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SUMMARY: To elucidate the molecular mechanisms underlying genetic variants identified from genome-wide as-
sociation studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, count, and survival
outcomes, we propose a novel and flexible method to test for mediation that can simultaneously accommodate
multiple genetic variants and different types of outcome variables. Specifically, we employ the intersection-union
test approach combined with likelihood ratio test to detect mediation effect of multiple genetic variants via some
mediator (for example, the expression of a neighboring gene) on outcome. We fit high-dimensional generalized linear
mixed models under the mediation framework, separately under the null and alternative hypothesis. We leverage
Laplace approximation to compute the marginal likelihood of outcome and use coordinate descent algorithm to
estimate corresponding parameters. Our extensive simulations demonstrate the validity of our proposed method and
substantial, up to 97%, power gains over alternative methods. Applications to real data for the study of Chlamydia
trachomatis infection further showcase advantages of our method. We believe our proposed method will be of value
and general interest in this post-GWAS era to disentangle the potential causal mechanism from DNA to phenotype

for new drug discovery and personalized medicine.
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1. Introduction

Mediation analysis studies how the mediator variable transmits the independent variable’s
effect on the outcome (MacKinnon et al., 2007). Most mediation studies focus on outcomes
following Gaussian distribution. Non-Gaussian outcomes, such as binary, count and time-to-
event responses (e.g. disease status, time until death), are commonly present in research but
have been under-studied. In mediation analysis, non-Gaussian outcomes from the exponential
family distribution can be properly handled by generalized linear models (GLM) and time-
to-event outcomes can be accommodated using a proportional hazards Cox model (Preacher,
2015). For example, (O’Rourke and Vazquez, 2019) discusses challenges in mediation analysis
of zero-inflated count outcomes and describes how to fit Poisson or negative binomial models
and (Cheng et al., 2018) attempts to decompose the direct, mediation and total effects for
zero-inflated count outcomes from a causal inference perspective.

Generalized linear mixed models (GLMM) (McCullagh and Nelder, 1989; McCulloch and
Searle, 2001; McCulloch et al., 2008) are an extension of GLM where random effects are
accommodated among the predictors. GLMM are commonly be applied to data where
observations are not independent, for instance in studies with repeated measures. In genetics
and genomics studies, GLMM is widely used to test associations between non-Gaussian traits
and a set of genetic variants (Yan et al., 2015; Chen et al., 2016, 2019; Park et al., 2018)
when genetic relationship among study subjects needs to be taken into account. Similarly
for survival outcome, mixed effects Cox models (Vaida and Xu, 2000; Pankratz et al., 2005)
have been developed as an extension of proportional hazards Cox model to allow explicitly
modeling of random effects.

Likelihood-based inference for GLMM can be difficult, because it usually involves high-
dimensional integrals (McCulloch et al., 2008). For this reason, various strategies have been

proposed to approximate the likelihood function for GLMM, including Laplace approxima-
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tion (Raudenbush et al., 2000), penalized quasi-likelihood (PQL) (Breslow and Clayton,
1993), and Markov chain Monte Carlo (MCMC) algorithms (Gilks, 1996). An excellent
review paper about GLMM in practice exists (Bolker et al., 2009). For time-to-event outcome,
Laplace approximation has been applied to approximate likelihood function for mixed effects
Cox models (Pankratz et al., 2005). To maximize the approximated likelihood function,
coordinate descent (Fu, 1998; Daubechies et al., 2004) is broadly used, such as for GLM
with elastic net (Friedman et al., 2010), graphical Lasso (Friedman et al., 2008) and GLMM
with Lasso (Schelldorfer et al., 2014). Coordinate descent is simple and convenient to employ
and can achieve satisfactory performance when carefully implemented.

Mediation analysis was firstly proposed by Baron and Kenny to study the association
between an independent variable and an outcome by adding an intermediate variable, which
is called the mediator (Baron and Kenny, 1986). In genetics and genomics studies, researchers
are interested in testing mediation effects of the genetic variant(s), mostly single nucleotide
polymorphisms (SNPs) on the outcome through certain mediator (e.g., the expression level of
a neighboring gene). Baron and Kenny’s classic mediation approach has been extended to ac-
commodate high-dimensional mediators (Huang and Pan, 2016; Zhang et al., 2016). Huang et
al.’s methods are kernel-based regression methods and use variance component score statistic
to test for mediation but these methods assume a priori known expression quantitative trait
loci (eQTLs) (Huang et al., 2015, 2016). To address lack of knowledge regarding eQTLs, we
have extended Baron and Kenny’s framework to handle mediation effect of high-dimensional
genetic variants on a continuous outcome (Zhong et al., 2019). To the best of our knowledge,
none of the existing methods can jointly test mediation effects of multiple correlated SNPs on
a non-Gaussian outcome. We propose a generalized multi-SNP mediation intersection-union
test to accommodate both mediation and direct effects of multiple correlated SNPs on non-

