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Nascent transcript measurements derived from run-on se-
quencing experiments are critical for the investigation of
transcriptional mechanisms and regulatory networks. How-
ever, conventional gene annotations specify the boundaries

of mRNAs, which significantly differ from the boundaries of
primary transcripts. Moreover, transcript isoforms with dis-
tinct transcription start and end coordinates can vary between
cell types. Therefore, new primary transcript annotations are
needed to accurately interpret run-on data. We developed the
primaryTranscriptAnnotation R package to infer the
transcriptional start and termination sites of annotated genes
from genomic run-on data. We then used these inferred co-
ordinates to annotate transcriptional units identified de novo.
Hence, this package provides the novel utility to integrate data-
driven primary transcript annotations with transcriptional
unit coordinates identified in an unbiased manner. OQur anal-
yses demonstrated that this new methodology increases the
sensitivity for detecting differentially expressed transcripts
and provides more accurate quantification of RNA polymerase
pause indices, consistent with the importance of using accu-
rate primary transcript coordinates for interpreting genomic
nascent transcription data.

Availability: https://github.com/
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Introduction

Quantification of nascent transcription is critical for resolv-
ing temporal patterns of gene regulation and defining gene
regulatory networks. Processed mRNA levels are influenced
by numerous factors that coordinate the mRNA production
and degradation rates (Blumberg et al., 2019; Honkela et al.,
2015). In contrast, the levels of nascent RNAs reflect the
genome-wide distribution of transcriptionally engaged RNA
polymerases at the time of measurement (Wissink et al.,
2019). Precision run-on sequencing (PRO-seq, Kwak et al.
(2013)) and global run-on sequencing (GRO-seq, Core et al.
(2008)) have standardized experimental protocols and are
commonly used to quantify nascent transcription (Lopes

et al., 2017; Mahat et al., 2016). Genome-wide analyses of
nascent transcription require accurate annotations of gene
boundaries. While ongoing efforts aim to increase the qual-
ity of genome annotations (Haft et al., 2018), existing gene
annotations are inadequate for both quantifying nascent

transcripts and determining the RNA polymerase location
relative to gene features. Analyses of run-on data indicates
that annotated transcription start sites (TSSs) are often in-
accurate (Link et al., 2018). Similarly, it is well established
that transcription extends beyond the 3’ polyadenylation
region (Proudfoot, 2016), thereby rendering transcription
termination sites (TTSs) distinct from annotated mRNA
ends. Identifying more accurate TSSs and TTSs for primary
transcripts is important for accurate transcript quantifica-
tion from run-on data. Experimental techniques such as 5’
GRO-seq, PRO-cap, and Start-seq can directly estimate TSS
coordinates (Link et al., 2018; Mahat et al., 2016; Scruggs
et al., 2015), however, data-driven methods for improved
annotations are of considerable practical interest.

Efforts in de novo transcript identification from run-on
data have partially addressed problems related to TSS/TTS
annotation. The R package groHMM and the command line
tool HOMER identify transcriptional unit (TU) coordinates
and have been successfully applied to run-on data (Chae
et al., 2015; Heinz et al., 2010). However, these existing
methods do not facilitate the assignment of gene identifiers
to the identified TUs, which are generically defined by their
chromosomal coordinates.

Here we present the R package
primaryTranscriptAnnotation for annotat-
ing primary transcripts. We directly infer TSSs and TTSs
for annotated genes, then we integrate the identified
coordinates with TUs identified de novo. Our improved
annotations increase the sensitivity and accuracy of detect-
ing differential transcript expression and quantifying RNA
polymerase pausing. This package improves precision in
analyses of critical phenomena related to transcriptional
regulation and can be easily incorporated into standard
genomic run-on analysis workflows.

Description

We distinguish two related tasks performed by our package:
(1) Integration of run-on data and existing gene annotations
to refine estimates of TSSs and TTSs, and (2) combining the
results of the first task with the results of an unsupervised
TU identification method (groHMM or HOMER) to annotate
the TUs. We accept the data-driven annotations from (1) as
a ‘ground truth’ and we use these coordinates to segment
and assign identifiers to the de novo TUs (Figure 1a). For
demonstration of the package functions, we use PRO-seq
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Fig. 1. The primaryTranscriptAnnotation package accurately annotates gene features and assigns gene names to transcriptional units. (a) Aligned run on
data and gene annotations are inputs to redefine gene annotations. De novo-identified transcription units can be assigned gene identifiers using refined gene annotations.
(b) Promoter-proximal paused RNA polymerases are more constrained to the canonical 20-80 bases downstream of the refined transcription start sites, compared to con-
ventional annotations. (c) TTS inference involves 1) detection of higher density peaks in the 3’ end of the gene, corresponding to the slowing of RNA polymerase and 2)
determining the genomic position when the read density decays towards zero. (d) These methods generate improved TSS and TTS estimates for the Zfp800 gene. (e) An-
notation of de novo-defined transcription units with gene identifiers is based upon degree of overlap. (f) This approach produces gene boundaries with improved accuracy,

while maintaining gene identifiers.

data from adipogenesis time-series experiments available
through GEO accession record GSE133147. Extensive im-
plementation details are provided in the vignette associated
with the publicly available R package.

Data-driven gene annotation.

We used GENCODE gene annotations as a reference point
for inferring TSSs and TTSs (Harrow et al., 2012). To in-
fer TSSs, we considered all first exons of each gene isoform
and defined the TSS as the 5’ end of the annotated first exon
that contains the maximal read density within a specified
range downstream. Such regions of peak read density, typ-
ically between 20 and 80 bp downstream from a TSS, exist
at RNA polymerase ‘pause sites’ (Kwak et al., 2013). To
evaluate the performance of our TSS identification method,
we compared our inferences to the GENCODE annotations.
We considered the ‘largest interval’ annotation for each
gene by taking the most upstream start coordinates and most
downstream end coordinates from the GENCODE annota-
tion file. Figure 1b and Figure S1 show the distance between
the gene start coordinate and the nearest read peak within
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500 bases. Consistent with paused RNA polymerase accu-
mulation in close proximity and downstream of transcription
initiation sites, the distribution of highest RNA polymerase
densities is more focused immediately downstream for the
refined TSS annotation as compared to the ‘largest interval’
annotation (Figure 1b and Figure S1).

