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Abstract

Describing the variation in commonness and rarity in a community is a fundamental
method of evaluating biodiversity. Such patterns have been studied in the context of
species abundance distributions (SADs) among macroscopic organisms in numerous
communities. Recently, models for analyzing variation in local SAD shapes along
environmental gradients have been constructed. The recent development of
high-throughput sequencing enables evaluation of commonness and rarity in local
communities of microbes using operational taxonomic unit (OTU) read number
distributions (ORDs), which are conceptually similar to SADs. However, few studies
have explored the variation in local microbial ORD shapes along environmental
gradients. Therefore, the similarities and differences between SADs and ORDs are
unclear, clouding any universal rules of global biodiversity patterns. We investigated
the similarities and differences in ORD shapes vs. SADs, and how well environmental
variables explain the variation in ORDs along latitudinal and depth gradients. Herein,
we integrate ORDs into recent comparative analysis methods for SAD shape using
datasets generated on the Tara Oceans expedition. About 56% of the variance in
skewness of ORDs among global oceanic bacterial communities was explained with this
method. Moreover, we confirmed that the parameter combination constraints of Weibull
distributions were shared by ORDs of bacterial communities and SADs of tree
communities, suggesting common long-term limitation processes such as adaptation and
community persistence acting on current abundance variation. On the other hand,
skewness was significantly greater for bacterial communities than tree communities,
and many ecological predictions did not apply to bacterial communities, suggesting
differences in the community assembly rules for microbes and macroscopic organisms.
Approaches based on ORDs provide opportunities to quantify macroecological patterns

of microbes under the same framework as macroscopic organisms.
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68 Introduction

69  Species diversity patterns, which are characterized by numbers of species and

70  individuals, provide great opportunities for understanding the ecological and

71 evolutionary processes that drive global biodiversity (Rabinowitz, 1981; Ricklefs, 2000;
72 Hubbell, 2001, 2013; Loza et al., 2017). In general, certain species are dominant while
73  others are rare locally and globally. The processes determining locally common and rare
74 species have been studied in the context of the species abundance distribution (SAD),
75  which is one of the most fundamental methods of describing local diversity (Motomura,
76 1932; MacArthur, 1960; McGill et al., 2007; Doi and Mori, 2013; Ulrich et al., 2018b).
77 SAD studies focus on the rarity and commonness of species in a local community, and
78  attempt to reconstruct the background processes that led to those patterns. To date,

79  numerous SAD models have been proposed (reviewed in McGill et al., 2007).

80  MacArthur (1957, 1960) developed the broken stick model based on the hypothesized
81  niche portioning process, and Hubbell et al. (2001) provided a mechanistic

82 interpretation of observed abundance distributions with well-defined ecological

83  parameters such as dispersal, speciation rate, local abundance, and meta-community

84  size, under the premise of ecological drift. Using these models, we estimated

85  background processes from SAD patterns. Previous SAD investigations have been

86  conducted mainly in plants and animals (e.g., Ulrich et al., 2010; Baldridge et al., 2016),
87  because large datasets and specific criteria for species delimitation are necessary for

88  SAD. Therefore, the SAD approach has been applied less to studies of microorganisms
89  than those of macroscopic species.

90 The recent development of molecular techniques, in particular high-throughput

91  sequencing, has made it dramatically easier to capture biodiversity patterns in microbes
92  as well as larger organisms (Lynch and Neufeld, 2015; Schloss ef al., 2016; Shade et al.,
93  2018). High-throughput sequencing technology has revealed that the microbial

