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Abstract

Background

Alcoholism remains a prevalent health concern throughout the world. Previous studies have identified
transcriptomic patterns in the brain associated with alcohol dependence in both humans and animal models.
But none of these studies have systematically investigated expression within the unique cell types present in
the brain.

Results

We utilized single nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of over 16,000 nuclei
isolated from prefrontal cortex of alcoholic and control individuals. Each nucleus was assigned to one of seven
major cell types by unsupervised clustering. Cell type enrichment patterns varied greatly among
neuroinflammatory-related genes, which are known to play roles in alcohol dependence and
neurodegeneration. Differential expression analysis identified cell type-specific genes with altered expression
in alcoholics. The largest number of differentially expressed genes (DEGs), including both protein-coding and
non-coding, were detected in astrocytes, oligodendrocytes, and microglia.

Conclusions

To our knowledge, this is the first single cell transcriptome analysis of alcohol-associated gene expression in
any species, and the first such analysis in humans for any addictive substance. These findings greatly advance

understanding of transcriptomic changes in the brain of alcohol-dependent individuals.
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Background

Alcohol abuse is involved in over 200 pathologies and health conditions (e.g. alcohol dependence, liver
cirrhosis, cancers, and injuries) and creates substantial social and economic burdens (1,2). To develop more
effective therapeutic strategies, we must first understand how alcohol affects the body at the cellular and
molecular level. Previous studies of transcriptomic responses in human alcoholics (3—6) relied on RNA
extracted from brain regions using tissue homogenates comprised of multiple cell types. This approach likely
masks differences in gene expression patterns among specific cells, as well as heterogeneity from cell-to-cell

variation within a given cell type.

Single cell RNA sequencing (scRNA-seq) has recently gained attention in cell and molecular biology research
for its ability to profile novel cell types and measure cell-to-cell variation in gene expression. To our knowledge,
transcriptomic responses to chronic alcohol exposure or any other abused drug have not been studied at the
cellular level in the human brain. We hypothesized that cell type-specific gene expression patterns associated
with alcoholism will identify novel alcohol targets that were previously missed by bulk analysis of tissue
homogenates, as has been shown for other neuropathologies (7,8). Using single nucleus RNA-seq
(snRNA-seq), a popular scRNA-seq alternative for analyzing frozen brain tissue (9—-18), we profiled the
transcriptomes of 16,305 nuclei extracted from frozen prefrontal cortex (PFC) samples of 4 control and 3
alcohol dependent individuals. The PFC is involved in executive function and is an important substrate in the
reward circuitry associated with development of alcohol dependence (19). The PFC has also been the focus of
many transcriptomic studies (3,4,20,21) and was a logical choice for our initial work. Using the approach
presented here, we discovered novel cell type-specific transcriptome changes associated with alcohol abuse in

the human PFC.

Results and Discussion

Like most organs in the body, the brain consists of a diverse array of cell types. In order to systematically

assess the roles of different cells in alcohol dependence, we examined gene expression in the PFC of alcohol
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dependent versus control donors at the single cell level (Table S1). For this specific approach, we utilized
droplet-based snRNA-seq technology to prepare libraries from postmortem tissue samples. The dataset was
comprised of transcriptomes of 16,305 nuclei from seven donors (four control donors and three donors with
alcohol dependence) (Table S2). We visualized the data using uniform manifold approximation and projection

(UMAP) (22). Nuclei did not separate by the donor or batch from which they were isolated, indicating that any

sample-specific gene expression patterns that may be present were of minimal impact (Fig 1A, Fig S1).

Unsupervised clustering of nuclei

In order to identify transcriptomically-distinct groups of nuclei, we performed unsupervised, graph-based
clustering, yielding eight clusters (Fig 1B). We then annotated the clusters using the following markers of major
brain cell types that are consistently detected in single cell/nucleus transcriptomics studies (7,8,20,23,24):
excitatory neurons, astrocytes, oligodendrocytes, inhibitory/GABAergic neurons, oligodendrocyte progenitor
cells (OPCs), microglia, and endothelial cells (Fig 1C-D). Two clusters corresponded with GABAergic neurons
while all other clusters corresponded to a single cell type. We confirmed that the cell types and signatures were
conserved among samples from all of the donors by examining marker expression in each donor cell-type
combination (Fig 1E, Table S3). Proportions of the different cell types were comparable to other snRNA-seq
studies (8,23) with neurons (particularly excitatory neurons) being over-represented relative to non-neuronal
cell types (Fig S2). Furthermore, we did not find differences in cell type proportions between alcoholics and

controls (Fig S2). This is consistent with previous findings (3).