Gaussian outcomes without a prior knowledge of eQTLs. Similar to our previously developed
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SMUT method (Zhong et al., 2019), the method proposed in this work is an extension of
Baron and Kenny’s framework and leverages intersection-union test (IUT) to decompose
mediation into two separate regression models. Our proposed method SMUT_GLM and
SMUT_PH deals with two categories of non-Gaussian outcomes. SMUT_GLM handles an
outcome from an exponential family distribution by fitting a generalized linear mixed model
and SMUT_PH accommodates a survival by fitting a mixed effects Cox proportional hazards
model.

The rest of this article is organized as follows. In Section 2, we present details of our
proposed SMUT_GLM and SMUT_PH methods, followed by simulation studies and real
data application in Section 3 and Section 4, respectively. Finally, Section 5 concludes the

article with some discussions.

2. Methods

2.1 Notation

Without loss of generality, we assume that we have four types of data, namely, genotypes
(as the potential causal variables), gene expression measurements (as the mediator, which
can be other types of molecular measures such as metabolite levels or protein abundances),
phenotypic trait (as the final outcome) and other covariates (e.g. age, gender). Let G =
(G1, G, ..., G,) be the n by g genotype matrix, where n is sample size, ¢ is the total number
of genetic markers, and G; = (G, Goj, . - ., an)T is the vector of genotypes for the samples
at marker j, 7 = 1,2,...,q. We consider an additive model with G;; taking values 0,1,2,
measuring the number of copies of the minor allele. Let X; denote the jth covariate variable

(e.g. age, gender) for the ith individual, i =1,2,...,n;5 =1,2,...,p.
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2.2 SMUT_GLM and SMUT_PH model

SMUT_GLM and SMUT_PH model the effects of SNPs on the outcome mediated by the
expression level of a single gene via two models, namely a mediator model and an outcome
model. We assume the expression level is continuous and consider a linear model for the
mediator model (equation 1). As for the outcome model, we fit GLMM if the outcome
random variable follows an exponential family distribution (equation 2); we fit mixed effects
proportional hazards Cox model if the outcome is time-to-event (equation 3). Let Y; denote
the outcome for the ith individual. For survival outcome, Y; = (7},0;) includes the time
T; = min(Z;, C;), where Z; is the time to the event of interest and C; is the censoring time,
and the censoring status J;; §; = 1 indicates the occurrence of the given event and T; is the

survival time; ¢; = 0 indicates a censored sample.
P q
M, = oy + ZXijL;V[ + Z Gi;B; + €  Mediator model (1)
j=1 j=1

p q
g(E(Y;) =a1 + M0+ Z Xijtj + Z Gijv;  Exponential Family Outcome model (2)

Jj=1 J=1

p q
A(t;) = Xo (t;) exp <Mi9 + Z Xijtj + Z G’,-j'yj> Survival Outcome model  (3)
j=1 j=1
where i = 1,2, ..., n indexes the n individuals; ¢ is the number of SNPs; €¢; ~;;4 N(0,1),

i = 1,2,...,n; g is the link function in GLM. Here /M = (L%Lé”,...,bé”)T and ¢ =
(Ll,LQ,...,Lp)T are coefficient vectors for the p covariates in the mediator and outcome
model, respectively; 5 = (51, s, . .- ,Bq)T is the SNP effect on the mediator M; @ is the
mediator effect on the outcome; S0 is the mediation effect of the SNPs via mediator M;
v = (71,72, -- ,vq)T includes the direct effects of the ¢ SNPs and mediation effects via

mediators other than M. For presentation brevity, we will use direct effects to refer to the

aggregated effects including SNPs’ direct effects and mediation effects via other mediators.
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Following our previously developed SMUT method (Zhong et al., 2019), we employ intersection-
union test (IUT) (Berger and Hsu, 1996) to decompose the hypothesis testing of the me-
diation effect 30 into two sub-hypotheses: Hy = Hf U Hg and H; = HY ﬂHf , where Hy :

BO = (516,520,...,08,0) = (0,0,...,0)T;Hy : Fj € {1,2,...,q¢},5;6 # 0; HS : 5 =
(0,0,...,0)7;H} - 3j {1,2,...,q},B; #0; H : 0 = 0; HY : 6 £ 0.

