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Abstract 

Background 

Alcoholism remains a prevalent health concern  throughout the world. Previous studies have identified 

transcriptomic patterns in the brain associated with alcohol dependence in both humans and animal models. 

But none of these studies have systematically investigated expression within the unique cell types present in 

the brain.  

Results 

We utilized single nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of over 16,000 nuclei 

isolated from prefrontal cortex of alcoholic and control individuals. Each nucleus was assigned to one of seven 

major cell types by unsupervised clustering. Cell type enrichment patterns varied greatly among 

neuroinflammatory-related genes, which are known to play roles in alcohol dependence and 

neurodegeneration. Differential expression analysis identified cell type-specific genes with altered expression 

in alcoholics. The largest number of differentially expressed genes (DEGs), including both protein-coding and 

non-coding, were detected in astrocytes, oligodendrocytes, and microglia. 

Conclusions 

To our knowledge, this is the first single cell transcriptome analysis of alcohol-associated gene expression in 

any species, and the first such analysis in humans for any addictive substance. These findings greatly advance 

understanding of transcriptomic changes in the brain of alcohol-dependent individuals. 
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Background 

Alcohol abuse is involved in over 200 pathologies and health conditions (e.g. alcohol dependence, liver 

cirrhosis, cancers, and injuries) and creates substantial social and economic burdens ​(1,2)​. To develop more 

effective therapeutic strategies, we must first understand how alcohol affects the body at the cellular and 

molecular level. Previous studies of transcriptomic responses in human alcoholics ​(3–6)​ relied on RNA 

extracted from brain regions using tissue homogenates comprised of multiple cell types. This approach likely 

masks differences in gene expression patterns among specific cells, as well as heterogeneity from cell-to-cell 

variation within a given cell type.  

 

Single cell RNA sequencing (scRNA-seq) has recently gained attention in cell and molecular biology research 

for its ability to profile novel cell types and measure cell-to-cell variation in gene expression. To our knowledge, 

transcriptomic responses to chronic alcohol exposure or any other abused drug have not been studied at the 

cellular level in the human brain. We hypothesized that cell type-specific gene expression patterns associated 

with alcoholism will identify novel alcohol targets that were previously missed by bulk analysis of tissue 

homogenates, as has been shown for other neuropathologies ​(7,8)​. Using single nucleus RNA-seq 

(snRNA-seq), a popular scRNA-seq alternative for analyzing frozen brain tissue ​(9–18)​, we profiled the 

transcriptomes of 16,305 nuclei extracted from frozen prefrontal cortex (PFC) samples of 4 control and 3 

alcohol dependent individuals. The PFC is involved in executive function and is an important substrate in the 

reward circuitry associated with development of alcohol dependence ​(19)​. The PFC has also been the focus of 

many transcriptomic studies ​(3,4,20,21)​ and was a logical choice for our initial work. Using the approach 

presented here, we discovered novel cell type-specific transcriptome changes associated with alcohol abuse in 

the human PFC. 

 

Results and Discussion 

Like most organs in the body, the brain consists of a diverse array of cell types. In order to systematically 

assess the roles of different cells in alcohol dependence, we examined gene expression in the PFC of alcohol 
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dependent versus control donors at the single cell level (​Table S1​). For this specific approach, we utilized 

droplet-based snRNA-seq technology to prepare libraries from postmortem tissue samples. The dataset was 

comprised of transcriptomes of 16,305 nuclei from seven donors (four control donors and three donors with 

alcohol dependence) (​Table S2​). We visualized the data using uniform manifold approximation and projection 

(UMAP) ​(22)​. Nuclei did not separate by the donor or batch from which they were isolated, indicating that any 

sample-specific gene expression patterns that may be present were of minimal impact (​Fig 1A, Fig S1​).  

