly cell-type specific
28  mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast
29 proliferating, while the opposite is true for fibroblasts. In addition, cell-to-cell variation in
30 proliferation rate is highly predictive of pluripotency state in mESCs, with cells of more naive
31 pluripotent character having a slower proliferation rate. Finally, we show that the
32  proliferation signature learned from sorted cells can predict proliferation from scRNAseq
33 data in both mESCs and in the developing nematode. While the majority of the
34  transcriptional-signature associated with cell-to-cell heterogeneity in proliferation rate is
35 conserved from yeast to embryos to differentiated cells to cancer, the metabolic and
36  energetic details of cell growth are highly cell-type specific.

37

38

39 Introduction
40 Rates of cell growth and division vary greatly, even among isogenic cells of a single
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41 cell-type, cultured in the same optimal environment [1]. Cell-to-cell heterogeneity in
42  proliferation rate has important consequences for population survival in bacterial antibiotic
43 resistance, stress resistance in budding yeast, and chemo-resistance in cancer [2-10].
44  Time-lapse fluorescence microscopy has shown that cell-to-cell variability in the expression
45 of some genes, such as p53 and p21, is associated with cell-to-cell variability in proliferation
46 and survival [1, 11]. However, these methods can detect dynamic relationships between
47  gene expression and cell fate, but are limited to measurements of one or two genes.
48 Single-cell RNA sequencing measures transcriptome-level heterogeneity but does not
49 directly link this to cell-biological heterogeneity in organelle state, or to dynamic
50 heterogeneity in proliferation or drug resistance. Transcriptome-level approaches for
51 understanding within-population cell-to-cell heterogeneity in proliferation and other
52 dynamic processes are lacking. While the presence of intrapopulation variation in
53 proliferation, transcriptome, and organelle-state in both steady-state and in differentiation
54  populations is well established, the relationship among the three remains unclear.

55

56 One possibility is that the proliferation-correlated gene expression program is the same,
57 regardless of if one looks at interpopulation variation due to genetic or environmental
58 differences, or intrapopulation heterogeneity due to epigenetic differences. However, in the
59  budding yeast Saccharomyces cerevisiae, the expression program of intrapopulation
60 heterogeneity in proliferation rate only partially resembles that of cells growing at different
61 rates due to genetic or environmental perturbations [8]. The relation between gene
62  expression and proliferation rate is much less well studied in mammalian cells.

63

64 In yeast, in tumors, and in organs, genetic, environmental and developmental changes
65 cause changes in proliferation rate, and changes in the expression of hundreds or possibly
66  thousands of genes [12-16]. Unsurprisingly, many of the genes for which changes in
67  expression are associated with changes in proliferation rate are associated with adverse
68 clinical outcomes in cancer and with antibiotic and antifungal resistance [17, 18]. Within a
69 population of microbes, and within a single multicellular organism, the correct balance of
70  proliferation states and rates is essential. Yet measuring this heterogeneity is difficult,
71  without which, understanding the consequences of this heterogeneity is impossible.

72

73 Expression is associated with phenotype, but mRNAs themselves do not necessarily
74  always cause phenotypes. Instead, they can often serve as markers for cell-biological
75  differences between cells. Phenotypes are mostly driven by larger cell-biological differences
76 between cells, such as differences in metabolic state. Cell-to-cell heterogeneity in
77 mitochondria state has been linked to differences in transcription rates, growth rates,
78  proliferation and developmental trajectories [19-21]. Both cancer cells and pluripotent stem

79  cells have atypical metabolisms and use glycolysis to produce much of their ATP, instead of
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80  the mitochondria-based oxidative phosphorylation, which is the predominant form of
81  ATP-generation in differentiated cells [22]. It is unknown if this inter-population variation in
82  proliferation, transcriptome, and mitochondria extents to intra-population variation among
83 single cells within a single isogenic population.
84
85 Pluripotent stem cells exist in different pluripotency states called naive or primed based
86  on culture conditions and embryonic origin [23]. Mouse ESCs reflect the naive pluripotency
87 state of the blastocyst epiblast and can be cultured in either serum+LIF or 2i+LIF conditions,
88  the latter involving inhibitors of FGF/ERK and GSK3 pathways. Culture in 2i+LIF conditions
89  promotes a ground state more closely mirroring the in vivo situation with reduced
90  heterogeneity in pluripotency gene expression and different cell cycle profile when
91 compared to cells grown in serum+LIF [24-26]. Nevertheless, even in 2i+LIF conditions,
92 mESCs display a certain amount of cell-to-cell heterogeneity [27, 28] and it is unclear, how
93  this relates to heterogeneity in differentiated cell types when it comes to gene expression
94  andits link to proliferation rate.
95
96 To understand the relation between intra-population transcriptome heterogeneity and
97  heterogeneity in proliferation, we developed a FACS-based method to sort cells by
98  proliferation rate. We applied this method to mouse immortalized fibroblasts and to mESCs
99 and performed RNA-seq on fast, medium and slow proliferating cell sub-populations. We find
100  that ribosome-biogenesis (protein synthesis) and proteasome-related (protein degradation)
101  genes are highly expressed in fast proliferating fibroblasts and ESCs. Moreover, the
102  proliferation signature is conserved across cell-type and species, from yeast to cancer cells,
103 allowing us to predict the relative proliferation rate from the transcriptome; we use the gene
104  expression signature to correctly predict proliferation from scRNA-seq data not only in
105  mESCs, but also during C. elegans development, in spite of no nematode data going into the
106  initial model In contrast to the generality of this main transcriptional signature, many
107 mitochondria-related genes were upregulated in fast proliferating fibroblasts, yet
108 down-regulated in fast-proliferating mESCs. Consistent with this, the high mitochondria
109  membrane potential is indicative of slow proliferating fibroblasts, while in mESCs it is
110  characteristic of fast proliferating cells. Taken together, these results show the existence of a
111 core protein-synthesis and protein-degradation expression program that is conserved across
112 cell types and species, from yeast to mice, and a metabolic and energy-production program
113 thatis highly cell-type specific.
114

