

1 **Horizontal gene transfer to a defensive symbiont with a reduced genome**
2 **amongst a multipartite beetle microbiome**

3 Samantha C. Waterworth^a, Laura V. Flórez^b, Evan R. Rees^a, Christian Hertweck^{c,d},
4 Martin Kaltenpoth^b and Jason C. Kwan^a#

5

6 Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-
7 Madison, Madison, Wisconsin, USA^a

8 Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution,
9 Johannes Gutenberg University, Mainz, Germany^b

10 Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research
11 and Infection Biology, Jena, Germany^c

12 Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany^d

13

14 #Address correspondence to Jason C. Kwan, jason.kwan@wisc.edu

15

16

17

18

19 **ABSTRACT**

20 The loss of functions required for independent life when living within a host gives rise to
21 reduced genomes in obligate bacterial symbionts. Although this phenomenon can be
22 explained by existing evolutionary models, its initiation is not well understood. Here, we
23 describe the microbiome associated with eggs of the beetle *Lagria villosa*, containing
24 multiple bacterial symbionts related to *Burkholderia gladioli* including a reduced-genome
25 symbiont thought to produce the defensive compound lagriamide. We find that the
26 putative lagriamide producer is the only symbiont undergoing genome reduction, and
27 that it has already lost most primary metabolism and DNA repair pathways. The
28 horizontal acquisition of the lagriamide biosynthetic gene cluster likely preceded
29 genome reduction, and unexpectedly we found that the symbiont accepted additional
30 genes horizontally during genome reduction, even though it lacks the capacity for
31 homologous recombination. These horizontal gene transfers suggest that absolute
32 genetic isolation is not a requirement for genome reduction.

33

34 **INTRODUCTION**

35 Mutualistic symbioses between animals and bacteria, widespread in nature, serve a
36 variety of functions such as biosynthesis of nutrients not found in the host's diet (Akman
37 et al., 2002; Shigenobu et al., 2000), and protection from predation (Lopera et al., 2017;
38 Miller et al., 2016a; Piel, 2002) or infection (Currie et al., 1999; Flórez et al., 2018;
39 Kroiss et al., 2010). Such relationships exist on a continuous spectrum of dependency
40 and exclusivity from the perspective of both the host and symbiont. Symbionts generally
41 become obligate after a prolonged period of exclusive association with the host, and the

42 symbionts that become obligate tend to carry out highly important functions for the host
43 (Latorre and Manzano-Marín, 2017; Lo et al., 2016; McCutcheon and Moran, 2012). For
44 example, mitochondria and chloroplasts, organelles that are required for energy
45 production and carbon fixation in eukaryotic and plant cells, originated from
46 endosymbiotic capture of alphaproteobacteria and cyanobacteria ~1.2 Bya and ~900
47 Mya, respectively (Shih and Matzke, 2013). The acquisition of these organelles allowed
48 the diversification of eukaryotic species (López-García et al., 2017). More recently,
49 aphids evolved to feed on plant sap depleted of several essential amino acids only
50 through capture of an endosymbiont, *Buchnera aphidicola*, that can synthesize these
51 nutrients, ~160–280 Mya (Moran et al., 1993; Munson et al., 1991). In these cases, the
52 microbial symbiont has lost the ability to live independently of the host, and the hosts
53 are also dependent on their symbionts.

54
55 The mechanism by which symbionts become obligate is through loss of genes required
56 for independent (but not host-associated) life, leading to an overall reduction in genome
57 size (Latorre and Manzano-Marín, 2017; Lo et al., 2016; McCutcheon and Moran,
58 2012). This gene loss is the result of relaxed selection on genes for functions provided
59 by the host, and also increased genetic drift as a result of small effective populations in
60 strict vertical transmission (Latorre and Manzano-Marín, 2017). A general mutational
61 bias towards deletion in bacteria (Mira et al., 2001) combined with many successive
62 population bottlenecks that allow the fixation of slightly deleterious mutations (Latorre
63 and Manzano-Marín, 2017) mediates general gene degradation and genome reduction.
64 While these processes are largely thought to be nonadaptive, there is some evidence

65 that increase in AT and reduction in genome size could be selected for to reduce
66 metabolic burden on the host (Ditel et al., 2019, 2018). The early stages of this
67 process are manifested by a proliferation of nonfunctional pseudogenes and a decrease
68 in coding density in the genome (Lo et al., 2016), before the intergenic sequences are
69 lost to eventually give tiny <1 Mbp genomes (Latorre and Manzano-Marín, 2017;
70 McCutcheon and Moran, 2012). While there is a robust model for the evolutionary
71 forces that drive this process once a symbiont becomes host-restricted, it is unknown
72 how bacteria first become obligate and start on the road to genome reduction (Latorre
73 and Manzano-Marín, 2017).

74

75 The beetle subfamily Lagriinae offers an opportunity to examine this question. Various
76 Lagriinae have evolved special symbiont-bearing structures that serve to facilitate the
77 vertical transmission of bacteria (Flórez et al., 2017). Beetles are typically co-infected
78 with multiple symbiont strains related to the plant pathogen *Burkholderia gladioli*, that
79 are secreted onto the surface of eggs as they are laid (Flórez et al., 2017). In the
80 species *Lagria villosa*, a South American soybean pest, at least one symbiotic *B.*
81 *gladioli* strain (Lv-StA) has been cultured and is still capable of infecting plants (Flórez
82 et al., 2017). The same strain produces antibacterial and antifungal compounds that can
83 protect the beetle's eggs from infection (Dose et al., 2018; Flórez et al., 2017). This is
84 consistent with the hypothesis that the *B. gladioli* symbionts evolved from plant
85 pathogens to become beetle mutualists. However, in field collections of *L. villosa*, Lv-
86 StA is only found sporadically, and is never highly abundant (Flórez and Kaltenpoch,
87 2017). Instead, the most abundant strain is often the uncultured Lv-StB (Flórez and

88 Kaltenpoth, 2017), which has been implicated in the production of the antifungal
89 lagriamide, a defensive compound found in field egg collections (Flórez et al., 2018).
90 We previously found through metagenomic sequencing that the genome of Lv-StB was
91 much smaller than that of Lv-StA, suggesting it has undergone genome reduction
92 (Flórez et al., 2018). It would seem that while *L. villosa* has multiple options for
93 symbionts that produce potential chemical defenses, only a subset have specialized as
94 obligate mutualists. The presence of multiple related strains in this system, with
95 selective genome reduction of a single strain, could potentially shed light on why the
96 genomes of some symbionts become reduced.

97

98 Here, we show that in the *L. villosa* microbiome, Lv-StB is uniquely undergoing genome
99 reduction, despite other community members possessing biosynthetic pathways for
100 potentially defensive molecules. We also suggest that this process was likely driven not
101 only by horizontal acquisition of the putative lagriamide pathway, but also by loss of
102 genes that limit cell division and translation, and gain of *zot*, a toxin also found in *Vibrio*
103 *cholerae* that aids invasion of host membranes. Further, we present evidence that these
104 horizontal gene transfers occurred concurrently with genome reduction, suggesting that
105 complete genetic isolation is not a main driving force for the reduction process.

106

107 RESULTS AND DISCUSSION

108 Selective genome reduction of strain Lv-StB in *Lagria villosa*

109 We previously analyzed the metagenome of eight *L. villosa* egg clutches (Flórez et al.,
110 2018), using our binning pipeline Autometa (Miller et al., 2019). This method has the

111 advantage that it can separate noncharacterized eukaryotic contamination from
112 metagenomes, and it uses multiple factors (nucleotide composition, sequence
113 homology, the presence of single-copy marker genes and coverage) to accurately
114 produce bins from individual datasets. Because we had implemented several bugfixes
115 and small improvements to the pipeline since our original analysis, we re-ran Autometa
116 on the same metagenomic assembly. Despite some minor differences, the new bins
117 were broadly similar to our previous results (Dataset S1A), with 19 bins. As before, the
118 Lv-StB bin had the highest coverage, at 1,977×, such that the constituent contigs are
119 unlikely to be repeats from lower-coverage bins. We classified the bins according to a
120 new standardized bacterial taxonomy utilized by the Genome Taxonomy Database
121 (GTDB) that minimizes polyphyletic taxa and standardizes divergence between taxa of
122 the same rank (Parks et al., 2018). Notably, the GTDB taxonomy reclassifies
123 betaproteobacteria as being under class gammaproteobacteira. By this classification, all
124 bins were in class Gammaproteobacteria, in three different orders:
125 Betaproteobacterales, Pseudomonadales and Xanthomonadales (Dataset S1B). The
126 most abundant bins were all in the family Burkholderiaceae, with the highest abundance
127 corresponding to the Lv-StB strain previously found to harbor the putative lagriamide
128 biosynthetic gene cluster (BGC) (Flórez et al., 2018). Interestingly, the average
129 nucleotide identity (ANI) of Lv-StB to the reference *B. gladioli* genome in GTDB (strain
130 ATCC 10248) is 85.7%, much lower than the 95% cutoff suggested for species
131 identifications (Goris et al., 2007) (Dataset S1B). This divergence suggests that Lv-StB
132 is a novel species in the genus *Burkholderia*, even though we previously classified it as
133 *B. gladioli* on the basis of 16S rRNA gene sequence (Flórez et al., 2018; Flórez and

134 Kaltenpoth, 2017), and therefore we refer to the strain here as “*Burkholderia* Lv-StB”.

135 Likewise, most bins were found to be novel species, with one (DBSCAN_round2_3)

136 being divergent enough to be a representative of a novel genus in the family

137 *Burkholderiaceae*. Notably, the cultured *B. gladioli* strain that we have previously

138 isolated from *L. villosa* eggs, Lv-StA (Flórez et al., 2018, 2017), was not found to be

139 present in this metagenome.

140

141 The bins obtained had a range of different sizes (Table 1), which could be due to either

142 genome reduction or poor assembly and/or binning of a larger genome, which is often

143 observed if there are many related strains in a metagenome (Miller et al., 2019). As part

144 of the binning procedure, genome completeness was estimated based on the presence

145 of 139 single-copy marker genes (Rinke et al., 2013) (Dataset S1C). However, as some

146 complete genomes of genome-reduced symbionts have low apparent completeness by

147 this measure (Miller et al., 2017, 2016b), this figure cannot be used alone to determine

148 the size of an incompletely assembled genome. Conversely, even the drastically-

149 reduced genomes of intracellular obligate insect symbionts have been found to almost

150 universally maintain certain genes that we refer to here as ‘core genes’, involved in

151 replication, transcription, protein folding/stability, tRNA modification, sulfur metabolism,

152 RNA modification and translation (McCutcheon and Moran, 2012). We would expect,

153 therefore, that a well-assembled reduced genome would contain a near complete core

154 gene set, but not necessarily the whole set of 139 single-copy marker genes.

155 Conversely, incompletely assembled genomes are likely to be missing a significant

156 number of core genes that are required even in symbionts with highly reduced

157 genomes. We examined the presence of core genes in all metagenomic bins, as well as
158 *B. gladioli* Lv-StA for comparison (Dataset S1D and Table 1). Nine bins were close in
159 size to the genome of their respective closest relative, while maintaining most core
160 genes, and are classified as “nonreduced”, and ten bins were small but also lacked a
161 significant fraction of core genes, and are classified as “incomplete”. Only the Lv-StB
162 genome can be classified as reduced, on the basis of reduced size compared to its
163 close relative (2.07 Mbp, 23.5%) and maintenance of most core genes (85.7%). This
164 bin exhibited additional features of genomes undergoing reduction, namely reduced
165 GC% compared to the *B. gladioli* reference genome (58.7% vs. 67.9%), and a
166 proliferation of pseudogenes accounting for 45.29% of the annotated ORFs (Dataset
167 S1C, S1E and Figure 1). Because of this, the Lv-StB genome exhibits a low coding
168 density (59.04%), and it also possesses a large number of ORFs containing
169 transposases (159). Both of these characteristics are hallmarks of symbionts in the
170 early stages of genome reduction, where there are high numbers of pseudogenes and
171 genome rearrangements (McCutcheon and Moran, 2012). The Lv-StB genome also
172 contains a low number of genes compared with its free-living relative, with 744 ORFs
173 that are not pseudogenes, transposases or hypothetical, versus 4,778 such genes in *B.*
174 *gladioli* Lv-StA.

175

176 **Diversity of biosynthetic gene clusters in the *L. villosa* microbiome**

177 Because we had previously isolated the non-reduced *B. gladioli* Lv-StA strain from *L.*
178 *villosa* (Flórez et al., 2018), and found it to produce protective compounds despite
179 having sporadic distribution and low abundance in field-collected beetles, we asked

180 whether BGCs were a unique feature of Lv-StB in the metagenome, or whether other
181 community members have the biosynthetic machinery for potential chemical defenses.
182 AntiSMASH (Blin et al., 2017) searches revealed a total of 105 BGCs in the
183 metagenome (Fig. 2), with variable BGC content in the bins, from zero to 566 kbp (0 to
184 14 BGCs, with 16 BGCs in the unclustered bin), while the *B. gladioli* Lv-StA genome
185 contained 1006 kbp BGCs (21 BGCs). This indicates that Lv-StB is not the only strain in
186 the egg microbiome with the potential to produce complex natural products, and many
187 strains harbor multiple BGCs. In the metagenome, bins in the family Burkholderiaceae
188 collectively contained the most BGCs by length (963 kbp), followed by a single bin in
189 family Rhodanobacteraceae (DBSCAN_round1_2, 566 kbp, Fig. 2). This distribution
190 suggests that although Burkholderiaceae appear to be an important reservoir of BGCs
191 in the *L. villosa* egg microbiome, other groups have significant biosynthetic potential.
192 Out of the 126 BGCs detected in the metagenome and in the *B. gladioli* Lv-StA genome,
193 there were 17 > 50 kbp in length predicted to produce complex nonribosomal peptides
194 or polyketides (Fig. 3). Two of these have been putatively assigned to production of the
195 antibiotic lagriene in Lv-StA (Flórez et al., 2017), and the antifungal lagriamide in Lv-StB
196 (Flórez et al., 2018), whereas five other small molecules known to be produced by Lv-
197 StA have been assigned to shorter BGCs (Dose et al., 2018; Flórez et al., 2017). That
198 15 out of the 17 largest assembled BGCs remain without characterized products
199 suggests that the majority of biosynthetic pathways in the *L. villosa* egg microbiome
200 likely codes for novel small molecule products. We compared the 126 identified BGCs
201 using BIG-SCAPE (Navarro-Muñoz et al., 2018), and found only 7 examples of BGCs
202 occurring in multiple strains, indicating that the biosynthetic potential in the metagenome

203 and *B. gladioli* Lv-StA is largely nonredundant. Taken together, this suggests that there
204 is a large amount of undefined biosynthetic potential for small molecule production in *L.*
205 *villosa* symbionts, beyond *B. gladioli* Lv-StA and *Burkholderia* Lv-StB.

