

1 **Describing macroecological patterns in microbes: Approaches for comparative**
2 **analyses of operational taxonomic unit read number distribution with a case study**
3 **of global oceanic bacteria**

4

5 Running title: OTU read number distributions in microbes

6

7 Ryosuke Nakadai^{1,2†}, Yusuke Okazaki³, Shunsuke Matsuoka⁴

8

9

10 ¹ Department of Environmental and Biological Sciences, Faculty of Science and
11 Forestry, University of Eastern Finland, Yliopistonkatu 7, 80101 Joensuu, Finland

12 ² Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences,
13 The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

14 ³ Bioproduction Research Institute, National Institute of Advanced Industrial Science
15 and Technology, Tsukuba, Japan

16 ⁴ Graduate School of Simulation Studies, University of Hyogo, Kobe, Hyogo, 650-0047,
17 Japan

18

19 [†]*Author Correspondence:* R. Nakadai

20 *E-mail:* r.nakadai66@gmail.com

21

22

23 Keywords: Species abundance distribution, Skewness, Weibull distribution, Whittaker
24 plot

25

26 **Acknowledgments**

27 We thank Dr. Doi Hideyuki, who provided fruitful comments on an early version of our
28 manuscript. Financial support was provided by the Japan Society for the Promotion of
29 Science (No. 18J00093 to RN).

30

31 **Author contributions**

32 RN conceived of the study, analyzed the data, and wrote the first draft; RN, YO, and
33 SM discussed the results and their interpretation and contributed significantly to the
34 final text.

35

36 **Conflict of interest**

37 The authors declare that they have no conflicts of interest.

38

39 **Abstract**

40 Describing the variation in commonness and rarity in a community is a fundamental
41 method of evaluating biodiversity. Such patterns have been studied in the context of
42 species abundance distributions (SADs) among macroscopic organisms in numerous
43 communities. Recently, models for analyzing variation in local SAD shapes along
44 environmental gradients have been constructed. The recent development of
45 high-throughput sequencing enables evaluation of commonness and rarity in local
46 communities of microbes using operational taxonomic unit (OTU) read number
47 distributions (ORDs), which are conceptually similar to SADs. However, few studies
48 have explored the variation in local microbial ORD shapes along environmental
49 gradients. Therefore, the similarities and differences between SADs and ORDs are
50 unclear, clouding any universal rules of global biodiversity patterns. We investigated
51 the similarities and differences in ORD shapes vs. SADs, and how well environmental
52 variables explain the variation in ORDs along latitudinal and depth gradients. Herein,
53 we integrate ORDs into recent comparative analysis methods for SAD shape using
54 datasets generated on the Tara Oceans expedition. About 56% of the variance in
55 skewness of ORDs among global oceanic bacterial communities was explained with this
56 method. Moreover, we confirmed that the parameter combination constraints of Weibull
57 distributions were shared by ORDs of bacterial communities and SADs of tree
58 communities, suggesting common long-term limitation processes such as adaptation and
59 community persistence acting on current abundance variation. On the other hand,
60 skewness was significantly greater for bacterial communities than tree communities,
61 and many ecological predictions did not apply to bacterial communities, suggesting
62 differences in the community assembly rules for microbes and macroscopic organisms.
63 Approaches based on ORDs provide opportunities to quantify macroecological patterns
64 of microbes under the same framework as macroscopic organisms.

65 **Keywords:** Species abundance distribution, Skewness, Weibull distribution, Whittaker

66 plot

67

68 **Introduction**

69 Species diversity patterns, which are characterized by numbers of species and
70 individuals, provide great opportunities for understanding the ecological and
71 evolutionary processes that drive global biodiversity (Rabinowitz, 1981; Ricklefs, 2000;
72 Hubbell, 2001, 2013; Loza *et al.*, 2017). In general, certain species are dominant while
73 others are rare locally and globally. The processes determining locally common and rare
74 species have been studied in the context of the species abundance distribution (SAD),
75 which is one of the most fundamental methods of describing local diversity (Motomura,
76 1932; MacArthur, 1960; McGill *et al.*, 2007; Doi and Mori, 2013; Ulrich *et al.*, 2018b).
77 SAD studies focus on the rarity and commonness of species in a local community, and
78 attempt to reconstruct the background processes that led to those patterns. To date,
79 numerous SAD models have been proposed (reviewed in McGill *et al.*, 2007).
80 MacArthur (1957, 1960) developed the broken stick model based on the hypothesized
81 niche portioning process, and Hubbell *et al.* (2001) provided a mechanistic
82 interpretation of observed abundance distributions with well-defined ecological
83 parameters such as dispersal, speciation rate, local abundance, and meta-community
84 size, under the premise of ecological drift. Using these models, we estimated
85 background processes from SAD patterns. Previous SAD investigations have been
86 conducted mainly in plants and animals (e.g., Ulrich *et al.*, 2010; Baldridge *et al.*, 2016),
87 because large datasets and specific criteria for species delimitation are necessary for
88 SAD. Therefore, the SAD approach has been applied less to studies of microorganisms
89 than those of macroscopic species.

90 The recent development of molecular techniques, in particular high-throughput
91 sequencing, has made it dramatically easier to capture biodiversity patterns in microbes
92 as well as larger organisms (Lynch and Neufeld, 2015; Schloss *et al.*, 2016; Shade *et al.*,
93 2018). High-throughput sequencing technology has revealed that the microbial
94 ecosystem is inhabited by a large number of rare microbial lineages (Fuhrman, 2009),

