

1 Swimming motility and chemotaxis control the spatial organization,
2 persistence, and inflammatory activity of a model intestinal pathobiont
3
4
5

6 Travis J. Wiles^{1,4}, Brandon H. Schloemann^{1,2,4}, Elena S. Wall¹, Reina Betancourt¹, Raghuveer
7 Parthasarathy^{1,2}, and Karen Guillemain^{1,3,5,*}
8

9 ¹Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
10

11 ²Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon
12 97403, USA
13

14 ³Humans and the Microbiome Program, CIFAR, Toronto, Ontario M5G 1Z8, Canada
15

16 ⁴These authors contributed equally
17

18 ⁵Lead Contact
19

20 *Correspondence: kguillem@uoregon.edu
21

22 **SUMMARY**

23 Understanding the processes that spatially restrict resident gut bacteria and the mechanisms by
24 which disease-causing pathobionts escape this control will open new avenues for microbiome-
25 based therapies. Using live imaging and genetically engineered bacteria, we discovered that
26 flagella-based swimming motility and chemotaxis enable a model *Vibrio* pathobiont to govern its
27 own spatial organization within the larval zebrafish gut and to persist in the face of the disruptive
28 forces of intestinal flow. Bacterial mutants lacking motility traits became aggregated and
29 lumenally confined, making them susceptible to periodic expulsion from the host. Consequently,
30 non-motile and non-chemotactic mutants experienced large fluctuations in absolute abundance
31 and impaired interbacterial competition. Further, we found that motile bacterial cells induce
32 expression of the proinflammatory cytokine TNF α in gut-associated macrophages and the liver.
33 Using inducible genetic switches, we demonstrate that swimming motility can be manipulated *in*
34 *situ* to modulate the spatial organization, persistence, and inflammatory activity of gut bacteria.

35

36 **Keywords:** Gut microbiota, motility, chemotaxis, spatial organization, bacteria, flagella,
37 inflammation, pathobiont

38

39 **INTRODUCTION**

40 Bacterial pathobionts are indigenous members of the microbiome that have a latent ability to
41 undermine host health. Although pathobionts have been implicated in numerous diseases (Chow
42 et al., 2011; Hajishengallis and Lamont, 2016), the factors underlying their pathogenic potential
43 remain poorly defined. Understanding how the host constrains the virulent activities of resident
44 bacteria and the mechanisms pathobionts use to escape this control will lead to new microbiome-
45 based therapies for improving human and animal health.

46

47 One way the host keeps pathobionts in check within the intestine is by imposing
48 restrictions on microbiota spatial organization. The most recognized spatial control measures
49 employed by the host are mucus, immunoglobulins, and antimicrobial peptides, which confine
50 bacteria to the intestinal lumen, away from mucosal surfaces (Cullender et al., 2013; Johansson
51 et al., 2013; Vaishnava et al., 2011). In turn, it is thought that intense competition for resources
52 pushes bacteria to evolve strategies that allow them to subvert host control and exploit
53 opportunities to occupy new spatial niches (Finlay and Falkow, 1989; Foster et al., 2017). In line
54 with this idea, several prototypic pathobionts undergo blooms in abundance that are coincident
55 with shifts in intestinal biogeography (Carvalho et al., 2012; Chow et al., 2011; Gevers et al.,
56 2014; Kostic et al., 2014). A potential trait underlying this behavior that is common to many
57 pathobionts—as well as numerous bona fide pathogens—is flagella-based swimming motility
58 (Chaban et al., 2015; Elhenawy et al., 2019; Ottemann and Miller, 1997). Swimming motility
59 gives bacteria the agency to govern their own spatial organization and access niches that
60 enhance growth and survival (Raina et al., 2019; Wei et al., 2011; Yawata et al., 2014). In some
61 cases, it has been shown that flagellin, the protein subunit comprising the bacterial flagellum, is
62 a major driver of pathobiont-induced inflammation (Ayres et al., 2012). Further underscoring the
63 relationship between pathobionts and motility, mouse studies have revealed that hosts have
64 several mechanisms for detecting and quenching flagellar motility that are critical to intestinal
65 homeostasis (Ayres et al., 2012; Cullender et al., 2013; Fulde et al., 2018; Okumura et al., 2016).
66 However, despite progress in understanding the pathogenic consequences of bacterial motility
67 for the host, much remains unknown about how motility behaviors promote intestinal colonization
68 and provide pathobionts with a competitive advantage.

69

70 Answers to these questions have started to emerge from our studies of how diverse
71 bacterial taxa colonize the zebrafish intestine. The optical transparency and small size of larval
72 zebrafish make them an ideal vertebrate model for probing how bacteria use motility to spatially
73 organize their populations within a living animal. With light sheet fluorescence microscopy
74 (LSFM) it is possible to capture the full three-dimensional architecture of bacterial populations
75 at single bacterial cell resolution across the entire length of the larval intestine (Parthasarathy,
76 2018). In addition, the spatiotemporal dynamics of bacterial and host cells can be followed in
77 real time or over the course of many hours. Using LSF, we have found that for many non-
78 inflammatory commensal bacteria native to the zebrafish microbiome, the bulk of their
79 populations are non-motile and reside as dense multicellular aggregates within the intestinal
80 lumen (Schlomann et al., 2018; Wiles et al., 2018). Notably, this pattern of bacterial spatial
81 organization is consistent with histological data from both the mouse and human intestine
82 (Swidsinski et al., 2005, 2007; van der Waaij et al., 1996; Welch et al., 2017). We discovered
83 that in this aggregated regime, bacteria are extremely vulnerable to intestinal flow.
84 Consequently, aggregated bacterial populations can be stochastically expelled from the host in
85 large numbers, producing punctuated drops in abundance (Schlomann et al., 2019; Wiles et al.,
86 2016).

87

88 In contrast, unlike most zebrafish gut bacteria studied thus far, we have identified an
89 isolate of non-toxigenic *Vibrio cholerae* (strain ZWU0020, further referred to as “*Vibrio*” for
90 brevity) that exhibits pathobiont-like characteristics and assembles intestinal populations made
91 up of planktonic cells displaying vigorous swimming motility (Rolig et al., 2017; Wiles et al.,
92 2016). The mass swimming behavior of *Vibrio* populations gives them a liquid-like spacing-filling
93 property that promotes frequent and close contact with the intestinal mucosa (Wiles et al., 2016).
94 This attribute appears to make *Vibrio* highly resistant to intestinal expulsion. As a result, *Vibrio*
95 stably colonizes the intestine and reaches absolute abundances that are up to ten times higher
96 than other zebrafish symbionts (Schlomann et al., 2019). *Vibrio*’s unique intestinal lifestyle is
97 also potentially linked to its pathobiont character, which is marked by its ability to supplant
98 established, naturally aggregated bacterial populations (Wiles et al., 2016), and induce intestinal
99 inflammation and exacerbate pathology in susceptible hosts (Rolig et al., 2015, 2017).

100

101 In the present work we set out to identify the mechanisms by which *Vibrio*'s motility
102 behaviors control its ability to colonize the intestine and contribute to its proinflammatory
103 potential. We found that *Vibrio* specifically requires sustained swimming motility to resist
104 intestinal flow and persist at high abundances. Mutants lacking either the flagellar motor or
105 chemotaxis are attenuated for colonization and interbacterial competition. Using mutant animals
106 with decreased intestinal transport and bacteria carrying inducible genetic switches that allow
107 motility behaviors to be toggled in situ, we demonstrate that loss of motility or chemotaxis leads
108 to increased aggregation and expulsion. Further, colonizing transgenic animals encoding a
109 fluorescent reporter of tumor necrosis factor alpha (TNF α) expression, which is a
110 proinflammatory cytokine, revealed that *Vibrio* is capable of inducing inflammation both locally
111 within the intestine and systemically, particularly in cells of the liver. We found that *Vibrio*'s
112 proinflammatory activity is dependent on motility and chemotaxis, and that macrophages
113 associated with the intestine are a major cell type that responds to bacterial motility. Finally,
114 activating motility in established, non-motile populations showed that host tissues are
115 remarkably sensitive to sudden changes in bacterial motility and spatial organization.

116

117 Our work yields mechanistic insights into the form and function of the intestinal
118 ecosystem. We have disentangled the requirements for motility behaviors of a model pathobiont
119 during multiple stages of host colonization. Moreover, we identified that a motility-based
120 intestinal lifestyle has potent proinflammatory consequences, emphasizing that bacterial
121 swimming motility and the host countermeasures that control it are potential targets for
122 therapeutic manipulation of the microbiome.

123

124 **RESULTS (Figures & Legends: p 22; Sup. Figures & Legends: p 50)**

125

126 **Loss of swimming motility or chemotaxis attenuates intestinal colonization and**
127 **interbacterial competition**

128 To dissect the role of flagellar motility during intestinal colonization, we generated two motility-
129 deficient *Vibrio* mutants (Figure S1A). To test swimming motility in general, we deleted the two-
130 gene operon *pomAB* that encodes the polar flagellar motor (creating Δ mot). To test *Vibrio*'s
131 ability to spatially organize its populations in response to environmental cues, we deleted the
132 gene *cheA2*, which encodes a histidine kinase necessary for chemotaxis (creating Δ che). In
133 vitro, Δ mot exhibited complete loss of swimming motility whereas Δ che had a run-biased
134 behavior with swim speeds comparable to wild type but failed to chemotax in soft agar (Figure
135 S1B). Both motility mutants displayed normal growth and assembled a single polar flagellum
136 similar to wild type (Figure S1C and S1D).

137

138 We first assessed the absolute abundances of each strain over time by gut dissection
139 and cultivation. We inoculated wild-type *Vibrio*, Δ mot, and Δ che individually into the aqueous
140 environment of four-day-old germ-free larval zebrafish (Melancon et al., 2017). *Vibrio* rapidly
141 colonized germ-free animals to high abundance, reaching a maximal carrying capacity of 10^5 –
142 10^6 cells per intestine by 24 h post-inoculation (hpi) and maintaining a high-level of abundance
143 through 72 hpi (Figure 1A). In contrast, Δ mot and Δ che displayed attenuated intestinal
144 colonization phenotypes (Figure 1A). Both mutants were slow to access the zebrafish intestine,
145 suggesting that they have reduced immigration rates, and reached maximal abundances at 24
146 hpi that were 10–100-fold lower than wild type (Figure 1A).

147

148 We next compared the ability of wild-type *Vibrio* and each mutant to invade an established
149 population of *Aeromonas veronii* (strain ZOR0001, further referred to as “*Aeromonas*”). Like
150 *Vibrio*, *Aeromonas* species are abundant members of the zebrafish intestinal microbiota
151 (Stephens et al., 2016). Previous studies suggest that these two genera naturally compete
152 against one another within complex intestinal communities (Phelps et al., 2017). In addition, we
153 have shown that *Vibrio* is capable of invading and displacing established *Aeromonas* populations
154 in gnotobiotic animals (Wiles et al., 2016). Following the competition scheme depicted in Figure

155 1B, we found that each *Vibrio* strain had a distinct competitive interaction with *Aeromonas*
156 (Figure 1C). Wild-type *Vibrio* potently colonized *Aeromonas*-occupied intestines and induced
157 10–100-fold drops in *Aeromonas* abundances (Figure 1C). Zebrafish colonized with the Δ mot
158 mutant, however, were dominated by *Aeromonas*, which did not experience any significant
159 declines in abundance compared to mono-association (Figure 1C). Invasion with the Δ che
160 mutant had an intermediate impact on *Aeromonas* abundances and the two appeared to co-
161 exist (Figure 1C). Comparing abundances during competition to those during mono-association
162 showed that each *Vibrio* strain's colonization was hindered to varying degrees while invading
163 established *Aeromonas* populations (Figure 1D). Wild-type *Vibrio* abundances were only 2-fold
164 lower during competition than during mono-association (Figure 1D). In contrast, Δ mot
165 abundances were 6-fold lower (and in several instances reduced by up to 100-fold), whereas
166 the impact on Δ che abundances was intermediate with a 4-fold reduction (Figure 1D). Overall,
167 these data show that *Vibrio* requires swimming motility and chemotaxis for normal intestinal
168 colonization and interbacterial competition.

169

170 **Motility and chemotaxis mutants have altered intestinal spatial organization**

171 Wild-type *Vibrio* cells strongly localize to the larval zebrafish foregut (Figure 2A and 2B)
172 (Schlomann et al., 2018), which is an anatomical region comparable to the mammalian small
173 intestine (namely, the duodenum and jejunum) (Lickwar et al., 2017; Wang et al., 2010), and
174 display a highly active swimming behavior both within the intestinal lumen and at mucosal
175 surfaces (Wiles et al., 2016). To determine how motility and chemotaxis contribute to *Vibrio*'s
176 cellular behavior and spatial organization within the intestine, we examined wild type, Δ mot, and
177 Δ che in live animals using LSFM. A fluorescently marked variant of each strain was first mono-
178 associated with germ-free animals and then imaged at 48 hpi. As expected, wild-type *Vibrio*
179 assembled dense populations concentrated within the foregut that were almost entirely
180 composed of planktonic cells swimming in the lumen as well as within the intestinal folds (Figure
181 2C–2G, Movies S1 and S2). In contrast, Δ mot and Δ che assembled populations with greatly
182 altered behavior and spatial organization.

183

184 Populations of Δ mot were non-motile whereas Δ che had a small subset of motile cells
185 that could often be observed in the foregut (Figure 2C, Movie S1). Unexpectedly, both Δ mot and

186 Δ che became highly aggregated within the intestine (Figure 2C–2E) despite exhibiting no signs
187 of aggregation in vitro (Figure S1). The fraction of planktonic cells contained within each mutant
188 population was >10-fold lower than wild type (Figure 2F). The aggregated cells of Δ mot appeared
189 to be mostly restricted to the lumen whereas the swimming cells of Δ che, like wild type, were
190 observed within the intestinal folds (Figure 2D and 2E, Movie S2). The Δ mot mutant was also
191 largely excluded from the anterior most portion of the foregut whereas Δ che often formed an
192 adherent layer of cells on the anterior wall near the esophageal-intestinal junction (Figure 2C).
193 The population-wide aggregation of both mutants (which we refer to as cohesion) coincided with
194 an overall posterior shift in distribution compared to wild type (Figure 2C and 2G). This shift in
195 distribution is consistent with previous findings of strong correlations across bacterial species
196 between cohesion and localization along the zebrafish intestine (Schlomann et al., 2018). In
197 total, our live imaging data show that *Vibrio* requires swimming motility and chemotaxis to
198 spatially organize its populations within the intestine. Further, Δ mot and Δ che formed aggregated
199 and lumen-restricted populations reminiscent of other zebrafish bacterial symbionts, like
200 *Aeromonas*, that largely lack swimming motility in vivo (Schlomann et al., 2018; Wiles et al.,
201 2018).

202

203 **Swimming motility and chemotaxis promote persistence by enabling bacteria to counter 204 intestinal flow and resist expulsion**

205 We previously found that naturally aggregated bacteria are vulnerable to intestinal flow and
206 expulsion from the host (Schlomann et al., 2019; Wiles et al., 2016). To explore if the attenuated
207 colonization phenotypes of Δ mot and Δ che are connected to their perturbed spatial organization
208 in a way that causes increased sensitivity to the intestine's mechanical forces, we followed the
209 spatiotemporal dynamics of wild-type *Vibrio* and each mutant in live animals by LSFM. Prior to
210 imaging, each strain was given 24 h to reach its respective carrying capacity in germ-free
211 zebrafish. Despite wild-type *Vibrio* showing modest declines in abundance from 24–72 hpi
212 (Figure 1A), it was highly uniform and stable over periods of >10 h, maintaining its abundance,
213 low cohesion, and foregut localization (Figure 3A, Movie S3). We note that image-based
214 quantification of wild-type *Vibrio* abundances was performed in a concurrent study (Schlomann
215 et al., 2019) and have been replotted here. In contrast, Δ mot and Δ che underwent dramatic
216 fluctuations in their abundances and spatial organization (Figure 3A, Movie S3). Cells and small

217 aggregates in Δ mot and Δ che populations appeared to become packed by intestinal contractions
218 into large masses within the midgut before being abruptly expelled. Autofluorescent material was
219 often observed surrounding aggregated cells, suggesting that host mucus was involved in this
220 process. Image-based quantification of absolute abundances showed that >90% of Δ mot and
221 Δ che populations could be lost in a single collapse event (Figure 3A). Following collapses,
222 residual small aggregates in the midgut and low numbers of planktonic cells in the foregut
223 appeared to undergo bursts in replication that effectively restored the abundance and spatial
224 organization of the population before the next collapse. Animating the relationship between
225 cohesion and intestinal localization for each *Vibrio* strain across animals over time showed that
226 both mutant populations exhibit large fluctuations in spatial organization whereas wt *Vibrio*
227 populations are highly stable (Movie S4).

228

229 Our live imaging results suggested that the altered spatial organization of Δ mot and Δ che
230 populations, namely their increased cohesion, makes them more susceptible to intestinal flow
231 and expulsion, and thus is likely the cause of their reduced abundances. This putative
232 mechanism contrasts with the general assumption that swimming motility and chemotaxis
233 primarily promote bacterial growth by facilitating nutrient foraging and avoidance of hostile
234 environments. To probe the likelihood of these two different mechanisms we quantified the in
235 vivo growth rates of Δ mot and Δ che (see Methods). We found that both Δ mot and Δ che exhibit
236 intestinal growth rates (Δ mot = $0.7 \pm 0.3 \text{ hr}^{-1}$ [n = 2]; Δ che = $0.9 \pm 0.4 \text{ hr}^{-1}$ [n = 5]) that are
237 comparable to a previously determined wild-type *Vibrio* growth rate of $0.8 \pm 0.3 \text{ hr}^{-1}$ (mean \pm
238 standard deviation) (Wiles et al., 2016). This result supports the idea that the reduced intestinal
239 abundances of Δ mot and Δ che are not due to attenuated growth, but rather are a consequence
240 of altered behavior and spatial organization that increases susceptibility to intestinal flow and
241 expulsion.

242

243 To test this expulsion-based mechanism more directly, we assessed whether the
244 abundance of Δ mot and Δ che could be rescued in *ret*^{−/−} mutant zebrafish hosts, which have
245 reduced intestinal transport due to a dysfunctional enteric nervous system (Ganz et al., 2018;
246 Wiles et al., 2016). Humans with *ret* mutations can develop Hirschsprung Disease, which is an

247 affliction characterized by intestinal dysmotility and altered gut microbiome composition (Gosain
248 and Brinkman, 2015; Heanue and Pachnis, 2007). Strikingly, we found that the intestinal
249 abundances of both Δ mot and Δ che were fully rescued to wild-type levels in *ret*^{-/-} mutant animals
250 (Figure 3B). In contrast, Δ mot and Δ che abundances in co-housed sibling control animals
251 mirrored those in wild-type animals (Figure 3B). Importantly, we found that wild-type *Vibrio*
252 shows no change in intestinal abundance in *ret*^{-/-} mutant animals (Figure S2A), indicating that
253 the rescue of Δ mot and Δ che is not due to a general overgrowth phenomenon. In addition,
254 inspecting the spatial organization of Δ mot in *ret*^{-/-} mutant animals revealed that in some
255 instances Δ mot populations displayed relocalization to the anterior portion of the foregut,
256 suggesting that intestinal flow is responsible for Δ mot's posterior-shifted distribution in wild-type
257 animals (Figure S2B). Together, these results provide further evidence that swimming motility
258 and chemotaxis can act as a mechanism for resisting intestinal flow to promote intestinal
259 persistence.