Suppose the p value for testing § being zero is p;; and the p value for testing 6 being zero
is po. Then the p value for testing 86 being zero, using IUT, is the maximum of p; and ps. In
the following sections, we provide details regarding how to separately test S and 6 to obtain

p1 and po.

2.3 Testing 8 in the mediator model and 0 in the outcome model

As in (Zhong et al., 2019), we adopt the widely used SKAT method (Wu et al., 2011) to test
£ in the mediator model to accommodate a potentially large number of correlated SNPs.
Our strategy for testing 0 in the outcome model consists of four steps: (1) formulation of the
likelihood function based on the nature of the outcome random variable Y, and (2) Laplace
approximation of the likelihood function, and (3) application of the coordinate descent
algorithm to estimate parameters by maximizing the approximated likelihood function, and
(4) calculation of the likelihood ratio statistic. These four steps allow us to test the mediator

effect 6 in the outcome model.

2.4 Likelihood function for the outcome model

To reduce the dimensionality of parameters in the outcome model, we adopted a linear
mixed model for continuous outcome in our previously developed SMUT method (Zhong
et al., 2019). We consider the following GLMM (McCulloch et al., 2008) when the outcome

Y; follows an exponential family distribution.
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Vj ~iia. N (0,02)
Ll (7. %)) = exp {22280 4+ O (43, 6)}
E Yl (y,72, %) = H
L 9 () =mi = on + Mif + 377, Xijey + 375, Gijv
where 7; is the canonical parameter, ¢ the dispersion parameter, g the link function, 7; =
k(i) =" (g7 (m)).

The likelihood function of the outcome Y = (Y3,Ys, ... ,Yn)T is

_1
L(y) = / L{yly)L(7)dy = [2n031,| 2 / exp(h)dy (5)
R4 R4
where L(y) is the likelihood function for v; h(y) = ¢ — 55" and ¢ is the conditional

log-likelihood, specifically

(=gt nh) = LD s o) = Yo { L EED L o0}

Examples of likelihood function for the outcome from an exponential family distribution
are described in the Supplementary Materials Section 1.
When we have a survival outcome, we consider the following mixed effects Cox model

(Vaida and Xu, 2000; Pankratz et al., 2005).

Vi ~iia N (0,02)

mo= M + 35 Xije; + 3250 Gi ®)

\ A(ti) = Ao (t:) exp
The observed data partial likelihood is

L) = [ L)L = 2ratt| [ explnay @
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where L(7) is the likelihood function for 7; h(y) = ¢— 557" v; £ = log PL and PL is the Cox
d;
partial likelihood, specifically PL = II}" , <%> where risk set R; = {k: Y, > Y;}.

> ker; XP Mk

Equation 7 takes the same form as equation 5, but the content of the function h is different.

2.5 Laplace approrimation
Laplace’s method is widely applied to approximate the likelihood function (Raudenbush
et al., 2000). The integral in equation 5 can be approximated via Laplace’s method by

taking Taylor expansion to the second order of h(y) around its maximum point 7.

M) & B3 + K= ) + 50— )R~ A)

where 4 = argmax h(7). Inserting the Taylor expansion into the integral, we have
v

1
2

2 (=h") " (3)

L) = |01 esp{h)} ) [ e |30 = L0} 0= 5)] o

1

= |031,| % exp{h()} |=1"(7)]

1
2

1
where |27 (=n")7! M| Zexp{3(v =T (=1"(3)) (¥ — 7)} is the probability density func-
tion of a multivariate Gaussian distribution, resulting in its integral equal to 1. The approx-

imated log-likelihood f is

q 1 -
log L(Y) ~ f = =7 log o2+ h(7) — 5 log [=h" (%) (8)

When the outcome Y follows an exponential family distribution,

0*h

‘M=ga7=" (G"WG +0°1,) (9)
L (o N B X 1l N2 1/ . 1 (.
where W = dlag (wl, Wa, . . . ,wn), w; = — [ylk )0 (k(m))(j(gﬂ) P, (Th)] ) 1= ]-7 27 sy T
When we have a survival outcome,
0h _
W) = gy =~ U+ 0Ty (10
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__ 0%(log PL)
0751 07jq

