
 1 

CK2-dependent phosphorylation of the Brg1 chromatin remodeling enzyme occurs 

during mitosis 

 

Teresita Padilla-Benavides1, Dominic T. Haokip1, Yeonsoo Yoon2, Pablo Reyes-Gutierrez1, 

Jaime A. Rivera-Pérez2 and Anthony N. Imbalzano1* 

 

1Department of Biochemistry and Molecular Pharmacology, University of Massachusetts 

Medical School, Worcester, MA, 01605. USA. 

2Department of Pediatrics, Division of Genes and Development, University of Massachusetts 

Medical School, Worcester, MA, 01655. USA. 

*To whom correspondence should be addressed. Tel: (+1) 508-856-1029; E-mail: 

Anthony.Imbalzano@umassmed.edu  

 

KEYWORDS 

Brg1, SMARCA4, Casein kinase 2, phosphorylation, mitosis, chromatin remodeling enzyme, 

myoblast. 

 

HIGHLIGHTS 

• Interactions between CK2 and the Brg1 chromatin remodeling enzyme occur during mitosis 

• CK2-Brg1 interactions are independent of CK2 catalytic activity 

• CK2-mediated phosphorylation of Brg1 is a mitotic event 

• CK2-mediated phosphorylation of Brg1 is conserved across mammalian cell types 

• The mitotically hyperphosphorylated form of Brg1 is localized with soluble chromatin   
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ABSTRACT 

Brg1 (Brahma related gene 1) is one of two mutually exclusive ATPases that can act as the 

catalytic subunit of mammalian SWI/SNF chromatin remodeling enzymes that facilitate 

utilization of the DNA in eukaryotic cells. Brg1 is a phospho-protein and its activity is regulated 

by specific kinases and phosphatases. Previously, we showed that Brg1 interacts with and is 

phosphorylated by casein kinase 2 (CK2) in a manner that regulates myoblast proliferation. 

Here we demonstrate that the Brg1-CK2 interaction occurred during mitosis in embryonic 

somites and in primary myoblasts derived from satellite cells isolated from muscle tissue. The 

interaction of CK2 activity with Brg1 and the incorporation of a number of other subunits into the 

mSWI/SNF enzyme complex were independent of CK2 enzymatic activity. CK2-mediated 

hyperphosphorylation of Brg1 was observed in mitotic cells derived from multiple cell types and 

organisms, suggesting functional conservation across tissues and species. The mitotically 

hyperphosphorylated form of Brg1 was localized with soluble chromatin, demonstrating that 

CK2-mediated phosphorylation of Brg1 is associated with specific partitioning of Brg1 within 

sub-cellular compartments. Thus CK2 acts a mitotic kinase that regulates Brg1 phosphorylation 

and sub-cellular localization. 
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INTRODUCTION 

The mammalian SWI/SNF (SWItch/Sucrose Non-Fermentable; mSWI/SNF) complexes belong 

to a family of chromatin-remodeling enzymes that utilize ATP to modify chromatin structure and 

DNA/histone contacts [1-3]. These chromatin remodelers can either promote or inhibit the 

accessibility of various factors that control gene transcription, replication, recombination, and 

repair [4-6]. The enzymatic activity of the mSWI/SNF complexes are driven by the ATPase 

Brahma-related gene 1 (Brg1) or Brahma (Brm) [2, 7-9]. There are many associated subunits 

that combine in an ordered manner [10] to form different subfamilies of complexes that contain 

both common and unique subunits [10-14]. The great diversity of enzyme complex assemblies 

is thought to enable cell- and developmental stage-specific functions [14, 15].  

 

We and others have shown that the activity of Brg1 and other components of the mSWI/SNF 

complex is post-translationally regulated by various signaling pathways [16-22]. For instance, in 

the liver, Baf60c phosphorylation via the insulin signaling pathway enables the expression of 

lipogenic genes [23]. In cardiac muscle the DPF/Baf45c subunit is phosphorylated in response 

to hypertrophic signaling [19]. The catalytic subunit Brg1 is phosphorylated upon DNA-damage 

signaling by the ataxia telangiectasia-mutated kinase, resulting in the binding of the ATPase to 

nucleosomes containing γ-H2AX to enable repair centers [24]. In Drosophila, where there is 

only one catalytic subunit, phosphorylation by cyclin-dependent kinases is needed for cell 

proliferation and development of wing epithelium [25]. Studies of skeletal muscle differentiation 

showed that the Baf60c subunit is phosphorylated by the mitogen-activated protein kinase p38, 

which allows the assembly of the rest of the mSWI/SNF complex at myogenic promoters [18, 

26]. mSWI/SNF enzymes are required for myoblast proliferation and at multiple stages of 

differentiation [27-32]. Regulated phosphorylation and dephosphorylation of Brg1 is an essential 

part of both proliferation and differentiation [16, 17, 22]. Phosphorylation of Brg1 by protein 

kinase C β1 (PKCβ1) prior to the induction of differentiation signaling has a repressive effect on 
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the function of Brg1 and leads to a block of myogenic differentiation [16]. However, 

dephosphorylation of Brg1 by the phosphatase, calcineurin, opposes the activity of PKCβ1, 

allowing chromatin remodeling by Brg1 and initiation of myogenesis [16]. Mutagenesis and 

unbiased mass spectrometry analyses of Brg1 phosphopeptides in the presence and absence 

of a calcineurin inhibitor identified calcineurin target sequences, but the mass spectrometry data 

identified additional Brg1 phosphopeptides that were not responsive to calcineurin inhibition 

[16]. This suggested that Brg1 is a target of additional signal transduction pathways. Our 

subsequent studies showed that Brg1 was phosphorylated by casein kinase 2 (CK2), a 

Serine/Threonine kinase, which promoted myoblast proliferation and survival by regulating sub-

nuclear localization and incorporation of one of two related subunits, BAF155/BAF170, into the 

enzyme complex [17]. 

