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33 Abstract:

34 Monitoring of blood glucose is an invasive, painful and costly practice in diabetes.
35 Consequently, the search for a more cost-effective (reagent-free), non-invasive and
36  specific diabetes monitoring method is of great interest. Attenuated total reflectance
37  Fourier transform infrared (ATR-FTIR) spectroscopy has been used in diagnosis of
38  several diseases, however, applications in the monitoring of diabetic treatment are just
39  beginning to emerge. Here, we used ATR-FTIR spectroscopy to evaluate saliva of non-
40  diabetic (ND), diabetic (D) and diabetic 6U-treated of insulin (D6U) rats to identify
41  potential salivary biomarkers related to glucose monitoring. The spectrum of saliva of
42 ND, D and D6U rats displayed several unique vibrational modes and from these, two
43  vibrational modes were pre-validated as potential diagnostic biomarkers by ROC curve
44  analysis with significant correlation with glycemia. Compared to the ND and D6U rats,
45  classification of D rats was achieved with a sensitivity of 100%, and an average specificity
46 0f93.33% and 100% using bands 1452 cm! and 836 cm™!, respectively. Moreover, 1452
47 cm’! and 836 cm! spectral bands proved to be robust spectral biomarkers and highly
48  correlated with glycemia (R? of 0.801 and 0.788, P <0.01, respectively). Both PCA-LDA
49  and HCA classifications achieved an accuracy of 95.2%. Spectral salivary biomarkers
50 discovered using univariate and multivariate analysis may provide a novel robust
51 alternative for diabetes monitoring using a non-invasive and green technology.
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67 Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia
68  which results from insufficient secretion and/or reduced insulin action in peripheral
69  tissues (Rolo e Palmeira, 2006; Ashcroft e Rorsman, 2012). According to the
70  International Diabetes Federation (IDF), there are an estimated 425 million adults with
71 diabetes worldwide, these include 212 million whom are estimated undiagnosed (IDF,
72 2017). Frequent monitoring of diabetes is essential for improved glucose control and to
73 delay clinical complications related with diabetes. Besides, the early screening of DM is
74  paramount to reduce the complications of this metabolic disorder worldwide (Uspstf,
75  2008). Despite being relatively invasive and painful, blood analysis per glucometer is
76  currently feasible for screening, monitoring and diagnosing diabetes by needle finger
77  punctures (Dowlaty et al., 2013; Mascarenhas et al., 2014). The constant need of piercing
78  the fingers several times daily by most patients is inconvenient and may lead to the
79  development of finger calluses and difficulty in obtaining blood samples (Dowlaty et al.,
80  2013).

81 Saliva reflects several physiological functions of the body (Desai ¢ Mathews,
82  2014; Javaid et al., 2016). In this way, salivary biomarkers might be an attractive
83 alternative to blood for early detection, and for monitoring systemic diseases (Hu et al.,
84  2007). Among the advantages, saliva is simple to collect, non-invasive, convenient to
85  store and, compared to blood, requires less handling during clinical procedures. Besides,
86  saliva also contains analytes with real-time monitoring value which can be used to check
87  the individuals condition (Javaid ef al., 2016; Zhang et al., 2016). Currently, a broad set
88  of methods are used to analyze saliva including immunoassays, colorimetric, enzymatic,
89  kinetic, chromatographic and mass spectrometric analysis (Saxena et al., 2017). Several
90 studies showed higher salivary glucose levels in DM patients than non-hyperglycemic
91  controls, which suggest that salivary glucose monitoring might be a useful in screening
92  for diabetic patients. However, other studies reject the idea of a direct relationship
93  between salivary glucose and glycemia (Mascarenhas et al., 2014; Gupta, S. et al., 2015;
94  Nunesetal.,2015; Naing e Mak, 2017). A main limitation of salivary-based measurement
95  of glucose for diabetes monitoring is the presence of glucose in foods, which can disturb
96 the monitoring process as it induces changes in salivary glucose concentration. Therefore,
97  other alternatives of salivary monitoring should be studied.

98 Infrared (IR) spectroscopy is emerging as a powerful quantitative and qualitative
99 technique for monitoring characterization of biological molecules in fluids (Bellisola e

