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Abstract

Long-read sequencing enables the comprehensive discovery of structural variations (SVs). However, it
is still non-trivial to achieve high sensitivity and performance simultaneously due to the complex SV
characteristics implied by noisy long reads. Therefore, we propose cuteSV, a sensitive, fast and scalable
long-read-based SV detection approach. cuteSV uses tailored methods to collect the signatures of various
types of SVs and employs a clustering-and-refinement method to analyze the signatures to implement
sensitive SV detection. Benchmarks on real PacBio and ONT datasets demonstrate that cuteSV has better
yields and  scalability  than  state-of-the-art  tools. cuteSV  is  available at
https://github.com/tjiangHIT/cuteSV.
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Background

Structural variations (SVs) represent genomic rearrangements such as deletions, insertions, inversions,
duplications, and translocations whose sizes are larger than 50 bp [1]. As the largest divergences across
human genomes [2], SVs are closely related to human diseases (e.g., inherited diseases [3-5] and cancers
[6]), evolution (e.g., gene losses and transposon activity [7, 8]), gene regulations (e.g., rearrangements
of transcription factors [9]) and other phenotypes (e.g., mating and intrinsic reproductive isolation [10,
11)).

Many efforts have been made to develop short-read-based SV calling approaches [12, 13]. State-of-
the-art short-read-based tools use various kinds of methods such as read-depths [14], discordant read-
pairs [15], split read alignments [16], local assembly [17] or their combinations [18-20]. They have
played important roles in many large-scale genomics studies such as the 1000 Genome Project [1].
However, the relatively low read-length (typically a few hundreds of bps) limits these tools in
implementing highly sensitive SV detection [21] and false positives are common in their call sets [22].

With the rapid development of long-read sequencing technologies, such as Pacific Bioscience (PacBio)
[23] and Oxford Nanopore Technology (ONT) [24] platforms, read length has greatly increased. The
average read length can be over 10 kbp, and long-range spanning information provides the opportunity
to comprehensively detect SVs at a high resolution [25]. However, the computational challenge still
remains due to the high sequencing error rates of long-reads (typically 5-20%) [26]. Because of the
sequence error, the aligners may not be able to produce sensitive, chimeric and heterogeneous alignments
for the reads around SV breakpoints, and the aligners can also have highly divergent behaviors for various
types of SVs. Therefore, the SV signatures implied by long-read alignments are highly complicated and
it is non-trivial to collect and analyze them to implement sensitive detection for various kinds of SVs.

Several long-read-alignment-based SV callers have been proposed in recent years, such as PB-Honey
[27], SMRT-SV [28], Sniffles [29], PBSV (https://github.com/PacificBiosciences/pbsv) and SVIM [30].
They use various methods to find evidence of SVs implied by read alignments, such as the identification

of local genomic regions with highly divergent alignments, the local assembly and re-alignment of
clipped read parts and the clustering of SV-spanning signatures [31]. Moreover, state-of-the-art long-
read aligners, such as BLASR [32], NGMLR [29], Minimap2 [33] and PBMM2
(https://github.com/PacificBiosciences/pbmm?2), are usually employed for read alignment (as the inputs
for the SV callers).

These state-of-the-art long-read-based SV callers have some drawbacks: 1) overall, the sensitivity is

not satisfying (i.e., a high sequencing coverage is required and/or some SVs are still hard to detect); 2)
some methods such as rMETL [34], rCANID [35] and npinv [36] can only detect a subset or a particular
class of SVs due to their specific design; 3) some tools such as PBSV and SMRT-SV are still time-
consuming and require plenty of computational resources, and are therefore often not very scalable or
suited to many large-scale datasets; 4) some approaches such as SMRT-SV and PB-Honey only support
one type of sequencing data (e.g., only for PacBio reads), as they take advantage of the characteristics of
the data. These drawbacks currently inhibit the wide use of long-read sequencing data in cutting-edge
genomics studies and clinical practices.

Herein, we present cuteSV, a sensitive, fast and scalable long-read-based SV detection approach. This
approach has several features: 1) cuteSV has better SVs detection yields than those of state-of-the-art SV
callers. Moreover, it has higher sensitivity for low coverage datasets, which is helpful in reducing the
cost of sequencing. 2) cuteSV is a versatile SV caller which supports the processing of datasets produced
by mainstream platforms with various error rates and the discovery of various types of SVs including
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deletions, insertions, duplications, inversions and translocations. 3) With its tailored implementation,
cuteSV has faster or comparable speed compared to state-of-the-art approaches. 4) cuteSV has
outstanding scalability; it can run with low memory use and achieve nearly linear speedup with the
number of CPU threads, and is thus very suited to large-scale data analysis tasks. With these features,
we believe that cuteSV has a great potential for cutting-edge genomics studies.

Results

Overview of cuteSV

Due to the high sequencing error and the complexity of SVs, the SV signals implied by the alignment of
SV-spanning long reads are highly complicated, so SV detection approaches must have a strong ability
to handle various kinds of cases. Primarily, the following three technical issues should be fully considered.

1) Various types of SVs have different signatures, which can be represented as various combinations
of large insertions/deletions and split alignments. SV signature extraction methods have to capture these
signals comprehensively. Moreover, due to the scoring systems of read aligners, some large SV events
could be divided into several smaller insertions/deletions in a local region. Such signals should be well-
handled in order to recover evidence of real SV events.

2) Reads spanning the same SV could have heterogeneous breakpoints in their alignments because of
the scoring systems of read aligners. Robust read clustering methods are needed for handling
heterogeneous breakpoints in order to cluster reads spanning the same SVs effectively and to prevent
multiple false positive clusters for one SV.