 

CK2 is ubiquitously expressed and functions as a tetramer of two catalytic subunits, CK2α or 

CK2α’, and two CK2β regulatory subunits, and it has more than 300 known substrates [33-35]. 

CK2 is required for cell cycle progression, survival, apoptosis, and transcriptional regulation. 

Knockout mice lacking the CK2α subunit show cardiac and neural tube defects and die during 

embryogenesis, whereas mice lacking the α’ subunit have impaired spermatogenesis [36-38]. 

Knockout of the CK2β subunit in mice leads to reduced proliferation during embryogenesis, 

which is reflected in the small size of the animals at embryonic day 6.5 (E6.5) and resorption at 

E7.5 [39]. Analyses of a murine conditional knockout model showed that CK2β is essential for 

viability of embryonic stem cells and primary embryonic fibroblasts [39]. In vitro cell experiments 

have shown that CK2 inhibition results in cell cycle blockage and death [40-43]. Thus, CK2 has 

been associated with proliferation, lineage determination and differentiation of various tissues, 

including skeletal muscle [44].  
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CK2-mediated regulation of myoblasts occurs at multiple levels. For instance, transcription 

factors from the myogenic regulatory factor (MRF) family and paired box (Pax) 3 and 7 are 

directly or indirectly regulated by CK2 activity [17, 45-52]. These proteins are necessary for the 

proliferation and/or differentiation of muscle-specific precursor cells [46, 53-58]. In vivo studies 

showed that the CK2α’-depleted mice have a similar muscular constitution as wild type animals 

[38, 59]. However these CK2α’-knockout mice showed altered regeneration of skeletal muscle 

due to the dysregulation of the cell cycle, which resulted in muscle fibers of reduced size [59]. 

Furthermore, muscles of mice depleted of the CK2β subunit presented with compromised 

muscle endplate structure and function, and consequently, the differentiated fibers showed a 

myasthenic phenotype [60]. In vitro studies using C2C12 cells showed that each of the CK2 

enzyme subunits contributed to the determination of the skeletal muscle lineage. CK2β 

contributed to myoblast commitment and muscle-specific gene expression as it is essential for 

MyoD expression in proliferating myoblasts [61]. CK2α was required for the activation of the 

muscle-specific gene program [61]. CK2α’ regulated myoblast fusion by facilitating membrane 

translocation of fusogenic proteins such as myomixer [61].  

 

Previous work from our group showed that Brg1 is required for the proliferation of primary 

myoblasts derived from mouse satellite cells because it binds to and remodels chromatin at the 

Pax7 promoter and activates its expression [28]. Pax7 is the master transcriptional regulator for 

proliferation of the muscle satellite cells [62-65]. Pax7 knockout mice have a reduced pool of 

satellite cells, which are gradually lost with age, impairing the animal’s capabilities to regenerate 

muscle tissues [53, 54, 57, 66]. We showed that overexpression of Pax7 in primary myoblasts 

lacking Brg1 rescues the cells from apoptosis and restores proliferation, indicating that Brg1 

regulates Pax7 expression to promote primary myoblast survival and proliferation [28]. 

Furthermore, we showed that Brg1 is phosphorylated by CK2 in proliferating primary myoblasts 

and that CK2 inhibition impaired Brg1 chromatin remodeling and transcriptional activity at the 
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Pax7 locus [17]. In addition, phosphorylation of Brg1 by CK2 correlated with the subunit 

composition of the mSWI/SNF enzyme complex and its sub-nuclear localization [17]. 

 

Here we report novel findings about Brg1 phosphorylation by CK2. We found that co-localization 

between CK2 and Brg1 occurred only in cells undergoing mitosis in developing somites of 

mouse embryos and in primary myoblasts isolated from satellite cells. Co-immunoprecipitation 

from primary myoblasts in M phase confirmed the association of Brg1 with CK2. The interaction 

between CK2 and Brg1 or other mSWI/SNF subunit proteins in mitotic cells was independent of 

CK2 enzymatic activity, whereas localization to soluble chromatin did require CK2 enzymatic 

function. Importantly, CK2-dependent hyperphosphorylation of Brg1 was conserved across 

different cell lineages. We note that prior work showed phosphorylation of Brg1 during M phase 

by extracellular signal-regulated kinases (ERKs) [67, 68], which therefore indicates multiple 

protein kinases act on Brg1 during mitosis.   
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RESULTS 

Brg1 and CK2 co-localize in mitotic cells in developing somites of mouse embryos. 