Cris —Cn )(Grip =Cig) ex - G ex
= Z?:l 5; {_ <ZkeRi( kj1 31)( kjo 12) p77k>} and U = (ujm), Gj _ M'

ZkeRi €XPp Mk ZkeRi €XP Nk

where u;,;, =

2.6 Coordinate descent algorithm

We apply the coordinate descent to maximize the approximated log-likelihood in equation 8.
Note that 4 in equation 8 is a function of other parameters, specifically v = 4 (al, 03/, 0,0, L).
Instead of taking implicit differentiation of 4 with respect to (w.r.t.) parameters £ = (041, 03, 0,0, L)
as in (Raudenbush et al., 2000), we use the approximation strategy proposed in (Schelldorfer
et al., 2014), which regards 4 as fixed when updating £. This strategy is computationally
convenient and efficient, at little cost of reduced accuracy. Since 4 = argmax h(7y), we update

v
7 by applying Newton-Raphson algorithm.

A =D — [ ()] ()

where h/(y) = GT[yOkl(”);gﬁ()k(”))Ok,(”)] - é’y, for the outcome following an exponential family

ot
8 .

distribution; and h'(y) = (2,25, ..., 2)7 — L for the survival outcome and
vy J

I D27 B

>y 0iGij — %]J =12...,q
When taking derivatives of approximated log-likelihood function f in equation 8, when
the outcome Y follows exponential family distribution, we take further approximation by
assuming W in equation 9 varies slowly as a function of p. This assumption is made in PQL
in (Green, 1987; Breslow and Clayton, 1993). When we have a survival outcome, we similarly
assume that U in equation 10 varies slowly as a function of 7. Under this assumption, we
will only take derivatives of —2 log 03 + h(%) w.rt. (a1, ¢,0,01,9,...,1,). Observe that the
—3 log |—=h"(7)| part is only involved when estimating variance component o2. We conduct
simulation studies to compare the performance with and without this further approximation.

Assuming 7 are fixed, we calculate the first and second derivatives of approximated likeli-

hood function f as the following.
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When the outcome Y follows an exponential family distribution, let ¢ be a vector of (p+2)
parameters, ( = (ay, 0, 1,12, ..., Lp)T. The first derivatives are

o _ o o(-3hs-w))

9 G ac;
2Lok'(n) ) [y—b' (k())]
= (% 2(¢) — Str ((—h”(ﬁ))_1 GTa—WG)
where 7 = 1,2,...,(p + 2) and o is the Hadamard product (entry-wise product), 2 f =
: ow; Jw Own, _ T On __ on __
dlag<a—<;,a—<;,..., 8Cj) and 20 = (1,1,...,1)7, % = M, 21 = X,

o5 _ ol 0(~4logl-1"())

¢ 99 99
_b( ( )) aa(¢) 80 (yw¢> 1 17/ ~\\—1 aW
‘Z{ { e } %6 T }_5“ <<_h SO G>
or 0 (—tlog|o21,| - Ylog |-h"(3)| - 55777)
80% a (‘902
— % {—tr ( 171 + 7h”( )) + U%/i%}

The second derivatives are

o2f _ o2, 9*(=5logl-h"())
acz = o acz

2 2
— 1TW1, — Lt (— {=rE) e et + (—nE) ™ GT%C‘Q/G)

Pf _ 9% (*%10g|*h”(5’)\)
(9(1)2 8(152 + 02
_ Zn 2[yik(n:)—=b(k(m:))] 0a(¢) | yik(n:)—b(k(m:)) | da?() + 92C(yi,¢)
i=1 a3(¢) ¢ a?(¢) 0¢? s

v (= {Cra) T ergse) s (e 6TgKG)
The approximation of derivatives w.r.t. (ay, ¢, 0, t1, Lo, . . ., 1) by ignoring the —% log |—h"(%)]
part and assuming 7 are fixed, is

Of =0l +0 <—%log |—h"(1)|> ~ 0l

Pf=0%+0 (—% log |—h”(7)|) ~ 0H
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*f 1 2T BRals 2 2 7

For some commonly used distributions of outcome Y, including Gaussian distribution
with identity link function, Bernoulli distribution with logit link function, and negative-

binomial distribution with log link function, the first and second derivatives of W w.r.t.

