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Abstract 

Long-read sequencing enables the comprehensive discovery of structural variations (SVs). However, it 

is still non-trivial to achieve high sensitivity and performance simultaneously due to the complex SV 

characteristics implied by noisy long reads. Therefore, we propose cuteSV, a sensitive, fast and scalable 

long-read-based SV detection approach. cuteSV uses tailored methods to collect the signatures of various 

types of SVs and employs a clustering-and-refinement method to analyze the signatures to implement 

sensitive SV detection. Benchmarks on real PacBio and ONT datasets demonstrate that cuteSV has better 

yields and scalability than state-of-the-art tools. cuteSV is available at 

https://github.com/tjiangHIT/cuteSV. 
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Background 

Structural variations (SVs) represent genomic rearrangements such as deletions, insertions, inversions, 

duplications, and translocations whose sizes are larger than 50 bp [1]. As the largest divergences across 

human genomes [2], SVs are closely related to human diseases (e.g., inherited diseases [3-5] and cancers 

[6]), evolution (e.g., gene losses and transposon activity [7, 8]), gene regulations (e.g., rearrangements 

of transcription factors [9]) and other phenotypes (e.g., mating and intrinsic reproductive isolation [10, 

11]).  

Many efforts have been made to develop short-read-based SV calling approaches [12, 13]. State-of-

the-art short-read-based tools use various kinds of methods such as read-depths [14], discordant read-

pairs [15], split read alignments [16], local assembly [17] or their combinations [18-20]. They have 

played important roles in many large-scale genomics studies such as the 1000 Genome Project [1]. 

However, the relatively low read-length (typically a few hundreds of bps) limits these tools in 

implementing highly sensitive SV detection [21] and false positives are common in their call sets [22]. 

With the rapid development of long-read sequencing technologies, such as Pacific Bioscience (PacBio) 

[23] and Oxford Nanopore Technology (ONT) [24] platforms, read length has greatly increased. The 

average read length can be over 10 kbp, and long-range spanning information provides the opportunity 

to comprehensively detect SVs at a high resolution [25]. However, the computational challenge still 

remains due to the high sequencing error rates of long-reads (typically 5-20%) [26]. Because of the 

sequence error, the aligners may not be able to produce sensitive, chimeric and heterogeneous alignments 

for the reads around SV breakpoints, and the aligners can also have highly divergent behaviors for various 

types of SVs. Therefore, the SV signatures implied by long-read alignments are highly complicated and 

it is non-trivial to collect and analyze them to implement sensitive detection for various kinds of SVs. 

Several long-read-alignment-based SV callers have been proposed in recent years, such as PB-Honey 

[27], SMRT-SV [28], Sniffles [29], PBSV (https://github.com/PacificBiosciences/pbsv) and SVIM [30]. 

They use various methods to find evidence of SVs implied by read alignments, such as the identification 

of local genomic regions with highly divergent alignments, the local assembly and re-alignment of 

clipped read parts and the clustering of SV-spanning signatures [31]. Moreover, state-of-the-art long-

read aligners, such as BLASR [32], NGMLR [29], Minimap2 [33] and PBMM2 

(https://github.com/PacificBiosciences/pbmm2), are usually employed for read alignment (as the inputs 

for the SV callers). 

These state-of-the-art long-read-based SV callers have some drawbacks: 1) overall, the sensitivity is 

not satisfying (i.e., a high sequencing coverage is required and/or some SVs are still hard to detect); 2) 

some methods such as rMETL [34], rCANID [35] and npInv [36] can only detect a subset or a particular 

class of SVs due to their specific design; 3) some tools such as PBSV and SMRT-SV are still time-

consuming and require plenty of computational resources, and are therefore often not very scalable or 

suited to many large-scale datasets; 4) some approaches such as SMRT-SV and PB-Honey only support 

one type of sequencing data (e.g., only for PacBio reads), as they take advantage of the characteristics of 

the data. These drawbacks currently inhibit the wide use of long-read sequencing data in cutting-edge 

genomics studies and clinical practices. 

Herein, we present cuteSV, a sensitive, fast and scalable long-read-based SV detection approach. This 

approach has several features: 1) cuteSV has better SVs detection yields than those of state-of-the-art SV 

callers. Moreover, it has higher sensitivity for low coverage datasets, which is helpful in reducing the 

cost of sequencing. 2) cuteSV is a versatile SV caller which supports the processing of datasets produced 

by mainstream platforms with various error rates and the discovery of various types of SVs including 
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deletions, insertions, duplications, inversions and translocations. 3) With its tailored implementation, 

cuteSV has faster or comparable speed compared to state-of-the-art approaches. 4) cuteSV has 

outstanding scalability; it can run with low memory use and achieve nearly linear speedup with the 

number of CPU threads, and is thus very suited to large-scale data analysis tasks. With these features, 

we believe that cuteSV has a great potential for cutting-edge genomics studies. 

Results 

Overview of cuteSV 

Due to the high sequencing error and the complexity of SVs, the SV signals implied by the alignment of 

SV-spanning long reads are highly complicated, so SV detection approaches must have a strong ability 

to handle various kinds of cases. Primarily, the following three technical issues should be fully considered. 

1) Various types of SVs have different signatures, which can be represented as various combinations 

of large insertions/deletions and split alignments. SV signature extraction methods have to capture these 

signals comprehensively. Moreover, due to the scoring systems of read aligners, some large SV events 

could be divided into several smaller insertions/deletions in a local region. Such signals should be well-

handled in order to recover evidence of real SV events. 

2) Reads spanning the same SV could have heterogeneous breakpoints in their alignments because of 

the scoring systems of read aligners. Robust read clustering methods are needed for handling 

heterogeneous breakpoints in order to cluster reads spanning the same SVs effectively and to prevent 

multiple false positive clusters for one SV. 

3) In some cases, there are multiple SVs in the same local genomics region but belonging to various 

alleles. It is very difficult to make correct calls for such complex heterozygous SVs. Precise analysis of 

read alignments is needed to distinguish the signatures of multiple SVs in such loci.  

cuteSV is a novel SV detection approach which fulfills the requirements mentioned above. It integrates 

several specifically designed methods to extract the SV signatures of various kinds of SVs from aligned 

reads, and it uses a clustering-and-refinement method to thoroughly analyze the collected signatures to 

call SVs. The approach has three major steps as follows (a schematic illustration is in Figure 1). 

1) cuteSV uses a series of signature extraction methods tailored for various types of SVs. This is one 

of the two core features of cuteSV that enables the comprehensive collection of SV signatures and the 

effective recovery of evidence of SVs from complicated and fragile alignments. 

2) cuteSV uses a specifically designed clustering-and-refinement approach to cluster the chimerically 

aligned reads in local regions, and further refines the clusters to precisely distinguish the SV signatures 

from heterozygous SVs. This is the other core feature of cuteSV that enables it to handle heterogeneous 

breakpoints in read alignments well and be robust to multi-allelic heterozygous SVs. 

