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Abstract

Shadow enhancers, groups of seemingly redundant enhancers, are found in a wide range of
organisms and are critical for robust developmental patterning. However, their mechanism of
action is unknown. We hypothesized that shadow enhancers drive consistent expression levels by
buffering upstream noise through a separation of transcription factor (TF) inputs at the individual
enhancers. By measuring transcriptional dynamics of several Kruppel shadow enhancer
configurations in live Drosophila embryos, we showed individual member enhancers act largely
independently. We found that TF fluctuations are an appreciable source of noise that the shadow
enhancer pair can better buffer than duplicated enhancers. The shadow enhancer pair is uniquely
able to maintain low levels of expression noise across a wide range of temperatures. A stochastic
model demonstrated the separation of TF inputs is sufficient to explain these findings. Our
results suggest the widespread use of shadow enhancers is partially due to their noise suppressing
ability.

Introduction

The first evidence that transcription occurred in bursts, as opposed to as a smooth, continuous
process, was observed in Drosophila embryos, where electron micrographs showed that even
highly transcribed genes had regions of chromatin lacking associated transcripts between regions
of densely associated nascent transcripts (Miller & McKnight, 1979). As visualization techniques
have improved, it is increasingly clear that transcriptional bursting is the predominant mode of
expression across organisms from bacteria to mammals (Dar, et al.,2012; Sanchez & Golding,
2013; Zenklusen, et al., 2008; Fukaya, et al., 2016). These bursts of transcriptional activity,
separated by periods of relative silence, have important implications for cellular function, as
mRNA numbers and fluctuations largely dictate these quantities at the protein level (Csardi, et
al., 2015; Hansen, et al., 2018). Such fluctuations in regulatory proteins, like TFs and signaling
molecules, can propagate down a gene regulatory network, significantly altering the expression
levels or noise of downstream target genes (Blake, et al., 2003).

Given that protein levels fluctuate and that these fluctuations can cascade down
regulatory networks, this raises the question of how organisms establish and maintain the precise
levels of gene expression seen during development, where expression patterns can be
reproducible down to half-nuclear distances in Drosophila embryos (Dubuis, et al., 2013;
Gregor, et al., 2007). Many mechanisms that buffer against the noise inherent in gene expression
or stemming from genetic or environmental variation have been observed (Lagha, et al., 2012;
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Stapel, et al., 2017; Raj et al., 2010). For example, organisms use temporal and spatial averaging
mechanisms and redundancy in genetic circuits to achieve the precision required for proper
development (Stapel, et al., 2017; Raj, et al., 2010; Erdman, et al., 2009; Lagha, et al., 2012).
Here, we propose that shadow enhancers may be another mechanism by which developmental
systems manage noise (Barolo, S., 2012).

Shadow enhancers are groups of two or more enhancers that control the same target gene
and drive overlapping spatiotemporal expression patterns (Barolo, S., 2012). Shadow enhancers
are found in many organisms, from insects to plants to mammals, and are strongly associated
with developmental genes (Cannavo, et al., 2016; Osterwalder, et al., 2018; Garnett, et al., 2012;
Bomblies, et al., 1999). These seemingly redundant enhancers have been shown to be critical for
proper gene expression in the face of both environmental and genetic perturbations, which may
exacerbate fluctuations in upstream regulators (Frankel, et al., 2010; Osterwalder, et al. 2018;
Perry, et al., 2010; Cheung & Ma, 2015, Chen, et al., 2015). However, shadow enhancers’
precise mechanism of action is still unknown. Others have proposed that having multiple
enhancers controlling the same promoter ensures a critical threshold of gene expression is
reached, perhaps by reducing the effective “failure rate” of the promoter (Lam, et al., 2015;
Perry, et al., 2011). An alternative, but not mutually exclusive, possibility is that shadow
enhancers ensure precise expression by buffering noise in upstream regulators. Several studies
suggest that individual enhancers of a shadow enhancer group tend to be controlled by different
sets of TFs, which we call a “separation of inputs” (Wunderlich, et al., 2015; Cannavo, et al.,
2016; Ghiasvand, et al., 2011). We hypothesize that this separation allows shadow enhancers to
buffer against fluctuations in TF levels.

The Drosophila gap gene Kruppel (Kr) provides a useful system in which to address the
mechanisms of action of shadow enhancers. During early embryogenesis, Kr is controlled by the
activity of two enhancers, proximal and distal, that are each activated by different sets of TFs
(Figure 1A; Wunderlich, et al., 2015). Here we focus on differences in activation, as the key
repressors of Kr, knirps and giant, are likely to regulate both enhancers. Kr expression during
this time is critical for thorax formation, and like the other gap genes in the Drosophila embryo,
has quite low noise (Preiss, et al., 1985; Dubuis, et al., 2013). By measuring live mRNA
dynamics, we can use the Kr system in Drosophila embryos to assess whether and how shadow
enhancers act to buffer noise and identify the sources of noise in the developing embryo.