100  Sorio, 2012). Attenuated total reflection Fourier-transform infrared (ATR-FTIR)
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101  spectroscopy is a global, sensitive and highly reproducible physicochemical analytical
102  technique that identifies structural molecules on the basis of their IR absorption(Ojeda e
103  Dittrich, 2012). Considering that a biomolecule is determined by its unique structure, each
104  one will exhibit a unique ATR-FTIR spectrum, representing the vibrational modes of the
105  constituent structural bonds (Severcan et al., 2010; Ojeda e Dittrich, 2012). ATR-FTIR
106  is a green technology due to processes that eliminate the use of hazardous elements an
107  overarching approach that is applicable to monitoring diseases. The IR spectral modes of
108  biological samples, such as saliva, may be considered as biochemical fingerprints that
109  correlate directly with the presence or absence of diseases, and, furthermore, provide the
110  basis for the quantitative determination of several analytes for monitoring several diseases
111  and to diagnostic interest (Khaustova et al., 2010; Caetano Junior et al., 2015). The
112 potential of salivary diagnostic for diabetes by IR spectroscopy using barium fluoride
113 (BakF,) slides was suggested previously (Scott et al., 2010), however, the efficacy of DM
114  monitoring in insulin-treated conditions using ultra-low volumes of saliva remains
115  unknown.

116 In the present study, we tested the hypothesis that non-invasive spectral
117  biomarkers can be identified in saliva of hyperglycemic diabetic and in insulin-treated
118  diabetic rats, and the differentially expressed vibrational modes can be employed as
119  salivary biomarkers for diabetes monitoring. Thus, the aim of our study was to identify
120 infrared spectral signatures of saliva that are suitable to monitoring this metabolic disease
121  inuntreated and insulin-treated conditions. For this, the salivary vibrational modes profile
122 of non-diabetic, diabetic and insulin-treated diabetic rats was quantitatively and
123 qualitatively evaluated using univariate and multivariate analysis.

124

125  Results

126
127 Characterization of diabetes mellitus
128 To confirm the effectiveness of diabetes induction and insulin treatment, several

129  parameters were assessed in anesthetized animals. As expected, to confirm the diabetic
130  state, table 1 shows that diabetes reduced weight gain (p < 0.05), increased water intake
131 (p < 0.05) and food ingestion (p < 0.05) compared with ND rats. Besides, in diabetic
132 condition, higher plasma glucose (p < 0.05), as well as most pronounced urine volume (p
133 <0.05), associated with higher urine glucose concentration (p < 0.05), were observed in

134 D rats compared with ND rats. Insulin treatment contributed to increased (p < 0.05)
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135  weight gain and decreased water intake (p < 0.05) compared with placebo-treated D rats.
136  As expected, insulin treatment decreased plasma glucose (p < 0.05), urine volume (p <
137  0.05) and urine glucose concentration compared with D rats. Glycemia and urine volume
138  were similar (p > 0.05) in ND and D6U animals, indicating that insulin treatment
139  completely reverted hyperglycemia and higher urine volume described in D rats. The
140  insulin treatment promoted a strong reduction in the urinary glucose concentration;
141  however, the urinary glucose concentration was increased (p < 0.05) in D6U compared

142  to ND animals.

143
144 Average spectra of saliva
145 A representative infrared average spectrum of saliva from normoglycemic,

146  hyperglycemic and insulin-treated conditions, which contains different molecules such as
147  lipids, proteins, glycoproteins and nucleic acid, are represented in Figure 1. These salivary
148  spectra indicated several differences among non-diabetic, diabetic and insulin-treated
149  diabetic rats. Some bands of interest are shown in figure 1, which contains: asymmetric
150  stretching vibration of CH, of acyl chains of lipids (2924 cm!); amide II (1549 cm!);
151  asymmetric CH; bending modes of the methyl groups of proteins (1452 cm!); amide IIT
152 band components of proteins (1313 c¢m!); mannose-6-phosphate and phosphorylated

153  saccharide residue (1120 cm™!) and C, conformation of sugar (836 cm!).

154
155 Spectral bands analyzed by IR spectroscopy
156 Spectral band areas that indicate the expression of specific molecules were

157  analyzed in saliva. The band area values of 2924 cm™!, 1549 cm™!, 1313 cm™!, 1120 cm!
158  are presented in supplementary files. Herein, we showed two bands (1452 cm! and 836
159 cm'l) with a higher potential for diabetes monitoring (Figure 2 and Figure 3,
160  respectively). Representative spectra of 1452 cm! and 836 cm1 bands are depicted in
161  Figure 2A and 3A. Diabetes induced a decrease (p < 0.05) at 1452 cm! and 836 cm!
162  bands compared with non-diabetic rats, however, insulin-treated diabetic reverted this
163  alteration in both bands (Figure 2B and 3B, respectively) .

164 To investigate whether these salivary vibrational modes would be reflective of
165  glycemia regulation, these two salivary band areas were discovered to be, via univariate
166  analysis, the best spectral candidates values to indicate the diabetes monitoring in samples
167  with hyperglycemia, normoglycemia and under insulin treatment. Pearson's correlation

168  between these spectral modes (1452 cm!' and 836 cm!) with glycemia showed high
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169  correlation. The both salivary spectral bands presented strong negative correlation with r
170  =-0.801; p <0.0001 for 1452 cm™! (Figure 2C) and r = -0.788; p < 0.0001 for 836 cm!
171 (Figure 3C).