3) cuteSV uses several heuristic rules to make SV calls based on clustered SV signatures and to perform 

high-quality SV genotyping. 

Moreover, cuteSV uses a block division-based approach to process input data in a parallel way with 

multiple CPU threads. Refer to the Materials and methods section for more detailed information about 

the implementation of cuteSV. 

The following sub-sections discuss the benchmark results of cuteSV on real sequencing datasets, and 

more insights on the features of cuteSV are given in the Discussion section. 

SV detection with HG002 PacBio data 
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First, we implemented cuteSV and three state-of-the-art long-read-based SV callers (i.e., Sniffles, PBSV 

and SVIM) on a 69× HG002 PacBio CLR dataset [37] (mean read length: 7938 bp). PBMM2 was 

employed for read alignment. Moreover, another state-of-the-art aligner, NGMLR, was also employed 

to investigate the effect of the aligners on SV calling. In this section, the results are based on the 

alignments produced by PBMM2 unless specifically mentioned otherwise. A high-confidence insertion 

and deletion callset for this sample made by Genome in a Bottle Consortium (GIAB) [38] was employed 

as the ground truth. Truvari (https://github.com/spiralgenetics/truvari) was used to assess the precision, 

recall, and F-measure (F1) of the callsets produced by various approaches.  

 
Figure 1 Schematic illustration of the cuteSV approach.  

The detection of SVs in cuteSV generally comprises 4 steps. In step 1 (long-read mapping), cuteSV supports the sorted-

alignment BAM file as input, which is generated from the state-of-the-art long-read mappers. In step 2 (discovering SV 

signatures), cuteSV collects various type of SV signatures comprehensively from inter- and intra-alignments. In step 3 

(clustering of SV signatures), a stepwise-refinement clustering method is employed to sensitively discover accurate SV alleles. 

In the final step (final detection and genotyping), cuteSV generates the final SV callsets and (optionally) assigns genotypes. 
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The yields of the SV callers are shown in Figure 2A. In terms of the 69× CLR data, cuteSV 

simultaneously achieved the highest precision, recall and F1, all of which were >94% in absolute terms, 

which is feasible for practical use. The F1 of SVIM (91.10%), PBSV (90.72%) and Sniffles (89.82%) 

were comparable to each other and slightly lower than that of cuteSV mainly due to their lower recall 

statistics (i.e., 89.56%, 88.42% and 86.27% for SVIM, PBSV and Sniffles, respectively). For evaluation 

of genotyping, cuteSV achieved > 90% both on GT-recall and GT-F1. SVIM was the runner-up and 

reached 85% on all three statistics. PBSV and Sniffles were far behind cuteSV and SVIM due to their 

relatively poor GT-precision and GT-recall. 

We further randomly down-sampled the original dataset to 5×, 10×, 20×, 30× and 40× to assess the 

ability of the SV callers on lower coverage datasets (Figure 2A and Supplementary Figure 1A). cuteSV 

almost kept achieving higher recalls and F1s on almost all datasets, indicating that it maintained 

outstanding sensitivity without loss of accuracy. It is worth noting that cuteSV simultaneously achieved 

>90% F1 and >86% GT-F1 at 20×. This is beneficial for practical use, since more cost-effective 

sequencing plans can be considered with this result. However, this is still hard for other callers since their 

recalls and F1s were much lower on the down-sampled datasets.  

 
Figure 2 Benchmark results of the SV callers on HG002 PacBio CLR and CCS datasets.  

(A) Precisions, recalls and F-measures on the HG002 PacBio CLR datasets. (B) Precisions, recalls and F-measures on the 

HG002 PacBio CCS datasets. (C) Mendelian-Discordance-Rates (MDRs) on the GIAB Ashkenazi Trio PacBio CLR datasets 

for various SV types and long-read aligners. Worth noting that the lower the MDR is, the more accurate the corresponding SV 

callset is. 
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Besides PacBio CLR data, we also assessed the ability of the callers on the newly promoted PacBio 

CCS dataset of the same sample [39] [40] (coverage: 28×, mean read length: 13478 bp). The results of 

cuteSV and PBSV were very close to each other (Figure 2B) (precision: 94.6%, recall: 98.0%, F1: 96.3%), 

and they outperformed Sniffles and SVIM by 1% to 6% on various statistics. For genotyping assessment, 

cuteSV achieved the best performance on various GT- statistics, and outperformed the other three callers 

2% to 34% on GT-F1. 

We also randomly down-sampled the dataset to 5× and 10× to further assess the callers (Figure 2B and 

Supplementary Figure 1B). On the 10× down-sampled dataset, PBSV achieved the highest recall 

(96.70%) and cuteSV was the runner-up (93.79%). The slightly lower recall of cuteSV was mainly due 

to fact that the minimal signature size parameter setting of cuteSV (default value: 30bp) was longer than 

that of PBSV (default value: 20bp), which hindered cuteSV in identifying more SVs using evidence that 

was smaller in size. Moreover, it was also observed that 5× coverage was enough to achieve >90% 

precision, recall and F1 for both cuteSV and PBSV. These results suggest that with higher sequencing 

quality, data size requirements become smaller, so more economical sequencing strategies could be 

feasible in genomics studies.  

We further used GIAB Ashkenazi Trio callsets (HG002, HG003 and HG004) to calculate the 

Mendelian-Discordance-Rate (MDR) of the long-read-based SV callers to more comprehensively assess 

their ability to detect various types of SVs. The results (Figure 2C) suggest that the MDRs of cuteSV and 

SVIM are lowest for almost all types of SV (i.e., All Type: 0.106 and 0.085 for cuteSV, and All Types: 

0.096 and 0.087 for SVIM), indicating that the callsets produced by them are more plausible. The MDR 

of PBSV is higher but comparable (All Types: 0.128 and 0.134), while the MDR of Sniffles (All Types: 

0.175 and 0.170) is much higher, indicating that its callset could be less accurate.  

SV detection with HG002 ONT PromethION data 

We further assessed the yields of the SV callers on a newly published ONT PromethION dataset of the 

HG002 human sample (mean read length: 17335 bp, coverage: 47×, available at 

ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong

_OxfordNanopore_Promethion/), which was aligned by using Minimap2. The benchmark results 

(Figure 3A) indicate that cuteSV achieved the highest precision (92.15%), recall (96.61%) and F1 

(94.33%), and its outperformance of Sniffles and SVIM was more obvious than with the PacBio CLR 

dataset. It is also worth noting that PBSV crashed for this dataset. On the randomly down-sampled 

datasets (5×, 10× and 20×), the outperformance by cuteSV was remarkable as well. Particularly, cuteSV 

found most (85%) of the ground truth SVs only at 10× coverage with high precision (93.07%) and F1 

(88.85%). However, at the same coverage, the F1s of Sniffles, SVIM and PBSV were at least 7% lower 

than that of cuteSV, indicating that they had lower yields. As for the genotyping (Figure 3B and 

Supplementary Figure 1C), cuteSV still achieved better performance and surpassed others 9% at least on 

GT-F1. This indicates that the genotyping of cuteSV could be more accurate. 