To infer TTSs, we examined evidence of transcriptional
termination in regions extending from a 3’ interval of the
gene to a selected number of base pairs downstream of
the most distal annotated gene end (Figure S2). We based
our method for TTS inference on data demonstrating that
transcription rates are attenuated at gene ends (Lian et al.,
2008). This phenomena is manifested as elevated poly-
merase density at the gene end relative to the middle of the
gene body (Fong et al. (2015), see also Figure S3). We con-
sidered the possibility that the identification of TTSs could
be influenced by distal enhancers or downstream promoters
that are defined by bidirectional transcription (Core et al.,
2014). To reduce the likelihood of such occurrences, we
used an exponential model that incorporates the distance to
the downstream gene in order to define a search region for
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identifying read density peaks corresponding to elevated
polymerase density at gene ends (Figure S2). We defined
the TTSs by binning the search regions, counting reads
within the bins, fitting smooth spline curves to the binned
counts, identifying peaks in the curves, and detecting points
at which the curves decay from the peak towards zero (Fig-
ure lc, Figure S3). The results of our TTS identification
procedures show that data-driven annotations result in con-
siderably larger gene coordinates as compared to conven-
tional mRNA annotations, which is consistent with RNA
polymerases transcribing beyond the polyadenylation and
cleavage site (Figure 1d, Figure S4d,e).

Annotation of de novo transcriptional units.

While data-driven gene coordinates provide an improve-
ment over conventional annotations, it can be advan-
tageous to analyze run-on data in the context of TUs
identified in an unbiased manner (Chae et al., 2015).

Given both de novo TUs and a trusted gene annotation,
primaryTranscriptAnnotation combines these
information sources to annotate the TUs so that TUs over-
lapping genes are assigned conventional gene names (Figure
le). We separately considered either TUs that overlapped
single genes or TUs that overlapped multiple genes (Figures
S5,S6). If the start and end of a TU were within user-defined
distances to the TSS and TTS of an overlapping gene, the
TU was assigned the identifier for the overlapping gene. If
the TU did not extend to the gene boundaries, the TU was
extended to match the trusted gene annotation. TUs that did
not overlap any genes were marked as unannotated. Fig-
ure 1f shows PRO-seq reads along with groHMM annota-
tions (black), TSS/TTS inference annotations (grey), and
annotations based on combining the results of groHMM and
TSS/TTS inference (green, red, blue). Combining both the
data-driven gene annotation and transcript unit annotation
methods provides more accurate transcript boundaries and
retains gene identifier information that can be used in down-
stream applications.

Improved sensitivity for detecting gene expression
changes and RNA polymerase pausing.

We annotated PRO-seq data with both ‘largest interval’ gene
coordinates and inferred primary transcript coordinates
(e.g., see Figure 1d). Principal component analysis shows
that TU/gene annotations based on our novel approach pre-
serve the data structure observed using conventional largest
interval annotations (Figure S7). However, when we exam-
ined differential expression by applying a likelihood ratio
test to our adipogenesis time-series data, the results showed
that using the inferred gene coordinates resulted in more
sensitive detection of differential expression (Supplemen-
tal Results and Figure S8). This finding demonstrates that
our inferred annotations result in enhanced sensitivity for
detecting differential expression of run-on data.

Promoter proximal polymerase pausing is a pervasive
phenomena in eukaryotic gene regulation, and has been
implicated in numerous biological functions including de-
velopment, environmental response, and cell differentiation
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(Adelman and Lis, 2012; Duarte et al., 2016; Scheidegger
and Nechaev, 2016). To determine if our inferred annota-
tions confer an improvement for detecting RNA polymerase
pausing, we computed ‘pause indices’ based on data from
inferred coordinates and largest interval annotations. The
pause index is a ratio of read density near the TSS to read
density within the gene body (Min et al., 2011). We defined
the pause region as 20-80 bp downstream of the TSS and the
gene body region as the interval from 500 bp downstream of
the TSS to the gene end. Our analyses revealed that apply-
ing inferred gene coordinates results in significantly larger
pause indices (Figure S9). This suggests that our methods
enhance the sensitivity for detecting and quantifying paus-
ing at a genome-wide scale.

Discussion

We describe primaryTranscriptAnnotation and
illustrate its utility with analysis examples. The package is
publicly available, requires minimal dependencies, and is
easy to use. The package also includes the data necessary
to reproduce all analyses presented in this paper. The asso-
ciated vignette and Supplementary Materials contains code
for illustrating the package functionality and reproducing
all analyses. Because run-on data is critical to defining tran-
scriptional regulatory mechanisms, and because existing
gene annotations are suboptimal for mapping run-on data,
primaryTranscriptAnnotation will be generally
useful for investigations into the mechanisms of transcrip-
tion.

Data availability

Raw sequencing files and processed bigWig files are avail-
able from GEO accession record GSE133147.

ACKNOWLEDGEMENTS

Thanks to Dr. Thurl Harris for providing the 3T3-L1 cells. Thanks to the laboratory
of Dr. Chongzhi Zang, as well as the Civelek and Guertin laboratories, for advice
and discussion. Thanks to Dr. Yongde Bao with the UVA Genome Analysis and
Technology Core for sequencing our PRO-seq libraries.