94  ecosystem is inhabited by a large number of rare microbial lineages (Fuhrman, 2009),
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collectively referred to as the “rare biosphere” (Sogin et al., 2006; Galand et al., 2009;
Ser-Giacomi et al., 2018; reviewed in Lynch and Neufeld, 2015). The existence of rare
lineages strongly impacts community structure and diversity patterns, although their
ecological roles and the processes structuring the rare biosphere remain poorly
understood (Ser-Giacomi et al., 2018). The relationships between operational
taxonomic units (OTUs; reviewed in Blaxter et al., 2005) and read number have been
studied in microbes based on concepts similar to SAD (e.g., Livermore and Jones,
2015). Hereafter, we consider OTU read number distributions (ORDs), corresponding
conceptually to the rank abundance curve, as being distinct from SADs. OTUs are
generally defined as groups based on sequence similarity in maker genes (e.g., SSU
rRNA in bacteria and ITS in fungi) (Bélint ef al., 2016). Numerous previous studies
have attempted to identify a general best-fit model for ORD in a particular habitat by
comparing various traditional SAD models (e.g., log-series, lognormal, and power-law
distributions) (Shade et al., 2012, Sherrill-Mix et al., 2016, Shoemaker et al., 2017,
Louca et al., 2019). However, few studies have focused on the continuous variation in
ORD shape within microbial communities along geographical and environmental
gradients (however, see Stegen ef al., 2016), which has been a major recent trend in
SAD studies of macroecological patterns and their assembly processes.

In recent years, methods for analyzing macroecological patterns and community
assembly by comparing SAD shapes have been developed to overcome the limitations
of conventional SAD modeling. Specifically, researchers have recently recognized that
multiple processes can generate similar SAD shapes, resulting in the fit of a given SAD
model not providing clear evidence to support a particular theory (Mathews et al., 2017).
An alternative approach to comparing changes in parameter value(s) for a given SAD
model or the fits of different SAD models to data from a single site is the collection of
abundance data from a variety of sites followed by construction of models to analyze

how SAD properties vary with predictor variables (i.e., comparative analyses of SAD

6
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shape; White et al., 2012, Ulrich et al., 2016a, b, Fattorini et al., 2016; Borda-de-Agua
et al., 2017, Guerin et al., 2017, Mathews et al., 2019; reviewed in Mathews et al.,
2017). Many methods have been developed to evaluate SAD shape. For example, pnorm
has been used to evaluate the relative fits of log-series and lognormal distributions
(Ulrich et al., 2016 a, b). However, the fits of both log-series and lognormal
distributions to community data often weaken with increasing species richness (Ulrich
et al., 2016a, b, also see Fig. S2), which makes the interpretation of these fits
inconsistent along species richness gradients in community data. The gambin
distribution (Ugland et al., 2007) is often used to evaluate SAD shape (Mathews ef al.,
2014, 2017, 2019), but creation of the gambin distribution requires binning the
abundance data into octaves prior to fitting, losing species-level abundance information.
In addition, the current criterion used to fit the model is the chi-square test, which
generally has a strong dependence on sample size, which makes it difficult to apply the
gambin distribution go high-throughput sequencing data with large numbers of both
OTUs and reads.

The comparative analysis approaches used for SAD shape provide two new insights.
First, estimating the constraints of community assembly involves analyzing
macroecological patterns. Ulrich et al. (2018b) proposed the concept of ‘forbidden
communities’ in SAD shapes, placing limitations on the possible combinations of A
(scale parameter) and 1 (shape parameter). The parameter A can therefore be interpreted
as a measure of SAD shape-specific evenness. The shape parameter 1 is associated with
an excess of either highly abundant species (low n) or rare species (high n). Specifically,
Ulrich et al. (2018b) argued that the combination of high n and low A generates SADs
very similar to the well-known broken stick distribution (MacArthur 1957), but those
distributions rarely occur in nature. Ulrich et al. (2018b) showed that the shape and
scale parameters of this distribution have precise ecological interpretations, with the

first acting as a measure of the excess of either rare or common species and the second
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quantifying the proportion of persistent species in the focal community. In addition,
Ulrich ef al. (2018b) showed that the scale parameter is linearly correlated with failure
time mathematically, and that it indicates the relative proportion of adapted species in a
community that may be persistent. Thus, these forbidden communities may indicate
limited long-term processes such as adaptation and the persistence of the community
characterized by the current abundance variation.