We further compared the SV callsets produced by cuteSV from the HG002 PacBio CLR and ONT 

datasets, respectively. There are 26605 and 26427 SVs in the PacBio and ONT callsets, respectively (see 

Supplementary Table 1). 7293 SVs (27.41%) of the PacBio callset and 7115 SVs (26.92%) of the ONT 

callset are unique. Moreover, of the 7293 PacBio-only calls, 54.15% (3949 of 7293) and 21.20% (1546 

of 7293) are respectively insertions and deletions, and of the 7115 ONT-only calls, the corresponding 

numbers are respectively 47.94% (3411 of 7115) and 41.00% (2917 of 7115). Previous studies indicate 

that there are usually more false positive insertion calls made from PacBio datasets [23], and more false 
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positive deletions made from ONT datasets [24]. So, the fractions of the unique calls of the PacBio and 

ONT callsets are plausible. Moreover, it is also observed that there are some SVs only being discovered 

in the ONT dataset mainly because of its larger read lengths. An example is shown in Supplementary 

Figure 2. A 6481 bp insertion (breakpoint at chr1:9683994) was only detected in the ONT reads, as the 

ONT reads spanning this event are longer and a large proportion of them carry significant insertion 

signals in their CIGARs. However, none of the PacBio reads aligned to this locus have strong SV signals, 

possibly because they are shorter and the aligners cannot produce alignments with such large insertions.  

Moreover, there were 33751 distinctive SV calls in the PacBio- and ONT-based callsets and they 

covered 98.64% (9510 of 9641) of the ground truth callset of HG002 (Figure 3C) (i.e., they had a higher 

sensitivity than all the callsets made by the SV callers with a single dataset). This suggests that combining 

multiple datasets to produce a high-quality SV callset is feasible.  

The performance of the SV callers 

 

Figure 3 Benchmark results of the SV callers on the HG002 ONT PromethION dataset.  

(A) Precisions, recalls and F-measures on the HG002 ONT dataset and its down-sampling data. (B) GT-Precisions, GT-recalls 

and GT-F1 on the HG002 ONT dataset. (C) The Venn diagram of SV calls produced by cuteSV from HG002 PacBio CLR 

and ONT PromethION datasets (indicated by “PacBio” and “ONT”, respectively), and the SV ground truth callset of the 

HG002 sample made by GIAB (indicated by “High_conf”). 
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We assessed the speed (Figure 4A) and memory footprint (Figure 4B) of the SV callers on the 69× 

HG002 CLR dataset. The speeds of the benchmarked approaches with a single CPU thread were 

comparable: Sniffles was the fastest, taking 367 minutes, followed by SVIM (991 minutes), cuteSV 

(1279 minutes) and PBSV (1715 minutes). The relatively slower speed of cuteSV was mainly because it 

uses multiple methods to extract signatures of SVs and perform its high-quality genotyping. Further, we 

asked the SV callers to run with multiple CPU threads, but it was observed that neither Sniffles nor PBSV 

had an obvious speedup with more CPU threads, and SVIM does not support multiple-threading 

computing. This is possibly due to their implementations. However, cuteSV showed a nearly linear 

speedup with the number of CPU threads, and the wall clock time was greatly reduced. For example, 

with 16 CPU threads, cuteSV used only 104 minutes to process the whole dataset. Moreover, the memory 

footprint of cuteSV (0.38GB) was smaller than that of other approaches by two orders of magnitude (i.e., 

Sniffles: 17.61GB, PBSV: 10.57GB, SVIM: 19.10GB). With its quasi linear multiple-threads speedup 

and low memory footprint, we realized that cuteSV is a highly scalable SV detection tool, which is suited 

to high performance computing platforms and large-scale data analysis tasks such as SV detection in 

many samples. 

The effects of various read aligners on SV calling 

To investigate the effects of various aligners on SV detection, we employed two aligners, PBMM2 and 

NGMLR, to separately align the reads of the 69× HG002 PacBio CLR dataset, and used their alignments 

as inputs to the four SV callers to produce various callsets. The callsets were then evaluated, and the 

effects of the aligners on the sensitivity and accuracy of SV detection were observed. Some details are 

as follows. 

1) We collected SV calls marked as false-negative (FN) by Truvari and compared them to investigate 

the effect of the two aligners on the sensitivity of the SV callers. The differences between the callsets 

produced by same SV callers with the alignments of different aligners are shown in Figure 5A and 

Supplementary Table 2. The results indicate that, overall, the SV callers had higher sensitivities (fewer 

FN calls) on insertions and deletions of less than 1,000 bp with the alignments produced by PBMM2. 

Moreover, PBSV discovered 436 more insertions with PBMM2 than with NGMLR, the lengths of which 

are between 200 bp and 700 bp, and 369 of which coincided with the sequences of the Alu family. This 

issue is worth noting since MEI is a major category of SVs. On the other hand, cuteSV, Sniffles, PBSV 

and SVIM respectively discovered 109, 283,127 and 113 more larger SVs (size >1000 bp) with the 

 

Figure 4 Performance of the benchmarked SV callers.  

(A) The runtime and (B) the memory footprints of the SV callers are shown. The results of cuteSV with various numbers of 

CPU threads are given, and for other SV callers, only the results using a single CPU thread are shown as the results of Sniffles 

and PBSV with multiple CPU threads are quite similar to that of a single CPU and SVIM does not support multiple thread 

computing. 
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alignments of NGMLR compared to their own callsets based on the alignments of PBMM2, which is 

also worth noting.  

2) We further investigated the false-positive (FP) calls of the SV callers based on various aligners (see 

Figure 5B and Supplementary Table 3). The callsets of cuteSV, Sniffles and PBSV with PBMM2 had 

 

Figure 5 Comparison of the callsets of the PacBio CLR dataset produced with various long-read aligners.  

(A) The difference between the false-negative (FN) calls in various SV sizes with NGMLR and PBMM2. (B) The difference 

between the false-positive (FP) calls in various SV sizes with NGMLR and PBMM2. (C) The different MDRs between 

NGMLR and PBMM2. It is worth noting that a positive value indicates the occurrence of more corresponding calls (e.g., FN, 

FP and MDR) when using NGMLR, whereas a negative value means the generation of more corresponding calls with PBMM2. 