172 Considering that sensitivity and specificity are basic characteristics to determine
173  the accuracy of diagnostic and monitoring test, ROC curve analysis were used to evaluate
174  the potential diagnostic of these spectral bands under two conditions of analysis. The first
175  one, we analyzed the condition of normoglycemic (ND and D6U) with hyperglycemic
176 (D). The cutoff value to 1452 cm! band was 0.405, and the corresponding sensitivity and
177  specificity were 100% and 93.3%, respectively. In ROC analysis, the area under the curve
178  (AUC) of this band was 0.988 (Figure 2D). To emphasizes our focus on insulin-treated
179  rats, we also showed ROC curve analysis comparing only D6U with D. Both sensitivity
180  and specificity of 1452 cm! band was 100% with cutoff of 0.422 (p: 0.0027). Both
181  sensitivity and specificity of 836 cm™! band to differentiate normoglycemic (ND and
182  D6U) than hyperglycemic (D) were 100% with cutoff of 0.128 (Figure 3D). As expected,
183  the ROC curve to differentiate insulin-treated diabetic (D6U) than hyperglycemic (D)
184  showed similar data (Figure 3E).

185

186 Differentiation among the groups by Principal Component Analysis followed by
187  linear discriminant analysis (PCA-LDA) and Hierarchical Cluster Analysis (HCA)
188 Principal component analysis followed by linear discriminant analysis (PCA-
189  LDA) was performed to reduce the dimensionality of the data set, with the preservation
190  of the variance to evaluate the discrimination between the samples. PCA was performed
191  using 6 principal components (PCs), accounting for 95.2% (20/21) of cumulative variance
192  of correct classification with cross validation. The PCA model considered 95.8% of the
193  data of the spectrum through the second derivative for analyze. After linear discriminant
194  analysis (LDA) with leave-one-out cross-validation, three groups (ND, D and D6U) were
195  formed, but only one sample belonging to class D6U was classified for group D (Figure
196  4). Supplementary table 1, Supplementary table 2 and Supplementary table 3 show the
197  mean quadratic distance, discriminant linear function and the summary of classification
198  of each sample (with quadratic distance of each sample, prediction, validation and
199  probability), respectively, in saliva of ND, D and D6U rats.

200 Hierarchical cluster analysis (HCA) was performed to investigate the effects of
201  treatment with insulin on diabetic to the differentiation of non-diabetic and diabetic

202 samples. HCA was performed in part of salivary spectrum. The deconvolution analyzes


https://doi.org/10.1101/781096
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781096; this version posted September 24, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

7

203  were done in the five spectral regions represented in Figure 5, as A region (2995 cm! to
204 2889 cm!), B region (1664 cm™! to 1581 cm™!), C region (1410 cm™! to 1234 cm™'), D
205 region (1149 cm™! the 1080 cm™') and E region (1018 cm™! to 955 cm™!) which allowed
206 the differentiation of the non-diabetic, diabetic and insulin-treated diabetic. As seen from
207  the figure 5, all non-diabetics and diabetics were separate with 100% of discrimination.
208  Only one insulin-treated diabetic was categorized as non-diabetic. The total accuracy,
209  which is highly important for potential monitoring applications, was 95.2% (20/21).

210

211  Discussion

212

213 The development of a novel, rapid, noninvasive tool for the diagnosis, and the
214  most important, for monitoring diabetes mellitus based on the comprehensive analysis of
215  spectral salivary constituents would be of great use to health clinical. Herein, we have
216  investigated the translational applicability of ATR-FTIR spectroscopy with potential
217  monitoring of metabolic control in diabetes. Six potential spectral bands were detected
218 by ATR-FTIR and, from these, two bands were showed a strong correlation with glycemia
219  and high sensibility and specificity to differentiate hyperglycemic than normoglycemic
220  conditions indicating potential monitoring applicability for diabetes. The discriminatory
221 power of these two salivary ATR-FTIR bands area are candidates for monitoring diabetes
222 under insulin therapy.