95 collectively referred to as the “rare biosphere” (Sogin *et al.*, 2006; Galand *et al.*, 2009;
96 Ser-Giacomi *et al.*, 2018; reviewed in Lynch and Neufeld, 2015). The existence of rare
97 lineages strongly impacts community structure and diversity patterns, although their
98 ecological roles and the processes structuring the rare biosphere remain poorly
99 understood (Ser-Giacomi *et al.*, 2018). The relationships between operational
100 taxonomic units (OTUs; reviewed in Blaxter *et al.*, 2005) and read number have been
101 studied in microbes based on concepts similar to SAD (e.g., Livermore and Jones,
102 2015). Hereafter, we consider OTU read number distributions (ORDs), corresponding
103 conceptually to the rank abundance curve, as being distinct from SADs. OTUs are
104 generally defined as groups based on sequence similarity in marker genes (e.g., SSU
105 rRNA in bacteria and ITS in fungi) (Bálint *et al.*, 2016). Numerous previous studies
106 have attempted to identify a general best-fit model for ORD in a particular habitat by
107 comparing various traditional SAD models (e.g., log-series, lognormal, and power-law
108 distributions) (Shade *et al.*, 2012, Sherrill-Mix *et al.*, 2016, Shoemaker *et al.*, 2017,
109 Louca *et al.*, 2019). However, few studies have focused on the continuous variation in
110 ORD shape within microbial communities along geographical and environmental
111 gradients (however, see Stegen *et al.*, 2016), which has been a major recent trend in
112 SAD studies of macroecological patterns and their assembly processes.

113 In recent years, methods for analyzing macroecological patterns and community
114 assembly by comparing SAD shapes have been developed to overcome the limitations
115 of conventional SAD modeling. Specifically, researchers have recently recognized that
116 multiple processes can generate similar SAD shapes, resulting in the fit of a given SAD
117 model not providing clear evidence to support a particular theory (Mathews *et al.*, 2017).
118 An alternative approach to comparing changes in parameter value(s) for a given SAD
119 model or the fits of different SAD models to data from a single site is the collection of
120 abundance data from a variety of sites followed by construction of models to analyze
121 how SAD properties vary with predictor variables (i.e., comparative analyses of SAD

122 shape; White *et al.*, 2012, Ulrich *et al.*, 2016a, b, Fattorini *et al.*, 2016; Borda-de-Águia
123 *et al.*, 2017, Guerin *et al.*, 2017, Mathews *et al.*, 2019; reviewed in Mathews *et al.*,
124 2017). Many methods have been developed to evaluate SAD shape. For example, ρ_{norm}
125 has been used to evaluate the relative fits of log-series and lognormal distributions
126 (Ulrich *et al.*, 2016 a, b). However, the fits of both log-series and lognormal
127 distributions to community data often weaken with increasing species richness (Ulrich
128 *et al.*, 2016a, b, also see Fig. S2), which makes the interpretation of these fits
129 inconsistent along species richness gradients in community data. The gambin
130 distribution (Ugland *et al.*, 2007) is often used to evaluate SAD shape (Mathews *et al.*,
131 2014, 2017, 2019), but creation of the gambin distribution requires binning the
132 abundance data into octaves prior to fitting, losing species-level abundance information.
133 In addition, the current criterion used to fit the model is the chi-square test, which
134 generally has a strong dependence on sample size, which makes it difficult to apply the
135 gambin distribution to high-throughput sequencing data with large numbers of both
136 OTUs and reads.

137 The comparative analysis approaches used for SAD shape provide two new insights.
138 First, estimating the constraints of community assembly involves analyzing
139 macroecological patterns. Ulrich *et al.* (2018b) proposed the concept of ‘forbidden
140 communities’ in SAD shapes, placing limitations on the possible combinations of λ
141 (scale parameter) and η (shape parameter). The parameter λ can therefore be interpreted
142 as a measure of SAD shape-specific evenness. The shape parameter η is associated with
143 an excess of either highly abundant species (low η) or rare species (high η). Specifically,
144 Ulrich *et al.* (2018b) argued that the combination of high η and low λ generates SADs
145 very similar to the well-known broken stick distribution (MacArthur 1957), but those
146 distributions rarely occur in nature. Ulrich *et al.* (2018b) showed that the shape and
147 scale parameters of this distribution have precise ecological interpretations, with the
148 first acting as a measure of the excess of either rare or common species and the second

149 quantifying the proportion of persistent species in the focal community. In addition,
150 Ulrich *et al.* (2018b) showed that the scale parameter is linearly correlated with failure
151 time mathematically, and that it indicates the relative proportion of adapted species in a
152 community that may be persistent. Thus, these forbidden communities may indicate
153 limited long-term processes such as adaptation and the persistence of the community
154 characterized by the current abundance variation.

155 Recently, biogeographic and macroecological studies on geographical and climatic
156 variation in SADs have employed large datasets, mainly for plants (White *et al.*, 2012;
157 Ulrich *et al.*, 2016a, b; Guerin *et al.*, 2017). Indeed, large-scale SAD studies have
158 recently gained attention due to the accessibility of databases. A large amount of species
159 abundance data collected across a broad range of environments is available for
160 large-scale comparative SAD research (Fattorini *et al.*, 2016; Borda-de-Águia *et al.*,
161 2017). For example, Ulrich *et al.* (2016a) showed latitudinal patterns of SAD shape and
162 discussed the processes behind these patterns using a climatic dataset, while Guerin *et*
163 *al.* (2017) reported that geographical and climatic gradients affect SAD shapes and
164 discussed future changes in their shapes expected as a consequence of climate change,
165 with changes in diversity and ecosystem function.

166 Here, we integrate recent approaches used for comparative analyses of SAD shape
167 into ORDs. As a case study, we used community datasets generated from the Tara
168 Oceans expedition (Sunagawa *et al.*, 2015). Tara Oceans is a project that profiled
169 planktonic and microbial communities in the global ocean using high-throughput
170 sequencing. We investigated the drivers of variation in ORDs from local bacterial
171 communities along a geographic gradient, and assessed the similarities and differences
172 between the geographical patterns of microbes and macroscopic organisms, comparing
173 the ORDs of bacterial communities with those of macroscopic communities. In
174 particular, we studied the similarities and differences in ORD and SAD shapes, with a
175 particular focus on skewness and parameter combinations of the Weibull distribution,

176 and the extent to which environmental variables explain the variation in ORDs along
177 latitudinal and depth gradients. This approach could support further acceleration of
178 microbial studies by revealing the drivers of variation in ORD shape and making
179 comparisons between microbes and macroscopic species.

