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Summary: To elucidate the molecular mechanisms underlying genetic variants identified from genome-wide as-

sociation studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, count, and survival

outcomes, we propose a novel and flexible method to test for mediation that can simultaneously accommodate

multiple genetic variants and different types of outcome variables. Specifically, we employ the intersection-union

test approach combined with likelihood ratio test to detect mediation effect of multiple genetic variants via some

mediator (for example, the expression of a neighboring gene) on outcome. We fit high-dimensional generalized linear

mixed models under the mediation framework, separately under the null and alternative hypothesis. We leverage

Laplace approximation to compute the marginal likelihood of outcome and use coordinate descent algorithm to

estimate corresponding parameters. Our extensive simulations demonstrate the validity of our proposed method and

substantial, up to 97%, power gains over alternative methods. Applications to real data for the study of Chlamydia

trachomatis infection further showcase advantages of our method. We believe our proposed method will be of value

and general interest in this post-GWAS era to disentangle the potential causal mechanism from DNA to phenotype

for new drug discovery and personalized medicine.
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1. Introduction

Mediation analysis studies how the mediator variable transmits the independent variable’s

effect on the outcome (MacKinnon et al., 2007). Most mediation studies focus on outcomes

following Gaussian distribution. Non-Gaussian outcomes, such as binary, count and time-to-

event responses (e.g. disease status, time until death), are commonly present in research but

have been under-studied. In mediation analysis, non-Gaussian outcomes from the exponential

family distribution can be properly handled by generalized linear models (GLM) and time-

to-event outcomes can be accommodated using a proportional hazards Cox model (Preacher,

2015). For example, (O’Rourke and Vazquez, 2019) discusses challenges in mediation analysis

of zero-inflated count outcomes and describes how to fit Poisson or negative binomial models

and (Cheng et al., 2018) attempts to decompose the direct, mediation and total effects for

zero-inflated count outcomes from a causal inference perspective.

Generalized linear mixed models (GLMM) (McCullagh and Nelder, 1989; McCulloch and

Searle, 2001; McCulloch et al., 2008) are an extension of GLM where random effects are

accommodated among the predictors. GLMM are commonly be applied to data where

observations are not independent, for instance in studies with repeated measures. In genetics

and genomics studies, GLMM is widely used to test associations between non-Gaussian traits

and a set of genetic variants (Yan et al., 2015; Chen et al., 2016, 2019; Park et al., 2018)

when genetic relationship among study subjects needs to be taken into account. Similarly

for survival outcome, mixed effects Cox models (Vaida and Xu, 2000; Pankratz et al., 2005)

have been developed as an extension of proportional hazards Cox model to allow explicitly

modeling of random effects.

Likelihood-based inference for GLMM can be difficult, because it usually involves high-

dimensional integrals (McCulloch et al., 2008). For this reason, various strategies have been

proposed to approximate the likelihood function for GLMM, including Laplace approxima-
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tion (Raudenbush et al., 2000), penalized quasi-likelihood (PQL) (Breslow and Clayton,

1993), and Markov chain Monte Carlo (MCMC) algorithms (Gilks, 1996). An excellent

review paper about GLMM in practice exists (Bolker et al., 2009). For time-to-event outcome,

Laplace approximation has been applied to approximate likelihood function for mixed effects

Cox models (Pankratz et al., 2005). To maximize the approximated likelihood function,

coordinate descent (Fu, 1998; Daubechies et al., 2004) is broadly used, such as for GLM

with elastic net (Friedman et al., 2010), graphical Lasso (Friedman et al., 2008) and GLMM

with Lasso (Schelldorfer et al., 2014). Coordinate descent is simple and convenient to employ

and can achieve satisfactory performance when carefully implemented.

Mediation analysis was firstly proposed by Baron and Kenny to study the association

between an independent variable and an outcome by adding an intermediate variable, which

is called the mediator (Baron and Kenny, 1986). In genetics and genomics studies, researchers

are interested in testing mediation effects of the genetic variant(s), mostly single nucleotide

polymorphisms (SNPs) on the outcome through certain mediator (e.g., the expression level of

a neighboring gene). Baron and Kenny’s classic mediation approach has been extended to ac-

commodate high-dimensional mediators (Huang and Pan, 2016; Zhang et al., 2016). Huang et

al.’s methods are kernel-based regression methods and use variance component score statistic

to test for mediation but these methods assume a priori known expression quantitative trait

loci (eQTLs) (Huang et al., 2015, 2016). To address lack of knowledge regarding eQTLs, we

have extended Baron and Kenny’s framework to handle mediation effect of high-dimensional

genetic variants on a continuous outcome (Zhong et al., 2019). To the best of our knowledge,

none of the existing methods can jointly test mediation effects of multiple correlated SNPs on

a non-Gaussian outcome. We propose a generalized multi-SNP mediation intersection-union

test to accommodate both mediation and direct effects of multiple correlated SNPs on non-

Gaussian outcomes without a prior knowledge of eQTLs. Similar to our previously developed
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SMUT method (Zhong et al., 2019), the method proposed in this work is an extension of

Baron and Kenny’s framework and leverages intersection-union test (IUT) to decompose

mediation into two separate regression models. Our proposed method SMUT GLM and

SMUT PH deals with two categories of non-Gaussian outcomes. SMUT GLM handles an

outcome from an exponential family distribution by fitting a generalized linear mixed model

and SMUT PH accommodates a survival by fitting a mixed effects Cox proportional hazards

model.