206

207 **Divergence between Lv-StB and the closest free-living relative**

208 We constructed a phylogenetic tree of metagenomic bins assigned to the genus
209 *Burkholderia* as well as *B. gladioli* Lv-StA, based on 120 marker genes (Fig. 4A). This
210 showed that *Burkholderia* Lv-StB is most highly related to the *B. gladioli* clade but is
211 divergent from it. We calculated genome-wide ANI values for pairs of *Burkholderia*
212 genomes, and found *B. gladioli* strains shared between 97-100% ANI, while at most
213 *Burkholderia* Lv-StB shared 85.79% ANI with *B. gladioli* A1 (Dataset S1F). During
214 genome reduction, symbionts are known to undergo rapid evolution due to the loss of
215 DNA repair pathways (as found in the Lv-StB genome, see below) and the relaxation of
216 selection (McCutcheon and Moran, 2012), and so the divergence of Lv-StB from *B.*
217 *gladioli* may have been accelerated relative to free-living lineages. Genome-reduced
218 symbionts have often been vertically transmitted for evolutionary timescales and across
219 host speciation events, and therefore it is possible to calculate evolution rates where
220 related symbionts occur in hosts with known divergence times inferred from fossil
221 records. Such estimates in insect symbionts vary widely over three orders of magnitude,
222 but more recent ant and sharp-shooter symbiont lineages (established < 50 Mya for
223 “*Candidatus Baumannia cicadellinicola*”, BAU; *Blochmannia obliquus*, BOB; *Bl.*
224 *pennsylvanicus*, BPN and *Bl. floridanus*, BFL) show high rates of divergence per
225 synonymous site per year (dS/t) between 1.1×10^{-8} and 8.9×10^{-8} (Silva and Santos-

226 Garcia, 2015) (the divergence rates used here are found in Table S1). Because of the
227 large number of pseudogenes in the Lv-StB genome, we reasoned that it is likely to be
228 a recent symbiont, and therefore used these rates to estimate divergence times
229 between Lv-StB and *B. gladioli* A1. We found a dS of 0.5486 per site between these
230 genomes, and calculated divergence times of 6.15, 8.55, 6.93 and 49.76 My for rates
231 BFL, BPN, BOB and BAU, respectively (Table S1). We should note here that these
232 figures are very approximate, and are possibly overestimates as symbiont evolution
233 rates are likely not constant, with particularly rapid evolution occurring during lifestyle
234 transitions (Lo et al., 2016). The range of these estimated divergence times suggests
235 that the common ancestor of *Burkholderia* Lv-StB and *B. gladioli* existed after the
236 evolution of symbiont bearing structures in Lagriinae beetles (see below).

237

238 We then sought to quantify the conservation of genes in Lv-StB compared to 13 related
239 *B. gladioli* strains, by identifying homologous gene groups among the entire set of non-
240 pseudogenes in these strains with OMA (Altenhoff et al., 2018). This pipeline aims to
241 identify orthologous groups while discounting paralogs among the genes in a given set
242 of genomes (Dessimoz et al., 2005). Of the 1,388 genes in Lv-StB that are not
243 pseudogenes (Dataset S1C), 492 were not included in any OMA orthologous group
244 (see below). A crude analysis of the OMA groups in Lv-StB, *B. gladioli* Lv-StA and *B.*
245 *gladioli* A1 revealed that Lv-StB retains a small subset of groups found in both Lv-StA
246 and A1, and has few unique groups (Fig. 4B), suggesting that Lv-StB has lost many of
247 the genes conserved in *B. gladioli*. Consistent with this notion, we visualized the
248 pangenome of *B. gladioli* and Lv-StB with Roary (Page et al., 2015) (Fig. 4C) and found

249 a large number of gene clusters that are conserved in *B. gladioli*, but not Lv-StB. The
250 gene clusters that are more variable amongst *B. gladioli* are also generally not found in
251 Lv-StB. Conversely, there were gene clusters found in Lv-StB that are not present in *B.*
252 *gladioli* strains, and these clusters may have been obtained by horizontal transfer after
253 the divergence of Lv-StB, or alternatively were lost in *B. gladioli*.

254

255 Remarkably, out of the 1,149 pseudogenes detected in the Lv-StB genome, 976 were
256 hypothetical and 129 were transposases, leaving only 44 that were recognizable
257 (Dataset S1G). This set of pseudogenes included a number of important genes in the
258 categories noted to be depleted below. For instance, the DNA polymerase I gene (*polA*)
259 appears to have been disrupted by a transposase, which is now flanked by two DNA pol
260 I fragments (E5299_1120 and E5299_01122). Likewise, the *uvrC* gene (E5299_00503),
261 a component of the nucleotide excision repair system (Lin and Sancar, 1992), is also
262 present as a truncated gene adjacent to a transposase. There were also pseudogenes
263 involved in the Entner-Doudoroff and glycolysis energy-producing pathways
264 (phosphogluconate dehydratase (Carter et al., 1993) and glucokinase (Lunin et al.,
265 2004)), as well as purine biosynthesis (phosphoribosylglycinamide formyltransferase
266 (Almassy et al., 1992), phosphoribosylformylglycinamide synthase (Schendel et al.,
267 1989)). Interestingly, we found two pseudogenes that negatively regulate cell division
268 and translation. Septum protein Maf is a nucleotide pyrophosphatase that has been
269 shown to arrest cell division, especially after transformation or DNA damage
270 (Tchigvintsev et al., 2013). Deletion of the *E. coli* gene for homolog YhdE increased
271 growth rate, while overexpression decreased growth rate (Jin et al., 2015). Therefore

272 the loss of Maf in Lv-StB would be expected to increase the rate of cell division and
273 reduce the conversion of nucleotides, which it probably obtains from the host, to the
274 monophosphates. The gene for the energy-dependent translational throttle protein EttA
275 was also found to be truncated. This protein slows translation through interacting with
276 the ribosome in both the ATP- and ADP-bound forms (Boël et al., 2014; Chen et al.,
277 2014). Under energy-depleted conditions (i.e. high ADP), EttA was found to stabilize
278 ribosomes and prevent commitment of metabolic resources, and thus the deletion
279 mutant displayed reduced fitness during extended stationary phase (Boël et al., 2014).
280 However, under circumstances where the host supplies ample nucleotides, the loss of
281 *ettA* would be expected to increase translation rates.

282

283 **Degradation of primary metabolic pathways in *Burkholderia Lv-StB***

284 Lv-StB is deficient in many metabolic pathways that are complete in related *B. gladioli*
285 strains (Fig. 5), including the glyoxylate shunt (Dolan and Welch, 2018), various carbon
286 degradation pathways, mixed acid fermentation, as well as sulfur and nitrogen
287 metabolism. Although the extent of gene losses could be overestimated due to the draft
288 status of the Lv-StB genome, the pervasiveness of metabolic gaps found combined with
289 the high coverage of the genome (Dataset S1A) suggest generalized gene loss in many
290 functional categories. Lv-StB appears incapable of making any of the following
291 compounds due to the absence of several biosynthetic genes: Thiamine, riboflavin,
292 nicotinate, pantothenate, vitamin B12 and biotin. Likewise, there were deficiencies in
293 amino acid biosynthesis (Fig. S1). We predict that Lv-StB would be able to make
294 chorismate, isoleucine, leucine, ornithine, proline and threonine, but likely lacks the

295 ability to make aromatic amino acids, serine, methionine, lysine, histidine, cysteine,
296 glutamine and arginine due to the absence of several key genes in these pathways. The
297 genome of Lv-StB also lacks genes involved in chemotaxis and flagella, suggesting that
298 after the symbiont mixture is spread on eggs, the colonization of the dorsal cuticular
299 structures in the embryo (Flórez et al., 2017) does not require symbiont motility.
300 Interestingly, the Lv-StB genome includes a trimeric autotransporter adhesin (TAA)
301 related to SadA (Raghunathan et al., 2011), which is involved in the pathogenicity of
302 *Salmonella typhimurium* by aiding cell aggregation, biofilm formation, and adhesion to
303 human intestinal epithelial cells. TAAs are found in Proteobacteria and consist of
304 anchor, stalk and head domains, of which the head forms the adhesive component
305 (Linke et al., 2006). The bacterial honey-bee symbiont, *Snodgrassella alvi* is
306 hypothesized to utilize TAAs in combination with other extracellular components during
307 colonization of the host gut (Powell et al., 2016), and similar genes were identified in *S.*
308 *alvi* symbionts in bumble bees and are predicted to perform a similar role (Kwong et al.,
309 2014). Therefore, this gene may play a role in the adhesion of Lv-StB cells to *L. villosa*
310 eggs.

311
312 The Lv-StB genome is also missing several enzymes within glycolysis, most notably
313 phosphoglycerate kinase, phosphoenolpyruvate carboxykinase and others, which would
314 suggest that Lv-StB has lost the ability to perform glycolysis. The loss of glycolysis is
315 often substituted by an alternative pathway, such as the pentose phosphate or Entner-
316 Doudoroff pathway (Chen et al., 2016). This is not the case for Lv-StB, where both the
317 glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase genes appear to

318 be missing from the genome. The citrate cycle is largely complete, except that it is
319 missing pyruvate carboxylase, the enzyme that converts pyruvate to oxaloacetate.
320 However, phosphoenolpyruvate carboxylase is present in Lv-StB (E5299_00983) and
321 may alternatively be used for the production of oxaloacetate from exogenous
322 phosphoenol-pyruvate (Takeya et al., 2017) as alternative pathways for the supply of
323 oxaloacetate are also incomplete. Lv-StB is also missing all genes required to form
324 cytochrome c oxidase and cytochrome b-c complexes. However, all genes required to
325 encode NADH:quinone oxidoreductase (Complex I), succinate dehydrogenase
326 (Complex II) and cytochrome o ubiquinol oxidase are present, along with all genes
327 required for the F-type ATPase. The lack of Complex III would likely result in a
328 decreased rate of ATP production in Lv-StB as observed in fungi with alternative
329 oxidases that bypass Complexes III and IV (Duarte and Videira, 2009). Lv-StB may be
330 similar to the psyllid endosymbiont “*Candidatus Liberibacter asiaticus*”, which has lost
331 both key glycolysis and glyoxalase genes and instead relies on the scavenging of ATP
332 from the host (Jain et al., 2017).

333
334 We also found many deficiencies in both the *de novo* and salvage nucleotide pathways
335 (Fig. S2). In the pyrimidine biosynthetic pathway, genes for dihydroorotatase (*pyrC*)
336 (Porter et al., 2004) and orotate phosphoribosyl transferase (*pyrE*) (Aghajari et al.,
337 1994) were missing, suggesting that Lv-StB cannot produce orotate from *N*-
338 carbamoylaspartate, and cannot create nucleotides from free pyrimidine bases.
339 Ribonucleotide reductase (*nrdAB*) (Brignole et al., 2012) and thymidylate synthase
340 (*thyA*) (Carreras and Santi, 1995) are present, suggesting that deoxypyrimidine

341 nucleotides can be made from CTP. The deficiencies in purine synthesis were more
342 profound. The majority of the *de novo* pathway (Nelson et al., 2008) was missing
343 (*purCDEFHLMNT*, IMP dehydrogenase/*guaB*), except for adenylosuccinate lyase
344 (*purB*), adenylosuccinate synthase (*purA*) and GMP synthase (*guaA*). Lv-StB should
345 therefore be able to make AMP from IMP, and GMP from XMP (plus their deoxy
346 analogs through ribonucleotide reductase), but cannot make purines *de novo*. We were
347 also not able to find adenine phosphoribosyltransferase or hypoxanthine-guanine
348 phosphoribosyltransferase (Nelson et al., 2008), meaning that purine bases cannot be
349 salvaged to make nucleotides.

350

351 **Degradation of DNA repair pathways in *Burkholderia* Lv-StB**

352 The genome of Lv-StB is missing many genes involved in DNA repair (Fig. 5B), similar
353 to other examples of genome-reduced symbionts (McCutcheon and Moran, 2012).
354 Compared to closely-related *B. gladioli* strains, Lv-StB lacks genes in every repair
355 pathway. In particular DNA polymerase I (*polA*), used in homologous recombination,
356 nucleotide excision repair and base excision repair, is only present as two truncated
357 pseudogenes (see above). Even though *polA* is involved in many different DNA repair
358 pathways, it has been found to be nonessential in *Escherichia coli* (Gerdes et al., 2003;
359 Goodall et al., 2018), *B. pseudomallei* (Moule et al., 2014) and *B. cenocepacia* (Higgins
360 et al., 2017). In the homologous recombination pathway, Lv-StB lacks *recA*, *polA*, *ruvA*,
361 *ruvB*, *ruvC* and *recG*, all of which have been found to be essential for homologous
362 recombination in *E. coli* (Kowalczykowski et al., 1994). Likewise, Lv-StB is also missing
363 the two components of the nonhomologous end-joining pathway, *ku* and *ligD* (Pitcher et

364 al., 2007), suggesting that it cannot recover from double-strand breaks. In the base
365 excision repair pathway, Lv-StB lacks several DNA glycosylases which are responsible
366 for removing chemically modified bases from double-stranded DNA (McCullough et al.,
367 1999). Some of these losses simply reduce redundancy, but it has also lost
368 nonredundant glycosylases *mutM* and *mug*. The former recognizes 2,6-diamino-4-
369 hydroxy-5-*N*-methylformamidopyrimidine (Fapy) and 8-hydroxyguanine (Boiteux et al.,
370 1992), while the latter recognizes G:U and G:T mismatches (Barrett et al., 1998) as well
371 as epsilonC (Saparbaev and Laval, 1998), 8-HM-epsilonC (Hang et al., 2002), 1,N(2)-
372 epsilonG (Saparbaev et al., 2002) and 5-formyluracil (Liu et al., 2003). Finally, in the
373 mismatch repair system, Lv-StB is missing *mutS*, which is required for the recognition of
374 mismatches in methyl-directed repair (Schofield and Hsieh, 2003). In summary, Lv-StB
375 is likely to be completely incapable of nonhomologous end-joining, homologous
376 recombination, and mismatch repair, while being impaired in nucleotide excision repair
377 and base excision repair due to the loss of DNA polymerase I and several DNA
378 glycosylases.

379

380 **Timing of horizontal acquisition of defensive and other genes in the Lv-StB
381 genome**

382 We then attempted to identify genes in the *Burkholderia* Lv-StB genome that are likely
383 to have been acquired by horizontal gene transfer (HGT). A total of 497 non-
384 pseudogenes were identified as unique to Lv-StB, and following removal of genes with
385 no matches against the BLAST NR database, and removal of genes that were
386 homologous to other *B. gladioli* genomes not included in this study, there were 148

387 genes that appeared to be more closely related to species other than *B. gladioli*, that
388 have potentially been acquired through horizontal transfer (Figure 6A). Most genes
389 appear to have been obtained from gammaproteobacteria and alphaproteobacteria, with
390 a small number from firmicutes, cyanobacteria and phages (see Dataset S1H). The
391 distribution is consistent with the notion that horizontal transfer occurs most frequently
392 between closely-related species (Gillings, 2017). In particular, Burkholderiaceae was
393 the most frequent apparent donor amongst gammaproteobacterial proteins.
394 Interestingly, the alphaproteobacterial genus *Ochrobactrum* (family Brucellaceae in the
395 NCBI taxonomy, Rhizobiaceae in GTDB) was a major putative gene donor. This genus
396 includes several symbionts of termites (Mathew et al., 2012), army worms (Jones et al.,
397 2019), weevils (Montagna et al., 2015) and leeches (McClure et al., 2019; Rio et al.,
398 2009). In previous 16S amplicon investigations of *Lagria* beetles, *Ochrobactrum* were
399 often found (Flórez et al., 2017; Flórez and Kaltenpoth, 2017) (Fig. S3), suggesting that
400 the donors of these genes could have also been associates of *L. villosa*. *Ochrobactrum*
401 OTUs account for 5–20% of 16S rRNA gene reads, but this genus was not observed in
402 the shotgun metagenome. However, disparities between 16S and shotgun metagenome
403 abundances are not uncommon due to variable 16S copy number, primer and
404 sequencing biases (Chen et al., 2017; Delforno et al., 2017). Based on the evidence for
405 putatively horizontally transferred genes, we asked whether these could have
406 contributed to the dominance of Lv-StB in *L. villosa*, and set out to estimate the timings
407 of horizontal transfer events.
408

409 Horizontally transferred genes are often detected on the basis of nucleotide composition
410 differing from other genes in the genome (Becq et al., 2010). Such genes initially exhibit
411 nucleotide composition consistent with the donor genome, which over time will
412 eventually normalize to the composition of the recipient genome (Lawrence and
413 Ochman, 1997). The rate of this “amelioration” process ($\Delta\text{GC}^{\text{HT}}$) has been modeled by
414 Lawrence and Ochman (Lawrence and Ochman, 1997), based on the substitution rate
415 (S), the transition/transversion ratio (κ) and GC content of both the recipient genome
416 (GC^{EQ}) and putatively horizontally transferred genes (GC^{HT}), according to equation 1.
417 By iterating this equation repeatedly until GC^{HT} equals GC^{EQ} , the time required from the
418 present day to complete amelioration can be estimated. If the GC content of the donor
419 genome is known, then equation 1 can be used in reverse to estimate the time since
420 introgression. However, if the donor GC content is not known, then the differing
421 selection pressures on the first, second and third codon positions can be exploited to
422 estimate the introgression time. Because these positions have different degrees of
423 amino acid degeneracy, they are subject to different degrees of selection, and therefore
424 they ameliorate at different rates. As a consequence, Lawrence and Ochman (Lawrence
425 and Ochman, 1997) found that for genes in the process of amelioration, the relationship
426 between overall GC content and the GC content at individual codon positions seen in
427 genes at equilibrium (Lawrence and Ochman, 1997; Muto and Osawa, 1987) (Equations
428 2, 3 and 4) does not hold. So if equation 1 is applied in reverse separately for each
429 codon position, the time since introgression can be inferred at the iteration yielding the
430 minimum square difference from equations 2–4. Application of equation 1 also yields an
431 estimate for the original donor GC.