180

181 **Materials and Methods**

182 *Empirical data*

183 We used 139 oceanic bacterial community datasets generated from the Tara Oceans
184 expedition (Sunagawa *et al.*, 2015). Sunagawa *et al.* (2015) extracted merged
185 metagenomic Illumina reads (miTAGs) containing signatures of the 16S rRNA gene
186 (Logares *et al.*, 2013), which were mapped to the SILVA SSU rRNA gene sequence
187 database (Quast *et al.*, 2013) and clustered into OTUs at the 97% similarity level. The
188 range of total reads per sample was 34,081–184,190, with an average of $90,103.06 \pm$
189 28,240.38. The OTU count table was summarized at multiple taxonomic levels and can
190 be downloaded from <http://ocean-microbiome.embl.de/companion.html> (Sunagawa *et*
191 *al.*, 2015). We extracted OTUs representing the domain Bacteria for analyses.

192 We calculated the skewness γ of log-transformed relative read numbers to assess the
193 degree of lower curvature (Ulrich *et al.*, 2016a), which was compared to a symmetrical
194 lognormal distribution. Negative values of γ indicate an excess of rare OTUs, while
195 positive values represent an excess of abundant OTUs compared to a lognormal
196 distribution that is symmetrical around the mean. Thus, the symmetrical lognormal
197 distribution is not skewed. Asymmetrical lognormal SADs nearly always indicate an
198 excess of rare OTUs, and consequently have negative skewness (McGill, 2003). The
199 log-series model shows an excess of relatively abundant OTUs (associated with positive
200 skewness). We used the parametric function $SE(\gamma) = (6/n)^{1/2}$ (Tabachnick and Fidell,
201 1996) to test for significant skewness in SADs (Ulrich *et al.*, 2016a). In this bacterial
202 community dataset, skewness is positively correlated with the number of rare OTUs

203 (rare biosphere: <0.1 or <0.01, criteria based on Galand *et al.*, 2009, Pedrós-Alió *et al.*,
204 2012) (Fig. S1). The relationships among ρ_{norm} , the alpha parameter of the gamin
205 distribution, and skewness are shown in Fig. S3.

206

207 *Comparison between ORDs of microbes and SADs of forest plots*

208 To reveal differences between the ORD shapes of microbes and SAD shapes of
209 macroscopic organisms, we first compared the skewness values of bacterial
210 communities with those of tree communities published in Appendix 1 of Ulrich *et al.*
211 (2016a). In addition, we compared the two-parameter Weibull distribution, which was
212 recently suggested by Ulrich *et al.* (2018b) as a flexible descriptive model for SAD
213 shapes. Ulrich *et al.* (2018b) suggested that the shape and scale parameters of the
214 Weibull distribution have precise ecological interpretations, with the first being a
215 measure of the excess of either rare or common species, and the second quantifying the
216 proportion of persistent species in the focal community. To identify any similar
217 limitations of parameter combinations in bacterial communities, we fitted
218 two-parameter Weibull distributions to datasets of oceanic bacterial communities and
219 compared the ORD shapes for microbes with the empirical results from 534 tree
220 communities worldwide, presented in Ulrich *et al.* (2018a). If the ORDs of bacterial
221 communities show similar constraints, community structuring processes are likely
222 shared between the bacterial and tree communities, although the specific mechanisms
223 are unknown. We used the reduced major axis fitting method, following Ulrich *et al.*
224 (2018b). Values of $fit < 0.05$ indicate an excellent fit, while $fit > 0.3$ is poor. We used
225 the updated stand-alone application RAD 2.0 (Ulrich *et al.*, 2010) for fitting of the
226 two-parameter Weibull distributions.

227

228 *Explanatory variables for skewness in ORDs*

229 We propose three hypotheses for determining skewness in microbial communities
230 based on existing studies in macroscopic organisms. First, climatic and geographic
231 factors, which are directly associated with local productivity, drive skewness
232 (productivity hypothesis), with higher productivity facilitating lower skewness
233 (Whittaker, 1975; Hubbell, 1979; Ulrich *et al.*, 2016a). Second, local concentrations of
234 nutrients in water negatively affect skewness (nutrient hypothesis), and thus a more
235 eutrophic environment exhibits lower skewness. Last, characteristics of microbial life
236 cycle strategies (i.e., longevity and persistence) negatively influence skewness (r-K
237 strategy hypothesis), with shorter generation times leading to greater skewness. More
238 detailed explanations of those hypotheses and predictions are provided in Table 1. The
239 original dataset from Sunagawa *et al.* (2015) is also included with information about
240 each sample.

241 In the multi-regression model, we set latitude, squared latitude, water depth (m),
242 nitrite concentration ($\mu\text{mol L}^{-1}$), phosphate concentration ($\mu\text{mol L}^{-1}$), and minimum
243 potential generation time (h) as explanatory variables for the variation in skewness. The
244 minimum potential generation times of microbial communities, which were determined
245 from codon usage biases (for detailed methods, see Vieira-Silva and Rocha 2010), were
246 used as an index of r-K strategy at the community level. Minimum potential generation
247 time data are also included the original dataset (Sunagawa *et al.*, 2015). The data output
248 from high-throughput sequencing generally contains different sequencing depths (i.e.,
249 uneven sampling effort) for each sample. Sampling effort influences observed SAD
250 shape (Preston, 1948). Therefore, to account for the effects of biases in the sampled data,
251 we added the OTU richness and total read number of each sample as covariates in the
252 regression models. To avoid nonlinear effects, we used ln-transformed data for water
253 depth, species richness, and total abundance.

254 The level of collinearity between these explanatory variables was determined by
255 calculating the variance inflation factor (VIF). All variables were standardized to zero

256 mean and unit variance prior to parameter estimation. We selected explanatory variables
257 according to a threshold VIF value, where $VIF > 10$ indicates that the model has a
258 collinearity problem (Quinn and Keough, 2002, Neves *et al.*, 2015). VIF ranged from
259 1.10 to 8.26, suggesting a lack of multicollinearity in this multi-regression model.
260 However, the effects of temperature on skewness showed the opposite trends compared
261 to the results of simple correlation (Fig. S4). We excluded temperature from the final
262 analyses, causing the VIFs to range from 1.07 to 3.06. We use the ‘car’ package of R
263 (Fox *et al.*, 2007) to calculate VIFs and the ‘rsq’ package (Zhang, 2018) to calculate
264 partial r-square coefficients.

