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Abstract

Background: Familial sitosterolemia is a rare, recessive Mendelian disorder characterized by
hyperabsorption and decreased biliary excretion of dietary sterols. Affected individuals typically
have complete genetic deficiency — homozygous loss-of-function (LoF) variants — in the ATP-
binding cassette transporter G5 (4BCGS) or G8 (ABCGS) genes, and have substantially elevated
plasma sitosterol and low-density lipoprotein cholesterol (LDL-C) levels. The impact of partial
genetic deficiency of ABCGS5 or ABCGS, as occurs in heterozygous carriers of LoF variants, on
LDL-C and risk of coronary artery disease (CAD) has remained uncertain.

Methods: We first recruited nine sitosterolemia families, identified causative LoF variants in ABCGS5
or ABCGS, and evaluated the associations of these ABCGS5 or ABCGS8 LoF variants with plasma
phytosterols and lipid levels. We next assessed for LoF variants in ABCGS5 or ABCGS in CAD cases
(n=29,361) versus controls (n=357,326). We tested the association of rare LoF variants in ABCGS or
ABCGS with blood lipids and risk for CAD. Rare LoF variants were defined as protein-truncating
variants with minor allele frequency less than 0.1% in ABCGS5 or ABCGS.

Results: In sitosterolemia families, seven pedigrees harbored causative LoF variants in ABCGS5 and
two pedigrees in ABCGS. Homozygous LoF variants in either ABCGS5 or ABCGS led to marked
elevations in sitosterol and LDL-C. Of those sitosterolemia families, heterozygous carriers of
ABCGS5 LoF variants exhibited increased sitosterol and LDL-C levels compared to non-carriers.
Within the large-scale CAD case-control cohorts, prevalence of rare LoF variants in ABCGYS and in
ABCGS were approximately 0.1% each. ABCGS heterozygous LoF variant carriers had significantly
elevated LDL-C levels (24.7 mg/dL; 95% confidence interval [CI] 14 to 35; P=1.1x10), and were at
two-fold increased risk of CAD (odds ratio 2.06, 95% CI 1.27 to 3.35; P=0.004). By contrast,
ABCGS heterozygous LoF carrier status was not associated with increased LDL-C or risk of CAD.

Conclusions: Although familial sitosterolemia is traditionally considered as a recessive disorder, we
observed that heterozygous carriers of a LoF variant in ABCGS had significantly increased sitosterol
and LDL-C levels and a two-fold increase in risk of CAD.
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Introduction

Familial sitosterolemia (OMIM #210250) is a rare Mendelian recessive disorder characterized by
tendonous xanthomas!, high plasma plant sterols and cholesterol levels, and increased risk of
premature myocardial infarction.?* The ATP-binding cassette transporters G5 (ABCGS5) and G8
(ABCGS) are primary causal genes of familial sitosterolemia. ABCGS5, ABCGS, and N-terminal
Niemann-Pick C1 Like 1 (NPCIL1)> % determine the efflux and absorption of sterols on the surface
of intestine and bile duct.”-® NPCILI regulates sterol absorption whereas ABCG5 and ABCGS form
obligate heterodimers® and coordinately control the excretion at both the brush border membrane of
enterocyte and the apical membrane of hepatocytes.> 19-12

Complete deficiency due to homozygous or compound heterozygous loss-of-function (LoF)
variants in ABCGS and/or ABCGS causes markedly increased sitosterolemia and cholesterol levels,
and potentially accelerated atherosclerotic disease as well.!** Genome-wide association studies also
demonstrated that loci at the ABCG5-ABCGS gene region were associated with phytosterols, low-
density lipoprotein (LDL) cholesterol,!3 and risk of coronary artery disease (CAD).!* However, it is
uncertain whether partial deficiency of ABCGS5 or ABCGS as conferred by LoF variants are also
associated with higher cholesterol levels and an increased risk of CAD.