The rest of this article is organized as follows. In Section 2, we present details of our

proposed SMUT GLM and SMUT PH methods, followed by simulation studies and real

data application in Section 3 and Section 4, respectively. Finally, Section 5 concludes the

article with some discussions.

2. Methods

2.1 Notation

Without loss of generality, we assume that we have four types of data, namely, genotypes

(as the potential causal variables), gene expression measurements (as the mediator, which

can be other types of molecular measures such as metabolite levels or protein abundances),

phenotypic trait (as the final outcome) and other covariates (e.g. age, gender). Let G =

(G1, G2, . . . , Gq) be the n by q genotype matrix, where n is sample size, q is the total number

of genetic markers, and Gj = (G1j, G2j, . . . , Gnj)
T is the vector of genotypes for the samples

at marker j, j = 1, 2, . . . , q. We consider an additive model with Gij taking values 0,1,2,

measuring the number of copies of the minor allele. Let Xij denote the jth covariate variable

(e.g. age, gender) for the ith individual, i = 1, 2, . . . , n; j = 1, 2, . . . , p.
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2.2 SMUT GLM and SMUT PH model

SMUT GLM and SMUT PH model the effects of SNPs on the outcome mediated by the

expression level of a single gene via two models, namely a mediator model and an outcome

model. We assume the expression level is continuous and consider a linear model for the

mediator model (equation 1). As for the outcome model, we fit GLMM if the outcome

random variable follows an exponential family distribution (equation 2); we fit mixed effects

proportional hazards Cox model if the outcome is time-to-event (equation 3). Let Yi denote

the outcome for the ith individual. For survival outcome, Yi = (Ti, δi) includes the time

Ti = min(Zi, Ci), where Zi is the time to the event of interest and Ci is the censoring time,

and the censoring status δi; δi = 1 indicates the occurrence of the given event and Ti is the

survival time; δi = 0 indicates a censored sample.

Mi = α2 +

p∑
j=1

Xijι
M
j +

q∑
j=1

Gijβj + εi Mediator model (1)

g (E (Yi)) = α1 +Miθ +

p∑
j=1

Xijιj +

q∑
j=1

Gijγj Exponential Family Outcome model (2)

λ (ti) = λ0 (ti) exp

(
Miθ +

p∑
j=1

Xijιj +

q∑
j=1

Gijγj

)
Survival Outcome model (3)

where i = 1, 2, . . . , n indexes the n individuals; q is the number of SNPs; εi ∼i.i.d. N(0, 1),

i = 1, 2, . . . , n; g is the link function in GLM. Here ιM =
(
ιM1 , ι

M
2 , . . . , ι

M
p

)T
and ι =

(ι1, ι2, . . . , ιp)
T are coefficient vectors for the p covariates in the mediator and outcome

model, respectively; β = (β1, β2, . . . , βq)
T is the SNP effect on the mediator M ; θ is the

mediator effect on the outcome; βθ is the mediation effect of the SNPs via mediator M ;

γ = (γ1, γ2, . . . , γq)
T includes the direct effects of the q SNPs and mediation effects via

mediators other than M . For presentation brevity, we will use direct effects to refer to the

aggregated effects including SNPs’ direct effects and mediation effects via other mediators.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/780767doi: bioRxiv preprint 

https://doi.org/10.1101/780767
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

Following our previously developed SMUT method (Zhong et al., 2019), we employ intersection-

union test (IUT) (Berger and Hsu, 1996) to decompose the hypothesis testing of the me-

diation effect βθ into two sub-hypotheses: H0 = Hθ
0 ∪ Hβ

0 and H1 = Hθ
1 ∩ Hβ

1 , where H0 :

βθ = (β1θ, β2θ, . . . , βqθ) = (0, 0, . . . , 0)T ; H1 : ∃j ∈ {1, 2, . . . , q}, βjθ 6= 0; Hβ
0 : β =

(0, 0, . . . , 0)T ; Hβ
1 : ∃j ∈ {1, 2, . . . , q}, βj 6= 0; Hθ

0 : θ = 0; Hθ
1 : θ 6= 0.

Suppose the p value for testing β being zero is p1; and the p value for testing θ being zero

is p2. Then the p value for testing βθ being zero, using IUT, is the maximum of p1 and p2. In

the following sections, we provide details regarding how to separately test β and θ to obtain

p1 and p2.

2.3 Testing β in the mediator model and θ in the outcome model

As in (Zhong et al., 2019), we adopt the widely used SKAT method (Wu et al., 2011) to test

β in the mediator model to accommodate a potentially large number of correlated SNPs.