3) In some cases, there are multiple SVs in the same local genomics region but belonging to various
alleles. It is very difficult to make correct calls for such complex heterozygous SVs. Precise analysis of
read alignments is needed to distinguish the signatures of multiple SVs in such loci.

cuteSV is a novel SV detection approach which fulfills the requirements mentioned above. It integrates
several specifically designed methods to extract the SV signatures of various kinds of SVs from aligned
reads, and it uses a clustering-and-refinement method to thoroughly analyze the collected signatures to
call SVs. The approach has three major steps as follows (a schematic illustration is in Figure 1).

1) cuteSV uses a series of signature extraction methods tailored for various types of SVs. This is one
of the two core features of cuteSV that enables the comprehensive collection of SV signatures and the
effective recovery of evidence of SVs from complicated and fragile alignments.

2) cuteSV uses a specifically designed clustering-and-refinement approach to cluster the chimerically
aligned reads in local regions, and further refines the clusters to precisely distinguish the SV signatures
from heterozygous SVs. This is the other core feature of cuteSV that enables it to handle heterogeneous
breakpoints in read alignments well and be robust to multi-allelic heterozygous SVs.

3) cuteSV uses several heuristic rules to make SV calls based on clustered SV signatures and to perform
high-quality SV genotyping.

Moreover, cuteSV uses a block division-based approach to process input data in a parallel way with
multiple CPU threads. Refer to the Materials and methods section for more detailed information about
the implementation of cuteSV.

The following sub-sections discuss the benchmark results of cuteSV on real sequencing datasets, and
more insights on the features of cuteSV are given in the Discussion section.

SV detection with HG002 PacBio data
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Figure 1 Schematic illustration of the cuteSV approach.
The detection of SVs in cuteSV generally comprises 4 steps. In step 1 (long-read mapping), cuteSV supports the sorted-
alignment BAM file as input, which is generated from the state-of-the-art long-read mappers. In step 2 (discovering SV
signatures), cuteSV collects various type of SV signatures comprehensively from inter- and intra-alignments. In step 3
(clustering of SV signatures), a stepwise-refinement clustering method is employed to sensitively discover accurate SV alleles.
In the final step (final detection and genotyping), cuteSV generates the final SV callsets and (optionally) assigns genotypes.

First, we implemented cuteSV and three state-of-the-art long-read-based SV callers (i.e., Sniffles, PBSV
and SVIM) on a 69x HG002 PacBio CLR dataset [37] (mean read length: 7938 bp). PBMM2 was
employed for read alignment. Moreover, another state-of-the-art aligner, NGMLR, was also employed
to investigate the effect of the aligners on SV calling. In this section, the results are based on the
alignments produced by PBMM2 unless specifically mentioned otherwise. A high-confidence insertion
and deletion callset for this sample made by Genome in a Bottle Consortium (GIAB) [38] was employed
as the ground truth. Truvari (https://github.com/spiralgenetics/truvari) was used to assess the precision,
recall, and F-measure (F1) of the callsets produced by various approaches.
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Figure 2 Benchmark results of the SV callers on HG002 PacBio CLR and CCS datasets.
(A) Precisions, recalls and F-measures on the HG002 PacBio CLR datasets. (B) Precisions, recalls and F-measures on the
HGO002 PacBio CCS datasets. (C) Mendelian-Discordance-Rates (MDRs) on the GIAB Ashkenazi Trio PacBio CLR datasets
for various SV types and long-read aligners. Worth noting that the lower the MDR is, the more accurate the corresponding SV
callset is.

The yields of the SV callers are shown in Figure 2A. In terms of the 69x CLR data, cuteSV
simultaneously achieved the highest precision, recall and F1, all of which were >94% in absolute terms,
which is feasible for practical use. The F1 of SVIM (91.10%), PBSV (90.72%) and Sniffles (89.82%)
were comparable to each other and slightly lower than that of cuteSV mainly due to their lower recall
statistics (i.e., 89.56%, 88.42% and 86.27% for SVIM, PBSV and Sniffles, respectively). For evaluation
of genotyping, cuteSV achieved > 90% both on GT-recall and GT-F1. SVIM was the runner-up and
reached 85% on all three statistics. PBSV and Sniffles were far behind cuteSV and SVIM due to their
relatively poor GT-precision and GT-recall.

We further randomly down-sampled the original dataset to 5% 10x%, 20> 30> and 40x to assess the
ability of the SV callers on lower coverage datasets (Figure 2A and Supplementary Figure 1A). cuteSV
almost kept achieving higher recalls and F1s on almost all datasets, indicating that it maintained
outstanding sensitivity without loss of accuracy. It is worth noting that cuteSV simultaneously achieved
>90% F1 and >86% GT-F1 at 20x This is beneficial for practical use, since more cost-effective
sequencing plans can be considered with this result. However, this is still hard for other callers since their
recalls and F1s were much lower on the down-sampled datasets.
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Besides PacBio CLR data, we also assessed the ability of the callers on the newly promoted PacBio
CCS dataset of the same sample [39] [40] (coverage: 28> mean read length: 13478 bp). The results of
cuteSV and PBSV were very close to each other (Figure 2B) (precision: 94.6%, recall: 98.0%, F1: 96.3%),
and they outperformed Sniffles and SVIM by 1% to 6% on various statistics. For genotyping assessment,
cuteSV achieved the best performance on various GT- statistics, and outperformed the other three callers
2% to 34% on GT-F1.