432

433 $\Delta GC^{HT} = S \times \frac{\kappa + \frac{1}{2}}{\kappa + 1} \times [GC^{EQ} - GC^{HT}]$ (1)

434

435 $GC_{1st} = 0.615 \times GC_{Genome} + 26.9$ (2)

436

437 $GC_{2nd} = 0.270 \times GC_{Genome} + 26.7$ (3)

438

439 $GC_{3rd} = 1.692 \times GC_{Genome} - 32.3$ (4)

440

441 We identified groups of consecutive genes in the putative HGT set that could have been
442 acquired together, and used the above method to estimate their introgression time
443 (Dataset S1H). Out of the 18 identified gene groups, 7 were found to have atypical GC
444 content (defined by Lawrence and Ochman (Lawrence and Ochman, 1997) as either
445 >10% lower or >8% higher GC% in first or third codon positions compared to the
446 genome as a whole). The method above was used to estimate time of introgression for
447 each gene group, using the BFL, BPN, BOB and BAU divergence rates (see above, Fig.
448 6B, Dataset S1H). The oldest horizontal transfer was found to be group “hypo4” (1.79–
449 14.36 Mya), representing two phage proteins, and the next oldest is the lagriamide BGC
450 and neighboring genes (*lga*, 0.8–6.42 Mya). The *lga* BGC is predicted to have come
451 from a high-GC organism, with an original GC content of 72%. The closest relatives of
452 many of the *lga* genes are found in *Pseudomonas* strains, which typically do not have
453 GC contents this high. However, as BGCs are often thought to be horizontally
454 transferred (Jensen, 2016), *Pseudomonas* may not be the direct source of *lga* in Lv-StB.

455

456 Several other HGT gene groups were predicted to be involved in transport
457 (sugar_transp, bmp, ext, dinj, tonb, tonb2), with predicted substrates including purine
458 nucleosides, trehalose and vitamin B12. Of these, the sugar_transp and bmp groups
459 predicted to be involved in trehalose and purine import, respectively, are relatively old
460 (0.41–3.31 My and 0.27–2.16 My), and the groups likely involved in B12 import (dunj,
461 tonb, tonb2) are estimated to be <5,000 y old. Trehalose is the most abundant
462 component of insect hemolymph, and in a leaf beetle system was found to be
463 provisioned by the host to its genome-reduced symbiont (Bauer et al., 2019). We also
464 found HGT gene groups putatively involved in heat shock response (hsp20, 0.05–0.4
465 Mya), and DNA repair (ura, rep, ochro). In the latter category was a uracil-DNA
466 glycosylase (in ura, 0.21–1.68 Mya) used in base excision repair in case of
467 deamination, RecB used in homologous recombination (in rep, 0.01–0.055 Mya)
468 (Nelson et al., 2008) and YedK (in ochro, 0.01-0.035 Mya), a protein used in the SOS
469 response that binds to abasic sites in single strand DNA (Mohni et al., 2019). The
470 transferred transport functions and DNA repair proteins match functional categories that
471 are currently lacking genes due to genome reduction (see above), and therefore the
472 transfers could have been contemporaneous with the reduction process, acting as
473 compensatory mechanisms for lost functions.

474

475 One putative HGT toxin that is unique to Lv-StB in the metagenome and amongst *B.*
476 *gladioli* strains is zonular occludens toxin (zot, estimated as acquired <5,000 ya). The
477 zot gene is responsible for the production of the zonula occcludens toxin, a virulence

478 factor which was initially identified in *Vibrio cholera* and was found to lead to the
479 disassembly of intracellular tight junctions, leading to increased permeability of
480 mammalian epithelium (Di Pierro et al., 2001). Co-localized with the predicted zot gene
481 was a gene encoding DUF2523, which we found often accompanied zot in searches of
482 the STRING database (Szklarczyk et al., 2017). Zot proteins have been identified in
483 several strains of *Campylobacter* and have been shown to elicit an inflammatory
484 response in intestinal epithelial cells (Liu et al., 2016; Mahendran et al., 2016).
485 Furthermore, a significant correlation was found between the presence of the Zot
486 protein and hyper-invasive strains of *Neisseria meningitidis* (Joseph et al., 2011).
487 Potentially, zot may aid in the infection of the *L. villosa* embryonic structures through
488 increasing permeability across the outer layers of the egg, although this remains
489 speculative.

490

491 CONCLUSIONS

492 In the 1920s it was observed (Jürgen Stammer, 1929) that beetles in the *Lagria* and
493 *Cerogria* genera contained structures now known to harbor *Burkholderia* symbionts in *L.*
494 *villosa* and *L. hirta* (Flórez and Kaltenpoth, 2017). Other genera in the Lagriinae
495 subfamily, such as *Adynata* and *Arthromacra*, do not contain these structures.
496 According to the tree found at timetree.org (Kumar et al., 2017), *Lagria* and *Cerogria*
497 diverged 55 Mya, and the common ancestor of *Lagria*, *Cerogria* and *Adynata* existed 82
498 Mya (this region of the tree utilizes data from Kergoat et al. (Kergoat et al., 2014)).
499 Based on these estimates, the symbiont-bearing structures in *Lagria* and *Cerogria* likely
500 evolved between 82 and 55 Mya. Our analysis suggests that the divergence of

501 *Burkholderia* Lv-StB from *B. gladioli* occurred after that point (6.15–49.76 Mya). During
502 that time, the genome of *Burkholderia* Lv-StB became reduced, and it is likely
503 dependent on the host due to deficiencies in energy metabolism and nucleotide
504 biosynthesis. Notably, the profound metabolic insufficiencies and incomplete DNA repair
505 pathways in Lv-StB are typical of symbionts with smaller genomes, such as “Ca.
506 *Endolissoclinum faulkneri*”, an intracellular tunicate symbiont with a 1.48 Mbp genome
507 and a similar number of genes (783) (Kwan et al., 2012), estimated to have been a
508 symbiont for at least 6-31 My (Kwan and Schmidt, 2013). While the presence of
509 *Burkholderia* Lv-StB and its defensive compound lagriamide has been shown to
510 decrease the rate of fungal egg infection (Flórez et al., 2018), the symbiont is not
511 essential for beetle reproduction (Flórez et al., 2017). Therefore, the relationship is
512 facultative from the perspective of the host, while Lv-StB is in the process of becoming
513 dependent on *L. villosa*. A central question we aimed to answer in this work was how
514 the genome of Lv-StB became reduced, when *L. villosa* appears to maintain multiple
515 other nonreduced *Burkholderia* and other symbionts.

516
517 It is clear from previous work that the *Lagria* symbionts related to *B. gladioli* evolved
518 from plant associated strains (Flórez and Kaltenpoth, 2017), likely transmitted to the
519 insects from the plant environment. The probable advantage of this early association for
520 the hosts was protection of eggs from infection, through small molecules made by its
521 microbiome. The strains characterized here, as well as the previously isolated Lv-StA,
522 were found to contain ample biosynthetic potential, and both Lv-StA and Lv-StB
523 produce antifungal compounds that protect eggs from fungal infection in lab

524 experiments (Flórez and Kaltenpoth, 2017). Yet Lv-StA is only found sporadically in the
525 field as a minor component of the microbiome (Flórez et al., 2018). It is probably
526 advantageous for *Lagria* beetles to maintain a pool of facultative symbionts with
527 different biosynthetic capability, to allow for fast adaptation to different environmental
528 infection pressures (Flórez et al., 2015). However, there may be less selection pressure
529 on a facultative symbiont to stay associated with its host if it can also survive in the
530 environment and infect plants.

531
532 The foundational event in the establishment of the symbiosis between Lv-StB and *L.*
533 *villosa* was likely the acquisition of the *Iga* pathway, which putatively produces
534 lagriamide, in a non-reduced ancestor of Lv-StB (Flórez et al., 2018). We place this as
535 the first event for four reasons. First, the *Iga* BGC is almost the oldest detectable
536 horizontal transfer that survives in the reduced genome of Lv-StB. Second, we found
537 little evidence that Lv-StB is capable of making metabolites of use to the host, indicating
538 that the symbiosis is likely not based on nutrition. *L. villosa*'s diet of plant leaves may be
539 nitrogen poor, with hard to digest plant cell wall components (Salem et al., 2017), but
540 we didn't find polysaccharide degrading pathways or extensive biosynthesis of essential
541 amino acids in the Lv-StB genome. Therefore, the *Iga* BGC is the oldest remaining
542 feature that potentially increases host fitness. Third, the reduced coding density seen in
543 the Lv-StB genome may be indicative of a recent transitional event (Lo et al., 2016),
544 such as strict host association or a move to vertical transmission. Fourth, even though
545 we found genes missing from all DNA repair pathways, which is thought to be a driver
546 for increased AT content in symbiont genomes (McCutcheon and Moran, 2012), and

547 increase in AT may have an adaptive component that reduces the metabolic costs of
548 symbionts (Dietel et al., 2019), the GC content of the Lv-StB genome is not very
549 different from free-living *B. gladioli* strains, when compared to other “transitional”
550 symbionts. For instance, “*Candidatus Pantoea carbekii*” has a reduced genome and like
551 Lv-StB lacks full-length DNA polymerase I (Kenyon et al., 2015). This strain has a GC
552 content almost 30% lower than its closest freelifing relatives (Lo et al., 2016), while the
553 genome of Lv-StB has a GC content ~10% lower than its closest relatives. Therefore,
554 we propose that loss of DNA repair pathways and other genome degradation events in
555 Lv-StB occurred very recently, after the acquisition of *Iga*.

556
557 It can be envisioned that *Iga* provided a sustained survival advantage in an environment
558 where lagriamide consistently reduced egg fungal infections, and there was positive
559 selection on beetles that vertically transmitted *Iga*-bearing symbionts. In *L. villosa*
560 symbionts are stored extracellularly, and they are spread onto the outside of eggs as
561 they are laid. According to observations in the congeneric species *L. hirta*, the
562 symbionts first enter through the egg micropyle to reach the embryonic organs where
563 they are housed throughout larval development (Jürgen Stammer, 1929). It is thus likely
564 that only a few of the cells are vertically transmitted by colonizing these structures,
565 potentially providing the population bottlenecks that could have caused initial
566 accumulation of deleterious mutations that started the process of genome reduction.
567 Meanwhile, loss of certain proteins limiting growth rate (see above) may have been
568 selected through increased Lv-StB populations and compound production. It is unknown
569 to what extent Lv-StB is genetically isolated in the larval or adult host, but we found

570 evidence of ongoing horizontal transfer events in the recent past, presumably through
571 contact with a complex microbiome associated with *L. villosa* egg surfaces. These
572 horizontal gene transfers likely happened concurrently with the ongoing genome
573 reduction process and may have been compensatory for gene losses (see above).
574 There is some precedent for extracellular symbionts with profoundly reduced genomes
575 (Kaiwa et al., 2014; Kikuchi et al., 2009; Nikoh et al., 2011; Salem et al., 2017). For
576 instance, the leaf beetle *Cassida rubiginosa* harbors a symbiont with the smallest
577 genome of any extracellular organism (0.27 Mbp), “*Candidatus Stammera capleta*”,
578 which provides pectinolytic enzymes to help break down the host’s leafy diet (Salem et
579 al., 2017). In many of these cases, symbionts are stored as isolated monocultures
580 within specialized structures in adult hosts, while vertical transmission is assisted by
581 packaging symbiont cells in protective “caplets” attached to eggs (Salem et al., 2017), a
582 “symbiont capsule” encased in chitin (Nikoh et al., 2011), or secreted in a galactan-
583 based jelly ingested by hatched larvae (Kaiwa et al., 2014), although reduced-genome
584 symbionts have also been known to be vertically transmitted by simple egg surface
585 contamination (Kikuchi et al., 2009), as in *L. villosa*. Because these examples are
586 advanced cases of genome reduction, it would be difficult to determine whether
587 horizontal transfer events occurred before or during genome reduction, and none have
588 been noted. The complexity of the *L. villosa* microbiome appears to be different, as it
589 afforded ample opportunity for horizontal gene transfer even while the genome of Lv-
590 StB was actively undergoing reduction.

591

592 Horizontal acquisition of genes has been observed in two types of reduced genome
593 symbiont, eukaryotic parasites in the genus *Encephalitozoon* (Pombert et al., 2012),
594 and Acetobacteraceae strains associated with the gut community of red carpenter ants
595 (Brown and Wernegreen, 2019). In both these cases symbiont genomes were similar in
596 size to Lv-StB (~2 Mbp), but with far greater coding density and fewer pseudogenes.
597 Furthermore, both *Encephalitozoon* and Acetobacteraceae strains were culturable,
598 suggesting that they are facultative symbionts in a less advanced state of genome
599 reduction compared to Lv-StB. The genome of Lv-StB appears to be different from
600 these examples, because there is evidence of recent horizontal transfers, even as
601 genes required for homologous recombination are currently missing. Either the loss of
602 homologous recombination was very recent, or such transfers could have occurred in a
603 RecA-independent manner. For example, plasmids could have been transferred into Lv-
604 StB cells, followed by the RecA-independent transposition of genes to the chromosome
605 (Harmer and Hall, 2016; Zupancic et al., 1983).