The smaller the overall difference, the better the compatibility with the long-read aligners. 
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slightly higher numbers (155, 54 and 43, respectively) of <1000 bp FP insertions and deletions than those 

with NGMLR. While the callset of SVIM with NGMLR had a higher number (45) of FP calls. For >1000 

bp SVs, the numbers of FPs were very close for the corresponding callsets of cuteSV, PBSV and SVIM, 

but there were 32 more FPs in the callset of Sniffles with NGMLR than that with PBMM2. 

3) The MDRs of the callsets with various aligners were also assessed (Figure 5C). It was observed that 

all four callers had decreased MDRs (by 0.35% to 5.83%) on deletions and translocations, indicating that 

NGMLR kept better Mendelian consistency for these types of SVs. While no significant difference was 

observed for insertions/duplications and inversions with the two aligners. Moreover, only PBSV had 

obviously higher overall MDRs with NGMLR, indicating that PBMM2 could be a better choice for it. 

The results of cuteSV with various configurations of parameters  

We assessed the yields of cuteSV with various configurations of two critical parameters, –min_support 

and –min_size (-s and -l in the software, respectively), on various coverages (5×, 10×, 20×, 30×, 40× and 

69×) of HG002 CLR datasets.  

The –min_support parameter indicates the minimal number of supporting reads to make an SV call. 

As the results displayed in Supplementary Figure 3A and Supplementary Table 4 show, with the default 

setting of –min_size (–min_size = 30), cuteSV achieved the best yields when –min_support was 

configured at 1 to 10 for the various coverages, and there is an obvious trade-off between precision and 

recall (i.e., setting –min_support to smaller numbers might result in higher sensitivity but lower precision, 

and vice versa). 

The –min_size parameter indicates the minimal size of SV signature considered in clustering. Keeping 

the –min_support parameter fixed, we investigated the results of cuteSV with two different settings for 

–min_size (i.e., –min_size = 30 and –min_size = 50, Supplementary Figure 3B). At various coverages, 

the accuracies of cuteSV were 0.12% to 1.38% higher with the setting of –min_size = 50, while the recall 

rates were -0.06% to 1.09% higher with –min_size = 30. This indicates that setting –min_size with 

smaller numbers might result in higher sensitivity but lower accuracy, and vice versa. It is worth noting 

that, although the trade-off exists, for each of the coverages, the F1s of cuteSV with various settings are 

quite close to each other (the difference is less than 1%). 

SV detection with NA19240 PacBio CLR data 

A PacBio CLR dataset from another well-studied human sample (NA19240) [41] was also employed 

(mean read length: 6503 bp, coverage: 40×) to benchmark the SV callers more comprehensively. A 

callset for this sample [42] was used as the ground truth.  

The precision, recall and F1-measure of the benchmarked SV callers are shown in Supplementary 

Figure 4 and Supplementary Table 5. cuteSV almost had the highest F1 rates for all types of SVs (i.e., 

DEL: 62.79%, INS/DUP: 54.28%, INV: 17.36% and All Types: 57.66%). SVIM achieved better recall 

rates for all types of SVs and outperformed cuteSV 1.9% on All Types, which is mainly due to its larger 

number of predictions (total call: 31053 vs. 27294), however, its F1s were similarity to that of cuteSV 

mainly due to its relatively poor accuracies. Similarly, Sniffles and PBSV respectively obtained 0.35% 

and 3.22% higher precision than cuteSV, whereas their lower recall rates decreased the F1s of them. 

Overall, cuteSV achieved the comparable performance for this dataset.  

Discussion 
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Long-read sequencing technologies provide opportunities for comprehensive SV discovery. However, 

utilizing the advantage of long reads is still non-trivial due to complicated alignments. Herein, we 

propose cuteSV, a sensitive, fast and scalable long-read-based SV detection approach. We show how to 

use a series of signature extraction methods and a tailored clustering-and-refinement method to 

implement a precise analysis of SV signatures to achieve good yields and performance simultaneously. 

The cuteSV approach has four major contributions as follows. 

1) Read aligners could produce fragile alignments around SV events, for example, some reads could 

have several smaller insertions and/or deletions in their alignments around a larger SV event. Such 

alignments usually mislead SV detection approaches to make incorrect calls. However, using specifically 

designed methods, cuteSV can adaptively combine the chimeric alignments in reads to effectively 

recover the signatures of the real SV events. An example in Supplementary Figure 5 shows how a 272bp 

insertion event was successfully discovered by cuteSV, while none of the other benchmarked SV callers 

managed to do so due to fragile alignments.  

2) There are multi-allelic heterozygous SVs in some local regions, so it is even more difficult when 

the multiple alternative alleles have the same SV type. Since most state-of-the-art SV callers rely on 

genomic-position-based clustering of chimeric reads, reads spanning various SVs in a local region could 

be binned in one cluster, and then incorrect SV calls could be made. cuteSV solves this problem by using 

a tailored cluster refinement approach, which precisely analyzes the SV signatures of the reads in the 

same cluster. This operation helps to distinguish reads spanning different SV alleles, and correctly bins 

them by various sub-clusters, which greatly helps the detection of such complex SV events. Two 

examples are shown in Supplementary Figure 6. One is a heterozygous insertion event (a 180bp and a 

36bp insertion in the same region) and the other is a heterozygous deletion event (a 123bp and a 37 bp 

deletion in the same region). Only cuteSV and PBSV successfully discovered them in the benchmark.  

3) With its tailored signature extraction and clustering methods, cuteSV enables more sensitive 

detection and more accurate genotyping of SVs. The advantage is more obvious for relatively low 

coverage datasets. The benchmark results suggest that cuteSV can discover most SVs in 20× coverage 

datasets for human samples without loss of accuracy, and the performance of genotyping could be 

consistent with its yields. This is helps to make more flexible sequencing plans in large-scale genomics 

studies (e.g., population genomics studies) and to achieve goals in a more economical way.  

4) Most state-of-the-art SV callers are still not very scalable (i.e., they cannot fully take advantage of 

computational resources for speedup). This could be problematic when using large datasets since more 

computational nodes would be needed and/or the time cost might be very high. However, cuteSV has 

good scalability with its block division implementation, which enables it to process the input dataset in 

a parallel way and achieve a nearly linear speedup with the number of CPU threads. This makes it very 

suited to modern HPC resources and helpful for upcoming large-scale genomics studies.  

The benchmark results also indicate that there are still some SVs that cannot be successfully detected 

by cuteSV. We investigated the intermediate results of cuteSV and found that most of the false negative 

calls were due to the read alignments being inaccurate or not informative enough. Two typical examples 

are shown in Supplementary Figures 7 and 8. In Supplementary Figure 7, a 98bp deletion case is shown 

in which deletion signatures emerge in nearly all the reads around the event. However, the size of the 

deletions in the alignment are not correct (i.e., most of them are around 50bp). In Supplementary Figure 

8, a 707bp insertion case is shown in which insertion signatures also emerge and their sizes are close to 

the SV event, but the positions of the breakpoints in the reads are quite far from the ground truth 

breakpoint. Under such circumstances, all the benchmarked SV callers made SV calls, but the sizes 
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and/or positions are incorrect since the read alignments are misleading. We therefore realize that 

important future work could be done to develop more accurate long read aligners. 