We also randomly down-sampled the dataset to 5>xand 10>to further assess the callers (Figure 2B and
Supplementary Figure 1B). On the 10> down-sampled dataset, PBSV achieved the highest recall
(96.70%) and cuteSV was the runner-up (93.79%). The slightly lower recall of cuteSV was mainly due
to fact that the minimal signature size parameter setting of cuteSV (default value: 30bp) was longer than
that of PBSV (default value: 20bp), which hindered cuteSV in identifying more SVs using evidence that
was smaller in size. Moreover, it was also observed that 5x coverage was enough to achieve >90%
precision, recall and F1 for both cuteSV and PBSV. These results suggest that with higher sequencing
quality, data size requirements become smaller, so more economical sequencing strategies could be
feasible in genomics studies.

We further used GIAB Ashkenazi Trio callsets (HG002, HG003 and HGO004) to calculate the
Mendelian-Discordance-Rate (MDR) of the long-read-based SV callers to more comprehensively assess
their ability to detect various types of SVs. The results (Figure 2C) suggest that the MDRs of cuteSV and
SVIM are lowest for almost all types of SV (i.e., All Type: 0.106 and 0.085 for cuteSV, and All Types:
0.096 and 0.087 for SVIM), indicating that the callsets produced by them are more plausible. The MDR
of PBSV is higher but comparable (All Types: 0.128 and 0.134), while the MDR of Sniffles (All Types:
0.175 and 0.170) is much higher, indicating that its callset could be less accurate.

SV detection with HG002 ONT PromethlON data

We further assessed the yields of the SV callers on a newly published ONT PromethlON dataset of the
HG002 human sample (mean read length: 17335 bp, coverage: 47% available at
ftp://ftp.ncbi.nim.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385 son/UCSC_Ultralong
_OxfordNanopore_Promethion/), which was aligned by using Minimap2. The benchmark results
(Figure 3A) indicate that cuteSV achieved the highest precision (92.15%), recall (96.61%) and F1
(94.33%), and its outperformance of Sniffles and SVIM was more obvious than with the PacBio CLR
dataset. It is also worth noting that PBSV crashed for this dataset. On the randomly down-sampled
datasets (5%, 10xand 20x), the outperformance by cuteSV was remarkable as well. Particularly, cuteSV
found most (85%) of the ground truth SVs only at 10> coverage with high precision (93.07%) and F1
(88.85%). However, at the same coverage, the F1s of Sniffles, SVIM and PBSV were at least 7% lower
than that of cuteSV, indicating that they had lower yields. As for the genotyping (Figure 3B and
Supplementary Figure 1C), cuteSV still achieved better performance and surpassed others 9% at least on
GT-F1. This indicates that the genotyping of cuteSV could be more accurate.

We further compared the SV callsets produced by cuteSV from the HG002 PacBio CLR and ONT
datasets, respectively. There are 26605 and 26427 SVs in the PacBio and ONT callsets, respectively (see
Supplementary Table 1). 7293 SVs (27.41%) of the PacBio callset and 7115 SVs (26.92%) of the ONT
callset are unique. Moreover, of the 7293 PacBio-only calls, 54.15% (3949 of 7293) and 21.20% (1546
of 7293) are respectively insertions and deletions, and of the 7115 ONT-only calls, the corresponding
numbers are respectively 47.94% (3411 of 7115) and 41.00% (2917 of 7115). Previous studies indicate
that there are usually more false positive insertion calls made from PacBio datasets [23], and more false
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Figure 3 Benchmark results of the SV callers on the HG002 ONT PromethlON dataset.

(A) Precisions, recalls and F-measures on the HG002 ONT dataset and its down-sampling data. (B) GT-Precisions, GT-recalls
and GT-F1 on the HG002 ONT dataset. (C) The Venn diagram of SV calls produced by cuteSV from HG002 PacBio CLR
and ONT PromethION datasets (indicated by “PacBio” and “ONT”, respectively), and the SV ground truth callset of the
HGO002 sample made by GIAB (indicated by “High_conf”).

positive deletions made from ONT datasets [24]. So, the fractions of the unique calls of the PacBio and
ONT callsets are plausible. Moreover, it is also observed that there are some SVs only being discovered
in the ONT dataset mainly because of its larger read lengths. An example is shown in Supplementary
Figure 2. A 6481 bp insertion (breakpoint at chr1:9683994) was only detected in the ONT reads, as the
ONT reads spanning this event are longer and a large proportion of them carry significant insertion
signals in their CIGARs. However, none of the PacBio reads aligned to this locus have strong SV signals,
possibly because they are shorter and the aligners cannot produce alignments with such large insertions.

Moreover, there were 33751 distinctive SV calls in the PacBio- and ONT-based callsets and they
covered 98.64% (9510 of 9641) of the ground truth callset of HG002 (Figure 3C) (i.e., they had a higher
sensitivity than all the callsets made by the SV callers with a single dataset). This suggests that combining
multiple datasets to produce a high-quality SV callset is feasible.

The performance of the SV callers


https://doi.org/10.1101/780700
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/780700; this version posted December 5, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Runtime (minutes) B Memory (Gigabyte)
2,000

¥}
S

19.10
17.61

1,500

1715
1279
1,000 s pti
651
500 " 348 367 5
- I-I 181 104 I"I . 038 038 038 038 038
o N e 0 —— i - — -
teSV SV-8x i\ it 1

PBSV.1x  SVIM-Ix

[

=]

=3

culeSV-1x  culeSV-2x  cuteSV-Ax  cute culeSV-16x Sniffles-1x PBSV.lx  SVIM-Ix culeSV-1x  cuteSV-2x  cuteSV-dx  cuteSV-Bx  cuteSV-16x  Sniffles-1x

Figure 4 Performance of the benchmarked SV callers.