223 As expected in diabetic state, plasma glucose, urine volume and urine glucose
224  concentration are increased in non-treated diabetic rats compared to non-diabetic rats. In
225  addition, insulin treatment decreased glycemia, urine volume and urine glucose. These
226  findings are consistent with other studies (Kusari et al., 2007, Eleazu et al.,
227  2013)(Sabino-Silva et al., 2009; Diniz Vilela et al., 2016). It is known that salivary
228  composition changes in diabetes mellitus (Rao et al., 2009; Sabino-Silva et al., 2013;
229  Srinivasan et al., 2015). Also, diabetes mellitus frequently decreases salivary flow, alters
230  the expression of salivary proteins and increases glucose levels in saliva (Rao et al., 2009;
231  Bajaj et al., 2012; Sabino-Silva et al., 2013). From these parameters, it is possible to use
232 salivary components to reflect the presence, and severity of hyperglycemia (Rao ef al.,
233 2015). Saliva of diabetics with poor metabolic control shows an increase in salivary
234 glucose concentration (Abd-Elraheem et al., 2017). The correlation of glycemia with
235  glucose concentration in saliva is still not well established, so currently it is not used to

236 verify the degree of metabolic control and diagnosis in diabetes mellitus (Gupta, A. et al.,
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237 2015; Kadashetti et al., 2015; Puttaswamy et al., 2017). ATR-FTIR spectroscopy has
238  been used as an alternative discriminatory method to others chronic diseases, due to its
239  major advantages of being label-free and non-destructive, rapid, high-throughput, not
240  requiring sample preparation, and cost effective analytical method for providing details
241 of the chemical composition and molecular structures (Simsek Ozek et al., 2016; Yu et
242 al.,2017).

243 The spectral analysis method to dried saliva described in the present study may be
244  used in rodent and human models. Spectral parameters, such as shifts in bands positions
245  and changes in spectral modes intensity can be used to obtain valuable information about
246 sample composition, which may have diagnostic and monitoring potential for many
247  diseases (Severcan et al., 2010). To get relative information about the concentration of
248  the salivary molecules, integrated band area analysis was performed in the saliva spectra
249  since, according to the Beer-Lambert law, absorption band intensity/band area is
250  proportional to the concentration of the sample (Ozek et al. 2014; Turker et al. 2014).
251  Therefore, differences in the band area for asymmetric CH; bending modes of the methyl
252  groups of protein (1452 cm ') and C, endo/anti B-form helix conformation (836 cm™)
253  differ in salivary constituents among the groups. Bencharit et al. (2013) showed the
254  differences on composition of salivary proteins associated with metabolic control in
255  diabetes on a proteomic analysis, and similar quantitative differences were found in the
256  present study analyzed with spectroscopy ATR-FTIR. Type 2 diabetes mellitus induced
257  changes in the lipid and protein components on the erythrocyte membrane and causing
258  structural changes by FTIR spectroscopy in the protein secondary structure with change
259  in the beta-sheet and beta-turn structures (Mahmoud, 2010).

260 These two salivary spectral modes showed a high and significant correlation with
261  the metabolic control. Clinically, the most interesting comparisons are the correlation
262  between these salivary spectral band areas and glycemia. Together, these salivary spectral
263  bands showed a 100% of sensitivity and 100% of specificity in ROC analysis. ROC curve
264  analysis is widely considered to be the most objective and statistically valid method for
265  biomarker performance evaluation (Xia et al., 2013). Regarding the potential for
266 translation to the clinic, our results suggest that two salivary band areas, 1452 cm! and
267 836 cm! can be considered a non-invasive spectral biomarkers of monitoring diabetes
268  treated with insulin. Different drug treatments and several levels of glucose concentration
269  should ideally be possible to differentiate, therefore more studies need be investigated.

270  These results indicate that these spectral modes can be used as a diagnostic and
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271  monitoring platform for diabetes mellitus, once interestingly, insulin treatment was also
272 able to revert the salivary spectra observed in hyperglycemic state. Therefore, insulin
273 treatment is not a potential confounding factor that may influence salivary vibrational
274 mode in comparisons with glycemia. Some studies have indicated specific salivary
275  biomarkers for diabetes, such as glucose, alpha-amylase, immunoglobulins,
276  myeloperoxidases (Zloczower et al., 2007; Rao et al., 2009; Border et al., 2012; Zhang
277  etal.,2016) with similar potential, but not with a focus on disease monitoring and/or with
278  the use of IR spectroscopy.