260

261 **Sustained swimming motility is required for maintaining intestinal spatial organization 262 and persistence**

263 Without swimming motility, *Vibrio* has clear defects in both immigration and intestinal
264 persistence. Therefore, we sought to experimentally separate the roles motility plays during
265 these different stages of colonization. We specifically wanted to determine whether *Vibrio*
266 requires sustained motility for intestinal persistence or if the impaired immigration and altered
267 assembly of motility mutant populations was in some way responsible for their aggregated and
268 collapsing phenotype. To accomplish this, we built a motility "loss-of-function" switch that uses
269 inducible CRISPR interference (CRISPRi) to suppress transcription of the flagellar motor gene
270 operon *pomAB* (Figure 4A and Figure S3). The motility loss-of-function switch is based on a
271 tetracycline induction system in which a constitutively expressed Tet repressor protein (TetR) is
272 used to regulate the expression of a catalytically dead Cas9 (dCas9). We incorporated a
273 constitutively expressed single guide RNA (sgRNA) to target dCas9 to the 5' end of the native
274 *pomAB* locus where it would block transcriptional elongation. To visually track switch activity in
275 bacterial populations, we co-expressed *dcas9* with a gene encoding superfolder green
276 fluorescent protein (sfGFP) (Figure 4A). To mark all cells independent of switch activity, we co-
277 expressed a gene encoding dTomato with *tetR*. Details on switch design and optimization are

278 provided in the Methods and in Figure S3A–S3D. We integrated the motility loss-of-function
279 switch into the genome of wild-type *Vibrio* (creating *Vibrio*^{motLOF}) and confirmed that induction of
280 the switch with the tetracycline analog anhydrotetracycline (aTc) robustly inactivates swimming
281 motility in vitro without perturbing growth (Figure S3E and S3F).

282

283 With the motility loss-of-function switch constructed, we tested if sustained swimming
284 motility is required by established *Vibrio* populations to persist within the intestine using both live
285 imaging and cultivation-based measurements of abundance (Figure 4B). For live imaging, germ-
286 free zebrafish were first colonized to carrying capacity with *Vibrio*^{motLOF}. At 24 hpi, repression of
287 motility was induced by adding aTc to the water of colonized zebrafish hosts. We then performed
288 time series imaging of multiple animals using LSFM. Initially, subpopulations emerged that could
289 be distinguished by their switch activation status, behavior, and spatial organization (Movie S5).
290 Unswitched motile cells expressing only dTomato displayed a foregut localization pattern typical
291 of wild-type *Vibrio* (Figure 4C). In contrast, we observed non-motile cells expressing GFP
292 becoming aggregated and segregating away from motile populations (Figure 4C). GFP-positive
293 cells within aggregates were more restricted to the intestinal lumen and their arrangement
294 suggested they were encased in mucus (Figure 4C and Movie S5). By 10 hours post-induction,
295 *Vibrio*^{motLOF} displayed clear shifts in population center of mass toward the midgut together with
296 expulsion of multicellular aggregates (Figure 4D).

297

298 Cultivation-based measures of absolute abundances revealed that at 24 h post-induction
299 *Vibrio*^{motLOF} populations had a ~2.5-fold lower median abundance compared to uninduced
300 controls (Figure 4E). Inducing for an additional 24 h resulted in a ~5-fold reduction in median
301 intestinal abundance (Figure 4E). Together, our experiments using the motility loss-of-function
302 switch demonstrate that *Vibrio* requires sustained swimming motility to maintain its spatial
303 organization and to persist at high levels. Our results also reveal that relatively brief interruptions
304 in *Vibrio*'s swimming behavior are capable of producing rapid and dynamic changes in spatial
305 organization and drops in abundance.

306

307 **Acquisition of swimming motility or chemotaxis leads to rapid recovery of intestinal
308 spatial organization and abundance**

309 We next asked whether established Δ mot and Δ che populations could recover their spatial
310 organization and abundance if they reacquired swimming motility or chemotaxis, respectively.
311 Answering this question would give insight into the capacity of resident gut bacteria and would-
312 be pathobionts to exploit a sudden loss of host spatial control. Using the motility loss-of-function
313 switch backbone, we constructed motility and chemotaxis “gain-of-function” switches by inserting
314 either *pomAB* or *cheA2* in place of *dcas9* (Figure 5A). The motility and chemotaxis gain-of-
315 function switches were integrated into the genomes of Δ mot and Δ che, respectively, creating
316 Δ mot^{GOF} and Δ che^{GOF}. In vitro tests showed that inducing the gain-of-function switches restored
317 wild-type swimming behaviors in each strain without altering growth (Figure S4A–S4C).
318 Moreover, activation of motility and chemotaxis prior to colonization produced intestinal
319 abundances at 24 hpi that matched the carrying capacity of wild type (Figure 5B). These
320 functional tests show that the motility and chemotaxis gain-of-function switches can be used to
321 inducibly complement the Δ mot and Δ che mutants.

322

323 We monitored the response dynamics of activating swimming motility or chemotaxis in
324 established populations following similar experimental timelines as depicted in Figure 4B. Live
325 imaging revealed that induced populations of Δ mot^{GOF} and Δ che^{GOF} underwent clear shifts in
326 spatial distribution toward the foregut within the first 24 h of induction compared to uninduced
327 controls (Figure 5C). Strikingly, Δ mot^{GOF} and Δ che^{GOF} showed that large-scale changes in
328 behavior and spatial organization could occur extremely rapidly, with both populations becoming
329 more space-filling and foregut-localized within hours (Figure 5D, Movies S6 and S7). In contrast,
330 cultivation-based measurements of absolute abundances showed only modest increases in
331 median intestinal abundances in the first 24 h of induction (Figure 5E, 48 hpi). However, by 48
332 h post-induction the median intestinal abundances of Δ mot^{GOF} and Δ che^{GOF} populations had
333 recovered to wild-type levels (Figure 5E, 72 hpi). Therefore, regaining swimming behavior and
334 undergoing spatial reorganization precede the recovery of intestinal abundance.

335

336 Surprisingly, uninduced control populations of Δ mot^{GOF} and Δ che^{GOF} also exhibited a
337 recovery in intestinal abundance by 72 hpi (Figure S4D). In vitro characterization and DNA
338 sequencing revealed that this spontaneous recovery was likely due to non-synonymous
339 mutations in *tetR* that were acquired during intestinal colonization and impaired the function of

340 the Tet repressor protein, thus resulting in constitutive switch activation. While unexpected, we
341 surmise that the extremely rapid sweep of “evolved clones” carrying disabled switches—which
342 were rarely observed in induced populations or the aqueous environment outside the host
343 (Figure S4E)—is evidence of strong selective pressures for motility traits within the gut.

344

345 **Motile bacterial cells within the intestine induce local and systemic *tnfa* expression**

346 We next set out to connect *Vibrio*’s motility-based lifestyle to its pathobiont character. We
347 recently showed that overgrowth of *Vibrio*-related taxa sparks intestinal pathology marked by
348 increased epithelial hypertrophy and neutrophil influx that is dependent on TNF α signaling (Rolig
349 et al., 2017). We further identified that *Vibrio* ZWU0020 on its own can potently stimulate
350 inflammation (Rolig et al., 2015) and exacerbate pathology in susceptible hosts (Rolig et al.,
351 2017). To explore the link between *Vibrio*’s motility behaviors and its inflammatory potential, we
352 used LSFM and transgenic zebrafish hosts that express GFP under the control of the TNF α
353 promoter (Tg(*tnfa*:GFP)) (Marjoram et al., 2015).

354

355 Germ-free animals displayed little *tnfa* reporter activity in or near the foregut where the
356 bulk of wild-type *Vibrio* cells typically reside (Figure 6A). Similar to previous findings (Marjoram
357 et al., 2015), animals colonized with a conventional, undefined microbial community also had
358 low numbers of cells with *tnfa* reporter activity (Figure 6A). In contrast, at 24 hpi wild-type *Vibrio*
359 induced pronounced *tnfa* reporter activity in numerous host cells within both the intestine and
360 liver (Figure 6A). All animals colonized with wild-type *Vibrio* had *tnfa*-expressing cells in or near
361 the liver whereas less than a third of germ-free and conventionalized animals had detectable
362 *tnfa* reporter activity in this area (Figure 6B). Quantifying fluorescence intensity across the
363 foregut region (including extraintestinal tissues and the liver) showed that *Vibrio* induces an
364 approximately 100-fold increase in *tnfa* reporter activity over germ-free and conventional levels
365 (Figure 6C). In contrast to wild-type *Vibrio*, Δ mot and Δ che elicited muted inflammatory
366 responses. Animals colonized with Δ mot showed a pattern of *tnfa* reporter activity similar to
367 germ-free animals (Figure 6A–6C). However, despite the comparable intestinal abundances of
368 Δ mot and Δ che (Figure 1A), Δ che induced intermediate, although variable, levels of *tnfa* reporter
369 activity (Figure 6A–6C). This finding suggests that host tissues do not merely sense bacterial
370 abundances, but also their active swimming behavior and/or proximity to epithelial surfaces.

371 Together, these data provide evidence that swimming motility and chemotaxis are major
372 contributors to *Vibrio*'s proinflammatory potential.

373

374 We next probed the possible host cell types involved in sensing motile *Vibrio* populations.
375 The amoeboid morphology and migratory behavior of many *tnfa*-expressing cells hinted that they
376 might be immune cells (Figure 6A and Movie S8). Using double transgenic zebrafish carrying
377 the *tnfa* reporter and expressing fluorescently marked macrophages (Tg(*mpeg1*:mCherry)) (Ellett
378 et al., 2011)), we found that ~half (54 ± 10% [mean ± standard deviation, n = 100 cells from 4
379 animals]) of the *tnfa*-positive cells in the foregut region induced by *Vibrio* were indeed
380 macrophages (Figure 6D and Movie S9). Nearly all *tnfa*-positive cells that were associated with
381 intestinal tissues were macrophages (93 ± 12% [mean ± standard deviation, n = 18 cells from 3
382 animals]). In contrast, most *tnfa*-positive cells associated with the liver were not macrophages
383 based on *mpeg1*:mCherry expression, nor were they neutrophils (based on experiments with
384 animals carrying an *mpx*:mCherry reporter), suggesting that they were other non-immune cell
385 types. Collectively, our data indicate that wild-type *Vibrio* populations stimulate expression of
386 *tnfa* locally within intestinal tissues as well as at systemic sites, namely the liver. Macrophages
387 are also one of the main cell types that is sensitive to *Vibrio* colonization.

388

389 **Host tissues rapidly respond to sudden increases in bacterial swimming motility within
390 the intestine**

391 To maintain homeostasis, the host must be simultaneously tolerant and sensitive to the activity
392 of resident bacterial populations. It is crucial for host tissues to quickly differentiate between
393 harmful and benign changes in the intestinal microbiota; for example, the overgrowth of a
394 pathobiont versus diurnal fluctuations in commensal bacteria (Thaiss et al., 2016). Therefore,
395 we next determined if sudden increases in bacterial motility behaviors—which are a potential
396 signature of pathobionts escaping host control—could elicit an equally rapid host response.

397

398 Following a similar live imaging timeline as depicted in Figure 4B, we used LSF to track
399 *tnfa* reporter activity in response to induced populations of $\Delta\text{mot}^{\text{GOF}}$. As expected, at time zero
400 $\Delta\text{mot}^{\text{GOF}}$ populations displayed low-abundance, high cohesion, and a posterior-shifted
401 distribution with little *tnfa* reporter activity in host tissues (Figure 7A–7C). By 24 h post-induction,

402 $\Delta\text{mot}^{\text{GOF}}$ populations had begun to spatially reorganize within the foregut and contained an
403 increased number of swimming cells (Figure 7A). At the same time, there was an increase in
404 *tnfa*-expressing host cells near the intestine, which were likely macrophages (Figure 7A). In one
405 instance, we captured *tnfa*-positive host cells within the mucosa adjacent to bacterial cells
406 actively swimming near the epithelial surface (Movie S10). After the first 24 h of induction, the
407 fraction of animals with *tnfa*-positive cells in or near the liver did not increase appreciably (Figure
408 7B); however, there was a ~2.5-fold increase in median *tnfa* reporter activity, implying that initial
409 responses to changes in bacterial swimming motility occur locally within intestinal tissues (Figure
410 7C). By 48 h of switch induction, $\Delta\text{mot}^{\text{GOF}}$ populations exhibited wild-type-like space-filling
411 properties and foregut-localization (Figure 7A). Likewise, *tnfa* reporter activity was also mostly
412 restored to wild-type levels (Figure 7B and 7C). Nearly all animals (~92%, n = 17) had *tnfa*-
413 positive cells in or near the liver and the median *tnfa* reporter activity across the foregut region
414 was 20-fold higher than germ-free levels (Figure 7B and 7C). Our data reveal that host tissues
415 are remarkably sensitive to sudden increases in bacterial motility behaviors that occur over
416 relatively short time scales.

417

418 **DISCUSSION**

419 Our study connects the motile lifestyle of a model pathobiont to its proinflammatory activity. All
420 gut bacteria must contend with the intestine's spatially dynamic landscape (Byndloss et al., 2018;
421 Donaldson et al., 2015; Tropini et al., 2017). The mechanism by which *Vibrio* maintains stable
422 colonization involves resisting intestinal flow through sustained swimming and chemotaxis.
423 Conventional wisdom is that motility promotes the growth of bacteria by enabling them to forage
424 nutrients and avoid hostile environments (Wei et al., 2011). In contrast, our data show that
425 *Vibrio*'s motility behaviors within the zebrafish gut do not enhance its growth rate but rather allow
426 it to counter intestinal flow. *Vibrio* thus provides a model of intestinal persistence that is distinct
427 from more familiar examples involving adhesion to host tissues, which are largely based on
428 examination of dissected and fixed samples (Donaldson et al., 2018; McLoughlin et al., 2016;
429 Schluter et al., 2015). Ultimately, *Vibrio*'s colonization strategy uses continuous swimming to
430 remain in place within the host's intestine.

431

432 *Vibrio*'s swimming behavior underlies many of its pathobiont characteristics, including its
433 ability to invade and displace resident bacteria, persist at high abundances, and stimulate host
434 inflammation. The basis of *Vibrio*'s inflammatory activity is unknown, but future work is aimed at
435 testing the contributions of its abundance, position along the intestine, mucosal proximity, and
436 cellular behavior. Intriguingly, the different inflammatory activities of Δ mot and Δ che, despite their
437 similar spatial organizations and production of flagella, highlights the possibility that the
438 mechanism involves active bacterial motility. We posit that motility allows bacteria to access
439 epithelial surfaces, increasing concentrations of inflammatory molecules at host cell surfaces
440 and possibly triggering mechanosensory pathways. Flagellar rotation may also increase
441 shedding of inflammatory components such as lipopolysaccharide and outer membrane
442 vesicles, an idea supported by work in other *Vibrio* lineages (Aschtgen et al., 2016; Brennan et
443 al., 2014).

444

445 *Vibrio*'s colonization dynamics show how swimming motility enables gut bacteria to evade
446 spatial constraints imposed by the host. Notably, Δ mot and Δ che reveal how bacteria with
447 impaired swimming motility surrender to intestinal mechanics, which entrap them within the
448 lumen where they can be periodically purged. Thus, in addition to the intestine's role in

449 transporting digesta and expelling waste, intestinal flow and mucus dynamics appear to also
450 exert spatial and population control over resident microbiota. Consistent with this, our
451 characterization of *sox10* mutant zebrafish demonstrated how the enteric nervous system
452 constrains intestinal bacterial abundances and composition, preventing dysbiosis (Rolig et al.,
453 2017). From the bacterial side, we've also shown that sublethal antibiotics induce bacterial
454 aggregation and enhance clearance from the intestine (Schlomann et al., 2019). A similar
455 phenomenon was described in the mouse intestine, where antibody-mediated en chaining of
456 bacterial cells enhanced clearance of *Salmonella* Typhimurium (Moor et al., 2017). Our
457 observation that intestinal flow impacts the distribution of bacteria throughout the gut is also
458 supported by findings in "gut-on-a-chip" fluidic systems (Cremer et al., 2016).

459

460 Given the clear advantage of motility behaviors within the gut, it is surprising that the
461 majority of zebrafish gut bacteria studied so far—most of which are capable of flagellar motility—
462 form aggregated populations made up of non-motile cells (Wiles et al., 2018). This discrepancy
463 may be reconciled by considering the broader ecological life cycles of gut bacteria. For example,
464 we have found that intestinal populations of *Aeromonas* grow more rapidly within multicellular
465 aggregates than as planktonic cells (Jemielita et al., 2014), but *Aeromonas* also benefits from
466 swimming motility for interhost dispersal (Robinson et al., 2018). *Aeromonas* thus highlights how
467 aggregation and expulsion by intestinal flow may actually facilitate the transmission of resident
468 gut bacteria and promote persistence within a population of hosts.

469

470 Further investigation of the relationship between intestinal mechanics and bacterial
471 behaviors will open new avenues for therapeutic engineering of the gut microbiome. Our findings
472 suggest that manipulating bacterial motility and aggregation may be used to induce large-scale,
473 yet specific, changes in both bacterial abundances and host inflammatory state. Further, using
474 drug- or diet-based modulators of intestinal flow may enhance the efficacy of antibiotics or
475 promote microbiome recovery and fortification following perturbation. Our experiments using
476 genetic switches to toggle bacterial motility and inflammatory activity serve as a proof-of-concept
477 for these types of manipulations. Highlighting the potential of these interventions, human studies
478 have shown that colonic transit time is a top predictor of microbiome composition (Falony et al.,
479 2016; Roager et al., 2016). Moreover, impaired intestinal flow can lead to bacterial overgrowth

480 and pathogenic changes in the microbiome (Dukowicz et al., 2007; Heanue and Pachnis, 2007;
481 Rolig et al., 2017). Considering the dynamic nature of the intestinal ecosystem on spatial and
482 temporal scales relevant to bacterial cells will be key to therapeutically engineering the
483 microbiome.

484

485 **ACKNOWLEDGMENTS**

486 Research was supported by an award from the Kavli Microbiome Ideas Challenge, a project led
487 by the American Society for Microbiology in partnership with the American Chemical Society and
488 the American Physical Society and supported by The Kavli Foundation. Work was also
489 supported by the National Science Foundation under Awards 1427957 (R.P.) and 0922951
490 (R.P.), the M.J. Murdock Charitable Trust, and the National Institutes of Health
491 (<http://www.nih.gov/>), under Awards P50GM09891 and P01GM125576 to K.G. and R.P.,
492 F32AI112094 to T.J.W., and T32GM007759 to B.H.S. R.B. was supported by NSF BIO/DBI
493 Award 1460735 as visiting undergraduate intern. We also thank Rose Sockol and the University
494 of Oregon Zebrafish Facility staff for fish husbandry, which are supported by a grant from the
495 National Institute of Child Health and Human Development (P01HD22486). The funders had no
496 role in study design, data collection and analysis, decision to publish, or preparation of the
497 manuscript.