Work from our group and many others has demonstrated that CK2 is implicated in myoblast 

function [17, 45-52, 59-61]. Specifically, we demonstrated that CK2 modulates the ability of Brg1 

to promote myoblast proliferation by inducing Pax7 expression [17]. To corroborate our studies 

in vivo, we investigated the interaction between CK2 and Brg1 in murine embryonic somite 

development. Somites are fast-dividing paired blocks of paraxial mesoderm that are the source 

of the sclerotome, myotome, and dermatome, which give rise to bone, muscle, and the dermis, 

respectively. Confocal microscopy analyses confirmed that Brg1 and CK2 are expressed in 

somitic cells from E9.5 mice (Fig. 1). As expected, Brg1 localization was nuclear, and CK2 

localization was predominantly, but not exclusively, cytoplasmic. Strikingly, little or no co-

localization between these proteins was detected in interphase cells, however, clear co-

localization of Brg1 and CK2 was detected in mitotic cells (Fig. 1, lower panel, white arrows). 

Mitotic cells were marked by the detection of condensed chromosomes stained with 

phosphorylated histone H3 (PHH3). In order to further investigate the Brg1-CK2 interaction 

during the progression of mitosis, we used an in vitro model of cultured primary myoblasts 

derived from mouse satellite cells. Images of mitotic cells from an asynchronous cell population 

were collected, with staining by PHH3 to mark the different stages of mitosis. Co-localization 

between Brg1 and CK2 was observed first at prometaphase and continued until late telophase 

(Fig. 2).  

 

Pharmacological inhibition of CK2 activity does not impair its interaction with Brg1  

To facilitate biochemical studies of mitotic cells, we treated cycling primary myoblasts with 

nocodazole, a commonly used inhibitor of microtubule polymerization that results in cell cycle 

arrest at mitosis [69]. FACS analysis of control or treated cells demonstrates the enrichment in 

the G2/M population that was obtained in the presence of nocodazole (Fig. 3A). Our previous 
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study addressed the effects of the specific CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB) 

[70], on the proliferation capabilities of primary myoblasts derived from satellite cells and on the 

properties of Brg1 and mSWI/SNF complex in treated cells [17]. We again made use of TBB to 

determine whether the CK2-Brg1 interaction required the enzymatic activity of CK2. Reciprocal 

co-immunoprecipitations showed that in control and in nocodazole-synchronized mitotic 

myoblasts, Brg1 and CK2 interacted as expected (Fig. 3B). The interaction was maintained 

even when CK2 was inhibited by TBB (Fig. 3B), demonstrating that the enzymatic activity of 

CK2 is not necessary for the formation of a stable complex containing Brg1 and CK2.  

 

CK2 inhibition does not impair the interaction of Brg1 with additional subunits of the mSWI/SNF 

complex. 

We next asked whether the interaction of Brg1 with other mSWI/SNF subunits was dependent 

on the enzymatic activity of CK2. Immunoprecipitation assays for Brg1 from control and 

nocodazole-treated myoblasts showed a co-immunoprecipitation of Brg1 with Baf155, Baf60c, 

Baf57 and Baf47 in the presence or absence of TBB (Fig. 3C). Baf60a, a homolog of BAf60c 

that is poorly or not incorporated in mSWI/SNF complexes in skeletal muscle [71] was used as a 

negative control (Fig. 3C). These data indicate that CK2 enzymatic activity is not required for 

the association of the indicated subunits with Brg1. The data do not address whether the 

different subfamilies of mSWI/SNF complexes contain all known components in the presence of 

TBB, however, the data suggest that mSWI/SNF enzyme complexes are not prevented from 

forming because of inhibition of CK2 enzymatic activity. 

 

Brg1 is hyperphosphorylated by CK2 during mitosis 

Though we have provided numerous lines of evidence for CK2-mediated phosphorylation of 

Brg1 [17], there is an expectation that hyperphosphorylation of Brg1 might be visible in a 

western blot. However, this has been complicated by the large size of the Brg1 protein, the large 
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number of identified and potential phosphorylation sites on Brg1 and the diversity of kinases that 

do or might be predicted to act on Brg1. Definitive evidence of hyperphosphorylation due to CK2 

in conventional SDS-PAGE has been elusive. Therefore, we chose to use Phos-Tag™ 

supplemented SDS-PAGE. Phos-Tag™ forms alkoxide-bridged dinuclear metal complexes that 

bind to phosphorylated proteins and enhance changes in the migration of phosphorylated 

proteins [72-74]. Figure 4A shows a representative western blot of nocodazole-synchronized 

cells, where Brg1 migrated more slowly than Brg1 from TBB treated and control cells. These 

data suggest an enrichment of CK2-mediated phosphorylation of Brg1 during mitosis. In vitro 

assays of Brg1 from nocodazole-treated cells showed that treatment with calf-intestinal alkaline 

phosphatase (CIP) increased the mobility of Brg1 in a Phos-Tag™ gel (Fig. 4B; compare lanes 

1 and 4). Addition of EDTA chelated metals required for CIP activity and prevented the increase 

in gel mobility, as expected (Fig. 4B; lanes 1-4). Addition of purified CK2 restored the shift in 

mobility of Brg1, but not in the presence of TBB (Fig. 4B; compare lanes 5 and 6). The 

combination of approaches taken in Figs 4A and 4B demonstrate the dependence of the altered 

electrophoretic mobility of Brg1 on the catalytic activity of the CK2 kinase. 

 

We subsequently examined the mobility of the other subunits tested in Figure 3C on Phos-

Tag™ gels. Baf155, Baf60c, and Baf57, but not Baf47, show two or more bands that are 

presumably due to differential phosphorylation (Fig. 4C). No easily discernable changes in gel 

mobility were observed due to the presence of TBB. These data do not exclude the possibility 

that CK2 phosphorylates any of these mSWI/SNF subunits, but the data do demonstrate that 

large mobility shifts such as that shown by CK2-dependent phosphorylation of Brg1 do not 

occur in these other subunits. 