FUNDING

This work has been supported by American Heart Association Postdoctoral Fel-
lowship #18POST33990082 and NIH T32 HL007284 (WDA), R35-GM128635
(MJG), RO1 DK118287 (MC), and American Diabetes Association 1-19-IBS-105
(MC).

Bibliography

Adamson SE, Meher AK, Chiu YH, Sandilos JK, Oberholtzer NP, Walker NN, Hargett SR,
Seaman SA, Peirce-Cottler SM, Isakson BE, et al.. 2015. Pannexin 1 is required for full
activation of insulin-stimulated glucose uptake in adipocytes. Molecular Metabolism 4:
610-618.

Adelman K and Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles
in metazoans. Nature reviews. Genetics 13: 720-731.

Benjamini Y and Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B
(Methodological) 57: 289-300.

Blumberg A, Zhao Y, Huang YF, Dukler N, Rice EJ, Krumholz K, Danko CG, and Siepel A. 2019.
Characterizing rna stability genome-wide through combined analysis of pro-seq and rna-seq
data. BioRxiv p. 690644.

Chae M, Danko CG, and Kraus WL. 2015. groHMM: a computational tool for identifying unan-
notated and cell type-specific transcription units from global run-on sequencing data. BMC
bioinformatics 16.

Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, and Lis JT. 2014. Analysis of nascent
RNA identifies a unified architecture of initiation regions at mammalian promoters and
enhancers. Nature Genetics 46: 1311-1320.

bioRxiv | 3


https://doi.org/10.1101/779587
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/779587; this version posted September 23, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

Core LJ, Waterfall JJ, and Lis JT. 2008. Nascent RNA sequencing reveals widespread pausing
and divergent initiation at human promoters. Science (New York, N.Y.) 322: 1845—1848.

Cvetesic N, Leitch HG, Borkowska M, Miiller F, Carninci P, Hajkova P, and Lenhard B. 2018.
SLIC-CAGE: high-resolution transcription start site mapping using nanogram-levels of total
RNA. Genome Research 28: 1943—1956.

Duarte FM, Fuda NJ, Mahat DB, Core LJ, Guertin MJ, and Lis JT. 2016. Transcription factors gaf
and hsf act at distinct regulatory steps to modulate stress-induced gene activation. Genes &
development 30: 1731-1746.

Fong N, Brannan K, Erickson B, Kim H, Cortazar MA, Sheridan RM, Nguyen T, Karp S, and
Bentley DL. 2015. Effects of Transcription Elongation Rate and Xrn2 Exonuclease Activity
on RNA Polymerase Il Termination Suggest Widespread Kinetic Competition. Molecular Cell
60: 256-267.

Fu Y, Wu PH, Beane T, Zamore PD, and Weng Z. 2018. Elimination of PCR duplicates in
RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics 19: 531.

Gordon A. 2010. Fastx toolkit. https://github.com/agordon/fastx_toolkit.

Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire
MK, Gonzales NR, et al.. 2018. RefSeq: an update on prokaryotic genome annotation and
curation. Nucleic Acids Research 46: D851-D860.

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D,
Zadissa A, Searle S, et al.. 2012. GENCODE: the reference human genome annotation for
The ENCODE Project. Genome Research 22: 1760-1774.

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, and
Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime
cis-regulatory elements required for macrophage and B cell identities. Molecular Cell 38:
576-589.

Honkela A, Peltonen J, Topa H, Charapitsa |, Matarese F, Grote K, Stunnenberg HG, Reid G,
Lawrence ND, and Rattray M. 2015. Genome-wide modeling of transcription kinetics reveals
patterns of RNA production delays. Proceedings of the National Academy of Sciences of the
United States of America 112: 13115-13120.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, and Haussler D. 2002. The
human genome browser at UCSC. Genome Research 12: 996—-1006.

Kent WJ, Zweig AS, Barber G, Hinrichs AS, and Karolchik D. 2010. BigWig and BigBed:
enabling browsing of large distributed datasets. Bioinformatics (Oxford, England) 26: 2204—
2207.

Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, and Taipale J. 2012.
Counting absolute numbers of molecules using unique molecular identifiers. Nature Meth-
0ds 9: 72-74.

Kwak H, Fuda NJ, Core LJ, and Lis JT. 2013. Precise Maps of RNA Polymerase Reveal How
Promoters Direct Initiation and Pausing. Science (New York, N.Y.) 339: 950-953.

Langmead B, Trapnell C, Pop M, and Salzberg SL. 2009. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10: R25.

Leenen FA, Vernocchi S, Hunewald OE, Schmitz S, Molitor AM, Muller CP, and Turner JD. 2016.
Where does transcription start? 5-RACE adapted to next-generation sequencing. Nucleic
Acids Research 44: 2628-2645.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
and 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map
format and SAMtools. Bioinformatics (Oxford, England) 25: 2078-2079.

Lian Z, Karpikov A, Lian J, Mahajan MC, Hartman S, Gerstein M, Snyder M, and Weissman SM.
2008. A genomic analysis of RNA polymerase Il modification and chromatin architecture
related to 3 end RNA polyadenylation. Genome Research 18: 1224-1237.

Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, Abe Y, Skola D, Ro-
manoski CE, Tao J, et al.. 2018. Analysis of Genetically Diverse Macrophages Reveals
Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function.
Cell 173: 1796-1809.e17.

Lopes R, Agami R, and Korkmaz G. 2017. GRO-seq, A Tool for Identification of Transcripts
Regulating Gene Expression. Methods in Molecular Biology (Clifton, N.J.) 1543: 45-55.
Love MI, Huber W, and Anders S. 2014. Moderated estimation of fold change and dispersion for

RNA-seq data with DESeq2. Genome Biology 15: 550.

Mahat DB, Kwak H, Booth GT, Jonkers IH, Danko CG, Patel RK, Waters CT, Munson K, Core
LJ, and Lis JT. 2016. Base-pair-resolution genome-wide mapping of active RNA poly-
merases using precision nuclear run-on (PRO-seq). Nature Protocols 11: 1455-1476.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal 17: 10-12.