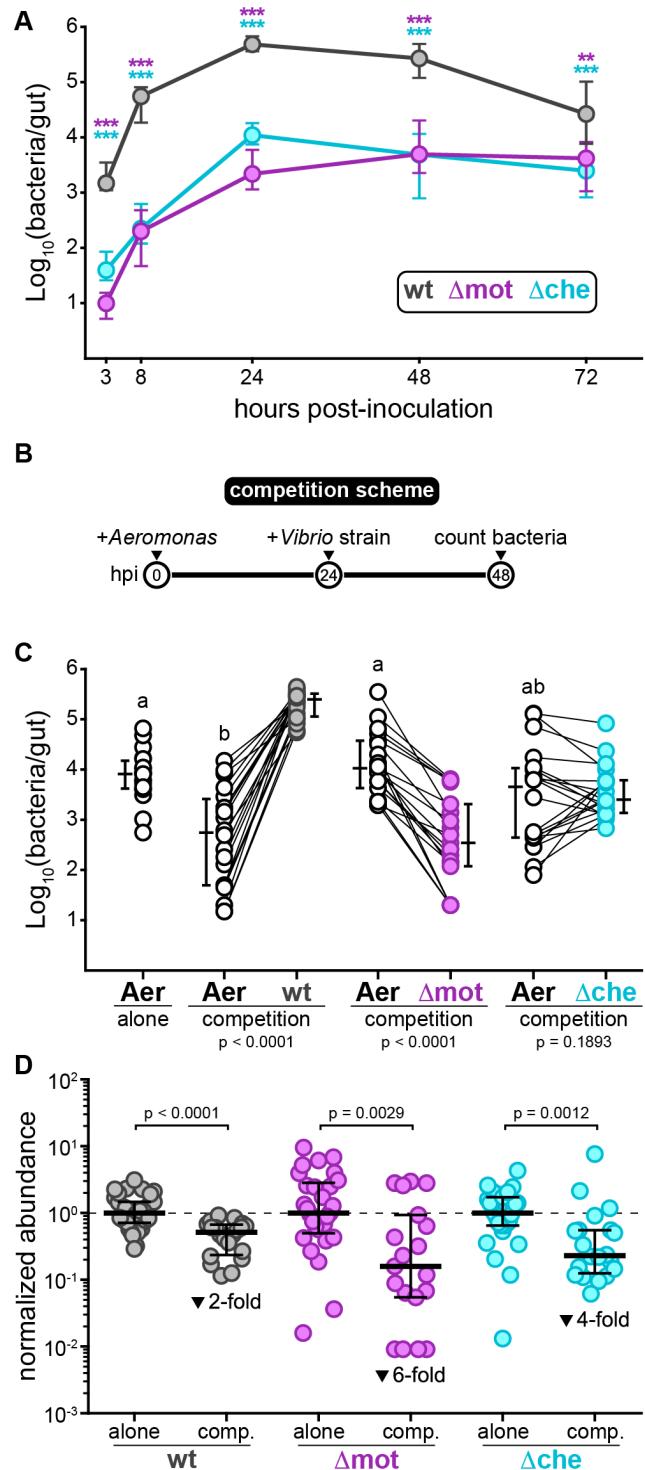
498

499 **AUTHOR CONTRIBUTIONS**

500 Conceptualization, T.J.W., B.H.S., R.P., and K.G.; Methodology, T.J.W., E.S.W., and R.B.;
501 Formal Analysis, T.J.W. and B.H.S.; Investigation, T.J.W., B.H.S., and E.S.W.; Writing – Original
502 Draft, T.J.W. and B.H.S.; Writing – Review & Editing, T.J.W., B.H.S., E.S.W., R.P., and K.G.;
503 Visualization, T.J.W., B.H.S.; Supervision, R.P., K.G.; Funding Acquisition, T.J.W., B.H.S., R.P.,
504 and K.G.

505

506 **DECLARATION OF INTERESTS**

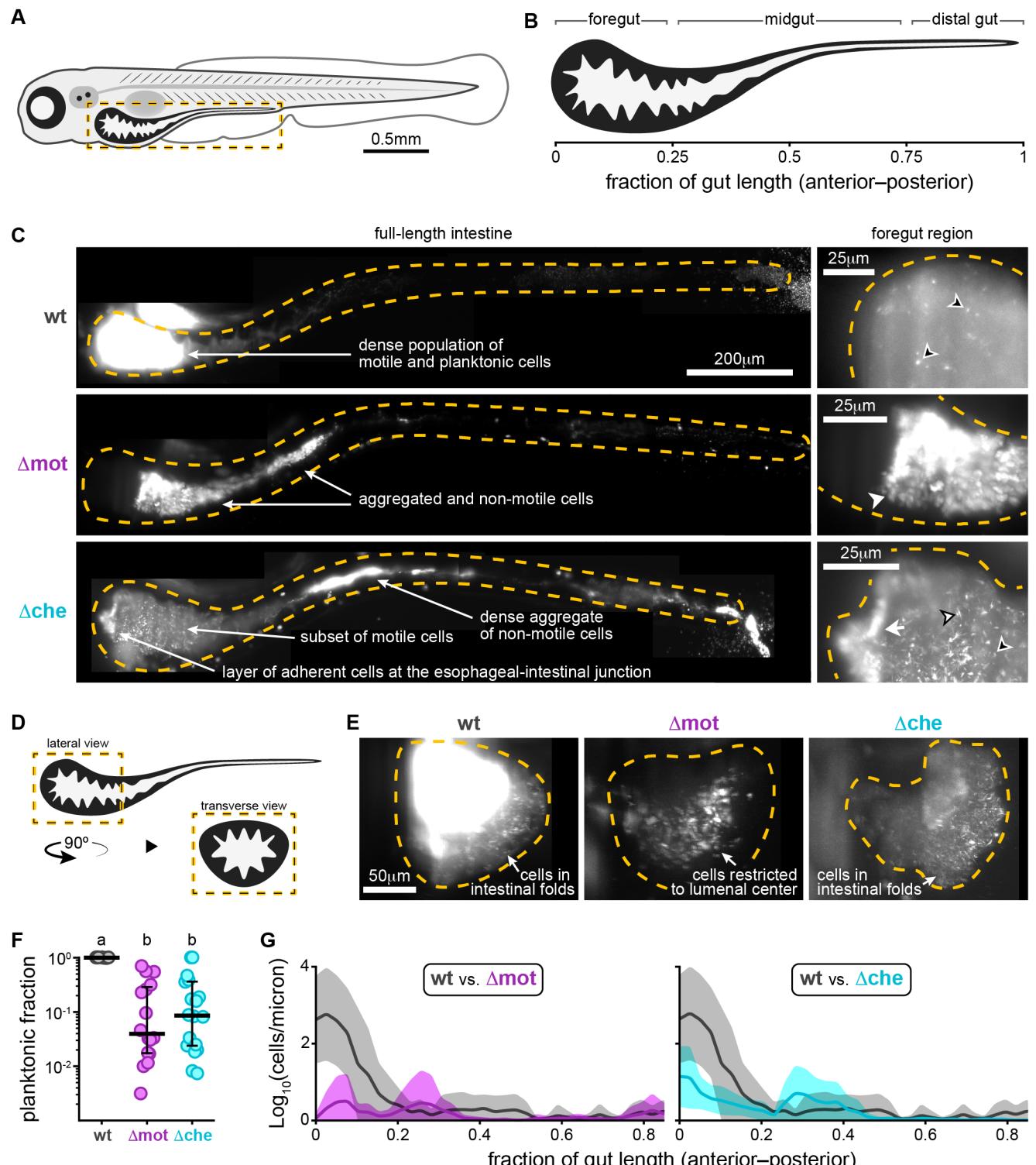

507 The authors declare no competing interests.

508

509 **FIGURES & FIGURE LEGENDS**

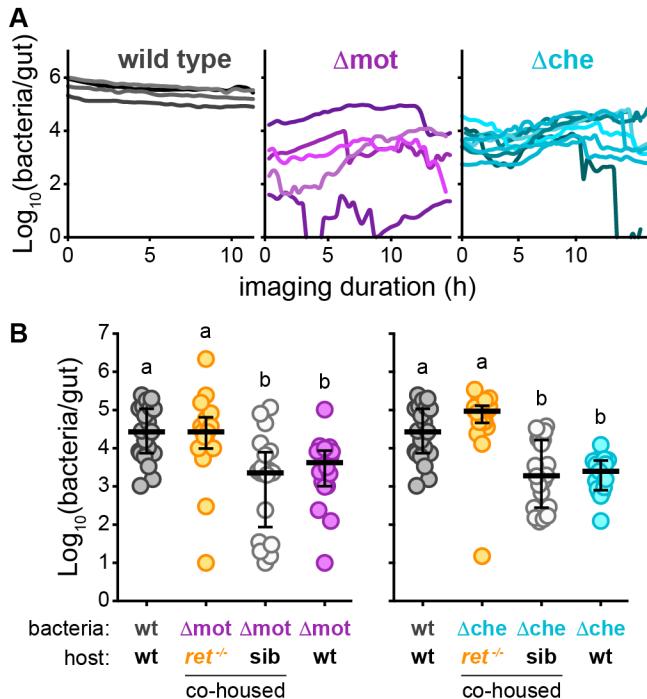
510

511


Figure 1. Loss of swimming motility or chemotaxis attenuates intestinal colonization and interbacterial competition. (see also Figure S1)

(A) Abundances of wild-type *Vibrio*, Δ mot, and Δ che during mono-association. Plotted are medians and interquartile ranges ($n \geq 17$ animals/marker). Significant differences between each mutant and wild-type determined by Mann-Whitney (purple asterisks: Δ mot; cyan asterisks: Δ che). *** $p < 0.0001$, ** $p = 0.0002$.

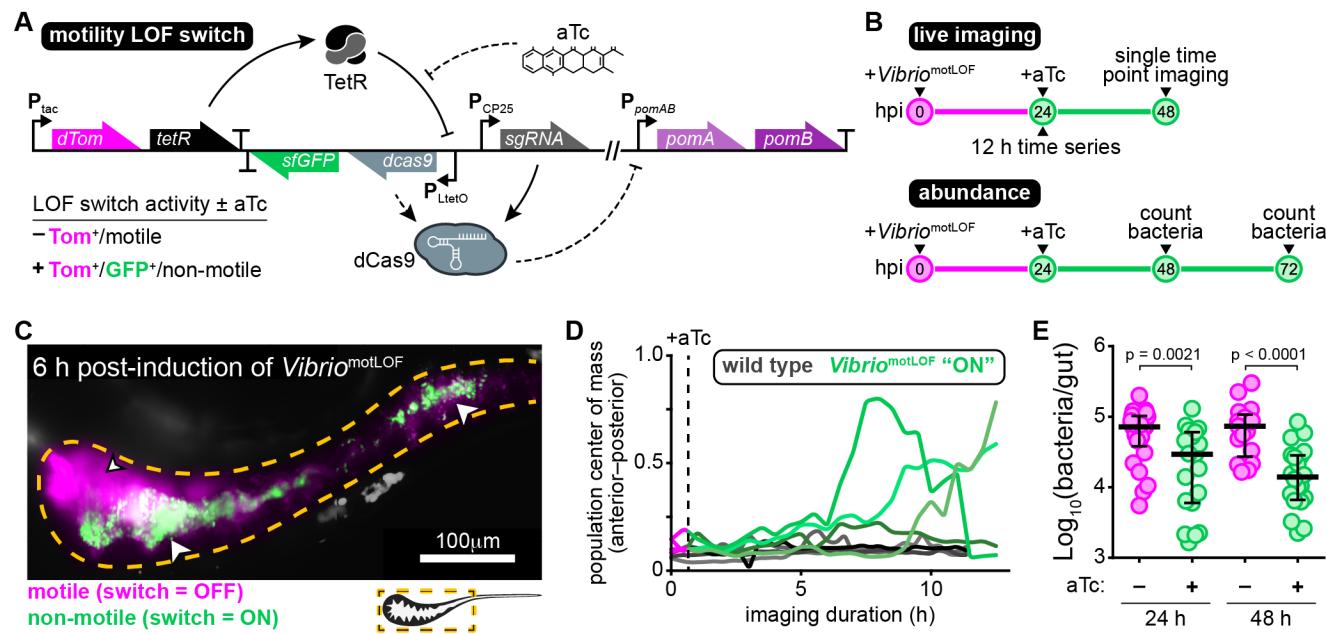
(B) Experimental timeline of *Aeromonas*–*Vibrio* competition.


(C) Abundances of *Aeromonas* while alone or in competition with wild-type or mutant *Vibrios*. Letters denote significant differences between *Aeromonas* treatments. $p < 0.05$, Kruskal-Wallis and Dunn's. Adjacent bars denote medians and interquartile ranges. Significant differences based on Wilcoxon between *Aeromonas* and each *Vibrio* strain are noted below each competition.

(D) Abundances of wild-type and mutant *Vibrios* during competition with *Aeromonas* (from panel C) normalized to abundances during mono-association at 24 hpi (from panel A). Bars denote medians and interquartile ranges. Significant differences determined by Mann-Whitney. Fold-decreases based on medians.

543
544
545
546
547

548 **Figure 2. Motility and chemotaxis mutants have altered intestinal spatial organization.**
549 (see also Figure S1)
550 **(A)** Cartoon of a 6-day-old zebrafish. Dashed box marks intestinal region imaged by LSFM.
551 **(B)** Anatomical regions of the larval zebrafish intestine.
552 **(C)** Maximum intensity projections acquired by LSFM showing the spatial organization of wild-
553 type *Vibrio* (top), Δ mot (middle), and Δ che (bottom) within the intestine. Top right inset shows a
554 zoomed-in view of wild-type *Vibrio* cells in a separate fish that was colonized with a 1:100
555 mixture of green- and red-tagged variants so that the cellular organization of the dense *Vibrio*
556 population could be discerned. The dilute channel (green) is shown. Dashed lines mark
557 approximate intestinal boundaries. Open arrowheads: single bacterial cells; solid arrowheads:
558 small aggregates; tailed arrowheads: large aggregates. Arrowheads with a black stroke mark
559 swimming cells, which appear as comet-like streaks.
560 **(D)** Cartoon showing the intestinal region pictured in panel (E)
561 **(E)** Maximum intensity projections acquired by LSFM showing transverse view of the foregut
562 region colonized with wild type, Δ mot, or Δ che.
563 **(F)** Fraction of planktonic cells contained within each strain's population. Each circle is a
564 measurement from a single intestinal population. Bars denote medians and interquartile
565 ranges. Letters denote significant differences. $p < 0.05$, Kruskal-Wallis and Dunn's.
566 **(G)** Image-derived abundances of wild type ($n = 7$), Δ mot ($n = 4$), and Δ che ($n = 5$) with respect
567 to position along the length of the gut. Shaded regions mark confidence intervals.
568
569



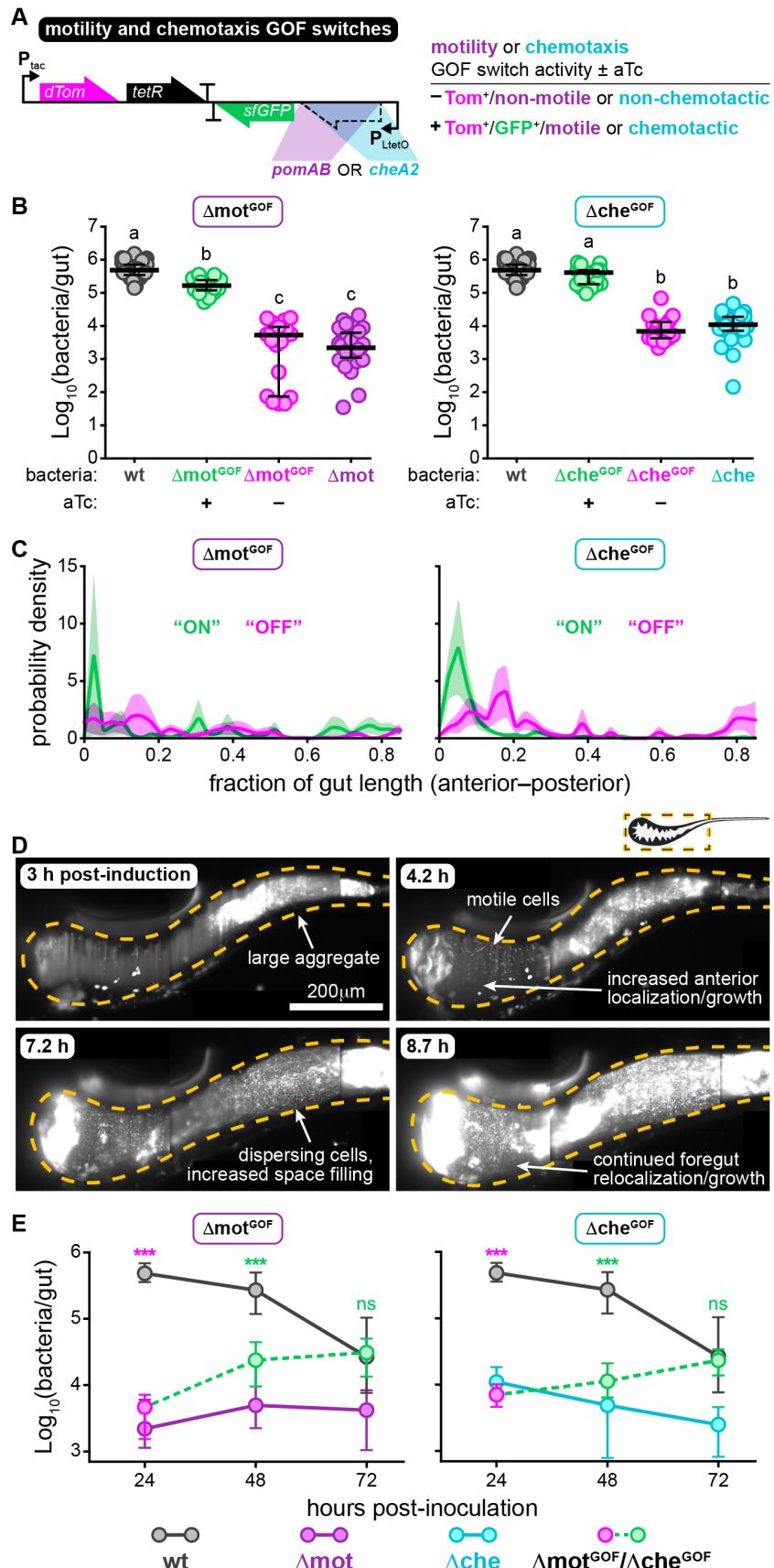
570
571
572
573
574
575
576
577
578
579
580
581
582

Figure 3. Swimming motility and chemotaxis promote persistence by enabling bacteria to counter intestinal flow and resist expulsion. (see also Figure S2)

(A) Image-based quantification of abundances over time for wild-type *Vibrio*, Δmot , and Δche . Lines represent individual populations in individual fish.

(B) Cultivation-based quantification of abundances for Δmot and Δche in co-housed $\text{ret}^{-/-}$ mutant hosts and wild-type/heterozygous sibling controls (sib). Abundances of wild-type *Vibrio*, Δmot , and Δche in wild-type hosts (from Figure 1A, 72 hpi) are shown for comparison. Bars denote medians and interquartile ranges. Letters denote significant differences. $p < 0.05$, Kruskal-Wallis and Dunn's.

Figure 4. Sustained swimming motility is required for maintaining intestinal spatial organization and persistence. (see also Figure S3)


(A) Schematic of CRISPRi-based motility loss-of-function (LOF) switch. Lower left table summarizes switch activity and bacterial behaviors plus/minus aTc. Bent arrows denote promoters, “T” denotes transcriptional terminators. Solid lines represent constitutive interactions, dashed lines represent induced interactions.

(B) Experimental timelines used to investigate *in situ* inactivation of swimming motility.

(C) A maximum intensity projection acquired by LSFM of an animal colonized by *Vibrio*^{motLOF} at 6 h post-induction. Dashed line mark approximate intestinal boundaries. An arrowhead with a black stroke marks an area of swimming cells expressing only dTomato (magenta, “switch = OFF”). White arrowheads mark aggregated cells (green, “switch = ON”).

(D) Population center of mass over time for intestinal populations of wild-type *Vibrio* (gray) and *Vibrio*^{motLOF} (magenta/green). Lines are single bacterial populations within individual fish. Vertical dashed line marks time of aTc induction.