606

607 It is unclear whether Lv-StB will continue on the path of genome reduction to become
608 drastically reduced with a <1 Mbp genome. Where symbionts are required for host
609 survival and are genetically isolated within host cells or specialized structures, such a
610 process appears to be irreversible and unstoppable (Bennett and Moran, 2015; Moran,
611 1996). However, a number of alternate fates could be envisioned for Lv-StB. With a
612 complex microbiome, if ongoing gene losses in Lv-StB reduce its fitness past a certain
613 point, then it could be replaced by another strain, potentially accompanied by horizontal
614 transfer of the *lga* pathway to a less reduced genomic chassis. Alternatively, horizontal

615 transfers of genes to Lv-StB could lead to an equilibrium of gene loss and gain.
616 Interestingly, it appears that up until the present time horizontal transfer has not
617 occurred fast enough to prevent widespread loss of metabolism and DNA repair in the
618 Lv-StB genome. The host could also evolve strategies to maintain an increasingly
619 genome-reduced Lv-StB, perhaps by selective extracellular partitioning and packaging
620 for vertical transfer similar to the examples outlined above. However, it is unclear
621 whether such an evolutionary path would be favorable, given that the co-infection of
622 multiple BGC-bearing symbiont strains could be advantageous in environments with
623 variable pathogen pressures.

624

625 In summary, evidence gathered here suggests that the introduction of the lagriamide
626 BGC initiated genome erosion of Lv-StB, potentially through selection of beetles that
627 transferred the symbiont vertically, leading to a population structure with frequent
628 bottlenecks. Simultaneous advantageous gene acquisitions may have enabled the
629 preferential survival of Lv-StB and its dominance in the adult host and the egg surface.

630

631

632 MATERIALS AND METHODS

633 **Sequencing and assembly of *Burkholderia gladioli* Lv-StA genome.** Genome
634 sequencing of the isolated *B. gladioli* Lv-StA strain was carried out using PacBio with
635 Single Molecule, Real-Time (SMRT) technology. For *de novo* assembly (carried out by
636 Eurofins Genomics), the HGAP pipeline was used (Heirarchical Genome Assembly
637 Process). Briefly, a preassembly of long and accurate sequences was generated by

638 mapping filtered subreads to so-called seed reads. Subsequently, the Celera assembler
639 was used to generate a draft assembly using multi-kb long reads, which in this case
640 rendered full genome closure. Finally, the Quiver algorithm was used to correct inDel
641 and substitution errors by considering the quality values from the bas.h5 files.

642

643 **Metagenomic binning and annotation.** Metagenomic assembly files were clustered
644 into putative genomic bins using Autometa (Master branch - commit bbcea30) (Miller et
645 al., 2019). Contigs with lengths smaller than 3,000bp were excluded from the binning
646 process and a taxonomy table was produced. Contigs classified as bacterial were
647 further binned into putative genomic bins using run_autometa.py. Unclustered contigs
648 were recruited into clusters using ML_recruitment.py. Results were summarized using
649 cluster_process.py. Resultant genome bins were compared to earlier versions (Flórez et
650 al., 2018) using Mash version 2.1.1 (Ondov et al., 2016) which hashes genomes to
651 patterns of k -mers (sketching) allowing for rapid distance calculations between two
652 sketches. All bins were sketched and distances were computed in a pairwise fashion.
653 Pairwise distances were visualized in R as a dendrogram and enabled the
654 determination of equivalent old and updated putative genome bins between analyses.
655 The updated putative genomic bins were annotated using Prokka version 1.13
656 (Seemann, 2014), with genbank compliance enabled. Reference genomes downloaded
657 from NCBI were similarly annotated with Prokka in order to maintain consistency
658 between datasets. Amino acid sequences of open-reading frames (ORFs) were further
659 annotated using DIAMOND blastp version 0.9.21.122 (Buchfink et al., 2015) against the
660 diamond formatted NR database. The search was limited to returning a maximum of 1

661 target sequence and the maximum number of high-scoring pairs per subject sequence
662 was set to 1. Results were summarized in BLAST tabular format with qseqid (Query
663 gene ID), stitle (aligned gene ID), pident (Percentage of identical matches), evalue
664 (Expected value), qlen (Query sequence length) and slen (aligned gene sequence
665 length) as desired parameter output. Pseudogenes were identified by finding Lv-StB
666 genes that were more than 20% shorter than their respective BLAST matches. This
667 criteria has been used previously to identify pseudogenes (Kwan and Schmidt, 2013;
668 Lerat and Ochman, 2005).

669
670 Coding density was calculated as the sum of all protein coding sequences (coding
671 sequence) as a percentage of the sum of all contigs (total sequence). In cases where
672 protein coding genes were found to overlap, the length of the overlap region was
673 counted only once. This calculation was performed for all binned genomes, on both
674 initial datasets (genbank files generated during Prokka annotations) and edited datasets
675 where pseudogenes had been removed. For the identification and count of genes
676 encoding transposases and hypothetical proteins, protein-coding gene amino acid files
677 (*.faa) containing Prokka annotations were parsed for gene descriptions containing
678 “transposase” and “hypothetical” strings.

679
680 **Taxonomic classification of genome bins.** Putative genome bins clustered from the
681 *L. villosa* metagenomic dataset were taxonomically classified using GTDB-Tk v0.2.2
682 (reference database gtdbtk.r86_v2) with default parameters (Parks et al., 2018). GTDB-
683 Tk identifies and aligns 120 bacterial marker genes per genome before calculating the

684 optimal placement of the respective alignments in the pre-computed GTDB-Tk
685 reference tree which consists of 94,759 genomes (Dataset S1B). A species was
686 assigned to a genome if it shared 95% or more ANI with a reference genome.

687

688 **Identification of “core” genes.** The set of “core” genes generally found in even the
689 most reduced symbiont genomes was taken from Table 2 of McCutcheon and Moran
690 2012 (McCutcheon and Moran, 2012). GFF files produced for *B. gladioli* Lv-StA and the
691 metagenomic bins by Prokka were searched for the following gene symbols: 'dnaE',
692 'dnaQ', 'rpoA', 'rpoB', 'rpoC', 'rpoD', 'groL', 'groS', 'dnaK', 'mnmA', 'mnmE', 'mnmG',
693 'sufS', 'sufB', 'sufC', 'iscS', 'iscA', 'iscU', 'rluA', 'rluB', 'rluC', 'rluD', 'rluE', 'rluF', 'infA', 'infB',
694 'infC', 'fusA', 'tsf', 'prfA', 'prfB', 'frr', 'def', 'alaS', 'gltX', 'glyQ', 'ileS', 'metG', 'pheS', 'trpS',
695 'valS', 'rpsA', 'rpsB', 'rpsC', 'rpsD', 'rpsE', 'rpsG', 'rpsH', 'rpsI', 'rpsJ', 'rpsK', 'rpsL', 'rpsM',
696 'rpsN', 'rpsP', 'rpsQ', 'rpsR', 'rpsS', 'rplB', 'rplC', 'rplD', 'rplE', 'rplF', 'rplK', 'rplM', 'rplN',
697 'rplO', 'rplP', 'rplT', 'rplV', 'rpmA', 'rpmB', 'rpmG', 'rpmJ', 'tRNA-Met', 'tRNA-Gly', 'tRNA-
698 Cys', 'tRNA-Phe', 'tRNA-Lys', 'tRNA-Ala', 'tRNA-Glu', 'tRNA-Pro', 'tRNA-Gln', 'tRNA-Ile'.
699 The presence of single or multiple examples of these genes per genome/bin was
700 tabulated in excel to produce Dataset S1D, and the percentage of the core gene set
701 found in a genome/bin was used for Table 1.

702

703 **Annotation and analysis of BGCs.** Putative biosynthetic gene clusters were identified
704 in all binned genomes using the AntiSMASH (Blin et al., 2019) docker image (Image ID:
705 8942d142d9ac). Entire genome HMMer analysis was enabled, and identified clusters
706 were compared to both antiSMASH-predicted clusters, the MIBiG database and

707 secondary metabolite orthologous groups. Similarities between identified putative
708 biosynthetic gene clusters were assessed using BiG-SCAPE version 20181005
709 (Navarro-Muñoz et al., 2018) in “glocal” mode.

710

711 **Construction of multilocus species tree.** Genomes of *Burkholderia* Lv-StB, *B. gladioli*
712 Lv-StA and binned genomes taxonomically classified within the *Burkholderia* genus:
713 DBSCAN_round6_14, DBSCAN_round6_18 and DBSCAN_round4_0, were uploaded to
714 the AutoMLST website (Alanjary et al., 2019). A concatenated species tree was
715 constructed in *de novo* mode, with default options as well as the IQ-TREE Ultrafast
716 Bootstrap analysis and ModelFinder options enabled.

717

718 **Calculation of average nucleotide identities.** The average nucleotide identities (ANIs)
719 of *Burkholderia* Lv-StB and *B. gladioli* were calculated in a pairwise manner using
720 FastANI (Jain et al., 2018) against 45 *Burkholderia* reference genomes downloaded
721 from NCBI. A total of 13 genomes shared over 85% ANI (Dataset S1H). These
722 genomes were all identified as *B. gladioli* species and were used in downstream
723 analyses.

724

725 **Quantification of divergence between *Burkholderia* Lv-StB and *B. gladioli* A1.**
726 Orthologous protein sequences were identified in non-pseudogene sequence files of
727 *Burkholderia* Lv-StB and 13 closely related genomes (identified through the ANI
728 analyses: *B. gladioli* Lv-StA, *B. gladioli* A1, *B. gladioli* UCDUG, *B. gladioli*
729 FDAARGOS_389, *B. gladioli* ATCC25417, *B. gladioli* Co14, *B. gladioli* SN82F6, *B.*

730 *gladioli* ATCC10248, *B. gladioli* NBRC13700, *B. gladioli* FDAARGOS_188, *B. gladioli*
731 MSMB1756, *B. gladioli* BSR3, *B. gladioli* KACC11889) using OMA version 2.2.0
732 (Altenhoff et al., 2018). A subset (797 groups) of the resultant orthologous groups (OGs)
733 was identified which included genes from all 14 genomes used in the analysis. Each set
734 of OG sequences were aligned using MUSCLE v3.8.31 (Edgar, 2004) and
735 corresponding nucleotide files were extracted and aligned against the amino acid
736 sequences using the PAL2NAL docker image (Image ID: ce3b1d7d83ab) (Suyama et
737 al., 2006) using codon table 11 and specifying no gaps with paml as the output format.
738 The resultant paml files were used to estimate pairwise dS (synonymous divergence
739 rate), dN (non-synonymous divergence rate) and kappa (transition/transversion ratio)
740 between individual genes per orthologous group with codeml (Yang, 2007) in the
741 PAL2NAL package. The following parameters were specified in the control file: runmode
742 = -2 (pairwise), model = 0 (one) fix_kappa = 0 (kappa to be estimated), fix_omega = 0
743 (estimate omega) where omega is the dN/dS ratio, with initial omega set to 0.2. Any
744 orthologous gene sets that included genes that gave a dS value over 3 were removed
745 from the analysis (Yang, 2014). Individual sequences from remaining OGs were then
746 gathered into genome-specific files (i.e all Lv-StB genes in all OGs were moved into an
747 ordered Lv-StB.faa/.ffn file). Stop codons were removed from each nucleotide
748 sequence. Sequences per genome were then concatenated to produce a single
749 sequence per genome. The concatenated amino acid sequences and corresponding
750 nucleotide sequences were aligned against one another using PAL2NAL as performed
751 for individual genes. Pairwise estimations of dS, dN and kappa were calculated as
752 before using codeml. Additionally, the concatenated genes were analysed a second

753 time using an alternative control file, in which the model was set to 2. The likelihood
754 ratio test value between pairwise null and alternative likelihood scores was calculated (
755 $2 \times \text{Alt_lnl} - \text{Null_lnl}$) for Lv-StB relative to the 13 reference genomes and found to be 0 in
756 all cases indicating that the omega (dN/dS) ratio was consistent between Lv-StB and
757 the reference genomes. Individual dS values were used to estimate divergence
758 between Lv-StB and the 13 reference genomes using divergence rates estimated by
759 Silva and Santos-Garcia (Silva and Santos-Garcia, 2015) (Table S1) in the equation:
760 Age of divergence (Mya) = dS ÷ divergence rate x 1,000,000. As Lv-StB shared the
761 greatest ANI with *B. gladioli* A1, the kappa value found between these two genomes
762 (7.03487) was used for amelioration estimates.

763

764 **Pangenome analysis.** To assess the pangenome of Lv-StB and other *B. gladioli*
765 genomes, GFF files generated by Prokka were analysed using Roary (Page et al.,
766 2015) which identifies core and accessory genes per genome. Concatenation and
767 alignment of orthologous genes was enabled in Roary and used to build a phylogenetic
768 tree with FastTree version 2.1.10 (Price et al., 2010). The resultant phylogenetic tree
769 and presence/absence matrix of genes in all genomes were visualized with the
770 roary_plots.py script. Additionally, non-pseudogenes of all genomes were annotated
771 against the KEGG database (Kanehisa et al., 2019; Kanehisa and Goto, 2000) using
772 kofamscan (Aramaki et al., 2019) with output in mapper format. An overview of the
773 completeness of general metabolic pathways was visualized using KEGG-Decoder
774 (Graham et al., 2018) with kofamscan annotations. For specific pathways of interest
775 (amino acids, DNA repair, nucleotide de novo biosynthesis), presence/absence

776 matrices of genes per KEGG pathway entry were visualized in R version 3.6.0 using the
777 *tidyverse*, *ggplot2* and *viridis* libraries.

778

779 **Identification of genes putatively acquired by horizontal transfer.** All amino acid
780 sequence files of non-pseudogenes of all genomes used in the ANI analysis (*B. gladioli*
781 Lv-StA and 45 *Burkholderia* reference genomes) were concatenated and converted into
782 a DIAMOND BLAST (Buchfink et al., 2015) database (build 125). The amino acid
783 sequence files of non-pseudogenes in Lv-StB were then searched against this
784 database. All genes that had no significant hit, or a significant hit but with a shared
785 percentage of less than 50% were considered “unique” to Lv-StB. Non-pseudogenes of
786 Lv-StB that were not found to have an ortholog in the OMA analysis were used to
787 validate this list. These “unique” genes were then compared to the NR database using
788 DIAMOND blastp (as described above) and any genes that had no significant hit were
789 removed from the “unique” set of genes. Manual inspection of the remaining genes
790 resulted in the removal of any genes that were closely related to *B. gladioli* genes (i.e.
791 found within *B. gladioli* genomes other than the ones investigated here). The remaining
792 unique genes were henceforth considered as gene potentially acquired via horizontal
793 transfer. This list was expanded with other genes within Lv-StB, for which homologs in
794 *Burkholderia* genomes could be found, but the closest match against the NR database
795 belonged to a different genus. For example, E5299_02249 of the “addic” group shared
796 53.1% sequence identity with a gene from *B. contaminans* strain LMG 23361 but shares
797 a higher sequence identity of 96.9% with *Ochrobactrum pilosum*.