Recently, biogeographic and macroecological studies on geographical and climatic
variation in SADs have employed large datasets, mainly for plants (White et al., 2012;
Ulrich et al., 2016a, b; Guerin et al., 2017). Indeed, large-scale SAD studies have
recently gained attention due to the accessibility of databases. A large amount of species
abundance data collected across a broad range of environments is available for
large-scale comparative SAD research (Fattorini ef al., 2016; Borda—de-Agua etal.,
2017). For example, Ulrich ef al. (2016a) showed latitudinal patterns of SAD shape and
discussed the processes behind these patterns using a climatic dataset, while Guerin et
al. (2017) reported that geographical and climatic gradients affect SAD shapes and
discussed future changes in their shapes expected as a consequence of climate change,
with changes in diversity and ecosystem function.

Here, we integrate recent approaches used for comparative analyses of SAD shape
into ORDs. As a case study, we used community datasets generated form the Tara
Oceans expedition (Sunagawa et al., 2015). Tara Oceans is a project that profiled
planktonic and microbial communities in the global ocean using high-throughput
sequencing. We investigated the drivers of variation in ORDs from local bacterial
communities along a geographic gradient, and assessed the similarities and differences
between the geographical patterns of microbes and macroscopic organisms, comparing
the ORDs of bacterial communities with those of macroscopic communities. In
particular, we studied the similarities and differences in ORD and SAD shapes, with a

particular focus on skewness and parameter combinations of the Weibull distribution,

8


https://doi.org/10.1101/778829
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/778829; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

available under aCC-BY-NC-ND 4.0 International license.

and the extent to which environmental variables explain the variation in ORDs along
latitudinal and depth gradients. This approach could support further acceleration of
microbial studies by revealing the drivers of variation in ORD shape and making

comparisons between microbes and macroscopic species.

Materials and Methods

Empirical data

We used 139 oceanic bacterial community datasets generated from the Tara Oceans
expedition (Sunagawa et al., 2015). Sunagawa et al. (2015) extracted merged
metagenomic Illumina reads (miTAGs) containing signatures of the 16S rRNA gene
(Logares et al., 2013), which were mapped to the SILVA SSU rRNA gene sequence
database (Quast et al., 2013) and clustered into OTUs at the 97% similarity level. The
range of total reads per sample was 34,081-184,190, with an average of 90,103.06 +
28,240.38. The OTU count table was summarized at multiple taxonomic levels and can
be downloaded from http://ocean-microbiome.embl.de/companion.html (Sunagawa et
al., 2015). We extracted OTUs representing the domain Bacteria for analyses.

We calculated the skewness y of log-transformed relative read numbers to assess the
degree of lower curvature (Ulrich et al., 2016a), which was compared to a symmetrical
lognormal distribution. Negative values of y indicate an excess of rare OTUs, while
positive values represent an excess of abundant OTUs compared to a lognormal
distribution that is symmetrical around the mean. Thus, the symmetrical lognormal
distribution is not skewed. Asymmetrical lognormal SADs nearly always indicate an
excess of rare OTUs, and consequently have negative skewness (McGill, 2003). The
log-series model shows an excess of relatively abundant OTUs (associated with positive
skewness). We used the parametric function SE (y) = (6/n)"? (Tabachnick and Fidell,
1996) to test for significant skewness in SADs (Ulrich et al., 2016a). In this bacterial

community dataset, skewness is positively correlated with the number of rare OTUs
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(rare biosphere: <0.1 or <0.01, criteria based on Galand et al., 2009, Pedros-Alié et al.,
2012) (Fig. S1). The relationships among pnorm, the alpha parameter of the gambin

distribution, and skewness are shown in Fig. S3.