 

Unsupervised clustering of nuclei 

In order to identify transcriptomically-distinct groups of nuclei, we performed unsupervised, graph-based 

clustering, yielding eight clusters (​Fig 1B​). We then annotated the clusters using the following markers of major 

brain cell types that are consistently detected in single cell/nucleus transcriptomics studies ​(7,8,20,23,24)​: 

excitatory neurons, astrocytes, oligodendrocytes, inhibitory/GABAergic neurons, oligodendrocyte progenitor 

cells (OPCs), microglia, and endothelial cells (​Fig 1C-D​). Two clusters corresponded with GABAergic neurons 

while all other clusters corresponded to a single cell type. We confirmed that the cell types and signatures were 

conserved among samples from all of the donors by examining marker expression in each donor cell-type 

combination (​Fig 1E, Table S3 ​). Proportions of the different cell types were comparable to other snRNA-seq 

studies ​(8,23)​ with neurons (particularly excitatory neurons) being over-represented relative to non-neuronal 

cell types (​Fig S2 ​). Furthermore, we did not find differences in cell type proportions between alcoholics and 

controls (​Fig S2 ​). This is consistent with previous findings ​(3)​. 

 

While some other single cell transcriptomics studies have attempted to define novel ​ ​cell states and subtypes, 

our goal was to evaluate gene expression differences between alcoholics and controls in known, established 

cell types. Therefore, we performed the clustering using a low-resolution parameter (​Methods​) rather than 

using subclustering. 

 

Neuroinflammatory signaling 
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The neuroimmune system is critical for the pathogenesis of neurological diseases such as Alzheimer’s disease 

and multiple sclerosis ​(25)​, and is also involved in regulating alcohol abuse and dependence ​(26)​. To date, 

however, single cell/nucleus RNA-seq studies have not specifically evaluated neuroimmune gene expression 

among cell types. Of the 85 human genes directly listed in the Neuroinflammation Signaling Pathway in the IPA 

database, 79 were detected in our snRNA-seq dataset, and 68 were detected in more than 20 nuclei. The 

expression of these genes among the different cell types is displayed in ​Fig 2A​. Expression of some genes 

was fairly pervasive across cell types (e.g. ​HMGB1​) while other genes exhibited relative enrichment in one or 

two specific cell types (e.g. ​SNCA​ in excitatory neurons, ​BCL2​ in astrocytes, ​P2RX7 ​in oligodendrocytes, 

GRIA1 ​in GABAergic neurons, ​S100B ​in OPCs, ​TLR2 ​in microglia (​Fig 2A-C​), and ​CTNNB1 ​in endothelial 

cells). Nearly half of the genes whose expression was highest in astrocytes are involved with interferon 

signaling: ​BCL2 ​(27)​, ​IRF3 ​, ​HMGB1 ​, ​TICAM1 ​, and ​TRAF3 ​(28) 

 

While mean expression of a given gene may be higher in a specific cell type, that does not imply that 

expression in other cell types is statistically negligible or biologically unimportant. For example, expression of 

FAS ​is lower in astrocytes relative to endothelial cells; however, ​FAS ​is known to be active in both 

astrocytes​(29)​ and endothelial cells ​(30)​. 

 

Differential expression and pathway analysis 

Prior to differential expression (DE) analysis, we pooled transcript counts within each cell type and each donor, 

creating “pseudo-bulk” transcriptomes. This approach has been employed by several single cell 

transcriptomics studies ​(31–34)​ since it provides robustness to varying numbers and library sizes of cells/nuclei 

among replicates (donors acting as replicates in our case), provides strong type I error control, and allows the 

use of bulk RNA-seq DE tools that have been optimized and validated over the course of many years. After 

pseudobulking, a typically DESeq2 was used to test for differentially expressed genes (DEGs), with batch as a 

covariate.  We identified a total of 916 DEGs at FDR<0.25 and 253 at FDR<0.05 (​Fig 3A​). There were large 

differences in DEG counts among the different cell types, with endothelial cells having 0 and astrocytes having 

206 DEGs. Recent mouse RNA-seq studies on isolated glial cell types also detected more alcohol-related 
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DEGs in astrocytes than in total brain homogenate ​(20)​ and microglia ​(21)​. These findings support key roles for 

astrocytes in response to chronic alcohol that were not detected in other studies lacking cell type resolution. 