265

266 **Results**

267 The mean of skewness was 0.81 ± 0.17 among 139 samples. All communities showed
268 significant positively skewed trends compared to the symmetric lognormal model
269 (Tabachnick and Fidell, 1996; Ulrich *et al.*, 2016a), indicating that all ORD shapes are
270 significantly more similar to log-series distributions than lognormal distributions. Based
271 on the results of t-test, bacterial communities are significantly more skewed than tree
272 communities (Welch’s t-test; $p < 0.0001$), and thus more similar to the log-series
273 distribution in shape.

274 Weibull distribution fits to 137 of the 139 communities (98.6%) were moderate ($fit <$
275 0.3), while only two (1.4%) were comparatively poor ($fit > 0.3$). The parameter
276 combinations in bacterial communities did not exceed the parameter space for tree
277 communities (Fig. 1), suggesting constraints on ORD shape (Ulrich *et al.*, 2018a).

278 In total, the model explained about 56% of the variance in skewness in 131 ORDs
279 (Table 2). Eight communities lacked some data and were excluded from the analyses of
280 ORD shapes. Skewness increased with increasing minimum potential generation time,
281 and was not associated with productivity, nutrients or r-K strategy, as shown in Table 1.

282

283 **Discussion**

284 We fit the two-parameter Weibull distribution and clearly showed that the parameters of
285 the bacterial communities were not outside of the limited space described in Ulrich *et al.*
286 (2018b), suggesting some limitation on community assembly processes that is shared
287 between SADs and ORDs. We could explain about 56% of skewness variation in ORDs,
288 revealing the drivers of skewness. Therefore, we conclude that comparative analyses of
289 ORDs shape are also useful for identifying drivers and background processes, and that
290 ORD shapes have similar constraints to those described in Ulrich *et al.* (2018b). These
291 findings emphasize the applicability of comparative analyses of ORD shape in
292 microbial communities. However, the number of case studies using this method remains
293 small, so further empirical studies are needed to fully elucidate ORD patterns and their
294 drivers.

295

296 *Similarities and differences between SADs and ORDs*

297 Comparison of SADs and ORDs has been suggested as a useful approach to identify
298 general rules across microbial and macroscopic communities (Shade *et al.*, 2018). In the
299 present study, we compared SADs of tree communities with ORDs of microbial
300 communities using the two fitted parameters (shape parameter [η] and scale parameter
301 [λ]) of the Weibull distribution. We confirmed similar constraints of parameter
302 combinations in ORDs and SADs of tree communities of $\eta < 3$ and $\lambda < 6$, as originally
303 proposed in Ulrich *et al.* (2018b). These constraints on community structure may
304 indicate limitation due to long-term processes such as adaptation and persistence of the
305 community on variation in abundance (Ulrich *et al.* 2018b). Locey and Lennon (2016)
306 found similar scaling of commonness and rarity across microbes and macroscopic plants
307 and animals, and proposed a universal dominance scaling law that holds true over 30
308 orders of magnitude. We suggest that the concept of forbidden communities presented
309 by Ulrich *et al.* (2018b) is related to the scaling law (e.g., community persistence is

310 regulated by metabolic rate). Further comparisons of SADs and ORDs may reveal
311 whether similar constraints exist in other taxonomic groups and habitats.

312 We emphasize that ORDs should have similar dataset properties as SADs. We also
313 take a negative view of the common practice of referring to ORDs as SADs and their
314 inclusion in SAD studies. In our analyses, the skewness of bacterial communities was
315 significantly greater than that of tree communities, indicating a larger proportion of rare
316 OTUs among bacteria than among trees. Previous studies in macroscopic organisms
317 have reported that persistent species (i.e., stable communities driven mainly by habitat
318 filtering) exhibit a lognormal SAD (i.e., smaller skewness), while transient species (i.e.,
319 dispersal-driven communities that vary over time) are best modeled with the log-series
320 (i.e., high skewness) distribution (Magurran and Henderson, 2003; Ulrich and Ollik,
321 2004; Ulrich *et al.*, 2010, 2016a). Therefore, our results indicate that bacterial
322 communities include larger proportions of transient OTUs if we interpret the results
323 based on findings from macroscopic organisms.

324 There are two major factors that should be taken into consideration to inclusion of
325 ORDs in SAD studies. The first issue is associated with delimitation of species and
326 individuals in microbes (reviewed in Hason *et al.*, 2012). Empirically, 97% similarity in
327 (partial) 16S rRNA gene sequences has commonly been used to characterize
328 prokaryotic species-level phylogenetic diversity. However this resolution leads to
329 underestimation of genomic (i.e., species) diversity (Rodriguez-R *et al.*, 2018). In tree
330 communities, Hubbell (2013) found differences in SAD shape among taxonomic
331 resolutions (i.e., species, genus, and family) in tropical forest data; specifically, the tail
332 length (rare species) decreased with lower taxonomic resolution. Moreover, researchers
333 generally treat the read number of OTUs as an abundance metric. However, the results
334 of 16S rRNA gene sequencing reveal relative, rather than absolute, abundances of
335 individual lineages. In addition, these results may be biased due to differences in PCR

336 primer specificity and gene copy number among lineages. Thus, care should be taken
337 when comparing those patterns with actual abundance data.