Comparison between ORDs of microbes and SADs of forest plots

To reveal differences between the ORD shapes of microbes and SAD shapes of
macroscopic organisms, we first compared the skewness values of bacterial
communities with those of tree communities published in Appendix 1 of Ulrich et al.
(20164a). In addition, we compared the two-parameter Weibull distribution, which was
recently suggested by Ulrich er al. (2018b) as a flexible descriptive model for SAD
shapes. Ulrich et al. (2018b) suggested that the shape and scale parameters of the
Weibull distribution have precise ecological interpretations, with the first being a
measure of the excess of either rare or common species, and the second quantifying the
proportion of persistent species in the focal community. To identify any similar
limitations of parameter combinations in bacterial communities, we fitted
two-parameter Weibull distributions to datasets of oceanic bacterial communities and
compared the ORD shapes for microbes with the empirical results from 534 tree
communities worldwide, presented in Ulrich et al. (2018a). If the ORDs of bacterial
communities show similar constraints, community structuring processes are likely
shared between the bacterial and tree communities, although the specific mechanisms
are unknown. We used the reduced major axis fitting method, following Ulrich et al.
(2018b). Values of fit < 0.05 indicate an excellent fit, while fit > 0.3 is poor. We used
the updated stand-alone application RAD 2.0 (Ulrich et al., 2010) for fitting of the

two-parameter Weibull distributions.

Explanatory variables for skewness in ORDs

10
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229 We propose three hypotheses for determining skewness in microbial communities
230  based on existing studies in macroscopic organisms. First, climatic and geographic

231  factors, which are directly associated with local productivity, drive skewness

232 (productivity hypothesis), with higher productivity facilitating lower skewness

233  (Whittaker, 1975; Hubbell, 1979; Ulrich et al., 2016a). Second, local concentrations of
234  nutrients in water negatively affect skewness (nutrient hypothesis), and thus a more

235  eutrophic environment exhibits lower skewness. Last, characteristics of microbial life
236  cycle strategies (i.e., longevity and persistence) negatively influence skewness (r-K

237  strategy hypothesis), with shorter generation times leading to greater skewness. More
238  detailed explanations of those hypotheses and predictions are provided in Table 1. The
239  original dataset from Sunagawa et al. (2015) is also included with information about
240  each sample.

241 In the multi-regression model, we set latitude, squared latitude, water depth (m),
242  nitrite concentration (umol L!), phosphate concentration (umol L), and minimum

243  potential generation time (h) as explanatory variables for the variation in skewness. The
244  minimum potential generation times of microbial communities, which were determined
245  from codon usage biases (for detailed methods, see Vieira-Silva and Rocha 2010), were
246  used as an index of r-K strategy at the community level. Minimum potential generation
247  time data are also included the original dataset (Sunagawa et al., 2015). The data output
248  from high-throughput sequencing generally contains different sequencing depths (i.e.,
249  uneven sampling effort) for each sample. Sampling effort influences observed SAD
250  shape (Preston, 1948). Therefore, to account for the effects of biases in the sampled data,
251  we added the OTU richness and total read number of each sample as covariates in the
252  regression models. To avoid nonlinear effects, we used In-transformed data for water
253  depth, species richness, and total abundance.

254 The level of collinearity between these explanatory variables was determined by

255 calculating the variance inflation factor (VIF). All variables were standardized to zero

11
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256  mean and unit variance prior to parameter estimation. We selected explanatory variables
257  according to a threshold VIF value, where VIF > 10 indicates that the model has a

258  collinearity problem (Quinn and Keough, 2002, Neves ef al., 2015). VIF ranged from
259  1.10 to 8.26, suggesting a lack of multicollinearity in this multi-regression model.

260  However, the effects of temperature on skewness showed the opposite trends compared
261  to the results of simple correlation (Fig. S4). We excluded temperature from the final
262  analyses, causing the VIFs to range from 1.07 to 3.06. We use the ‘car’ package of R
263  (Fox et al., 2007) to calculate VIFs and the ‘rsq’ package (Zhang, 2018) to calculate
264  partial r-square coefficients.

265

266  Results

267  The mean of skewness was 0.81+0.17 among 139 samples. All communities showed
268  significant positively skewed trends compared to the symmetric lognormal model

269  (Tabachnick and Fidell, 1996; Ulrich et al., 2016a), indicating that all ORD shapes are
270  significantly more similar to log-series distributions than lognormal distributions. Based
271  on the results of t-test, bacterial communities are significantly more skewed than tree
272  communities (Welch’s t-test; p<0.0001), and thus more similar to the log-series

273  distribution in shape.