Here, we explored the metabolic consequences of ABCGS or ABCGS deficiencies. We
recruited probands and relatives in sitosterolemia families and assessed whether observed ABCGS or
ABCGS causative LoF variants were associated with increased plasma phytosterols and LDL
cholesterol. We then analyzed exome sequences from 112,700 participants and genotype data from
an additional 293,134 individuals to test whether carriers of rare heterozygous LoF variants in

ABCGS or ABCGS had elevated blood lipids and risk of CAD.
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Methods

Study Participants

Nine sitosterolemia pedigrees with phytosterol and lipid profiles derived from the Kanazawa
University Mendelian Disease (KUMD) Registry were evaluated for ABCGS and ABCGS variants
(Supplemental Figure 1).® Sitosterolemia was diagnosed by 1) plasma sitosterol concentration >10
ug/mL and 2) presence of tendon or tuberous xanthomas and/or history of premature CAD. !>
Causative LoF variants in the pedigrees were defined as pathogenic or likely pathogenic by the
American College of Medical Genetics (ACMG) standard criteria,'® and were identified by Sanger
sequencing or whole exome sequencing (WES). Controls were unaffected relatives without any
causative LoF variants in the sitosterolemia pedigrees.

Next, ABCGS5 and ABCGS8 were sequenced in the Myocardial Infarction Genetics consortium
(MIGen), UK Biobank and the TruSeq Custom Amplicon target resequencing (TSCA) studies.
MIGen case control studies included the Italian Atherosclerosis Thrombosis and Vascular Biology
(ATVB) study,'” the Deutsches Herzzentrum Miinchen Myocardial Infarction Study (DHM),!8 the
Exome Sequencing Project Early-Onset Myocardial Infarction study (ESP-EOMI), the Jackson
Heart Study (JHS),?® the Leicester Acute Myocardial Infarction Study (Leicester),?! the Lubeck
Myocardial Infarction Study (Lubeck),?? the Ottawa Heart Study (OHS),? the Precocious Coronary
Artery Disease (PROCARDIS) study,?* the Pakistan Risk of Myocardial Infarction Study
(PROMIS),? and the Registre Gironi del COR (Gerona Heart Registry or REGICOR) study.?¢ TSCA
included the Duke CATHGEN study (DUKE),?” the MedStar study (MedStar),?® and the PennCath
study (PennCath).?® An additional 293,134 individuals in UK Biobank underwent array based
genotyping for the ABCGS stop variant rs199689137 (p.R446Ter) and were included in the analysis.

All participants in each study provided written informed consent for genetic studies. The
institutional review board at Partners HealthCare (Boston, MA, USA) and each participating
institution approved the study protocol.

Lipid measurement and coronary artery disease ascertainment

In sitosterolemia pedigree-based analysis, all blood samples were obtained after a 12-hour
overnight fast, either before initiation of lipid-lowering treatment or after discontinuation of
medication for at least 4 weeks. Plasma levels of non-cholesterol sterols were determined using gas—
liquid chromatography—mass spectrometry.* In addition to absolute non-cholesterol sterol levels,
cholesterol adjusted ratios (each non-cholesterol sterol level to total cholesterol [TC] level ratio)
were also evaluated. Plasma concentrations of TC, triglyceride, and HDL cholesterol were

determined in MIGen, TSCA and UK Biobank using enzymatic assays. In MIGen and TSCA, LDL
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cholesterol level was calculated using the Friedewald equation for those with triglycerides <400
mg/dL. In the UK Biobank, LDL cholesterol levels were directly measured using an antibody-based
assay.

In MIGen, CAD cases were identified as early-onset (premature) myocardial infarction
(defined as < 50 years old in male and < 60 years old in female). In the UK Biobank, CAD cases
were defined as myocardial infarction at any age. In TSCA, coronary artery disease was defined as
stenosis on angiography (> 1 coronary vessel with > 50% stenosis) at ages < 50 years old for men
and < 60 years old for women.

Exome sequencing

WES or targeted sequencing for KUMD, MIGen, and TSCA was performed at the Broad
Institute as previously described.>¢ In brief, genomic deoxyribonucleic acid was captured on protein-
coding regions using the NimbleGen Sequencing Capture Array or the Illumina TrueSeq Custom
Amplicon. Sequencing reads were aligned to a human reference genome (build 37) using the
Burrows—Wheeler Aligner-Maximal Exact Match algorithm. Aligned non-duplicate reads were
locally realigned, and base qualities were recalibrated using the Genome Analysis ToolKit (GATK)
software.? Variants were jointly called using the GATK HaplotypeCaller software. WES in UK
Biobank was performed by the Regeneron Genetics Center as previously described.’