 

CK2 phosphorylation of Brg1 during mitosis is a conserved event in different mammalian 

species and tissues 
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To determine whether the CK2-dependent phosphorylation of Brg1 during mitosis is part of a 

skeletal muscle-specific regulatory mechanism or is more widespread, we examined other cell 

types arrested in mitosis. We tested Brg1 gel mobility in Phos-Tag™ gels using Madin Darby 

Canine Kidney (MDCK) epithelial cells, murine 3T3-L1 pre-adipocytes, murine C2C12 

myoblasts, HeLa human cervical cancer cells, and human mammary epithelial MCF10A cells. 

Each of these are immortalized cell lines, in contrast to the primary cells tested in the 

experiments presented in Figures 1-4. HeLa cells are a transformed cancer cell line. 

Representative western blots from Phos-Tag™ gels shows that in each cell type, Brg1 from 

cells grown in the presence of nocodazole migrated with reduced mobility in contrast to the 

mobility observed in control cells (Fig. 5). β-actin levels were monitored as a control.  These 

results suggest that CK2-dependent phosphorylation of Brg1 is a conserved event during 

mitosis of different cell types originating from different mammalian species. 

 

CK2 enzymatic activity is required for proper sub-cellular partitioning of Brg1 

Nuclear fractionation experiments showed that Brg1 and other mSWI/SNF proteins are 

associated with both soluble chromatin and the nuclear matrix [75, 76], which is a non-

chromatin, fibrogranular ribonucleoprotein network within the nucleus [77]. The nuclear matrix 

provides an anchoring structure to chromatin loops, among other functions [78-80]. We 

previously demonstrated that Brg1 proteins containing phosphomimetic mutations at sites of 

CK2 activity lost the ability to associate with both soluble chromatin and the nuclear matrix 

whereas Brg1 containing alanine substitutions at sites of CK2 activity that prevented 

phosphorylation associated only with the nuclear matrix [17]. We investigated the effects of CK2 

inhibition on the localization of Brg1 in mitotic cells using a sequential extraction protocol that 

generates a cytosolic fraction, a soluble chromatin fraction, and, after a high salt wash, the 

nuclear matrix fraction [17, 75, 81]. A representative western blot of Brg1 from primary 

myoblasts is shown in Fig. 6A. The hyperphosphorylated, or lower mobility, form of Brg1 from 
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mitotic myoblasts was associated with the soluble chromatin fraction. In contrast, Brg1 

associated with the nuclear matrix showed no alterations in gel mobility in all the conditions 

tested (Fig. 6A). Representative control western blots showed the purity of the fractions (Fig. 

6B). Tubulin β was found in the cytosolic fraction, lamin β1 localized to the nuclear matrix, and 

RNA pol II was located in the soluble chromatin. The data indicate that Brg1 phosphorylated by 

CK2 in mitotic cells is associated exclusively with the soluble chromatin and is not associated 

with the nuclear matrix.  
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DISCUSSION 

Identification of CK2 as an M phase kinase for Brg1 conserved across mammalian species and 

tissue types 

Post-translational modification of proteins comprising the mSWI/SNF chromatin remodeling 

enzymes is a mechanism to regulate function in addition to established mechanisms involving 

expression level of subunits, mutation of subunits, and diversity in the composition of enzyme 

complexes. We previously demonstrated that Brg1 is a substrate for CK2 that affects myoblast 

proliferation [17]. In the current work, we noted that Brg1 and CK2 co-localized only in mitotic 

cells in murine embryonic somites and in primary myoblasts derived from mouse satellite cells. 

These findings provide insight into the role of CK2-mediated phosphorylation of Brg1 by 

establishing that this post-translational modification occurs during a specific phase of the cell 

cycle. We therefore altered our experimental approach by enriching for a mitotic population of 

cells through addition of nocodazole, which inhibits microtubule polymerization and therefore 

blocks the separation of mitotic chromosomes during mitosis. This approach, in combination 

with the use of the Phos-Tag™ reagent [72-74], allowed us to reproducibly visualize an altered 

(reduced) electrophoretic migration of Brg1 in mitotic cell extracts for the first time. The 

dependence of this modification on CK2 was demonstrated by manipulation of CK2 activity in 

cells and in vitro, providing visual evidence of CK2-mediated phosphorylation of Brg1 to 

complement mutagenesis studies previously published [17]. Some of the other mSWI/SNF 

subunits also were examined for CK2-dependent altered electrophoretic mobility. Although 

multiple forms of several of those proteins were evident in the western blots, consistent with the 

established observation that most, if not all, of the mSWI/SNF proteins are phosphoproteins 

[82], there was no obvious effect of CK2 inhibition. This suggests that CK2 primarily targets 

Brg1 but does not exclude the possibility that other mSWI/SNF proteins are also modified. 
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Given that this work and our prior work examined the phosphorylation of Brg1 by CK2 in primary 

murine myoblasts derived from satellite cells, which are adult stem cells that promote post-natal 

skeletal muscle expansion and repair, it was important to ascertain whether this event was 

restricted to post-natal skeletal muscle or not. The co-localization of CK2 with Brg1 in mitotic 

mouse somites does not demonstrate CK2-mediated phosphorylation of Brg1 in embryonic 

tissue, but it is suggestive of function during embryonic development. More conclusive data was 

obtained by surveying a small assortment of cell lines for CK2-dependent phosphorylation of 

Brg1. Canine and human, in addition to murine cells, showed evidence of CK2-dependent 

phosphorylation of Brg1 in mitosis. The cell lines tested were derived from several different 

tissue types, and one was derived from a human tumor. Thus, we observed phosphorylation of 

Brg1 in mitotic primary, immortalized, and transformed cells from different tissue types. These 

results suggest conservation of function. 