115 Results

116 A method to sort single mammalian cells by cell-to-cell heterogeneity in proliferation rate

117 To understand the causes and consequences of intrapopulation cell-to-cell heterogeneity
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118 in proliferation rate in mammalian cells we developed a method for sorting single
119  mammalian cells by their proliferation rate (Figure 1). The cell-permeable dye
120  carboxyfluorescein succinimidyl ester (CFSE) covalently binds to free amines within cells,
121 thus staining most intracellular proteins at lysine residues. We reasoned that in cell types
122 that divide symmetrically, such as embryonic stem cells and immortalized fibroblasts [29],
123 the equal dilution of CFSE into the two daughter cells would enable us to count the number
124  of divisions that each cell had undergone. To eliminate confounding effects due to
125 differences in initial staining we used fluorescence-activated cell sorting (FACS) to obtain an
126 initially homogeneous cell population of cells with identical CFSE signals (Figure 1A). Thus,
127  the CFSE signal should be independent of cell-to-cell variation protein synthesis rates, as the
128  initial signal in each cell is determined by the FACS gate and not by dye update or protein
129 synthesis during staining. In addition, CFSEcrr2 conjugates are stable and unable to exit the
130 cell [30]; the dye signal is stable for over eight weeks in non-dividing lymphocytes [31]. The
131 measured CFSE signal should be relatively insensitive to cell-to-cell variation in protein
132  degradation. We cultured this sorted starting cell population for several generations, during
133  which time the CFSE signal decreases with each cell division (Figure 1B). Consistent with the
134  decrease in CFSE being mostly due to cell division, the population-level doubling time of
135  each cell type can be calculated based on the decrease in CFSE signal over time (Figure 1C,
136 D), and these doubling times are consistent with those reported by other methods [32, 33].
137  After five days for fibroblasts growing in MEF (mouse embryonic fibroblast) medium, and
138  three for ESCs grown in pluripotent ground-state promoting 2i+LIF conditions [34], we used
139 FACS to isolate cells with high, medium, and low CFSE signal, and performed RNA-seq on
140  each sub-population. This allowed us to identify genes whose expression is positively or
141 negatively correlated with proliferation rate within a single population (Figure 1E).

142

143  Slow-proliferating ESCs are of more naive pluripotent character than fast-proliferating ESCs
144 Embryonic stem cells exhibit cell-to-cell heterogeneity in culture based on the
145  expression of naive pluripotency marker genes such as Nanog, Stella (Dppa3) or Rex1 (Zfp42)
146 [35-37]. Although this heterogeneity is mostly apparent in ESCs cultured in serum+LIF, even
147  when cultured in ground state-pluripotency-promoting 2i+LIF conditions, the sub-population
148 of ESCs with low NANOG-levels displays propensity for lineage-priming and differentiation
149 [28, 38]. To determine if cell-to-cell variation in proliferation rate was caused by a
150  sub-population of mESCs initiating a differentiation program, we determined the fold-change
151 in expression between slow and fast proliferating sub-populations for a set of genes that are
152 upregulated during lineage commitment. We found no consistent enrichment of these
153  differentiation genes in fast versus slow proliferating cells, as they could be found to be
154  expressed in either population (Figure 2A). However, the slow proliferating sub-population

155 did have higher expression of genes that are upregulated in naive pluripotent cells, and in
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156 2-cell stage embryos (Figure 2B,C), suggesting that slow proliferating mESCs are in a more
157  naive pluripotent cell state than their fast proliferating counterparts.

158

159

160 Processes correlated with cell-to-cell heterogeneity in proliferation rate that are consistent
161 across cell-types and species

162 To identify functional groups of genes that are differentially expressed between fast and
163  slow proliferating cells within a single population we performed gene set enrichment analysis
164 (GSEA) [39, 40] (Figure 3A and 3B) on mRNA-seq data from fast and slow proliferating
165 subpopulations. We found that, in both fibroblasts and ESCs, as well as in the budding yeast
166  S. cerevisiae, genes involved in ribosome-biogenesis and the proteasome are more highly
167  expressed in fast proliferating cells (Figure 3C, 3D and Table S1). High expression of
168  ribosomal genes is a common signature for fast proliferating cells [12, 41], and cancer cells
169 often exhibit high proteasome expression [42-44], but it is not clear if this is related to
170 proliferation in-and-of-itself or due to aneuploidy and other genetic alterations [45]. These
171 results suggest that coordinated regulation of the ribosome and proteasome are a signature
172  of fast proliferating cells across both cell-types and species.

173

174 In addition to ribosome-biogenesis and the proteasome, several other gene sets are
175  differentially expressed between fast and slow proliferating cells in both fibroblasts and ESCs
176  (Figure 3C). mTORC1 (mammalian Target Of Rapamycin Complex 1) functions as a nutrient
177 sensor and regulator of protein synthesis, and is regulated by nutrient and cytokine
178 conditions that cause differences in proliferation [46, 47]. We find that, even in the absence
179  of genetic and environmental differences, mTORC1 is more active in fast proliferating cells.
180 Activation of mTORC1 can promote ribosome-biogenesis [46, 48], however, there is still
181 controversy about the regulation of proteasome activity by mTORC1 [47, 49-53]. We
182 observed in both fibroblasts and ESCs, that fast proliferating subpopulations exhibit a
183  transcriptional signature of increased protein synthesis, protein degradation.

184

185 Furthermore, we identified target genes of MYC to be more highly expressed in fast
186 proliferating cells. MYC, a transcription factor frequently amplified in cancer, is estimated to
187  regulate the transcription of at least 15% of all genes [54] and is a master regulator of cell
188  growth [55]. Overexpression of MYC promotes ribosome-biogenesis and cell growth [56, 57],
189 and active mTORC1 can promote MYC activation [58, 59]. Our data suggest that increased
190 expression of MYC and increased mTORC1 activity are general properties of fast-proliferating
191  cells, and those genetic or environmental perturbations are not necessary to cause
192  differential expression of these pathways.