274 Weibull distribution fits to 137 of the 139 communities (98.6%) were moderate (fit <
275  0.3), while only two (1.4%) were comparatively poor (fit>0.3). The parameter

276  combinations in bacterial communities did not exceed the parameter space for tree

277  communities (Fig. 1), suggesting constraints on ORD shape (Ulrich et al., 2018a).

278 In total, the model explained about 56% of the variance in skewness in 131 ORDs
279  (Table 2). Eight communities lacked some data and were excluded from the analyses of
280  ORD shapes. Skewness increased with increasing minimum potential generation time,
281  and was not associated with productivity, nutrients or r-K strategy, as shown in Table 1.

282
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Discussion

We fit the two-parameter Weibull distribution and clearly showed that the parameters of
the bacterial communities were not outside of the limited space described in Ulrich et al.
(2018b), suggesting some limitation on community assembly processes that is shared
between SADs and ORDs. We could explain about 56% of skewness variation in ORDs,
revealing the drivers of skewness. Therefore, we conclude that comparative analyses of
ORDs shape are also useful for identifying drivers and background processes, and that
ORD shapes have similar constraints to those described in Ulrich et al. (2018b). These
findings emphasize the applicability of comparative analyses of ORD shape in

microbial communities. However, the number of case studies using this method remains
small, so further empirical studies are needed to fully elucidate ORD patterns and their

drivers.

Similarities and differences between SADs and ORDs

Comparison of SADs and ORDs has been suggested as a useful approach to identify
general rules across microbial and macroscopic communities (Shade et al., 2018). In the
present study, we compared SADs of tree communities with ORDs of microbial
communities using the two fitted parameters (shape parameter [n] and scale parameter
[A]) of the Weibull distribution. We confirmed similar constraints of parameter
combinations in ORDs and SADs of tree communities of | <3 and A < 6, as originally
proposed in Ulrich ef al. (2018b). These constraints on community structure may
indicate limitation due to long-term processes such as adaptation and persistence of the
community on variation in abundance (Ulrich et al. 2018b). Locey and Lennon (2016)
found similar scaling of commonness and rarity across microbes and macroscopic plants
and animals, and proposed a universal dominance scaling law that holds true over 30
orders of magnitude. We suggest that the concept of forbidden communities presented

by Ulrich et al. (2018Db) is related to the scaling law (e.g., community persistence is

13
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310  regulated by metabolic rate). Further comparisons of SADs and ORDs may reveal

311 whether similar constraints exist in other taxonomic groups and habitats.

312 We emphasize that ORDs should have similar dataset properties as SADs. We also
313  take a negative view of the common practice of referring to ORDs as SADs and their
314  inclusion in SAD studies. In our analyses, the skewness of bacterial communities was
315  significantly greater than that of tree communities, indicating a larger proportion of rare
316  OTUs among bacteria than among trees. Previous studies in macroscopic organisms
317  have reported that persistent species (i.e., stable communities driven mainly by habitat
318 filtering) exhibit a lognormal SAD (i.e., smaller skewness), while transient species (i.e.,
319  dispersal-driven communities that vary over time) are best modeled with the log-series
320  (i.e., high skewness) distribution (Magurran and Henderson, 2003; Ulrich and Ollik,
321  2004; Ulrich et al., 2010, 2016a). Therefore, our results indicate that bacterial

322  communities include larger proportions of transient OTUs if we interpret the results
323  based on findings from macroscopic organisms.

324 There are two major factors that should be taken into consideration to inclusion of
325 ORDs in SAD studies. The first issue is associated with delimitation of species and

326  individuals in microbes (reviewed in Hason ef al., 2012). Empirically, 97% similarity in
327  (partial) 16S rRNA gene sequences has commonly been used to characterize

328  prokaryotic species-level phylogenetic diversity. However this resolution leads to

329  underestimation of genomic (i.e., species) diversity (Rodriguez-R et al., 2018). In tree
330 communities, Hubbell (2013) found differences in SAD shape among taxonomic

331  resolutions (i.e., species, genus, and family) in tropical forest data; specifically, the tail
332  length (rare species) decreased with lower taxonomic resolution. Moreover, researchers
333  generally treat the read number of OTUs as an abundance metric. However, the results
334  of 16S rRNA gene sequencing reveal relative, rather than absolute, abundances of

335 individual lineages. In addition, these results may be biased due to differences in PCR

14
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primer specificity and gene copy number among lineages. Thus, care should be taken
when comparing those patterns with actual abundance data.