 

The role of CK2 as a kinase for Brg1 during mitosis 

The experiments presented here indicate that CK2 catalytic activity is not required for Brg1 and 

CK2 to associate, based on reciprocal co-immunoprecipitation experiments, and is also not 

required for Brg1 to associate with at least some of the other mSWI/SNF subunits in a complex.  

Evidence to date indicates a functional role for CK2 in myoblast proliferation as well as in 

differentiation (reviewed above), likely due to the large number of CK2 substrates. The link for 

CK2-mediated phosphorylation of the Brg1 ATPase of mSWI/SNF chromatin remodeling 

enzymes is to date limited to myoblast proliferation, but the exact nature of its function remains 

unclear. Previously we depleted primary myoblasts of endogenous Brg1 by introduction of Cre 

recombinase into primary myoblasts isolated from a Brg1 conditional mouse [83] and showed 

that myoblast proliferation and survival was compromised [28]. We then engineered a system to 

replace the endogenous Brg1 in such myoblasts with wild-type or mutant Brg1 to make 

functional assessments of specific Brg1 amino acids [16, 17]. When we mutated predicted sites 
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of CK2 activity on Brg1 by substituting glutamine, to introduce phosphomimetic amino acids, 

myoblast proliferation and survival was compromised as in the case of Brg1 depletion or 

introduction of catalytically inactive Brg1 [17]. Substitution with alanine, to introduce non-

phosphorylatable amino acids had no effect on rate of proliferation or survival, while inhibition of 

CK2 activity with TBB actually increased myoblast proliferation rate, suggesting that 

phosphorylation of Brg1 by CK2 negatively impacted proliferation and that a balance between 

phosphorylation and dephosphorylation at sites of CK2 activity is required for normal cell 

proliferation.   

 

In the current work, we noted that CK2-mediated phosphorylation of Brg1 occurs in mitosis, and 

that hyperphosphorylated Brg1 partitions with the soluble chromatin, not with the nuclear matrix.  

Our prior study showed that inhibiting CK2-mediated phosphorylation did not impact the ability 

of Brg1 to bind to and remodel chromatin at the Pax7 promoter in support of Pax7 gene 

expression and that Brg1 was restricted to the nuclear matrix under these conditions [17]. The 

results therefore suggest that CK2-medated phosphorylation of Brg1 is not required for 

transcription-related functions, at least at the Pax7 locus. Instead, a Brg1 function related to the 

role of soluble chromatin during mitosis seems more likely. Does regulated CK2-mediated 

phosphorylation of Brg1 facilitate mitotic chromatin condensation? Or might the phosphorylation 

state of Brg1 be related to its ability to contribute to higher-order genome organization in the 

nucleus?  Knockdown of Brg1 in proliferating MCF10A breast epithelial cells resulted in altered 

nuclear shapes [84], altered telomere organization, and a weakening of topologically associating 

domain (TAD) boundaries [85], implicating Brg1 as a necessary component for proper genome 

organization and nuclear structure [86, 87]. Three-dimensional genome organization observed 

in interphase cells is profoundly altered in mitosis [88] via mechanisms involving condensin-

mediated organization of chromatin loop arrays [89]. Perhaps CK2-mediated phosphorylation of 

Brg1 contributes to or is a consequence of this process. Precise identification of the exact Brg1 
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amino acids that are phosphorylated by CK2 would further our understanding and promote 

additional experimentation to explore function. 

 

CK2 and ERK modifications of Brg1 during mitosis 

Early work on the mSWI/SNF complex determined that most, if not all, of the subunit proteins 

were phosphoproteins [82], that Brg1 was a mitotic phosphoprotein [90], and that hyper-

phosphorylation of Brg1 occurred during mitosis [67, 68]. The hyper-phosphorylation of Brg1 

during mitosis was correlated with the dissociation of Brg1 from the condensing mitotic 

chromosomes [67, 68]. De-phosphorylation of Brg1 was associated with the re-association of 

BRG1 with chromatin as cells exited mitosis [67]. mSWI/SNF complex purified from mitotic cells 

was inactive in in vitro chromatin remodeling assays, while mSWI/SNF complexes purified from 

cells exiting mitosis were active [67]. The kinase responsible for this activity has been 

investigated in vitro. Cdc2-cyclinB kinase did not phosphorylate Brg1 or other mSWI/SNF 

subunits [90]. However, purified, active mSWI/SNF complex isolated from HeLa interphase cells 

could be treated with ERK1, a member of the mitogen-activated kinase (MAPK) family, resulting 

in Brg1 hyperphosphorylation and the inactivation of the chromatin remodeling activity of the 

mSWI/SNF complex. The data suggest that a MAPK phosphorylates Brg1 as a switch to control 

its chromatin remodeling activity and that the chromatin remodeling activity is inactivated as a 

cause or consequence of Brg1 exclusion from the condensing mitotic chromosomes. 