338 The second issue is associated with the community characteristics. In SAD studies,
339 researchers generally focus on a horizontal community composed of a single trophic
340 level, such as “tree community” and “herbivore community” (but see Mathews *et al.*,
341 2019). However, the sequencing data based on a marker gene contains DNA of the
342 entire assemblage in a sample, which makes it impossible to categorize the trophic
343 levels of all microbes and ontogenetic stages. The presence of a persistent microbial
344 seed bank (i.e., *in situ* populations of long-lived rare OTUs) might affect
345 community-level patterns (Gibbs *et al.*, 2013), making it difficult to interpret the
346 relationship between the proportion of rare OTUs and minimum potential generation
347 time. In other words, microbial community datasets include different life stages as one
348 category, analogous to grouping “seed in the soil,” “mature tree,” and “dead tree” in a
349 dataset of trees. Above, we noted the possibility that bacterial communities include
350 larger proportions of transient OTUs when interpreted based on data for macroscopic
351 organisms. If we consider that long-lived rare OTUs are present *in situ*, the
352 interpretation of a larger proportion of transient OTUs in microbes is directly
353 contradicted. Therefore, it may be difficult to apply ecological rules that were
354 developed in horizontal communities of macroscopic species (Vellend *et al.*, 2010,
355 Vellend 2016) to DNA-based microbial datasets, at least those related to the community
356 properties of persistence and transience.

357

358 *Extent to which environmental variables explain variation in ORD shapes in oceanic*
359 *bacteria worldwide*

360 The multi-regression model explained about 56% of skewness variation in ORDs. Using
361 data from oceanic bacterial communities, we confirmed that the patterns predicted from
362 hypotheses based on macroscopic studies were not supported, as shown in Table 1.

363 Furthermore, the skewness was significantly and positively affected by the minimum
364 potential generation time within bacterial communities. This result is in opposition to
365 the prediction based on research in macroscopic organisms (Table 1, 2). To explain the
366 opposing trends in bacterial communities compared to predictions for macroscopic
367 species, we could interpret this result as showing that competitive exclusion is less
368 likely occur in bacteria than in macroscopic communities. In macroscopic organisms,
369 species are adapted to the environment as a community, which makes the relationship
370 between the environment and community structure clear. In animals and plants, when
371 suitable species are present in an environment, unsuitable species are excluded from the
372 community, and the relationship between the environment and community structure is
373 simple. On the other hand, bacteria under unsuitable conditions may continue existing
374 (e.g., enter dormancy), thus appearing in high-throughput sequencing data. Campbell *et*
375 *al.* (2011) compared DNA-based patterns with those based on RNA (i.e.,
376 transcriptionally active OTUs), and suggested that about 12% of amplicon sequences of
377 oceanic bacteria are always inactive.

378

379 **Conclusions and perspectives**

380 Comparative analyses of skewness, ρ_{norm} , and the Weibull and gamin parameters,
381 which are major approaches used recently in SADs, provide researchers a basis for
382 discussing similarities and differences between microbial and macroscopic life. In the
383 near future, comparative approaches between microbes and macroscopic organisms,
384 including environmental DNA (eDNA) metabarcoding studies (e.g., Doi *et al.*, 2019),
385 may reveal universal rules determining global biodiversity patterns. Further theoretical
386 frameworks focused specifically on microbes and multi-trophic data are needed, with
387 macroscopic ecology studies such as Hubbell *et al.* (2001) as a starting point for
388 discussion (Rosindell *et al.*, 2012). We encourage construction of microbe-specific
389 ecological rules, such as rules explicitly considering the metabolic versatility of

390 microbes in community assembly processes, as the properties necessary for inclusion in
391 datasets differs from those for macroscopic organisms. At the same time, further
392 comparative analyses may reveal the detailed drivers and facilitate a better
393 understanding of the similarities and differences between the quantitative patterns of
394 macroscopic and microbial communities.

395

396 **Data Accessibility Statement**

397 All environmental factors, calculated data, and the OTU table used for analyses are
398 presented in Tables S1 and S2, and the original data were published in Sunagawa *et al.*
399 (2015) and <http://ocean-microbiome.embl.de/companion.html>. The Weibull parameters
400 and skewness of global tree communities published in Ulrich *et al.* (2018a) are available
401 from https://figshare.com/articles/Weibull_fits/5975098 and Appendix 1 of Ulrich *et al.*
402 (2016a), respectively.

403

404 **References**

405 Baldridge, E., Harris, D. J., Xiao, X., & White, E. P. (2016). An extensive comparison
406 of species-abundance distribution models. *PeerJ*, 4, e2823.

407 Bálint, M., Bahram, M., Eren, A. M., Faust, K., Fuhrman, J. A., Lindahl, B., ... &
408 Tedersoo, L. (2016). Millions of reads, thousands of taxa: microbial community
409 structure and associations analyzed via marker genes. *FEMS microbiology reviews*,
410 40(5), 686-700.

411 Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., & Abebe, E.
412 (2005). Defining operational taxonomic units using DNA barcode data. *Philosophical
413 Transactions of the Royal Society B: Biological Sciences*, 360(1462), 1935-1943.

414 Borda-de-Águia, L., Whittaker, R. J., Cardoso, P., Rigal, F., Santos, A. M., Amorim, I.
415 R., ... & Borges, P. A. (2017). Dispersal ability determines the scaling properties of

416 species abundance distributions: a case study using arthropods from the Azores.
417 *Scientific reports*, 7(1), 3899.

418 Campbell, B. J., Yu, L., Heidelberg, J. F., & Kirchman, D. L. (2011). Activity of
419 abundant and rare bacteria in a coastal ocean. *Proceedings of the National Academy*
420 *of Sciences*, 108(31), 12776-12781.

421 Doi, H., & Mori, T. (2013). The discovery of species–abundance distribution in an
422 ecological community. *Oikos*, 122(2), 179-182.

423 Doi, H., Inui, R., Matsuoka, S., Akamatsu, Y., Goto, M., & Kono, T. (2019). Evaluation
424 of biodiversity metrics through environmental DNA metabarcoding outperforms
425 visual and capturing surveys. *bioRxiv*, 617670.

426 Fattorini, S., Rigal, F., Cardoso, P., & Borges, P. A. (2016). Using species abundance
427 distribution models and diversity indices for biogeographical analyses. *Acta*
428 *oecologica*, 70, 21-28.

429 Fox, J., Friendly, G. G., Graves, S., Heiberger, R., Monette, G., Nilsson, H., ... &
430 Suggests, M. A. S. S. (2007). The car package. R Foundation for Statistical
431 Computing.