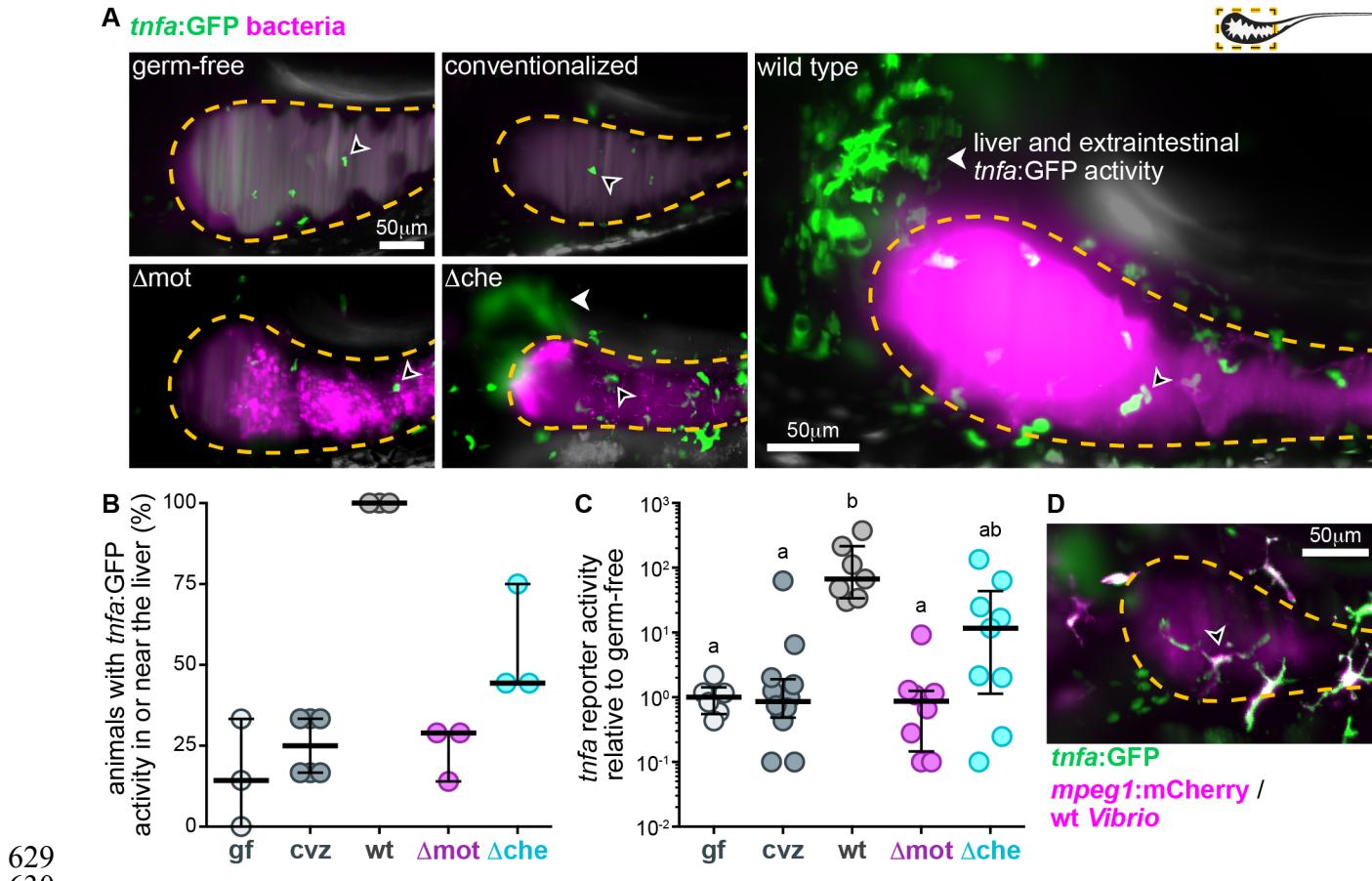
(E) Abundances of *Vibrio*^{motLOF} at 24 and 48 h post-induction with aTc. Bars denote medians and interquartile ranges. Significant differences determined by Mann-Whitney

604 **Figure 5. Acquisition of swimming motility or chemotaxis leads to rapid recovery of**
605 **intestinal spatial organization and abundance.** (see also Figure S4)

606 **(A)** Schematic of the motility and chemotaxis gain-of-function (GOF) switches. Table
607 summarizes switch activity and bacterial behaviors plus/minus aTc.

608 **(B)** $\Delta\text{mot}^{\text{GOF}}$ or $\Delta\text{che}^{\text{GOF}}$ abundances 24 hpi plus/minus aTc. $\Delta\text{mot}^{\text{GOF}}$ and $\Delta\text{che}^{\text{GOF}}$ were pre-
609 induced overnight in liquid culture prior to inoculation, aTc was maintained in the water for
610 continuous switch activation. Abundances of wild-type *Vibrio*, Δmot , and Δche in wild-type
611 hosts (from Figure 1A, 24 hpi) are shown for comparison. Bars denote medians and
612 interquartile ranges. Letters denote significant differences. $p < 0.05$, Kruskal-Wallis and
613 Dunn's.

614 **(C)** Probability densities showing the spatial distributions of $\Delta\text{mot}^{\text{GOF}}$ and $\Delta\text{che}^{\text{GOF}}$ at 24 h post-
615 induction. Magenta = uninduced, green = induced. Shaded regions mark standard errors.


616 Sample sizes (populations within individual animals): $\Delta\text{mot}^{\text{GOF}}$ "OFF", $n = 5$; $\Delta\text{mot}^{\text{GOF}}$ "ON", $n =$
617 7, $\Delta\text{che}^{\text{GOF}}$ "OFF", $n = 6$; $\Delta\text{che}^{\text{GOF}}$ "ON", $n = 6$.

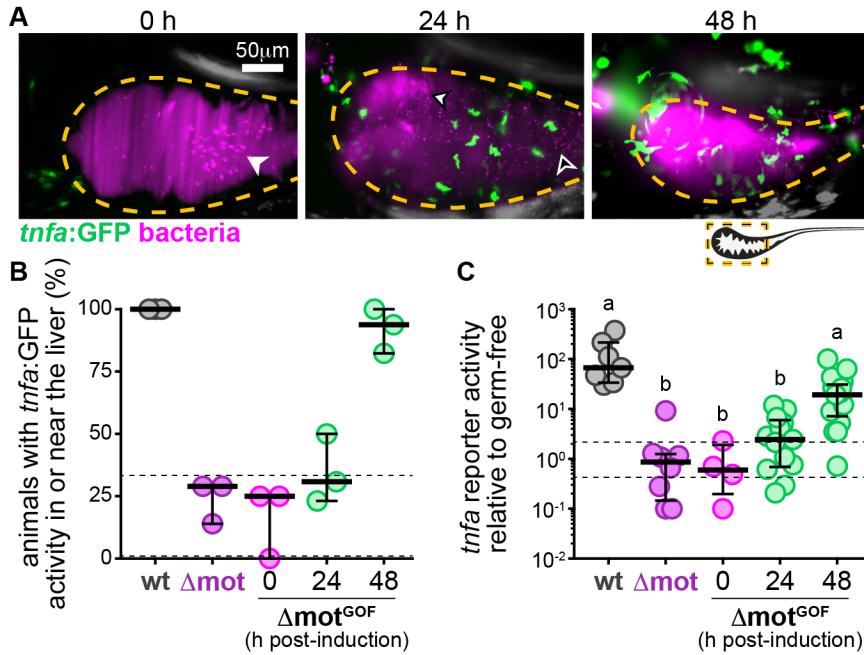
618 **(D)** Maximum intensity projections acquired by LSFM from the same animal showing $\Delta\text{che}^{\text{GOF}}$
619 undergoing rapid changes in spatial organization following induction. Dashed lines mark
620 approximate intestinal boundary.

621 **(E)** Abundances of $\Delta\text{mot}^{\text{GOF}}$ and $\Delta\text{che}^{\text{GOF}}$ over time. Magenta and green circles indicate
622 abundances plus/minus aTc, respectively. Plotted are medians and interquartile ranges ($n \geq 19$
623 animals/marker). Abundances of wild-type *Vibrio*, Δmot , and Δche (from Figure 1A) are shown
624 for comparison. Significant differences between each mutant and wild-type determined by
625 Mann-Whitney (magenta asterisks: uninduced; green asterisks: induced). *** $p < 0.0001$, ns =
626 not significant.

627

628

Figure 6. Motile bacterial cells induce local and systemic *tnfa* expression.


(A) Maximum intensity projections acquired by LSFM of the foregut region of *tnfa:GFP* transgenic zebrafish raised germ-free, with a complex microbial community (conventionalized), or colonized solely with dTomato-expressing (magenta) wild-type *Vibrio*, Δmot , or Δche . Animals were imaged at 24 hpi. Dashed lines mark the approximate intestinal boundaries. Empty arrowheads mark host cells with *tnfa:GFP* reporter activity. Solid arrowheads mark *tnfa:GFP* reporter activity in extraintestinal tissues in or near the liver.

(B) Percent of zebrafish subjected to different colonization regimes with *tnfa:GFP* activity in or near the liver. >6 animals/group were blindly scored by 3 researchers. Bars denote medians and interquartile ranges. gf: germ-free; cvz: conventionalized.

(C) Total GFP fluorescence intensity across the foregut region normalized to median gf fluorescence intensity. Bars denote medians and interquartile ranges. Letters denote significant differences. $p < 0.05$, Kruskal-Wallis and Dunn's.

(D) Maximum intensity projections acquired by LSFM of the foregut region of a *tnfa:GFP*, *mpeg1:mCherry* (magenta) transgenic zebrafish colonized with dTomato-expressing wild-type *Vibrio* (magenta). Animal was imaged at 24 hpi. Open arrowhead indicates a *tnfa*⁺/*mpeg1*⁺ cell.

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

649

650

651 **Figure 7. Host tissues rapidly respond to sudden increases in bacterial swimming**
652 **motility within the intestine.**

653 **(A)** Maximum intensity projections acquired by LSFM of the foregut region of separate
654 *tnfa:GFP* transgenic zebrafish colonized with $\Delta\text{mot}^{\text{GOF}}$ (magenta). Dashed lines mark
655 approximate intestinal boundaries. Times are h post-switch induction. Solid arrowhead marks
656 bacterial aggregates, empty arrowhead marks single bacterial cells.

657 **(B)** Percent of zebrafish subjected to different colonization regimes with *tnfa:GFP* activity in or
658 near the liver. >4 animals/group were blindly scored by 3 researchers. Bars denote medians
659 and interquartile ranges. Data from animals colonized with wild-type *Vibrio* (wt) or Δmot (from
660 Figure 6B) are shown for comparison. Horizontal dashed lines mark gf range plotted in Figure
661 6B.

662 **(C)** Total GFP fluorescence intensity across the foregut region normalized to median gf
663 fluorescence intensity plotted in Figure 6C, horizontal dashed lines mark gf range. Bars denote
664 medians and interquartile ranges. Data from animals colonized with wild-type *Vibrio* (wt) or
665 Δmot (from Figure 6C) are shown for comparison. Letters denote significant differences. $p <$
666 0.05, Kruskal-Wallis and Dunn's.

667 **STAR METHODS**

668 **LEAD CONTACT AND MATERIALS AVAILABILITY**

669 Further information and requests for resources and reagents should be directed to and will be
670 fulfilled by the Lead Contact, Dr. Karen Guillemin (kguillem@uoregon.edu).

671
672 (TBD) The following plasmids and associated sequences generated in this study will be
673 deposited to Addgene:

- 674
675 1. pXS-GOF-switch
676 2. pXS-LOF-switch
677 3. pTn7xTS-GOF-switch
678 4. pTn7xTS-LOF-switch

679
680 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

681
682 **Animal care**

683 All experiments with zebrafish were done in accordance with protocols approved by the
684 University of Oregon Institutional Animal Care and Use Committee and following standard
685 protocols (Westerfield, 2007). Specific handling and housing of animals during experiments are
686 described in detail within the “METHODS DETAILS” section under the heading “Gnotobiology”.
687 All zebrafish used in this study were larvae, between the ages of 4- and 7-days post-fertilization.
688 Sex differentiation occurs later in zebrafish development and thus was not a factor in our
689 experiments.

690
691 **Zebrafish lines**

692 Zebrafish lines used in this study included: University of Oregon stock wild-type ABCxTU;
693 zebrafish carrying the *ret1^{hu2846}* mutant allele (Ganz et al., 2018; Wiles et al., 2016); zebrafish
694 carrying the Tg(*tnfa*:GFP) transgene (Marjoram et al., 2015); and zebrafish carrying the
695 Tg(*mpeg1*:mCherry) transgene (Ellett et al., 2011). Double transgenic animals included
696 Tg(*tnfa*:GFP) x Tg(*mpeg1*:mCherry) and Tg(*tnfa*:GFP) x Tg(*mpx*:mCherry) (Lam et al., 2013).
697 Of note, *ret1^{hu2846}* is recessive and adult zebrafish carrying this mutant allele were maintained
698 as heterozygotes. Incrossing *ret1^{hu2846}* animals produces *ret^{+/+}*, *ret^{+/-}*, and *ret^{-/-}* individuals. *ret^{-/-}*
699 larvae can be visually distinguished from *ret^{+/+}* and *ret^{+/-}* larvae based on developmental features.
700 In our study we classified *ret^{+/+}* and *ret^{+/-}* larvae together as “sibling” controls.

701
702 **METHOD DETAILS**

703
704 **Bacterial strains and culture**

705
706 **General**

707 All wild-type and recombinant bacterial strains used or created in this study are listed in Table
708 S1. Archived stocks of bacteria are maintained in 25% glycerol at -80°C. Prior to manipulations
709 or experiments, bacteria were directly inoculated into 5 ml lysogeny broth (10 g/L NaCl, 5 g/L
710 yeast extract, 12 g/L tryptone, 1 g/L glucose) and grown for ~16 h (overnight) shaking at 30°C.
711 For growth on solid media, tryptic soy agar was used. Gentamicin (10 µg/ml) was used to select

712 recombinant *Vibrio* strains during their creation (for both gene deletion and insertion variants).
713 Ampicillin (100 µg/ml) was used for maintaining plasmids in *E. coli* strains.
714

715 *In vitro* growth measurements

716 In vitro growth of bacterial strains was assessed using the FLUOstar Omega microplate reader.
717 Prior to growth measurements, bacteria were grown overnight in 5 ml lysogeny broth at 30°C
718 with shaking. The next day, cultures were diluted 1:100 into fresh lysogeny broth (aTc was added
719 to the media when switch induction was required) and dispensed in triplicate or quadruplicate
720 (i.e., 3–4 technical replicates) (200 µl/ well) into a sterile 96 well clear flat bottom tissue culture-
721 treated microplate. Absorbance measurements at 600 nm were recorded every 30 min for 16 h
722 (or until stationary phase) at 30°C with shaking. Growth measurements were repeated at least
723 two independent times for each strain (i.e., two biological replicates) with consistent results. Data
724 plotted are from a single replicate.
725

726 *In vitro* motility assays

727 The swimming behavior of each *Vibrio* strain was assessed using soft agar assays and live
728 imaging of bacterial motility in liquid media on glass slides. For soft agar assays, bacteria were
729 first grown overnight in 5 ml lysogeny broth at 30°C with shaking. One milliliter of bacterial culture
730 was then washed by centrifuging cells at 7,000 x g for 2 minutes, aspirating media, and
731 suspending in 1 ml 0.7% NaCl. This centrifugation and aspiration wash step was repeated once
732 more and bacteria were suspended in a final volume of 1 ml 0.7% NaCl. One microliter of washed
733 bacterial cells was inoculated into swim agar plates made of tryptic soy agar containing 0.2%
734 agar. In the case of Δ mot^{GOF} and Δ che^{GOF}, aTc was also added to the agar at the indicated
735 concentrations. Swim plates were incubated at 30°C for 6 h and imaged using a Gel Doc XR+
736 Imaging System. For live imaging of swimming behavior, bacteria were first grown overnight in
737 5 ml lysogeny broth at 30°C with shaking. The next day, cultures of wild-type *Vibrio*, Δ mot, and
738 Δ che were diluted 1:100 in tryptic soy broth and grown for 2 h with shaking at 30°C. Δ mot^{GOF}
739 and Δ che^{GOF} were diluted 1:100 in tryptic soy broth +/- 50 ng/ml aTc and grown for 4 h with
740 shaking at 30°C. *Vibrio*^{motLOF} was diluted 1:1000 in tryptic soy broth +/- 50 ng/ml aTc and grown
741 for 7 h with shaking at 30°C. Prior to imaging, bacteria were diluted 1:40 in tryptic soy broth,
742 mounted on glass slides with a coverslip and imaged for 10 s using a Nikon Eclipse Ti inverted
743 microscope equipped with an Andor iXon3 888 camera. Representative maximum intensity
744 projections of 10 s movies shown in Figures S1, S3, and S4 were generated in FIJI (Schindelin
745 et al., 2012). For measurements of swimming behavior, bacteria were tracked using the radial
746 center algorithm (Parthasarathy, 2012) for object localization and nearest-neighbor linking.
747 Motility assays were repeated at least two independent times (i.e., two biological replicates) with
748 consistent results.
749

750 Scanning electron microscopy

751 Bacteria were prepared for environmental scanning electron microscopy (ESEM) by first growing
752 cells on tryptic soy agar overnight at 30°C. A sterile inoculating loop was used to transfer ~100
753 µl of cells to a 1.6 ml tube containing 500 µl of 3% glutaraldehyde fixative. We visually confirmed
754 that *Vibrio* cells isolated from an agar plate are highly motile and thus capable of producing
755 flagella during culture on solid media. Cells were fixed overnight at 4°C. The next day, cells were
756 sequentially washed in increasing concentrations of ethanol: first in plain ddH₂O followed by
757 20%, 40%, 60%, and 80% ethanol. Each wash involved centrifuging cells at 7,000 x g for 2

758 minutes, aspirating media, and suspending in the next wash medium. A small aliquot of washed
759 cell suspension was applied to a silicon wafer, dried, and imaged using a FEI Quanta 200
760 ESEM/VPSEM environmental scanning electron microscope provided by the University of
761 Oregon's Center for Advanced Materials Characterization in Oregon (CAMCOR) facility.
762

763 *Disk diffusion assays*

764 Disk diffusion assays were often used to test and optimize dTomato and sfGFP reporter function
765 of genetic switches as described in Figure S3C and S3D. Bacteria were first grown overnight in
766 5 ml lysogeny broth at 30°C with shaking. One hundred microliters of dense overnight culture
767 were spread onto tryptic soy agar plates to produce a lawn of growth. Prototyping was typically
768 done using plasmid-base switches in *E. coli* (as was the case in Figure S3C and S3D), thus
769 tryptic soy agar plates also contained ampicillin to ensure plasmid maintenance. A sterile piece
770 of Whatman filter paper (~0.5 cm wide) was placed in the center of the plate and impregnated
771 with ~2 µg of aTc. Plates were incubated overnight at 30°C. Switch reporter activity was
772 assessed using a Leica MZ10 F fluorescence stereomicroscope equipped with 1.0x, 1.6x, and
773 2.0x objectives, and a Leica DFC365 FX camera. Images were captured and processed using
774 standard Leica Application Suite software and FIJI (Schindelin et al., 2012).
775

776 **Molecular techniques and genetic manipulations**

777 *General*

778 Recombinant strains used or created in this study are listed in Table S1. Plasmids used or
779 created in this study are listed in Table S2. Primer and oligo DNA sequences are listed in Table
780 S3.
781

782 *E. coli* strains used for molecular cloning and conjugation were typically grown in 5 ml
783 lysogeny broth at 30°C or 37°C with shaking in the presence of appropriate antibiotic selection
784 to maintain plasmids. For propagation of *E. coli* on solid media, LB agar was used. Unless
785 specified, standard molecular techniques were applied, and reagents were used according to
786 manufacturer's instructions. Restriction enzymes and other molecular biology reagents for
787 polymerase chain reaction (PCR) and nucleic acid modifications were obtained from New
788 England BioLabs. Various kits for plasmid and PCR amplicon purification were obtained from
789 Zymo Research. The Promega Wizard Genomic DNA Purification Kit was used for isolating
790 bacterial genomic DNA. DNA oligonucleotides were synthesized by Integrated DNA
791 Technologies (IDT). Sanger sequencing was done by Sequetech to verify the sequence of all
792 cloned genetic parts. A Leica MZ10 F fluorescence stereomicroscope with 1.0x, 1.6x, and 2.0x
793 objectives and Leica DFC365 FX camera were used for screening fluorescent bacterial
794 colonies.
795

796

797 Genome and gene sequences were retrieved from "The Integrated Microbial Genomes &
798 Microbiome Samples" (IMG/M) website (<https://img.jgi.doe.gov/m/>) (Chen et al., 2017). Where
799 applicable, "IMG" locus tags are provided for genetic loci, which can be used to access sequence
800 information via the IMG/M website.
801