193
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194  scRNA-seq of developing nematodes revleals that, compared to terminally differentiated cells,
195  proliferating cells have higher expression of ribosome biogenesis and proteasome genes

196 Single-cell RNA sequencing is a powerful method for understanding cell-to-cell
197  heterogeneity, but it suffers from high levels of technical noise at the single-gene level. In
198  addition, most commonly used markers (PCNA, Ki67) for measuring proliferation rates in bulk
199  populations are cell-cycle regulated genes; what is really being measured is the fraction of
200  the population that is proliferating, usually the fraction that is in S phase. Thus, these
201 markers cannot be used to predict proliferation rates from scRNAseq data. We reasoned that,
202  as the average expression of large sets of genes, many of which are highly expressed and
203  therefore have lower levels of technical noise, the ribosome biogenesis and proteasome
204  gene sets would be ideal for differentiating proliferating vs non-proliferating cells in
205  scRNA-sequencing data, indpenedent of the cell-cycle position of individual cells. To test this
206  we used a new scRNA-seq dataset of 86,024 cells from C. elegans in which cells have been
207  classified into terminally differentiated and preterminal cell-types[60]. We find that
208  terminally differentiated cells have lower expression of ribosome biogenesis and proteasome
209  genes (Figure 3E), consistent with terminally differentiated cells having proliferation rates of
210  zero.

211

212 Coordination of protein-synthesis and protein-degradation across cell types, organs and
213 species.

214

215 Significant enrichment results of proteasome and ribosome-biogenesis in fast
216  proliferating fibroblasts, ESCs and yeast suggested that expression of the proteasome and
217  ribosome-biogenesis may serve as cell-type independent reporters of growth rate. To test
218  this hypothesis we analyzed RNA-seq data from 528 cancer cell lines in the Cancer Cell Line
219 Encyclopedia [61] for which the doubling time is roughly known. As GSEA is a measure of
220  differential expression, we created a single common control sample as the median
221  expression of each gene across all 528 cancer cell lines, and used GSEA to calculate the NES
222 (Normalized Enrichment Score) for all gene sets between the single control and each cancer
223 cell line (Figure 4A).

224

225 Ribosome and proteasome-related gene sets were among the gene sets most highly
226 correlated with growth rate across all cancers (Figure 4B). The absolute values of the
227 correlation of all gene sets with the reported doubling time were low, possibly because the
228  doubling times of the cancer cell lines were not measured using exactly the same
229  experimental conditions as were used for the RNA-seq experiments. We also calculated the
230 correlation between measured doubling time and meta-PCNA [17, 62], an RNA-seq-based
231 method for estimating growth rate at the population level that is independent of ribosomal
232  or proteasomal gene expression, but found similar levels of correlation (Figure 4C).

233 Interestingly, proteasome and ribosome gene sets were far more strongly correlated with
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234  each other than with proliferation rate (Figure 4D), suggesting a strong mechanistic coupling
235  between increased protein production and a need for increased protein degradation.

236

237 Most functional groups enriched in both fast fibroblast and ESCs are positively
238 correlated with each other across the 528 cancer cell lines (Figure 4D and Table S1). This is
239  not the case for gene sets whose expression is negatively correlated with intra-population
240  variation in proliferation rate. Several p53 related gene sets are strongly negatively correlated
241  with proliferation within both fibroblasts and ESCs (Figure 4D and Table S1), but the results
242 are much more heterogeneous across cancer cell lines, possibly reflecting the cancer-specific
243 mutation status of genes in this pathway.

244

245 To test if the coupling between ribosome biogenesis and proteasome expression holds
246 across species, we analyzed the bulk RNA-seq data across developmental stages, covering
247  multiple organs in seven species [16]. A high correlation between ribosome biogenesis genes
248  expression and proteasome genes expression was found across all seven species (Figure 4E).
249  The coordinated expression change with developmental stages between ribosome
250  biogenesis genes and proteasome genes across different organs in seven species suggests
251  that the coordination between protein synthesis and degradation is common across all
252  species and cell-types (Figure S1).

253

254 The major cell-type specific proliferation-correlated expression is in mitochondria and

255 metabolism related genes.

256

257 While the pattern of within-population proliferation-correlated expression in yeast,
258  fibroblasts and ESCs was broadly similar with regard to genes involved in protein synthesis
259  and degradation, the behavior of metabolic and mitochondria-related genes in fast and slow
260 proliferating subpopulations was highly cell-type specific. Mitochondria membrane and
261 respiratory chain-related gene sets were more highly expressed in fast proliferating
262  fibroblasts, but not in fast proliferating ESCs (Table 1). These results are consistent with
263  differential mitochondrial states in ESCs when compared to differentiated cells like
264  fibroblasts [22], which suggest the existence of different types of metabolism and
265 proliferation-related heterogeneity between pluripotent and differentiated cell-types. Fast
266  proliferating sub-populations of different cell-types display differential importance and
267  metabolic states related to mitochondria. We also observed cell-type specific differences in
268 glycolysis, fatty acid metabolism, and other metabolic processes, suggesting fundamental
269 differences in the metabolic pathways required for fast proliferation between pluripotent
270 ESCs and differentiated cells like fibroblasts (Table 1).

271

272
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273 Cell-to-cell heterogeneity in mitochondria state predicts variation in proliferation both in ESCs
274  and fibroblasts, but in opposite directions.