Our strategy for testing θ in the outcome model consists of four steps: (1) formulation of the

likelihood function based on the nature of the outcome random variable Y , and (2) Laplace

approximation of the likelihood function, and (3) application of the coordinate descent

algorithm to estimate parameters by maximizing the approximated likelihood function, and

(4) calculation of the likelihood ratio statistic. These four steps allow us to test the mediator

effect θ in the outcome model.

2.4 Likelihood function for the outcome model

To reduce the dimensionality of parameters in the outcome model, we adopted a linear

mixed model for continuous outcome in our previously developed SMUT method (Zhong

et al., 2019). We consider the following GLMM (McCulloch et al., 2008) when the outcome

Yi follows an exponential family distribution.
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

γj ∼i.i.d. N
(
0, σ2

γ

)
L (yi| (γ1, γ2, . . . , γq)) = exp

{
yiτi−b(τ)
a(φ)

+ C (yi, φ)
}

E (Yi| (γ1, γ2, . . . , γq)) = µi

g (µi) = ηi = α1 +Miθ +
∑p

j=1Xijιj +
∑q

j=1Gijγj

(4)

where τi is the canonical parameter, φ the dispersion parameter, g the link function, τi =

k (ηi) = b′−1 (g−1 (ηi)).

The likelihood function of the outcome Y = (Y1, Y2, . . . , Yn)T is

L(y) =

∫
Rq
L(y|γ)L(γ)dγ =

∣∣2πσ2
γIq
∣∣− 1

2

∫
Rq

exp(h)dγ (5)

where L(γ) is the likelihood function for γ; h(γ) = ` − 1
2σ2
γ
γTγ and ` is the conditional

log-likelihood, specifically

` =
n∑
i=1

logL (yi|γ) =
n∑
i=1

{
yiτi − b(τ)

a(φ)
+ C (yi, φ)

}
=

n∑
i=1

{
yik (ηi)− b (k (ηi))

a(φ)
+ C (yi, φ)

}
Examples of likelihood function for the outcome from an exponential family distribution

are described in the Supplementary Materials Section 1.

When we have a survival outcome, we consider the following mixed effects Cox model

(Vaida and Xu, 2000; Pankratz et al., 2005).


γj ∼i.i.d. N

(
0, σ2

γ

)
ηi = Miθ +

∑p
j=1Xijιj +

∑q
j=1Gijγj

λ (ti) = λ0 (ti) exp ηi

(6)

The observed data partial likelihood is

L(Y ) =

∫
Rq
L(y|γ)L(γ)dγ =

∣∣2πσ2
γIq
∣∣− 1

2

∫
Rq

exp(h)dγ (7)
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where L(γ) is the likelihood function for γ; h(γ) = `− 1
2σ2
γ
γTγ; ` = logPL and PL is the Cox

partial likelihood, specifically PL = Πn
i=1

(
exp ηi∑

k∈Ri
exp ηk

)δi
where risk set Ri = {k : Yk > Yi}.

Equation 7 takes the same form as equation 5, but the content of the function h is different.

2.5 Laplace approximation

Laplace’s method is widely applied to approximate the likelihood function (Raudenbush

et al., 2000). The integral in equation 5 can be approximated via Laplace’s method by

taking Taylor expansion to the second order of h(γ) around its maximum point γ̃.

h(γ) ≈ h(γ̃) + h′(γ̃)T(γ − γ̃) +
1

2
(γ − γ̃)Th′′(γ̃)(γ − γ̃)

where γ̃ = argmax
γ

h(γ). Inserting the Taylor expansion into the integral, we have

L(Y ) ≈
∣∣σ2
γIq
∣∣− 1

2 exp{h(γ̃)} |−h′′(γ̃)|−
1
2

∫
Rq

∣∣∣2π (−h′′)−1 (γ̃)
∣∣∣− 1

2
exp

[
1

2
(γ − γ̃)T {−h′′(γ̃)} (γ − γ̃)

]
dγ

=
∣∣σ2
γIq
∣∣− 1

2 exp{h(γ̃)} |−h′′(γ̃)|−
1
2

where
∣∣2π (−h′′)−1 (γ̃)

∣∣− 1
2 exp

{
1
2
(γ − γ̃)T (−h′′(γ̃)) (γ − γ̃)

}
is the probability density func-

tion of a multivariate Gaussian distribution, resulting in its integral equal to 1. The approx-

imated log-likelihood f is

logL(Y ) ≈ f = −q
2

log σ2
γ + h(γ̃)− 1

2
log |−h′′(γ̃)| (8)

When the outcome Y follows an exponential family distribution,

h′′(γ) =
∂2h

∂γ∂γT
= −

(
GTWG+ σ−2γ Iq

)
(9)

whereW = diag (w1, w2, . . . , wn), wi = − [yik′′(ηi)−b′′(k(ηi))(k′(ηi))2−b′(k(ηi))k′′(ηi)]
a(φ)

, i = 1, 2, . . . , n.