802 *Construction of gene deletions*

803 Markerless, in-frame gene deletions were constructed using allelic exchange and the pAX1
804 allelic exchange vector (Addgene Plasmid #117397) as previously described (Wiles et al., 2018).
805 Detailed procedures and protocols can be accessed online:
806 <https://doi.org/10.6084/m9.figshare.7040264.v1>. Creation of Δ mot via deletion of *pomAB* (locus
807 tags: ZWU0020_01568 and ZWU0020_01567) (Figure S1A) was reported previously (Wiles et
808 al., 2018). Creation of Δ che via deletion of *cheA2* (locus tag: ZWU0020_00514) (Figure S1A)
809 was accomplished by first constructing a *cheA2* allelic exchange cassette using splice by overlap
810 extension (SOE). The *cheA2* allelic exchange cassette was designed to fuse the start and stop
811 codons of the *cheA2* gene (Figure S1A). PCR primer pairs WP165 + WP166 and WP167 +
812 WP168 were used to amplify 5' and 3' homology regions flanking the *cheA2* gene, respectively,
813 from *Vibrio* ZWU0020 genomic DNA. The resulting amplicons were spliced together and the
814 SOE product was ligated into a pAX1-based allelic exchange vector, producing pAX1-ZWU0020-
815 *cheA2* (pTW383). After subsequent subcloning steps, the final sizes of the 5' and 3' homology
816 regions were 763 bp and 845 bp.
817

818 The pAX1-ZWU0020-*cheA2* vector was delivered into *Vibrio* via conjugation (i.e.,
819 bacterial mating) as previously described using *E. coli* SM10 as a donor strain (Wiles et al.,
820 2018). Briefly, *Vibrio* and SM10/pAX1-ZWU0020-*cheA2* were combined 1:1 on a filter disk
821 placed on tryptic soy agar. The mating mixture was incubated at 30°C overnight. Following
822 incubation, bacteria were recovered and spread onto tryptic soy agar containing gentamicin and
823 incubated overnight at 37°C to select for *Vibrio* merodiploids. Merodiploid colonies were isolated
824 and screened for successful deletion of the *cheA2* gene. Putative mutants were genotyped by
825 PCR using primers that flanked the *cheA2* locus (WP0169 + CheA2.ZW20.KOconfirm.REV),
826 which produced two differently sized amplicons representing the wild-type and mutant alleles
827 (Figure S1A).
828

829 *Design and construction of genetic switches*

830 Customizable, plasmid-based gain-of-function (pXS-GOF-switch, pTW265) and loss-of-function
831 (pXS-LOF-switch, pTW308) switch scaffolds were initially constructed and optimized using the
832 pXS-dTomato (Addgene Plasmid #117387) backbone, which was previously generated (Wiles
833 et al., 2018). The general architecture of switch elements is depicted in Figure S3A. Each
834 element is flanked by unique restriction sites to allow straightforward insertion of new elements
835 by restriction cloning. pXS-dTomato contains the “tracker” element, which comprises a
836 constitutive P_{tac} promoter (without the lac operator sequence) (Wiles et al., 2018) driving the
837 *dTomato* gene. The “switch reporter” element was first inserted, which comprises a P_{LtetO}
838 promoter (Lutz and Bujard, 1997) driving a *sfGFP* gene that was amplified from pTW168 using
839 WP138 + WP118. Next, the “repressor” element was inserted, which comprises a *tetR* gene that
840 was amplified from *Enterobacter* ZOR0014 genomic DNA using WP146 + WP139. As described
841 in Figure S3B and S3C, a near-random ribosome binding site (ndrrdn) was incorporated by
842 PCR into the 5' untranslated region of the *tetR* gene via WP146. A clone containing the ribosome
843 binding site sequence “ctaggt” was isolated that had strong reporter repression/induction and
844 robust tracker expression. Next, as described in Figure S3B and S3D, a ribozyme-based
845 insulator sequence (RiboJ) (Lou et al., 2012) was inserted between the switch reporter and the
846 insertion site designated to hold switch “cargo” genes. The RiboJ sequence was inserted using
847 a custom synthesized gBlock gene fragment (IDT). The resulting plasmid-based switch
848 scaffold—comprising a tracker, switch reporter, repressor, and RiboJ sequence—became pXS-

849 GOF-switch. To generate pXS-LOF-switch, we inserted the *dcas9* gene (Qi et al., 2013) (excised
850 from pdCAS9, Addgene Plasmid #44249) as the “cargo” element and a constitutively expressed
851 single guide RNA (“sgRNA” element) driven by the CP25 promoter (Jensen and Hammer, 1998),
852 which was inserted using a custom synthesized gBlock gene fragment (IDT). The stock sgRNA
853 that was inserted into the pXS-LOF-switch is based on a previously characterized sgRNA
854 specific for the *lacZ* gene of *E. coli* (Qi et al., 2013), which facilitated optimization of loss-of-
855 function switch activity in *E. coli* K-12 (MG1655). To expedite insertion of the gain-of-function
856 and loss-of-function switches into the *Vibrio* chromosome, each switch scaffold was subcloned
857 into the previously described Tn7 delivery vector pTn7xTS (Addgene Plasmid #117389),
858 creating pTn7xTS-GOF-switch (pTW285) and pTn7xTS-LOF-switch (pTW317). We note that
859 insertion of the switch scaffolds into the pTn7xTS vector limits some downstream customization
860 due to restriction site conflicts.

861
862 To construct the motility loss-of-function switch, the *lacZ* sgRNA in the pTn7xTS-LOF-
863 switch was replaced with a sgRNA specific for the *Vibrio pomA* gene, creating pTn7xTS-mot-
864 LOF-switch (pTW340). The *pomA* sgRNA was inserted using a custom synthesized gBlock gene
865 fragment (IDT). To construct the motility gain-of-function switch, the *pomAB* locus, including the
866 native *pomA* ribosome binding site, was amplified using WP170 + WP171 and inserted into the
867 cargo site of pTn7xTS-GOF-switch, creating pTn7xTS-mot-GOF-switch (pTW324). To construct
868 the chemotaxis gain-of-function switch, the *cheA2* locus, including the native *cheA2* ribosome
869 binding site, was amplified using WP92 + WP93 and inserted into the cargo site of pTn7xTS-
870 GOF-switch, creating pTn7xTS-che-GOF-switch (pTW282).

871
872 *Tn7-mediated chromosomal insertions*

873 Chromosomal insertion of fluorescent markers and genetic switches was done via a Tn7
874 transposon-based approach using the Tn7 delivery vector pTn7xTS as previously described
875 (Wiles et al., 2018). Detailed procedures and protocols can be accessed online:
876 <https://doi.org/10.6084/m9.figshare.7040258.v1>. Specific pTn7xTS vectors carrying markers or
877 switches were delivered into *Vibrio* via triparental mating using two *E. coli* SM10 donor strains
878 carrying either the pTn7xTS delivery vector or the pTNS2 helper plasmid (Addgene Plasmid
879 #64968). Briefly, *Vibrio* and SM10 donor strains were combined 1:1:1 on a filter disk placed on
880 tryptic soy agar. The mating mixture was incubated at 30°C overnight. Following incubation,
881 bacteria were recovered and spread onto tryptic soy agar containing gentamicin and incubated
882 overnight at 37°C to select for *Vibrio* insertion variants. Insertion of the Tn7 transposon and the
883 genetic cargo it carried into the *attTn7* site near the *glmS* locus of *Vibrio* was confirmed by PCR
884 using primers WP11 + WP12.

885
886 Fluorescently marked wild-type *Vibrio* constitutively expressing dTomato (ZWU0020
887 *attTn7::dT*omato) was previously generated using pTn7xTS-dTomato (Addgene Plasmid
888 #117391) (Wiles et al., 2018). In the current work, fluorescently marked Δ mot and Δ che were
889 constructed in the same way, creating Δ mot *attTn7::dT*omato and Δ che *attTn7::dT*omato.
890 *Vibrio*^{motLOF} was created by inserting the motility loss-of-function switch from pTn7xTS-mot-LOF-
891 switch. Δ mot^{GOF} was created by inserting the motility gain-of-function switch from pTn7xTS-mot-
892 GOF-switch. Δ che^{GOF} was created by inserting the chemotaxis gain-of-function switch from
893 pTn7xTS-che-GOF-switch.

894

895 **Gnotobiology**

896

897 *Germ-free derivation*

898 For all experiments, zebrafish embryos were initially derived germ-free using previously
899 described gnotobiotic procedures with slight modification (Melancon et al., 2017). Briefly,
900 fertilized eggs from adult mating pairs were harvested and incubated in sterile embryo media
901 (EM) containing ampicillin (100 µg/ml), gentamicin (10 µg/ml), amphotericin B (250 ng/ml),
902 tetracycline (1 µg/ml), and chloramphenicol (1 µg/ml) for ~6 h. Embryos were then washed in
903 EM containing 0.1% polyvinylpyrrolidone–iodine followed by EM containing 0.003% sodium
904 hypochlorite. Surface sterilized embryos were distributed into T25 tissue culture flasks
905 containing 15 ml sterile EM at a density of one embryo per milliliter and kept in a temperature-
906 controlled room at 28–30°C with a 14 h/ 10 h light/dark cycle. The germ-free status of larval
907 zebrafish was assessed before every experiment by visually inspecting flask water for microbial
908 contaminants using an inverted microscope. Culture-based assessment of germ-free status was
909 done as needed by plating 100 µl flask water on rich media (e.g., tryptic soy agar). Embryos
910 were sustained on yolk-derived nutrients and not fed prior to or during any experiments.

911

912 *Bacterial associations*

913 For bacterial associations, bacterial strains were grown overnight in lysogeny broth with shaking
914 at 30°C and prepared for inoculation by pelleting the cells from 1 ml of culture for 2 min at 7,000
915 x g and washed once in sterile EM. For all experiments, except where noted otherwise, washed
916 bacteria were inoculated into the water of T25 flasks containing 4-day-old larval zebrafish at a
917 final density of ~10⁶ bacteria/ml. For competition experiments, *Vibrio* strains were added to the
918 water of *Aeromonas*-colonized zebrafish (at 5-days-old) without removing the original
919 *Aeromonas* inoculum from the water. In addition, to enable enumeration of *Aeromonas* and
920 *Vibrio* strains on agar plates, competition experiments were done using a previously constructed
921 dTomato-expressing *Aeromonas* strain (*Aeromonas attTn7::dT*omato) (Wiles et al., 2018). For
922 loss-of-function and gain-of-function switch experiments involving cultivation-based abundance
923 measurements, prior to aTc-induction zebrafish were washed and placed in sterile EM to ensure
924 that changes in intestinal populations were not interfered with by bacteria in the water. To
925 conventionalize animals (i.e., colonize with a complex, undefined microbial consortium), 0 and
926 4-day-old larval zebrafish were inoculated with 100 µl of water taken from parental spawning
927 tanks. No difference was found between conventionalization times in terms of host *tnfa*:GFP
928 expression.

929

930 **Cultivation-based measurement of abundances**

931

932 Dissection of larval zebrafish guts was done as previously described with slight modification
933 (Milligan-Myhre et al., 2011). Briefly, dissected guts of tricaine-euthanized zebrafish were
934 harvested and placed in a 1.6 ml tube containing 500 µl sterile 0.7% saline and 100 µl 0.5 mm
935 zirconium oxide beads. Guts were homogenized using a bullet blender tissue homogenizer for
936 25 seconds on power 4. Lysates were serially plated on tryptic soy agar and incubated overnight
937 at 30°C prior to enumeration of colony forming units and determination of bacterial abundances.
938 Abundance data presented throughout the main text and in Figure S2 are pooled from a
939 minimum of two independent experiments (n = 16–36 dissected guts per condition). Abundance
940 data presented for Δ mot^{GOF} and Δ che^{GOF} without aTc induction in Figure S4 are from a single

941 representative experiment ($n = 8\text{--}10$ dissected guts per condition; water abundances are from
942 single measurements). Samples with zero countable colonies on the lowest dilution were set to
943 the limit of detection (5 bacteria per gut). Data were plotted and analyzed using GraphPad Prism
944 6 software. Unless stated otherwise, statistical differences between two groups of data were
945 determined by Mann-Whitney; statistical differences between two paired groups of data were
946 determined by Wilcoxon; and statistical differences among three or more groups of data were
947 determined by Kruskal-Wallis test with Dunn's multiple comparisons test.
948

949 **Live imaging**

950

951 *Light sheet fluorescence microscopy*

952 Live larval zebrafish were imaged using a custom-built light sheet fluorescence microscope
953 previously described in detail (Jemielita et al., 2014). Prior to mounting, larvae were anesthetized
954 with MS-222 (tricaine). A metal plunger was used to mount fish into small glass capillaries
955 containing 0.5% agarose gel. Samples were then suspended vertically, head up, in a custom
956 imaging chamber containing embryo media and anesthetic. Larvae in the set gel were extruded
957 from the end of the capillary and oriented such that the fish's left side faces the imaging objective.
958 For experiments involving just fluorescent bacteria, the $\sim 1\text{mm}$ long intestine is imaged in four
959 subregions that are registered in software after imaging. A single 3D image of the full intestine
960 volume ($\sim 200\text{x}200\text{x}1200$ microns) sampled at 1-micron steps between z-planes is imaged in
961 ~ 45 seconds. For experiments including the *tnfa*:GFP reporter, only one subregion containing
962 the anterior foregut region and ~ 100 microns of tissue anterior to the gut was captured for the
963 majority of samples. In these image stacks, nearly the full extent of the fish's left-right width was
964 captured, approximately 400 microns in z. For time lapse imaging of genetic switch induction,
965 fish were mounted as normal and baseline dynamics were captured for 30-90 min depending on
966 the experiment. Then, the inducer aTc was added to the sample chamber media in an
967 approximately 1 ml solution of embryo media, MS-222, and aTc. Excitation lasers of wavelengths
968 488 and 561 nm were adjusted to a power of 5 mW as measured before the imaging chamber.
969 An exposure time of 30 ms was used for all 3D scans and 2D movies. Time lapse imaging was
970 performed overnight, except for the additional growth rate measurement for Δ che, which
971 occurred during the day. For color images presented within figures, autofluorescent tissues—
972 namely, the yolk, swim bladder, and ventral skin—were manually converted to grayscale to
973 enhance clarity.
974

975

976 *Identification of fluorescent bacteria*

977 Identification of bacteria in zebrafish images was conducted using a previously described
978 computation pipeline written in MATLAB (Jemielita et al., 2014; Schlomann et al., 2018). In brief,
979 individual bacteria are first identified with a combination of wavelet filtering (Olivo-Marin, 2002),
980 standard difference of Gaussians filtering, intensity thresholding, and manual curation. Then,
981 multicellular aggregates, which are too dense to resolve individual cells, are segmented via a
982 graph cut algorithm (Boykov and Kolmogorov, 2004) seeded with an intensity mask. The number
983 of cells per multicellular aggregate is estimated by dividing the total aggregate fluorescence
984 intensity by the mean intensity of single cells. These estimates of number of cells per bacterial
985 object in the gut are then used to compute spatial distributions along the length of the gut,
986 following a manually drawn line drawn that defines the gut's center axis.

987 *Measurement of in vivo growth rates*

988 Through time-lapse imaging and the computational image analysis methods discussed above,
989 bacterial growth rates in the intestine can be directly measured by linear fits to log-transformed
990 abundances (Jemielita et al., 2014; Schlamann et al., 2019; Wiles et al., 2016). The in vivo
991 growth rate of wild-type *Vibrio* was previously measured (Wiles et al., 2016). The in vivo growth
992 rate for Δ mot was measured in the time traces shown in Figure 3A, using manually defined
993 windows of clear exponential growth. To exclude effects of density dependence on the growth
994 rate, only those traces that began at least 1 order of magnitude below the median Δ mot
995 abundance were considered. For Δ che, the time traces in Figure 3A were insufficient for growth
996 rate estimation, because abundances remained at high levels for most of the experiment.
997 Therefore, we measured the growth rate in populations shortly after initial colonization.
998 Specifically, Δ che was allowed to colonize germ-free fish for 6 hours, after which fish were
999 mounted for time lapse imaging. Previous work on another zebrafish gut bacterial symbiont
1000 showed that exponential growth rates in established and nascent populations are equal (Wiles
1001 et al., 2016). Abundance data for these time traces are included in the Data S1.

1002 *Quantification of *tnfa*:GFP fluorescence*

1003 Cells and tissues expressing *tnfa*:GFP were segmented in 3D with basic intensity threshold-
1004 based segmentation. A pixel intensity threshold of 1500 was empirically found to be a
1005 conservative threshold and was used for all samples. The 488 nm excitation laser power was
1006 set at 5 mW prior to entering the sample chamber for all samples. The camera was a pco.edge
1007 scientific CMOS camera (PCO, Kelheim, Germany). The resulting identified objects were then
1008 filtered by size to remove noise. GFP signal from near the ventral skin was excluded with a
1009 manually defined cropped region created in the ImageJ software (Schindelin et al., 2012). Green
1010 autofluorescence from the interior gut region rarely passed the intensity and size thresholds to
1011 contribute to measured *tnfa*:GFP signal. Similarly, in the motility gain-of-function switch
1012 experiments, we found that the GFP reporter of switch induction never reached fluorescence
1013 intensity levels high enough to contribute measurably to the *tnfa*:GFP signal. Nevertheless, this
1014 region was automatically identified and removed via intensity threshold-based segmentation in
1015 the red 568/620 nm (excitation/emission) color channel. Both red autofluorescence and signal
1016 from red (dTomo) fluorescent bacteria were used to identify this gut region. Finally, to
1017 standardize total *tnfa*:GFP quantification across different samples, an operational peri-intestinal
1018 region was defined as containing the foregut plus all tissue 100 microns anterior of the start of
1019 the gut, which was automatically identified in the mask generated from the red color channel.
1020 Automatic gut segmentation and removal was not performed for the dual
1021 *tnfa*:GFP/*mpeg1*:mCherry reporter fish.

1022 *Measuring *tnfa*:GFP/*mpeg1*:mCherry fluorescence*

1023 Red fluorescence from *mpeg1*:mCherry marking macrophages was segmented analogously to
1024 *tnfa*:GFP signal, using basic intensity threshold-based segmentation in 3D and size filtering. A
1025 *tnfa*+ object and an *mpeg*+ object were considered to overlap if their centroids were separated
1026 by less than 10 microns, a threshold empirically determined to produce accurate results as
1027 judged by eye. The fraction of *tnfa*+ objects that were also *mpeg*+ and the fraction of *mpeg*+
1028 objects that were also *tnfa*+ were computed using the counts for overlapping and non-
1029 overlapping cells.

1030

1031

1032

1033 **QUANTIFICATION AND STATISTICAL ANALYSIS**

1034 Data were plotted using MATLAB and GraphPad Prism 6 software. Statistical analyses were
1035 done using GraphPad Prism 6. Unless stated otherwise, medians and interquartile ranges were
1036 plotted. Statistical tests performed are specified in figure legends and within the Methods under
1037 “Cultivation-based measurement of abundances”. A p-value of 0.05 or less was considered
1038 significant for all analyses. Sample sizes are noted within the main text, figure legends, within
1039 the Methods under “Cultivation-based measurement of abundances”, and in Data S1 (.xls). What
1040 “n” represents is specified in the main text and figure legends.

1041

1042 **DATA AND CODE AVAILABILITY**

1043 All numerical data generated or analyzed during this study are provided in Data S1 (.xls). All
1044 code used in this study was based on previously published algorithms and is available upon
1045 request. Size and volume of raw imaging data prevents uploading to a public repository but will
1046 be made available upon request.