275 Mitochondrial membrane potential is a major predictor of cell-to-cell heterogeneity in
276 proliferation rate in budding yeast [9]. Mitochondria-related genes are more highly
277 expressed in the fast proliferating subpopulation of fibroblasts. In contrast, these genes are
278  slightly more highly expressed in the slow proliferating subpopulation of ESCs. This suggests
279  that the relation between cell-to-cell heterogeneity in mitochondria state and proliferation
280 may be different in these two cell types. To test the ability of mitochondrial membrane
281 potential to predict in proliferation rate in mammalian cells we used the mitochondria
282  membrane potential-specific dye TMRE to stain fibroblasts and ESCs, and performed both
283 RNA-seq and proliferation-rate assays on high and low TMRE sub-populations (Figure 5A).
284

285 Unlike the proliferation-based sort (Figure 1), sorting ESCs and fibroblasts by
286  mitochondria-state (Figure 5) resulted in highly divergent expression profiles. ESCs with high
287  TMRE signal have high expression of ribosome-biogenesis, proteasome, MYC-targets and
288 mitochondrial-related genes, while in fibroblasts these gene sets are more highly expressed
289 in the low TMRE sub-population (Figure 5B, 5C and Table S2). This is consistent with the
290  opposite behavior of mitochondria-related gene sets in proliferation-rate sorted cells from
291  the two cell types.

292

293 The relation between mitochondria and proliferation is highly cell-type specific.

294 To understand the relationship between heterogeneity in proliferation and mitochondria
295 state across cell types and species we performed principal component analysis (PCA) on
296 RNA-seq data from all our experiments plus data from three additional studies including data
297  from yeast sorted by both proliferation rate and mitochondria membrane potential (TMRE),
298 and mouse CD8+ T-lymphocytes sorted by mitochondria membrane potential (TMRE) [8, 9,
299 21] (Figure 6A). The first component is correlated with proliferation, and sorting yeast, ESCs
300 and fibroblasts all results in sorting cells along the first PC, with fast cells from each cell type
301 having positive values. The second component is correlated with mitochondria state; high
302  TMRE cells from all four cell types have positive values. However, cells sorted by proliferation,
303  while they behave similarly in PC1 (proliferation), exhibit opposite behaviors in PC2
304  (mitochondria state), with fast fibroblasts and yeast cells having negative values, similar to
305 low TMRE cells, while fast ESCs have positive values, similar to high TMRE cells (black boxes
306 in Figure 6B). Thus, unlike the relationship between protein synthesis and degradation and
307  proliferation, the relation between mitochondria and proliferation is highly cell-type specific.

308

309 These expression data make the following prediction: ESCs with high TMRE should have a
310  shorter doubling time, while fibroblasts with high TMRE should have a longer doubling time.
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311  To test this we sorted fibroblasts and ESCs by TMRE, and measured the doubling time. In
312 addition, we tested the effect of ascorbic acid (vitamin C, an antioxidant) and O, levels
313  (ambient 21% atmospheric vs. low 5% physiological levels). While there was no significant
314  effect of either ascorbic acid or O, in either cell type (Table S3), the transcriptome-data
315 correctly predicted the results of the experiment, with high TMRE fibroblasts proliferating
316  more slowly, while high TMRE ESCs proliferated more rapidly (Figure 6C). Thus, across yeast,
317 ESCs and fibroblasts, while mitochondria state and proliferation rate co-vary within a single
318 popopulation, the direction of this correlation is different between pluripotent ESCs and
319 other cell types.

320

321  Single mESCs proliferating at different rates due to media fall along the axis of mESCs sorted
322 by proliferation rate.

323 The above suggests that we should be able to use PCA space to predict proliferation
324 rates of single cells from scRNA-seq data. This is in contrast to current proliferation markers,
325 such as PCNA and Ki67 which are cell-cycle regulated, and whose expression will not
326  correlate with proliferation at the single-cell level. In addition, expression measurements for
327  single genes are noisy; we reasoned that the position of a single cell in PCA space should be
328 more robust, as it takes into account the expression of most genes in the cell. As a control we
329 projected expression data from mESCs grown in either serum+LIF or 2i+LIF conditions [63]
330 into the same PCA space from Figure 6. The slower-proliferating 2i+LIF grown cells are
331 perfectly separated from faster-proliferating serum+LIF grown cells by PC1, and, indeed, fall
332 exactly along the fast-slow sorted mESC expression axis (Figure 7A), consistent with the
333 combination of PC1+4PC2 representing cell-type specific cell-to-cell variation in
334  proliferation-correlated gene expression. We observed an inter-population relation between
335 PC1 (proliferation) and the expression of pluripotency markers, but no intra-population
336 relation (Figure 7B), which is inconsistent with our results of sorting by proliferation rate
337 (Figure 2B). This may be due to possiblity that technical noise in single cell sequencing
338  drowned out the heterogeneity in proliferation rate, incomparability across experiments and
339 labs, or that PCA is not sufficient to separate by both proliferation and pluripoency. Cells
340  grown in serum+LIF have higher cell-to-cell heterogeneity in gene sets associated with
341 proliferation rate compared with cells grown in 2i+LIF (Figure 7C,D), reflecting the higher
342  homogeneity associated with ground state pluripotency of 2i+LIF grown cells[24].

343

344  Discussion

345 In summary, we have developed a method to sort cells by their proliferation rate and
346 have examined the whole picture of gene expression patterns related to cell-to-cell
347 heterogeneity in proliferation (Table S4). We found with that genes involved in protein

348  synthesis (ribosome-biogenesis translation intitiation), and in protein degradation (the
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349 proteasome and proteasome-related protein degradation) are highly expressed in fast
350  proliferating mammalian cells and yeast cells. Previous studies have reported that high
351  expression of the proteasome in fast-growing cells can degrade misfolded protein because
352  the fast protein synthesis in fast-growing cells will produce more incorrectly folded proteins
353 [47, 64, 65], which is consistent with our enrichment of proteasome-related gene sets in fast
354  proliferating cells.

355

356 In all non-cancer mammalian cells, we also found the mTORC1 signaling pathway
357 enriched in fast proliferating cells and P53-targets enriched in slow proliferating cells. Our
358  results show both upregulations of the mTORC1 signaling pathway and proteasome activity
359 infast proliferating cells, which is consistant with several previous studies [9, 12-15].