(a1, 0,60, 1,t2,...,1,) are in the Supplementary Materials Section 2.
When we have a survival outcome, let  be a vector of (p+1) parameters,( = (0,1, 9, .. ., Lp)T
. B . n 9
of 9l 9(-Llog|-n"()) ol S O ker; oe XP Ik
¢ 0 9G; 0G = 9G X XD
af 1 q 1 .
902 75 (——2 + —NTV)
o o2 o}
where j =1,2,...,(p+1) and % :M,gTZ = Xj;.
. . . . L (=3 log|—h"(9)|)
Because it is computationally intensive to calculate the derivative of e, we
J
use aa—é_ to approximate g—gj.

Finally, we employ the Newton-Raphson algorithm to sequentially update each parameter,

say 1, based on their first and second derivatives of f.

B *f17" of
@t _ =1 _ |2 I 'l
vE=v LW} 5

2.7 Likelihood ratio test

We obtain approximated likelihood under the null and the alternative hypothesis separately,
denoted by Ly and L; respectively. For GLMM, the likelihood ratio statistic 2 (log L1 — log L)
asymptotically follows a chi-square distribution with one degree of freedom, and similarly

for the partial likelihood ratio statistics for the survival outcome.
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3. Simulation studies

3.1 Simulation settings

To evaluate the performance of SMUT_GLM and SMUT_PH in comparison with alternative
methods, we conducted extensive simulations to investigate power and type-I error. Following
our previous work (Zhong et al., 2019), we simulated a dataset of 10,000 pseudo-individuals
measured at 2,891 SNPs with minor allele frequency (MAF) > 1% in a 1Mb region using the
COSI coalescent model (Schaffner et al., 2005) to generate realistic genetic data. The 10,000
pseudo-individuals were constructed by randomly pairing up 20,000 simulated chromosomes
without replacement. To evaluate power and type-I error, we generated 500 datasets with
1,000 samples each by sampling without replacement from the entire pool of 10,000 samples
simulated above.

The mediator M and the outcome Y were generated via equations 11. We considered two
covariates: one is a continuous variable generated from standard Gaussian distribution and

the other is a binary variable generated from Bernoulli(0.5).

M = ay + (sSNPs and mSN Ps)3 + (covariates)/™ + ¢ 1)
g(E(Y)) = a1+ MO + (sSNPs and oSN Ps)~y + (covariates).

where ¢ is the link function and is equal to logit function for binary outcome and log func-
tion for count outcome; € ~ N(0,1), 5; ~iia caN(0,1),7; ~iia ¢,N(0,1),7=1,2,...,4¢.

We set ¢, = 0.2. The shared SNPs (sSNPs) between the two models are those that influence
both the mediator and the outcome. The outcome (or mediator) specific SNPs (o0SNPs and
mSNPs respectively) only contribute to the outcome (or mediator). The causal SNPs are the
union of sSNPs, mSNPs, and oSNPs. We considered two scenarios in terms of causal SNP
density: sparse and dense (Table 1). For binary or count outcome, sample size is 1,000 and
there are 10 and 500 causal SNPs for sparse and dense scenarios, respectively. For time-to-

event outcome, sample size is 200 and there are 10 and 150 causal SNPs for sparse and dense
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scenarios, respectively. The set of causal SNPs, common across the 500 simulated datasets,
were randomly selected from the 2,891 SNPs with MAF > 1%. 8 and ~, again fixed across
the 500 datasets, were independently drawn from a Gaussian distribution. Error term e was
independently generated from standard Gaussian distribution and was separately simulated

for each of the 500 datasets.

[Table 1 about here.]

In the simulations, we tested the joint mediation effects of these SNPs on the binary, count
or survival outcome using SMUT_GLM and SMUT_PH, as well as other methods including
the adapted Huang et al.’s method, adapted LASSO (Tibshirani, 1996). In order to compare
the performance of approximations that we adopted, we considered two versions of our
method, both treating 7 as fixed: (1) based on exact derivatives; (2) based on approximated
derivatives. For an outcome from an exponential family distribution, we refer to these two
versions as SMUT_GLM exact and SMUT_GLM approxi. For a survival outcome, we refer
to the approximated version as SMUT_PH approxi. The exact version of SMUT_PH is not
employed because it is hard to derive analytically. The Huang et al.’s method only tests
mediator effect in the outcome model, assuming a priori the presence of SNPs’ effects on
mediator (i.e., non-zero ), adopting a kernel framework where mediator(s) of interest are
treated as random and SNPs as fixed (Huang et al., 2015), in contrast to our outcome model
where SNPs are treated as random and mediator of interest as fixed. For fair comparison
across methods, i.e., testing both g and @, we applied the original Huang et al.’s method for
the outcome model and SKAT for the mediator model, then combined tests from the two
models via IUT), integrating the variance component score test in the outcome model (from
the original Huang et al’s method) and score test from SKAT in the mediator model. The
adapted LASSO employs LASSO for variable selection in the outcome model and applies