 

DEGs corresponding to both protein-coding and non-coding transcripts were present in every cell type that had 

more than two total DEGs (​Fig 3A-B ​). Bulk and scRNA-seq studies often exclude non-coding RNAs from their 

analyses ​(3,8,35)​. However, the importance of ncRNAs is becoming increasingly apparent, not only in alcohol 

dependence ​(36)​, but in brain physiology in general ​(37)​, and these RNAs were therefore included in our data. 

Interestingly, the top DEG in astrocytes was ​AC008957.2​, a lncRNA that is antisense to the gene encoding 

SLC1A3​, a glutamate uptake transporter that plays important roles in the neurocircuitry of addiction ​(38–40)​. 

SLC1A3 ​was also upregulated in astrocytes, albeit at a lower significance level (FDR=0.07). 

 

In addition to non-coding genes, protein-coding genes of interest were also identified. For example, four DEGs 

involved in neuroinflammation (​SLC1A3, FAS, MFGE8, IRF3​) were found in astrocytes (​Fig 3C​) (FDR<0.11). 

IPA revealed that all four are associated with  apoptosis, a component of the neuroimmune response. ​SLC1A3 

(also called “​GLAST​”) was downregulated with alcohol consumption in mouse astrocytes ​(20,21)​ but 

upregulated in the human alcoholic brain ​(39)​. ​FAS ​and ​MFGE8​, however, showed similar regulation between 

mouse and human astrocytes ​(21)​. 

 

We also used IPA to evaluate DEGs (FDR<0.25) in all cell types. Only astrocytes, microglia, and 

oligodendrocytes showed significant pathways (p<0.05, Fisher’s exact test) containing multiple DEGs. The top 

overall pathway was ​GNRH​ signaling (​Fig 3D​). One of the top DEGs in this pathway was ​CACNA1A​, which 

was downregulated in astrocytes and upregulated in microglia. 

 

A notable limitation of our DE analysis was the sample size of our dataset (7 donors). A small sample size in a 

single cell genomics study does affect statistical power, but does not preclude the possibility of drawing 

meaningful inferences of cell type gene expression in the human brain ​(9,41)​. That said, our goal is to increase 
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the sample size for future single cell studies to better identify important expression patterns, particularly for 

genes that have smaller effect sizes. 

 

Comparison with previous bulk RNA-seq datasets 

We next determined which cell types were most similar or dissimilar to bulk data in terms of alcohol-associated 

expression changes. We compared our DE results to that from ​a published bulk RNA-seq analysis of the PFC 

from 65 alcoholics and 73 control donors ​(3)​. ​Hierarchical clustering revealed that all non-microglia cell types 

were more similar to bulk than they were to microglia in terms of DE patterns between alcoholics and controls 

(​Fig 4A ​). Other studies have also found that microglial expression, in general, is particularly underrepresented 

in bulk transcriptomes, relative to that of other brain cell types ​(8,42)​. Among the 33 DEGs in microglia, only 

the gene with the highest log fold change, SLC11A1, had been detected as a significant hit in the bulk data 

(​Fig 4B ​). This suggests that microglia-specific DEGs must have a particularly large effect size in order to be 

detected in bulk DE analysis 

 

Conclusions 

This study presents the first single cell transcriptomic dataset of the human alcoholic brain. Among 16,305 

nuclear transcriptomes, we detected major neural cell types from seven donors: three alcoholics and four 

controls. Every cell type displayed relative enrichment of different genes linked to neuroinflammation, a 

process associated with excessive alcohol use. We detected DEGs between alcoholics and controls in every 

neural cell type. Many more DEGs were found in astrocytes, oligodendrocytes, and microglia relative to 

neurons, indicating that glial cells should be given particular attention in future studies of alcohol-associated 

gene expression. 