279 Multivariate analysis as PCA-LDA and HCA can be used to discriminate samples
280  based on their spectrum. In FTIR analysis the diagnostic accuracy for diabetes detection
281  using saliva was 100.0% for the training set and 88.2% for the test (validation) set using
282  linear discriminant analysis (LDA) calculations (Scott el al., 2010). However, in the
283  present study both PCA-LDA and HCA obtained 95.2% of accuracy using saliva to
284  discriminate normoglycemic, diabetic and insulin-treatment diabetic models. It is
285  important emphasizes that our protocol used ultra-low values of saliva (2 pl) under
286  airflow dried during only 2 minutes and the other study (Scott el al., 2010) used 50 ul (25
287  times greater) under dried during ~30 min at 25 Torr on 13 mm BaF windows. The
288  analysis using univariate analysis was performed only in the present study. Besides, the
289  Pearson's correlation between 1452 cm! and 836 cm! vibrational modes with glycemia
290  described in present study showed higher correlation values ( r = 0.801 and r = -0.788)
291  comparing with another study (Scott el al., 2010; r = 0.49) using a SCN band, a classical
292  indicator of tobacco smoking (a condition present in ~60% healthy and diabetic subjects).
293 Cluster analyses confirm its potential to discriminate ND, D and D6U groups with
294  high accuracy. The success rate for ND e D was 100 %, and for D6U was 85.7%.
295  Altogether, the data performed an accuracy of 95.23%. The inclusion of one sample of
296  D6U animals in non-diabetic control group is expected considering that insulin is a gold-
297  standard treatment of diabetes. We believe that this infrared analysis open perspectives to
298  use saliva to monitor the metabolic control with molecules different than glucose. It is
299  unequivocal that glucose is the main molecule to monitoring metabolic control in blood,
300 however, the demonstration of glucose transporters in luminal membrane of ductal cells
301 in salivary glands (Sabino-Silva et al., 2013) highlight the need to evaluate other
302  biomarkers in saliva.

303 Although we have shown that ATR-FTIR technology is useful for the

304 identification of possible biomarkers for monitoring diabetes mellitus in the saliva of rats,
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305 this is a first exploratory study using ATR-FTIR technology for this purpose. Therefore,
306 further studies are needed to validate the suggested spectral biomarkers in humans and to
307 determine the applicability of this technique for the monitoring of diabetes mellitus in
308 human saliva. It is important emphasizes that ATR-FTIR have been used for biofluids
309  analysis, allowing same-day detection and grading of a range of diseases in humans
310 (Hands et al.,2016; Hands et al., 2014; Bonnier et al., 2016; Khaustova et al., 2010; Baker
311 & Faulds, 2016; Smith et al., 2016). Also, one limitation of this study is the inclusion of
312 rats in higher levels of glycemia, which was not intentional but could be explained by
313 effect of streptozotocin on beta cells.

314 In conclusion, we showed that ATR-FTIR spectroscopy in saliva is able to
315  differentiate diabetic from non-diabetic and insulin-treated diabetic rats. Our data suggest
316  specific fingerprint regions (highlighted two salivary spectral modes 1452 cm! and 836
317 cm’!) capable of discriminating between hyperglycemic and normoglycemic conditions
318  (insulin treated or not) in univariate analysis. A very high discriminatory accuracy of
319  95.2% was also obtained for classifying infrared spectra of saliva between diabetic, non-
320 diabetic and insulin-treated rats by the PCA-LDA and HCA multivariate models. In
321  summary, these salivary results indicate that ATR-FTIR spectroscopy coupled with
322 univariate or multivariate chemometric analysis has the potential to provide a novel non-
323  invasive approach to diabetes monitoring assisting medical decision making to avoid

324 under-treatment or over-treatment with insulin.

325

326  Methods

327

328 Animals

329 This study was carried out in accordance with recommendations in the Guide for

330 the Care and Use of Laboratory Animals of the Brazilian Society of Laboratory Animals
331 Science (SBCAL). All experimental procedures for the handling, use and euthanasia were
332 approved by the Ethics Committee for Animal Research of the Federal University of
333  Uberlandia (UFU) (License #CEUA-UFU No. 013/2016) according to Ethical Principles
334  adopted by the Brazilian College of Animal Experimentation (COBEA). All effort was
335 taken to minimize the number of animals used and their discomfort.

336 Male wistar rats (~250g) were obtained from Center for Bioterism and
337  Experimentation at the Federal University of Uberlandia. The animals were maintained

338  under standard conditions (22 + 1 °C, 60% =+ 5% humidity and 12-hour light/dark cycles,
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339  light on at 7 AM) and were allowed with free access to standard diet and water at the

340 Institute of Biomedical Sciences rodent housing facility.

341
342 Induction of Diabetes and insulin treatment
343 Animals were divided in Non-Diabetic (ND, n = 8), Diabetic (D, n = 6) and

344  diabetic treated with 6U insulin (D6U, n = 7). Diabetes was induced in overnight-fasted
345 animals by an intraperitoneal injection (60 mg/kg) of streptozotocin (STZ) (Sigma-
346 Aldrich, St. Louis, MO. USA) dissolved in 0.1 M citrate buffer (pH 4.5). Animals with
347  hyperglycemia (>250 mg/dl) were chosen as diabetics. Non-diabetic animals received
348  injection of NaCl 0.9% in similar volume.