Conclusion 

Long-read sequencing technologies provide the opportunity to build a comprehensive map of structural 

variations of the human genome. However, there are still technical issues to be addressed to further 

improve the sensitivity, accuracy and performance of long-read-based SV detection, and the development 

of advanced computational approaches is in demand.  

In this article, we provide a novel long-read-based SV detection approach, cuteSV. It enables the 

thorough analysis of the complex signatures of SVs implied by read alignments. Benchmark results 

demonstrate that cuteSV achieves good yields and performance simultaneously. Moreover, it has an 

outstanding ability to detect SVs with low coverage sequencing data, and it also has high scalability for 

handling large-scale datasets. We believe that cuteSV has great potential for cutting-edge genomics 

studies. 

Materials and methods 

Read alignment 

cuteSV uses sorted BAM files as input, and is supported by employing state-of-the-art long-read aligners 

to compose SV detection pipelines. Aligners with a good ability to handle large insertions/deletions in 

reads and/or produce accurate split alignments are preferred, since cuteSV extracts important SV 

signatures from such alignments. In the Results section, it is demonstrated that state-of-the-art aligners 

such as PBMM2 and NGMLR are suitable for the cuteSV approach.  

Extraction of SV signatures implied by CIGARs 

Given a set of aligned reads, cuteSV separately analyzes the detailed alignment of each read. Mainly, it 

extracts two categories of SV signatures, namely the long insertions/deletions in CIGARs and split 

alignments, respectively. In the cuteSV approach, the signatures of SVs are represented as a 3-tuple (i.e., 

𝑆𝐼𝐺 = (𝑝𝑜𝑠, 𝑙𝑒𝑛, 𝐼𝐷) , where 𝑝𝑜𝑠  indicates the starting position on the reference genome, 𝑙𝑒𝑛 

indicates the size of SV and 𝐼𝐷 indicates the unique read ID). cuteSV composes the SV signals implied 

by read alignments into 𝑆𝐼𝐺𝑠, and 𝑆𝐼𝐺𝑠 of various reads are clustered and analyzed to call SVs. 

cuteSV uses a precise method to extract and merge the long insertions/deletions in CIGARs and to 

transform them into SV signatures. This method enables the recovery of SV signatures of long 

insertions/deletions which are initially partitioned as multiple trivial indels by read aligners, and it 

facilitates the inference of the breakpoints and lengths of SVs. More specifically, cuteSV extracts 

insertions/deletions >30 bp in size as described by the CIGARs of the reads, and composes them into 

𝑆𝐼𝐺𝑠 with their positions, lengths and read IDs. For two signatures, 𝑆𝐼𝐺1 and 𝑆𝐼𝐺2, cuteSV merges 

them if they meet the following condition: 

{
𝑝𝑜𝑠2 − 𝑝𝑜𝑠1 ≤ 𝑆𝑑𝑖𝑠                       𝑖𝑓 𝐼𝑁𝑆

𝑝𝑜𝑠2 − (𝑝𝑜𝑠1 + 𝑙𝑒𝑛1) ≤ 𝑆𝑑𝑖𝑠     𝑖𝑓 𝐷𝐸𝐿
   (1) 

where 𝑆𝑑𝑖𝑠 is a threshold of the distance between the two signatures (default value: 500 bp). The two 

signatures are then merged as 𝑆𝐼𝐺𝑀 = (𝑝𝑜𝑠1, 𝑙𝑒𝑛1 + 𝑙𝑒𝑛2, 𝐼𝐷) . The merging operation enhances the 
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signatures of large insertions/deletions, and all the remaining signatures after merging are used as 

informative signatures for further processing.  

Extraction of SV signatures implied by split alignments 

For a read with split alignment(s) (described by its primary and supplementary alignments), cuteSV 

records each split by a 6-tuple (also termed as a “segment”), 𝑆𝑒𝑔 =

(𝑟𝑒𝑎𝑑𝑠 , 𝑟𝑒𝑎𝑑𝑒 , 𝑅𝑒𝑓𝑠, 𝑅𝑒𝑓𝑒, 𝐶ℎ𝑟, 𝑆𝑡𝑟𝑎𝑛𝑑) , where 𝑟𝑒𝑎𝑑𝑠 , 𝑟𝑒𝑎𝑑𝑒 , 𝑅𝑒𝑓𝑠 , 𝑅𝑒𝑓𝑒  respectively indicate the 

starting and end coordinates on the read and reference genome, and 𝐶ℎ𝑟 and 𝑆𝑡𝑟𝑎𝑛𝑑  respectively 

indicate its chromosome and orientation. cuteSV uses several heuristic rules (detailed below) to recover 

SV signatures from these 𝑆𝑒𝑔𝑠. 

(1) Extraction of deletion/insertion signatures. If two segments, 𝑆𝑒𝑔1 and 𝑆𝑒𝑔2, are adjacent on the 

read and aligned to the same chromosome with identical orientations, cuteSV computes 𝐷𝑖𝑓𝑓𝑑𝑖𝑠 =

(𝑅𝑒𝑓2𝑠 − 𝑅𝑒𝑓1𝑒) − (𝑟𝑒𝑎𝑑2𝑠 − 𝑟𝑒𝑎𝑑1𝑒)  and 𝐷𝑖𝑓𝑓𝑜𝑙𝑝 = 𝑅𝑒𝑓1𝑒 − 𝑅𝑒𝑓2𝑠 . If 𝐷𝑖𝑓𝑓𝑜𝑙𝑝 < 30 𝑏𝑝  and 

𝐷𝑖𝑓𝑓𝑑𝑖𝑠 ≥ 30 𝑏𝑝, cuteSV considers that the two segments indicate a deletion event, and composes a 

deletion signature: 

 𝑆𝐼𝐺𝐷𝐸𝐿 = (𝑅𝑒𝑓1𝑒 , 𝐷𝑖𝑓𝑓𝑑𝑖𝑠 , 𝐼𝐷)   (2) 

Moreover, if 𝐷𝑖𝑓𝑓𝑜𝑙𝑝 < 30 𝑏𝑝 and 𝐷𝑖𝑓𝑓𝑑𝑖𝑠 ≤ −30 𝑏𝑝, cuteSV considers this an insertion event and 

composes an insertion signature: 

𝑆𝐼𝐺𝐼𝑁𝑆 = (
𝑅𝑒𝑓1𝑒+𝑅𝑒𝑓2𝑠

2
, −𝐷𝑖𝑓𝑓𝑑𝑖𝑠 , 𝐼𝐷)   (3) 