 

The intersection of these data with the data presented about CK2-mediated phosphorylation of 

Brg1 is limited to two points. First is the observation that Brg1 was found associated with one or 

more other mSWI/SNF enzyme subunits in mitosis [67, 68] (Fig. 3). Thus many of the 

mSWI/SNF enzyme subunits remain in a complex during mitosis, apparently regardless of the 

phosphorylation state of Brg1. Second, observations about Brg1 phosphorylation from each of 

the studies directly indicate or at least suggest that they are conserved across different tissue 
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types and, likely across species [67, 68] (Fig. 5). Though it is possible that either CK2 or MAPK 

could be sufficient for Brg1 phosphorylation during mitosis, the predicted sites of MAPK and 

CK2 phosphorylation activity are different, making it possible that different kinases act on Brg1 

during mitosis. Whether kinases modifying Brg1 work in concert or independently and whether 

each promotes the same or different functions remain unknown. Nevertheless, the data 

collectively support the concept that Brg1 and mSWI/SNF enzyme function are dynamically 

regulated by phosphorylation during mitosis. 
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METHODS 

Cell culture 

Murine primary myoblasts derived from satellite cells- Mice were housed in the animal care 

facility at the University of Massachusetts Medical School (Worcester, MA) in accordance with 

the Institutional Animal Care and Use Committee guidelines. Mouse satellite cells were purified 

from whole-leg muscle from 3- to 6-week-old male and female wild type C57Bl/6 by differential 

plating following Percoll sedimentation as previously described [91]. Isolated primary myoblasts 

were plated at 4 x 104 cells/cm2 in growth media (GM) containing a 1:1 mix of DMEM and F-12 

media, 20% fetal bovine serum (FBS), 2% chick embryo extract, 25 ng/ml recombinant basic 

fibroblastic growth factor (FGF, Millipore), and 100 U/mL of penicillin/streptomycin.  

3T3-L1 murine pre-adipocytes- Cells were plated at 2 x 104 cells/cm2 and maintained at <50% 

confluency in DMEM with high glucose, supplemented with 10% FBS and 100 U/mL of 

penicillin/streptomycin.  

Human MCF10A breast epithelium cells- Cells were plated at 1 x 105 cells/cm2 in a mixture of 

DMEM/F12 (1:1, v:v) supplemented with 5% FBS, 100 U/mL penicillin/streptomycin, 0.5 μg/mL 

hydrocortisone, 10 μg/mL insulin, and 20 ng/mL epidermal growth factor (EGF).  

Murine C2C12 myoblast cells, Madin-Darby canine kidney (MDCK) cells, and human cervical 

epithelial adenocarcinoma HeLa cells- Cells were plated at 1 x 105 cells/cm2 in DMEM 

supplemented with 10% FBS and 100 U/mL of penicillin/streptomycin.  

Where indicated, the cells were cultured in the presence or absence of nocodazole to induce 

cell cycle arrest in mitosis. The nocodazole concentrations and incubation times were: 500 nM 

for 16 h for primary myoblasts obtained from C57Bl/6 mice and C2C12 cells [92], 300 nM for 16 

h for 3T3-L1 preadipocytes [93], 250 nM for 24 h for MCF10A cells [94], 250 nM for 16 h for 

HeLa cells [95], and 100 nM for 11 h for MDCK cells [96]. CK2 was inhibited with 10 µM of TBB, 

as described before [17]. Media was replaced every day. 

Antibodies  
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The primary antibodies used were: The rabbit anti-CKIIα (2656), rabbit anti-Baf60c (62265), and 

rabbit anti-phospho-histone H3 (Ser10; D2C8) conjugated to Alexa Fluor 647 were obtained 

from Cell Signaling Technologies. The rabbit anti-Brg1 (G-7), rabbit anti-Baf155 antibody (H-76), 

rabbit anti-lamin β1 (H-90), and rabbit anti-pol II (N-20), were purchased from Santa Cruz 

Biotechnology. The rabbit anti-PI3K p85 antibody, N-SH2 domain (ABS233) was obtained from 

Millipore Corp. The rabbit anti-Ini1 (Baf47) antisera was previously described [29]. The rabbit 

anti-SMARCE1 (Baf57, A13353), and rabbit anti-SMARC1 (Baf60a, A6310) were obtained from 

Abclonal Technology. The secondary anti-mouse and anti-rabbit horseradish peroxidase-

conjugated antibodies and the Alexa Fluor 488- and 555-conjugated antibodies were from 

Thermo Fisher Scientific. 

Embryo collection and whole mount immunostaining  

All animal experiments were conducted under the guidance of the institutional animal care and 

use committee of the University of Massachusetts Medical School. CD-1 mice were obtained 

from Charles River Laboratories (Strain code 022). All animals were maintained on a 12 h light 

cycle. The middle of the light cycle of the day when a mating plug was observed was considered 

embryonic day 0.5 (E0.5) of gestation.  

Embryos were collected at E9.5 and were fixed with phosphate buffered 10% formalin overnight 

at 4 ºC. The next day, the embryos were washed three times with PBS for 10 min and 

permeabilized with PBT buffer (0.5% Triton-X100 in PBS) for 10 min at room temperature. 