IUT using regular regression with the selected variables in the outcome model and all the
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variables (i.e., genetic variants) via SKAT framework in the mediator model. We applied and
compared with the adapted versions of Huang et al. and LASSO because the corresponding
original methods only test # in the outcome model. For all the adapted versions, we utilize
SKAT to test 8 in the mediator model to be maximally comparable with our SMUT_GLM
and SMUT _PH. In other words, adapted Huang et al. is SKAT + original Huang et al. with
SKAT corresponding to the testing strategy in the mediator model and original Huang et al.
to the testing strategy in the outcome model. Similarly, for LASSO, we use adapted LASSO

and SKAT+LASSO exchangeably.

3.2 Type-I error in simulations

We evaluated the validity of SMUT_GLM and SMUT _PH along with alternative methods in
simulations. SMUT_GLM and SMUT _PH exhibited controlled type-I error rates, at a = 0.05
level, regardless of causal SNP density and types of outcome, as shown in Figures 1 and 2
for binary outcome in sparse and dense scenarios respectively, Figures 3 and 4 for time-to-
event outcome in sparse and dense scenarios respectively, Supplementary Figures S1 and S2
for count outcome in sparse and dense scenarios respectively. In each figure, the first panel
(cg = 0) and the leftmost point (6 = 0) in other panels (¢ # 0) all correspond to the null
of no mediation of the SNPs through the mediator. Adapted LASSO and adapted Huang et

al.’s method also showed protected type-I error.

3.3 Power in simulations

SMUT_GLM and SMUT_PH demonstrated substantial power gains under both the sparse or
dense scenarios. We also observe that the approximated version of SMUT_GLM demonstrated
very similar performance when compared with its exact counterpart. For example, for a
binary outcome and under the scenario of dense causal SNPs when c¢g = 0.6,0 = 0.1,
exact SMUT_GLM, approximated SMUT_GLM, adapted LASSO and adapted Huang et

al. had 97%, 96%, 54% and 0% power, respectively. Thus, the power gain, compared with


https://doi.org/10.1101/780767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/780767; this version posted September 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

14

adapted LASSO, was 43% and 42% for exact SMUT_GLM and approximated SMUT_GLM,
respectively; and the power gain, compared with adapted Huang et al., was 97% and 96%
for exact SMUT_GLM and approximated SMUT_GLM, respectively. For survival outcome,
under the scenario of dense causal SNPs when cg = 1,60 = 0.075, approximated SMUT_PH
and adapted LASSO had 69% and 41% power, respectively, leading to a power gain of 28%.
In addition, power gains appeared more profound with increasing cg likely because adapted
LASSO and adapted Huang et al. becomes more conservative as the pleiotropy effect of SNPs

on mediator and outcome (measured by c¢g) increases.
[Figure 1 about here.|
[Figure 2 about here.|
[Figure 3 about here.]

[Figure 4 about here.]

4. Real data application

We assessed our methods and alternatives in real data from two clinical cohorts, which
were designed for the study of chlamydia infection. Chlamydia trachomatis can ascend from
the cervix to the uterus and fallopian tubes in some women, potentially resulting in pelvic
inflammatory disease (PID) and severe reproductive morbidities, including infertility and
ectopic pregnancy. Recurrent infection leads to worse disease. The first cohort is the T
cell Response Against Chlamydia (TRAC) cohort which included asymptomatic women
(age 15-30 years) at high risk for sexually transmitted infection (Russell et al., 2015). The
second cohort is the Anaerobes and Clearance of Endometritis (ACE) cohort which included
symptomatic women (age 15-40 years) with clinically diagnosed PID (Workowski and Bolan,
2015). We analyzed genotype, gene expression and phenotype data of 200 participants

combined from these two cohorts. The Institutional Review Boards for Human Subject
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Research at the University of Pittsburgh and the University of North Carolina approved

the study and all participants provided written informed consent prior to inclusion.

4.1 Binary outcome

The outcome of interest is ascending chlamydia infection, among participants who had
chlamydia infection at enrollment. The control group is the 71 participants who had chlamy-
dia infection restricted to the cervix, and the case group is the 72 participants with both
cervical and endometrial chlamydia infection at enrollment. We analyzed genotype, gene
expression and phenotype data from these 143 participants.