Methods 

Case selection and postmortem tissue collection 

Diagnosis of alcohol dependence was based on DSM-IV criteria. All donors were required to meet the following 

criteria to be considered in this study: no head injury at time of death, lack of developmental disorder, no recent 

cerebral stroke, no history of other psychiatric or neurological disorders, and no history of intravenous or 
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polydrug abuse. Alcoholic and control donors were selected to be as close as possible in terms of age, sex, 

post-mortem interval (PMI), pH of tissue, and cause of death (​Table S1​). Fresh frozen tissue samples were 

collected as previously described ​(3)​. 

 

Isolation of nuclei from frozen postmortem brain tissue 

Nuclei were isolated from tissue based on a modified version of Luciano Martelotto’s Customer-Developed 

Protocol provided on the 10XGenomics website ​(43)​. All procedures were carried out on ice and all 

centrifugation steps were at 500g for 5 min at 4°C. PFC tissue (~50 mg) was homogenized in 5 mL of Lysis 

Buffer [Nuclei EZ Lysis Buffer (Sigma, NUC101), 0.2 U/µL RNase inhibitor (NEB, M0314), 1x protease inhibitor 

(Sigma, 4693132001)] in 7 mL dounce ~30 times until no visible tissue pieces remained. An aliquot of 

homogenate (500 µL) was snap-frozen on dry ice and stored at −80 °C for later RNA integrity assessment. 

The remaining homogenate was incubated on ice for 5-10 minutes and then centrifuged. The supernatant was 

removed, and nuclei were resuspended in 2 mL of Lysis Buffer without protease inhibitor. The suspension was 

incubated for another 5 min on ice and centrifuged. Supernatant was removed, and nuclei were resuspended 

in 2 mL of Wash & Resuspension Buffer (PBS with 1% BSA and 0.2 U/µL of RNase inhibitor). Nuclei were 

centrifuged and the supernatant was removed. Nuclei were then resuspended in Wash & Resuspension Buffer 

containing 10 µg/mL of DAPI and filtered into a FACS tube with a 35-µm strainer cap. Nuclei were then sorted 

into a tube containing 10XGenomics (v3.0) reverse transcription (RT) master mix (20 µL of RT Reagent, 3.1 µL 

of Template Switch Oligo, 2 µL of Reducing Agent B, and 10 µL of water). Nuclei-RT mix was topped off to 

71.7 µL using water, and then 8.3 µL of RT Enzyme C was added. It should be noted that the sample 647 was 

prepared in another batch using a slightly different protocol, the main difference being that nuclei were sorted 

into an empty tube, concentrated by centrifuging and removing all but 100 µL of supernatant, and then 

resuspended before being combined with the RT master mix. 

 

RNA integrity assessment 

RNA was extracted from the homogenates with a RNeasy Lipid Tissue Mini Kit (Qiagen,74804), using the 

manufacturer’s instructions. The RNA was quantified using a NanoDrop1000 (Thermo Fisher) and assayed for 
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quality using an Agilent 2100 TapeStation (Agilent Technologies). Homogenate for sample 647 had not been 

saved. 

 

Droplet-based snRNA-seq 

 Nuclei-RT mix (75 µL)  was transferred to a Chromium B Chip, and libraries were prepared using the 

10XGenomics 3’ Single Cell Gene Expression protocol. Paired-end sequencing of the libraries was conducted 

using a NovaSeq 6000 with an S2 chip (100 cycles). 

 

Alignment to reference genome 

A GENCODE v30 GTF file was modified to create a “pre-mRNA” GTF file so that pre-mRNAs would be 

included as counts in the subsequent analysis. Cellranger’s (v3.0.2) ​mkref​ command was then used to create a 

pre-mRNA reference from the GTF file and a FASTA file of the GRCh38.p12 genome. FASTQ files of the 

snRNA-seq libraries were then aligned to the pre-mRNA reference using the ​cellranger count ​command, 

producing gene expression matrices. The matrices for the different samples were concatenated into a single 

matrix using the ​cellranger aggr​ command with normalization turned off, so that the raw counts would remain 

unchanged at this point. 