While some other single cell transcriptomics studies have attempted to define novel cell states and subtypes,
our goal was to evaluate gene expression differences between alcoholics and controls in known, established
cell types. Therefore, we performed the clustering using a low-resolution parameter (Methods) rather than

using subclustering.

Neuroinflammatory signaling
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The neuroimmune system is critical for the pathogenesis of neurological diseases such as Alzheimer’s disease
and multiple sclerosis (25), and is also involved in regulating alcohol abuse and dependence (26). To date,
however, single cell/nucleus RNA-seq studies have not specifically evaluated neuroimmune gene expression
among cell types. Of the 85 human genes directly listed in the Neuroinflammation Signaling Pathway in the IPA
database, 79 were detected in our snRNA-seq dataset, and 68 were detected in more than 20 nuclei. The
expression of these genes among the different cell types is displayed in Fig 2A. Expression of some genes
was fairly pervasive across cell types (e.g. HMGB1) while other genes exhibited relative enrichment in one or
two specific cell types (e.g. SNCA in excitatory neurons, BCLZ2 in astrocytes, P2RX7 in oligodendrocytes,
GRIA1 in GABAergic neurons, S100B in OPCs, TLR2 in microglia (Fig 2A-C), and CTNNB1 in endothelial

cells). Nearly half of the genes whose expression was highest in astrocytes are involved with interferon

signaling: BCL2 (27), IRF3, HMGB1, TICAM1, and TRAF3 (28)

While mean expression of a given gene may be higher in a specific cell type, that does not imply that
expression in other cell types is statistically negligible or biologically unimportant. For example, expression of
FAS is lower in astrocytes relative to endothelial cells; however, FAS is known to be active in both

astrocytes(29) and endothelial cells (30).

Differential expression and pathway analysis

Prior to differential expression (DE) analysis, we pooled transcript counts within each cell type and each donor,
creating “pseudo-bulk” transcriptomes. This approach has been employed by several single cell
transcriptomics studies (31-34) since it provides robustness to varying numbers and library sizes of cells/nuclei
among replicates (donors acting as replicates in our case), provides strong type | error control, and allows the
use of bulk RNA-seq DE tools that have been optimized and validated over the course of many years. After
pseudobulking, a typically DESeq2 was used to test for differentially expressed genes (DEGSs), with batch as a
covariate. We identified a total of 916 DEGs at FDR<0.25 and 253 at FDR<0.05 (Fig 3A). There were large
differences in DEG counts among the different cell types, with endothelial cells having 0 and astrocytes having

206 DEGs. Recent mouse RNA-seq studies on isolated glial cell types also detected more alcohol-related
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DEGs in astrocytes than in total brain homogenate (20) and microglia (21). These findings support key roles for

astrocytes in response to chronic alcohol that were not detected in other studies lacking cell type resolution.

DEGs corresponding to both protein-coding and non-coding transcripts were present in every cell type that had
more than two total DEGs (Fig 3A-B). Bulk and scRNA-seq studies often exclude non-coding RNAs from their
analyses (3,8,35). However, the importance of ncRNAs is becoming increasingly apparent, not only in alcohol
dependence (36), but in brain physiology in general (37), and these RNAs were therefore included in our data.
Interestingly, the top DEG in astrocytes was AC008957.2, a IncRNA that is antisense to the gene encoding
SLC1A3, a glutamate uptake transporter that plays important roles in the neurocircuitry of addiction (38—40).

SLC1A3 was also upregulated in astrocytes, albeit at a lower significance level (FDR=0.07).

In addition to non-coding genes, protein-coding genes of interest were also identified. For example, four DEGs
involved in neuroinflammation (SLC1A3, FAS, MFGES, IRF3) were found in astrocytes (Fig 3C) (FDR<0.11).
IPA revealed that all four are associated with apoptosis, a component of the neuroimmune response. SLC1A3
(also called “GLAST’) was downregulated with alcohol consumption in mouse astrocytes (20,21) but
upregulated in the human alcoholic brain (39). FAS and MFGES8, however, showed similar regulation between

mouse and human astrocytes (21).