432 Fuhrman, J. A. (2009). Microbial community structure and its functional implications.
433 *Nature*, 459(7244), 193.

434 Galand, P. E., Casamayor, E. O., Kirchman, D. L., & Lovejoy, C. (2009). Ecology of
435 the rare microbial biosphere of the Arctic Ocean. *Proceedings of the National*
436 *Academy of Sciences*, 106(52), 22427-22432.

437 Gibbons, S. M., Caporaso, J. G., Pirrung, M., Field, D., Knight, R., & Gilbert, J. A.
438 (2013). Evidence for a persistent microbial seed bank throughout the global ocean.
439 *Proceedings of the National Academy of Sciences*, 110(12), 4651-4655.

440 Guerin, G. R., Sparrow, B., Tokmakoff, A., Smyth, A., Leitch, E., Baruch, Z., & Lowe,
441 A. J. (2017). Opportunities for integrated ecological analysis across inland Australia
442 with standardised data from Ausplots Rangelands. *PloS one*, 12(1), e0170137.

443 Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., & Martiny, J. B. (2012). Beyond
444 biogeographic patterns: processes shaping the microbial landscape. *Nature Reviews
445 Microbiology*, 10(7), 497.

446 Hubbell, S. P. (2013). Tropical rain forest conservation and the twin challenges of
447 diversity and rarity. *Ecology and evolution*, 3(10), 3263-3274.

448 Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography
449 (MPB-32). Princeton University Press.

450 Hubbell, S. P. (1979). Tree dispersion, abundance, and diversity in a tropical dry forest.
451 *Science*, 203(4387), 1299-1309.

452 Livermore, J. A., & Jones, S. E. (2015). Local–global overlap in diversity informs
453 mechanisms of bacterial biogeography. *The ISME journal*, 9(11), 2413.

454 Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity.
455 *Proceedings of the National Academy of Sciences*, 113(21), 5970-5975.

456 Logares, R., Sunagawa, S., Salazar, G., Cornejo-Castillo, F. M., Ferrera, I., Sarmento,
457 H., ... & Raes, J. (2014). Metagenomic 16S rDNA Illumina tags are a powerful
458 alternative to amplicon sequencing to explore diversity and structure of microbial
459 communities. *Environmental microbiology*, 16(9), 2659-2671.

460 Louca, S., Mazel, F., Doebeli, M., & Parfrey, L. W. (2019). A census-based estimate of
461 Earth's bacterial and archaeal diversity. *PLoS biology*, 17(2), e3000106.

462 Loza, M. I., Jiménez, I., Jørgensen, P. M., Arellano, G., Macía, M. J., Torrez, V. W., &
463 Ricklefs, R. E. (2017). Phylogenetic patterns of rarity in a regional species pool of
464 tropical woody plants. *Global ecology and biogeography*, 26(9), 1043-1054.

465 Lynch, M. D., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere.
466 *Nature Reviews Microbiology*, 13(4), 217.

467 MacArthur, R. H. (1957). On the relative abundance of bird species. *Proceedings of the
468 National Academy of Sciences of the United States of America*, 43(3), 293.

469 MacArthur, R. (1960). On the relative abundance of species. *The American Naturalist*,
470 94(874), 25-36.

471 Magurran, A. E., & Henderson, P. A. (2003). Explaining the excess of rare species in
472 natural species abundance distributions. *Nature*, 422(6933), 714.

473 Martiny, J. B. H., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green,
474 J. L., ... & Morin, P. J. (2006). Microbial biogeography: putting microorganisms on
475 the map. *Nature Reviews Microbiology*, 4(2), 102.

476 Matthews, T. J., Borregaard, M. K., Ugland, K. I., Borges, P. A., Rigal, F., Cardoso, P.,
477 & Whittaker, R. J. (2014). The gabin model provides a superior fit to species
478 abundance distributions with a single free parameter: evidence, implementation and
479 interpretation. *Ecography*, 37(10), 1002-1011.

480 Matthews, T. J., Borges, P. A., de Azevedo, E. B., & Whittaker, R. J. (2017). A
481 biogeographical perspective on species abundance distributions: recent advances and
482 opportunities for future research. *Journal of biogeography*, 44(8), 1705-1710.

483 Matthews, T. J., Sadler, J. P., Kubota, Y., Woodall, C. W., & Pugh, T. A. (2019).
484 Systematic variation in North American tree species abundance distributions along
485 macroecological climatic gradients. *Global Ecology and Biogeography*, 28(5),
486 601-611.

487 McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., ...
488 & Hurlbert, A. H. (2007). Species abundance distributions: moving beyond single
489 prediction theories to integration within an ecological framework. *Ecology letters*,
490 10(10), 995-1015.

491 McGill, B. J. (2003). Does Mother Nature really prefer rare species or are log-left-
492 skewed SADs a sampling artefact?. *Ecology Letters*, 6(8), 766-773.

493 Motomura, I. (1932). On the statistical treatment of communities. – *Zoological*
494 *Magazine* (Tokyo), 44, 379–383.

495 Neves, D. M., Dexter, K. G., Pennington, R. T., Bueno, M. L., & Oliveira Filho, A. T.
496 (2015). Environmental and historical controls of floristic composition across the
497 South American Dry Diagonal. *Journal of Biogeography*, 42(8), 1566-1576.
498 Preston, F. W. (1948). The commonness, and rarity, of species. *Ecology*, 29(3), 254-283.
499 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., ... & Glöckner,
500 F. O. (2012). The SILVA ribosomal RNA gene database project: improved data
501 processing and web-based tools. *Nucleic acids research*, 41(D1), D590-D596.
502 Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for
503 biologists. Cambridge University Press.
504 Rabinowitz, D. (1981). Seven forms of rarity. *Biological aspects of rare plant*
505 *conservation*.
506 Ricklefs, R. E. (2000). Rarity and diversity in Amazonian forest trees. *Trends in*
507 *Ecology & Evolution*, 15(3), 83-84.
508 Rodriguez-R, L. M., Castro, J. C., Kyprides, N. C., Cole, J. R., Tiedje, J. M., &
509 Konstantinidis, K. T. (2018). How much do rRNA gene surveys underestimate extant
510 bacterial diversity?. *Appl. Environ. Microbiol.*, 84(6), e00014-18.
511 Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J., & Etienne, R. S. (2012). The case
512 for ecological neutral theory. *Trends in ecology & evolution*, 27(4), 203-208.
513 Schloss, P. D., Girard, R. A., Martin, T., Edwards, J., & Thrash, J. C. (2016). Status of
514 the archaeal and bacterial census: an update. *MBio*, 7(3), e00201-16.
515 Ser-Giacomi, E., Zinger, L., Malviya, S., De Vargas, C., Karsenti, E., Bowler, C., & De
516 Monte, S. (2018). Ubiquitous abundance distribution of non-dominant plankton
517 across the global ocean. *Nature ecology & evolution*, 2(8), 1243.
518 Shade, A., Read, J. S., Youngblut, N. D., Fierer, N., Knight, R., Kratz, T. K., ... &
519 Whitaker, R. J. (2012). Lake microbial communities are resilient after a
520 whole-ecosystem disturbance. *The ISME journal*, 6(12), 2153.