In large cohort studies, rare LoF variants were defined as those with minor allele frequency
less than 0.1% and which caused: (1) insertions or deletions of DNA that modified the reading frame
of protein translation (frameshift); (2) point mutations at conserved splice site regions that altered the
splicing process (splice-site); or (3) point mutations that changed an amino acid codon to a stop
codon, leading to the truncation of a protein (nonsense). LoF variants were identified using the
LOFTEE plugin of the Variant Effect Predictor software (version 82). 8 °
Statistical Analysis

In sitosterolemia family-based analyses, the differences in lipid levels, lipoproteins and non-
cholesterol sterols by ABCGS5 or ABCGS LoF variant carrier status were assessed using the Mann-
Whitney U test. The effects of ABCGS5 and ABCGS rare LoF variants on lipid profiles in MIGen, UK
Biobank and TSCA was evaluated using linear regression, adjusting for age, gender, study, and first
five principal components of ancestry. A Cochran—Mantel-Haenszel statistic meta-analysis for
stratified 2-by-2 tables was used to associate ABCGS and ABCGS rare LoF variants with risk of
CAD. As a sensitivity analysis, we performed an inverse variance weighted fixed effects meta-
analysis of the adjusted odds ratio, derived in each cohort using logistic regression adjusted for age,
sex, study and five principal components of ancestry. P values of less than 0.025 were considered to

indicate statistical significance (i.e., Bonferroni correction for the testing of two genes). Statistical
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analyses were performed using R software version 3.4.3 (The R Project for Statistical Computing,

Vienna, Austria).
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Results

ABCGS or ABCGS8 causative LoF variants, blood phytosterol and cholesterol levels in
sitosterolemia families

We recruited nine Japanese families with sitosterolemia and sequenced the exons of the ABCGS and
ABCGS genes in 47 individuals from these families (Supplemental Figure 1). Among the
individuals within these families, 9 carried a homozygous or compound heterozygous ABCGS or
ABCGS causative LoF variants while 28 carried a heterozygous ABCG5 or ABCGS8 LoF causative
variants. Most of those LoF variants were considered as pathogenic protein truncating or missense
variants by the ACMG standard criteria (Supplemental Table 1). As expected, ABCGS5 and ABCGS
homozygote or compound heterozygous LoF variant carriers showed very high sitosterol / TC ratio
and LDL cholesterol levels compared to non-carriers. Regarding heterozygous state, carriers of
ABCGS or ABCGS heterozygous LoF variant carriers exhibited increased sitosterol / TC ratio
compared with non-carriers. Moreover, ABCGJ heterozygous LoF variant carrier status was

associated with an increased LDL cholesterol level. (Table 1 and Figure 1).
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Figure 1. Sitosterol to total cholesterol ratio and LDL cholesterol levels among individuals with
homozygous and heterozygous sitosterolemia, and unaffected controls in sitosterolemia
families.

Each dot indicates an individual’s value. Each horizontal line represents a mean value for each

carrier status. *: P <0.025 by Mann-Whitney U test.
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ABCGS5 or ABCGS rare heterozygous LoF variation, blood lipids and risk for CAD in large
cohorts

Next, we examined whether rare heterozygous LoF variant carrier status in ABCGS5 or ABCGS
increased blood lipids and were at elevated risk of CAD using large-scale genetics cohorts. We
sequenced the protein coding regions of ABCGS5 and ABCGS in 112,700 individuals from three
datasets: 58,791 participants from MIGen, 52,195 participants in UK Biobank and 1,714 participants
from TSCA (Table 2). We detected 108 individuals harboring rare ABCGS5 LoF alleles and the
prevalence of ABCGS heterozygous carrier status was 0.1%. (Supplemental Table 2). We also
discovered 154 individuals who harbored rare ABCGS LoF alleles, a heterozygous carrier prevalence
also around 0.1%.

Individuals carrying ABCG5 LoF variants had significantly increased total cholesterol levels
(17 mg/dl; 95% confidence interval [CI], 13 to 32; P = 6.9x10°) and LDL cholesterol levels (25
mg/dl, 95% CI, 13 to 32; P = 1.1x10°%, Figure 2). Then, we investigated the association between rare
ABCGS) heterozygous LoF variant carrier status and CAD risk using more than 380,000 participants
from the three WES cohorts and additional UK biobank genotyping array-based cohort. We
identified 34 carriers of ABCG)S heterozygous LoF variants among 29,321 coronary artery disease
cases (0.1%) and 63 among 357,326 controls (0.02%). In a Cochran-Mantel-Haenszel fixed-effect
meta-analysis, individuals carrying ABCGS heterozygous LoF variants were at two-fold risk of CAD
(Odds ratio [OR], 2.06; 95% CI, 1.27 to 3.35; P value = 0.004) (Figure 3). A similar effect estimate
was noted in a meta-analysis of adjusted odds ratios derived using logistic regression (OR 2.04; 95%
CI 1.28 to 3.26; P = 0.003).