349 Twenty one days later after induction of diabetes, diabetic rats were submitted to
350 a 7-day treatment with vehicle (ND and D) or with 6U of insulin (D6U) per day (2U at
351 8:30 a.m. and 4U at 5:30 p.m.) subcutaneously (Sabino-Silva et al., 2009). Glucose levels
352  in overnight-fasted were obtained from the tail vein and measured using reactive strips
353  (Accu-Chek Performa, Roche Diagnostic Systems, Basel, Switzerland) by a glucometer
354  (Accu-Chek Performa, Roche Diagnostic Systems, Basel, Switzerland) in the moment of
355  samples collection.

356 In the last day of treatment, the animals were kept in metabolic cages and water
357 intake, food intake, urine volume were measured. Urine was collected over 24 h and the
358 glucose concentration in the urine was evaluated using an enzymatic Kit (Labtest
359  Diagnostica SA, Brazil). Besides that, variation of gain/loss body weight (A body weight)
360  compared parameters in STZ or vehicle induction with parameters after insulin or vehicle

361 treatment.

362
363 Saliva collection
364 After 7-days of treatment, the animals were anaesthetized by an intraperitoneal

365 injection with ketamine (100 mg/kg) and xylazine (20 mg/kg). Stimulated saliva was
366  collected with parasympathetic stimulation through pilocarpine injection (2 mg/kg, i.p.).
367  Stimulated saliva was collected in pre weighed flasks for 10 min from the oral cavity
368  (Sabino-Silvaet al.,2013). The collected saliva was stored at -80°C for further processing
369  and analysis.

370

371 Chemical profile in stimulated saliva by ATR-FTIR Spectroscopy
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372 Salivary spectra were recorded in 3000 cm™! to 400 cm! region using ATR-FTIR
373 spectrophotometer Vertex 70 (Bruker Optics, Reinstetten, Germany) using a micro-
374  attenuated total reflectance (ATR) component. The crystal material in ATR unit was a
375 diamond disc as internal-reflection element. The salivary pellicle penetration depth
376  ranges between 0.1 and 2 um and depends on the wavelength, incidence angle of the beam
377  and the refractive index of ATR-crystal material. In the ATR-crystal the infrared beam is
378 reflected at the interface toward the sample. Saliva was directly dried using airflow on
379  ATR-crystal for 2 min before salivary spectra recorded. The air spectra was used as a
380  background in ATR-FTIR analysis. Sample spectra and background was taken with 4 cm-
381 ! ofresolution and 32 scans were performed for salivary analysis.

382

383 Spectra data evaluation procedures

384  The spectra data obtained were processed using Opus 6.5 software (Bruker Optics,
385  Reinstetten, Germany). Measurements were performed in mid-infrared region (3000—400
386 cm!) with spectral resolution of 4 cm-! and 32 scans per spectrum. Samples were pressed
387 into ATR diamond crystal with standardized pressure. For the generation of mean spectra
388  and band areas, the spectra were normalized by vector and baseline corrected to avoid
389  errors during the sample preparations and spectra analysis. To evaluate the mean values
390 for the peak positions, band area of the spectra were considered belonging to each animal
391  of the groups. The band positions were measured using the frequency corresponding to
392  the center of weight of each band. Band areas were calculated from normalized and
393  baseline corrected spectra using OPUS software. Sensitivity and specificity values were
394  calculated based on the external test set as follows:

395  The specificity or true negative rate is defined as the percentage of rats who are correctly
396 identified as being normoglycemic Non-Diabetic (ND) or normoglycemic diabetic treated

397  with 6U insulin (D6U:

Specificity =
398 P y TN+ FP

399  The quantity 1-specificity is the false positive rate and is the percentage of rats that are
400 incorrectly identified as diabetic (D).
401  The sensitivity or true positive rate is defined as the percentage of rats who are correctly

402  identified as diabetic (D):

Sensitivity =
403 TP+FN
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404  where TP stands for true positives; TN for true negatives; FP for false positives; and FN
405  for false negatives.

406

407

408  Principal component analysis followed by linear discriminant analysis (PCA-LDA) and
409  Hierarchical Cluster Analysis (HCA)

410 The principal components were calculated using a full range of the FT-IR spectra
411  (ND, D and DU6) between 3700 and 500 cm-1, and a covariance matrix. The first step
412  was normalization followed by mean centering, the data were analyzed using the principal
413  components analysis (PCA). In this study, the first six principal components (PC1-PC6)
414  were used to perform the linear discriminant analysis (LDA) with leave-one-out cross-
415  validation, according to the pathological reports.

416 Infrared spectra of saliva samples were also analyzed by OPUS software (version
417  4.2) using hierarchical cluster analysis with first-derivative of the training data set. The
418  Dendrogram was performed by Ward’s clustering algorithm in the defined spectral

419  regions.