When we have a survival outcome,

h′′(γ) =
∂2h

∂γ∂γT
= −

(
U + σ−2γ Iq

)
(10)
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where uj1j2 = −∂2(logPL)
∂γj1∂γj2

=
∑n

i=1 δi

{
−
(∑

k∈Ri(Gkj1−Gj1)(Gkj2−Gj2) exp ηk∑
k∈Ri

exp ηk

)}
and U = (uj1j2), Gj =

∑
k∈Ri

Gkj exp ηk∑
k∈Ri

exp ηk
.

2.6 Coordinate descent algorithm

We apply the coordinate descent to maximize the approximated log-likelihood in equation 8.

Note that γ̃ in equation 8 is a function of other parameters, specifically γ̃ = γ̃
(
α1, σ

2
γ, φ, θ, ι

)
.

Instead of taking implicit differentiation of γ̃ with respect to (w.r.t.) parameters ξ =
(
α1, σ

2
γ, φ, θ, ι

)
as in (Raudenbush et al., 2000), we use the approximation strategy proposed in (Schelldorfer

et al., 2014), which regards γ̃ as fixed when updating ξ. This strategy is computationally

convenient and efficient, at little cost of reduced accuracy. Since γ̃ = argmax
γ

h(γ), we update

γ̃ by applying Newton-Raphson algorithm.

γ(t) = γ(t−1) − [h′′(γ)]−1h′(γ)

where h′(γ) = GT [y◦k′(η)−b′(k(η))◦k′(η)]
a(φ)

− 1
σ2
γ
γ, for the outcome following an exponential family

distribution; and h′(γ) = ( ∂`
∂γ1
, ∂`
∂γ2
, . . . , ∂`

∂γq
)T − 1

σ2
γ
γ for the survival outcome and ∂`

∂γj
=∑n

i=1 δi[Gij −
∑
k∈Ri

Gkj exp ηk∑
k∈Ri

exp ηk
], j = 1, 2, . . . , q.

When taking derivatives of approximated log-likelihood function f in equation 8, when

the outcome Y follows exponential family distribution, we take further approximation by

assuming W in equation 9 varies slowly as a function of µ. This assumption is made in PQL

in (Green, 1987; Breslow and Clayton, 1993). When we have a survival outcome, we similarly

assume that U in equation 10 varies slowly as a function of η. Under this assumption, we

will only take derivatives of − q
2

log σ2
γ + h(γ̃) w.r.t. (α1, φ, θ, ι1, ι2, . . . , ιp). Observe that the

−1
2

log |−h′′(γ̃)| part is only involved when estimating variance component σ2
γ. We conduct

simulation studies to compare the performance with and without this further approximation.

Assuming γ̃ are fixed, we calculate the first and second derivatives of approximated likeli-

hood function f as the following.
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When the outcome Y follows an exponential family distribution, let ζ be a vector of (p+2)

parameters, ζ = (α1, θ, ι1, ι2, . . . , ιp)
T . The first derivatives are

∂f
∂ζj

= ∂ ˜̀

∂ζj
+

∂(− 1
2
log|−h′′(γ̃)|)
∂ζj

=

(
∂η
∂ζj
◦k′(η)

)T
[y−b′(k(η))]

a(φ)
− 1

2
tr
(

(−h′′(γ̃))−1GT ∂W
∂ζj
G
)

where j = 1, 2, . . . , (p + 2) and ◦ is the Hadamard product (entry-wise product), ∂W
∂ζj

=

diag
(
∂w1

∂ζj
, ∂w2

∂ζj
, . . . , ∂wn

∂ζj

)
and ∂η

∂α1
= (1, 1, . . . , 1)T , ∂η

∂θ
= M, ∂η

∂ιj
= Xj.

∂f

∂φ
=
∂ ˜̀

∂φ
+
∂
(
−1

2
log |−h′′(γ̃)|

)
∂φ

=
n∑
i=1

{
−
[
yik (ηi)− b (k (ηi))

a2(φ)

]
∂a(φ)

∂φ
+
∂C (yi, φ)

∂φ

}
− 1

2
tr

(
(−h′′(γ̃))

−1
GT ∂W

∂φ
G

)

∂f

∂σ2
γ

=
∂
(
−1

2
log
∣∣σ2
γIq
∣∣− 1

2
log |−h′′(γ̃)| − 1

2σ2
γ
γ̃T γ̃

)
∂σ2

γ

=
1

2

{
− tr

(
1

σ2
γ

Iq +
1

σ4
γ

h′′(γ̃)

)
+

1

σ4
γ

γ̃T γ̃

}
The second derivatives are

∂2f
∂ζ2j

= ∂2 ˜̀

∂ζ2j
+

∂2(− 1
2
log|−h′′(γ̃)|)
∂ζ2j

= −1TnW1n − 1
2

tr

(
−
{

(−h′′(γ̃))−1GT ∂W
∂ζj
G
}2

+ (−h′′(γ̃))−1GT ∂2W
∂ζ2j

G

)
∂2f
∂φ2

= ∂2 ˜̀

∂φ2
+

∂2(− 1
2
log|−h′′(γ̃)|)
∂φ2

=
∑n

i=1

[
2[yik(ηi)−b(k(ηi))]

a3(φ)
∂a(φ)
∂φ
−
[
yik(ηi)−b(k(ηi))

a2(φ)