Samples were incubated with blocking solution for 1 h (PBT, 5% horse serum) at room 

temperature. The embryos were incubated with the primary antibodies against CK2 and Brg1 

(1:100) in blocking solution overnight at 4 ºC. The samples were then washed three times with 

PBT solution for 10 min at room temperature, then incubated with species-specific fluorescent 

secondary antibody (1:500) in PBT for 2 h at room temperature, and washed three times with 

PBT solution for 10 min at room temperature. Samples were incubated with the anti-PHH3 

antibody for 2 h at room temperature followed by a 30 min incubation with 4,6-diamidino-2-
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phenylindole (DAPI). Negative controls were prepared as described above, but no primary 

antibodies were included. Embryos were washed three times with PBT at room temperature for 

10 min and a final wash was performed with PBS for 10 min at room temperature. Embryos 

were equilibrated with sequential 15 min incubations of PBS:glycerol solutions (1:1, 1:2) and 

mounted in Vectashield containing DAPI (Vector Labs). Imaging was performed with a Leica 

TCS SP5 Confocal Laser Scanning Microscope (Leica) using a 40X water immersion objective. 

Primary myoblast immunofluorescence and confocal microscopy analyses 

Proliferating myoblasts for immunofluorescence were grown on glass bottom Cellview 

Advanced TC culture dishes (Grenier Bio One). Cells were cultured in the presence or absence 

of 10 µM TBB. Cells were fixed in phosphate buffered 10% formalin, blocked in in PBT buffer 

containing 5% horse serum, then incubated overnight at 4º C with the anti-CK2 and anti-Brg1 

primary antibodies diluted 1:100 in blocking buffer. Cells were washed three times with PBT 

buffer and sequentially incubated for 2 h with fluorescent labelled antibodies (1:500 dilution in 

blocking buffer). After three additional washes with PBT buffer, the cells were incubated with the 

anti-PHH3 antibody. Cells were counterstained with 4,6-diamidino-2-phenylindole (DAPI) and 

imaged with a Leica TCS SP5 Confocal Laser Scanning Microscope (Leica) using a 40X water 

immersion objective. 

Cell cycle analyses by flow cytometry 

Primary myoblasts were incubated with 500 nM nocodazole for 16 h. The cells then were 

washed in PBS to remove all traces of serum. The cell concentration was adjusted to 2x106 

cells/100 µl in PBS, and 900 µl of 95% ethanol were added dropwise to the cells while vortexing 

gently. Cells were stored at 4°C for 24 h. Then the cells were pelleted by centrifugation at 2000 

x g, the ethanol was removed and samples were washed once with PBS, centrifuged again and 

PBS was removed. The cells subsequently were incubated for 20 min in the dark at 37 ºC in 1 

ml of Propidium Iodide (PI) staining solution containing 900 µl PBS, 2mM MgCl2 , 50 µl 
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propidium iodide stock solution (1 mg/m1) and 50 µl of RNase Stock Solution (1mg/ml). 

Samples were analyzed by fluorescence activated cell sorting at the Flow Cytometry Core at the 

University of Massachusetts Medical School. 

Western blot analyses 

Proliferating primary myoblasts were washed with ice cold PBS and solubilized with RIPA buffer 

(10 mM PIPES, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.5% sodium 

deoxycholate, and 10% glycerol) containing Complete Protease Inhibitor. Protein samples (20-

40 µg) were prepared for SDS-PAGE by boiling in Laemmli buffer. The resolved proteins were 

electro-transferred to PVDF membranes (Millipore). The proteins of interest were detected with 

specific polyclonal or monoclonal antibodies as indicated in the figures, followed by the species-

appropriate peroxidase-conjugated antibodies (Thermo Fischer Scientific) and 

chemiluminescent detection (Tanon™ High-sig ECL Western Blotting Substrate, Abclonal). All 

western blotting experiments were performed using samples from three independent 

experiments. For the electrophoretic separation of phosphorylated proteins, samples were 

loaded in 5% SDS-PAGE supplemented with Phos-tag™ Acrylamide (Wako, AAL-107) and 10 

mM MgCl2, as indicated by the manufacturer.  

Immunoprecipitation 

Cells were washed three times with ice-cold PBS and resuspended in lysis buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and Complete 

Protease Inhibitor). Cell extract (250 µg) was incubated in a rotating mixer for 2 h with the anti-

Brg1 or anti-CK2 primary antibodies at 4 °C, followed by an overnight incubation with Pure 

Proteome Protein A/G mix magnetic beads (Millipore). Samples were washed as indicated by 

the manufacturer, and immunoprecipitated proteins were eluted with freshly prepared IP buffer 

(10% glycerol, 50 mM Tris-HCl, pH 6.8, and 1 M NaCl) by incubating for 1 h at room 

temperature on a rotating mixer. Samples were analyzed by SDS-PAGE and western blot. 

Brg1 dephosphorylation and phosphorylation assays  
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Dephosphorylation assays were performed with Calf Intestinal Alkaline Phosphatase (CIP; New 

England Biolabs). Briefly, 100 µg of total protein extract from proliferating myoblasts were 

incubated with 1X CIP buffer in the presence or absence of 50 units of phosphatase for at 37°C 

for 1 h; control experiments for CIP inhibition were performed simultaneously with 50 mM EDTA. 

Then the phosphatase was heat-inactivated at 80 ºC for 10 min, and samples were further 

incubated with CK2 in the presence or absence of the specific inhibitor tetrabromobenzotriazole 

(TBB, 10 µM) for 30 min at 30 °C. Reactions contained 50 units of CK2 (New England Biolabs) 

supplemented with 1X CK2 Reaction Buffer (20 mM Tris-HCl, 50 mM KCl, 10 mM MgCl2, pH 

7.5) and with 200 µM ATP, as previously described [17]. Protein samples were separated 5% 

SDS-PAGE supplemented with Phos-Tag acrylamide as described above. 