The second issue is associated with the community characteristics. In SAD studies,
researchers generally focus on a horizontal community composed of a single trophic
level, such as “tree community” and “herbivore community” (but see Mathews ef al.,
2019). However, the sequencing data based on a marker gene contains DNA of the
entire assemblage in a sample, which makes it impossible to categorize the trophic
levels of all microbes and ontogenetic stages. The presence of a persistent microbial
seed bank (i.e., in situ populations of long-lived rare OTUs) might affect
community-level patterns (Gibbsons ef al., 2013), making it difficult to interpret the
relationship between the proportion of rare OTUs and minimum potential generation
time. In other words, microbial community datasets include different life stages as one

99 ¢¢

category, analogous to grouping “seed in the soil,” “mature tree,” and “dead tree” in a
dataset of trees. Above, we noted the possibility that bacterial communities include
larger proportions of transient OTUs when interpreted based on data for macroscopic
organisms. If we consider that long-lived rare OTUs are present in situ, the
interpretation of a larger proportion of transient OTUs in microbes is directly
contradicted. Therefore, it may be difficult to apply ecological rules that were
developed in horizontal communities of macroscopic species (Vellend et al., 2010,

Vellend 2016) to DNA-based microbial datasets, at least those related to the community

properties of persistence and transience.

Extent to which environmental variables explain variation in ORD shapes in oceanic
bacteria worldwide

The multi-regression model explained about 56% of skewness variation in ORDs. Using
data from oceanic bacterial communities, we confirmed that the patterns predicted from

hypotheses based on macroscopic studies were not supported, as shown in Table 1.

15
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363  Furthermore, the skewness was significantly and positively affected by the minimum
364  potential generation time within bacterial communities. This result is in opposition to
365 the prediction based on research in macroscopic organisms (Table 1, 2). To explain the
366  opposing trends in bacterial communities compared to predictions for macroscopic

367  species, we could interpret this result as showing that competitive exclusion is less

368 likely occur in bacteria than in macroscopic communities. In macroscopic organisms,
369  species are adapted to the environment as a community, which makes the relationship
370  between the environment and community structure clear. In animals and plants, when
371  suitable species are present in an environment, unsuitable species are excluded from the
372  community, and the relationship between the environment and community structure is
373  simple. On the other hand, bacteria under unsuitable conditions may continue existing
374  (e.g., enter dormancy), thus appearing in high-throughput sequencing data. Campbell et
375  al. (2011) compared DNA-based patterns with those based on RNA (i.e.,

376  transcriptionally active OTUs), and suggested that about 12% of amplicon sequences of
377  oceanic bacteria are always inactive.

378

379  Conclusions and perspectives

380  Comparative analyses of skewness, pnorm, and the Weibull and gambin parameters,

381  which are major approaches used recently in SADs, provide researchers a basis for

382  discussing similarities and differences between microbial and macroscopic life. In the
383  near future, comparative approaches between microbes and macroscopic organisms,
384  including environmental DNA (eDNA) metabarcoding studies (e.g., Doi et al., 2019),
385  may reveal universal rules determining global biodiversity patterns. Further theoretical
386  frameworks focused specifically on microbes and multi-trophic data are needed, with
387  macroscopic ecology studies such as Hubbell ef al. (2001) as a starting point for

388  discussion (Rosindell et al., 2012). We encourage construction of microbe-specific

389  ecological rules, such as rules explicitly considering the metabolic versatility of
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390  microbes in community assembly processes, as the properties necessary for inclusion in
391  datasets differs from those for macroscopic organisms. At the same time, further

392  comparative analyses may reveal the detailed drivers and facilitate a better

393 understanding of the similarities and differences between the quantitative patterns of
394  macroscopic and microbial communities.