798

799 **De-amelioration of putatively horizontally transferred genes.** The method of
800 Lawrence and Ochman (Lawrence and Ochman, 1997) was implemented in Python and
801 is available at https://bitbucket.org/jason_c_kwan/age_horizontal_transfers.py. The
802 script takes as input 1. an in-frame nucleotide FASTA file containing the sequences of
803 putatively horizontally transferred genes, 2. an in-frame nucleotide FASTA file
804 containing a comparison set of gene sequences from the genome, 3. a synonymous
805 mutation rate in substitutions per 100 sites per million years, 4. a nonsynonymous
806 mutation rate in substitutions per 100 sites per million years, 5. a transition/transversion
807 ratio (κ), 6. a step time in millions of years, and 7. a maximum time to iterate to. The
808 script outputs GC content of each codon position (plus overall GC) at each timepoint,
809 and reports the estimated age of the gene cluster as corresponding to the iteration with
810 the smallest sum of squared deviations from equations 2–4. The substitution rates used
811 in our calculations were half of the divergence rates estimated by Silva and Santos-
812 Garcia (Silva and Santos-Garcia, 2015), BAU: synonymous 0.55, nonsynonymous 0.05;
813 BOB: synonymous 3.95; nonsynonymous 0.26; BPN: synonymous 3.2, nonsynonymous
814 0.28; BFL: synonymous 4.45, nonsynonymous 0.395. A value of 7.0348 was used for κ ,
815 previously calculated for *Burkholderia* Lv-StB and *B. gladioli* A1 (see above). A step
816 time of 0.005 My and a maximum time of 50 My was used in all calculations. The
817 comparison gene set included only non-pseudogenes that were not identified as
818 putative horizontally transferred genes.
819
820 **Microbial community analysis.** 16S rRNA amplicon sequence datasets analysed via
821 oligotyping previously (Flórez et al., 2018) were re-analysed using Mothur v.1.40.3

822 (Schloss et al., 2009). Reads shorter than 200bp, or containing ambiguous bases or
823 homopolymeric runs longer than 7 bases were removed from the dataset. Chimeric
824 sequences were identified using VSEARCH (Rognes et al., 2016) and removed from
825 the dataset. Reads were taxonomically classified against the Silva database (version
826 132) and all reads classified as unknown, eukaryotic, mitochondrial or as chloroplasts
827 were removed from the dataset. Reads were aligned using the Silva database (v. 132)
828 as reference and clustered into operational taxonomic units (OTUs) at a distance of
829 0.03: an approximation to bacterial species. Counts of OTUs per sample were
830 generated and the top 10 most abundant OTUs were plotted (Figure S3). The top 50
831 most abundant OTUs were queried against the “nt” nucleotide database using blast for
832 taxonomic classification.

833

834 **Data availability.** The complete *Burkholderia gladioli* Lv-StA genome, the draft
835 assembly of the *Burkholderia* Lv-StB genome and other bacterial metagenomic bins will
836 be deposited in GenBank, and the respective accession numbers will be included in the
837 accepted version of this manuscript.

838

839 **ACKNOWLEDGMENTS**

840 The authors wish to thank Jason Peters and Marc Chevrette (both UW-Madison) for
841 helpful comments which improved the manuscript. The authors acknowledge funding
842 from the Gordon and Betty Moore Foundation (MMI-6920, KLM). This research was
843 performed in part using the computer resources and assistance of the UW-Madison
844 Center for High Throughput Computing (CHTC) in the Department of Computer

845 Sciences. The CHTC is supported by UW-Madison, the Advanced Computing Initiative,
846 the Wisconsin Alumni Research Foundation, and Wisconsin Institutes for Discovery,
847 and the National Science Foundation and is an active member of the Open Science
848 Grid, which is supported by the National Science Foundation and the U.S. Department
849 of Energy's Office of Science.

850

851 **COMPETING INTERESTS**

852 The authors disclose no competing interests.

853 **REFERENCES**

854 Aghajari N, Jensen KF, Gajhede M. 1994. Crystallization and preliminary X-ray
855 diffraction studies on the apo form of orotate phosphoribosyltransferase from
856 *Escherichia coli*. *J Mol Biol* **241**:292–294.

857 Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S. 2002.
858 Genome sequence of the endocellular obligate symbiont of tsetse flies,
859 *Wigglesworthia glossinidia*. *Nat Genet* **32**:402–407.

860 Alanjary M, Steinke K, Ziemert N. 2019. AutoMLST: An automated web server for
861 generating multi-locus species trees highlighting natural product potential. *Nucleic
862 Acids Res* **47**:W276–W282.

863 Almassy RJ, Janson CA, Kan CC, Hostomska Z. 1992. Structures of apo and
864 complexed *Escherichia coli* glycinamide ribonucleotide transformylase. *Proc Natl
865 Acad Sci U S A* **89**:6114–6118.

866 Altenhoff AM, Glover NM, Train C-M, Kaleb K, Warwick Vesztrocy A, Dylus D, de Farias
867 TM, Zile K, Stevenson C, Long J, Redestig H, Gonnet GH, Dessimoz C. 2018. The
868 OMA orthology database in 2018: Retrieving evolutionary relationships among all
869 domains of life through richer web and programmatic interfaces. *Nucleic Acids Res*
870 **46**:D477–D485.

871 Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. 2019.
872 KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive
873 score threshold. *bioRxiv*. doi:10.1101/602110

874 Barrett TE, Savva R, Panayotou G, Barlow T, Brown T, Jiricny J, Pearl LH. 1998.
875 Crystal structure of a G:T/U mismatch-specific DNA glycosylase: Mismatch

876 recognition by complementary-strand interactions. *Cell* **92**:117–129.

877 Bauer E, Kaltenpoth M, Salem H. 2019. Minimal fermentative metabolism fuels

878 extracellular symbiont in a leaf beetle In review.

879 Becq J, Churlaud C, Deschavanne P. 2010. A benchmark of parametric methods for

880 horizontal transfers detection. *PLoS One* **5**:e9989.

881 Bennett GM, Moran NA. 2015. Heritable symbiosis: The advantages and perils of an

882 evolutionary rabbit hole. *Proc Natl Acad Sci U S A* **112**:10169–10176.

883 Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. 2019.

884 antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline.

885 *Nucleic Acids Res* **47**:W81–W87.

886 Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de

887 Los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling

888 R, Takano E, Lee SY, Weber T, Medema MH. 2017. antiSMASH 4.0-improvements

889 in chemistry prediction and gene cluster boundary identification. *Nucleic Acids Res*

890 **45**:W36–W41.

891 Boël G, Smith PC, Ning W, Englander MT, Chen B, Hashem Y, Testa AJ, Fischer JJ,

892 Wieden H-J, Frank J, Gonzalez RL Jr, Hunt JF. 2014. The ABC-F protein EttA

893 gates ribosome entry into the translation elongation cycle. *Nat Struct Mol Biol*

894 **21**:143–151.

895 Boiteux S, Gajewski E, Laval J, Dizdaroglu M. 1992. Substrate specificity of the

896 *Escherichia coli* Fpg protein formamidopyrimidine-DNA glycosylase: Excision of

897 purine lesions in DNA produced by ionizing radiation or photosensitization.

898 *Biochemistry*. doi:10.1021/bi00116a016

899 Brignole EJ, Ando N, Zimanyi CM, Drennan CL. 2012. The prototypic class Ia
900 ribonucleotide reductase from *Escherichia coli*: still surprising after all these years.
901 *Biochem Soc Trans* **40**:523–530.

902 Brown BP, Wernegreen JJ. 2019. Genomic erosion and extensive horizontal gene
903 transfer in gut-associated Acetobacteraceae. *BMC Genomics* **20**:472.

904 Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using
905 DIAMOND. *Nat Methods* **12**:59–60.

906 Carreras CW, Santi DV. 1995. The catalytic mechanism and structure of thymidylate
907 synthase. *Annu Rev Biochem* **64**:721–762.

908 Carter AT, Pearson BM, Dickinson JR, Lancashire WE. 1993. Sequence of the
909 *Escherichia coli* K-12 *edd* and *eda* genes of the Entner-Doudoroff pathway. *Gene*
910 **130**:155–156.

911 Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL Jr, Hunt JF, Frank J.
912 2014. EttA regulates translation by binding the ribosomal E site and restricting
913 ribosome-tRNA dynamics. *Nat Struct Mol Biol* **21**:152–159.

914 Chen EZ, Bushman FD, Li H. 2017. A Model-Based Approach For Species Abundance
915 Quantification Based On Shotgun Metagenomic Data. *Stat Biosci* **9**:13–27.

916 Chen X, Schreiber K, Appel J, Makowka A, Fähnrich B, Roettger M, Hajirezaei MR,
917 Sönnichsen FD, Schönheit P, Martin WF, Gutekunst K. 2016. The Entner-
918 Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants.
919 *Proc Natl Acad Sci U S A* **113**:5441–5446.

920 Currie CR, Scott JA, Summerbell RC, Malloch D. 1999. Fungus-growing ants use
921 antibiotic-producing bacteria to control garden parasites. *Nature*.

922 doi:10.1038/19519

923 Delforno TP, Lacerda Júnior GV, Noronha MF, Sakamoto IK, Varesche MBA, Oliveira

924 VM. 2017. Microbial diversity of a full-scale UASB reactor applied to poultry

925 slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and

926 shotgun metagenomic sequencing. *Microbiologyopen* **6**. doi:10.1002/mbo3.443

927 Dessimoz C, Cannarozzi G, Gil M, Margadant D, Roth A, Schneider A, Gonnet GH.

928 2005. OMA, a comprehensive, automated project for the identification of orthologs

929 from complete genome data: Introduction and first achievementsComparative

930 Genomics. Springer Berlin Heidelberg. pp. 61–72.

931 Dietel A-K, Kaltenpoth M, Kost C. 2018. Convergent evolution in intracellular elements:

932 Plasmids as model endosymbionts. *Trends Microbiol* **26**:755–768.

933 Dietel A-K, Merker H, Kaltenpoth M, Kost C. 2019. Selective advantages favour high

934 genomic AT-contents in intracellular elements. *PLoS Genet* **15**:e1007778.

935 Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano

936 A. 2001. Zonula occludens toxin structure-function analysis. Identification of the

937 fragment biologically active on tight junctions and of the zonulin receptor binding

938 domain. *J Biol Chem* **276**:19160–19165.

939 Dolan SK, Welch M. 2018. The glyoxylate shunt, 60 years on. *Annu Rev Microbiol*

940 **72**:309–330.

941 Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. 2018.

942 Unexpected bacterial origin of the antibiotic icosalide: Two-tailed depsipeptide

943 assembly in multifarious *Burkholderia* symbionts. *ACS Chem Biol* **13**:2414–2420.

944 Duarte M, Videira A. 2009. Effects of mitochondrial complex III disruption in the

945 respiratory chain of *Neurospora crassa*. *Mol Microbiol* **72**:246–258.

946 Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high
947 throughput. *Nucleic Acids Res* **32**:1792–1797.

948 Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. 2015. Defensive symbioses of
949 animals with prokaryotic and eukaryotic microorganisms. *Nat Prod Rep* **32**:904–
950 936.

951 Flórez LV, Kaltenpoth M. 2017. Symbiont dynamics and strain diversity in the defensive
952 mutualism between *Lagria* beetles and *Burkholderia*. *Environ Microbiol* **19**:3674–
953 3688.

954 Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, Rodrigues A, Hertweck
955 C, Kaltenpoth M. 2017. Antibiotic-producing symbionts dynamically transition
956 between plant pathogenicity and insect-defensive mutualism. *Nat Commun*
957 **8**:15172.

958 Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M.
959 2018. An antifungal polyketide associated with horizontally acquired genes
960 supports symbiont-mediated defense in *Lagria villosa* beetles. *Nat Commun*
961 **9**:2478.

962 Gerdes SY, Scholle MD, Campbell JW, Balázs G, Ravasz E, Daugherty MD, Somera
963 AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M,
964 Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabási A-L, Oltvai
965 ZN, Osterman AL. 2003. Experimental determination and system level analysis of
966 essential genes in *Escherichia coli* MG1655. *J Bacteriol* **185**:5673–5684.

967 Gillings MR. 2017. Lateral gene transfer, bacterial genome evolution, and the

968 Anthropocene. *Ann N Y Acad Sci* **1389**:20–36.

969 Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA, Cunningham AF, Lund
970 PA, Cole JA, Henderson IR. 2018. The essential genome of *Escherichia coli* K-12.
971 *MBio* **9**:e02096–17.

972 Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007.
973 DNA–DNA hybridization values and their relationship to whole-genome sequence
974 similarities. *Int J Syst Evol Microbiol* **57**:81–91.

975 Graham ED, Heidelberg JF, Tully BJ. 2018. Potential for primary productivity in a
976 globally-distributed bacterial phototroph. *ISME J* **12**:1861–1866.

977 Hang B, Downing G, Guliaev AB, Singer B. 2002. Novel activity of *Escherichia coli*
978 mismatch uracil-DNA glycosylase (Mug) excising 8-(hydroxymethyl)-3,N⁴-
979 ethenocytosine, a potential product resulting from glycidaldehyde reaction.
980 *Biochemistry* **41**:2158–2165.

981 Harmer CJ, Hall RM. 2016. IS26-mediated formation of transposons carrying antibiotic
982 resistance genes. *mSphere* **1**:e00038–16.

983 Higgins S, Sanchez-Contreras M, Gualdi S, Pinto-Carbó M, Carlier A, Eberl L. 2017.
984 The essential genome of *Burkholderia cenocepacia* H111. *J Bacteriol* **199**:e00260–
985 17.

986 Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High
987 throughput ANI analysis of 90K prokaryotic genomes reveals clear species
988 boundaries. *Nat Commun* **9**:5114.

989 Jain M, Munoz-Bodnar A, Gabriel DW. 2017. Concomitant loss of the glyoxalase system
990 and glycolysis makes the uncultured pathogen “*Candidatus Liberibacter asiaticus*”

991 an energy scavenger. *Appl Environ Microbiol* **83**:e01670–17.

992 Jensen PR. 2016. Natural products and the gene cluster revolution. *Trends Microbiol*
993 **24**:968–977.

994 Jin J, Wu R, Zhu J, Yang S, Lei Z, Wang N, Singh VK, Zheng J, Jia Z. 2015. Insights
995 into the cellular function of YhdE, a nucleotide pyrophosphatase from *Escherichia*
996 *coli*. *PLoS One* **10**:e0117823.

997 Jones AG, Mason CJ, Felton GW, Hoover K. 2019. Host plant and population source
998 drive diversity of microbial gut communities in two polyphagous insects. *Sci Rep*
999 **9**:2792.

1000 Joseph B, Schwarz RF, Linke B, Blom J, Becker A, Claus H, Goesmann A, Frosch M,
1001 Müller T, Vogel U, Schoen C. 2011. Virulence evolution of the human pathogen
1002 *Neisseria meningitidis* by recombination in the core and accessory genome. *PLoS*
1003 *One* **6**:e18441.

1004 Jürgen Stammer H. 1929. Die Symbiose der Lagriiden (Coleoptera). *Zoomorphology*
1005 **15**:1–34.

1006 Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng X-Y, Maeda T,
1007 Yamaguchi K, Shigenobu S, Ito M, Fukatsu T. 2014. Symbiont-supplemented
1008 maternal investment underpinning host's ecological adaptation. *Curr Biol* **24**:2465–
1009 2470.

1010 Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic*
1011 *Acids Res* **28**:27–30.

1012 Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. 2019. New approach for
1013 understanding genome variations in KEGG. *Nucleic Acids Res* **47**:D590–D595.

1014 Kenyon LJ, Meulia T, Sabree ZL. 2015. Habitat visualization and genomic analysis of
1015 "Candidatus Pantoea carbekii," the primary symbiont of the brown marmorated
1016 stink bug. *Genome Biol Evol* **7**:620–635.

1017 Kergoat GJ, Bouchard P, Clamens A-L, Abbate JL, Jourdan H, Jabbour-Zahab R,
1018 Genson G, Soldati L, Condamine FL. 2014. Cretaceous environmental changes led
1019 to high extinction rates in a hyperdiverse beetle family. *BMC Evol Biol* **14**:220.

1020 Kikuchi Y, Hosokawa T, Nikoh N, Meng X-Y, Kamagata Y, Fukatsu T. 2009. Host-
1021 symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of
1022 acanthosomatid stinkbugs. *BMC Biol* **7**:2.