1047

1048

1049 **MOVIE LEGENDS**
1050

1051 **Movie S1. Montage of real time movies showing wild-type *Vibrio*, Δ mot, and Δ che within**
1052 **larval zebrafish intestines.** (associated with Figure 2)

1053 Movies were acquired by light sheet fluorescence microscopy at 24 hpi. Wild-type *Vibrio* is highly
1054 motile and planktonic, with swimming cells frequently making close contact with the intestinal
1055 epithelium. The bright signal in the left side of the frame is a mass of motile cells that is too dense
1056 for individuals to be resolved (see Figure 2C). In contrast, Δ mot is largely aggregated and
1057 confined to the lumen. The Δ che mutant exhibits an intermediate phenotype consisting of a
1058 motile subpopulation that is less dense than wild-type populations. The field of view centers on
1059 the foregut region. Scale bar = 50 μ m.
1060

1061 **Movie S2. Montage of animated z-stacks showing wild-type *Vibrio*, Δ mot, and Δ che within**
1062 **larval zebrafish intestines.** (associated with Figure 2)

1063 Movies were acquired by light sheet fluorescence microscopy at 24 hpi. Wild-type *Vibrio* is highly
1064 motile and planktonic, with swimming cells frequently making close contact with the intestinal
1065 epithelium. The bright signal in the left side of the frame is a mass of motile cells that is too dense
1066 for individuals to be resolved (see Figure 2C). In contrast, Δ mot is largely aggregated and
1067 confined to the lumen. The Δ che mutant exhibits an intermediate phenotype consisting of a
1068 motile subpopulation that is less dense than wild-type populations. The field of view centers on
1069 the foregut region. The label in the upper-right corner denotes the depth in z (left-right) through
1070 the intestine. Scale bar = 50 μ m.
1071

1072 **Movie S3. Montage of time-lapse movies showing wild-type *Vibrio*, Δ mot, and Δ che within**
1073 **larval zebrafish intestines.** (associated with Figure 3)

1074 Movies were acquired by light sheet fluorescence microscopy starting at ~24 hpi. Wild-type
1075 *Vibrio* cells, which are highly motile and planktonic, robustly localize to the foregut region. The
1076 bright signal in the left side of the frame is a stable mass of motile cells that is too dense for
1077 individuals to be resolved (see Figure 2C). In contrast, Δ mot is largely aggregated, confined to
1078 the lumen, and exhibits large fluctuations in spatial organization, including the rapid expulsion of
1079 a large aggregate. The Δ che mutant exhibits an intermediate phenotype, consisting of a motile
1080 subpopulation that is less dense than wild-type populations with large, multicellular aggregates.
1081 A large aggregate of Δ che cells is expelled near the end of the movie. The field of view spans
1082 the entire larval intestine. Scale bar = 200 μ m.
1083

1084 **Movie S4. Animation of the spatiotemporal dynamics of wild-type *Vibrio*, Δ mot, and Δ che**
1085 **within larval zebrafish intestines.** (associated with Figure 3)

1086 Through computational image analysis, bacterial populations were segmented and enumerated.
1087 From this quantification, we computed the fraction of the population that were single cells
1088 (planktonic fraction) and computed the population center of mass along the length of the gut
1089 (population center). Each marker represents an entire bacterial population from an individual
1090 fish. The movie depicts the time evolution of multiple populations in this 2-dimensional phase
1091 space. Wild-type *Vibrio* populations robustly localize to the foregut region and maintain a high
1092 planktonic fraction. In contrast, Δ mot and Δ che populations undergo large fluctuations in
1093 aggregation and localization over time.

1094

1095 **Movie S5. Inactivation of swimming motility in established *Vibrio*^{motLOF} populations using**
1096 **the motility loss-of-function switch.** (associated with Figure 4)

1097 Shown are two examples of *Vibrio*^{motLOF} switching dynamics within the larval zebrafish intestine
1098 captured by light sheet fluorescence microscopy. *Vibrio*^{motLOF} initially colonized each intestine in
1099 a phenotypically wild-type state (i.e., switch = “OFF”) with cells expressing only dTomato
1100 (magenta) and displaying a strong localization to the foregut and a high fraction of motile
1101 cells. At time zero, populations were induced by addition of aTc to the media. Both examples
1102 show the emergence of a multicellular aggregate from the anterior population of motile cells, a
1103 posterior shift in overall distribution, and an increase in GFP expression signaling switch
1104 activation. Scale bars for time-lapses are 200 μ m. Each frame of the time-lapses are maximum
1105 intensity projections of a 3D image stack across the full intestinal volume. For the second
1106 example, we highlight the 3D structure of an emerging bacterial aggregate (arrow) with an
1107 animated rendering (dTomato fluorescence only). Scale bar for the rendering is 50 μ m. The
1108 montage ends with a real time movie of *Vibrio*^{motLOF} cells approximately 16 h post-induction
1109 showing widespread loss of motility (dTomato fluorescence only). Real time movie scale bar =
1110 50 μ m.

1111

1112 **Movie S6. Activation of swimming motility in an established Δ mot^{GOF} population using the**
1113 **motility gain-of-function switch.** (associated with Figure 5)

1114 Δ mot^{GOF} initially colonized the intestine with the motility gain-of-function switch in the “OFF” state
1115 and therefore was non-motile and assembled a population that was aggregated and had a
1116 poster-shifted distribution. At time zero, the population was induced by addition of aTc to the
1117 media. The resulting switching dynamics were captured by light sheet fluorescence microscopy.
1118 Each frame of the time-lapse is a maximum intensity projection of a 3D image stack across the
1119 full intestinal volume. Over time, motile cells appear and occupy the foregut region. Scale bar =
1120 200 μ m. Following the time-lapse, we show a real time movie of a different fish at approximately
1121 6 h post-induction that captures induced Δ mot^{GOF} cells swimming within the foregut. Real time
1122 movie scale bar = 50 μ m.

1123

1124 **Movie S7. Activation of chemotaxis in an established Δ che^{GOF} population using the**
1125 **chemotaxis gain-of-function switch.** (associated with Figure 5)

1126 Δ che^{GOF} initially colonized the gut with the chemotaxis gain-of-function switch in the “OFF” state
1127 and therefore was non-chemotactic and assembled a population that was aggregated and had
1128 a poster-shifted distribution. At time zero, the population was induced by addition of aTc to the
1129 media. The resulting switching dynamics were captured by light sheet fluorescence microscopy.
1130 Each frame of the time-lapse is a maximum intensity projection of a 3D image stack across the
1131 full intestinal volume. Over time, there is a dramatic increase in the number of planktonic and
1132 motile cells that occupy the foregut region. Scale bar = 200 μ m. Following the time-lapse, we
1133 show a real time movie of a different fish at approximately 6 h post-induction that captures
1134 induced Δ che^{GOF} cells swimming within the foregut. Real time movie scale bar = 50 μ m.

1135

1136 **Movie S8. Migratory behavior of *tnfa*:GFP⁺ cells.** (associated with Figure 6)

1137 Time-lapse movie of a live *tnfa*:GFP transgenic larval zebrafish showing the migratory behavior
1138 of gut-associated *tnfa*⁺ cells (arrowheads). Images were acquired by light sheet fluorescence

1139 microscopy. Each frame of the time-lapse is a maximum intensity projection of a 3D image stack
1140 that captures the full intestinal volume. Scale bar = 200 μ m.

1141
1142 **Movie S9. Animated z-stack of a *tnfa*:GFP/*mpeg1*:mCherry double transgenic larval**
1143 **zebrafish colonized with wild-type *Vibrio*.** (associated with Figure 6)

1144 The *mpeg1*:mCherry reporter and *Vibrio* dTomato marker were imaged simultaneously using a
1145 single excitation and emission system, and are shown in magenta. *tnfa*:GFP fluorescence is
1146 shown in green. Images were acquired by light sheet fluorescence microscopy. We first show
1147 an animated z-stack that depicts single planes of the light sheet with the depth (left–right)
1148 indicated in the upper right. *tnfa*⁺ and *mpeg1*⁺ single-positive cells, as well as *tnfa*⁺/*mpeg1*⁺
1149 double-positive cells, are apparent. Scale bar = 50 μ m. Following the animated z-stack, we show
1150 a two-color, 3D rendering. Rendering scale bar = 50 μ m.

1151
1152 **Movie S10. Spatial distribution of *tnfa*⁺ host cells responding to swimming bacterial cells**
1153 **within the intestine.** (associated with Figure 7)

1154 Montage shows the foregut region of a larval zebrafish carrying the *tnfa*:GFP reporter (green)
1155 colonized with Δ mot^{GOF} (magenta) 24 h post-induction of the motility gain-of-function switch with
1156 aTc. Images and real time movie were acquired by light sheet fluorescence microscopy. We first
1157 show an animated z-stack that depicts single planes of the light sheet with the depth (left–right)
1158 indicated in the upper right. Arrows indicate *tnfa*⁺ host cells and bacterial cells. Next, we show a
1159 3D rendering of the same intestine, which highlights the association of *tnfa*⁺ host cells with the
1160 mucosa. The montage ends with a real time movie of a single optical plane showing the
1161 swimming behavior of induced Δ mot^{GOF} cells relative to *tnfa*⁺ host cells within the mucosa. All
1162 scale bars = 50 μ m.

1163

1164 **EXCEL TABLE**

1165 **Data S1.** File (.xls) containing all plotted numerical data.

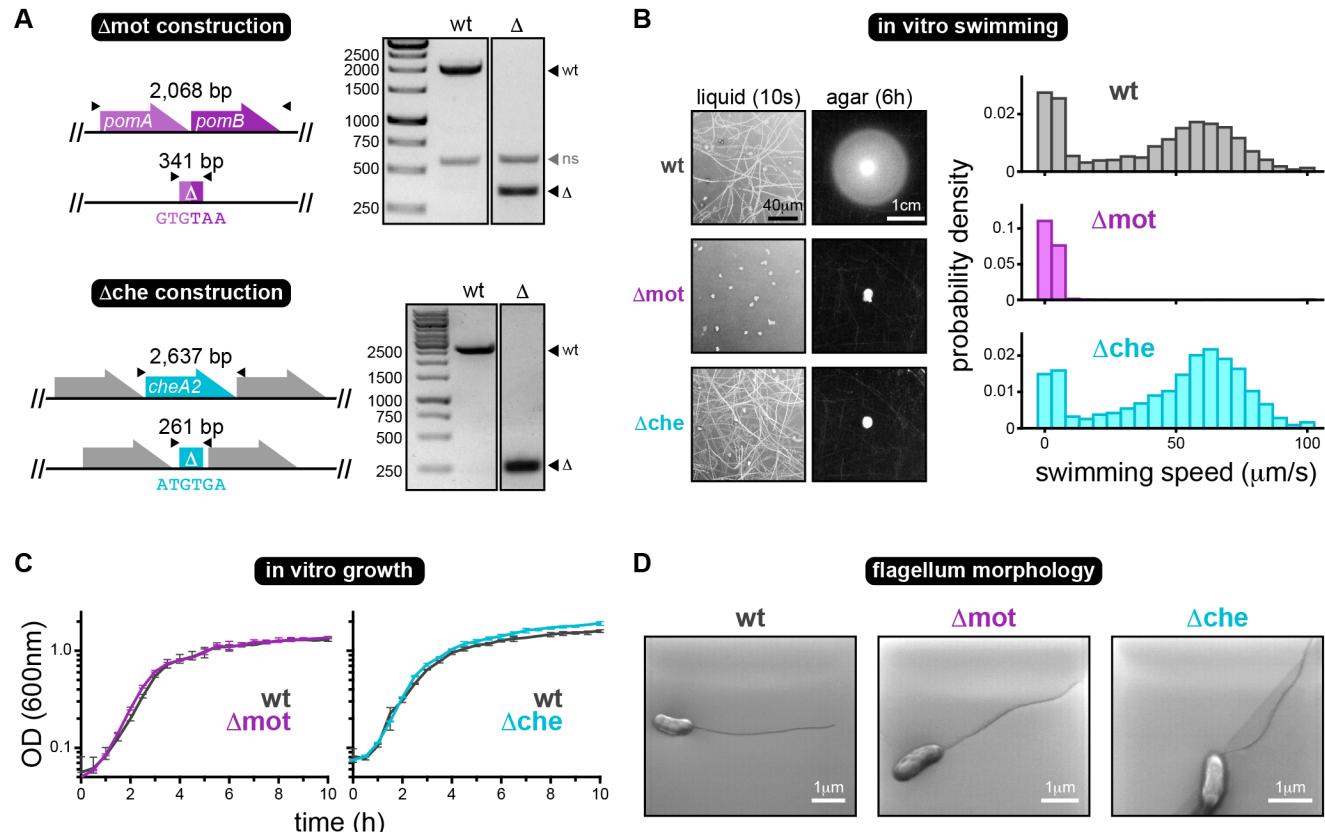
1166 **REFERENCES**

- 1167 Aschtgen, M.-S., Lynch, J.B., Koch, E., Schwartzman, J., McFall-Ngai, M., and Ruby, E.
1168 (2016). Rotation of *Vibrio fischeri* Flagella Produces Outer Membrane Vesicles That Induce
1169 Host Development. *J. Bacteriol.* 198, 2156–2165.
- 1170
- 1171 Ayres, J.S., Trinidad, N.J., and Vance, R.E. (2012). Lethal inflammasome activation by a
1172 multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. *Nat. Med.* 18, 799–
1173 806.
- 1174
- 1175 Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J.,
1176 Glasner, J.D., Rode, C.K., Mayhew, G.F., et al. (1997). The complete genome sequence of
1177 *Escherichia coli* K-12. *Science* 277, 1453–1462.
- 1178
- 1179 Boykov, Y., and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow
1180 algorithms for energy minimization in vision. *IEEE Trans. Pattern Anal. Mach. Intell.* 26, 1124–
1181 1137.
- 1182
- 1183 Brennan, C.A., Hunt, J.R., Kremer, N., Krasity, B.C., Apicella, M.A., McFall-Ngai, M.J., and
1184 Ruby, E.G. (2014). A model symbiosis reveals a role for sheathed-flagellum rotation in the
1185 release of immunogenic lipopolysaccharide. *Elife* 2014.
- 1186
- 1187 Byndloss, M.X., Pernitzsch, S.R., and Bäumler, A.J. (2018). Healthy hosts rule within:
1188 ecological forces shaping the gut microbiota. *Mucosal Immunol.* 11, 1299–1305.
- 1189
- 1190 Carvalho, F.A., Koren, O., Goodrich, J.K., Johansson, M.E. V, Nalbantoglu, I., Aitken, J.D., Su,
1191 Y., Chassaing, B., Walters, W.A., González, A., et al. (2012). Transient inability to manage
1192 proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. *Cell Host Microbe*
1193 12, 139–152.
- 1194
- 1195 Chaban, B., Hughes, H.V., and Beeby, M. (2015). The flagellum in bacterial pathogens: For
1196 motility and a whole lot more. *Semin. Cell Dev. Biol.* 46, 91–103.
- 1197
- 1198 Chen, I.-M.A., Markowitz, V.M., Chu, K., Palaniappan, K., Szeto, E., Pillay, M., Ratner, A.,
1199 Huang, J., Andersen, E., Huntemann, M., et al. (2017). IMG/M: integrated genome and
1200 metagenome comparative data analysis system. *Nucleic Acids Res.* 45, D507–D516.
- 1201
- 1202 Choi, K.-H., Gaynor, J.B., White, K.G., Lopez, C., Bosio, C.M., Karkhoff-Schweizer, R.R., and
1203 Schweizer, H.P. (2005). A *Tn7*-based broad-range bacterial cloning and expression system.
1204 *Nat. Methods* 2, 443–448.
- 1205
- 1206 Chow, J., Tang, H., and Mazmanian, S.K. (2011). Pathobionts of the gastrointestinal
1207 microbiota and inflammatory disease. *Curr. Opin. Immunol.* 23, 473–480.
- 1208
- 1209 Cremer, J., Segota, I., Yang, C.-Y., Arnoldini, M., Sauls, J.T., Zhang, Z., Gutierrez, E.,
1210 Groisman, A., and Hwa, T. (2016). Effect of flow and peristaltic mixing on bacterial growth in a
1211 gut-like channel. *Proc. Natl. Acad. Sci. U. S. A.* 113, 11414–11419.

- 1212
1213 Cullender, T.C., Chassaing, B., Janzon, A., Kumar, K., Muller, C.E., Werner, J.J., Angenent,
1214 L.T., Bell, M.E., Hay, A.G., Peterson, D.A., et al. (2013). Innate and Adaptive Immunity Interact
1215 to Quench Microbiome Flagellar Motility in the Gut. *Cell Host Microbe* 14, 571–581.
1216
1217 Donaldson, G.P., Lee, S.M., and Mazmanian, S.K. (2015). Gut biogeography of the bacterial
1218 microbiota. *Nat. Rev. Microbiol.* 14, 20–32.
1219
1220 Donaldson, G.P., Ladinsky, M.S., Yu, K.B., Sanders, J.G., Yoo, B.B., Chou, W.C., Conner,
1221 M.E., Earl, A.M., Knight, R., Bjorkman, P.J., et al. (2018). Gut microbiota utilize
1222 immunoglobulin a for mucosal colonization. *Science* (80-). 360, 795–800.
1223
1224 Dukowicz, A.C., Lacy, B.E., and Levine, G.M. (2007). Small intestinal bacterial overgrowth: a
1225 comprehensive review. *Gastroenterol. Hepatol. (N. Y.)* 3, 112–122.
1226
1227 Elhenawy, W., Tsai, C.N., and Coombes, B.K. (2019). Host-Specific Adaptive Diversification of
1228 Crohn's Disease-Associated Adherent-Invasive *Escherichia coli*. *Cell Host Microbe* 25, 301–
1229 312.e5.
1230
1231 Ellett, F., Pase, L., Hayman, J.W., Andrianopoulos, A., and Lieschke, G.J. (2011). mpeg1
1232 promoter transgenes direct macrophage-lineage expression in zebrafish. *Blood* 117, e49–56.
1233
1234 Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., Kurihikov, A.,
1235 Bonder, M.J., Valles-Colomer, M., Vandepitte, D., et al. (2016). Population-level analysis of
1236 gut microbiome variation. *Science* (80-). 352, 560–564.
1237
1238 Finlay, B.B., and Falkow, S. (1989). Common themes in microbial pathogenicity. *Microbiol.*
1239 *Mol. Biol. Rev.* 53.
1240
1241 Foster, K.R., Schluter, J., Coyte, K.Z., and Rakoff-Nahoum, S. (2017). The evolution of the
1242 host microbiome as an ecosystem on a leash. *Nature* 548, 43–51.
1243
1244 Fulde, M., Sommer, F., Chassaing, B., van Vorst, K., Dupont, A., Hensel, M., Basic, M.,
1245 Klopferleisch, R., Rosenstiel, P., Bleich, A., et al. (2018). Neonatal selection by Toll-like receptor
1246 5 influences long-term gut microbiota composition. *Nature* 560, 489–493.
1247
1248 Ganz, J., Baker, R.P., Hamilton, M.K., Melancon, E., Diba, P., Eisen, J.S., and Parthasarathy,
1249 R. (2018). Image velocimetry and spectral analysis enable quantitative characterization of
1250 larval zebrafish gut motility. *Neurogastroenterol. Motil.* 30, e13351.
1251
1252 Gevers, D., Kugathasan, S., Denson, L.A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B.,
1253 Schwager, E., Knights, D., Song, S.J., Yassour, M., et al. (2014). The Treatment-Naive
1254 Microbiome in New-Onset Crohn's Disease. *Cell Host Microbe* 15, 382–392.
1255
1256 Gosain, A., and Brinkman, A.S. (2015). Hirschsprung's associated enterocolitis. *Curr. Opin.*
1257 *Pediatr.* 27, 364–369.