360

361 Our analysis of fast versus slow proliferating ESCs cultured in 2i+LIF conditions indicated
362  at several levels that slow proliferating cells were of more naive ground state pluripotent
363  character than fast proliferating cells. First, this was supported by the fact that they displayed
364 higher expression of naive pluripotency marker genes and markers of 2C-like cells (Figure
365 2B,C). Second, we observed enrichment of E2F targets and genes involved in G1 S cell cycle
366  phase transition (Table 1) in our fast cycling ESC population, indicative of a shortened G1
367  phase as described normally for ESCs cultured in serum+LIF conditions [26]. This is also
368 consistant with the observation, that our ESC line proliferates much faster when cultured in
369 serum+LIF, when compared to the 2i+LIF conditions used in this study (S.F.G., unpublished).
370 Finally, although we could find differentiation genes to be expressed both in fast and slow
371 proliferating cells (Figure 2A), we saw a number of differentiation pathways to be enriched
372 specifically in fast dividing ESCs (Table 1). In summary, even when ESCs are cultured in
373  ground-state pluripotency promoting 2i+LIF conditions, they display heterogeneity in
374  proliferation rate, with the slow proliferating being of more naive pluripotent character when
375  compared to fast dividing cells.

376

377 While we observed ESCs to behave similar to other cell types like fibroblasts or yeast
378  when it comes to gene expression signatures characteristic of fast proliferating cells related
379  to protein synthesis and turnover (Figure 3C), we found a very different behavior when it
380 comes to regulation of metabolism. Although the growth rate can be predicted by
381 mitochondrial membrane potential in Saccharomyces cerevisiae [23], where it is negatively
382  correlated with proliferation rate like in fibroblasts as we show in this study, our results show
383  mitochondrial membrane potential to be positively correlated with proliferation rate in ESCs
384 (Figure 6), which suggests mitochondrial membrane potential has different functions in
385 pluripotent cells when compared to differentiated cell types or yeast. This is corroborated by
386 our gene expression analysis of cells with high vs. low mitochondrial membrane potential

387  (Figure 5B-C), where we found pathways linked with fast proliferating cells to be enriched in
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388  fibroblasts with low mitochondrial membrane potential but on the contrary enriched in ESCs
389  with high mitochondrial membrane potential. Surprisingly, primed pluripotent stem cells
390  have been described to rely more non-oxidative, glycolysis-based metabolism than naive
391 pluripotent stem cells [66-68], which appears in contradiction with our result that our slow
392 proliferating, mitochondria activity low ESCs being more naive-like. However, TMRE is not a
393  direct measure of ATP generation by mitochondria; yeast cells that are repsiring and
394  producing all of their ATP using their mitochondria, and yeast cells unable to respire and
395 unable to produce any ATP using their mitochondria both have high TMRE signals[9].
396 Differentiated cells in general rely more on oxidative metabolism than pluripotent cells,
397  therefore our fast proliferating ESCs could potentially reflect a more differentiated state. In
398  conclusion, we were able to show that pluripotent ESCs behave similarly to other cell types
399 in their relation between proliferation rate and aspects like protein turnover, but in the
400 opposite direction when it comes to their metabolic state. For our full understanding of the
401 pluripotent state it will be important to reveal why and how metabolism and proliferation
402  rate are regulated so differently when compared to differentiated cells.

403

404

405  MATERIALS AND METHODS

406

407  Cell culture growth conditions

408 Tail tip fibroblasts (TTFs) were isolated from a female newborn mouse from a Mus musculus
409  x Mus Castaneus cross and immortalized with SV40 large T antigen [69]. The clonal line
410 68-5-11 [70] was established and maintained in DMEM supplemented with 10% serum
411 (LifeTech), HEPES (30mM, Life Tech), Sodium Pyruvate (1mM, Life Tech), non-essential
412 amminoacids (NEAA) (Life Tech), penicillin-streptomycin (lbian Tech), 2-mercaptoethanol
413  (0.1mM, Life Tech).

414  The mouse embryonic stem cell (ESC) line EL16.7 (40XX, Mus musculus/M.castaneus hybrid
415 background) [71] was maintained on gelatin coated tissue culture dishes in 2i+LIF medium.
416  This contains a 1:1 mixture of DMEM/F12 supplemented with N2 (LifeTech) and neurobasal
417  media (LifeTech) supplemented with glutamine (LifeTech), B27 (LifeTech), insulin (Sigma),
418  penicillin-streptomycin (lbian Tech), 2-mercaptoethanol (LifeTech), LIF (Orfgenetics),
419  PD0325901 (Sigma) and CHIR9021 (Sigma).

420

421 Proliferation and doubling time analysis

422 ESCs and fibroblasts were plated on 10 cm plates at 5.3x10° and 7.3x10° concentration,
423  respectively. Cells were expanded and counted for 7 days. To monitor distinct generations of
424  proliferating cells, carboxyfluorescein succinimidyl ester (CFSE, Thermo Fisher Scientific) was

425  used to stain the cells and the dilution of the dye was detected by flow cytometry every day.
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426 CFSE was dissolved in dimethyl sulfoxide at a concentration of 5 mM as stock solution and
427  CFSE was added to a 1 ml cell suspension, to a final concentration of 5uM or 10uM. After
428  addition of CFSE, cells were incubated at 37°C for 20 min. Then the cells were washed twice
429  with complete medium and maintained on ice until use in a buffer containing PBS, 2% serum
430 and 1% pen-strep. Cell viability was determined by DAPI (Biogen Cientifica) staining. Dye
431  signals were measured on an LSRII flow cytometer.