In contrast to ABCGS5, carriers of rare ABCGS heterozygous LoF variants did not exhibit
significant increase in any of blood lipids including LDL cholesterol (beta, 0.08; 95% CI, -0.06 to
0.23; P = 0.25) (Supplemental Table 3). Moreover, ABCGS heterozygous LoF variant carrier status
was not at elevated risk for CAD (OR, 0.79; 95% CI, 0.47 to 1.35; P = 0.39) (Supplemental Table
3).
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Figure 2. Effects of loss-of-function variants in ABCGS5 on blood lipid profiles from MIGen and

UK Biobank.

Effect sizes were calculated using linear regression adjusted by age, gender, study, case-control

status, and first five principal components of ancestry. Triglyceride was natural log-transformed

before analysis. Fixed-effects meta-analysis was applied to combine results.
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Figure 3. Effect of loss-of-function variants in ABCGS5 on myocardial infarction risk.
A meta-analysis across studies was performed using the Cochran—Mantel-Haenszel statistics for

stratified 2-by-2 tables. MIGen, myocardial infarction genetics consortium.
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We explored whether the effect size of ABCGS LoF variants on CAD risk was consistent
with their effect on LDL cholesterol. We observed a linear dose-response relationship between CAD
risk and LDL cholesterol change conferred by DNA sequence variants in LDLR, PCSK9, ABCG5
and ABCGS. The effect of ABCGS5 LoF variants on CAD risk (106% increase in risk) was consistent
with the estimate based on the change in LDL cholesterol (25 mg/dl) (Figure 4).
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Figure 4. Relationship between effect on LDL cholesterol levels and coronary artery disease
risk for ABCG5, ABCGS8, PCSK9 and LDLR loss-of-function variants.
CAD, coronary artery disease; LDL, low-density lipoprotein
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Discussion

In this study, we evaluated whether rare heterozygous LoF variations in ABCGS or ABCGS were
associated with blood lipid levels and CAD risk. We used two different approaches — sitosterolemia
family-based analysis and population-based analyses from over 380,000 individuals — to test
whether rare heterozygous LoF variants in ABCGS5 or ABCGS associated with phytosterols, lipids
and CAD. We found that carriers of heterozygous LoF variants in ABCGS had higher sitosterol and
~25 mg/dl higher LDL cholesterol and were at two-fold risk of CAD.

These results permit several conclusions. First, individuals who carried rare heterozygous
LoF variants in ABCGS had significantly elevated LDL cholesterol levels and were at elevated risk
for CAD. Although there have been reports of premature atherosclerosis among patients with
homozygous sitosterolemia, !’ it was unclear if ABCG35 partial deficiency by heterozygous LoF
variants also increases blood lipid levels and CAD risk. The findings of this study clearly
demonstrated that ABCGS5 partial deficiency increased both LDL cholesterol level and CAD risk.
Considering the higher burden of CAD at a population level, these findings suggests that ABCGS5
LoF variant carriers may derive clinical benefit from LDL cholesterol lowering therapy. Importantly,
the NPCIL1 inhibitor ezetimibe is known to reduce intestinal cholesterol and phytosterol absorption
in patients with sitosterolemia, and could have increased efficacy in individuals with partial ABCGS
deficiency.*°

Second, it has been unclear whether elevated plant sterol levels or elevated blood cholesterol
levels cause atherosclerosis among patients with sitosterolemia.!* The proportional relationship
between CAD risk and elevation in LDL cholesterol levels observed among ABCGS heterozygous
LoF carriers suggests that the substantial increase in blood LDL cholesterol levels among individuals
with sitosterolemia causes atherosclerosis (Figure 3). These findings are also consistent with a
recent meta-analysis that did not observe a significant association between circulating sitosterol
levels and risk of cardiovascular disease.’! Moreover, the effect size of ABCGS5 heterozygous LoF
variant carrier status on both blood lipids and CAD risk was consistent with predictions based on
known familial hypercholesterolemia and hypobetalipoproteinemia variants (Figure 4). This result is
consistent with recent studies, and it might support the hypothesis that the main driver of CHD risk
in ABCG5 LoF variant carriers was LDL cholesterol rather than plant sterols.