521 Shade, A., Dunn, R. R., Blowes, S. A., Keil, P., Bohannan, B. J., Herrmann, M., ... &
522 Chase, J. (2018). Macroecology to unite all life, large and small. *Trends in ecology &*
523 *evolution*.

524 Sherrill-Mix, S., McCormick, K., Lauder, A., Bailey, A., Zimmerman, L., Li, Y., ... &
525 Hart, T. B. (2018). Allometry and ecology of the bilaterian gut microbiome. *MBio*,
526 9(2), e00319-18.

527 Shoemaker, W. R., Locey, K. J., & Lennon, J. T. (2017). A macroecological theory of
528 microbial biodiversity. *Nature ecology & evolution*, 1(5), 0107.

529 Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., ...
530 & Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored
531 “rare biosphere”. *Proceedings of the National Academy of Sciences*, 103(32),
532 12115-12120.

533 Stegen, J. C., Hurlbert, A. H., Bond-Lamberty, B., Chen, X., Anderson, C. G., Chu, R.
534 K., ... & Tfaily, M. (2016). Aligning the measurement of microbial diversity with
535 macroecological theory. *Frontiers in microbiology*, 7, 1487.

536 Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., ... &
537 Cornejo-Castillo, F. M. (2015). Structure and function of the global ocean
538 microbiome. *Science*, 348(6237), 1261359.

539 Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). *Using multivariate statistics*
540 (Vol. 5). Boston, MA: Pearson.

541 Ugland, K. I., Lambshead, P. J. D., McGill, B., Gray, J. S., O’Dea, N., Ladle, R. J., &
542 Whittaker, R. J. (2007). Modelling dimensionality in species abundance distributions:
543 description and evaluation of the Gambil model. *Evolutionary Ecology Research*,
544 9(2), 313-324.

545 Ulrich, W., & Ollik, M. (2004). Frequent and occasional species and the shape of
546 relative-abundance distributions. *Diversity and distributions*, 10(4), 263-269.

547 Ulrich, W., Kusumoto, B., Shiono, T., & Kubota, Y. (2016a). Climatic and geographic
548 correlates of global forest tree species–abundance distributions and community
549 evenness. *Journal of vegetation science*, 27(2), 295-305.

550 Ulrich, W., Soliveres, S., Thomas, A. D., Dougill, A. J., & Maestre, F. T. (2016b).
551 Environmental correlates of species rank–abundance distributions in global drylands.
552 *Perspectives in plant ecology, evolution and systematics*, 20, 56-64.

553 Ulrich, W., Nakadai, R., Matthews, T., Kubota, Y., (2018a).
554 https://figshare.com/articles/Weibull_fits/5975098.

555 Ulrich, W., Nakadai, R., Matthews, T. J., & Kubota, Y. (2018b). The two-parameter
556 Weibull distribution as a universal tool to model the variation in species relative
557 abundances. *Ecological complexity*, 36, 110-116.

558 Ulrich, W., Ollik, M., & Ugland, K. I. (2010). A meta-analysis of species–abundance
559 distributions. *Oikos*, 119(7), 1149-1155.

560 Vellend, M. (2010). Conceptual synthesis in community ecology. *The Quarterly review
561 of biology*, 85(2), 183-206.

562 Vellend, M. (2016). The theory of ecological communities (MPB-57) (Vol. 75).
563 Princeton University Press.

564 White, E. P., Thibault, K. M., & Xiao, X. (2012). Characterizing species abundance
565 distributions across taxa and ecosystems using a simple maximum entropy model.
566 *Ecology*, 93(8), 1772-1778.