(2) Extraction of duplication signatures. If two adjacent segments are mapped to similar positions (i.e., 

𝐷𝑖𝑓𝑓𝑜𝑙𝑝 ≥ 30 𝑏𝑝), cuteSV composes a duplication signature: 

𝑆𝐼𝐺𝐷𝑈𝑃 = (𝑅𝑒𝑓2𝑠, 𝑅𝑒𝑓1𝑒 , 𝐼𝐷)    (4) 

(3) Extraction of inversion signatures. If two adjacent segments are mapped to the same chromosome 

but to different strands, cuteSV composes an inversion signature: 

𝑆𝐼𝐺𝐼𝑁𝑉 = {

(𝑅𝑒𝑓1𝑒,𝑅𝑒𝑓2𝑒)
(𝑅𝑒𝑓1𝑠,𝑅𝑒𝑓2𝑠)

, 𝑖𝑓 𝐿𝐸𝑁𝐼𝑁𝑉 ≥    50 𝑏𝑝

(𝑅𝑒𝑓2𝑒,𝑅𝑒𝑓1𝑒)
(𝑅𝑒𝑓2𝑠,𝑅𝑒𝑓1𝑠)

, 𝑖𝑓 𝐿𝐸𝑁𝐼𝑁𝑉 ≤ −50 𝑏𝑝
     (5) 

where 𝐿𝐸𝑁𝐼𝑁𝑉 = 𝑅𝑒𝑓2𝑒 − 𝑅𝑒𝑓1𝑒  indicates the length of the event (with direction). It is also worth 

noting that the primary strand of the inversion is unknown, so cuteSV records all possible situations. 

 (4) Extraction of translocation signatures. If two adjacent segments are mapped to different 

chromosomes, and the two segments are <100bp distant on the reads, cuteSV composes a translocation 

signature: 

𝑆𝐼𝐺𝐵𝑁𝐷 =

{
 
 
 
 

 
 
 
 
(𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑒 , 𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑠, 𝐼𝐷)    , 𝑖𝑓 “0 ≤ ”

(𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑠, 𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑒 , 𝐼𝐷)    , 𝑖𝑓 “0 ≥ ”

(𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑒 , 𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑒, 𝐼𝐷)    , 𝑖𝑓 “1 ≤ ”

(𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑒 , 𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑒 , 𝐼𝐷)    , 𝑖𝑓 “1 ≥ ”

(𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑠, 𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑠, 𝐼𝐷)    , 𝑖𝑓 “2 ≤ ”

(𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑠, 𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑠, 𝐼𝐷)    , 𝑖𝑓 “2 ≥ ”

(𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑠, 𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑒, 𝐼𝐷)    , 𝑖𝑓 “3 ≤ ”

(𝐶ℎ𝑟2, 𝑅𝑒𝑓2𝑒 , 𝐶ℎ𝑟1, 𝑅𝑒𝑓1𝑠, 𝐼𝐷)    , 𝑖𝑓 “3 ≥ ”

      (6) 
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where 0, 1, 2, 3 indicate the combination of strands “++”, “+-”, “-+”, “--”, respectively, and “≤” and “≥” 

respectively mean the chromosome ID of 𝐶ℎ𝑟1 is in front of that of 𝐶ℎ𝑟2 and vice versa. 

(5) cuteSV uses a specifically designed method to extract the signatures of a complex kind of SV, when 

there is a mobile insertion in between two duplicated sequences. An example is shown in Supplementary 

Figure 9, in which there are two duplicated local sequences (both of their mapped positions are around 

Chr1:73594981), and there is another local sequence within them in the read (whose mapped position is 

in a decoy sequence of hs37d5). cuteSV extracts a series of signatures, including a duplication (as shown 

in Eq.4), a translocation (as shown in Eq.6) and an insertion (as shown in Eq.7), to describe such complex 

SV events.  

𝑆𝐼𝐺𝐼𝑁𝑆 = (min(𝑅𝑒𝑓1𝑒 , 𝑅𝑒𝑓2𝑠), −𝐷𝑖𝑓𝑓𝑑𝑖𝑠 , 𝐼𝐷)   (7) 

Clustering of SV signatures 

cuteSV clusters the collected SV signatures (𝑆𝐼𝐺s) in a two-step approach. In the first step it clusters the 

signatures by their genomic positions and types in order to bin the signatures in various local regions, 

and in the second step it clusters the signatures by their length in order to distinguish the signatures in 

similar regions but belonging to heterozygous SVs (i.e., in such loci, there are different but similar SVs 

in both of the two alleles). Some details are as follows. 

In the first step, cuteSV sorts all the SV signatures by their genomic positions and types (i.e., deletions, 

insertions, duplications, inversions and translocations). For each category, cuteSV initially creates a new 

cluster, and scans all the signatures from upstream to downstream and adds them into the cluster using 

an iterative approach. More precisely, for a newly-scanned SV signature 𝑆𝐼𝐺𝑖 , cuteSV adds it into the 

cluster if there is at least one signature 𝑆𝐼𝐺𝑗 in the cluster which meets the following condition: 

𝑆𝐼𝐺i(𝑝𝑜𝑠) − 𝑆𝐼𝐺j(𝑝𝑜𝑠) ≤ 𝑇𝐻𝑡𝑦𝑝𝑒      

or |(𝑆𝐼𝐺i(𝑝𝑜𝑠) + 𝑆𝐼𝐺i(𝑙𝑒𝑛)) − (𝑆𝐼𝐺j(𝑝𝑜𝑠) + 𝑆𝐼𝐺j(𝑙𝑒𝑛))| ≤ 𝑇𝐻𝑡𝑦𝑝𝑒   (8) 

where 𝑇𝐻𝑡𝑦𝑝𝑒 is a threshold of the distances among the clustered signatures, and different values are 

used for various types of SVs (𝑇𝐻𝑡𝑦𝑝𝑒 is typically configured to between 50 and 500 bp). If 𝑆𝐼𝐺𝑖 cannot 

be added into the cluster, cuteSV creates a new cluster only having 𝑆𝐼𝐺𝑖   and goes to the next SV 

signature.  

In the second step, cuteSV initially checks the numbers of signatures of the generated clusters and 

discards the clusters with too few signatures. The remaining clusters are then refined by the following 

methods according to their SV type.   

1) Refinement of deletion/insertion clusters. Given a deletion or insertion cluster, cuteSV sorts all its 

signatures by their sizes, and computes a parameter, 𝐿𝑒𝑛𝑏𝑖𝑎𝑠, with the following equation: 

𝐿𝑒𝑛𝑏𝑖𝑎𝑠 = 𝛼 ×
1

|𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺|
∑ 𝑆𝑖𝑧𝑒𝑘1≤𝑘≤|𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺|

     (9) 

where 𝛼 is a weighting parameter, |𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺| is the number of the signatures in the cluster, and 𝑆𝑖𝑧𝑒𝑘 

is the size of the k-th longest signature in 𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺 . The configuration of 𝛼 is related to the SV type. 