We also used IPA to evaluate DEGs (FDR<0.25) in all cell types. Only astrocytes, microglia, and
oligodendrocytes showed significant pathways (p<0.05, Fisher's exact test) containing multiple DEGs. The top
overall pathway was GNRH signaling (Fig 3D). One of the top DEGs in this pathway was CACNA1A, which

was downregulated in astrocytes and upregulated in microglia.

A notable limitation of our DE analysis was the sample size of our dataset (7 donors). A small sample size in a
single cell genomics study does affect statistical power, but does not preclude the possibility of drawing

meaningful inferences of cell type gene expression in the human brain (9,41). That said, our goal is to increase
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the sample size for future single cell studies to better identify important expression patterns, particularly for

genes that have smaller effect sizes.

Comparison with previous bulk RNA-seq datasets

We next determined which cell types were most similar or dissimilar to bulk data in terms of alcohol-associated
expression changes. We compared our DE results to that from a published bulk RNA-seq analysis of the PFC
from 65 alcoholics and 73 control donors (3). Hierarchical clustering revealed that all non-microglia cell types
were more similar to bulk than they were to microglia in terms of DE patterns between alcoholics and controls
(Fig 4A). Other studies have also found that microglial expression, in general, is particularly underrepresented
in bulk transcriptomes, relative to that of other brain cell types (8,42). Among the 33 DEGs in microglia, only
the gene with the highest log fold change, SLC11A1, had been detected as a significant hit in the bulk data
(Fig 4B). This suggests that microglia-specific DEGs must have a particularly large effect size in order to be

detected in bulk DE analysis

Conclusions

This study presents the first single cell transcriptomic dataset of the human alcoholic brain. Among 16,305
nuclear transcriptomes, we detected major neural cell types from seven donors: three alcoholics and four
controls. Every cell type displayed relative enrichment of different genes linked to neuroinflammation, a
process associated with excessive alcohol use. We detected DEGs between alcoholics and controls in every
neural cell type. Many more DEGs were found in astrocytes, oligodendrocytes, and microglia relative to
neurons, indicating that glial cells should be given particular attention in future studies of alcohol-associated
gene expression.

Methods

Case selection and postmortem tissue collection

Diagnosis of alcohol dependence was based on DSM-IV criteria. All donors were required to meet the following
criteria to be considered in this study: no head injury at time of death, lack of developmental disorder, no recent

cerebral stroke, no history of other psychiatric or neurological disorders, and no history of intravenous or


https://www.zotero.org/google-docs/?YMU7XW
https://www.zotero.org/google-docs/?V7Ejtw
https://doi.org/10.1101/780304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/780304; this version posted September 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.
polydrug abuse. Alcoholic and control donors were selected to be as close as possible in terms of age, sex,
post-mortem interval (PMI), pH of tissue, and cause of death (Table $1). Fresh frozen tissue samples were

collected as previously described (3).

Isolation of nuclei from frozen postmortem brain tissue

Nuclei were isolated from tissue based on a modified version of Luciano Martelotto’s Customer-Developed
Protocol provided on the 10XGenomics website (43). All procedures were carried out on ice and all
centrifugation steps were at 500g for 5 min at 4°C. PFC tissue (~50 mg) was homogenized in 5 mL of Lysis
Buffer [Nuclei EZ Lysis Buffer (Sigma, NUC101), 0.2 U/uL RNase inhibitor (NEB, M0314), 1x protease inhibitor
(Sigma, 4693132001)] in 7 mL dounce ~30 times until no visible tissue pieces remained. An aliquot of
homogenate (500 uL) was snap-frozen on dry ice and stored at —80 °C for later RNA integrity assessment.
The remaining homogenate was incubated on ice for 5-10 minutes and then centrifuged. The supernatant was
removed, and nuclei were resuspended in 2 mL of Lysis Buffer without protease inhibitor. The suspension was
incubated for another 5 min on ice and centrifuged. Supernatant was removed, and nuclei were resuspended
in 2 mL of Wash & Resuspension Buffer (PBS with 1% BSA and 0.2 U/uL of RNase inhibitor). Nuclei were
centrifuged and the supernatant was removed. Nuclei were then resuspended in Wash & Resuspension Buffer
containing 10 ug/mL of DAPI and filtered into a FACS tube with a 35-um strainer cap. Nuclei were then sorted
into a tube containing 10XGenomics (v3.0) reverse transcription (RT) master mix (20 yL of RT Reagent, 3.1 uL
of Template Switch Oligo, 2 uL of Reducing Agent B, and 10 uL of water). Nuclei-RT mix was topped off to
71.7 pL using water, and then 8.3 uL of RT Enzyme C was added. It should be noted that the sample 647 was
prepared in another batch using a slightly different protocol, the main difference being that nuclei were sorted
into an empty tube, concentrated by centrifuging and removing all but 100 uL of supernatant, and then

resuspended before being combined with the RT master mix.