Here, we tested two genes, SOSI and CD151 gene, for their mediation effects. Son of
sevenless homolog 1 (SOSI) is a guanine nucleotide exchange factor that in humans is
encoded by the SOS1 gene. The importance of SOS! for chlamydia invasion of host cells
has been indicated by multiple biomedical studies (Carabeo et al., 2007; Lane et al., 2008;
Hackstadt, 2012; Bastidas et al., 2013; Mehlitz and Rudel, 2013; Elwell et al., 2016). The
CD151 gene encodes a protein that is known to complex with integrins. It promotes cell
adhesion and may regulate integrin trafficking and/or function. It is a member of the
tetraspanin family, which are considered as the gateways for infection (Hauck and Meyer,
2003; Hemler, 2008; Hassuna et al., 2009; Join-Lambert et al., 2010; N Monk and J Partridge,
2012; Seu et al., 2017). In addition, SNPs annotation database, RegulomeDB (Boyle et al.,
2012), demonstrates that some SNPs in these two genes are eQTLs with experimental
evidence. Thus, the presence of mediation effect via the expression of each gene is expected.

We first extracted SNPs within + 1 Mb of the corresponding genes and then conducted
expression quantitative trait loci (eQTLs) analysis for these two genes. The eQTL analysis
was conducted based on all the 200 participants. For the first gene SOS1, mediation testing
encompassed 83 SNPs with MAF > 10% and significant eQTL association (with SOS1) at

a false discovery rate (FDR) threshold of 10%, using SMUT_GLM, adapted LASSO and
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adapted Huang et al.’s method. Both SMUT_GLM and adapted Huang et al.’s method
detected significant mediation effects, while adapted LASSO did not (Table 2). For the
second gene CD151, our mediation (via expression of CD151) testing involved 40 SNPs with
MAF > 10% and significant eQTL (with CD151) at FDR 10%. Only SMUT_GLM showed
significant mediation effects of these SNPs through the expression of CD151 on ascending

chlamydia infection (Table 2).

4.2 Time-to-event outcome

TRAC participants returned for follow-up visits at 1, 4, 8, and 12 months after enrollment.
The outcome of interest we evaluated here is time to the first incident chlamydia infection.
We analyzed genotype, gene expression and time-to-event data from all 181 participants in
the TRAC cohort who had both genotype and gene expression data available.

Here, we tested a gene, BIRCS3, for its mediation effect. The gene BIRCS3 encodes for
Baculoviral IAP Repeat Containing 3, a E3 ubiquitin-protein ligase regulating NF-kappa-
B signaling (Blankenship et al., 2009; Kim et al., 2010; Tan et al., 2013). It acts as an
important regulator of pathogen recognition receptor signaling (Bertrand et al., 2009), which
can have profound effects on the development of downstream adaptive immune responses
(Takeda et al., 2003; Palm and Medzhitov, 2009; Kumar et al., 2011). In addition, biological
studies suggested that BIRCS may protect mammalian host cells against apoptosis, leading
to accommodate chlamydial growth (Bryant et al., 2004; Park et al., 2004; Paland et al.,
2006; Ying et al., 2008). Therefore, mediation effect via the expression of BIRC3 gene is
logical. Our mediation testing involved 4 SNPs with MAF > 10% and eQTL (with BIRCS)
at FDR 10%, using SMUT_PH, adapted LASSO and adapted Huang et al.’s method. All the
methods showed significant mediation effects through BIRCS3 on incident chlamydia infection

(Table 2).

[Table 2 about here.]
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5. Discussion

Our proposed methods, SMUT_GLM and SMUT _PH, extend our previous work (Zhong et al.,
2019) to test mediation effect of multiple correlated genetic variants on a non-Gaussian out-
come (e.g. binary, count, time-to-event outcome) through a mediator (e.g. expression of some
gene in the vicinity). We employ intersection-union test approach to derive a single p value
by integrating p values from separate tests of 8 and 6. Moreover, our methods do not rely
on complete mediation assumption nor presume independent genetic variants. SMUT_GLM
and SMUT_PH are statistically more powerful than alternative methods including adapted
LASSO and adapted Huang et al.’s method. Power loss using adapted LASSO might be a
result of violating its sparsity assumption. Huang et al.’s method has lower statistical power,
which might be due to the modeling strategy for the mediator effect (). Specifically, the
mediator effect (0) is modeled as a random effect in the outcome model by Huang et al.’s
method, which might not be optimal particularly when only one mediator is considered at a
time. When jointly testing multiple mediators in the outcome model, Huang et al.’s method
may perform more favorably. However, testing one mediator at a time has the advantage to
pinpoint or prioritize the causal gene(s), which would not be possible when testing multiple
genes in aggregate via Huang et al.’s random mediator effect.