(A) The runtime and (B) the memory footprints of the SV callers are shown. The results of cuteSV with various numbers of
CPU threads are given, and for other SV callers, only the results using a single CPU thread are shown as the results of Sniffles
and PBSV with multiple CPU threads are quite similar to that of a single CPU and SVIM does not support multiple thread

computing.

We assessed the speed (Figure 4A) and memory footprint (Figure 4B) of the SV callers on the 69x
HGO002 CLR dataset. The speeds of the benchmarked approaches with a single CPU thread were
comparable: Sniffles was the fastest, taking 367 minutes, followed by SVIM (991 minutes), cuteSV
(1279 minutes) and PBSV (1715 minutes). The relatively slower speed of cuteSV was mainly because it
uses multiple methods to extract signatures of SVs and perform its high-quality genotyping. Further, we
asked the SV callers to run with multiple CPU threads, but it was observed that neither Sniffles nor PBSV
had an obvious speedup with more CPU threads, and SVIM does not support multiple-threading
computing. This is possibly due to their implementations. However, cuteSV showed a nearly linear
speedup with the number of CPU threads, and the wall clock time was greatly reduced. For example,
with 16 CPU threads, cuteSV used only 104 minutes to process the whole dataset. Moreover, the memory
footprint of cuteSV (0.38GB) was smaller than that of other approaches by two orders of magnitude (i.e.,
Sniffles: 17.61GB, PBSV: 10.57GB, SVIM: 19.10GB). With its quasi linear multiple-threads speedup
and low memory footprint, we realized that cuteSV is a highly scalable SV detection tool, which is suited
to high performance computing platforms and large-scale data analysis tasks such as SV detection in
many samples.

The effects of various read aligners on SV calling

To investigate the effects of various aligners on SV detection, we employed two aligners, PBMM2 and
NGMLR, to separately align the reads of the 69>xHG002 PacBio CLR dataset, and used their alignments
as inputs to the four SV callers to produce various callsets. The callsets were then evaluated, and the
effects of the aligners on the sensitivity and accuracy of SV detection were observed. Some details are
as follows.

1) We collected SV calls marked as false-negative (FN) by Truvari and compared them to investigate
the effect of the two aligners on the sensitivity of the SV callers. The differences between the callsets
produced by same SV callers with the alignments of different aligners are shown in Figure 5A and
Supplementary Table 2. The results indicate that, overall, the SV callers had higher sensitivities (fewer
FN calls) on insertions and deletions of less than 1,000 bp with the alignments produced by PBMM2.
Moreover, PBSV discovered 436 more insertions with PBMM2 than with NGMLR, the lengths of which
are between 200 bp and 700 bp, and 369 of which coincided with the sequences of the Alu family. This
issue is worth noting since MEI is a major category of SVs. On the other hand, cuteSV, Sniffles, PBSV
and SVIM respectively discovered 109, 283,127 and 113 more larger SVs (size >1000 bp) with the
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Figure 5 Comparison of the callsets of the PacBio CLR dataset produced with various long-read aligners.

(A) The difference between the false-negative (FN) calls in various SV sizes with NGMLR and PBMM2. (B) The difference
between the false-positive (FP) calls in various SV sizes with NGMLR and PBMM2. (C) The different MDRs between
NGMLR and PBMM2. It is worth noting that a positive value indicates the occurrence of more corresponding calls (e.g., FN,
FP and MDR) when using NGMLR, whereas a negative value means the generation of more corresponding calls with PBMM?2.

The smaller the overall difference, the better the compatibility with the long-read aligners.

alignments of NGMLR compared to their own callsets based on the alignments of PBMM2, which is
also worth noting.

2) We further investigated the false-positive (FP) calls of the SV callers based on various aligners (see
Figure 5B and Supplementary Table 3). The callsets of cuteSV, Sniffles and PBSV with PBMM2 had
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slightly higher numbers (155, 54 and 43, respectively) of <1000 bp FP insertions and deletions than those
with NGMLR. While the callset of SVIM with NGMLR had a higher number (45) of FP calls. For >1000
bp SVs, the numbers of FPs were very close for the corresponding callsets of cuteSV, PBSV and SVIM,
but there were 32 more FPs in the callset of Sniffles with NGMLR than that with PBMM2.

3) The MDRs of the callsets with various aligners were also assessed (Figure 5C). It was observed that
all four callers had decreased MDRs (by 0.35% to 5.83%) on deletions and translocations, indicating that
NGMLR kept better Mendelian consistency for these types of SVs. While no significant difference was
observed for insertions/duplications and inversions with the two aligners. Moreover, only PBSV had
obviously higher overall MDRs with NGMLR, indicating that PBMM2 could be a better choice for it.

The results of cuteSV with various configurations of parameters

We assessed the yields of cuteSV with various configurations of two critical parameters, —min_support
and —min_size (-s and -l in the software, respectively), on various coverages (5% 10x 20 30> 40>=and
69%) of HG002 CLR datasets.

The —min_support parameter indicates the minimal number of supporting reads to make an SV call.
As the results displayed in Supplementary Figure 3A and Supplementary Table 4 show, with the default
setting of —min_size (-min_size = 30), cuteSV achieved the best yields when —min_support was
configured at 1 to 10 for the various coverages, and there is an obvious trade-off between precision and
recall (i.e., setting —min_support to smaller numbers might result in higher sensitivity but lower precision,
and vice versa).

The —min_size parameter indicates the minimal size of SV signature considered in clustering. Keeping
the —min_support parameter fixed, we investigated the results of cuteSV with two different settings for
—min_size (i.e., —min_size = 30 and —min_size = 50, Supplementary Figure 3B). At various coverages,
the accuracies of cuteSV were 0.12% to 1.38% higher with the setting of —min_size = 50, while the recall
rates were -0.06% to 1.09% higher with —min_size = 30. This indicates that setting —min_size with
smaller numbers might result in higher sensitivity but lower accuracy, and vice versa. It is worth noting
that, although the trade-off exists, for each of the coverages, the F1s of cuteSV with various settings are
quite close to each other (the difference is less than 1%).