420
421 Statistical analysis
422 The data of the band area were analyzed using the one-way analysis of variance

423  (ANOVA), followed by Tukey Multiple Comparison as a post-hoc test. The correlation
424  between values of blood glucose concentration and salivary band areas of the spectra were
425  analyzed by the Pearson correlation test. For all spectral band candidates, we constructed
426  the Receiver Operating Characteristic (ROC) curve and computed the area under the
427  curve (AUC) value, sensitivity and specificity by numerical integration of the ROC curve.
428  The Kolmogorov-Smirnov test was applied to test the normality of the variables. All these
429  analyses were performed using the software GraphPad Prism (GraphPad Prism version
430  7.00 for Windows, GraphPad Software, San Diego, CA, USA). Only values of p < 0.05
431  were considered significant and the results were expressed as mean + S.D.
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615  Table 1. Effect of diabetes and insulin on body weight, water intake, food intake,
616 glycemia, urine volume and urine glucose concentration.

617

Parameters ND D D6U
A Body weight (g) 48.448.3 -2.7£11.3%* 39.5+12.8#
Water intake (mL) 39.1£3.1 150.6+17.9%* 60.0+£6.8#
Food intake (g) 18.3£1.3 35.0+4.1%* 29.7+2.6%*
Glycemia (mg/dL) 83.2+4.2 497.6+19.6* 81.0£19.2#
Urine volume (mL) 22.1.6£3.4 128.9+£8.6* 40.7£7.1#
Urine glucose (mg/dL) 24.7+7.2 337.2+15.8*  148.0+34.6*#
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640
641  Supplementary Table 1. Mean quadratic distance in saliva of ND, D and D6U rats.
642

Quadratic distance ND D D6U
D 0,0000 23,3348 37,2085
D6U 23,3348 0,0000 11,5541
ND 37,2085 11,5541 0,0000
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668
669

670  Supplementary Table 2. Discriminant linear function in saliva of ND, D and D6U rats.
ND D D6U

Constant -7,105 -1,663 -3,374
CP1 20,686 1,288 -16,659
CP2 34,740 -8,064 -19,007
CP3 18,897 -0,100 -14,095
CP4 -3,054 5,305 -2,359
CP5s 4,356 -9,836 5,357
CPé6 5,835 -0,779 -3,699
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693

694  Supplementary Table 3. Summary of classification with the quadratic distance of each
695 sample, prediction, validation and probability of each sample in saliva of ND, D and D6U
696 rats.

Quadratic
distance Probability
True Predicted. Val-X

Sample group group Group Group  Pred. Val-X Predicted Val-X

1 ND ND ND D 58.073  72.570 0.00 0.00
D6U 23.160 29.507 0.00 0.00
ND  6.079 12.211 1.00 1.00
2 ND ND ND D 36.580 34.838 0.00 0.00
D6U 11.348 11.078 0.03 0.14
ND 4371 7.464 0.97 0.86
3 ND ND ND D 35.359 33.417 0.00 0.00
D6U 10335 9.816 0.02 0.07
ND 2961 4.497 0.98 0.93
4 ND ND ND D 33.837 31958 0.00 0.00
D6U 20.628 22.550 0.00 0.00
ND  3.528 5.608 1.00 1.00
5 ND ND ND D 63.675 88.572 0.00 0.00
D6U 34276 54.739 0.00 0.00
ND 6.646 14.182 1.00 1.00
6 ND ND ND D 29.741  28.369 0.00 0.00
D6U  9.677 9.203 0.05 0.16
ND  3.678 5918 0.95 0.84
7 ND ND ND D  40.529 38.586 0.00 0.00
D6U  8.646 8.220 0.02 0.03
ND  1.065 1.409 0.98 0.97
8 ND ND ND D 31.222  29.651 0.00 0.00
D6U  5.711 5.542 0.21 0.39
ND  3.021 4.612 0.79 0.61
9 D D D D 6.582  15.951 1.00 1.00
D6U 26329 27.438 0.00 0.00
ND 42.640 44.320 0.00 0.00
10 D D D D 6.150  14.176 1.00 1.00
D6U 35.688 42.839 0.00 0.00
ND 41.710 42.420 0.00 0.00
11 D D D D 4.543 8.862 1.00 1.00
D6U 24.542 23.925 0.00 0.00
ND 41.537 41.006 0.00 0.00
12 D D D D 5.014 10.244 1.00 0.99

Do6U 21.611 20.666 0.00 0.01
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ND 41.594 41.372 0.00 0.00