This study has several limitations. First, functional analyses of each LoF variant were not
performed. Consequently, some annotated LoF variants included in this study may not actually cause
deficiency in the ABCGS5/GS proteins to increase plant sterols and blood lipids. This would
underestimate of the effect of ABCGS and especially ABCGS deficiency on blood lipid levels and
CAD risk. Second, CAD definition was different among study cohorts. However, the effect direction

14
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among studies was largely consistent and we observed little heterogeneity for the meta-analysis (I
squared of 0%).

In conclusion, 0.1% of population carried rare LoF variants in ABCGS and these
heterozygous carriers of had an elevated sitosterol and LDL cholesterol levels and were at two-fold

risk for CAD.
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Table 1. Clinical characteristics by ABCG5 and ABCGS8 variant carrier status in sitosterolemia

families.

) ABCGS ABCGS
Non-carrier
Hetero Homo Hetero Homo

N 11 22 8 5 1
Age, mean + SD 40.5+19 41.1+21 12.9+20 452+ 19 1
Male sex, n (%) 327 12 (55) 3 (39) 2 (40) 0
Lipid profile

Total cholesterol, mg/dL, mean + SD 180 £28 236 = 70%* 512 £ 250%* 258 + 67 968

LDL cholesterol, mg/dL, mean + SD 105 + 30 158 + 59* 412 + 240* 150 + 52 832

HDL cholesterol, mg/dL, mean = SD 61.1+£15 56.1+19 474+ 13 57.0+13 46

Triglyceride, mg/dL, median (IQR) 87 (74-96) 76 (55-150) 188 (140-248)* [ 154 (73-154) 71
Lipoproteins

Apolipoprotein Al, mg/dL, median (IQR) | 150 (137-165) | 140 (128-150) 106 (97-129) NA NA

Apolipoprotein B, mg/dL, median (IQR) 67 (63-93) 106 (91-117) 262 (198-303)* NA NA
Non-cholesterol sterols

Sitosterol, pg/mL, median (IQR) 2.2(1.82.7) | 7.6 (5.5-10)* 102 (74-125)* [ 9.9 (8.2-12)* 36.5

Campesterol, pg/mL, median (IQR) 3.6 (3.2-4.5) 13 (10-14)* 70 (65-95)* NA NA

Sitosterol / TC, pg/mg, median (IQR) 1.2 (1.1-1.4) [3.5(2.54.6)* 22 (14-30)* 44(3.9-53)* 3.8

Campesterol / TC, pg/mg, median (IQR) 2.2(1.72.6) |5.2(4.6-6.5)* 13 (7.5-18)* NA NA

*: P value < 0.025 compared to non-carrier controls. P values were calculated by Mann-Whitney U
test. Abbreviations: IQR, interquartile range; SD, standard deviation; TC, total cholesterol.
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Table 2. Clinical characteristics of participants in MIGen, UK Biobank and targeted

resequencing study.

Myocardial Target
Consortium
N =58,791 N =336,391 N=1,714
Age, years (SD) 54 (10) 57 (8) 57.2 (13)
Male gender, n (%) 41,203 (71) 156,112 (46) 1,140 (67)
BMI (SD), kg/m* 27 (5) 27 (5) 29 (6)
Current smoker, n (%) 18,173 (33) 25,802 (8) 639 (37)
Medical history
Coronary artery disease, n (%) 16,106 (33) 12,073 (3) 1,184 (69)
Hypertension, n (%) 16,839 (35) 153,535 (46) 798 (47)
Type 2 diabetes, n (%) 11,245 (22) 15,770 (5) 277 (16)
Lipid profile
Total cholesterol, mg/dl (SD) 178 (60) 222 (41) 182 (51)
LDL cholesterol, mg/dl* (SD) 109 (45) 138 (34) 108 (41)
HDL cholesterol, mg/dl (SD) 36 (14) 56 (15) 43 (7)
Triglycerides, mg/dl (SD) 154 (127) 155 (90) 135 (82)

Abbreviations: SD, standard deviation.
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