Cell fractionation 

Cell fractionation was performed according to the high-salt isolation protocol [17, 75, 81]. Briefly, 

proliferating primary myoblasts were washed with ice-cold PBS and extracted in cytoskeleton 

buffer (CSK: 10 mM PIPES, pH 6.8, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 1 mM EGTA, 

1 mM DTT, 0.5% (v/v) Triton X-100 and Complete Protease Inhibitor). The insoluble cytoskeletal 

fraction was isolated by centrifugation at 5,000 x g for 3 min. Chromatin was then solubilized by 

DNase I digestion (1 unit, New England Biolabs) in CSK buffer with Complete Protease Inhibitor 

for 15 min at 37 °C. The samples subsequently were incubated in 0.25 M (NH4)2SO4 for 5 min at 

4 °C and centrifuged at 5,000 x g for 3 min. The pellet was washed with 2 M NaCl in CSK buffer 

for 5 min at 4 °C and centrifuged. The nuclear matrix contained in this final pellet was solubilized 

in 8 M urea buffer. Fractions were analyzed by SDS-PAGE and Western blotting; antibodies 

against RNA Polymerase II, β tubulin and lamin β1 were used as controls for purity of the 

fractions.  
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Figure 1 

 

 

 

Fig. 1. CK2 and Brg1 co-localize in mitotic cells of developing somites in mouse embryos. 
Representative confocal microscopy images from three different mice show the expression of Brg1 
(green), CK2 (red), and phosphorylated histone H3 (PHH3, yellow) in somites of E9.5 mouse 
embryos. The nuclei were stained with DAPI (blue). The white arrow in the upper panel points to the 
area of enlargement in the lower panels. The white arrows in the lower panel point to mitotic cells. 
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Figure 2 

 

Fig. 2. CK2 and Brg1 co-localize in mitotic primary myoblasts derived from mouse satellite 
cells. Representative confocal microscopy images from three independent biological replicates show 
the expression of Brg1 (green), CK2 (red), and phosphorylated histone H3 (PHH3, yellow) on 
proliferating primary myoblasts. The nuclei were stained with DAPI (blue).  
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Figure 3 

 

 

Fig. 3. Inhibition of CK2 enzymatic activity does not impair its interaction with Brg1 or affect 
the interaction of Brg1 with numerous mSWI/SNF complex proteins. Primary myoblasts were 
treated or not with 500 nM nocodazole and 10 µM TBB. (A) Representative FACS analyses of 
primary myoblasts treated or not with nocodazole. (B) Representative western blots from a reciprocal 
immunoprecipitations of Brg1 (left panel) or CK2 (middle panel). IgG IPs and input (1%) for both 
proteins are shown as controls. (C) Representative western blots of Brg1 immunoprecipitation and 
western blots for the mSWI/SNF subunits Baf155, Baf60c, Baf57, Baf47, and Baf60a. IgG and inputs 
(2%) for all samples were included as controls. Three independent biological replicates were 
performed. 
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Figure 4 

 

 

 

 

Fig. 4. Brg1 is phosphorylated by CK2 during mitosis. Primary myoblasts were treated or not with 
500 nM nocodazole and 10 µM TBB as indicated. Samples were separated in a 5% SDS-PAGE 
supplemented with Phos-Tag™. (A) Representative western blot of the CK2-mediated shift in Brg1 
mobility in myoblast cultures enriched for mitotic cells. PI3K was used as loading control. (B) 
Representative western blots following an in vitro dephosphorylation/phosphorylation assay on Brg1 
in primary myoblast extracts from cells treated as indicated. (C) Representative western blots 
showing no easily discernible changes in mobility for Baf155, Baf60c, Baf57 or Baf47 in primary 
myoblast extracts from cells treated as indicated. PI3K was used as a loading control. Three 
independent biological replicates were performed for each experiment. 
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Figure 5 

 

  

 

 

Fig. 5. CK2-dependent phosphorylation of Brg1 in mitosis is a conserved event in different cell 
types and species. MDCK, 3T3-L1, C2C12, HeLa, and MCF10A cells were treated or not with cell 
type-specific concentrations of nocodazole as indicated in Methods and 10 µM TBB where indicated. 
Samples were separated in a 5% SDS-PAGE gel supplemented with Phos-Tag™ for Brg1 blots or by 
conventional SDS-PAGE for β-actin. Representative western blots of the mobility shift of Brg1 in 
extracts from cell cultures treated as indicated are shown, with β-actin expression from the same 
samples shown as a loading control. Three independent biological replicates were performed for each 
experiment. 
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Figure 6 

 

 

Fig. 6. CK2-mediated phosphorylation of Brg1 is associated with soluble chromatin. Primary 
myoblasts were treated or not with 500 nM nocodazole and 10 µM TBB. (A)  Representative western 
blots showing the sub-nuclear localization of Brg1. Samples were separated in a 5% SDS-PAGE gel 
supplemented with Phos-Tag™. (B) Representative western blots demonstrating the purity of the 
fractions presented in (A). Tubulin is a marker for the cytosolic fraction, RNA Polymerase (Pol) II, the 
soluble chromatin fraction, and Lamin β1, the nuclear matrix fraction. Three independent biological 
replicates were performed for each experiment. 
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