Martins AL. 2015. R interface to query ucsc bigwig files. https://github.com/
andrelmartins.

Martins AL, Walavalkar NM, Anderson WD, Zang C, and Guertin MJ. 2018. Universal correction
of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions.
Nucleic Acids Research 46: 9.

Min IM, Waterfall JJ, Core LJ, Munroe RJ, Schimenti J, and Lis JT. 2011. Regulating RNA
polymerase pausing and transcription elongation in embryonic stem cells. Genes & Devel-
opment pp. 742-754.

Proudfoot NJ. 2016. Transcriptional termination in mammals: Stopping the RNA polymerase |l
juggernaut. Science (New York, N.Y.) 352: aad9926.

Quinlan AR and Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 26: 841-842.

Sathyan KM, McKenna BD, Anderson WD, Duarte FM, Core LJ, and Guertin MJ. 2019. An
improved auxin-inducible degron system preserves native protein levels and enables rapid
and specific protein depletion. bioRxiv pp. 1-26.

Scheidegger A and Nechaev S. 2016. RNA polymerase Il pausing as a context-dependent
reader of the genome. Biochemistry and Cell Biology 94: 82-92.

Scruggs BS, Gilchrist DA, Nechaev S, Muse GW, Burkholder A, Fargo DC, and Adelman K.
2015. Bidirectional transcription arises from two distinct hubs of transcription factor binding
and active chromatin. Molecular cell 58: 1101-1112.

Wissink EM, Vihervaara A, Tippens ND, and Lis JT. 2019. Nascent rna analyses: tracking
transcription and its regulation. Nature Reviews Genetics .

4 | bioRxiv

Anderson et al.

primaryTranscriptAnnotation


https://github.com/agordon/fastx_toolkit
https://github.com/andrelmartins
https://github.com/andrelmartins
https://doi.org/10.1101/779587
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/779587; this version posted September 23, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Supplemental: Defining data-driven primary transcript annotations with primary-

TranscriptAnnotation in R

Supplemental Materials

Cell culture and adipogenesis.

We performed adipogenesis experiments with 3T3-L1 cells
grown in high glucose (4500 mg/L) Dulbecco’s Modified
Eagle Medium (DMEM), 10% newborn calf serum, 1%
fetal calf serum, 100 U/mL penicillin G sodium, and 100
pg/mL streptomycin sulfate. During expansion of the fi-
broblast adipocyte precursors, we passaged the cells prior
to confluence. For the final passage before differentiation,
we allowed the cells to reach confluence. We differentiated
the adipocyte precursors into mature adipocytes by applying
a standard differentiation media to the cells three days fol-
lowing confluence. The differentiation media included high
glucose DMEM, 10% fetal calf serum, 100 U/mL penicillin
G sodium, 100 pg/mL streptomycin sulfate, 0.25 U/mL in-
sulin, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), and
0.25 uM Dexamethasone (Adamson et al., 2015). Differen-
tiation proceeded for up to four hours for the experiments
reported in this manuscript. We sampled cells undergoing
adipogenesis at the following time points with respect to the
application of differentiation media: time O (no differentia-
tion media), 20 min, 40 min, 60 min, 2 hr, 3 hr, and 4 hr. We
obtained three replicates at each of the seven sample time
points.

PRO-seq experiments.

We performed PRO-seq experiments as described previ-
ously (Sathyan et al., 2019). In brief, we washed the cells
with an ice-cold wash buffer (10 mM Tris-HCI pH 7.5, 10
mM KCl, 150 mM Sucrose, 5 mM MgCls, 0.5 mM CaCls,
0.5 mM DTT, 0.004 units/ml SUPERaseIN RNase inhibitor
(Invitrogen), and Protease inhibitors (complete, Roche)).
We then permeabilized the cells for 3 min with a permeabi-
lization buffer (10 mM Tris-HCI1 pH 7.5, 10 mM KCl, 250
mM Sucrose, 5 mM MgCls, 1 mM EGTA, 0.05% Tween-
20, 0.1% NP40, 0.5 mM DTT, 0.004 units/ml SUPERa-
seIN RNase inhibitor, and Protease inhibitors) and washed
again with wash buffer. Next, we suspended the cells in a
freezing buffer (50 mM Tris-HCI pH 8, 5 mM MgCls, 0.1
mM EDTA, 50% Glycerol and 0.5mM DTT) and isolated
~ 3 —5x 106 cells per 50 uL of glycerol buffer for run-on
experiments, rapidly froze the suspension in liquid Nitrogen,
and stored the cells at -80°C for ~1 week. We prepared the
PRO-seq libraries as described previously (Sathyan et al.,
2019). We included random 8 bp unique molecular iden-
tifiers (UMIs) at the the 5" end of the RNA adapters that
are ligated to the 3’ ends of the nascent transcripts to al-
low for removal of PCR duplicates (Fu et al., 2018; Kivioja
et al., 2012). We sequenced pooled libraries on an Illumina
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NextSeq500 with 75 bp single end reads.

PRO-seq analysis.

Our scripts for basic alignments and file conversions

are publicly available: https://github.com/
WarrenDavidAnderson/genomeAnalysis/tree/
master/PROseq . We clipped the sequencing adapters
using cutadapt (Martin, 2011), removed UMI duplicates,
trimmed the first 8§ UMI bases using fastx_trimmer
(Gordon, 2010), and obtained the reverse complement

of each read using fastx_reverse_complement
(Gordon, 2010). We aligned the processed reads to the
mm10 mouse genome build using bowt ie2 and filtered
reads with a low probability of unique alignment using
samtools (-q 10) (Langmead et al., 2009; Li et al.,

2009). We strand-separated the aligned bam files using
samtools. We used seqOutBias (Martins et al., 2018)
to simultaneously shift the alignments to represent the 3’
end of the RNA and convert the BAM to the bigWig for-
mat. We merged the strand-specific bigWig files from all
replicates using the UCSC Genome Browser Utilities (Kent
et al., 2010). We also generated bigWig files correspond-
ing to individual replicates for analysis of the time series
data. We used the bigWig R package to load and operate
upon bigWig files (Martins, 2015). We used Bedtools
for overlapping transcript coordinates, defined by inferred
transcription start sites (TSSs) and transcription termination
sites (TTSs), with transcript coordinates defined by conven-
tional annotations (Quinlan and Hall, 2010).