13 D D D D 5526 11.899 1.00 0.92

D6U 17901 16.907 0.00 0.08

ND 28.636 27.276 0.00 0.00

14 D D D D 9.967  40.402 1.00 1.00

D6U 51.721 117.859 0.00 0.00

ND 64915 127.897 0.00 0.00

15 D6U D6U D6U D 45891 67.075 0.00 0.00

D6U  6.835 15.774 1.00 1.00

ND 22.101 29.173 0.00 0.00

16 Do6U D6U Do6U D 34.031 36.870 0.00 0.00

D6U  4.261 7.567 0.88 0.54

ND  8.291 7.852 0.12 0.46

17 D6U D6U Do6U D 31.428 32.102 0.00 0.00

DoU  3.134 5.055 0.93 0.79

ND 8210 7.754 0.07 0.21

18 D6U De6U D6U D 23.558  22.563 0.00 0.00

D6U  3.718 6.296 0.97 0.87

ND 10.479 10.037 0.03 0.13

19 D6U D6U D6U D 23.534 22983 0.00 0.00

D6U 5454 10.844 1.00 1.00

ND 24905 31.891 0.00 0.00

20 D6U D6U Do6U D 29.999  30.895 0.00 0.00

D6U 4.318 7.707 1.00 1.00

ND 19.325 21.357 0.00 0.00

21 Do6U D6U D* D 13.77 13.15 0.21 1.00

D6U 11.15 51.72 0.79 0.00

ND 2644 62.40 0.00 0.00
697
698
699
700
701
702

703 Legends

704

705  Figure 1. Average ATR-FTIR spectra (3000-400 cm-1) in saliva of Non-Diabetic rats
706  (ND), diabetic rats (D) and diabetic treated with 6U insulin (D6U).

707

708  Figure 2. Spectral of 1452 cm-1 (A); Band area of 1452 cm-1 (B); Pearson correlation
709  between glycemia and band area of 1452 cm-1 (C); ROC curve analyses of 1452 to
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710  normoglycemic and hyperglycemic (D); ROC curve analyses of 1452 to diabetic and
711 diabetic treated with insulin (E). Non-diabetic rats (ND), diabetic rats (D) and diabetic
712 treated with 6U insulin (D6U).

713

714  Figure 3. Spectral of 836 cm-1 (A); Band area of 836 cm-1 (B); Pearson correlation
715  between glycemia and band area of 836 cm-1 (C); ROC curve analyses of 836 to
716  normoglycemic and hyperglycemic (D); ROC curve analyses of 836 to diabetic and
717  diabetic treated with insulin (E). Non-diabetic rats (ND), diabetic rats (D) and diabetic
718  treated with 6U insulin (D6U).

719

720  Figure 4. PCA analyses. Non-diabetic rats (ND), diabetic rats (D) and diabetic treated
721 with 6U insulin (D6U).

722

723 Figure 5. HCA analyses. Non-diabetic rats (ND), diabetic rats (D) and diabetic treated
724  with 6U insulin (D6U).

725

726

727  Supplementary Figure 1. Spectral of 2924 cm-1 (A); Band area of 2924 cm-1 (B);
728  Pearson correlation between glycemia and band area of 2924 cm-1 (C); ROC curve
729  analyses of 2924 cm-1 to normoglycemic and hyperglycemic (D); ROC curve analyses
730  0of 2924 cm-1 to diabetic and diabetic treated with insulin (E). Non-diabetic rats (ND),
731  diabetic rats (D) and diabetic treated with 6U insulin (D6U).

732

733 Supplementary Figure 2. Spectral of 1549 cm-1 (A); Band area of 1549 cm-1 (B);
734  Pearson correlation between glycemia and band area of 1549 cm-1 (C); ROC curve
735  analyses of 1549 cm-1 to normoglycemic and hyperglycemic (D); ROC curve analyses
736 of 1549cm-1 to diabetic and diabetic treated with insulin (E). Non-diabetic rats (ND),
737  diabetic rats (D) and diabetic treated with 6U insulin (D6U).

738

739  Supplementary Figure 3. Spectral of 1313 cm-1 (A); Band area of 1313 cm-1 (B);
740  Pearson correlation between glycemia and band area of 1313 cm-1 (C); ROC curve
741  analyses of 1313 cm-1 to normoglycemic and hyperglycemic (D); ROC curve analyses
742 of 1313 cm-1 to diabetic and diabetic treated with insulin (E). Non-diabetic rats (ND),
743 diabetic rats (D) and diabetic treated with 6U insulin (D6U).
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744
745  Supplementary Figure 4. Spectral of 1120 cm-1 (A); Band area of 1120 cm-1 (B);
746 Pearson correlation between glycemia and band area of 1120 cm-1 (C); ROC curve
747  analyses of 1120 cm-1 to normoglycemic and hyperglycemic (D); ROC curve analyses
748  of 1120 cm-1 to diabetic and diabetic treated with insulin (E). Non-diabetic rats (ND),
749  diabetic rats (D) and diabetic treated with 6U insulin (D6U).

750
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