The default value of 𝛼 is 0.2 for an insertion cluster and high error rate reads (e.g., PacBio CLR and 

ONT reads), 𝛼 = 0.65 for low error rate reads (e.g., PacBio CCS reads) and 𝛼 = 0.3 for a deletion 

cluster (regardless of error rate).  
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With 𝐿𝑒𝑛𝑏𝑖𝑎𝑠, cuteSV divides the cluster into sub-clusters of which each is a potential SV allele in a 

local genomic region. More specifically, cuteSV initially creates one sub-cluster and add the signatures 

with the largest size into the sub-cluster. It iteratively scans the signatures by size (from largest to 

smallest). For instance, if the difference between the size of a newly-scanned signature and that of the 

last signature added to the sub-cluster is smaller than 𝐿𝑒𝑛𝑏𝑖𝑎𝑠, cuteSV adds the newly-scanned one into 

the sub-cluster. Otherwise, a new sub-cluster is created with the newly-scanned signature.  

cuteSV recognizes the generated sub-clusters with the highest number of signatures as a “major allele” 

sub-cluster if it meets the following conditions: 

𝑆𝑢𝑝𝑅 ≥ 𝑆𝑅𝑚𝑖𝑛 and 𝑆𝑢𝑝𝑅 > 𝜇 × |𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺|   (10) 

where 𝑆𝑢𝑝𝑅  and 𝑆𝑅𝑚𝑖𝑛  are the number of its supporting reads and the threshold of the minimum 

number of supporting reads, respectively. 𝜇 is a weighting parameter, and its default values for an 

insertion cluster are 0.6 and 0.65 when using PacBio CLR/ONT reads and PacBio CCS reads, 

respectively. For a deletion cluster, the default values are 0.7 and 0.35 for the datasets mentioned above, 

respectively. If a “major allele” sub-cluster exists, cuteSV recognizes each of the remaining sub-clusters 

as a “minor allele” sub-cluster if it has more than 𝑆𝑅𝑚𝑖𝑛 signatures. 

However, there is occasionally no “major allele” sub-cluster existing due to lack of enough supporting 

reads. cuteSV uses another heuristic rule in which it recognizes the two largest sub-clusters 𝑆𝑢𝑝𝑅𝑓𝑖𝑟𝑠𝑡 

and 𝑆𝑢𝑝𝑅𝑠𝑒𝑐𝑜𝑛𝑑 as “major allele” and “minor allele” sub-clusters if they meet the following conditions: 

{

𝑆𝑅𝑚𝑖𝑛 ≤ 𝑆𝑢𝑝𝑅𝑓𝑖𝑟𝑠𝑡 ≤ 𝜇 × |𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺|

0.4 × |𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺| ≤ 𝑆𝑢𝑝𝑅𝑠𝑒𝑐𝑜𝑛𝑑 ≤ 𝑆𝑅𝑚𝑖𝑛
0.95 × |𝐺𝑟𝑜𝑢𝑝𝑆𝐼𝐺| ≤ 𝑆𝑢𝑝𝑅𝑓𝑖𝑟𝑠𝑡 + 𝑆𝑢𝑝𝑅𝑠𝑒𝑐𝑜𝑛𝑑

   (11) 

This rule indicates that almost all of the SV signatures support the two alleles. Meanwhile, both of them 

occupy >40% of the supporting signatures of the cluster.  

2) Refinement of duplication/inversion clusters. Given a duplication or inversion cluster, cuteSV 

initially creates one or more sub-clusters such that the breakpoints of all the signatures in the same sub-

cluster are within 500bp. cuteSV recognizes the “major allele” and “minor allele” sub-clusters with a 

heuristic rule similar to Eq.10 but respectively sets 𝜇 = 1/3 for duplication and inversion.  

 

 (3) Refinement of translocation clusters. Given a translocation cluster, cuteSV initially creates one or 

more sub-clusters such that the breakpoints of all the signatures in the same sub-cluster are within 50bp. 

Furthermore, cuteSV recognizes the “major allele” and “minor allele” sub-clusters with a heuristic rule 

similar to Eq.10 but sets 𝜇 = 0.6 and 𝑆𝑅𝑚𝑖𝑛 as half of the value used for deletion/insertion clusters. 

This setting mainly considers the diverse combinations of chromosomes and orientations of translocation 

events and is beneficial for sensitivity.  

SV calling and genotyping 

For each cluster of signatures, cuteSV computes the weighted average of the positions and sizes to predict 

the breakpoint(s) and size of the corresponding SV, and removes the predicted SVs of <30 bp in size.  

Moreover, cuteSV supports the implementation of SV genotyping (which is an optional step in the 

tool). cuteSV uses a local genomic region for a predicted SV to analyze the ratio of supporting reads, 

which is defined as: 

𝐴𝑟𝑒𝑎𝑎𝑡 = (max(𝐵𝐾1 − 𝑏𝑖𝑎𝑠, 0),min(𝐵𝐾2 + 𝑏𝑖𝑎𝑠, 𝐿𝑅𝐸𝐹))    (12) 
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where 𝐵𝐾1  is the first breakpoint, 𝐵𝐾2  is the next breakpoint, 𝑏𝑖𝑎𝑠 means the scope of extension 

which is equal to 𝑇𝐻𝑡𝑦𝑝𝑒  and 𝐿𝑅𝐸𝐹  indicates the maximum length of chromosome taken into 

consideration. cuteSV counts the numbers of all the reads supporting the reference allele and the reads 

supporting the predicted SV within 𝐴𝑟𝑒𝑎𝑎𝑡 . Various genotypes are assigned by cuteSV according to the 

ratio of supporting reads (i.e., homozygous reference allele (0/0) for a ratio ≤ 0.2, homozygous variant 

allele (1/1) for a ratio ≥ 0.8, and heterozygous variant allele (0/1) for a ratio in between). 

Implementation of long-read mapping and SV calling 

We used PBMM2 (version 1.0.0), NGMLR (version 0.2.3) and Minimap2 (version 2.17) to implement 

the read alignment of the benchmarking datasets (Supplementary Table 6). The parameter “--preset” of 

long-read aligners was tuned for different sequencing technologies. Samtools (version 1.9) was employed 

for read extraction, sorted BAM generation and sequencing data down-sampling.  