1023 Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. 1994.
1024 Biochemistry of homologous recombination in *Escherichia coli*. *Microbiol Rev*
1025 **58**:401–465.

1026 Kroiss J, Kaltenpoth M, Schneider B, Schwinger M-G, Hertweck C, Maddula RK,
1027 Strohm E, Svatos A. 2010. Symbiotic *Streptomyces* provide antibiotic
1028 combination prophylaxis for wasp offspring. *Nat Chem Biol* **6**:261–263.

1029 Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: A resource for timelines,
1030 timetrees, and divergence times. *Mol Biol Evol* **34**:1812–1819.

1031 Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG, Schmidt EW. 2012. Genome
1032 streamlining and chemical defense in a coral reef symbiosis. *Proc Natl Acad Sci U
1033 S A* **109**:20655–20660.

1034 Kwan JC, Schmidt EW. 2013. Bacterial endosymbiosis in a chordate host: Long-term
1035 co-evolution and conservation of secondary metabolism. *PLoS One* **8**:e80822.

1036 Kwong WK, Engel P, Koch H, Moran NA. 2014. Genomics and host specialization of

1037 honey bee and bumble bee gut symbionts. *Proc Natl Acad Sci U S A* **111**:11509–
1038 11514.

1039 Latorre A, Manzano-Marín A. 2017. Dissecting genome reduction and trait loss in insect
1040 endosymbionts. *Ann N Y Acad Sci* **1389**:52–75.

1041 Lawrence JG, Ochman H. 1997. Amelioration of bacterial genomes: Rates of change
1042 and exchange. *J Mol Evol* **44**:383–397.

1043 Lerat E, Ochman H. 2005. Recognizing the pseudogenes in bacterial genomes. *Nucleic
1044 Acids Res* **33**:3125–3132.

1045 Lin J-J, Sancar A. 1992. Active site of (A) BC excinuclease. I. Evidence for 5'incision by
1046 UvrC through a catalytic site involving Asp399, Asp438, Asp466, and His538
1047 residues. *J Biol Chem* **267**:17688–17692.

1048 Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VAJ. 2006. Trimeric autotransporter
1049 adhesins: Variable structure, common function. *Trends Microbiol* **14**:264–270.

1050 Liu F, Lee H, Lan R, Zhang L. 2016. Zonula occludens toxins and their prophages in
1051 *Campylobacter* species. *Gut Pathog* **8**:43.

1052 Liu P, Burdzy A, Sowers LC. 2003. Repair of the mutagenic DNA oxidation product, 5-
1053 formyluracil. *DNA Repair* **2**:199–210.

1054 Lopera J, Miller IJ, McPhail KL, Kwan JC. 2017. Increased Biosynthetic Gene Dosage in
1055 a Genome-Reduced Defensive Bacterial Symbiont. *mSystems* **2**.

1056 doi:10.1128/mSystems.00096-17

1057 López-García P, Eme L, Moreira D. 2017. Symbiosis in eukaryotic evolution. *J Theor
1058 Biol* **434**:20–33.

1059 Lo W-S, Huang Y-Y, Kuo C-H. 2016. Winding paths to simplicity: Genome evolution in

1060 facultative insect symbionts. *FEMS Microbiol Rev* **40**:855–874.

1061 Lunin VV, Li Y, Schrag JD, Iannuzzi P, Cygler M, Matte A. 2004. Crystal structures of
1062 *Escherichia coli* ATP-dependent glucokinase and its complex with glucose. *J
1063 Bacteriol* **186**:6915–6927.

1064 Mahendran V, Liu F, Riordan SM, Grimm MC, Tanaka MM, Zhang L. 2016. Examination
1065 of the effects of *Campylobacter concisus* zonula occludens toxin on intestinal
1066 epithelial cells and macrophages. *Gut Pathog* **8**:18.

1067 Mathew GM, Ju Y-M, Lai C-Y, Mathew DC, Huang CC. 2012. Microbial community
1068 analysis in the termite gut and fungus comb of *Odontotermes formosanus*: the
1069 implication of *Bacillus* as mutualists. *FEMS Microbiol Ecol* **79**:504–517.

1070 McClure EA, Nelson MC, Lin A, Graf J. 2019. *Macrobdella decora*: Old world leech gut
1071 microbial community structure conserved in a new world leech. *bioRxiv*.

1072 McCullough AK, Dodson ML, Lloyd RS. 1999. Initiation of base excision repair:
1073 Glycosylase mechanisms and structures. *Annu Rev Biochem* **68**:255–285.

1074 McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. *Nat
1075 Rev Microbiol* **10**:13–26.

1076 Miller IJ, Chevrette MG, Kwan JC. 2017. Interpreting Microbial Biosynthesis in the
1077 Genomic Age: Biological and Practical Considerations. *Mar Drugs* **15**:165.

1078 Miller IJ, Rees ER, Ross J, Miller I, Baxa J, Lopera J, Kerby RL, Rey FE, Kwan JC.
1079 2019. Autometa: Automated extraction of microbial genomes from individual
1080 shotgun metagenomes. *Nucleic Acids Res* **47**:e57.

1081 Miller IJ, Vanee N, Fong SS, Lim-Fong GE, Kwan JC. 2016a. Lack of overt genome
1082 reduction in the bryostatin-producing bryozoan symbiont, “*Candidatus Endobugula*

1083 sertula." *Appl Environ Microbiol* **82**:6573–6583.

1084 Miller IJ, Weyna TR, Fong SS, Lim-Fong GE, Kwan JC. 2016b. Single sample

1085 resolution of rare microbial dark matter in a marine invertebrate metagenome. *Sci*

1086 *Rep* **6**:34362.

1087 Mira A, Ochman H, Moran NA. 2001. Deletional bias and the evolution of bacterial

1088 genomes. *Trends Genet* **17**:589–596.

1089 Mohni KN, Wessel SR, Zhao R, Wojciechowski AC, Luzwick JW, Layden H, Eichman

1090 BF, Thompson PS, Mehta KPM, Cortez D. 2019. HMCES maintains genome

1091 integrity by shielding abasic sites in single-strand DNA. *Cell* **176**:144–153.e13.

1092 Montagna M, Chouaia B, Mazza G, Prosdocimi EM, Crotti E, Mereghetti V, Vacchini V,

1093 Giorgi A, De Biase A, Longo S, Cervo R, Lozzia GC, Alma A, Bandi C, Daffonchio

1094 D. 2015. Effects of the diet on the microbiota of the red palm weevil (Coleoptera:

1095 Dryophthoridae). *PLoS One* **10**:e0117439.

1096 Moran NA. 1996. Accelerated evolution and Muller's ratchet in endosymbiotic bacteria.

1097 *Proc Natl Acad Sci U S A* **93**:2873–2878.

1098 Moran NA, Munson MA, Baumann P, Ishikawa H. 1993. A molecular clock in

1099 endosymbiotic bacteria is calibrated using the insect hosts. *Proc R Soc Lond B Biol*

1100 *Sci* **253**:167–171.

1101 Moule MG, Hemsley CM, Seet Q, Guerra-Assunção JA, Lim J, Sarkar-Tyson M, Clark

1102 TG, Tan PBO, Titball RW, Cuccui J, Wren BW. 2014. Genome-wide saturation

1103 mutagenesis of *Burkholderia pseudomallei* K96243 predicts essential genes and

1104 novel targets for antimicrobial development. *MBio* **5**:e00926–13.

1105 Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC.

1106 1991. Evidence for the establishment of aphid-eubacterium endosymbiosis in an
1107 ancestor of four aphid families. *J Bacteriol* **173**:6321–6324.

1108 Muto A, Osawa S. 1987. The guanine and cytosine content of genomic DNA and
1109 bacterial evolution. *Proc Natl Acad Sci U S A* **84**:166–169.

1110 Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar S, Tryon JH, Parkinson
1111 El, De Los Santos ELC, Yeong M, Cruz-Morales P, Abubucker S, Roeters A,
1112 Lokhorst W, Fernandez-Guerra A, Cappelini LTD, Thomson RJ, Metcalf WW,
1113 Kelleher NL, Barona-Gomez F, Medema MH. 2018. A computational framework for
1114 systematic exploration of biosynthetic diversity from large-scale genomic data.
1115 *bioRxiv*. doi:10.1101/445270

1116 Nelson DL, Lehninger AL, Cox MM. 2008. *Lehninger Principles of Biochemistry*,
1117 *Lehninger Principles of Biochemistry*. W. H. Freeman.

1118 Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. 2011. Reductive evolution of
1119 bacterial genome in insect gut environment. *Genome Biol Evol* **3**:702–714.

1120 Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM.
1121 2016. Mash: Fast genome and metagenome distance estimation using MinHash.
1122 *Genome Biol* **17**:132.

1123 Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush
1124 D, Keane JA, Parkhill J. 2015. Roary: Rapid large-scale prokaryote pan genome
1125 analysis. *Bioinformatics* **31**:3691–3693.

1126 Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A,
1127 Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome
1128 phylogeny substantially revises the tree of life. *Nat Biotechnol* **36**:996–1004.

1129 Piel J. 2002. A polyketide synthase-peptide synthetase gene cluster from an uncultured
1130 bacterial symbiont of *Paederus* beetles. *Proc Natl Acad Sci U S A* **99**:14002–
1131 14007.

1132 Pitcher RS, Brissett NC, Doherty AJ. 2007. Nonhomologous end-joining in bacteria: A
1133 microbial perspective. *Annu Rev Microbiol* **61**:259–282.

1134 Pombert J-F, Selman M, Burki F, Bardell FT, Farinelli L, Solter LF, Whitman DW, Weiss
1135 LM, Corradi N, Keeling PJ. 2012. Gain and loss of multiple functionally related,
1136 horizontally transferred genes in the reduced genomes of two microsporidian
1137 parasites. *Proc Natl Acad Sci U S A* **109**:12638–12643.

1138 Porter TN, Li Y, Raushel FM. 2004. Mechanism of the dihydroorotate reaction.
1139 *Biochemistry* **43**:16285–16292.

1140 Powell JE, Leonard SP, Kwong WK, Engel P, Moran NA. 2016. Genome-wide screen
1141 identifies host colonization determinants in a bacterial gut symbiont. *Proc Natl Acad
1142 Sci U S A* **113**:13887–13892.

1143 Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood
1144 trees for large alignments. *PLoS One* **5**:e9490.

1145 Raghunathan D, Wells TJ, Morris FC, Shaw RK, Bobat S, Peters SE, Paterson GK,
1146 Jensen KT, Leyton DL, Blair JMA, Browning DF, Pravin J, Flores-Langarica A,
1147 Hitchcock JR, Moraes CTP, Piazza RMF, Maskell DJ, Webber MA, May RC,
1148 MacLennan CA, Piddock LJ, Cunningham AF, Henderson IR. 2011. SadA, a
1149 trimeric autotransporter from *Salmonella enterica* serovar Typhimurium, can
1150 promote biofilm formation and provides limited protection against infection. *Infect
1151 Immun* **79**:4342–4352.

1152 Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A,

1153 Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM,

1154 Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM,

1155 Hugenholtz P, Woyke T. 2013. Insights into the phylogeny and coding potential of

1156 microbial dark matter. *Nature* **499**:431–437.

1157 Rio RVM, Maltz M, McCormick B, Reiss A, Graf J. 2009. Symbiont succession during

1158 embryonic development of the European medicinal leech, *Hirudo verbana*. *Appl*

1159 *Environ Microbiol* **75**:6890–6895.

1160 Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open

1161 source tool for metagenomics. *PeerJ* **4**:e2584.

1162 Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M, Weiss B, Koga R, Fukumori K,

1163 Vogel H, Fukatsu T, Kaltenpoth M. 2017. Drastic genome reduction in an

1164 herbivore's pectinolytic symbiont. *Cell* **171**:1520–1531.e13.

1165 Saparbaev M, Langouët S, Privezentzev CV, Guengerich FP, Cai H, Elder RH, Laval J.

1166 2002. 1,N²-Ethenoguanine, a mutagenic DNA adduct, is a primary substrate of

1167 *Escherichia coli* mismatch-specific uracil-DNA glycosylase and human alkylpurine-

1168 DNA-N-glycosylase. *J Biol Chem* **277**:26987–26993.

1169 Saparbaev M, Laval J. 1998. 3,N⁴-ethenocytosine, a highly mutagenic adduct, is a

1170 primary substrate for *Escherichia coli* double-stranded uracil-DNA glycosylase and

1171 human mismatch-specific thymine-DNA glycosylase. *Proc Natl Acad Sci U S A*

1172 **95**:8508–8513.

1173 Schendel FJ, Mueller E, Stubbe J, Shiao A, Smith JM. 1989. Formylglycinamide

1174 ribonucleotide synthetase from *Escherichia coli*: Cloning, sequencing,

1175 overproduction, isolation, and characterization. *Biochemistry* **28**:2459–2471.

1176 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,

1177 Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn

1178 DJ, Weber CF. 2009. Introducing Mothur: Open-source, platform-independent,

1179 community-supported software for describing and comparing microbial

1180 communities. *Appl Environ Microbiol* **75**:7537–7541.

1181 Schofield MJ, Hsieh P. 2003. DNA mismatch repair: Molecular mechanisms and

1182 biological function. *Annu Rev Microbiol* **57**:579–608.

1183 Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*

1184 **30**:2068–2069.

1185 Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. 2000. Genome sequence

1186 of the endocellular bacterial symbiont of aphids *Buchnera* sp. APS. *Nature* **407**:81–

1187 86.

1188 Shih PM, Matzke NJ. 2013. Primary endosymbiosis events date to the later Proterozoic

1189 with cross-calibrated phylogenetic dating of duplicated ATPase proteins. *Proc Natl*

1190 *Acad Sci U S A* **110**:12355–12360.

1191 Silva FJ, Santos-Garcia D. 2015. Slow and fast evolving endosymbiont lineages:

1192 Positive correlation between the rates of synonymous and non-synonymous

1193 substitution. *Front Microbiol* **6**:1279.