]
∂a2(φ)
∂φ2

+ ∂2C(yi,φ)
∂φ2

]
−1

2
tr

(
−
{

(−h′′(γ̃))−1GT ∂W
∂φ2

G
}2

+ (−h′′(γ̃))−1GT ∂2W
∂φ2

G

)
The approximation of derivatives w.r.t. (α1, φ, θ, ι1, ι2, . . . , ιp) by ignoring the−1

2
log |−h′′(γ̃)|

part and assuming γ̃ are fixed, is

∂f = ∂ ˜̀+ ∂

(
−1

2
log |−h′′(γ̃)|

)
≈ ∂ ˜̀

∂2f = ∂2 ˜̀+ ∂

(
−1

2
log |−h′′(γ̃)|

)
≈ ∂2 ˜̀
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∂2f

∂
(
σ2
γ

)2 =
1

2

{
tr

(((
Iq + σ2

γG
TWG

)−1
GTWG

)2)
− 2

σ6
γ

γ̃T γ̃

}
For some commonly used distributions of outcome Y , including Gaussian distribution

with identity link function, Bernoulli distribution with logit link function, and negative-

binomial distribution with log link function, the first and second derivatives of W w.r.t.

(α1, φ, θ, ι1, ι2, . . . , ιp) are in the Supplementary Materials Section 2.

When we have a survival outcome, let ζ be a vector of (p+1) parameters,ζ = (θ, ι1, ι2, . . . , ιp)
T

∂f

∂ζj
=

∂ ˜̀

∂ζj
+
∂
(
−1

2
log |−h′′(γ̃)|

)
∂ζj

≈ ∂ ˜̀

∂ζj
=

n∑
i=1

δi

{
∂η

∂ζj
−
∑

k∈Ri
∂η
∂ζj

exp ηk∑
k∈Ri exp ηk

}

∂f

∂σ2
γ

≈ 1

2

(
− q

σ2
γ

+
1

σ4
γ

γ̃T γ̃

)
where j = 1, 2, . . . , (p+ 1) and ∂η

∂θ
= M, ∂η

∂ιj
= Xj.

Because it is computationally intensive to calculate the derivative of
∂(− 1

2
log|−h′′(γ̃)|)
∂ζj

, we

use ∂ ˜̀

∂ζj
to approximate ∂f

∂ζj
.

Finally, we employ the Newton-Raphson algorithm to sequentially update each parameter,

say ψ, based on their first and second derivatives of f .

ψ(t) = ψ(t−1) −
[
∂2f

∂ψ2

]−1
∂f

∂ψ

2.7 Likelihood ratio test

We obtain approximated likelihood under the null and the alternative hypothesis separately,

denoted by L0 and L1 respectively. For GLMM, the likelihood ratio statistic 2 (logL1 − logL0)

asymptotically follows a chi-square distribution with one degree of freedom, and similarly

for the partial likelihood ratio statistics for the survival outcome.
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3. Simulation studies

3.1 Simulation settings

To evaluate the performance of SMUT GLM and SMUT PH in comparison with alternative

methods, we conducted extensive simulations to investigate power and type-I error. Following

our previous work (Zhong et al., 2019), we simulated a dataset of 10,000 pseudo-individuals

measured at 2,891 SNPs with minor allele frequency (MAF) > 1% in a 1Mb region using the

COSI coalescent model (Schaffner et al., 2005) to generate realistic genetic data. The 10,000

pseudo-individuals were constructed by randomly pairing up 20,000 simulated chromosomes

without replacement. To evaluate power and type-I error, we generated 500 datasets with

1,000 samples each by sampling without replacement from the entire pool of 10,000 samples

simulated above.

The mediator M and the outcome Y were generated via equations 11. We considered two

covariates: one is a continuous variable generated from standard Gaussian distribution and

the other is a binary variable generated from Bernoulli(0.5).

 M = α2 + (sSNPs and mSNPs)β + (covariates)ιM + ε

g(E(Y )) = α1 +Mθ + (sSNPs and oSNPs)γ + (covariates)ι

(11)

where g is the link function and is equal to logit function for binary outcome and log func-

tion for count outcome; ε ∼ N(0, 1), βj ∼i.i.d. cβN(0, 1), γj ∼i.i.d. cγN(0, 1), j = 1, 2, . . . , q.