- 1258
1259 Hajishengallis, G., and Lamont, R.J. (2016). Dancing with the Stars: How Choreographed
1260 Bacterial Interactions Dictate Nososymbiota and Give Rise to Keystone Pathogens,
1261 Accessory Pathogens, and Pathobionts. *Trends Microbiol.* 24, 477–489.
1262
1263 Heanue, T.A., and Pachnis, V. (2007). Enteric nervous system development and
1264 Hirschsprung's disease: advances in genetic and stem cell studies. *Nat. Rev. Neurosci.* 8,
1265 466–479.
1266
1267 Jemielita, M., Taormina, M.J., Burns, A.R., Hampton, J.S., Rolig, A.S., Guillemin, K., and
1268 Parthasarathy, R. (2014). Spatial and temporal features of the growth of a bacterial species
1269 colonizing the zebrafish gut. *MBio* 5, e01751-14.
1270
1271 Jensen, P.R., and Hammer, K. (1998). The sequence of spacers between the consensus
1272 sequences modulates the strength of prokaryotic promoters. *Appl. Environ. Microbiol.* 64, 82–
1273 87.
1274
1275 Johansson, M.E. V, Sjövall, H., and Hansson, G.C. (2013). The gastrointestinal mucus system
1276 in health and disease. *Nat. Rev. Gastroenterol. Hepatol.* 10, 352–361.
1277
1278 Kostic, A.D., Xavier, R.J., and Gevers, D. (2014). The microbiome in inflammatory bowel
1279 disease: Current status and the future ahead. *Gastroenterology* 146, 1489–1499.
1280
1281 Lam, P., Harvie, E.A., and Huttenlocher, A. (2013). Heat shock modulates neutrophil motility in
1282 zebrafish. *PLoS One* 8, e84436.
1283
1284 Lickwar, C.R., Camp, J.G., Weiser, M., Cocchiaro, J.L., Kingsley, D.M., Furey, T.S., Sheikh,
1285 S.Z., and Rawls, J.F. (2017). Genomic dissection of conserved transcriptional regulation in
1286 intestinal epithelial cells. *PLOS Biol.* 15, e2002054.
1287
1288 Lou, C., Stanton, B., Chen, Y.J., Munsky, B., and Voigt, C.A. (2012). Ribozyme-based
1289 insulator parts buffer synthetic circuits from genetic context. *Nat. Biotechnol.* 30, 1137–1142.
1290
1291 Lutz, R., and Bujard, H. (1997). Independent and tight regulation of transcriptional units in
1292 *Escherichia coli* via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. *Nucleic Acids
1293 Res.* 25, 1203–1210.
1294
1295 Marjoram, L., Alvers, A., Deerhake, M.E., Bagwell, J., Mankiewicz, J., Cocchiaro, J.L.,
1296 Beerman, R.W., Willer, J., Sumigray, K.D., Katsanis, N., et al. (2015). Epigenetic control of
1297 intestinal barrier function and inflammation in zebrafish. *Proc. Natl. Acad. Sci. U. S. A.* 112,
1298 2770–2775.
1299
1300 McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A.L., and Foster, K.R. (2016). Host
1301 Selection of Microbiota via Differential Adhesion. *Cell Host Microbe*.
1302
1303 Melancon, E., Gomez De La Torre Canny, S., Sichel, S., Kelly, M., Wiles, T.J., Rawls, J.F.,

- 1304 Eisen, J.S., and Guillemin, K. (2017). Best practices for germ-free derivation and gnotobiotic
1305 zebrafish husbandry.
- 1306
- 1307 Milligan-Myhre, K., Charette, J.R., Phennicie, R.T., Stephens, W.Z., Rawls, J.F., Guillemin, K.,
1308 and Kim, C.H. (2011). Study of host-microbe interactions in zebrafish. *Methods Cell Biol.* **105**,
1309 87–116.
- 1310
- 1311 Moor, K., Diard, M., Sellin, M.E., Felmy, B., Wotzka, S.Y., Toska, A., Bakkeren, E., Arnoldini,
1312 M., Bansept, F., Co, A.D., et al. (2017). High-avidity IgA protects the intestine by en chaining
1313 growing bacteria. *Nature* **544**, 498–502.
- 1314
- 1315 Okumura, R., Kurakawa, T., Nakano, T., Kayama, H., Kinoshita, M., Motooka, D., Gotoh, K.,
1316 Kimura, T., Kamiyama, N., Kusu, T., et al. (2016). Lypd8 promotes the segregation of
1317 flagellated microbiota and colonic epithelia. *Nature* **532**, 117–121.
- 1318
- 1319 Olivo-Marin, J.-C. (2002). Extraction of spots in biological images using multiscale products.
1320 *Pattern Recognit.* **35**, 1989–1996.
- 1321
- 1322 Ottemann, K.M., and Miller, J.F. (1997). Roles for motility in bacterial-host interactions. *Mol.*
1323 *Microbiol.* **24**, 1109–1117.
- 1324
- 1325 Parthasarathy, R. (2012). Rapid, accurate particle tracking by calculation of radial symmetry
1326 centers. *Nat. Methods* **9**, 724–726.
- 1327
- 1328 Parthasarathy, R. (2018). Monitoring microbial communities using light sheet fluorescence
1329 microscopy. *Curr. Opin. Microbiol.* **43**, 31–37.
- 1330
- 1331 Phelps, D., Brinkman, N.E., Keely, S.P., Anneken, E.M., Catron, T.R., Betancourt, D., Wood,
1332 C.E., Espenschied, S.T., Rawls, J.F., and Tal, T. (2017). Microbial colonization is required for
1333 normal neurobehavioral development in zebrafish. *Sci. Rep.* **7**, 11244.
- 1334
- 1335 Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., and Lim, W.A.
1336 (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of
1337 gene expression. *Cell* **152**, 1173–1183.
- 1338
- 1339 Raina, J.B., Fernandez, V., Lambert, B., Stocker, R., and Seymour, J.R. (2019). The role of
1340 microbial motility and chemotaxis in symbiosis. *Nat. Rev. Microbiol.* **17**, 284–294.
- 1341
- 1342 Rasko, D.A., Rosovitz, M.J., Myers, G.S.A., Mongodin, E.F., Fricke, W.F., Gajer, P., Crabtree,
1343 J., Sebaihia, M., Thomson, N.R., Chaudhuri, R., et al. (2008). The Pangenome Structure of
1344 *Escherichia coli*: Comparative Genomic Analysis of *E. coli* Commensal and Pathogenic
1345 Isolates. *J. Bacteriol.* **190**, 6881–6893.
- 1346
- 1347 Roager, H.M., Hansen, L.B.S., Bahl, M.I., Frandsen, H.L., Carvalho, V., Gøbel, R.J., Dalgaard,
1348 M.D., Plichta, D.R., Sparholt, M.H., Vestergaard, H., et al. (2016). Colonic transit time is
1349 related to bacterial metabolism and mucosal turnover in the gut. *Nat. Microbiol.* **1**.


- 1350
1351 Robinson, C.D., Klein, H.S., Murphy, K.D., Parthasarathy, R., Guillemin, K., and Bohannan,
1352 B.J.M. (2018). Experimental bacterial adaptation to the zebrafish gut reveals a primary role for
1353 immigration. *PLOS Biol.* *16*, e2006893.
- 1354
1355 Rolig, A.S., Parthasarathy, R., Burns, A.R., Bohannan, B.J.M., and Guillemin, K. (2015).
1356 Individual Members of the Microbiota Disproportionately Modulate Host Innate Immune
1357 Responses. *Cell Host Microbe* *18*, 613–620.
- 1358
1359 Rolig, A.S., Mittge, E.K., Ganz, J., Troll, J. V., Melancon, E., Wiles, T.J., Alligood, K.,
1360 Stephens, W.Z., Eisen, J.S., and Guillemin, K. (2017). The enteric nervous system promotes
1361 intestinal health by constraining microbiota composition. *PLOS Biol.* *15*, e2000689.
- 1362
1363 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
1364 S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An open-source platform for
1365 biological-image analysis. *Nat. Methods* *9*, 676–682.
- 1366
1367 Schlomann, B.H., Wiles, T.J., Wall, E.S., Guillemin, K., and Parthasarathy, R. (2018). Bacterial
1368 Cohesion Predicts Spatial Distribution in the Larval Zebrafish Intestine. *Biophys. J.* *115*, 2271–
1369 2277.
- 1370
1371 Schlomann, B.H., Wiles, T.J., Wall, E.S., Guillemin, K., and Parthasarathy, R. (2019). Sublethal
1372 antibiotics collapse gut bacterial populations by enhancing aggregation and
1373 expulsion. *BioRxiv*.
- 1374
1375 Schluter, J., Nadell, C.D., Bassler, B.L., and Foster, K.R. (2015). Adhesion as a weapon in
1376 microbial competition. *ISME J.* *9*, 139–149.
- 1377
1378 Simon, R., Priefer, U., and Pühler, A. (1983). A Broad Host Range Mobilization System for In
1379 Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria.
1380 *Bio/Technology* *1*, 784–791.
- 1381
1382 Stephens, W.Z., Burns, A.R., Stagaman, K., Wong, S., Rawls, J.F., Guillemin, K., and
1383 Bohannan, B.J.M. (2016). The composition of the zebrafish intestinal microbial community
1384 varies across development. *ISME J.* *10*, 644–654.
- 1385
1386 Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L.P., and Lochs, H. (2005). Spatial
1387 organization and composition of the mucosal flora in patients with inflammatory bowel disease.
1388 *J. Clin. Microbiol.* *43*, 3380–3389.
- 1389
1390 Swidsinski, A., Sydora, B.C., Doerffel, Y., Loening-Baucke, V., Vaneechoutte, M., Lupicki, M.,
1391 Scholze, J., Lochs, H., and Dieleman, L.A. (2007). Viscosity gradient within the mucus layer
1392 determines the mucosal barrier function and the spatial organization of the intestinal
1393 microbiota. *Inflamm. Bowel Dis.* *13*, 963–970.
- 1394
1395 Thaiss, C.A., Levy, M., Korem, T., Dohnalová, L., Shapiro, H., Jaitin, D.A., David, E., Winter,

- 1396 D.R., Gury-BenAri, M., Tatirovsky, E., et al. (2016). Microbiota Diurnal Rhythmicity Programs
1397 Host Transcriptome Oscillations. *Cell* 167, 1495-1510.e12.
- 1398
- 1399 Tropini, C., Earle, K.A., Huang, K.C., and Sonnenburg, J.L. (2017). The Gut Microbiome:
1400 Connecting Spatial Organization to Function. *Cell Host Microbe* 21, 433–442.
- 1401
- 1402 Vaishnava, S., Yamamoto, M., Severson, K.M., Ruhn, K.A., Yu, X., Koren, O., Ley, R.,
1403 Wakeland, E.K., and Hooper, L. V. (2011). The antibacterial lectin RegIIIy promotes the spatial
1404 segregation of microbiota and host in the intestine. *Science* (80-.). 334, 255–258.
- 1405
- 1406 van der Waaij, L.A., Limburg, P.C., Mesander, G., and van der Waaij, D. (1996). In vivo IgA
1407 coating of anaerobic bacteria in human faeces. *Gut* 38, 348–354.
- 1408
- 1409 Wang, Z., Du, J., Lam, S.H., Mathavan, S., Matsudaira, P., and Gong, Z. (2010).
1410 Morphological and molecular evidence for functional organization along the rostrocaudal axis
1411 of the adult zebrafish intestine. *BMC Genomics* 11, 392.
- 1412
- 1413 Wei, Y., Wang, X., Liu, J., Nememan, I., Singh, A.H., Weiss, H., and Levin, B.R. (2011). The
1414 population dynamics of bacteria in physically structured habitats and the adaptive virtue of
1415 random motility. *Proc. Natl. Acad. Sci. U. S. A.* 108, 4047–4052.
- 1416
- 1417 Welch, J.L.M., Hasegawa, Y., McNulty, N.P., Gordon, J.I., and Borisy, G.G. (2017). Spatial
1418 organization of a model 15-member human gut microbiota established in gnotobiotic mice.
1419 *Proc. Natl. Acad. Sci. U. S. A.* 114, E9105–E9114.
- 1420
- 1421 Westerfield, M. (2007). The Zebrafish Book: A guide for the laboratory use of zebrafish (*Danio*
1422 *rerio*) (Eugene: University of Oregon Press).
- 1423
- 1424 Wiles, T.J., Jemielita, M., Baker, R.P., Schlomann, B.H., Logan, S.L., Ganz, J., Melancon, E.,
1425 Eisen, J.S., Guillemin, K., and Parthasarathy, R. (2016). Host Gut Motility Promotes
1426 Competitive Exclusion within a Model Intestinal Microbiota. *PLoS Biol.* 14, e1002517.
- 1427
- 1428 Wiles, T.J., Wall, E.S., Schlomann, B.H., Hay, E.A., Parthasarathy, R., and Guillemin, K.
1429 (2018). Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of
1430 Wild and Diverse Proteobacterial Lineages. *MBio* 9.
- 1431
- 1432 Yawata, Y., Cordero, O.X., Menolascina, F., Hehemann, J.-H., Polz, M.F., and Stocker, R.
1433 (2014). Competition-dispersal tradeoff ecologically differentiates recently speciated marine
1434 bacterioplankton populations. *Proc. Natl. Acad. Sci. U. S. A.* 111, 5622–5627.
- 1435

1436 **SUPPLEMENTAL FIGURES & TABLES**

1437

1438

1439

1440

1441 **Figure S1. Motility and chemotaxis mutant construction and in vitro characterization.**

1442 (associated with Figures 1 and 2)

1443 (A) Gene diagrams depict the in-frame markerless deletion of *pomAB* (Δ mot construction) and *cheA2* (Δ che construction). “ Δ ” denotes the mutant allele and the DNA sequence shown below represents the resulting fusion of the start and stop codons in each case. Black triangles represent primers used for PCR-confirmation of each mutant, and the amplicon sizes (bp) of the wild-type (wt) and mutant (Δ) alleles are provided above each locus. DNA gels to the right of each diagram show the successful deletion of both *pomAB* and *cheA2* from the *Vibrio* chromosome. We note that the Δ mot mutant was constructed in a previous publication (Wiles et al., 2018) and the DNA gel shown is a version of that already published but is included here for continuity and thoroughness. ns: non-specific amplicon.

1444 (B) Left: Swimming motility of wild type (wt), Δ mot, and Δ che in liquid media and soft agar. Motility in liquid media was recorded for 10 seconds on a glass slide. Images show cellular movements over the entire 10 second period, which illustrates each cell's swimming trajectory. Swim distances were captured 6 h post-inoculation of bacteria into the agar. Right: Probability densities showing the distribution of cellular swimming speeds in liquid media for each *Vibrio* strain. Sample sizes (measured bacterial swim tracks): wt = 2,962; Δ mot = 754; Δ che = 3,069.

1445 (C) In vitro growth curves of each *Vibrio* strain in rich media (lysogeny broth). Line traces the average optical density (OD) from four replicate wells, bars indicate range.

1446 (D) Scanning electron micrographs of each *Vibrio* strain after growth on solid media. Images show that each strain is capable of assembling a single polar flagellum.

1447

1448

1449

1450

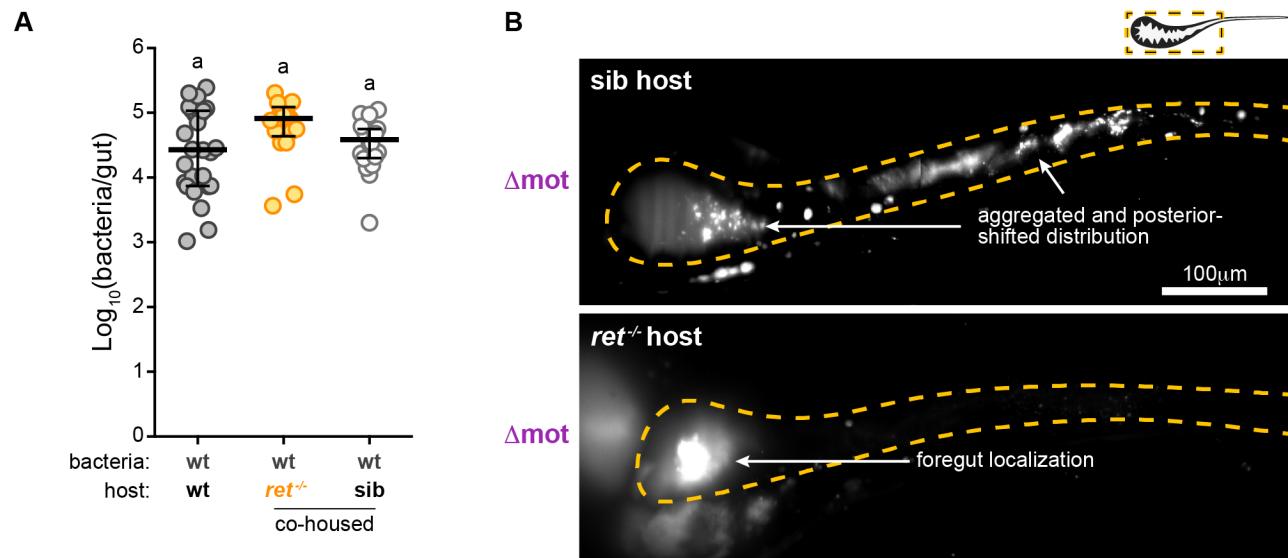
1451

1452

1453

1454

1455


1456

1457

1458

1459

1460

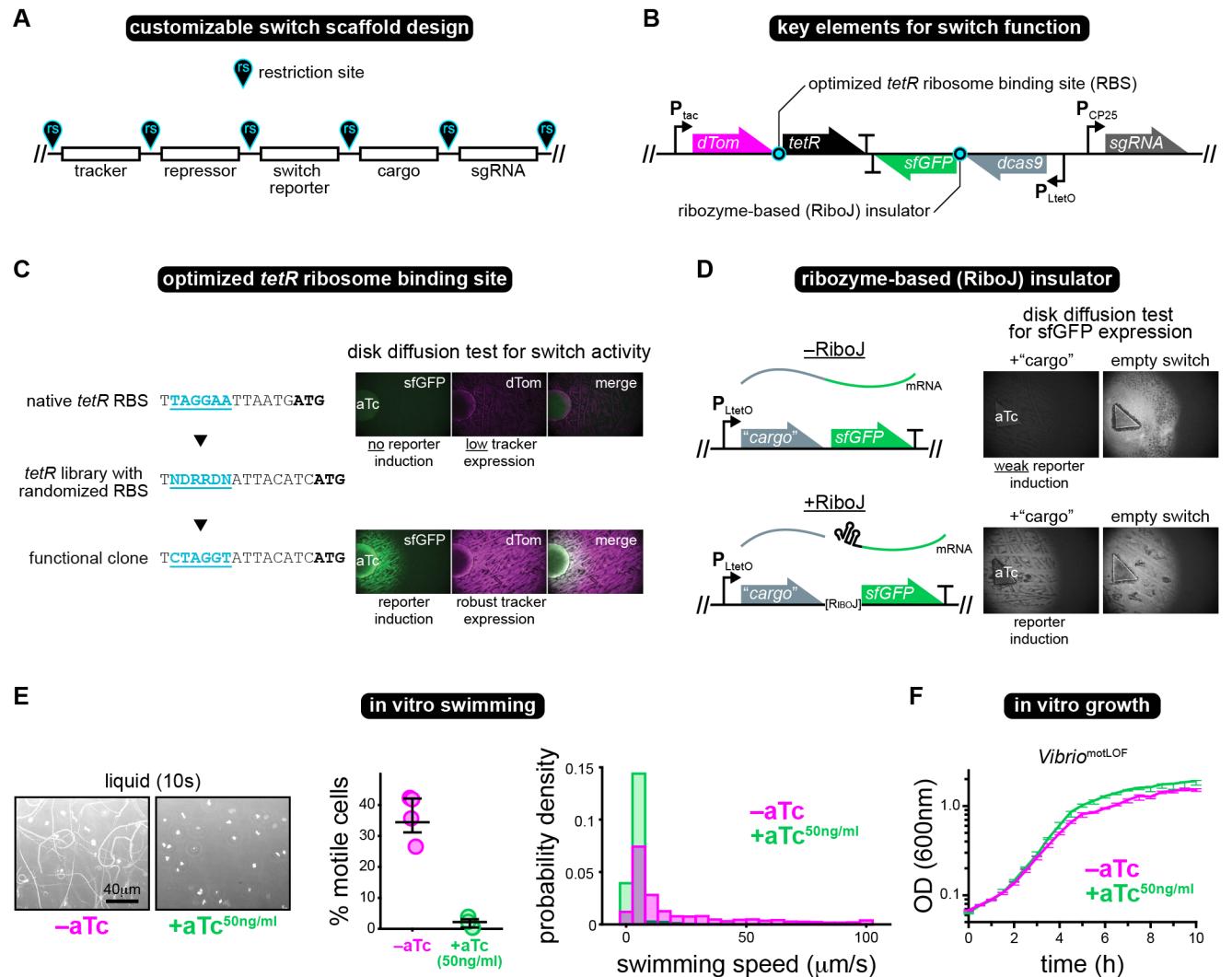


Figure S2. Additional wild-type and Δ mot colonization data in *ret*^{-/-} mutant hosts.