De novo transcript identification.

We used the groHMM R package to identify transcrip-
tional units in an unbiased manner from read data merged
across time points (Chae et al., 2015). Because groHMM
supports parameter tuning for performance optimiza-

tion, we varied key analysis parameters and evaluated

the results. We varied the log probability of a transition
from the transcribed to the untranscribed state and the
read count variance in the untranscribed state (LtProbB
and UTS, respectively). For this analysis, we used the in-
ferred primary transcript annotations, generated using
primaryTranscriptAnnotation to determine TSSs
and TTSs, to evaluate the performance of each set of tran-
scription units (TUs) identified from a given Hidden Markov
Model (HMM) parameterization. The evaluateHMMInAn-
notations() function uses the inferred gene annotations to
document merge errors’ and ’dissociation errors’. Merge
errors occur when a given TU overlaps multiple gene an-
notations. Dissociation errors occur when multiple TUs
overlap a given gene annotation. Distinct groHMM param-
eterizations produced varying degrees of merge and dis-
sociation error. In addition to evaluating merge and disso-
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ciation errors, we evaluated HMM sensitivity by looking
at how many reads mapped to regions of the genome that
were not identified as transcribed. We selected the HMM
with the lowest read count outside of HMM-defined tran-
scribed regions. This HMM had relatively low merge error
and dissociation error (both within the lowest error quar-
tile). The code for these analyses is publicly available:
https://github.com/WarrenDavidAnderson/
genomeAnalysis/tree/master/groHMMcode.

Principal component analysis and differential expres-
sion analysis.

We used DESeq? to identify ‘size factors’ to normalize the
individual PRO-seq sample read data based on sequenc-
ing depth (Love et al., 2014). We then applied a variance
stabilizing logarithmic transformation using rlogTransfor-
mation(). We applied principal component analysis (PCA)
using the singular value decomposition-based R function
prcomp(). For differential expression analysis, we iden-
tified genes with statistically significant temporally vary-
ing expression levels using a likelihood ratio test with the
DESeqg?2 function DESeq(). This test compares the likeli-
hood of a model incorporating time to the likelihood of a
null model in which time is not considered.

Pause region analysis.

We quantified promoter-proximal polymerase pausing by
defining a pause index as the ratio of the PRO-seq read sig-
nal in the vicinity of the TSS to that signal within the gene
body (Min et al., 2011). We defined the pause region be-
tween 20 bp and 80 bp downstream of the TSS. We defined
the gene body region from 500 bp downstream of the TSS
to the gene end. Within each region, we computed read den-
sities and we took the pause/body density ratio as the pause
index.

Code availability.

Code for all analyses associated with this manuscript

can be found here: https://github.com/
WarrenDavidAnderson/manuscriptCode/tree/
master/primaryTranscriptAnnotation_code.
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Package details

Here we describe methodological details pertaining

to our implementation of analyses performed by the
primaryTranscriptAnnotation R package. This
supplemental section is focused on methodological de-
tails, whereas implementation details are described exten-
sively in the package vignette https://github.com/
WarrenDavidAnderson/genomicsRpackage/
blob/master/primaryTranscriptAnnotation/
primaryTranscriptAnnotation-vignette.
pdf.

Data-driven primary transcript annotation.

The first problem addressed by the
primaryTranscriptAnnotation R package is

the data-driven inference of primary transcript coordinates.
This problem is addressed by separately identifying TSSs
and TTSs with the use of conventional annotations for
constraining the regions within which to examine the
presence of TTSs/TTSs.

Filtering for unexpressed transcripts.

To identify transcripts with arbitrarily low expression, we
used the read.count.transcript() function. This function de-
termines the transcript with the highest read count for each
gene and returns that read count along with the associated
read density. Based on analyses of transcript read count and
read density distributions, the user can select thresholds be-
low which expression appears to be negligible.

Data-driven inference of TSSs.

To empirically identify TSSs, we assumed that TSSs are
proximal to sites at which polymerase pausing is observed.
This assumption is based on a wealth of genome-scale data
documenting promoter-proximal pausing (Adelman and Lis,
2012). These data indicate that pausing occurs 20-80 bp
downstream of transcriptional initiation. We also assumed
that the TSS for each gene is at an annotated first exon for
that gene. Accounting for the strand specificity of gene an-
notations, we defined the TSS as the 5’ end of the exon 1
isoform with the highest density in the region between 20
bp and 120 bp downstream. This analysis is implemented by
get. TSS().

Filtering for overlapping genes.

Annotated genes occasionally overlap with the coordinates
defined for other annotated genes. For instance, the end of
an upstream gene can be annotated to a coordinate beyond
the start of a downstream gene. This can result in confound-
ing gene expression quantification by erroneously counting
the same reads for multiple genes. Our package includes a
function for identifying such overlaps (gene.overlaps()). The
user can then manually evaluate the gene annotations using
a visualization tool such as a genome browser (Kent et al.,
2002).

Data-driven inference of TTSs.

Anderson etal. | primaryTranscriptAnnotation

To empirically identify TTSs, we assumed that transcription
termination occurs within a region including the most down-
stream annotated end of all gene isoforms and extending
kilobases beyond. We addressed two tasks related to TTS
identification: (1) defining the region within which to search
for transcriptional termination, and (2) identifying termina-
tion within this region.