We set cγ = 0.2. The shared SNPs (sSNPs) between the two models are those that influence

both the mediator and the outcome. The outcome (or mediator) specific SNPs (oSNPs and

mSNPs respectively) only contribute to the outcome (or mediator). The causal SNPs are the

union of sSNPs, mSNPs, and oSNPs. We considered two scenarios in terms of causal SNP

density: sparse and dense (Table 1). For binary or count outcome, sample size is 1,000 and

there are 10 and 500 causal SNPs for sparse and dense scenarios, respectively. For time-to-

event outcome, sample size is 200 and there are 10 and 150 causal SNPs for sparse and dense
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scenarios, respectively. The set of causal SNPs, common across the 500 simulated datasets,

were randomly selected from the 2,891 SNPs with MAF > 1%. β and γ, again fixed across

the 500 datasets, were independently drawn from a Gaussian distribution. Error term ε was

independently generated from standard Gaussian distribution and was separately simulated

for each of the 500 datasets.

[Table 1 about here.]

In the simulations, we tested the joint mediation effects of these SNPs on the binary, count

or survival outcome using SMUT GLM and SMUT PH, as well as other methods including

the adapted Huang et al.’s method, adapted LASSO (Tibshirani, 1996). In order to compare

the performance of approximations that we adopted, we considered two versions of our

method, both treating γ̃ as fixed: (1) based on exact derivatives; (2) based on approximated

derivatives. For an outcome from an exponential family distribution, we refer to these two

versions as SMUT GLM exact and SMUT GLM approxi. For a survival outcome, we refer

to the approximated version as SMUT PH approxi. The exact version of SMUT PH is not

employed because it is hard to derive analytically. The Huang et al.’s method only tests

mediator effect in the outcome model, assuming a priori the presence of SNPs’ effects on

mediator (i.e., non-zero β), adopting a kernel framework where mediator(s) of interest are

treated as random and SNPs as fixed (Huang et al., 2015), in contrast to our outcome model

where SNPs are treated as random and mediator of interest as fixed. For fair comparison

across methods, i.e., testing both β and θ, we applied the original Huang et al.’s method for

the outcome model and SKAT for the mediator model, then combined tests from the two

models via IUT, integrating the variance component score test in the outcome model (from

the original Huang et al’s method) and score test from SKAT in the mediator model. The

adapted LASSO employs LASSO for variable selection in the outcome model and applies

IUT using regular regression with the selected variables in the outcome model and all the
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variables (i.e., genetic variants) via SKAT framework in the mediator model. We applied and

compared with the adapted versions of Huang et al. and LASSO because the corresponding

original methods only test θ in the outcome model. For all the adapted versions, we utilize

SKAT to test β in the mediator model to be maximally comparable with our SMUT GLM

and SMUT PH. In other words, adapted Huang et al. is SKAT + original Huang et al. with

SKAT corresponding to the testing strategy in the mediator model and original Huang et al.

to the testing strategy in the outcome model. Similarly, for LASSO, we use adapted LASSO

and SKAT+LASSO exchangeably.

3.2 Type-I error in simulations

We evaluated the validity of SMUT GLM and SMUT PH along with alternative methods in

simulations. SMUT GLM and SMUT PH exhibited controlled type-I error rates, at α = 0.05

level, regardless of causal SNP density and types of outcome, as shown in Figures 1 and 2

for binary outcome in sparse and dense scenarios respectively, Figures 3 and 4 for time-to-

event outcome in sparse and dense scenarios respectively, Supplementary Figures S1 and S2

for count outcome in sparse and dense scenarios respectively. In each figure, the first panel

(cβ = 0) and the leftmost point (θ = 0) in other panels (cβ 6= 0) all correspond to the null

of no mediation of the SNPs through the mediator. Adapted LASSO and adapted Huang et

al.’s method also showed protected type-I error.

3.3 Power in simulations

SMUT GLM and SMUT PH demonstrated substantial power gains under both the sparse or

dense scenarios. We also observe that the approximated version of SMUT GLM demonstrated

very similar performance when compared with its exact counterpart. For example, for a

binary outcome and under the scenario of dense causal SNPs when cβ = 0.6, θ = 0.1,

exact SMUT GLM, approximated SMUT GLM, adapted LASSO and adapted Huang et

al. had 97%, 96%, 54% and 0% power, respectively. Thus, the power gain, compared with
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adapted LASSO, was 43% and 42% for exact SMUT GLM and approximated SMUT GLM,

respectively; and the power gain, compared with adapted Huang et al., was 97% and 96%

for exact SMUT GLM and approximated SMUT GLM, respectively. For survival outcome,

under the scenario of dense causal SNPs when cβ = 1, θ = 0.075, approximated SMUT PH

and adapted LASSO had 69% and 41% power, respectively, leading to a power gain of 28%.

In addition, power gains appeared more profound with increasing cβ likely because adapted

LASSO and adapted Huang et al. becomes more conservative as the pleiotropy effect of SNPs

on mediator and outcome (measured by cβ) increases.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

4. Real data application

We assessed our methods and alternatives in real data from two clinical cohorts, which

were designed for the study of chlamydia infection. Chlamydia trachomatis can ascend from

the cervix to the uterus and fallopian tubes in some women, potentially resulting in pelvic

inflammatory disease (PID) and severe reproductive morbidities, including infertility and

ectopic pregnancy. Recurrent infection leads to worse disease. The first cohort is the T

cell Response Against Chlamydia (TRAC) cohort which included asymptomatic women

(age 15-30 years) at high risk for sexually transmitted infection (Russell et al., 2015). The

second cohort is the Anaerobes and Clearance of Endometritis (ACE) cohort which included

symptomatic women (age 15-40 years) with clinically diagnosed PID (Workowski and Bolan,

2015). We analyzed genotype, gene expression and phenotype data of 200 participants

combined from these two cohorts. The Institutional Review Boards for Human Subject
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Research at the University of Pittsburgh and the University of North Carolina approved

the study and all participants provided written informed consent prior to inclusion.