Sniffles (version 1.0.11), PBSV (version 2.2.0), SVIM (version 0.4.3) and cuteSV (version 1.0.1) were 

benchmarked with the sorted BAM files as input. Specifically, for Sniffles, the configuration “-l 50 -s 

2/3/4/4/5/10” was used for PacBio CLR datasets, “-l 30 -s 1/2/3” for was used for PacBio CCS reads, 

and “-l 30 -s 2/3/4/10” was used for ONT PromethION reads. For PBSV, default settings were used for 

PacBio CLR and ONT PromethION data, and “--preset CCS” was used for PacBio CCS data. For SVIM, 

the configuration “--min_sv_size 30” was employed for all datasets in this study. For cuteSV, the 

configuration “-l 30 --max_cluster_bias_INS 100 --diff_ratio_merging_INS 0.2 --

diff_ratio_filtering_INS 0.6 --diff_ratio_filtering_DEL0.7” was used for PacBio CLR (“-s 2/3/4/4/5/10”) 

and ONT PromethION reads (“-s 2/3/4/10”), and “-l 30 --max_cluster_bias_INS 200 --

diff_ratio_merging_INS 0.65 --diff_ratio_filtering_INS 0.65 --diff_ratio_filtering_DEL0.35 -s 1/2/3” 

was used for PacBio CCS reads.  

The used command lines for the tools are in the Supplementary Notes. 

Evaluation of SV callsets 

The evaluation of the HG002 human sample is run with Truvari (version 1.1), and the high confidence 

insertion and deletion callsets (version 0.6) are used as gold standard sets. Before evaluation, we 

preprocess the SV calls of each tool. For Sniffles, we discard inversions and translocations, and transform 

duplications to insertions. For SVIM, we delete SV calls with a quality score of less than 40, as the author 

recommends, and transform duplications to insertions as well. For PBSV and cuteSV, we only select 

insertions and deletions for assessment. Then, BGZIP and TABIX are employed to compress and index 

the processed VCF files.  

Only SV calls between 50 bp and 10 kbp in size that are within the GIAB high confidence regions 

(version 0.6) are considered for evaluation. A prediction is determined as a true-positive (TP) when 

meeting the following conditions: 

{

max(𝑐𝑜𝑚𝑝𝑠 − 1𝑘𝑏𝑝, 𝑏𝑎𝑠𝑒𝑠) ≤ min(𝑐𝑜𝑚𝑝𝑒 + 1𝑘𝑏𝑝, 𝑏𝑎𝑠𝑒𝑒) 

min(𝑐𝑜𝑚𝑝𝑠𝑖𝑧𝑒 + 𝑏𝑎𝑠𝑒𝑠𝑖𝑧𝑒) max(𝑐𝑜𝑚𝑝𝑠𝑖𝑧𝑒 + 𝑏𝑎𝑠𝑒𝑠𝑖𝑧𝑒)⁄ ≥ 0.7
𝑐𝑜𝑚𝑝𝑡𝑦𝑝𝑒 = 𝑏𝑎𝑠𝑒𝑡𝑦𝑝𝑒

   (13) 

where 𝑐𝑜𝑚𝑝𝑠, 𝑐𝑜𝑚𝑝𝑒 , 𝑐𝑜𝑚𝑝𝑠𝑖𝑧𝑒 and 𝑐𝑜𝑚𝑝𝑡𝑦𝑝𝑒  indicate start coordinate, stop coordinate, size and 

SV class of a prediction, and 𝑏𝑎𝑠𝑒𝑠, 𝑏𝑎𝑠𝑒𝑒 , 𝑏𝑎𝑠𝑒𝑠𝑖𝑧𝑒  and 𝑏𝑎𝑠𝑒𝑡𝑦𝑝𝑒 are starting coordinate, stopping 

coordinate, size and SV class of a call in the truth set, respectively. On the other hand, a prediction is 

determined as a false-positive (FP) if it does not satisfy Eq.13. A false-negative (FN) is assigned when 
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there is a base call that cannot be detected by any SV calls. 

Based on the results above, Precision (or the ratio of TPs to total calls in predictions) is defined as 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑠

𝑇𝑃𝑠+𝐹𝑃𝑠
      (14) 

Similarly, Recall (or the ratio of TPs to total calls in the truth set) is defined as 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑠

𝑇𝑃𝑠+𝐹𝑁𝑠
      (15) 

F-measure (F1 score), a measurement of weighted averaging of both precision and recall, is defined as 

 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (16) 

The evaluation of the NA19240 is similar to the HG002 benchmarking. We adopt Eq.13 to assess every 

deletion, insertion (duplication regarded as a subset of insertion) and inversion against the callsets 

generated from the study [42], and Eqs.14 to 16 are applied for summarizing the performance of SV 

calling. 

For the evaluation of the Ashkenazi trio, the callsets of parents (i.e., HG003 and HG004) produced by 

corresponding methods are adopted as truth sets in order to measure the performance of an SV caller via 

the pedigree between offspring and parents. For each SV call of a son (i.e., HG002) except translocations, 

we use Eq.13 to assign true-positive calls. As an arbitrary rearrangement type, a translocation or BND is 

considered precise when meeting the following conditions: 

 {

|𝑐𝑜𝑚𝑝𝐵𝐾1 − 𝑏𝑎𝑠𝑒𝐵𝐾1| ≤ 1kbp 
|𝑐𝑜𝑚𝑝𝐵𝐾2 − 𝑏𝑎𝑠𝑒𝐵𝐾2| ≤ 1kbp 

𝑐𝑜𝑚𝑝𝑐ℎ𝑟1 = 𝑏𝑎𝑠𝑒𝑐ℎ𝑟1
𝑐𝑜𝑚𝑝𝑐ℎ𝑟2 = 𝑏𝑎𝑠𝑒𝑐ℎ𝑟2

     (17) 

where 𝐵𝐾1, 𝐵𝐾2, 𝑐ℎ𝑟1 and 𝑐ℎ𝑟2 are the combination of breakends and chromosomes of a call on 

the offspring and its parents, respectively. Therefore, the ratio of MDR can be reckoned via 

 𝑀𝐷𝑅 =
∑𝑆𝑉𝑠 𝑖𝑛 𝑠𝑜𝑛−∑𝑝𝑟𝑒𝑐𝑖𝑠𝑒 𝑆𝑉𝑠 𝑖𝑛 𝑠𝑜𝑛

∑𝑆𝑉𝑠 𝑖𝑛 𝑠𝑜𝑛
      (18) 

To evaluate the computational performance of the four SV callers under different threads, runtime and 

memory usage are assessed using the “/usr/bin/time -v” command of the Linux Operating System. In the 

output results of the command, “Elapsed (wall clock) time” and “Maximum resident set size” indicate 

the elapsed runtime and memory consumption, respectively. It is worth noting that because SV calling 

performed by PBSV involves two steps (i.e., discover and call), we use the sum of the wall clock time 

of both steps as the final elapsed runtime, whereas the memory consumption depends on the maximum 

memory usage of the two runs. 

For more details please see the Supplementary Notes. 
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