SV detection with NA19240 PacBio CLR data

A PacBio CLR dataset from another well-studied human sample (NA19240) [41] was also employed
(mean read length: 6503 bp, coverage: 40%) to benchmark the SV callers more comprehensively. A
callset for this sample [42] was used as the ground truth.

The precision, recall and F1-measure of the benchmarked SV callers are shown in Supplementary
Figure 4 and Supplementary Table 5. cuteSV almost had the highest F1 rates for all types of SVs (i.e.,
DEL: 62.79%, INS/DUP: 54.28%, INV: 17.36% and All Types: 57.66%). SVIM achieved better recall
rates for all types of SVs and outperformed cuteSV 1.9% on All Types, which is mainly due to its larger
number of predictions (total call: 31053 vs. 27294), however, its F1s were similarity to that of cuteSV
mainly due to its relatively poor accuracies. Similarly, Sniffles and PBSV respectively obtained 0.35%
and 3.22% higher precision than cuteSV, whereas their lower recall rates decreased the F1s of them.
Overall, cuteSV achieved the comparable performance for this dataset.

Discussion
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Long-read sequencing technologies provide opportunities for comprehensive SV discovery. However,
utilizing the advantage of long reads is still non-trivial due to complicated alignments. Herein, we
propose cuteSV, a sensitive, fast and scalable long-read-based SV detection approach. We show how to
use a series of signature extraction methods and a tailored clustering-and-refinement method to
implement a precise analysis of SV signatures to achieve good yields and performance simultaneously.
The cuteSV approach has four major contributions as follows.

1) Read aligners could produce fragile alignments around SV events, for example, some reads could
have several smaller insertions and/or deletions in their alignments around a larger SV event. Such
alignments usually mislead SV detection approaches to make incorrect calls. However, using specifically
designed methods, cuteSV can adaptively combine the chimeric alignments in reads to effectively
recover the signatures of the real SV events. An example in Supplementary Figure 5 shows how a 272bp
insertion event was successfully discovered by cuteSV, while none of the other benchmarked SV callers
managed to do so due to fragile alignments.

2) There are multi-allelic heterozygous SVs in some local regions, so it is even more difficult when
the multiple alternative alleles have the same SV type. Since most state-of-the-art SV callers rely on
genomic-position-based clustering of chimeric reads, reads spanning various SVs in a local region could
be binned in one cluster, and then incorrect SV calls could be made. cuteSV solves this problem by using
a tailored cluster refinement approach, which precisely analyzes the SV signatures of the reads in the
same cluster. This operation helps to distinguish reads spanning different SV alleles, and correctly bins
them by various sub-clusters, which greatly helps the detection of such complex SV events. Two
examples are shown in Supplementary Figure 6. One is a heterozygous insertion event (a 180bp and a
36bp insertion in the same region) and the other is a heterozygous deletion event (a 123bp and a 37 bp
deletion in the same region). Only cuteSV and PBSV successfully discovered them in the benchmark.

3) With its tailored signature extraction and clustering methods, cuteSV enables more sensitive
detection and more accurate genotyping of SVs. The advantage is more obvious for relatively low
coverage datasets. The benchmark results suggest that cuteSV can discover most SVs in 20 coverage
datasets for human samples without loss of accuracy, and the performance of genotyping could be
consistent with its yields. This is helps to make more flexible sequencing plans in large-scale genomics
studies (e.g., population genomics studies) and to achieve goals in a more economical way.

4) Most state-of-the-art SV callers are still not very scalable (i.e., they cannot fully take advantage of
computational resources for speedup). This could be problematic when using large datasets since more
computational nodes would be needed and/or the time cost might be very high. However, cuteSV has
good scalability with its block division implementation, which enables it to process the input dataset in
a parallel way and achieve a nearly linear speedup with the number of CPU threads. This makes it very
suited to modern HPC resources and helpful for upcoming large-scale genomics studies.

The benchmark results also indicate that there are still some SVs that cannot be successfully detected
by cuteSV. We investigated the intermediate results of cuteSV and found that most of the false negative
calls were due to the read alignments being inaccurate or not informative enough. Two typical examples
are shown in Supplementary Figures 7 and 8. In Supplementary Figure 7, a 98bp deletion case is shown
in which deletion signatures emerge in nearly all the reads around the event. However, the size of the
deletions in the alignment are not correct (i.e., most of them are around 50bp). In Supplementary Figure
8, a 707bp insertion case is shown in which insertion signatures also emerge and their sizes are close to
the SV event, but the positions of the breakpoints in the reads are quite far from the ground truth
breakpoint. Under such circumstances, all the benchmarked SV callers made SV calls, but the sizes
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and/or positions are incorrect since the read alignments are misleading. We therefore realize that
important future work could be done to develop more accurate long read aligners.

Conclusion

Long-read sequencing technologies provide the opportunity to build a comprehensive map of structural
variations of the human genome. However, there are still technical issues to be addressed to further
improve the sensitivity, accuracy and performance of long-read-based SV detection, and the development
of advanced computational approaches is in demand.

In this article, we provide a novel long-read-based SV detection approach, cuteSV. It enables the
thorough analysis of the complex signatures of SVs implied by read alignments. Benchmark results
demonstrate that cuteSV achieves good yields and performance simultaneously. Moreover, it has an
outstanding ability to detect SVs with low coverage sequencing data, and it also has high scalability for
handling large-scale datasets. We believe that cuteSV has great potential for cutting-edge genomics
studies.