RNA integrity assessment
RNA was extracted from the homogenates with a RNeasy Lipid Tissue Mini Kit (Qiagen,74804), using the

manufacturer’s instructions. The RNA was quantified using a NanoDrop1000 (Thermo Fisher) and assayed for
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quality using an Agilent 2100 TapeStation (Agilent Technologies). Homogenate for sample 647 had not been

saved.

Droplet-based snRNA-seq
Nuclei-RT mix (75 uL) was transferred to a Chromium B Chip, and libraries were prepared using the
10XGenomics 3’ Single Cell Gene Expression protocol. Paired-end sequencing of the libraries was conducted

using a NovaSeq 6000 with an S2 chip (100 cycles).

Alignment to reference genome

A GENCODE v30 GTF file was modified to create a “pre-mRNA” GTF file so that pre-mRNAs would be
included as counts in the subsequent analysis. Cellranger’s (v3.0.2) mkref command was then used to create a
pre-mRNA reference from the GTF file and a FASTA file of the GRCh38.p12 genome. FASTQ files of the
snRNA-seq libraries were then aligned to the pre-mRNA reference using the cellranger count command,
producing gene expression matrices. The matrices for the different samples were concatenated into a single
matrix using the cellranger aggr command with normalization turned off, so that the raw counts would remain

unchanged at this point.

Filtering and normalization

The filtered matrix produced by cellranger was loaded into scanpy (v1.4.3) (44). Nuclei with more than 20% of
UMI (transcript) counts attributed to mitochondrial genes were removed, and then all mitochondrial genes were
removed from the dataset. Normalization was conducted based on the recommendations from multiple studies
that compared several normalization techniques (35,45,46). In brief, three steps were performed: (1)
preliminary clustering of cells by constructing a nearest network graph and using scanpy’s implementation of
Louvain community detection, (2) calculating size factors using the R package scran (v1.10.2) (47) , and (3)
dividing counts by the respective size factor assigned to each cell. Normalized counts were then transformed

by adding a pseudocount of 1 and taking the natural log.
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Assigning nuclei to transcriptomically-distinct clusters
Genes that are highly variable within every sample were identified using scanpy’s highly_variable_genes
function with sample identity used for the batch_key argument. This type of approach helps select genes that
distinguish cell types from each other (9). Normalized expression of every gene was then centered to a mean
of zero. Principal component (PC) analysis was performed on the highly variable genes, and the top 50 PCs

were used to construct a nearest neighbor graph. Nuclei were then assigned to clusters using the Louvain

algorithm with the resolution set to 0.1.

Differential gene expression analysis

DE testing was performed separately on each cell type. We adapted a transcript count summation strategy
(31) (also called “pseudobulking”). First, nuclei corresponding to the given cell type were selected from the full
dataset. Second, raw counts were summed in order to produce a “pseudobulk” transcriptome for each donor.
Third, DEGs between the alcohol-dependent and control donors were detected using DESeq2 (v1.24.0) (48)

with batch as a covariate.

Pathway analyses of differential expression
Qiagen’s Ingenuity Pathway Analysis (IPA) software was used to identify canonical pathways associated with

DEGs in each cell type. A cutoff of FDR<0.25 was used to separate DEGs from non-DEGs.
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Figure 1. Unsupervised clustering captured expected cell types in every sample. (A) UMAP plots of the
16,305 nuclei in our dataset, colored by donor or (B) transcriptomically-distinct clusters determined from
unsupervised clustering. (C) Scaled mean expression of known cell type markers in the different clusters. For

each gene, expression was scaled from 0.0-1.0 to maintain a balanced colormap. (D) UMAP plot of nuclei