 

Filtering and normalization 

The filtered matrix produced by cellranger was loaded into scanpy (v1.4.3) ​(44)​. Nuclei with more than 20% of 

UMI (transcript) counts attributed to mitochondrial genes were removed, and then all mitochondrial genes were 

removed from the dataset. Normalization was conducted based on the recommendations from multiple studies 

that compared several normalization techniques ​(35,45,46)​. In brief, three steps were performed: (1) 

preliminary clustering of cells by constructing a nearest network graph and using scanpy’s implementation of 

Louvain community detection, (2) calculating size factors using the R package scran (v1.10.2) ​(47)​ , and (3) 

dividing counts by the respective size factor assigned to each cell. Normalized counts were then transformed 

by adding a pseudocount of 1 and taking the natural log. 
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Assigning nuclei to transcriptomically-distinct clusters 

Genes that are highly variable within every sample were identified using scanpy’s ​highly_variable_genes 

function with sample identity used for the ​batch_key​ argument. This type of approach helps select genes that 

distinguish cell types from each other ​(9)​. Normalized expression of every gene was then centered to a mean 

of zero. Principal component (PC) analysis was performed on the highly variable genes, and the top 50 PCs 

were used to construct a nearest neighbor graph. Nuclei were then assigned to clusters using the Louvain 

algorithm with the resolution set to 0.1.  

 

Differential gene expression analysis 

DE testing was performed separately on each cell type. We adapted a transcript count summation strategy 

(31)​ (also called “pseudobulking”). First, nuclei corresponding to the given cell type were selected from the full 

dataset. Second, raw counts were summed in order to produce a “pseudobulk” transcriptome for each donor. 

Third, DEGs between the alcohol-dependent and control donors were detected using DESeq2 (v1.24.0) ​(48) 

with batch as a covariate. 

 

Pathway analyses of differential expression 

Qiagen’s Ingenuity Pathway Analysis (IPA) software was used to identify canonical pathways associated with 

DEGs in each cell type. A cutoff of FDR<0.25 was used to separate DEGs from non-DEGs. 
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Figure 1. ​ ​Unsupervised clustering captured expected cell types in every sample.​ ​(A)​ UMAP plots of the 

16,305 nuclei in our dataset, colored by donor or ​(B)​ transcriptomically-distinct clusters determined from 

unsupervised clustering. ​(C)​ Scaled mean expression of known cell type markers in the different clusters. For 

each gene, expression was scaled from 0.0-1.0 to maintain a balanced colormap. ​(D)​ UMAP plot of nuclei 

colored by cell type assignment. ​(E)​ Scaled mean expression of marker genes for each cell type in each donor. 
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Figure 2. Cell type enrichment patterns vary among neuroimmune genes. (A) ​Scaled expression of 

neuroimmune genes among cell types. Genes are ordered by which cell type had the highest mean 

expression. Scaling was done for each gene across all cells. ​(B) ​UMAP plot depicting expression of TLR2 as 

an example of a gene that is enriched in a specific cell type (microglia). ​(C) ​TLR2 expression is enriched in 

microglia among nuclei from both controls and alcoholics. 
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Figure 3. ​ ​Differentially expressed genes (DEGs) associated with alcoholism were detected in every 

neural cell type. (A) ​ Breakdown of DEGs by cell type and transcript type (FDR<0.05). ​(B)​ Volcano plots of top 

DEGs in each cell type (FDR<0.05). ​(C) ​An Ingenuity Pathway Analysis (IPA) molecular network including four 

neuroinflammation-associated DEGs in astrocytes (FDR<0.11). Solid lines indicate direct relationships, while 

dashed lines indicate indirect relationships. ​(D) ​Log2 fold changes and adjusted p-values of genes were 

processed by IPA with FDR<0.25 as the cutoff for indicating significant DEGs. The top canonical pathways are 

shown. Negative log(p-values) are derived from Fisher’s exact test. 
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Figure 4. ​ ​Comparison of alcohol dependence-associated differential expression from human bulk 