One limitation of our proposed methods is that we assume the effects of genetic variants
follow a Gaussian distribution. This may not be correct when there are non-causal SNPs in
the model and in this case, a mixture distribution might be more appropriate. It is reassuring
to observe protected type-I error from our simulation studies, which included considerable
number of proportion of non-causal SNPs in all scenarios considered. More properly modeling
the effects of genetic variants may further increase the statistical power under the alternative

hypotheses but due to modeling complexity and subsequently inevitable computational costs,
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we decide not to further pursue this in our current work. This is an interesting topic for future
investigation.

Our proposed methods can be further extended to handle multiple correlated outcomes to
gain additional power. One possible approach to model correlation among multiple outcomes
is to add random intercepts in the outcome model. When adding random intercepts to
the model, additional Laplace approximation will be applied to these random effects. The
accuracy of Laplace approximation by taking only the second order of the Taylor expansion
needs further investigation in such more complicated model. If second order is insufficient,
higher-order of Laplace approximation (Raudenbush et al., 2000) could be considered to
achieve higher precision, at the cost of increased computational burden, which can be high
with high-dimensional random effects. Such work thus warrants separate investigation and
a separate publication.

In simulation studies, we also compared the computational time of our methods with
adapted LASSO and adapted Huang et al.’s method. In general, our methods’ computational
time is similar to that of adapted LASSO, and both our methods and adapted LASSO run
faster than Huang et al.’s method (Supplementary Figure S3, S4, S5). Our methods use
approximations when calculating derivatives of the likelihood functions, which substantially
reduces computational burden (Supplementary Figure S3, S4). For the binary and count
outcome with sparse causal SNPs, our SMUT_GLM runs faster than adapted LASSO. For
the binary and count outcome with dense causal SNPs, our method runs more slowly than
adapted LASSO. We suspect that our method takes longer time to converge under the dense
scenario than under the sparse scenario because there are more non-zero coefficients under
the dense scenario.

In summary, we proposed SMUT_GLM and SMUT_PH that can test mediation effects of

multiple correlated genetic variants on a non-Gaussian outcome through a mediator. We
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anticipate our proposed method will become a powerful tool to bridge the gap in terms of
molecular mechanisms between various types of phenotypes and the corresponding associated

genetic variant(s) identified in recent literature.
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Figure 1. For binary outcome, power and type-I error under sparse causal SNPs scenario.
The x-axis is the true mediator effect(f) on the outcome. The y-axis is the power or type-I
error. Sub-figures vary in cg value. cg = 0 (top-left sub-figure) or § = 0 (left-most points in
each sub-figure) are null settings where y-axis represents the corresponding type-I error.
When cg # 0 and 6 # 0, it is under alternative hypothesis and y-axis represents the
corresponding power.
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Figure 2. For binary outcome, power and type-I error under dense causal SNPs scenario.
X-axis and y-axis are the same as in Figure 1.
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Figure 4. For time-to-event outcome, power and type-I error under dense causal SNPs
scenario. X-axis and y-axis are the same as in Figure 1.
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Table 1
Causal SNP composition in two simulated scenarios. The sparse(dense) scenario is to simulate data sets based on a
small(large) number of causal SNPs. Causal SNPs are the union of shared SNPs, mediator specific SNPs and
outcome specific SNPs. Shared SNPs have effects on both mediator and outcome. Mediator(outcome) specific SNPs
have effects only on mediator(outcome). All these SNPs are randomly selected from the 2,891 SNPs with MAF > 1%.

Type of outcome Sample size Sparse or dense # causal SNPs  # sSNPs  # mSNPs # oSNPs # non-causal SNPs

S Sparse 10 4 3 3 890
Binary or count 1000 Dense 500 300 100 100 400
Sparse 10 4 3 3 190

Time-to-event 200 Dense 150 90 30 30 50
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Table 2
Real data application to TRAC and ACE datasets.

P values
Type of outcome  Gene  Probesets #SNPs SMUT_GLM LASSO Huang et al.
Binary SOS1 2140519 83 0.0235 0.0691 0.0229
Binary CD151 1940132 40 0.0245 0.1192 0.2289

SMUT_PH LASSO Huang et al.
Time-to-event ~ BIRC3 7210154 4 0.001 0.001 0.002
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