To define the search region for TTS evaluation, we started
by selecting a percentage of the gene end (e.g., 20%). We
defined the start of the search region as the difference be-
tween the annotated gene end and the gene length multiplied
by the specified percentage (see Figure S2c, term d.):

search region start = gene end— fraction.end*gene length

The next step is to specify an upper limit on the total dis-
tance from the annotated gene end that could be considered
for the TTS search region. This is user specified number of
bases (Figure S2c, term d;). We examined whether there
were any other gene TSSs in this region between the search
region start and the user defined limit. If there was a TSS
within the d; region, we documented the distance between
the limit and the TSS. We restricted the search space for
TTS evaluation by this value, thus the term d,. is referred to
as the clip distance (Figure S2c). Note that the clip distance
is dependent on the user defined upper limit.

Experimental data showed that attenuated rates of tran-
scription at gene ends are associated with elevated levels
of polymerase density (Lian et al., 2008). Based on this
finding, we identified peaks of polymerase density at gene
ends for determining where transcription termination is
likely to occur. We defined the peak search region d; as a
sub-region of d, = dy — d. (Figure S2c). This is because
the identification of gene end polymerase peaks could be
affected by distal enhancers that exhibit bidirectional tran-
scription within very large search regions. We assumed that
the peak search region should be a large fraction of d, for
genes with the greatest numbers of clipped bases, because
such cases occur when the conventional gene ends are prox-
imal to downstream identified TSSs. Thus, in such cases,
the entire d, region should be included for analysis of the
gene end peak. The same logic applies for genes with sub-
stantially fewer clipped bases, and correspondingly larger
d,, regions; in such cases the peak search regions should be
smaller proportions of d,. Hence, we defined the gene end
peak search region dg as a function of the clip distance, d.:
ds = dg * f(d.). The term f(d.) gives a value for weighting
d, that is dependent on the clip distance:

x e [0, dt]

fo=exp(x/T)

_ fo—min(fo)
flw)= max(fo) —min(fo)
_ exp(de/T) —min(fo)
fde) = maz(fo) —min(fo)

where 7 is a distance constant defining the rate of exponen-
tial decay, fqz is the maximum weight, and f,;y, is the

(fmaz - fmzn) + fmin

(fma:v - fmin) + fmin
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minimum weight. The terms fy,4, and fy,;, should be be-
tween zero and one so that the outcome is a fraction. Figure
S2b shows the form of the function with dashed lines cor-
responding to d. = 7 = 50 kb, fiin = 0.3, and frrez =

1. This method is used to define the gene end peak search
region, d.

Given the coordinates of the TTS search region and the
peak search region, the next task is to identify the TTS
within this region. We operationally defined the TTSs by
binning the search regions, counting reads within the bins,
fitting smooth spline curves to the binned counts, identify-
ing gene end peaks of smooth curves, and detecting points at
which the curves decay from the gene end peaks towards
zero (Figure S3a,b). For this analysis, we applied con-
straints on the number of bins used for quantification, and
the number of knots for the spline fits, as described in the
vignette. For the spline fit within the peak search region, we
identified the largest peak and then we determined the point
at which the trace decays to a point below a specified thresh-
old of the peak height. The function get. TTS() implements
the TTS evaluation procedures described above.

Annotation of de novo transcriptional units.

The second problem addressed by the
primaryTranscriptAnnotation R package is

the annotation of transcriptional units (TUs), identified

de novo, using primary transcript coordinates. The first
step to annotating TUs is to intersect the TU coordinates
with the primary transcript coordinates. We separately
considered TUs that overlap with single primary transcripts
and TUs that overlap with multiple primary transcripts.
For this analysis, we considered the identified primary
transcript coordinates to represent a ‘ground truth’ an-
notation, and we only made minimal modifications to

the primary transcript coordinates if they had very close
overlaps, as defined by the user, with identified TUs.
Regions of identified TUs that did not very closely match
identified transcripts were assigned generic TU identifiers.
The analyses described below are implemented by the
single.overlaps() and multi.overlaps() functions, which are
called by get.tu.gene.coords().

For TUs that overlap with single transcripts, we consid-
ered a reference case in which the transcript coordinates are
contained within the boundaries of the TU (Figure S5a).
We term this reference case ‘class 1°. This analysis evalu-
ates whether the beginning of a TU is in close proximity to
the beginning of the transcript. If this criteria was not met,
the portion of the TU that is upstream of the gene annota-
tion was assigned an arbitrary identifier and the identified
TSS defines the start of a TU with named for the overlap-
ping gene. Similarly, if the annotated transcript end was far
from the boundary of the TU, then we set the end of the TU,
named by the respective overlapping transcript, to the iden-
tified TTS. Here we would then annotate the downstream
region of the TU with an arbitrary label. For example (Fig-
ure S5a), if the distance between the starts of transcript X
and TU X is less than 200 bp, and if the distance between
the respective ends is less than 1 kb, we set the identifier of
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TU X to transcript X. If the distance between starts is greater
than 200 bp, we annotate the initial segment of the TU with
a generic identifier (tu_class1_1, see main text Figure 1f
and the associated browser session: https://genome.
ucsc.edu/s/warrena%40virginia.edu/
primaryTranscriptAnnotation_20190801). If
the distance between ends is greater than 1 kb, we anno-
tate the final segment of the TU with a generic identifier
(tu_class1_2). Hence, we maintain a close correspondence
between the identified transcript and an overlapping TU and
we label marginal regions of transcription with generic iden-
tifiers.