4.1 Binary outcome

The outcome of interest is ascending chlamydia infection, among participants who had

chlamydia infection at enrollment. The control group is the 71 participants who had chlamy-

dia infection restricted to the cervix, and the case group is the 72 participants with both

cervical and endometrial chlamydia infection at enrollment. We analyzed genotype, gene

expression and phenotype data from these 143 participants.

Here, we tested two genes, SOS1 and CD151 gene, for their mediation effects. Son of

sevenless homolog 1 (SOS1 ) is a guanine nucleotide exchange factor that in humans is

encoded by the SOS1 gene. The importance of SOS1 for chlamydia invasion of host cells

has been indicated by multiple biomedical studies (Carabeo et al., 2007; Lane et al., 2008;

Hackstadt, 2012; Bastidas et al., 2013; Mehlitz and Rudel, 2013; Elwell et al., 2016). The

CD151 gene encodes a protein that is known to complex with integrins. It promotes cell

adhesion and may regulate integrin trafficking and/or function. It is a member of the

tetraspanin family, which are considered as the gateways for infection (Hauck and Meyer,

2003; Hemler, 2008; Hassuna et al., 2009; Join-Lambert et al., 2010; N Monk and J Partridge,

2012; Seu et al., 2017). In addition, SNPs annotation database, RegulomeDB (Boyle et al.,

2012), demonstrates that some SNPs in these two genes are eQTLs with experimental

evidence. Thus, the presence of mediation effect via the expression of each gene is expected.

We first extracted SNPs within ± 1 Mb of the corresponding genes and then conducted

expression quantitative trait loci (eQTLs) analysis for these two genes. The eQTL analysis

was conducted based on all the 200 participants. For the first gene SOS1, mediation testing

encompassed 83 SNPs with MAF > 10% and significant eQTL association (with SOS1 ) at

a false discovery rate (FDR) threshold of 10%, using SMUT GLM, adapted LASSO and
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adapted Huang et al.’s method. Both SMUT GLM and adapted Huang et al.’s method

detected significant mediation effects, while adapted LASSO did not (Table 2). For the

second gene CD151, our mediation (via expression of CD151 ) testing involved 40 SNPs with

MAF > 10% and significant eQTL (with CD151 ) at FDR 10%. Only SMUT GLM showed

significant mediation effects of these SNPs through the expression of CD151 on ascending

chlamydia infection (Table 2).

4.2 Time-to-event outcome

TRAC participants returned for follow-up visits at 1, 4, 8, and 12 months after enrollment.

The outcome of interest we evaluated here is time to the first incident chlamydia infection.

We analyzed genotype, gene expression and time-to-event data from all 181 participants in

the TRAC cohort who had both genotype and gene expression data available.

Here, we tested a gene, BIRC3, for its mediation effect. The gene BIRC3 encodes for

Baculoviral IAP Repeat Containing 3, a E3 ubiquitin-protein ligase regulating NF-kappa-

B signaling (Blankenship et al., 2009; Kim et al., 2010; Tan et al., 2013). It acts as an

important regulator of pathogen recognition receptor signaling (Bertrand et al., 2009), which

can have profound effects on the development of downstream adaptive immune responses

(Takeda et al., 2003; Palm and Medzhitov, 2009; Kumar et al., 2011). In addition, biological

studies suggested that BIRC3 may protect mammalian host cells against apoptosis, leading

to accommodate chlamydial growth (Bryant et al., 2004; Park et al., 2004; Paland et al.,

2006; Ying et al., 2008). Therefore, mediation effect via the expression of BIRC3 gene is

logical. Our mediation testing involved 4 SNPs with MAF > 10% and eQTL (with BIRC3 )

at FDR 10%, using SMUT PH, adapted LASSO and adapted Huang et al.’s method. All the

methods showed significant mediation effects through BIRC3 on incident chlamydia infection

(Table 2).