432

433 RNA-seq

434  To collect cells with different growth rates, cells were isolated by sorting at room
435  temperature according to the CFSE signal (median and high CFSE signal). ESCs and fibroblasts
436  were sorted into 1.5 ml Eppendorf tubes containing medium and were cultured for 3 days
437 and 5 days respectively in specific culture conditions as described earlier. For each cell line
438  three bins were sorted: the lowest 10%, the median 10% and the highest 10% CFSE. Cells
439  were sorted into prechilled 1.5-ml| Eppendorf tubes containing 200 ul medium each. Cells
440  were then centrifuged at 1000 rpm for 5 min, the media removed and the resulting cell pellet
441  was used for RNA extraction. All bins were treated identically throughout the process.
442  Cellular RNA was extracted using the Maxwell RNA Purification Kit and processed for RNA
443 sequencing.

444

445  Mitochondrial Membrane Potential Measurements.

446  The relative mitochondrial transmembrane potential (AWm) was measured using with the
447  membrane-potential-dependent fluorescent dye TMRE (Tetramethylrhodamine, Ethyl Ester,
448 Perchlorate) (Molecular Probes, Thermo Fisher Scientific) [72]. For TMRE staining fibroblasts
449 and ESCs were grown, washed in PBS, trypsinized and resuspended in PBS with 0.1% BSA and
450 TMRE added at a final concentration of 50nM, from a 10uM stock dissolved in DMSO. Cells
451  were incubated for 20min at 37C, washed with PBS and were analyzed by flow cytometry or
452  sorted.

453

454  Cell sorting

455 For the CFSE sort (no TMRE), cells were stained with CFSE and DAPI, and we used FACS to
456 obtain a population of viable cells the same CFSE signal. We then grew cells for 3 or 5 days,
457 and every 24 hours measured the CFSE signal using flow cytometry.

458 For the TMRE sort for proliferation rate, cells were stained with CFSE and TO-PRO-3, and we
459  used FACS to obtain a population of G1 cells with the same CFSE signal. We then grow cells
460  for 3 or 5 days, and every 24 hours measured the CFSE signal using flow cytometry.

461 In order to have a homogeneous starting population, both cell types were stained with
462 Hoechst (10 ug/ml, Life Technologies) to pick cells in GO/G1 phase. Within this population,
463  cells were selected according to the proliferation rate on the peak of CFSE signal prior

464  staining them with the dye. Then cells were sorted by TMRE into three bins: low, medium
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465 and high with a BD Influx cell sorter into prechilled 1.5 ml Eppendorf tubes containing 200 pl
466  medium each. Cells were then centrifuged at 1000 rpm for 5 min, the cell pellet was washed
467  with PBS and used for RNA extraction. All bins were treated identically throughout the
468  process. Cellular RNA was extracted using the Maxwell RNA Purification Kit and processed for
469 RNA sequencing.

470  Cell viability was determined by TO-PRO-3 (Thermo Fisher Scientific) staining.

471

472  To test the effect of O; levels and ascorbic acid/vitamin C in both cell types, sorted cells from
473  each bin were plated into each of the four different conditions (low O, (5%), normal oxygen
474 growing conditions, and with or without ascorbic acid/vitamin C (25 ug/ml, Sigma-Aldrich))
475 in duplicate. After one day of recovery from the sorting, the cells were washed in PBS, were
476 trypsinized, and counted. After seeding the same initial number, the rest of the cells was
477 analyzed on a BD Fortessa analyzer. Every day a sample from each condition and replicate
478  was taken for counting, and stained with 50 nM TMRE, up to 3 days for ESCs and 5 days for
479  fibroblasts, and both TMRE and CFSE were measured by flow cytometry.

480

481  Gene set enrichment analysis (GSEA)

482  GSEA was performed using the GSEA software and the MSigDB (Molecular Signature
483 Database v6.2) [39, 40]. We use signal to noise (requires at least three replicates) or log2
484 ratio of classes (for experiments with less than three replicates) to calculate the rank of each
485  gene. The maximum number of genes in each gene set size was set to 500, the minimum to
486 15, and GSEA was run with 1000 permutations.

487

488 C.elegans scRNAseq data analysis

489 Preterminal cell lineage and terminal cell type scRNAseq data of C.elegans were downloaded
490 [60]. For each cell we calculate average log2(TPM+1) for genes in “GO preribosome” gene set
491  and for genes in “GO proteasome complex” gene set, and a t-test was used to compare the
492 mean expression of all cells in each of the two groups.

493

494  Differential expression of pluripotency and lineage commitment-related genes in mESCs
495  sorted by proliferation rate (CFSE)

496  To see the corresponding pluripotent cell state of fast and slow proliferating mESCs, we
497 calculated mean expression of naive pluripotent markers in four fast-proliferating and four
498 slow-proliferating replicates and log2(fast/slow) was calculated to compare genes expression
499 in fast proliferating subpopulation and slow proliferating sub-population. The same method
500  was applied to lineage commitment gene markers and 2C-like state gene markers.

501

502  GSEA of cancer cell lines

503 RNAseq data for cancer cell lines that have corresponding doubling time were obtained from
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504 CCLE [61]. To perform GSEA on there cancer cell data, we create a “control” sample in which
505  agene’s expression is the median expression all 528 samples. Then we apply GSEA to each of
506  these cancer cell lines with the “control” sample as control.

507 Spearman correlation between each gene set NES and growth rate across 528 cancer cell
508 lines was calculated to find the gene sets correlated with growth rate. Average expression
509 level (log2(TPM+1)) of 11 proliferation marker genes (PCNA, ZWINT, RFC3, LBR, TFDP1,
510  SNRPB, SMC4, NUSAP1, BIRC5, UBE2C, and TROAP) was calculated as meta-PCNA. To see the
511 behavior of gene sets that belongs to the functional groups in Figure 2C in cancer cell data,
512  we calculate spearman correlation of gene sets NES across 528 cancer cell lines.