Materials and methods

Read alignment

cuteSV uses sorted BAM files as input, and is supported by employing state-of-the-art long-read aligners
to compose SV detection pipelines. Aligners with a good ability to handle large insertions/deletions in
reads and/or produce accurate split alignments are preferred, since cuteSV extracts important SV
signatures from such alignments. In the Results section, it is demonstrated that state-of-the-art aligners
such as PBMM2 and NGMLR are suitable for the cuteSV approach.

Extraction of SV signatures implied by CIGARs

Given a set of aligned reads, cuteSV separately analyzes the detailed alignment of each read. Mainly, it
extracts two categories of SV signatures, namely the long insertions/deletions in CIGARs and split
alignments, respectively. In the cuteSV approach, the signatures of SVs are represented as a 3-tuple (i.e.,
SIG = (pos, len,ID), where pos indicates the starting position on the reference genome, len
indicates the size of SV and ID indicates the unique read ID). cuteSV composes the SV signals implied
by read alignments into SIGs, and SIGs of various reads are clustered and analyzed to call SVs.

cuteSV uses a precise method to extract and merge the long insertions/deletions in CIGARs and to
transform them into SV signatures. This method enables the recovery of SV signatures of long
insertions/deletions which are initially partitioned as multiple trivial indels by read aligners, and it
facilitates the inference of the breakpoints and lengths of SVs. More specifically, cuteSV extracts
insertions/deletions >30 bp in size as described by the CIGARs of the reads, and composes them into
SIGs with their positions, lengths and read IDs. For two signatures, SIG, and SIG,, cuteSV merges
them if they meet the following condition:

{pos2 —pos; < Suis if INS 1
pos, — (pos, + len,) < Sy if DEL 1)

where S ;¢ is a threshold of the distance between the two signatures (default value: 500 bp). The two
signatures are then merged as SIG, = (pos,,len; + len,,ID). The merging operation enhances the
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signatures of large insertions/deletions, and all the remaining signatures after merging are used as

informative signatures for further processing.

Extraction of SV signatures implied by split alignments

For a read with split alignment(s) (described by its primary and supplementary alignments), cuteSV
records each split by a 6-tuple (also termed as a ‘“segment”), Seg =
(read;,read,, Ref;, Ref,, Chr, Strand), where readg, read,, Ref;, Ref, respectively indicate the
starting and end coordinates on the read and reference genome, and Chr and Strand respectively
indicate its chromosome and orientation. cuteSV uses several heuristic rules (detailed below) to recover
SV signatures from these Segs.

(1) Extraction of deletion/insertion signatures. If two segments, Seg, and Seg,, are adjacent on the
read and aligned to the same chromosome with identical orientations, cuteSV computes Diff,;s =
(Refzs — Refi,) — (read,s —read,.) and Diff,,, = Refi, — Refs . If Diffy, <30bp and
Diffuis = 30 bp, cuteSV considers that the two segments indicate a deletion event, and composes a
deletion signature:

S1Gpg, = (Refie, Dif fais, ID) @)

Moreover, if Diffy, <30 bp and Diffq;s < —30 bp, cuteSV considers this an insertion event and
composes an insertion signature:

SIGiys = (B2, —Dif fy, ID) ©)
(2) Extraction of duplication signatures. If two adjacent segments are mapped to similar positions (i.e.,
Diffor, = 30 bp), cuteSV composes a duplication signature:

SIGpyp = (Refys, Refie, ID) (4)

(3) Extraction of inversion signatures. If two adjacent segments are mapped to the same chromosome
but to different strands, cuteSV composes an inversion signature:

(Refie.Refze)
,if LEN;yy = 50bp
SIG[NV — (RefIS'RefZS) (5)

(Refze,Ref1e) _
(Refrarefr)” S LENny < =50 bp

where LEN,yy = Ref,., — Ref;, indicates the length of the event (with direction). It is also worth
noting that the primary strand of the inversion is unknown, so cuteSV records all possible situations.
(4) Extraction of translocation signatures. If two adjacent segments are mapped to different

chromosomes, and the two segments are <100bp distant on the reads, cuteSV composes a translocation
signature:

(Chry, Refie, Chry, Refy, ID) ,if “0 <7
(Chry, Refys, Chry, Refi,,ID) ,if “0 ="
(Chry, Ref,e, Chry, Ref,,,ID) ,if “1<”
(Chry, Refy,, Chry, Refi,,ID) ,if “1 =" ©)
(Chry, Ref,s, Chry, Refy,, ID) ,if “2<”
(Chry, Refyg, Chry, Refis,ID) if “2 ="
(Chry, Ref,s, Chry, Refy,,ID) ,if “3 <7
(Chry, Ref,,, Chry, Refi,ID) ,if “3 27

SIGBND =
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where 0, 1, 2, 3 indicate the combination of strands “++7, “+-7 “-+ “--"_respectively, and “<” and “>"
respectively mean the chromosome ID of Chr, isin front of that of Chr, and vice versa.

(5) cuteSV uses a specifically designed method to extract the signatures of a complex kind of SV, when
there is a mobile insertion in between two duplicated sequences. An example is shown in Supplementary
Figure 9, in which there are two duplicated local sequences (both of their mapped positions are around
Chr1:73594981), and there is another local sequence within them in the read (whose mapped position is
in a decoy sequence of hs37d5). cuteSV extracts a series of signatures, including a duplication (as shown
in Eq.4), a translocation (as shown in Eq.6) and an insertion (as shown in Eq.7), to describe such complex
SV events.