Next we considered cases in which a TU was enclosed
within a transcript (class 2, Figure S5b). Because this anal-
ysis was completed under the assumption that the identi-
fied TSS/TTS coordinates are veritable primary transcript
boundaries, we simply extended the region of the enclosed
TU to match the transcript. Then we implemented the same
rules described for class 1 above. In this case, the algorithm
will default to assigning the gene identifier to the TU, as the
respective coordinates are identical.

We further considered cases in which TU-transcript over-
laps were characterized by ‘overhangs’ (class3-4, Figure
S5c,d). Again, here we extended the appropriate TU bound-
aries to match the corresponding transcripts such that no
part of the transcript extended beyond the TU. We then ap-
plied the class 1 logic to assign TU identifiers based on the
identified transcript coordinates.

For TUs that overlap with multiple transcripts, we consid-
ered a reference case in which all of the transcript coordi-
nates were contained within the boundaries of the TU (class
5, Figure S6a). For the upstream-most and downstream-
most overlaps, we applied analyses comparable to those for
the class 1 scenario in which we used either the existing
transcript annotation or introduce an arbitrary identifier de-
pending on the proximities of the boundries to the TSSs and
TTS:s. If the regions between transcripts were sufficiently
large, we introduced generic identifiers (e.g., tu_class5_1;
see regions il and i2 in Figure S6a). As described above for
single overlap classes 2-4, the logic implemented for class
5 could be applied to other scenarios of multiple overlaps
(Figure S6b-d). For instance, in cases of upstream and/or
downstream overhangs, the TU could be extended such that
all overlapping transcripts were enclosed, then the class 5
logic could be applied to classes 6-8 (Figure S6b-d). See
examples in main text Figure 1f.
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Supplementary results

TSS and TTS identification.

We evaluated the performance of
primaryTranscriptAnnotation by compar-

ing results obtained by using transcript coordinates inferred
using our package against largest interval coordinates
derived from GENCODE. The largest interval coordinates
were obtained by taking the upstream-most TSS and the
downstream-most TTS for each gene. To evaluate the
performance of our TSS evaluation method, we examined
the distances between read density peaks and inferred
TSSs. For both annotations, the distributions of these
distances showed a peak downstream of zero, corresponding
to promoter proximal polymerase pausing (Figure S1a).
Howeyver, we observed that the distribution for the inferred
annotations showed a more focused peak with reduced
variance (p = 2.1 x10734, Levene’s test) (Figure S1b,c).
This shows that taking the longest of conventional mRNA
annotations results in assigning transcription initiation

sites to regions that are farther from pause sites than the
corresponding distances based on our inferred TSSs.

We estimated TTSs using the novel method described
above. We specified a distance beyond the most distal gene
end annotation and evaluated whether there were inter-
vening TSSs within this region. If TSSs were present, we
clipped the region at the site of the most proximal TSS. Fig-
ure S2a shows the distribution of clip distances when we
considered an interval of 100 kb beyond the most distal an-
notated gene ends. A prominent mode of clip distances is
apparent at 100 kb, because many mammalian genes occur
in tandem such that the end of one gene is close to the start
of another. We used the clip distances to define a gene end
peak search region for each transcript. We operationally de-
fined TTSs as the points where spline fits to binned reads
decayed to a specified fraction of the largest peak of the
spline trace. Figure S3a,b shows examples of splines (blue
or red) and estimated TTSs (vertical lines), in which the
traces are shown throughout the TTS search regions. For
example, Figure S3b shows the identified primary tran-
script coordinates for Lyplal and Tceal (plus strand, red).
The TTS for Lyplal was identified at the end of the search
region because Lyplal immediately preceded the TSS for
Tceal. Note that the inferred TTSs typically extend beyond
the largest interval TTSs (Figure S4d).

To characterize the differences between inferred primary
transcript coordinates and largest interval coordinates, we
evaluated the differences between the TSSs and TTSs of
the two annotation sets. We found that 49% of the cases
in which the TSS did not change, there was only a single
exon 1, in which case our analysis was not designed to
re-annotate the TSS. We found that 57% of the expressed
genes with multiple exon 1 isoforms were re-annotated
from the largest interval TSS to an inferred TSS. Figure
S4a,b show the distribution of TSS differences. For the
TSSs that were re-annotated relative to the largest inter-
val, we found that 75% of the inferred TSSs are within 813
bp of the largest interval TSS (Figure S4b). As expected,
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the chance of being re-annotated increases as more exon 1
isoforms are characterized per gene (Figure S4c) As gene
annotations progressively incorporate newer and more com-
prehensive TSS inference technologies, including 5’ RACE
and CAGE-based approaches (Cvetesic et al., 2018; Lee-
nen et al., 2016), our methods will facilitate context-specific
TSS inferences with enhanced precision.

The distribution of TTS differences is shown in Figure
S4d. We found that 75% of TTS differences are within ap-
proximately 15 kb, and in the majority of cases, the inferred
TTSs are downstream of the largest interval TTSs (Figure
S4e). These data show that inferred annotations result in
substantially longer transcripts due to the inference of more
downstream TTSs.

Evaluation of transcript expression dynamics and
RNA polymerase pausing.

To determine whether applying inferred primary transcript
coordinates leads to genome-wide variations in expression
dynamics, we mapped the adipogenesis time-series PRO-seq
reads to the inferred coordinates and projected the data onto
principal components (PCs, Figure S7a). For comparison,
we mapped the same data onto the conventional largest in-
terval annotations and visualized the PC projections (Figure
S7b). The results of this analysis show that the PC projec-
tions are nearly identical for both annotation sets. Thus,
applying inferred primary transcript coordinates does not
lead to genome-wide variations in expression dynamics, as
defined by data projections onto PCs 1-3, which capture 83-
89% of the variation in the data.