513

514  Principal Component Analysis (PCA)

515  The GSEA results were first filtered to extract gene sets that at are significant (FDR<0.1) in at
516  least one of the samples. The NES values of the selected gene sets served as the input into
517 PCA without scaling or normalization. FactoMineR [73] was used to perform the PCA using a
518  covariance matrix.

519

520 Projection of scRNA-seq data into PCA space and calculation of weighted Euclidean
521  distance

522  To project scRNA-seq data into the PCA space, we first perform GSEA on the scRNA-seq data
523 from publication [63]. Identical to the method we used for the GSEA of 528 cancer cell lines,

IM

524  we create a “control” sample, which is the average of the (median expression of serum+LIF
525  grown cells and the median expression of 2i+LIF grown cells). GSEA for each single cell from
526  both conditions, vs this single control, was used to get the NES for each gene set and for
527 each single cell. We then used this NES matrix multiplied by the covariance matrix of the PCA
528  to project the scRNA-seq data into the PCA space.

529  The weighted Euclidean distance was calculated by set the percent of variance that the
530  principal component can explain as the weight of the corresponding dimension of this
531 principal component in PCA space, Euclidean distance was calculated between each two
532  samples after every samples coordinates were multiplied with the corresponding weight.

533

534  Coefficient of Variation (CV) of mESCs scRNA-seq data

535  Gene sets in MSigDB were first filtered to remove gene sets with fewer than 15 genes or
536 more than 500 genes, leaving 13794 gene sets for analysis. The expression level of each gene
537  set was calculated as the mean of log2(TPM+1) for genes in the gene set and the CV for each
538  gene set was calculated seperatly for both serum+LIF and 2i+LIF grown cells.

539

540
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562
563  Figure 1. A CFSE-based method to sort mammalian cells by proliferation rate. (A) Cells were

564  stained with CFSE and a subpopulation of cells with identical CFSE levels was collected by
565 FACS. Growth for several generations resulted in a heterogeneous cell population with a
566 broad CFSE distribution, and cells with high, medium, and low CFSE signal (slow, medium and
567  fast proliferation, respectively) were sorted by FACS for RNA-sequencing. (B) The change in
568  the CFSE distribution over time, for fibroblasts and ESCs. (C, D) The population-level doubling
569  time can be calculated by fitting a line to the median of the log2(CFSE) signal. We discard
570  data from time O, cells immediately after the sort, because the CFSE signal decreases in the
571  initial hours, even in the absence of cell division, likely due to efflux pumps. (E) Examples of
572  genes whose expression positively or negatively correlated with proliferation rate. Each line
573 is one biological replicate, and the error bars are 95% confidence intervals for each
574  expression value.
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Figure 2. Slow-proliferating ESCs display a more naive pluripotent stemness character than
fast-proliferating ESCs. (A) Comparison of lineage commitment-related gene expression
(B)

and

between fast and slow proliferating sub-populations. Comparison  of

pluripotency-associated gene expression between fast slow proliferating
sub-populations. (C) Comparison of 2C-like state markers expression between fast
proliferating subpopulation and slow proliferating sub-population. The dashed line in panels
(A-C) separates genes expressed preferentially in slow- (left of dashed line) or in

fast-proliferating (right of dashed line) ESCs.
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586
587  Figure 3. Functional pathways for which cell-to-cell heterogeneity in proliferation

588  correlates with expression rate across cell types and species. (A) In Gene Set Enrichment
589  Analysis, genes are sorted by their fast/slow expression value (left panel, bottom), and each
590 gene is represented by a single black line (left panel middle). The enrichment score is
591  calculated as follows: for each gene not in the gene set, the value of the green line decreases,
592 and for each gene in the gene set, the value of the green line increases. The ES score will be
593 near zero if the genes in a gene set are randomly distributed across the sorted list of genes,
594  positive if most genes are to the left, and negative if most genes are to the right. (B) The
595 heatmap (right panel) shows the expression (z-scored read counts) of preribosome genes in
596 fibroblasts across four biological replicates of the CFSE sorting experiment. (C) Gene sets
597  enriched (FDR<0.1) in both fibroblasts and ESCs were mapped as a network of gene sets
598  (nodes) related by mutual overlap (edges), where the color (red or blue) indicates if the gene
599 set is more highly expressed in fast (red) or slow (blue) proliferating cells. Node size is
600 proportional to the total number of genes in each set and edge thickness represents the
601 number of overlapping genes between sets. (D) GSEA results (FDR<0.1) of S. cerevisiae (van
602 Dijk et al., 2015) sorted by cell-to-cell heterogeneity in proliferation rate. (E) Comparison of
603  ribosome biogenesis and proteasome genes expression in preterminal cell lineage and
604  terminal cell type.
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606
607  Figure 4. Expression of genes involved in ribosome-biogenesis and the proteasome are
608  correlated with proliferation rate in cancer cell lines. (A) A cartoon of GSEA on 528 cancer
609 cell lines. (B) Grey violins show the distribution of Spearman correlation coefficients of NES
610 and growth rate for all genes sets across all 528 cancer cell lines. Points show the correlation
611  of growth rate and the NES of gene sets involved in protein synthesis (left), or protein
612  degradation (right). (C) Correlation of measured growth rate and predicted growth rate
613  using meta-PCNA. (D) Spearman correlations of NES values among representative functional
614  groups of gene sets. (E) Pearson correlations of mean expression (average of log2(TPM+1))
615 of ribosome biogenesis genes vs proteasome genes across organ developmental time course
616  (see also Fig S1).