(associated with Figure 3)

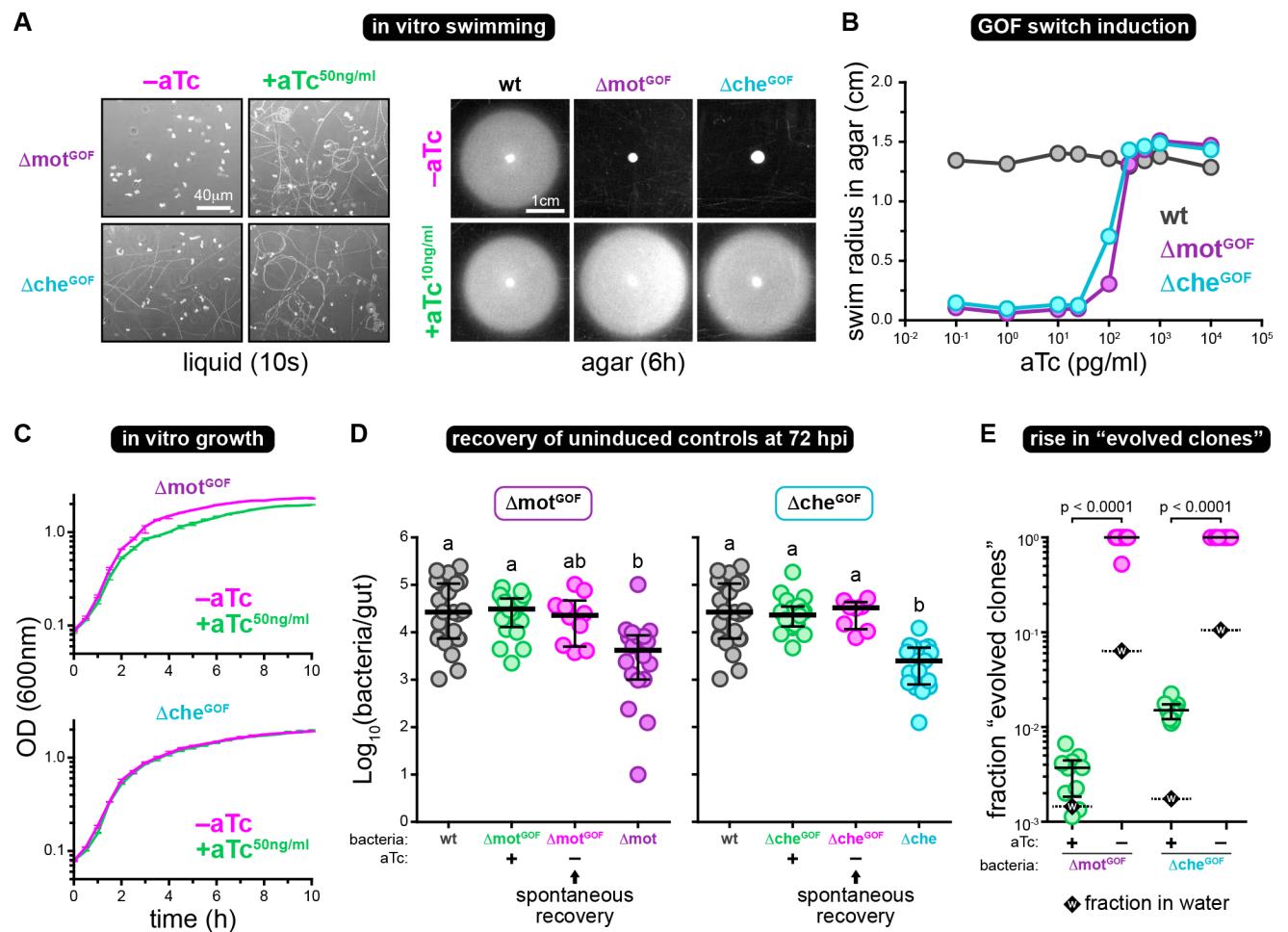
(A) Cultivation-based abundances for wild-type *Vibrio* in co-housed *ret*^{-/-} mutant hosts and wild-type/heterozygous sibling controls (sib). Abundances of wild-type *Vibrio* in wild-type hosts (from Figure 1A, 72 hpi) are shown for comparison. Letters denote significant differences. $p < 0.05$, Kruskal-Wallis and Dunn's.

(B) Maximum intensity projections acquired by LSFM from a sib control host (top) or a *ret*^{-/-} mutant host (bottom). Each animal was colonized with Δ mot for 72 h prior to imaging. Dashed lines mark approximate intestinal boundaries.

1472
1473

Figure S3. Switch design features and in vitro characterization of the motility loss-of-function switch. (associated with Figure 4)

1474 (A) Diagram depicts the customizable design of the switch scaffold. Unique restriction sites (rs) flanking switch
1475 elements allow each component to be optimized or replaced. The “tracker” encodes a fluorescent protein for
1476 marking all bacterial cells. The “repressor” encodes a transcription factor that allows inducible control of “cargo”
1477 gene (e.g., dCas9) expression. The “switch reporter” encodes a fluorescent protein that is coexpressed with the
1478 cargo gene to signal switch activation. A “sgRNA” is inserted when the switch is used for CRISPRi.
1479 (B) Gene diagram indicates the locations (cyan bullseyes) of two elements that were essential for switch function:
1480 an optimized tetR ribosome binding site (RBS) and a ribozyme-based insulator.
1481 (C) Left: Shown are DNA sequences for the native (top) and functionally optimized (bottom) 5' untranslated region
1482 (UTR) of the tetR gene. Underlined cyan text denotes the RBS. Bolded text marks the tetR start codon. The
1483 middle sequence represents the library of tetR 5' UTRs containing randomized RBS sequences that were
1484 screened (letters are based on IUPAC code). Right: Switch function was assessed using disk diffusion assays in
1485 which *E. coli* carrying the switch (without a cargo gene inserted) were spread at a density high enough to produce
1486 a lawn of growth on an agar plate. A disk impregnated with concentrated aTc was then used to induce switch
1487 activity, thereby making the adjacent cells express GFP if the switch was functional. Top right: Original switch
1488 prototypes failed to be induced and displayed suppressed expression of the dTomato tracker, which we surmised
1489 was due to overexpression of TetR. Bottom right: A library of switch clones containing random RBS sequences in
1490


1492 the *tetR* 5' UTR were screened, resulting in the recovery of a functional clone that displayed sensitive switch
1493 activation and robust tracker expression.

1494 **(D)** Top row: Early switch prototypes relied on the co-transcription of the cargo gene and sfGFP reporter.
1495 However, the insertion of large cargo genes, such as a *dcas9* or *cheA2*, hampered sfGFP expression compared
1496 to an “empty” switch without a cargo gene, which was evident in disk diffusion assays. We surmised that this was
1497 due to part-junction interference between *sfGFP* and the cargo, leading to poor translation of *sfGFP*. Bottom row:
1498 Insertion of the self-cleaving RiboJ ribozyme insulator between *sfGFP* and the cargo alleviated the apparent
1499 interference.

1500 **(E)** Left: Swimming motility of $\Delta\text{mot}^{\text{LOF}}$ in liquid media plus/minus aTc (50 ng/ml). Motility in liquid media was
1501 recorded for 10 seconds on a glass slide. Images show cellular movements over the entire 10 second period,
1502 which illustrates each cell's swimming trajectory. Motility was assessed ~ 7 h post-induction. Middle: The
1503 percentage of swimming cells in $\Delta\text{mot}^{\text{LOF}}$ populations in liquid media plus/minus aTc (50 ng/ml) from four separate
1504 fields of view. Right: Probability densities showing the distribution of cellular swimming speeds in liquid media for
1505 $\Delta\text{mot}^{\text{LOF}}$ plus/minus aTc (50 ng/ml). Sample sizes (measured bacterial swim tracks): $\Delta\text{mot}^{\text{LOF}}$ -aTc = 2,677;
1506 $\Delta\text{mot}^{\text{LOF}}$ +aTc = 944.

1507 **(F)** In vitro growth curves of $\Delta\text{mot}^{\text{LOF}}$ in rich media (lysogeny broth) plus/minus aTc (50 ng/ml). Line traces the
1508 average optical density (OD) from three replicate wells, bars indicate range.

1509

Figure S4. In vitro characterization of motility and chemotaxis gain-of-function switches and supporting data on the evolution of gain-of-function switches in vivo. (associated with Figure 5)

(A) Left: Swimming motility of $\Delta\text{mot}^{\text{GOF}}$ and $\Delta\text{che}^{\text{GOF}}$ in liquid media plus/minus aTc (50 ng/ml). Motility in liquid media was recorded for 10 seconds on a glass slide. Images show cellular movements over the entire 10 second period, which illustrates each cell's swimming trajectory. Motility was assessed ~ 4 h post-induction. Right: Motility of wild-type *Vibrio*, $\Delta\text{mot}^{\text{GOF}}$, and $\Delta\text{che}^{\text{GOF}}$ in soft agar plus/minus aTc (10 ng/ml). Swim distances were captured 6 h post-inoculation of bacteria into the agar.

(B) Swim distances of wild-type *Vibrio*, $\Delta\text{mot}^{\text{GOF}}$, and $\Delta\text{che}^{\text{GOF}}$ in soft agar 6 h post-induction with different concentrations of aTc.

(C) In vitro growth curves of $\Delta\text{mot}^{\text{GOF}}$ and $\Delta\text{che}^{\text{GOF}}$ in rich media (lysogeny broth) plus/minus aTc (50 ng/ml). Line traces the average optical density (OD) from three replicate wells, bars indicate range.

(D) Cultivation-based abundances of $\Delta\text{mot}^{\text{GOF}}$ or $\Delta\text{che}^{\text{GOF}}$ at 72 hpi either with (green) or without (magenta) aTc induction. Abundances of wild-type *Vibrio* (gray), Δmot (purple), and Δche (cyan) (from Figure 1A, 72 hpi) are shown for comparison. Abundances of each GOF strain in the presence of aTc are from Figure 5E and are also shown for comparison. Bars denote medians and interquartile ranges. Letters denote significant differences. $p < 0.05$, Kruskal-Wallis and Dunn's.

(E) Shown is the fraction of “evolved clones” (i.e., bacterial colonies recovered that displayed constitutive switch activation) from the intestines of zebrafish colonized with $\Delta\text{mot}^{\text{GOF}}$ or $\Delta\text{che}^{\text{GOF}}$ at 72 hpi that were either induced (green) or not induced (magenta) with aTc. Bars denote medians and interquartile ranges. In each condition, a black dashed bar and diamond labeled with a “w” indicates the fraction of evolved clones recovered from the water environment.

Table S1. Bacteria used and created in this study.

Strain	Description/ Relevant Details	Source
Wild-type Bacteria		
<i>Vibrio</i> ZWU0020	Non-toxigenic strain of <i>Vibrio cholerae</i> isolated from the zebrafish gut. IMG genome ID: 2703719078	(Stephens et al., 2016)
Recombinant Bacteria		
<i>Vibrio</i> Δ mot	<i>Vibrio</i> ZWU0020 with unmarked, in-frame deletion of <i>pomAB</i> (non-motile)	(Wiles et al., 2018)
<i>Vibrio</i> Δ che	<i>Vibrio</i> ZWU0020 with unmarked, in-frame deletion of <i>cheA2</i> (non-chemotactic)	This study
<i>Aeromonas</i> ZOR0001 <i>attTn7::dT</i> <i>Tomato</i>	Strain of <i>Aeromonas veronii</i> isolated from the zebrafish gut. Constitutively expresses dTomato; Gent ^R	(Wiles et al., 2018)
<i>Vibrio</i> ZWU0020 <i>attTn7::dT</i> <i>Tomato</i>	constitutively expresses dTomato; Gent ^R	(Wiles et al., 2018)
<i>Vibrio</i> ZWU0020 <i>attTn7::sfGFP</i>	constitutively expresses sfGFP; Gent ^R	(Wiles et al., 2018)
<i>Vibrio</i> Δ mot <i>attTn7::dT</i> <i>Tomato</i>	constitutively expresses dTomato; Gent ^R	This study
<i>Vibrio</i> Δ che <i>attTn7::dT</i> <i>Tomato</i>	constitutively expresses dTomato; Gent ^R	This study
<i>Vibrio</i> ^{motLOF}	<i>Vibrio</i> carrying the motility loss-of-function switch within the chromosome at the <i>attTn7</i> site; constitutively expresses dTomato; Gent ^R	This study
<i>Vibrio</i> Δ mot ^{GOF}	Δ mot carrying the motility gain-of-function switch within the chromosome at the <i>attTn7</i> site; constitutively expresses dTomato; Gent ^R	This study
<i>Vibrio</i> Δ che ^{GOF}	Δ che carrying the chemotaxis gain-of-function switch within the chromosome at the <i>attTn7</i> site; constitutively expresses dTomato; Gent ^R	This study
Other bacteria used for molecular biology and switch optimization		
<i>E. coli</i> SM10	Donor strain used for conjugation	(Simon et al., 1983)
DH5 α	<i>E. coli</i> cloning strain	NEB
<i>E. coli</i> MG1655	Used for switch prototyping and optimization	(Blattner et al., 1997)
<i>E. coli</i> HS	Used for switch prototyping and optimization	(Rasko et al., 2008)
<i>Enterobacter</i> ZOR0014	Source of <i>tetR</i> gene	(Stephens et al., 2016)

Table S2. Plasmids used and created in this study.

Plasmid Name	Description/ Relevant Details	Source
Plasmids used for allelic exchange		
pAX1	allelic exchange vector with GFP merodiploid tracker and temperature-sensitive replicon <i>ori</i> ₁₀₁ / <i>repA101</i> ^{ts} ; Amp ^R , Gent ^R , Clm ^R , 30°C; Addgene plasmid #117397	(Wiles et al., 2018)
pAX1-ZWU0020-cheA2	pAX1-based plasmid with <i>cheA2</i> knockout cassette; Amp ^R , Gent ^R , Clm ^R , 30°C; Wiles plasmid #pTW383	This study
Customizable plasmid-based genetic switch scaffolds		
pXS-GOF-switch	gain-of-function switch scaffold constructed in a pXS-based plasmid; Amp ^R ; Wiles plasmid #pTW265	This study
pXS-LOF-switch	loss-of-function switch scaffold constructed in a pXS-based plasmid; Amp ^R ; Wiles plasmid #pTW308	This study
Plasmids used for Tn7-based chromosomal insertions		
pTn7xTS	Tn7 tagging vector with temperature-sensitive replicon <i>ori</i> ₁₀₁ / <i>repA101</i> ^{ts} ; Amp ^R , Gent ^R , 30°C; Addgene plasmid #117389	(Wiles et al., 2018)
pTNS2	Tn7 helper plasmid carrying transposase genes; Amp ^R ; Addgene plasmid #64968	(Choi et al., 2005)
pTn7xTS-dTomato	pTn7xTS carrying <i>P</i> _{tac} - <i>dTomato</i> ; Amp ^R , Gent ^R , 30°C; Addgene plasmid #117391	(Wiles et al., 2018)
pTn7xTS-GOF-switch	pTn7xTS carrying the gain-of-function switch scaffold; Amp ^R , Gent ^R , 30°C; Wiles plasmid #pTW285	This study
pTn7xTS-LOF-switch	pTn7xTS carrying the loss-of-function switch scaffold; Amp ^R , Gent ^R , 30°C; Wiles plasmid #pTW317	This study
pTn7xTS-mot-LOF-switch	pTn7xTS-LOF-switch with <i>pomA</i> sgRNA; Amp ^R , Gent ^R , 30°C; Wiles plasmid #pTW340	This study
pTn7xTS-mot-GOF-switch	pTn7xTS-GOF-switch with <i>pomAB</i> ; Amp ^R , Gent ^R , 30°C; Wiles plasmid #pTW324	This study
pTn7xTS-che-GOF-switch	pTn7xTS-GOF-switch with <i>cheA2</i> ; Amp ^R , Gent ^R , 30°C; Wiles plasmid #pTW282	This study
Backbones and sources of genetic parts		
pXS-dTomato	pXS-based modular <i>dTomato</i> expression scaffold; Amp ^R ; Addgene plasmid #117387	(Wiles et al., 2018)
pdCAS9-bacteria	Source vector for <i>dcas9</i> gene; Clm ^R ; Addgene plasmid #44249	(Qi et al., 2013)
pTW168	Source vector for <i>sfGFP</i> gene; Amp ^R , Gent ^R ; Wiles plasmid #pTW168	(Schlomann et al., 2019)

Amp^R, encodes ampicillin resistance; Gent^R, encodes gentamicin resistance; Clm^R, encodes chloramphenicol resistance; 30°C, permissive growth temperature

1538

Table S3. Primer and oligo DNA sequences.

Name	Sequence (5'-3')
Primers	
WP11	cacgccccttttaatacgaa
WP12	agggtaccgatgttgaccaag
WP92	gcggccgcggatttttagggtaacgtatg
WP93	gcggccgccttatacggtgtgcagctaatca
WP118	ttagagactcgaaattggggatccactagtaa
WP138	tgaccttaggtccctatcagtgtatagagattgacatccatcagtgtatagagatactgagcacaacc ggtagcatgcacccgggtaactttatcaaggagactaaatcatgagca
WP139	ttagtcgaaaaaaaaagcccgctcattaggcggcttttattaaagacccacttcacattaaag
WP146	ttagcggccgcactcaagaacaataatndrrdnattacatcatgtctagattagataaaagtaagt g
WP165	tctattcacacgcgcaaaag
WP166	cttacgttgcagctaatacacaatacgttacccctaaaatcca
WP167	tggatttttagggtaacgtatgtgattagctgcacaacgataag
WP168	gagcccgacttctaccaaca
WP169	gcgaaaaagaacaaaaagc
WP170	tgaaagctttagcctgaggagtgcgt
WP171	ttaggtaccttattgttgcaccgcctagtg
CheA2.ZW20.KO confirm.REV	gcgattcggagttgtatgatt
gBlocks	
RiboJ	cacgtgatgaaagcttaatgggtaccatgaagctgtcaccggatgtgccttcggctgtatgagtcc gtgaggacgaaacagcctctacaataattttgttaatgttagctagctgaagcatgc
CP25- <i>lacZ</i> sgRNA	tagccttaggaggcccagcgatcgattaaacttggcagttattcttgcacatgttagtgagg ggcgtgtataatcacatagttggaaaggcgatcggcgtgcgttttagagctagaaatagcaagttaa aataaggctagtcgttatcaacttgaaaaagtggcaccgagtcggcgtcttttaggcgcgcatt cgatagccggcaggccgcctag
CP25- <i>pomA</i> sgRNA	tgctgcttaattaaacttggcagttattcttgcacatgttagtgaggggctgtatataatcacatag aaatccacgaagcactcctcggttagagctagaaatagcaagttaaaataaggctagtcgttata aacttgaaaaagtggcaccgagtcggcgtcttttagccggctgtgc

1539
1540