S1Giys = (min(Refi,, Refys), —Dif fais, ID) )

Clustering of SV signatures

cuteSV clusters the collected SV signatures (SIGs) in a two-step approach. In the first step it clusters the
signatures by their genomic positions and types in order to bin the signatures in various local regions,
and in the second step it clusters the signatures by their length in order to distinguish the signatures in
similar regions but belonging to heterozygous SVs (i.e., in such loci, there are different but similar SVs
in both of the two alleles). Some details are as follows.

In the first step, cuteSV sorts all the SV signatures by their genomic positions and types (i.e., deletions,
insertions, duplications, inversions and translocations). For each category, cuteSV initially creates a new
cluster, and scans all the signatures from upstream to downstream and adds them into the cluster using
an iterative approach. More precisely, for a newly-scanned SV signature SIG;, cuteSV adds it into the

cluster if there is at least one signature SIG; in the cluster which meets the following condition:

S1G;(pos) — SIG;(pos) < THyype
or |(SIGi(pos) + SIG,(len)) — (SIG]- (pos) + SIG]-(len))| < THeype (8)

where THy,,, is a threshold of the distances among the clustered signatures, and different values are
used for various types of SVs (THgyp, is typically configured to between 50 and 500 bp). If SIG; cannot
be added into the cluster, cuteSV creates a new cluster only having SIG; and goes to the next SV
signature.

In the second step, cuteSV initially checks the numbers of signatures of the generated clusters and
discards the clusters with too few signatures. The remaining clusters are then refined by the following
methods according to their SV type.

1) Refinement of deletion/insertion clusters. Given a deletion or insertion cluster, cuteSV sorts all its
signatures by their sizes, and computes a parameter, Len,;,., with the following equation:

1

Len,; =aX——
bias |Groupsigl

21sks|Groupsigl SiZe )
where « isaweighting parameter, |Groupg,| isthe number of the signatures in the cluster, and Size,
is the size of the k-th longest signature in Groupg;;. The configuration of « is related to the SV type.
The default value of « is 0.2 for an insertion cluster and high error rate reads (e.g., PacBio CLR and
ONT reads), a = 0.65 for low error rate reads (e.g., PacBio CCS reads) and « = 0.3 for a deletion
cluster (regardless of error rate).
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With Leny;,s, cuteSV divides the cluster into sub-clusters of which each is a potential SV allele in a
local genomic region. More specifically, cuteSV initially creates one sub-cluster and add the signatures
with the largest size into the sub-cluster. It iteratively scans the signatures by size (from largest to
smallest). For instance, if the difference between the size of a newly-scanned signature and that of the
last signature added to the sub-cluster is smaller than Leny;,s, cuteSV adds the newly-scanned one into
the sub-cluster. Otherwise, a new sub-cluster is created with the newly-scanned signature.

cuteSV recognizes the generated sub-clusters with the highest number of signatures as a “major allele”
sub-cluster if it meets the following conditions:

SupR = SR, and SupR > u X |Groupgs| (120)

where SupR and SR,,;, are the number of its supporting reads and the threshold of the minimum
number of supporting reads, respectively. u is a weighting parameter, and its default values for an
insertion cluster are 0.6 and 0.65 when using PacBio CLR/ONT reads and PacBio CCS reads,
respectively. For a deletion cluster, the default values are 0.7 and 0.35 for the datasets mentioned above,
respectively. If a “major allele” sub-cluster exists, cuteSV recognizes each of the remaining sub-clusters
as a “minor allele” sub-cluster if it has more than SR,,;, signatures.

However, there is occasionally no “major allele” sub-cluster existing due to lack of enough supporting
reads. cuteSV uses another heuristic rule in which it recognizes the two largest sub-clusters SupRy;.q,
and SupRecona as “major allele” and “minor allele” sub-clusters if they meet the following conditions:

SRmin =< Suprirst < u X |Gr0upSIG|
0.4 x |GTOUP516| < SupRsecond < SRmin (11)
0.95 x |Gr0upSIG| < Suprirst + SupRsecond

This rule indicates that almost all of the SV signatures support the two alleles. Meanwhile, both of them
occupy >40% of the supporting signatures of the cluster.

2) Refinement of duplication/inversion clusters. Given a duplication or inversion cluster, cuteSV
initially creates one or more sub-clusters such that the breakpoints of all the signatures in the same sub-
cluster are within 500bp. cuteSV recognizes the “major allele” and “minor allele” sub-clusters with a
heuristic rule similar to Eq.10 but respectively sets u = 1/3 for duplication and inversion.

(3) Refinement of translocation clusters. Given a translocation cluster, cuteSV initially creates one or
more sub-clusters such that the breakpoints of all the signatures in the same sub-cluster are within 50bp.
Furthermore, cuteSV recognizes the “major allele” and “minor allele” sub-clusters with a heuristic rule
similar to Eq.10 but sets 4 = 0.6 and SR,,;,, as half of the value used for deletion/insertion clusters.
This setting mainly considers the diverse combinations of chromosomes and orientations of translocation
events and is beneficial for sensitivity.

SV calling and genotyping

For each cluster of signatures, cuteSV computes the weighted average of the positions and sizes to predict
the breakpoint(s) and size of the corresponding SV, and removes the predicted SVs of <30 bp in size.

Moreover, cuteSV supports the implementation of SV genotyping (which is an optional step in the
tool). cuteSV uses a local genomic region for a predicted SV to analyze the ratio of supporting reads,
which is defined as:

Areay = (max(BK1 — bias, 0), min(BK, + bias, LREF)) (12)
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where BK; is the first breakpoint, BK, is the next breakpoint, bias means the scope of extension
which is equal to TH.,,, and Lggr indicates the maximum length of chromosome taken into
consideration. cuteSV counts the numbers of all the reads supporting the reference allele and the reads
supporting the predicted SV within Area,;. Various genotypes are assigned by cuteSV according to the
ratio of supporting reads (i.e., homozygous reference allele (0/0) for a ratio < 0.2, homozygous variant
allele (1/1) for aratio = 0.8, and heterozygous variant allele (0/1) for a ratio in between).