RNA-seq and snRNA-seq data. (A)​ Gene expression changes in alcoholics for each cell type as well as bulk 

data from a previous study ​(3)​. Groups were hierarchically clustered using average as the linkage method. ​(B) 
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. Log fold change of expression in alcohol dependent donors compared with controls for genes that are 

differentially expressed (FDR<0.25) in microglia. A single asterisk indicates differential expression at 

FDR<0.25, while a double asterisk indicates FDR<0.05. ​The three genes with "na" are non-protein-coding 

genes, which had not been included in the bulk study. 

 

 

Supplementary figure 1. (A) ​UMAP plots highlighting nuclei from two technical replicate samples. 

Immediately after homogenizing the tissue from donor 598, the homogenate was split into two different aliquots 

(598C-1 and 598C-2). ​(B) ​UMAP plot highlighting nuclei based on the batch of samples from which they were 

isolated. 

20 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/780304doi: bioRxiv preprint 

https://doi.org/10.1101/780304
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary figure 2. (A) ​ Cell type proportions for nuclei from control and alcohol-dependent individuals. 

(B) ​Cell type proportions for nuclei from each specific donor. There were no significant differences in the 
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proportion of any cell type between alcoholics and controls, based on t-tests. The lowest p-value was 0.27 for 

GABAergic neurons. 
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Supplementary table 1. Donor information. 

SU 

Number: 780 721 856 777 598 335 647 

Age 53 55 53 58 56 44 69 

Sex male male male male male male male 

PMI 53 27.5 62 68 19 50 52 

Classificati

on 

Alcohol Use 

Disorder 

Alcohol Use 

Disorder 

Alcohol Use 

Disorder Control Control Control Control 

DSMIV 

C: 

Substance 

Abuse 

(alcohol) 

B: 

Substance 

Dependenc

e (alcohol) 

B: 

Substance 

Dependenc

e (alcohol)     

DSM 5 

alcohol 

Alcohol Use 

Disorder 

Alcohol Use 

Disorder 

Alcohol Use 

Disorder     

DSMV 

Alcohol 

classificati

on Severe Severe Severe     

Brain pH 6.77 6.56 6 6.82 6.9 6.6 6.95 

RIN 7.9 6.7 6.5 6.5 7.2 7.5 NA 

COD 

category 

Cardiac/Tox

icity Cardiac 

Cardiovasc

ular Cardiac Cardiac Cardiac Cardiac 

category 

alcohol 

Current 

Drinker 

Current 

Drinker 

Current 

Drinker 

Current 

Drinker 

Current 

Drinker 

Current 

Drinker 

Current 

Drinker 

Total 

drinking 

yrs 28 30 35 32 36 19 44 
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alcohol 

intake 340 336 272 8.85 8 4 17 

 

 

Supplementary table 2. Technical information and quality control metrics for the snRNA-seq data. 

 647C 780A 598C-1 598C-2 335C 856A 721A 777C 

Batch 1 2 2 2 3 3 3 3 

Total reads 

49547

9422 

5141684

24 

5270676

77 

5544296

63 

5819945

87 

4981069

47 

5075544

11 

4771734

06 

Recovered number 

of nuclei 5524 1132 1916 1884 2479 1922 1005 443 

Total reads/ 

recovered nuclei 89696 454212 275088 294283 234770 259161 505029 1077141 

Median UMI Counts 

per nuclei 4626 6703 5595 2057 1617 10746 2700 848 

Median Genes per 

nuclei 2260 2750 2551 1273 1058 3740 1514 610 

Total Genes 

Detected 35488 32535 34782 34183 35012 35126 31189 26811 
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