395

396  Data Accessibility Statement

397  All environmental factors, calculated data, and the OTU table used for analyses are

398  presented in Tables S1 and S2, and the original data were published in Sunagawa et al.
399  (2015) and http://ocean-microbiome.embl.de/companion.html. The Weibull parameters
400  and skewness of global tree communities published in Ulrich et al. (2018a) are available
401  from https://figshare.com/articles/Weibull fits/5975098 and Appendix 1 of Ulrich et al.

402  (2016a), respectively.
403
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Figure legend

Figure 1 Relationship between shape (1) and scale (A) parameters. Blue circles indicate
the parameters of 139 bacterial communities analyzed in this study. Gray circles
indicate the parameters of 534 empirical global tree communities published in Ulrich et
al. (2018a) and https://figshare.com/articles/Weibull fits/5975098. The parameters of

bacterial communities did not exceed the parameter space of tree communities.
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585  Table 1 Major hypotheses and predictions associated with skewness tested in this study

Hypothesis

Prediction

Related variables

References

(1) Low productivity conditions facilitate

skewness (productivity hypothesis).

(i1) Nutrient limitation facilitates

skewness (nutrient hypothesis).

(ii1)) Dominance of r strategists facilitates

skewness (r-K strategy hypothesis).

Skewness decreases toward
lower-latitude, deeper, and
cooler conditions.

Skewness increases toward

lower-nutrient conditions.

Skewness decreases with

increasing long-lived OTUs.

Latitude, Water
depth, Temperature

NO3z, PO4

Minimum potential

generation time

Whittaker (1975), Hubbell (1979),
Ulrich et al. (2016a)

Ulrich et al. (2016a)

Magurran & Henderson (2003),

Ulrich & Ollik (2004), Ulrich et al.
(2016a)
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986  Table 2 Results of the multi-regression model for skewness.

B ¥ par P
Latitude -0.0425 0.0034 0.5190
Latitude? 0.0817 0.0150 0.1740
In(Water depth) 0.0304 0.0007 0.7660
NO2 0.0530 0.0064 0.3770
PO4 0.1397 0.0120 0.1180
Minimum potential generation
. 0.3884 0.1634 <0.0001 ***
time
In(Total read number) 0.0190 0.0006 0.7830
In(OTUs richness) 0.3863 0.1335 <0.0001 #**
Whole model adj. R’ P
0.5591 <0.0001 ok

987  Significance: *<0.05, **<0.01, ***<0.001
288
289
590
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591  Figure S1 Positive correlations between skewness and rare OTU richness ((a) adj. R’ =
592  0.3951, p <0.0001, (b) adj. R’ = 0.3966, p <0.0001).

593  Figure S2 Relationship between lognormal and log-series fits ((a) adj. R> =-0.0045, p =
594  0.5387, (b) adj. R> =0.1243, p <0.0001, (¢) adj. R> = 0.0840, p = 0.0003). We followed
995  the methods of Ulrich et al. (2016a) for calculating both log-series and lognormal fits.
596  Figure S3 Comparison among pnorm, gambin alpha, and skewness. We calculated two
997  indices used for comparative analyses of SAD shapes, pnorm and gambin alpha. ((a) adj.
598 R’=0.3173, p <0.0001, (b) adj. R’ = 0.4440, p <0.0001, (c) adj. R> =0.7773, p

9599  <0.0001). We followed the methods of Ulrich et al. (2016a) and Mathews et al. (2014)
600 to calculate pnorm and gambin alpha, respectively.

601  Figure S4 Results of simple correlation testing. Significance: *<0.05, **<0.01,

602  ***<(.001, "<0.1

603 Table S1 Extracted bacterial OTU table published in Sunagawa et al. 2015.

604 Table S2 Environmental variables and calculated indices used in this study.

605  Supplementary text 1 Multimodality of the gambin distribution.

606
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