Implementation of long-read mapping and SV calling

We used PBMM2 (version 1.0.0), NGMLR (version 0.2.3) and Minimap2 (version 2.17) to implement
the read alignment of the benchmarking datasets (Supplementary Table 6). The parameter “--preset” of
long-read aligners was tuned for different sequencing technologies. Samtools (version 1.9) was employed
for read extraction, sorted BAM generation and sequencing data down-sampling.

Sniffles (version 1.0.11), PBSV (version 2.2.0), SVIM (version 0.4.3) and cuteSV (version 1.0.1) were
benchmarked with the sorted BAM files as input. Specifically, for Sniffles, the configuration -l 50 -s
2/3/4/4/5/10” was used for PacBio CLR datasets, “-l 30 -s 1/2/3” for was used for PacBio CCS reads,
and “-I 30 -s 2/3/4/10” was used for ONT PromethlON reads. For PBSV, default settings were used for
PacBio CLR and ONT PromethlON data, and “--preset CCS” was used for PacBio CCS data. For SVIM,
the configuration “--min_sv_size 30” was employed for all datasets in this study. For cuteSV, the
configuration  “-I 30 --max_cluster_bias INS 100 --diff ratio_merging_INS 0.2  --
diff_ratio_filtering_INS 0.6 --diff ratio_filtering DELO.7” was used for PacBio CLR (“-s 2/3/4/4/5/10”)
and ONT PromethION reads (“-s 2/3/4/10”), and “-I 30 --max_cluster_bias INS 200 --
diff_ratio_merging_INS 0.65 --diff ratio_filtering_INS 0.65 --diff _ratio_filtering_ DEL0.35 -s 1/2/3”
was used for PacBio CCS reads.

The used command lines for the tools are in the Supplementary Notes.

Evaluation of SV callsets

The evaluation of the HG002 human sample is run with Truvari (version 1.1), and the high confidence
insertion and deletion callsets (version 0.6) are used as gold standard sets. Before evaluation, we
preprocess the SV calls of each tool. For Sniffles, we discard inversions and translocations, and transform
duplications to insertions. For SVIM, we delete SV calls with a quality score of less than 40, as the author
recommends, and transform duplications to insertions as well. For PBSV and cuteSV, we only select
insertions and deletions for assessment. Then, BGZIP and TABIX are employed to compress and index
the processed VCF files.

Only SV calls between 50 bp and 10 kbp in size that are within the GIAB high confidence regions
(version 0.6) are considered for evaluation. A prediction is determined as a true-positive (TP) when
meeting the following conditions:

max(comp; — 1kbp, bases) < min(comp, + 1kbp, base,)
min(compg;,. + baseg;,,)/max(compg;,, + baseg;,,) = 0.7 (13)
COMPrype = basetype

where comps, comp,, comps;,. and compy,,. indicate start coordinate, stop coordinate, size and
SV class of a prediction, and bases, base,, baseg;,, and base,,. are starting coordinate, stopping
coordinate, size and SV class of a call in the truth set, respectively. On the other hand, a prediction is

determined as a false-positive (FP) if it does not satisfy Eq.13. A false-negative (FN) is assigned when
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there is a base call that cannot be detected by any SV calls.
Based on the results above, Precision (or the ratio of TPs to total calls in predictions) is defined as

TPs

Precision = (14)
TPs+FPs
Similarly, Recall (or the ratio of TPs to total calls in the truth set) is defined as
Recall = —== (15)
TPs+FNs

F-measure (F1 score), a measurement of weighted averaging of both precision and recall, is defined as

P measure = ST ao

The evaluation of the NA19240 is similar to the HG002 benchmarking. We adopt Eq.13 to assess every
deletion, insertion (duplication regarded as a subset of insertion) and inversion against the callsets
generated from the study [42], and Eqs.14 to 16 are applied for summarizing the performance of SV
calling.

For the evaluation of the Ashkenazi trio, the callsets of parents (i.e., HG003 and HG004) produced by
corresponding methods are adopted as truth sets in order to measure the performance of an SV caller via
the pedigree between offspring and parents. For each SV call of a son (i.e., HG002) except translocations,
we use Eq.13 to assign true-positive calls. As an arbitrary rearrangement type, a translocation or BND is
considered precise when meeting the following conditions:

|[compgg, — basegk,| < 1kbp

|[compgg, — basegk,| < 1kbp
compcnr1 = basecpry
COMPcprz = basecpr;

17

where BK1, BK2, chrl and chr2 are the combination of breakends and chromosomes of a call on
the offspring and its parents, respectively. Therefore, the ratio of MDR can be reckoned via

MDR = Y. SVs in son-Y, precise SVs in son (18)

Y SVsinson

To evaluate the computational performance of the four SV callers under different threads, runtime and
memory usage are assessed using the “/usr/bin/time -v”” command of the Linux Operating System. In the
output results of the command, “Elapsed (wall clock) time” and “Maximum resident set size” indicate
the elapsed runtime and memory consumption, respectively. It is worth noting that because SV calling
performed by PBSV involves two steps (i.e., discover and call), we use the sum of the wall clock time
of both steps as the final elapsed runtime, whereas the memory consumption depends on the maximum
memory usage of the two runs.

For more details please see the Supplementary Notes.
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