colored by cell type assignment. (E) Scaled mean expression of marker genes for each cell type in each donor.
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Figure 2. Cell type enrichment patterns vary among neuroimmune genes. (A) Scaled expression of
neuroimmune genes among cell types. Genes are ordered by which cell type had the highest mean
expression. Scaling was done for each gene across all cells. (B) UMAP plot depicting expression of TLR2 as

an example of a gene that is enriched in a specific cell type (microglia). (C) TLR2 expression is enriched in

microglia among nuclei from both controls and alcoholics.
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Figure 3. Differentially expressed genes (DEGs) associated with alcoholism were detected in every
neural cell type. (A) Breakdown of DEGs by cell type and transcript type (FDR<0.05). (B) Volcano plots of top
DEGs in each cell type (FDR<0.05). (C) An Ingenuity Pathway Analysis (IPA) molecular network including four
neuroinflammation-associated DEGs in astrocytes (FDR<0.11). Solid lines indicate direct relationships, while
dashed lines indicate indirect relationships. (D) Log2 fold changes and adjusted p-values of genes were

processed by IPA with FDR<0.25 as the cutoff for indicating significant DEGs. The top canonical pathways are

shown. Negative log(p-values) are derived from Fisher's exact test.
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Figure 4. Comparison of alcohol dependence-associated differential expression from human bulk
RNA-seq and snRNA-seq data. (A) Gene expression changes in alcoholics for each cell type as well as bulk

data from a previous study (3). Groups were hierarchically clustered using average as the linkage method. (B)
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. Log fold change of expression in alcohol dependent donors compared with controls for genes that are
differentially expressed (FDR<0.25) in microglia. A single asterisk indicates differential expression at
FDR<0.25, while a double asterisk indicates FDR<0.05. The three genes with "na" are non-protein-coding

genes, which had not been included in the bulk study.
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Supplementary figure 1. (A) UMAP plots highlighting nuclei from two technical replicate samples.
Immediately after homogenizing the tissue from donor 598, the homogenate was split into two different aliquots

(598C-1 and 598C-2). (B) UMAP plot highlighting nuclei based on the batch of samples from which they were

isolated.
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Supplementary figure 2. (A) Cell type proportions for nuclei from control and alcohol-dependent individuals.

(B) Cell type proportions for nuclei from each specific donor. There were no significant differences in the


https://doi.org/10.1101/780304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/780304; this version posted September 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

proportion of any cell type between alcoholics and controls, based on t-tests. The lowest p-value was 0.27 for

GABAergic neurons.
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Supplementary table 1. Donor information.

SuU
Number: 780 721 856 777 598 335 647
Age 53 55 53 58 56 44 69
Sex male male male male male male male
PMI 53 27.5 62 68 19 50 52

Classificati Alcohol Use Alcohol Use Alcohol Use

on Disorder Disorder Disorder Control Control Control Control
C: B: B:
Substance Substance |Substance

Abuse Dependenc Dependenc

DSMIV (alcohol) e (alcohol) e (alcohol)

DSM 5 Alcohol Use |Alcohol Use Alcohol Use

alcohol Disorder Disorder Disorder

DSMV

Alcohol

classificati

on Severe Severe Severe

Brain pH 6.77 6.56 6 6.82 6.9 6.6 6.95
RIN 7.9 6.7 6.5 6.5 7.2 7.5 NA
COD Cardiac/Tox Cardiovasc

category icity Cardiac ular Cardiac Cardiac Cardiac Cardiac
category  Current Current Current Current Current Current Current
alcohol Drinker Drinker Drinker Drinker Drinker Drinker Drinker
Total

drinking

yrs 28 30 35 32 36 19 44
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alcohol

intake 340 336 272 8.85 8 4 17

Supplementary table 2. Technical information and quality control metrics for the snRNA-seq data.

647C 780A 598C-1 598C-2  335C 856A 721A 777C
Batch 1 2 2 2 3 3 3 3

49547 5141684 5270676 5544296 5819945 4981069 5075544 4771734

Total reads 9422 24 77 63 87 47 11 06

Recovered number

of nuclei 5524 1132 1916 1884 2479 1922 1005 443

Total reads/

recovered nuclei 89696 454212 275088 294283 234770 259161 505029 1077141

Median UMI Counts

per nuclei 4626 6703 5595 2057 1617 10746 2700 848

Median Genes per

nuclei 2260 2750 2551 1273 1058 3740 1514 610

Total Genes

Detected 35488 32535 34782 34183 35012 35126 31189 26811
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