[Table 2 about here.]
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5. Discussion

Our proposed methods, SMUT GLM and SMUT PH, extend our previous work (Zhong et al.,

2019) to test mediation effect of multiple correlated genetic variants on a non-Gaussian out-

come (e.g. binary, count, time-to-event outcome) through a mediator (e.g. expression of some

gene in the vicinity). We employ intersection-union test approach to derive a single p value

by integrating p values from separate tests of β and θ. Moreover, our methods do not rely

on complete mediation assumption nor presume independent genetic variants. SMUT GLM

and SMUT PH are statistically more powerful than alternative methods including adapted

LASSO and adapted Huang et al.’s method. Power loss using adapted LASSO might be a

result of violating its sparsity assumption. Huang et al.’s method has lower statistical power,

which might be due to the modeling strategy for the mediator effect (θ). Specifically, the

mediator effect (θ) is modeled as a random effect in the outcome model by Huang et al.’s

method, which might not be optimal particularly when only one mediator is considered at a

time. When jointly testing multiple mediators in the outcome model, Huang et al.’s method

may perform more favorably. However, testing one mediator at a time has the advantage to

pinpoint or prioritize the causal gene(s), which would not be possible when testing multiple

genes in aggregate via Huang et al.’s random mediator effect.

One limitation of our proposed methods is that we assume the effects of genetic variants

follow a Gaussian distribution. This may not be correct when there are non-causal SNPs in

the model and in this case, a mixture distribution might be more appropriate. It is reassuring

to observe protected type-I error from our simulation studies, which included considerable

number of proportion of non-causal SNPs in all scenarios considered. More properly modeling

the effects of genetic variants may further increase the statistical power under the alternative

hypotheses but due to modeling complexity and subsequently inevitable computational costs,
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we decide not to further pursue this in our current work. This is an interesting topic for future

investigation.

Our proposed methods can be further extended to handle multiple correlated outcomes to

gain additional power. One possible approach to model correlation among multiple outcomes

is to add random intercepts in the outcome model. When adding random intercepts to

the model, additional Laplace approximation will be applied to these random effects. The

accuracy of Laplace approximation by taking only the second order of the Taylor expansion

needs further investigation in such more complicated model. If second order is insufficient,

higher-order of Laplace approximation (Raudenbush et al., 2000) could be considered to

achieve higher precision, at the cost of increased computational burden, which can be high

with high-dimensional random effects. Such work thus warrants separate investigation and

a separate publication.

In simulation studies, we also compared the computational time of our methods with

adapted LASSO and adapted Huang et al.’s method. In general, our methods’ computational

time is similar to that of adapted LASSO, and both our methods and adapted LASSO run

faster than Huang et al.’s method (Supplementary Figure S3, S4, S5). Our methods use

approximations when calculating derivatives of the likelihood functions, which substantially

reduces computational burden (Supplementary Figure S3, S4). For the binary and count

outcome with sparse causal SNPs, our SMUT GLM runs faster than adapted LASSO. For

the binary and count outcome with dense causal SNPs, our method runs more slowly than

adapted LASSO. We suspect that our method takes longer time to converge under the dense

scenario than under the sparse scenario because there are more non-zero coefficients under

the dense scenario.

In summary, we proposed SMUT GLM and SMUT PH that can test mediation effects of

multiple correlated genetic variants on a non-Gaussian outcome through a mediator. We
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anticipate our proposed method will become a powerful tool to bridge the gap in terms of

molecular mechanisms between various types of phenotypes and the corresponding associated

genetic variant(s) identified in recent literature.
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Figure 1. For binary outcome, power and type-I error under sparse causal SNPs scenario.
The x-axis is the true mediator effect(θ) on the outcome. The y-axis is the power or type-I
error. Sub-figures vary in cβ value. cβ = 0 (top-left sub-figure) or θ = 0 (left-most points in
each sub-figure) are null settings where y-axis represents the corresponding type-I error.
When cβ 6= 0 and θ 6= 0, it is under alternative hypothesis and y-axis represents the
corresponding power.
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Figure 2. For binary outcome, power and type-I error under dense causal SNPs scenario.
X-axis and y-axis are the same as in Figure 1.
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Figure 3. For time-to-event outcome, power and type-I error under sparse causal SNPs
scenario. X-axis and y-axis are the same as in Figure 1.
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Figure 4. For time-to-event outcome, power and type-I error under dense causal SNPs
scenario. X-axis and y-axis are the same as in Figure 1.
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Table 1
Causal SNP composition in two simulated scenarios. The sparse(dense) scenario is to simulate data sets based on a

small(large) number of causal SNPs. Causal SNPs are the union of shared SNPs, mediator specific SNPs and
outcome specific SNPs. Shared SNPs have effects on both mediator and outcome. Mediator(outcome) specific SNPs

have effects only on mediator(outcome). All these SNPs are randomly selected from the 2,891 SNPs with MAF > 1%.

Type of outcome Sample size Sparse or dense # causal SNPs # sSNPs # mSNPs # oSNPs # non-causal SNPs

Binary or count 1000
Sparse 10 4 3 3 890
Dense 500 300 100 100 400

Time-to-event 200
Sparse 10 4 3 3 190
Dense 150 90 30 30 50
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Table 2
Real data application to TRAC and ACE datasets.

P values

Type of outcome Gene Probesets #SNPs SMUT GLM LASSO Huang et al.
Binary SOS1 2140519 83 0.0235 0.0691 0.0229
Binary CD151 1940132 40 0.0245 0.1192 0.2289

SMUT PH LASSO Huang et al.
Time-to-event BIRC3 7210154 4 0.001 0.001 0.002
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