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Abstract ���

Describing the variation in commonness and rarity in a community is a fundamental ���

method of evaluating biodiversity. Such patterns have been studied in the context of ���

species abundance distributions (SADs) among macroscopic organisms in numerous ���

communities. Recently, models for analyzing variation in local SAD shapes along ���

environmental gradients have been constructed. The recent development of ���

high-throughput sequencing enables evaluation of commonness and rarity in local ���

communities of microbes using operational taxonomic unit (OTU) read number ���

distributions (ORDs), which are conceptually similar to SADs. However, few studies �	�

have explored the variation in local microbial ORD shapes along environmental �
�

gradients. Therefore, the similarities and differences between SADs and ORDs are ���

unclear, clouding any universal rules of global biodiversity patterns. We investigated ���

the similarities and differences in ORD shapes vs. SADs, and how well environmental ���

variables explain the variation in ORDs along latitudinal and depth gradients. Herein, ���

we integrate ORDS into recent comparative analysis methods for SAD shape using ���

datasets generated on the Tara Oceans expedition. About 56% of the variance in ���

skewness of ORDs among global oceanic bacterial communities was explained with this ���

method. Moreover, we confirmed that the parameter combination constraints of Weibull ���

distributions were shared by ORDs of bacterial communities and SADs of tree �	�

communities, suggesting common long-term limitation processes such as adaptation and �
�

community persistence acting on current abundance variation. On the other hand, ���

skewness was significantly greater for bacterial communities than tree communities, ���

and many ecological predictions did not apply to bacterial communities, suggesting ���

differences in the community assembly rules for microbes and macroscopic organisms. ���

Approaches based on ORDs provide opportunities to quantify macroecological patterns ���

of microbes under the same framework as macroscopic organisms. ���
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Introduction �
�

Species diversity patterns, which are characterized by numbers of species and ���

individuals, provide great opportunities for understanding the ecological and 	��

evolutionary processes that drive global biodiversity (Rabinowitz, 1981; Ricklefs, 2000; 	��

Hubbell, 2001, 2013; Loza et al., 2017). In general, certain species are dominant while 	��

others are rare locally and globally. The processes determining locally common and rare 	��

species have been studied in the context of the species abundance distribution (SAD), 	��

which is one of the most fundamental methods of describing local diversity (Motomura, 	��

1932; MacArthur, 1960; McGill et al., 2007; Doi and Mori, 2013; Ulrich et al., 2018b). 	��

SAD studies focus on the rarity and commonness of species in a local community, and 		�

attempt to reconstruct the background processes that led to those patterns. To date, 	
�

numerous SAD models have been proposed (reviewed in McGill et al., 2007). 	��

MacArthur (1957, 1960) developed the broken stick model based on the hypothesized 
��

niche portioning process, and Hubbell et al. (2001) provided a mechanistic 
��

interpretation of observed abundance distributions with well-defined ecological 
��

parameters such as dispersal, speciation rate, local abundance, and meta-community 
��

size, under the premise of ecological drift. Using these models, we estimated 
��

background processes from SAD patterns. Previous SAD investigations have been 
��

conducted mainly in plants and animals (e.g., Ulrich et al., 2010; Baldridge et al., 2016), 
��

because large datasets and specific criteria for species delimitation are necessary for 
	�

SAD. Therefore, the SAD approach has been applied less to studies of microorganisms 

�

than those of macroscopic species. 
��

 The recent development of molecular techniques, in particular high-throughput ���

sequencing, has made it dramatically easier to capture biodiversity patterns in microbes ���

as well as larger organisms (Lynch and Neufeld, 2015; Schloss et al., 2016; Shade et al., ���

2018). High-throughput sequencing technology has revealed that the microbial ���

ecosystem is inhabited by a large number of rare microbial lineages (Fuhrman, 2009), ���

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/778829doi: bioRxiv preprint 

https://doi.org/10.1101/778829
http://creativecommons.org/licenses/by-nc-nd/4.0/


��

�

collectively referred to as the “rare biosphere” (Sogin et al., 2006; Galand et al., 2009; ���

Ser-Giacomi et al., 2018; reviewed in Lynch and Neufeld, 2015). The existence of rare ���

lineages strongly impacts community structure and diversity patterns, although their �	�

ecological roles and the processes structuring the rare biosphere remain poorly �
�

understood (Ser-Giacomi et al., 2018). The relationships between operational ���

taxonomic units (OTUs; reviewed in Blaxter et al., 2005) and read number have been ����

studied in microbes based on concepts similar to SAD (e.g., Livermore and Jones, ����

2015). Hereafter, we consider OTU read number distributions (ORDs), corresponding ����

conceptually to the rank abundance curve, as being distinct from SADs. OTUs are ����

generally defined as groups based on sequence similarity in maker genes (e.g., SSU ����

rRNA in bacteria and ITS in fungi) (Bálint et al., 2016). Numerous previous studies ����

have attempted to identify a general best-fit model for ORD in a particular habitat by ����

comparing various traditional SAD models (e.g., log-series, lognormal, and power-law ��	�

distributions) (Shade et al., 2012, Sherrill-Mix et al., 2016, Shoemaker et al., 2017, ��
�

Louca et al., 2019). However, few studies have focused on the continuous variation in ����

ORD shape within microbial communities along geographical and environmental ����

gradients (however, see Stegen et al., 2016), which has been a major recent trend in ����

SAD studies of macroecological patterns and their assembly processes.  ����

In recent years, methods for analyzing macroecological patterns and community ����

assembly by comparing SAD shapes have been developed to overcome the limitations ����

of conventional SAD modeling. Specifically, researchers have recently recognized that ����

multiple processes can generate similar SAD shapes, resulting in the fit of a given SAD ����

model not providing clear evidence to support a particular theory (Mathews et al., 2017). ��	�

An alternative approach to comparing changes in parameter value(s) for a given SAD ��
�

model or the fits of different SAD models to data from a single site is the collection of ����

abundance data from a variety of sites followed by construction of models to analyze ����

how SAD properties vary with predictor variables (i.e., comparative analyses of SAD ����
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shape; White et al., 2012, Ulrich et al., 2016a, b, Fattorini et al., 2016; Borda-de-Água ����

et al., 2017, Guerin et al., 2017, Mathews et al., 2019; reviewed in Mathews et al., ����

2017). Many methods have been developed to evaluate SAD shape. For example, ρnorm ����

has been used to evaluate the relative fits of log-series and lognormal distributions ����

(Ulrich et al., 2016 a, b). However, the fits of both log-series and lognormal ����

distributions to community data often weaken with increasing species richness (Ulrich ��	�

et al., 2016a, b, also see Fig. S2), which makes the interpretation of these fits ��
�

inconsistent along species richness gradients in community data. The gambin ����

distribution (Ugland et al., 2007) is often used to evaluate SAD shape (Mathews et al., ����

2014, 2017, 2019), but creation of the gambin distribution requires binning the ����

abundance data into octaves prior to fitting, losing species-level abundance information. ����

In addition, the current criterion used to fit the model is the chi-square test, which ����

generally has a strong dependence on sample size, which makes it difficult to apply the ����

gambin distribution go high-throughput sequencing data with large numbers of both ����

OTUs and reads.  ����

The comparative analysis approaches used for SAD shape provide two new insights. ��	�

First, estimating the constraints of community assembly involves analyzing ��
�

macroecological patterns. Ulrich et al. (2018b) proposed the concept of ‘forbidden ����

communities’ in SAD shapes, placing limitations on the possible combinations of λ ����

(scale parameter) and η (shape parameter). The parameter λ can therefore be interpreted ����

as a measure of SAD shape-specific evenness. The shape parameter η is associated with ����

an excess of either highly abundant species (low η) or rare species (high η). Specifically, ����

Ulrich et al. (2018b) argued that the combination of high η and low λ generates SADs ����

very similar to the well-known broken stick distribution (MacArthur 1957), but those ����

distributions rarely occur in nature. Ulrich et al. (2018b) showed that the shape and ����

scale parameters of this distribution have precise ecological interpretations, with the ��	�

first acting as a measure of the excess of either rare or common species and the second ��
�
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quantifying the proportion of persistent species in the focal community. In addition, ����

Ulrich et al. (2018b) showed that the scale parameter is linearly correlated with failure ����

time mathematically, and that it indicates the relative proportion of adapted species in a ����

community that may be persistent. Thus, these forbidden communities may indicate ����

limited long-term processes such as adaptation and the persistence of the community ����

characterized by the current abundance variation.  ����

Recently, biogeographic and macroecological studies on geographical and climatic ����

variation in SADs have employed large datasets, mainly for plants (White et al., 2012; ����

Ulrich et al., 2016a, b; Guerin et al., 2017). Indeed, large-scale SAD studies have ��	�

recently gained attention due to the accessibility of databases. A large amount of species ��
�

abundance data collected across a broad range of environments is available for ����

large-scale comparative SAD research (Fattorini et al., 2016; Borda-de-Água et al., ����

2017). For example, Ulrich et al. (2016a) showed latitudinal patterns of SAD shape and ����

discussed the processes behind these patterns using a climatic dataset, while Guerin et ����

al. (2017) reported that geographical and climatic gradients affect SAD shapes and ����

discussed future changes in their shapes expected as a consequence of climate change, ����

with changes in diversity and ecosystem function. ����

Here, we integrate recent approaches used for comparative analyses of SAD shape ����

into ORDs. As a case study, we used community datasets generated form the Tara ��	�

Oceans expedition (Sunagawa et al., 2015). Tara Oceans is a project that profiled ��
�

planktonic and microbial communities in the global ocean using high-throughput ����

sequencing. We investigated the drivers of variation in ORDs from local bacterial �	��

communities along a geographic gradient, and assessed the similarities and differences �	��

between the geographical patterns of microbes and macroscopic organisms, comparing �	��

the ORDs of bacterial communities with those of macroscopic communities. In �	��

particular, we studied the similarities and differences in ORD and SAD shapes, with a �	��

particular focus on skewness and parameter combinations of the Weibull distribution, �	��
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and the extent to which environmental variables explain the variation in ORDs along �	��

latitudinal and depth gradients. This approach could support further acceleration of �		�

microbial studies by revealing the drivers of variation in ORD shape and making �	
�

comparisons between microbes and macroscopic species. �	��

 �
��

Materials and Methods �
��

Empirical data  �
��

We used 139 oceanic bacterial community datasets generated from the Tara Oceans �
��

expedition (Sunagawa et al., 2015). Sunagawa et al. (2015) extracted merged �
��

metagenomic Illumina reads (miTAGs) containing signatures of the 16S rRNA gene �
��

(Logares et al., 2013), which were mapped to the SILVA SSU rRNA gene sequence �
��

database (Quast et al., 2013) and clustered into OTUs at the 97% similarity level. The �
	�

range of total reads per sample was 34,081–184,190, with an average of 90,103.06 ± �

�

28,240.38. The OTU count table was summarized at multiple taxonomic levels and can �
��

be downloaded from http://ocean-microbiome.embl.de/companion.html (Sunagawa et ����

al., 2015). We extracted OTUs representing the domain Bacteria for analyses.  ����

We calculated the skewness γ of log-transformed relative read numbers to assess the ����

degree of lower curvature (Ulrich et al., 2016a), which was compared to a symmetrical ����

lognormal distribution. Negative values of γ indicate an excess of rare OTUs, while ����

positive values represent an excess of abundant OTUs compared to a lognormal ����

distribution that is symmetrical around the mean. Thus, the symmetrical lognormal ����

distribution is not skewed. Asymmetrical lognormal SADs nearly always indicate an ��	�

excess of rare OTUs, and consequently have negative skewness (McGill, 2003). The ��
�

log-series model shows an excess of relatively abundant OTUs (associated with positive ����

skewness). We used the parametric function SE (γ) = (6/n)1/2 (Tabachnick and Fidell, ����

1996) to test for significant skewness in SADs (Ulrich et al., 2016a). In this bacterial ����

community dataset, skewness is positively correlated with the number of rare OTUs ����
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(rare biosphere: <0.1 or <0.01, criteria based on Galand et al., 2009, Pedrós-Alió et al., ����

2012) (Fig. S1). The relationships among ρnorm, the alpha parameter of the gambin ����

distribution, and skewness are shown in Fig. S3. ����

 ����

Comparison between ORDs of microbes and SADs of forest plots  ��	�

To reveal differences between the ORD shapes of microbes and SAD shapes of ��
�

macroscopic organisms, we first compared the skewness values of bacterial ����

communities with those of tree communities published in Appendix 1 of Ulrich et al. ����

(2016a). In addition, we compared the two-parameter Weibull distribution, which was ����

recently suggested by Ulrich et al. (2018b) as a flexible descriptive model for SAD ����

shapes. Ulrich et al. (2018b) suggested that the shape and scale parameters of the ����

Weibull distribution have precise ecological interpretations, with the first being a ����

measure of the excess of either rare or common species, and the second quantifying the ����

proportion of persistent species in the focal community. To identify any similar ����

limitations of parameter combinations in bacterial communities, we fitted ��	�

two-parameter Weibull distributions to datasets of oceanic bacterial communities and ��
�

compared the ORD shapes for microbes with the empirical results from 534 tree ����

communities worldwide, presented in Ulrich et al. (2018a). If the ORDs of bacterial ����

communities show similar constraints, community structuring processes are likely ����

shared between the bacterial and tree communities, although the specific mechanisms ����

are unknown. We used the reduced major axis fitting method, following Ulrich et al. ����

(2018b). Values of fit < 0.05 indicate an excellent fit, while fit > 0.3 is poor. We used ����

the updated stand-alone application RAD 2.0 (Ulrich et al., 2010) for fitting of the ����

two-parameter Weibull distributions. ����

 ��	�

Explanatory variables for skewness in ORDs ��
�
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We propose three hypotheses for determining skewness in microbial communities ����

based on existing studies in macroscopic organisms. First, climatic and geographic ����

factors, which are directly associated with local productivity, drive skewness ����

(productivity hypothesis), with higher productivity facilitating lower skewness ����

(Whittaker, 1975; Hubbell, 1979; Ulrich et al., 2016a). Second, local concentrations of ����

nutrients in water negatively affect skewness (nutrient hypothesis), and thus a more ����

eutrophic environment exhibits lower skewness. Last, characteristics of microbial life ����

cycle strategies (i.e., longevity and persistence) negatively influence skewness (r-K ����

strategy hypothesis), with shorter generation times leading to greater skewness. More ��	�

detailed explanations of those hypotheses and predictions are provided in Table 1. The ��
�

original dataset from Sunagawa et al. (2015) is also included with information about ����

each sample.  ����

 In the multi-regression model, we set latitude, squared latitude, water depth (m), ����

nitrite concentration (µmol L-1), phosphate concentration (µmol L-1), and minimum ����

potential generation time (h) as explanatory variables for the variation in skewness. The ����

minimum potential generation times of microbial communities, which were determined ����

from codon usage biases (for detailed methods, see Vieira-Silva and Rocha 2010), were ����

used as an index of r-K strategy at the community level. Minimum potential generation ����

time data are also included the original dataset (Sunagawa et al., 2015). The data output ��	�

from high-throughput sequencing generally contains different sequencing depths (i.e., ��
�

uneven sampling effort) for each sample. Sampling effort influences observed SAD ����

shape (Preston, 1948). Therefore, to account for the effects of biases in the sampled data, ����

we added the OTU richness and total read number of each sample as covariates in the ����

regression models. To avoid nonlinear effects, we used ln-transformed data for water ����

depth, species richness, and total abundance. ����

The level of collinearity between these explanatory variables was determined by ����

calculating the variance inflation factor (VIF). All variables were standardized to zero ����
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mean and unit variance prior to parameter estimation. We selected explanatory variables ����

according to a threshold VIF value, where VIF > 10 indicates that the model has a ��	�

collinearity problem (Quinn and Keough, 2002, Neves et al., 2015). VIF ranged from ��
�

1.10 to 8.26, suggesting a lack of multicollinearity in this multi-regression model. ����

However, the effects of temperature on skewness showed the opposite trends compared ����

to the results of simple correlation (Fig. S4). We excluded temperature from the final ����

analyses, causing the VIFs to range from 1.07 to 3.06. We use the ‘car’ package of R ����

(Fox et al., 2007) to calculate VIFs and the ‘rsq’ package (Zhang, 2018) to calculate ����

partial r-square coefficients. ����

 ����

Results ����

The mean of skewness was 0.81±0.17 among 139 samples. All communities showed ��	�

significant positively skewed trends compared to the symmetric lognormal model ��
�

(Tabachnick and Fidell, 1996; Ulrich et al., 2016a), indicating that all ORD shapes are ����

significantly more similar to log-series distributions than lognormal distributions. Based �	��

on the results of t-test, bacterial communities are significantly more skewed than tree �	��

communities (Welch’s t-test; p<0.0001), and thus more similar to the log-series �	��

distribution in shape. �	��

Weibull distribution fits to 137 of the 139 communities (98.6%) were moderate (fit < �	��

0.3), while only two (1.4%) were comparatively poor (fit>0.3). The parameter �	��

combinations in bacterial communities did not exceed the parameter space for tree �	��

communities (Fig. 1), suggesting constraints on ORD shape (Ulrich et al., 2018a).  �		�

In total, the model explained about 56% of the variance in skewness in 131 ORDs �	
�

(Table 2). Eight communities lacked some data and were excluded from the analyses of �	��

ORD shapes. Skewness increased with increasing minimum potential generation time, �
��

and was not associated with productivity, nutrients or r-K strategy, as shown in Table 1. �
��

 �
��
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Discussion �
��

We fit the two-parameter Weibull distribution and clearly showed that the parameters of �
��

the bacterial communities were not outside of the limited space described in Ulrich et al. �
��

(2018b), suggesting some limitation on community assembly processes that is shared �
��

between SADs and ORDs. We could explain about 56% of skewness variation in ORDs, �
	�

revealing the drivers of skewness. Therefore, we conclude that comparative analyses of �

�

ORDs shape are also useful for identifying drivers and background processes, and that �
��

ORD shapes have similar constraints to those described in Ulrich et al. (2018b). These ����

findings emphasize the applicability of comparative analyses of ORD shape in ����

microbial communities. However, the number of case studies using this method remains ����

small, so further empirical studies are needed to fully elucidate ORD patterns and their ����

drivers. ����

 ����

Similarities and differences between SADs and ORDs ����

Comparison of SADs and ORDs has been suggested as a useful approach to identify ��	�

general rules across microbial and macroscopic communities (Shade et al., 2018). In the ��
�

present study, we compared SADs of tree communities with ORDs of microbial ����

communities using the two fitted parameters (shape parameter [η] and scale parameter ����

[λ]) of the Weibull distribution. We confirmed similar constraints of parameter ����

combinations in ORDs and SADs of tree communities of η < 3 and λ < 6, as originally ����

proposed in Ulrich et al. (2018b). These constraints on community structure may ����

indicate limitation due to long-term processes such as adaptation and persistence of the ����

community on variation in abundance (Ulrich et al. 2018b). Locey and Lennon (2016) ����

found similar scaling of commonness and rarity across microbes and macroscopic plants ����

and animals, and proposed a universal dominance scaling law that holds true over 30 ��	�

orders of magnitude. We suggest that the concept of forbidden communities presented ��
�

by Ulrich et al. (2018b) is related to the scaling law (e.g., community persistence is ����
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regulated by metabolic rate). Further comparisons of SADs and ORDs may reveal ����

whether similar constraints exist in other taxonomic groups and habitats.  ����

We emphasize that ORDs should have similar dataset properties as SADs. We also ����

take a negative view of the common practice of referring to ORDs as SADs and their ����

inclusion in SAD studies. In our analyses, the skewness of bacterial communities was ����

significantly greater than that of tree communities, indicating a larger proportion of rare ����

OTUs among bacteria than among trees. Previous studies in macroscopic organisms ����

have reported that persistent species (i.e., stable communities driven mainly by habitat ��	�

filtering) exhibit a lognormal SAD (i.e., smaller skewness), while transient species (i.e., ��
�

dispersal-driven communities that vary over time) are best modeled with the log-series ����

(i.e., high skewness) distribution (Magurran and Henderson, 2003; Ulrich and Ollik, ����

2004; Ulrich et al., 2010, 2016a). Therefore, our results indicate that bacterial ����

communities include larger proportions of transient OTUs if we interpret the results ����

based on findings from macroscopic organisms.  ����

There are two major factors that should be taken into consideration to inclusion of ����

ORDs in SAD studies. The first issue is associated with delimitation of species and ����

individuals in microbes (reviewed in Hason et al., 2012). Empirically, 97% similarity in ����

(partial) 16S rRNA gene sequences has commonly been used to characterize ��	�

prokaryotic species-level phylogenetic diversity. However this resolution leads to ��
�

underestimation of genomic (i.e., species) diversity (Rodriguez-R et al., 2018). In tree ����

communities, Hubbell (2013) found differences in SAD shape among taxonomic ����

resolutions (i.e., species, genus, and family) in tropical forest data; specifically, the tail ����

length (rare species) decreased with lower taxonomic resolution. Moreover, researchers ����

generally treat the read number of OTUs as an abundance metric. However, the results ����

of 16S rRNA gene sequencing reveal relative, rather than absolute, abundances of ����

individual lineages. In addition, these results may be biased due to differences in PCR ����
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primer specificity and gene copy number among lineages. Thus, care should be taken ����

when comparing those patterns with actual abundance data.  ��	�

The second issue is associated with the community characteristics. In SAD studies, ��
�

researchers generally focus on a horizontal community composed of a single trophic ����

level, such as “tree community” and “herbivore community” (but see Mathews et al., ����

2019). However, the sequencing data based on a marker gene contains DNA of the ����

entire assemblage in a sample, which makes it impossible to categorize the trophic ����

levels of all microbes and ontogenetic stages. The presence of a persistent microbial ����

seed bank (i.e., in situ populations of long-lived rare OTUs) might affect ����

community-level patterns (Gibbsons et al., 2013), making it difficult to interpret the ����

relationship between the proportion of rare OTUs and minimum potential generation ����

time. In other words, microbial community datasets include different life stages as one ��	�

category, analogous to grouping “seed in the soil,” “mature tree,” and “dead tree” in a ��
�

dataset of trees. Above, we noted the possibility that bacterial communities include ����

larger proportions of transient OTUs when interpreted based on data for macroscopic ����

organisms. If we consider that long-lived rare OTUs are present in situ, the ����

interpretation of a larger proportion of transient OTUs in microbes is directly ����

contradicted. Therefore, it may be difficult to apply ecological rules that were ����

developed in horizontal communities of macroscopic species (Vellend et al., 2010, ����

Vellend 2016) to DNA-based microbial datasets, at least those related to the community ����

properties of persistence and transience.  ����

 ��	�

Extent to which environmental variables explain variation in ORD shapes in oceanic ��
�

bacteria worldwide ����

The multi-regression model explained about 56% of skewness variation in ORDs. Using ����

data from oceanic bacterial communities, we confirmed that the patterns predicted from ����

hypotheses based on macroscopic studies were not supported, as shown in Table 1. ����
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Furthermore, the skewness was significantly and positively affected by the minimum ����

potential generation time within bacterial communities. This result is in opposition to ����

the prediction based on research in macroscopic organisms (Table 1, 2). To explain the ����

opposing trends in bacterial communities compared to predictions for macroscopic ����

species, we could interpret this result as showing that competitive exclusion is less ��	�

likely occur in bacteria than in macroscopic communities. In macroscopic organisms, ��
�

species are adapted to the environment as a community, which makes the relationship ����

between the environment and community structure clear. In animals and plants, when �	��

suitable species are present in an environment, unsuitable species are excluded from the �	��

community, and the relationship between the environment and community structure is �	��

simple. On the other hand, bacteria under unsuitable conditions may continue existing �	��

(e.g., enter dormancy), thus appearing in high-throughput sequencing data. Campbell et �	��

al. (2011) compared DNA-based patterns with those based on RNA (i.e., �	��

transcriptionally active OTUs), and suggested that about 12% of amplicon sequences of �	��

oceanic bacteria are always inactive.  �		�

 �	
�

Conclusions and perspectives �	��

Comparative analyses of skewness, ρnorm, and the Weibull and gambin parameters, �
��

which are major approaches used recently in SADs, provide researchers a basis for �
��

discussing similarities and differences between microbial and macroscopic life. In the �
��

near future, comparative approaches between microbes and macroscopic organisms, �
��

including environmental DNA (eDNA) metabarcoding studies (e.g., Doi et al., 2019), �
��

may reveal universal rules determining global biodiversity patterns. Further theoretical �
��

frameworks focused specifically on microbes and multi-trophic data are needed, with �
��

macroscopic ecology studies such as Hubbell et al. (2001) as a starting point for �
	�

discussion (Rosindell et al., 2012). We encourage construction of microbe-specific �

�

ecological rules, such as rules explicitly considering the metabolic versatility of �
��
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�

microbes in community assembly processes, as the properties necessary for inclusion in ����

datasets differs from those for macroscopic organisms. At the same time, further ����

comparative analyses may reveal the detailed drivers and facilitate a better ����

understanding of the similarities and differences between the quantitative patterns of ����

macroscopic and microbial communities. ����

 ����

Data Accessibility Statement ����

All environmental factors, calculated data, and the OTU table used for analyses are ��	�

presented in Tables S1 and S2, and the original data were published in Sunagawa et al. ��
�

(2015) and http://ocean-microbiome.embl.de/companion.html. The Weibull parameters ����

and skewness of global tree communities published in Ulrich et al. (2018a) are available ����

from https://figshare.com/articles/Weibull_fits/5975098 and Appendix 1 of Ulrich et al. ����

(2016a), respectively. ����
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Figure legend  �	��

Figure 1 Relationship between shape (η) and scale (λ) parameters. Blue circles indicate �		�

the parameters of 139 bacterial communities analyzed in this study. Gray circles �	
�

indicate the parameters of 534 empirical global tree communities published in Ulrich et �	��

al. (2018a) and https://figshare.com/articles/Weibull_fits/5975098. The parameters of �
��

bacterial communities did not exceed the parameter space of tree communities. �
��
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Table 1 Major hypotheses and predictions associated with skewness tested in this study  ����

Hypothesis Prediction Related variables References 

(i) Low productivity conditions facilitate 

skewness (productivity hypothesis). 

Skewness decreases toward 

lower-latitude, deeper, and 

cooler conditions. 

Latitude, Water 

depth, Temperature 

Whittaker (1975), Hubbell (1979), 

Ulrich et al. (2016a) 

(ii) Nutrient limitation facilitates 

skewness (nutrient hypothesis).  

Skewness increases toward 

lower-nutrient conditions. 
NO2, PO4 

Ulrich et al. (2016a) 

(iii) Dominance of r strategists facilitates 

skewness (r-K strategy hypothesis). 

Skewness decreases with 

increasing long-lived OTUs. 

Minimum potential 

generation time 

Magurran & Henderson (2003), 

Ulrich & Ollik (2004), Ulrich et al. 
(2016a) 
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Table 2 Results of the multi-regression model for skewness. �
��

�  �  �  �   

�  β r2 par P �  

Latitude -0.0425 0.0034 0.5190   

Latitude2 0.0817  0.0150 0.1740  

ln(Water depth) 0.0304  0.0007 0.7660  

NO2 0.0530 0.0064 0.3770  

PO4 0.1397 0.0120  0.1180  

Minimum potential generation 

time 
0.3884  0.1634  <0.0001 *** 

ln(Total read number) 0.0190  0.0006 0.7830   

ln(OTUs richness) 0.3863  0.1335  <0.0001 *** 

Whole model  adj. R2  P  

�  �  0.5591  <0.0001 *** 

Significance: *<0.05, **<0.01, ***<0.001 �
	�

 �

�

 �
��

����

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/778829doi: bioRxiv preprint 

https://doi.org/10.1101/778829
http://creativecommons.org/licenses/by-nc-nd/4.0/


���

�

Figure S1 Positive correlations between skewness and rare OTU richness ((a) adj. R2 = ����

0.3951, p <0.0001, (b) adj. R2 = 0.3966, p <0.0001). ����

Figure S2 Relationship between lognormal and log-series fits ((a) adj. R2 = –0.0045, p = ����

0.5387, (b) adj. R2 = 0.1243, p < 0.0001, (c) adj. R2 = 0.0840, p = 0.0003). We followed ����

the methods of Ulrich et al. (2016a) for calculating both log-series and lognormal fits. ����

Figure S3 Comparison among ρnorm, gambin alpha, and skewness. We calculated two ����

indices used for comparative analyses of SAD shapes, ρnorm and gambin alpha. ((a) adj. ��	�

R2 = 0.3173, p <0.0001, (b) adj. R2 = 0.4440, p <0.0001, (c) adj. R2 = 0.7773, p ��
�

<0.0001). We followed the methods of Ulrich et al. (2016a) and Mathews et al. (2014) ����

to calculate ρnorm and gambin alpha, respectively. ����

Figure S4 Results of simple correlation testing. Significance: *<0.05, **<0.01, ����

***<0.001, ■<0.1  ����

Table S1 Extracted bacterial OTU table published in Sunagawa et al. 2015. ����

Table S2 Environmental variables and calculated indices used in this study. ����

Supplementary text 1 Multimodality of the gambin distribution. ����
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