567 Whittaker, R.H. (1975). *Communities and Ecosystems*, 2nd edn. MacMillan, New York,
568 NY, US.

569 Zhang, D. (2018). rsq: R-squared and related measures. R package version, 1(1).

570

571

572

573

574

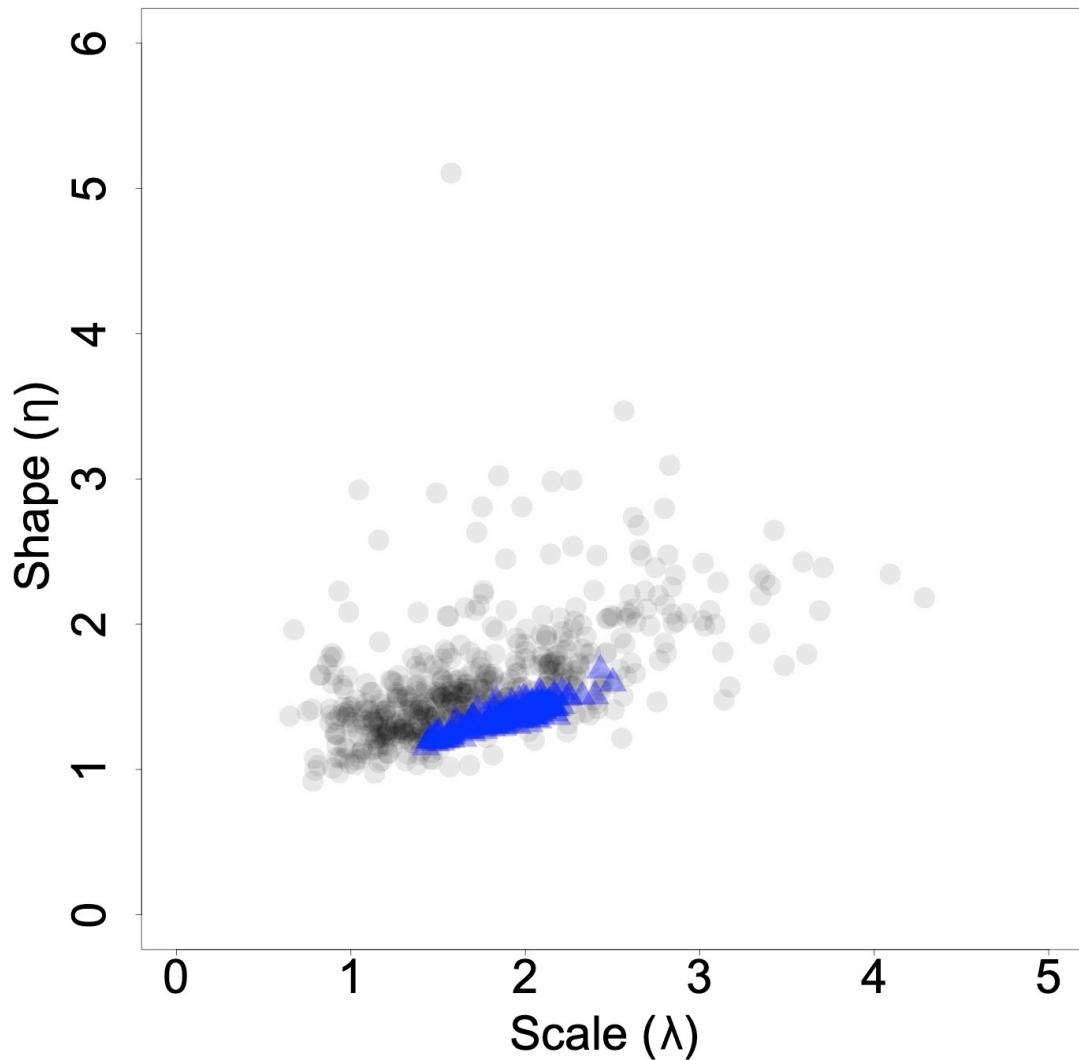
575

576 **Figure legend**

577 Figure 1 Relationship between shape (η) and scale (λ) parameters. Blue circles indicate
578 the parameters of 139 bacterial communities analyzed in this study. Gray circles
579 indicate the parameters of 534 empirical global tree communities published in Ulrich *et*
580 *al.* (2018a) and https://figshare.com/articles/Weibull_fits/5975098. The parameters of
581 bacterial communities did not exceed the parameter space of tree communities.

582

583 Figure 1



584

585 Table 1 Major hypotheses and predictions associated with skewness tested in this study

Hypothesis	Prediction	Related variables	References
(i) Low productivity conditions facilitate skewness (productivity hypothesis).	Skewness decreases toward lower-latitude, deeper, and cooler conditions.	Latitude, Water depth, Temperature	Whittaker (1975), Hubbell (1979), Ulrich <i>et al.</i> (2016a)
(ii) Nutrient limitation facilitates skewness (nutrient hypothesis).	Skewness increases toward lower-nutrient conditions.	NO ₂ , PO ₄	Ulrich <i>et al.</i> (2016a)
(iii) Dominance of r strategists facilitates skewness (r-K strategy hypothesis).	Skewness decreases with increasing long-lived OTUs.	Minimum potential generation time	Magurran & Henderson (2003), Ulrich & Ollik (2004), Ulrich <i>et al.</i> (2016a)

586 **Table 2 Results of the multi-regression model for skewness.**

	β	r^2_{par}	P	
Latitude	-0.0425	0.0034	0.5190	
Latitude ²	0.0817	0.0150	0.1740	
ln(Water depth)	0.0304	0.0007	0.7660	
NO ₂	0.0530	0.0064	0.3770	
PO ₄	0.1397	0.0120	0.1180	
Minimum potential generation time	0.3884	0.1634	<0.0001	***
ln(Total read number)	0.0190	0.0006	0.7830	
ln(OTUs richness)	0.3863	0.1335	<0.0001	***
Whole model		<i>adj. R</i> ²	P	
		0.5591	<0.0001	***

587 Significance: * <0.05 , ** <0.01 , *** <0.001

588

589

590

591 Figure S1 Positive correlations between skewness and rare OTU richness ((a) *adj. R*² =
592 0.3951, *p* < 0.0001, (b) *adj. R*² = 0.3966, *p* < 0.0001).
593 Figure S2 Relationship between lognormal and log-series fits ((a) *adj. R*² = -0.0045, *p* =
594 0.5387, (b) *adj. R*² = 0.1243, *p* < 0.0001, (c) *adj. R*² = 0.0840, *p* = 0.0003). We followed
595 the methods of Ulrich *et al.* (2016a) for calculating both log-series and lognormal fits.
596 Figure S3 Comparison among ρ_{norm} , gamin alpha, and skewness. We calculated two
597 indices used for comparative analyses of SAD shapes, ρ_{norm} and gamin alpha. ((a) *adj.*
598 R^2 = 0.3173, *p* < 0.0001, (b) *adj. R*² = 0.4440, *p* < 0.0001, (c) *adj. R*² = 0.7773, *p*
599 < 0.0001). We followed the methods of Ulrich *et al.* (2016a) and Mathews *et al.* (2014)
600 to calculate ρ_{norm} and gamin alpha, respectively.
601 Figure S4 Results of simple correlation testing. Significance: * < 0.05, ** < 0.01,
602 *** < 0.001, ■ < 0.1
603 Table S1 Extracted bacterial OTU table published in Sunagawa *et al.* 2015.
604 Table S2 Environmental variables and calculated indices used in this study.
605 Supplementary text 1 Multimodality of the gamin distribution.
606
607