Next we addressed whether applying inferred primary
transcript coordinates alters the results of differential ex-
pression analyses, as compared to the results obtained us-
ing largest interval annotations. To evaluate differential
expression, we used a likelihood ratio test to determine
whether transcript expression varies with respect to time
over four hours. This analysis is analogous to using a 1-
factor ANOVA to determine the effect of the time factor.
We implemented this test for both inferred coordinates and
largest interval coordinates. Figure S8a,b shows that the
negative log values of the resulting false discovery rates
(FDRs) tend to be higher for the expression levels quantified
using inferred coordinates (i.e., lower FDRs; higher den-
sity above the unity line in Figure S8b). At a threshold of
FDR < 0.001, we observed 11,351 genes that were differ-
entially expressed for both annotations, 520 genes that were
differentially expressed only for the inferred coordinates,
and 241 genes that were differentially expressed only for the
largest interval coordinates (Figure S8c). To test whether
the counts of exclusive differentially expressed genes were
identical for both annotations, we applied a binomial test of
the null hypothesis that the proportions of the 761 exclusive
genes (520+241) were identical (i.e., 50% each). The anal-
ysis was not consistent with the null hypothesis in which
50% of genes are proposed to be differentially expressed for
each annotation (p < 2.2 x 10716). This suggests that there
are more differentially expressed transcripts after mapping
read counts to inferred coordinates as compared to largest
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interval coordinates.

To determine whether the finding of elevated differential
expression associated with inferred annotations was robust
to the FDR threshold for defining significance, we varied
this threshold and evaluated differential expression for both
inferred and largest interval annotations. The number of dif-
ferentially expressed genes observed for both annotations
increased as the FDR was relaxed to larger values (Figure
S8d, left). In contrast, the counts for exclusive differentially
expressed genes decreased with respect to the FDR thresh-
old (Figure S8d, right). Importantly, the counts of genes dif-
ferentially expressed only for the inferred annotations were
consistently higher than the corresponding counts associ-
ated with using the largest interval annotations. To evaluate
the significance of this trend, we compared the results for
the two gene annotations at each FDR using the binomial
test as described above. We then applied the Benjamini-
Hochberg correction to adjust the resulting set of binomial
test p-values (Benjamini and Hochberg, 1995). The result-
ing set of adjusted p-values ranged from p,q; = 1.0 x 10735
for a likelihood ratio test FDR threshold of 1 x 1076 to
Padj = 4.6 X 1079 for an FDR threshold of 1 x 10~!. These
analyses demonstrate that mapping reads to inferred primary
transcript coordinates results in improved sensitivity for the
detection of differential transcript expression, as compared
to the results observed when using conventional mRNA an-
notations.

Finally, we evaluated whether data-driven inferred co-
ordinates enhance the sensitivity for detecting promoter-
proximal polymerase pausing. For this analysis we con-
sidered expressed genes with inferred annotations, and we
evaluated pausing across all pre-adipogenic time points. The
inferred annotations were associated with elevated pause
region composite profiles (Figure S9a). To examine the av-
erage precision of the paused regions associated with in-
ferred versus largest interval coordinates, we plotted 0-1
scaled composites (Figure S9b). The results show that in-
ferred annotations are associated with sharper pause region
read distributions, on average, as compared to profiles based
on largest interval coordinates. We computed pause indices
for inferred and largest interval annotations (see Methods
above). The results revealed that the distributions were sig-
nificantly different based on applying the Wilcox test at
each time point (FDR < 5 x 10740, Figure S9c). These
analyses demonstrate that the application of inferred coordi-
nates enhances the precision for quantifying the position and
degree of promoter proximal RNA polymerase pausing from
genome-wide run-on data.
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downstream and transcribed from the same strand. Negative numbers are used for the horizontal axes to indicate transcription from the minus strand. (c) Genome browser
displays highlight the improved accuracy of the primary transcript annotations.
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Fig. S4. Inferred annotations produce longer transcripts due to distal TTSs. (a) The distribution of TSS differences between inferred and largest interval annota-
tions. (b) The distribution of TSS differences up to the 75% quantile for those TSSs that were re-annotated relative to the largest interval. (c) A TSS is more likely to be
re-annotated if more exon 1 isoforms are present in annotation files. (d) The distribution of TTS differences between inferred and largest interval annotations. (e) The distri-
bution of TTS differences up to the 75% quantile.
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tu: interval identified by an unsupervised method
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Class 3: The tu overlaps the gene annotation (tu upstream) Class 4: The tu overlaps the gene annotation (tu downstream)
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Fig. S5. Rules for annotating TUs that overlap with a single transcripts. (a-d) The data-driven TSS/TTS intervals are used to redefine TU ends that fall within class 1-4
overlap profiles. Note that gene is shorthand for primary transcript.
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Fig. S6. Rules for annotating TUs that overlap with multiple transcripts. (a-d) The data-driven TSS/TTS intervals are used to redefine TU ends that fall within class 5-8
overlap profiles. Note that gene is shorthand for primary transcript.
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Fig. S8. Inferred coordinates confer enhanced sensitivity of detecting differential transcript expression. (a) FDRs are correlated for inferred annotations (tu) and
largest interval annotations (gene). (b) An expanded version of the left corner from panel (a) shows that FDRs tend to be more significant for inferred annotations (above
the identity line). (c) At an FDR threshold of 0.001, there are 520 differentially expressed transcripts that are unique to inferred annotations and 241 that are unique to the
largest interval annotations. Note that the Venn diagram is not drawn to scale for illustrative purposes. (d) TU annotations result in more significantly differentially expressed
transcript counts over a range of FDR thresholds.
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Fig. S9. Inferred coordinates confer enhanced sensitivity for detecting polymerase pausing. (a) Pause region composite profiles are shown for both inferred coordi-
nates and largest interval coordinates across pre-adipogenic time points. (b) Pause region composites are scaled to the interval 0,1 to emphasize the ‘sharpening’ observed

for inferred coordinates. (c) Pause index distributions (TSS region / gene body read density) show elevated pause indices for inferred coordinates.
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