https://doi.org/10.1101/782037
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/782037; this version posted September 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Fibroblasts
' L4
o
-
s
g
or  Hoechststaining SH TMRE staining
loechst )
CFSE staining
[
'S .S
S
B
ESCs 3
CFSE
Differentially expressed in high TMRE vs low TMRE
Fibroblasts
Ribosome biogenesis
g . Proteasome
. k Ribosome
/ ,r”"‘\/biugenesis @
® .," | Proteasome '®: ®
,’. o [ ) complex™—
0N :‘\Ribonucleoprotein\‘\,r'l ]
. Dot complex biogenesis .
c . . Mitochondrial =
MYC tarerts Mitochondrial TP53&HRAS

activit
RNA metabolic ¥

I\ process ) (.v

coopreation response

Count

RNA-seq

Proteasome Proteasome

FACS sort

Measure
doubling time

L

Differentially expressed in high TMRE vs low TMRE

ESCs

mRNA _ RNA processing

Mitochondrial

_4 =
Hallmark MYC protein import

Up regulation
of MYC targets targets v2

. / . Enriched in high TMRE cells
. Enriched in low TMRE cells

Similarity between two connected nodes

accessory = _ - KEGG splicing\_ = e /Spliceosome
complex ‘. ” proteasome N \ 4
//“‘, @ | mRNA=— o @ ¥ Mitochondrial
[ ] ‘, \\ processing . B4 . translation
i i roteasome L 7
X . .,’ P [ '~ Organellar
@ \ complex } ribosome
proteasome ’ . ‘&
related degardation -~ M;::s;c;;::au_f\./,
Ribosome<—// MYC targets
biogenesis " b g =5
' o o ’;‘,Hallmark MYC
Ribosome \. cvig e A targets
biogenesis \ -~ R 4

® o \ ) _, UP regulation
4 of MYC targets
o Maturation of
5.85 rRNA

617

618  Figure 5. Expression of proliferation-related gene sets in cells sorted by intra-population

619  heterogeneity in mitochondria membrane potential. (A) Cells were stained with Hoechst

620  and CFSE and a homogenous population of equally sized cells cells in G1 with equal CFSE was

621 obtained by FACS. These cells were stained with TMRE sorted by TMRE, and then used for

622 RNA-seq, or allowed to proliferate to measure the doubling time of each TMRE

623  sub-population. (B,C) Enrichment maps of fibroblasts and ESCs sorted by TMRE.

624
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627  Figure 6. The relation between mitochondria and proliferation is highly cell-type specific

628  (A) A biplot of principal component analysis (PCA) of the Normalized Enrichment Scores (NES)
629  values from the Gene Set Enrichment Analysis (GSEA) for all cell types sorted by
630 intra-population heterogeneity in either proliferation or mitochondria state. Fast and slow
631  were determined experimentally for all samples except CD8+ T cells, for which Ki67 staining
632  was used as a proxy for proliferation. (B) The weighted Euclidean distance in PC space
633  between all sorted populations. (C) The doubling time for fibroblasts and ESCs sorted by
634  TMRE. Points (circle or square) show the mean doubling time for high, medium, and low
635  TMRE cells. Error bars are the standard deviation across the eight samples for each TMRE

636 level.
637
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638

639  Figure 7. Prediction of proliferation in single cells using data from sorted bulk populations.
640  (A) Single cell RNA-seq data of mESCs grown in either serum+LIF (fast) or 2i+LIF (slow) were
641  projected into the PCA space from Figure 6. (B) Scatter plot showing the mean expression
642  (average of log2(TPM+1)) of pluripotency markers (genes in Figure 2B) vs predicted
643  proliferation rate (the PC1 described in Figure 6A) for each single cell. (C) Barplot show
644 higher coefficient of variation (CV) in serum+LIF grown cells compare with 2i+LIF grown cells
645 in four example gene sets. (D) CV across of all single cells for the mean expression (average
646  of log2(TPM+1)) of genes in each gene set for cells grown in serum+LIF (y-axis) vs 2i+LIF
647  (x-axis).
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649
Gene set name Gene set size  NES of Fibroblasts NES of ESCs
Inner mitochondrial membrane protein complex 101 B 252 @ 039
Mitochondrial membrane part 164 | 226 @ 044
Mitochondria Mitochondrial respiratory chain complex assembly 74 | 219 @ 049
Mitochondrial respiratory chain complex | biogenesis 54 | 212 @ 049
Mitochondrial matrix 404 0 197 i -0.49
Metabolism of proteins 377 B 247 @ 054
Glycolysis gluconeogenesis 60 [ 203 @ 135
Metabolism Monosaccharide biosynthetic process 52 [ 194 @ 076
Monosaccharide catabolic process 56 [ 167 ® 093
Hallmark fatty acid metabolism 157 B 152 @ 071
Dopaminergic neuron differentiation 28 O -1.66 W 127
Hematopoietic progenitor cell differentiation 97 . -1.59 . 1.09
Differentiation Regulation of cardiac muscle cell differentiation 19 @ 157 W o092
Regulation of smooth muscle cell differentiation 20 @ 145 B 166
Glial cell differentiation 136 @ -1.00 B 163
Cell cycle G1 S phase transition 104 © 195 [ 2.03
Hallmark E2F targets 195 ® 209 W 243
Cell cycle Fischer G1 S cell cycle 177 @ 203 [ 1.9
Cell cycle checkpoints 110 @ 084 [ 182
Cell cycle phase transition 247 ® 199 B 131
650 D NES>0 (higher expression in fast) Q NES<0 (higher expression in slow) . FDR q < 0.001 C) FDR q<0.05 . FDRq<0.1 . FDRq>0.1

651  Table 1. Gene sets whose expression exhibits opposite correlations with growth between
652  fibroblasts and ESCs. Shown are representative gene sets whose expression is significantly
653  correlated with proliferation in either fibroblasts or ESCs, but whose expression changes with
654 proliferation in opposing directions.
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Developmental stages (early to late)

657
658  Figure S1. Correlated changes in the expression of ribosome biogenesis and proteasome

659  related genes during organ development.

660  Change of average expression of log2(TPM+1) of genes in ribosome biogenesis (Go
661 preribosome) gene set and proteasome complex (Go proteasome complex) gene set with
662  developmental stages across different organs in seven species [16]. Points (circle and triangle)
663  are the mean expression of replicates, error bars represent the maximum and minimum
664  value in the replicates.

665

666

667
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