1194 Suyama M, Torrents D, Bork P. 2006. PAL2NAL: Robust conversion of protein

1195 sequence alignments into the corresponding codon alignments. *Nucleic Acids Res*

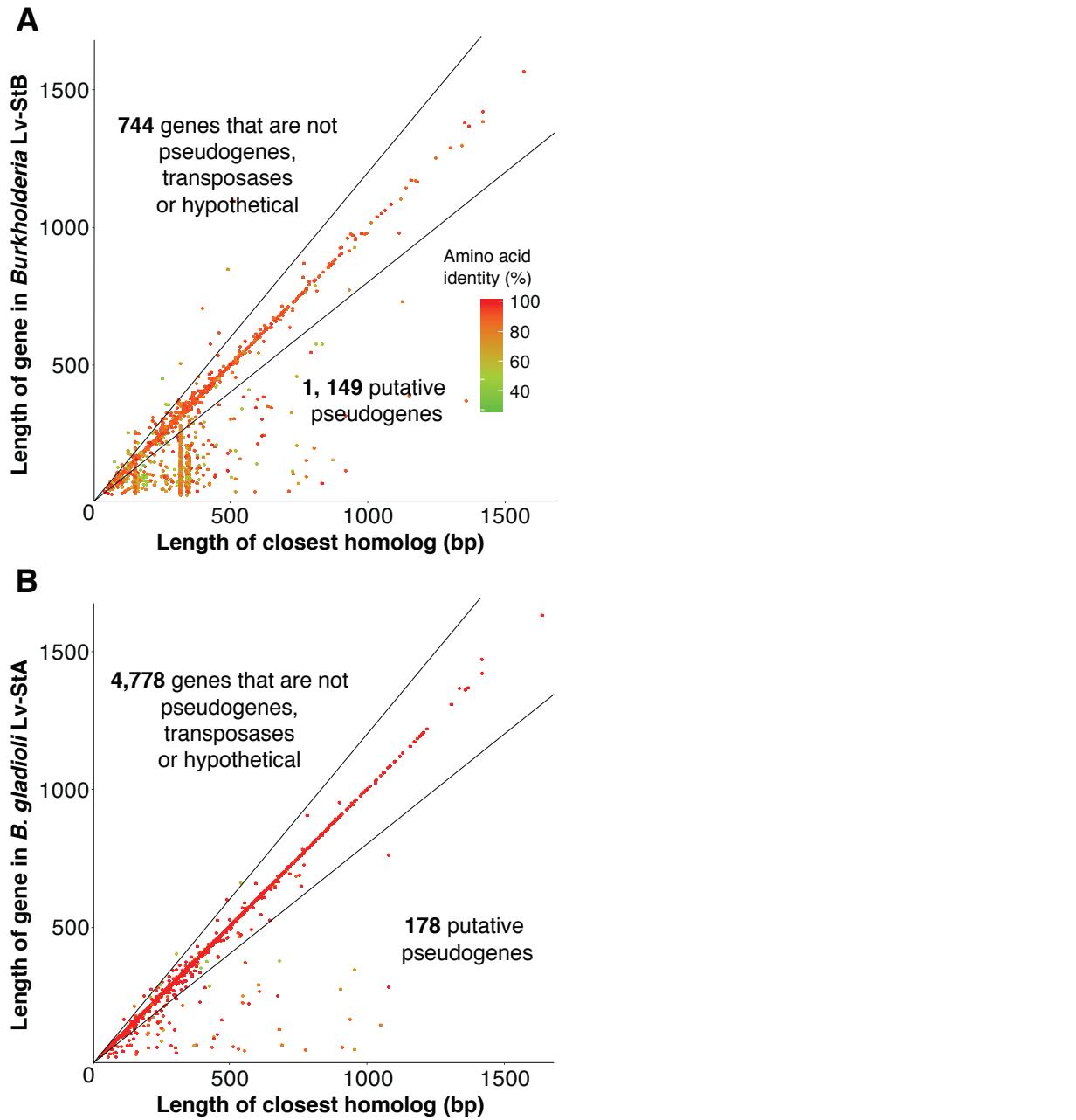
1196 **34**:W609–12.

1197 Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva

1198 NT, Roth A, Bork P, Jensen LJ, von Mering C. 2017. The STRING database in
1199 2017: Quality-controlled protein–protein association networks, made broadly
1200 accessible. *Nucleic Acids Res* **45**:D362–D368.

1201 Takeya M, Hirai MY, Osanai T. 2017. Allosteric inhibition of phosphoenolpyruvate
1202 carboxylases is determined by a single amino acid residue in cyanobacteria. *Sci
1203 Rep* **7**:41080.

1204 Tchigvintsev A, Tchigvintsev D, Flick R, Popovic A, Dong A, Xu X, Brown G, Lu W, Wu
1205 H, Cui H, Dombrowski L, Joo JC, Beloglazova N, Min J, Savchenko A, Caudy AA,
1206 Rabinowitz JD, Murzin AG, Yakunin AF. 2013. Biochemical and structural studies
1207 of conserved Maf proteins revealed nucleotide pyrophosphatases with a preference
1208 for modified nucleotides. *Chem Biol* **20**:1386–1398.


1209 Yang Z. 2014. Molecular Evolution: A Statistical Approach. OUP Oxford.

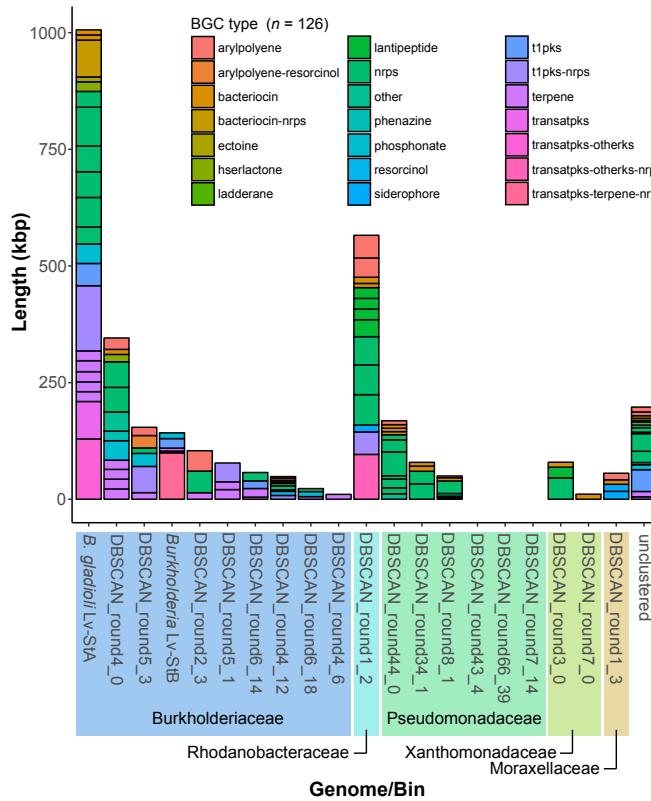
1210 Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. *Mol Biol Evol*
1211 **24**:1586–1591.

1212 Zupancic TJ, Marvo SL, Chung JH, Peralta EG, Jaskunas SR. 1983. RecA-independent
1213 recombination between direct repeats of IS50. *Cell* **33**:629–637.

1214

1215

1216

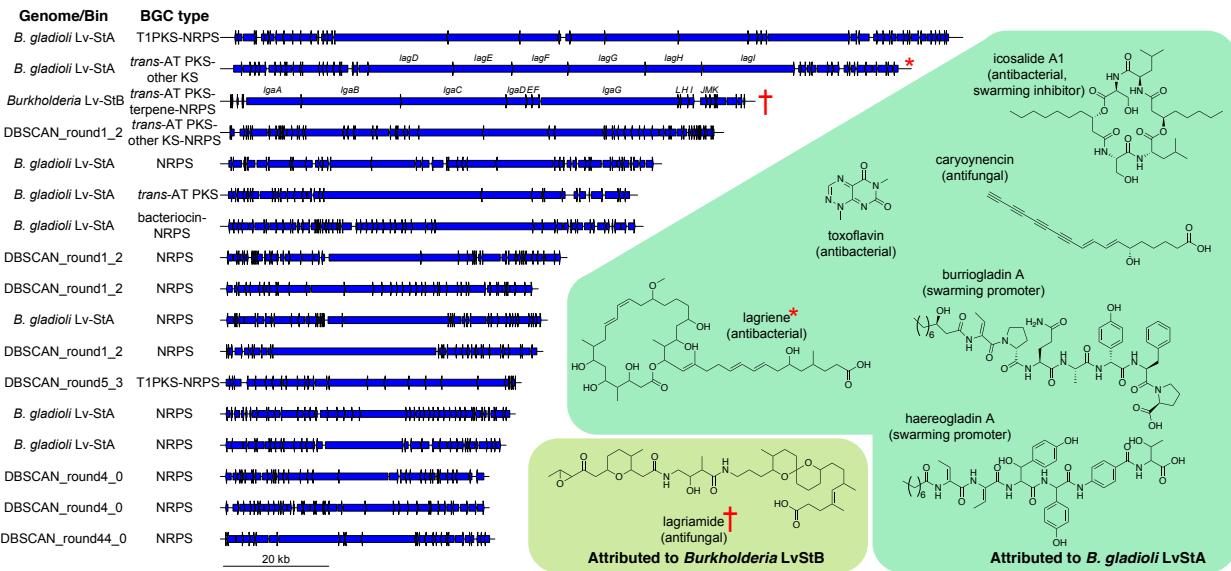

1217 **Figure 1.** Comparison of the lengths of genes in the *Burkholderia* Lv-StB genome (**A**)
1218 and *B. gladioli* Lv-StA (**B**) with the closest homologs identified through BLAST searches
1219 against the NR database (see Methods). Genes which are less than 80% of the length
1220 of the closest relative (i.e. below the lower black line) are putatively assigned as
1221 pseudogenes, as described previously (Lerat and Ochman, 2005; Lopera et al., 2017).

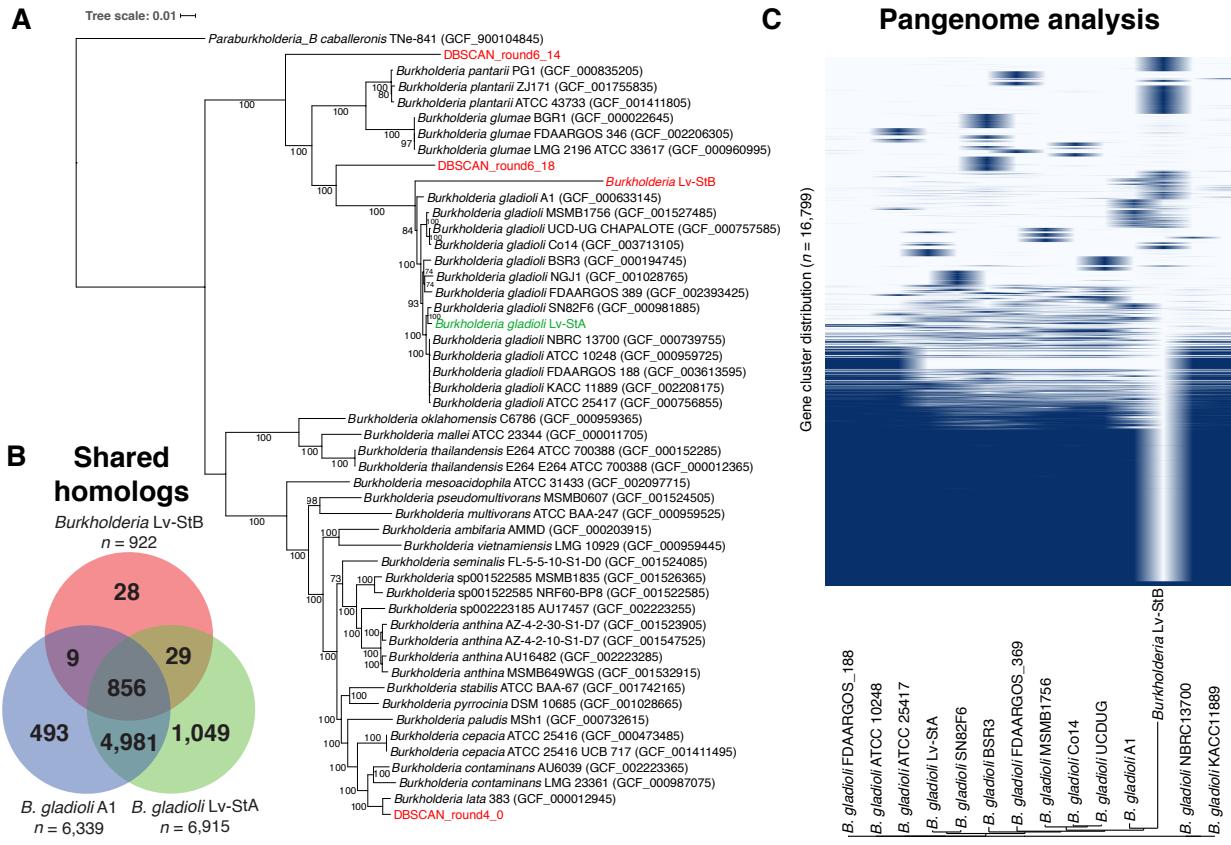
1222 Note: Two vertical groupings of pseudogenes in Lv-StB correspond to multiple copies of

1223 a 155 bp hypothetical gene and an IS5 family transposase.

1224

1225

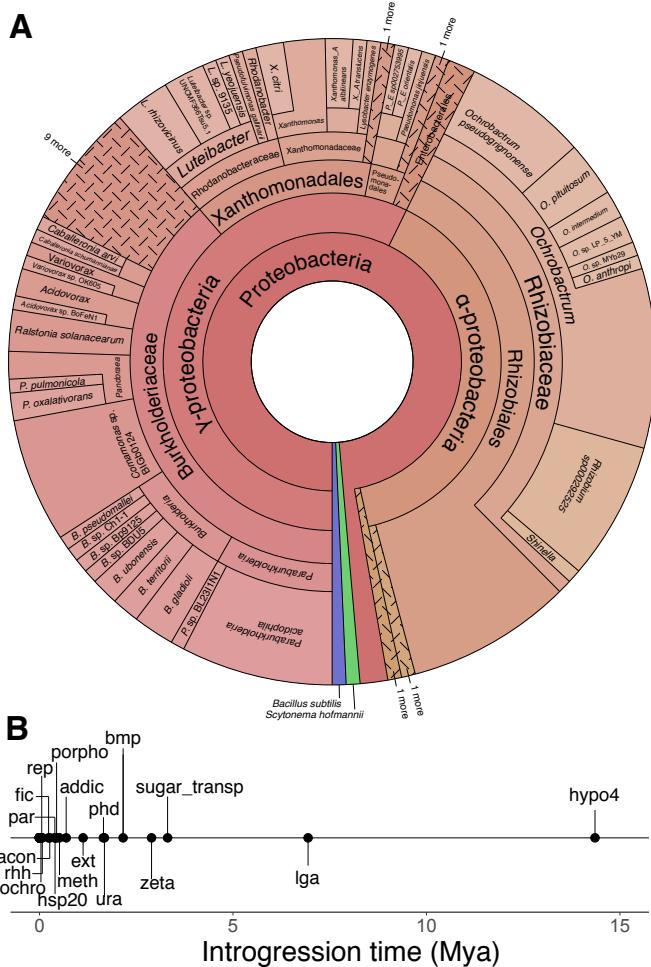



1226

1227 **Figure 2.** Distribution of biosynthetic gene clusters (BGCs) amongst the *L. villosa*
1228 metagenome bins and the genome of *B. gladioli* Lv-StA. Colors indicate the type of
1229 BGC annotated by antiSMASH (126 identified) (Blin et al., 2017).

1230

1231



1255

1256 **Figure 5.** Completeness of metabolic and DNA repair pathways in *Burkholderia* Lv-StB
1257 in comparison to closely-related strains of *B. gladioli*. **(A)** Completeness of various
1258 metabolic pathways as determined by KEGG-decoder. Note: Categories that were not
1259 found in any of the examined genomes have been removed. **(B)** The presence (colored
1260 squares) and absence (white squares) of genes in the different DNA repair pathways in
1261 Lv-StB and related *B. gladioli* strains.

1262

1263

1264 **Figure 6. (A)** Putative sources of genes unique to the *Burkholderia* Lv-StB genome
1265 (compared to *B. gladioli* strains) based on hits to BLASTP searches. Note: Three
1266 proteins of putative phage origin (see Dataset S1I) are not included in the figure. **(B)**
1267 Estimated introgression time for putative HGT gene sets, using the “BAU” substitution
1268 rates (Silva and Santos-Garcia, 2015). Note: For clarity, the gene sets with estimated
1269 introgression time of < 5,000 ya are not labeled. For these and ages estimated with
1270 other substitution rates, see Dataset S1I.

1271

1272

1273 **Table 1.** Genome characteristics of *Burkholderia* symbiont Lv-StB, its relative *B. gladioli*
1274 Lv-StA and other bins obtained from the metagenome.

Genome	Coverage	Size (% of closest relative)*	Core genes (%)	Category
<i>B. gladioli</i> Lv-StA	N/A	96.2	95.2	Nonreduced
<i>B. gladioli</i> Lv-StB	1,977	23.5	85.7	Reduced
DBSCAN_cluster_round5_1	355	105	92.9	Nonreduced
DBSCAN_cluster_round2_3	298	74.7	95.2	Nonreduced
DBSCAN_cluster_round6_18	207	18.2	36.9	Incomplete
DBSCAN_cluster_round4_6	170	86.1	95.2	Nonreduced
DBSCAN_cluster_round43_4	142	4.74*	38.1	Incomplete
DBSCAN_cluster_round8_1	94	39.6	25	Incomplete
DBSCAN_cluster_round3_0	90	86.1	81	Nonreduced
DBSCAN_cluster_round5_3	71	77.2	81	Nonreduced
DBSCAN_cluster_round1_2	68	128	92.9	Nonreduced
DBSCAN_cluster_round6_14	61	20.9	39.3	Incomplete
DBSCAN_cluster_round66_39	47	0.351†	25	Incomplete
DBSCAN_cluster_round7_14	37	5.3	16.7	Incomplete
DBSCAN_cluster_round34_1	34	40.9	20.2	Incomplete
DBSCAN_cluster_round7_0	24	62.8	31	Incomplete
DBSCAN_cluster_round44_0	18	58.4	34.5	Incomplete
DBSCAN_cluster_round1_3	16	103	94	Nonreduced
DBSCAN_cluster_round4_0	8	102	89.3	Nonreduced
DBSCAN_cluster_round4_12	5	63.1	47.6	Incomplete

1275 *Calculated relative to the genome of the closest relative identified by GTDB-Tk (see Dataset
1276 S1B)

1277 †Calculated relative to the average size of 517 *Pseudomonas* genomes taken from the GTDB
1278 database

1279

1280

1281

1282

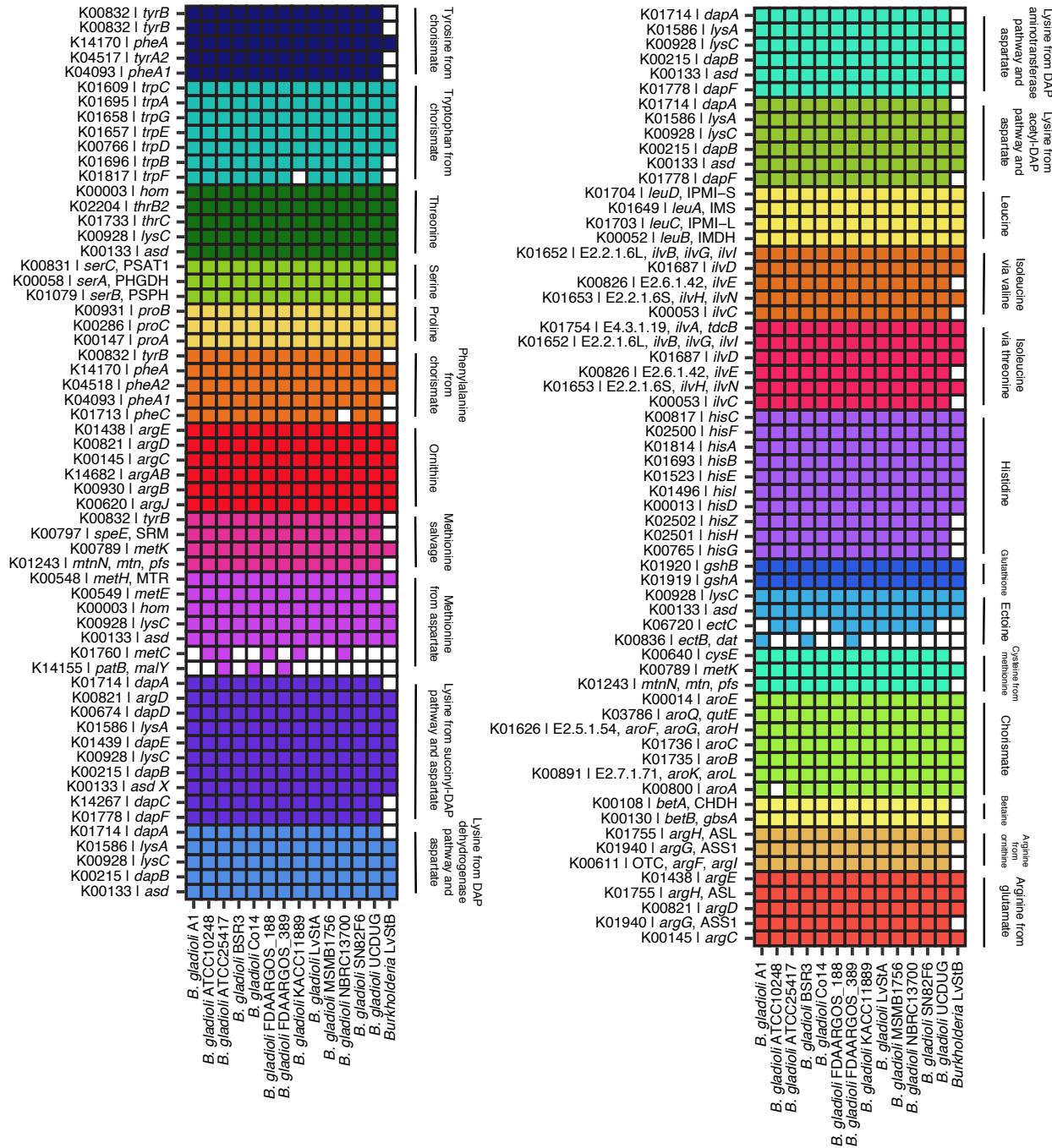
1283 **Table S1.** Divergence rates used in this study (taken from Silva and Santos-Garcia
1284 2015 (Silva and Santos-Garcia, 2015)).

Abbreviation	Symbiont	Host	dS/t	dN/t
BFL	<i>Blochmannia floridans</i>	<i>Camponotus floridans</i>	8.9×10^{-8}	7.9×10^{-9}
BPN	<i>Blochmannia pennsylvanicus</i>	<i>Camponotus pennsylvanicus</i>	6.4×10^{-8}	5.6×10^{-9}
BOB	<i>Blochmannia obliquus</i>	<i>Colobopsis obliquus</i> <i>Graphocephala atropunctata</i> , <i>Homalodisca vitripennis</i>	7.9×10^{-8}	5.2×10^{-9}
BAU	<i>Baumannia cicadellinicola</i>		1.1×10^{-8}	1.0×10^{-9}

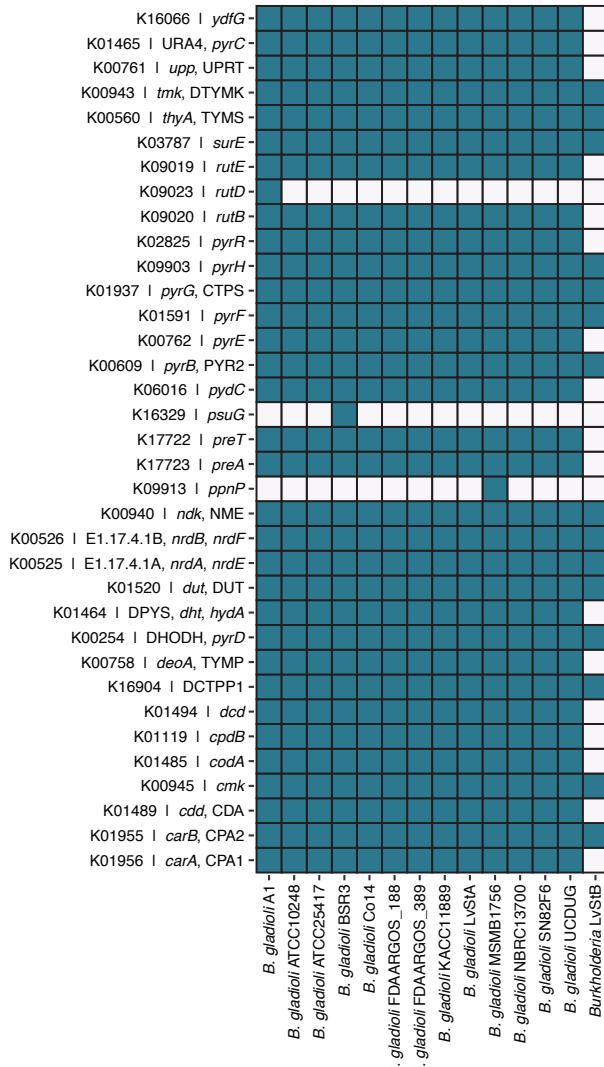
1285

1286

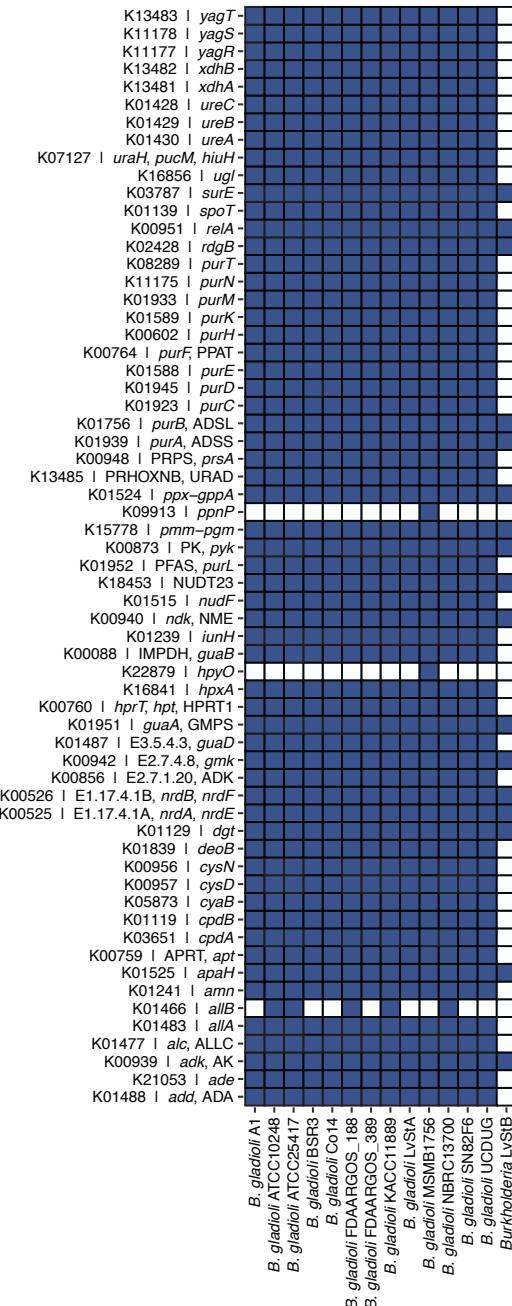
1287


1288

1289 **Dataset S1.** Comparative analysis of the *Burkholderia* Lv-StB to other genomes in the

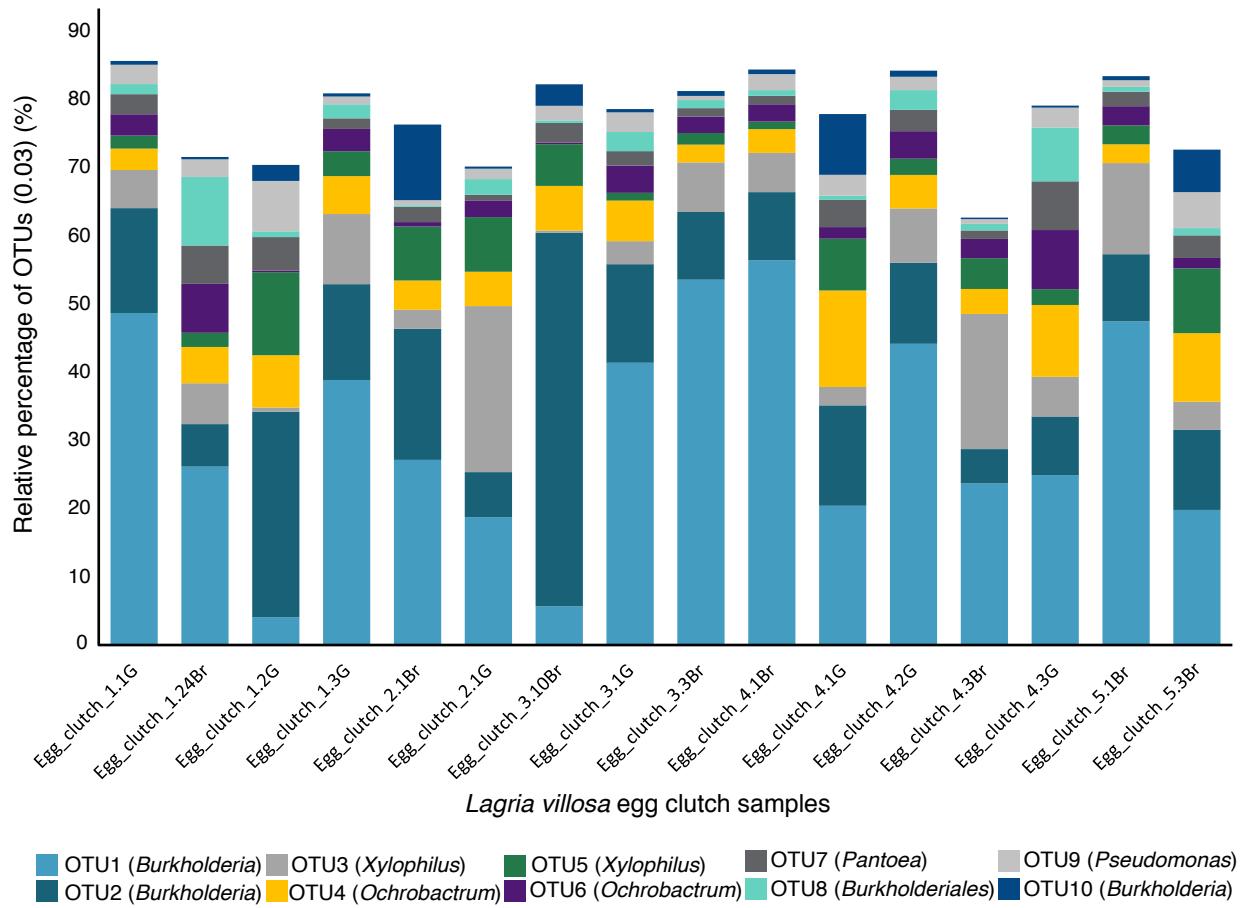

1290 genus *Burkholderia*.

1291


1292

Pyrimidine biosynthesis

Purine biosynthesis



1298

1299 **Figure S2.** Completeness of nucleotide biosynthesis pathways in *Burkholderia* Lv-StB
1300 in comparison to closely-related strains of *B. gladioli*.

1301

1302

1303

1304 **Figure S3.** Reanalysis of 16S rRNA amplicon data used in Flórez *et al.* 2017 (Flórez et
1305 al., 2017), showing distribution of dominant microbial communities associated with *L.*
1306 *villosa* egg clusters. Amplicon 16S rRNA gene sequences were clustered into
1307 operational taxonomic units (OTUs) at a distance of 0.03 as an approximation to
1308 bacterial species. The putative taxonomic classification of each OTU is indicated with a
1309 colored key. Abundance of the top 10 most abundant OTUs is indicated as a relative
1310 percentage of the total reads for each cluster of eggs collected.

1311

1312