To test our hypothesis, we measured live mRNA dynamics driven by either single Kr
enhancer, duplicated enhancers, or the shadow enhancer pair and compared the dynamics and
noise associated with each. We showed that the individual K7 enhancers can act largely
independently in the same nucleus while identical enhancers display correlated activity. We
constructed a simple mathematical model to describe this system and found that TF fluctuations
are necessary to reproduce the correlated activity of identical enhancers in the same nucleus.
Using this model, we also found that the lower expression noise driven by the shadow enhancer
pair compared to either duplicated enhancer is a natural consequence of the separation of TF
inputs. Experimentally, we found the shadow enhancer pair achieves lower noise through
decreases in both intrinsic and extrinsic sources of noise. Additionally, the shadow enhancer pair
is uniquely able to maintain low levels of expression noise across a wide range of temperatures.
We suggest that this noise suppression ability is one of the key features that explains the
prevalence of shadow enhancers in developmental systems.
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Results
Individual enhancers in the shadow enhancer pair act nearly independently within a nucleus

To test our hypothesis that the separation of inputs between Kruppel’s (Kr) shadow enhancers
provides them with noise-buffering capabilities, we needed to first test the ability of each
enhancer to act independently. If variability in gene expression is driven primarily by
fluctuations in upstream factors, the shadow enhancer pair, whose individual enhancers are
controlled by different sets of TFs, could provide a form of noise buffering. Conversely,
variability in upstream regulators may be low enough in the developing embryo that these
fluctuations are not the primary driver of downstream expression noise. If this were the case, the
separation of inputs is unlikely to be a key requirement of shadow enhancer function.

To investigate these possibilities, we measured and compared the correlation of allele
activity in homozygous or heterozygous embryos that carry two reporter genes. Proximal
homozygotes contained the proximal enhancer driving a reporter, inserted in the same location on
both homologous chromosomes, and distal homozygotes similarly had the distal enhancer driving
reporter expression on both homologous chromosomes (Figure 1B). We also made heterozygous
embryos, called shadow heterozygotes, which had one proximal and one distal reporter, again in
the same location on both homologous chromosomes. To measure live mRNA dynamics and
correlations in allele activity, we used the MS2-MCP reporter system (Figure 1C, D). This
system allows the visualization of mRNAs that contain the MS2 RNA sequence, which is bound
by an MCP-GFP fusion protein (Bertrand, et al., 1998). In the developing embryo, only the site
of nascent transcription is visible, as single transcripts are too dim, allowing us to measure the
rate of transcription (Garcia, et al., 2013; Lucas, et al., 2013). In blastoderm-stage embryos with
two MS2 reporter genes, we can observe two distinct foci of fluorescence corresponding to the
two alleles (Figure 1D), in line with previous results that suggest there are low levels of
transvection at this stage (Lim, et al., 2018; Fukaya & Levine, 2017). To confirm our ability to
distinguish the two alleles, we imaged transcription in embryos hemizygous for our reporter
constructs, which only show one spot of fluorescence per nucleus. Our counts of active
transcription sites in homozygous embryos correspond well to the expected value calculated
from hemizygous embryos (Supplemental Figure 1). Therefore, we are able to measure the
correlation of allele activity, though we cannot identify which spot corresponds to which
reporter.

We predicted that if variability in gene expression is driven by fluctuations in input TFs,
we would observe lower correlations of allele activity in shadow heterozygotes than in either the
proximal or distal homozygotes. However, if global factors affecting both enhancers dominate,
there would be no difference in allele activity correlations. During the ~1 hour of nuclear cycle
14 (nc14) we found that allele activity is more than twice as correlated in both proximal and
distal homozygotes than in shadow heterozygote embryos at 47-57% egg length, which
encompasses the central region of Kr expression during this time period (Figure 1). This
indicates not only that the individual member enhancers of the shadow enhancer pair can act
largely independently in the same nucleus, but that differential TF inputs are the primary
determinants of transcriptional bursts in this system. Notably, heterozygotes still show marginal
allele correlation, indicating that some correlation is induced by either shared input TFs or
factors that affect transcription globally. The independence of individual Kr enhancers allows for


https://doi.org/10.1101/778092
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/778092; this version posted September 25, 2019. The copyright holder for this preprint (which was

130
131

132
133

134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152

153
154
155
156
157
158
159
160
161
162
163

164
165
166
167
168
169
170
171
172

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

the possibility that shadow enhancers can act to buffer noise by providing separate inputs to the
same gene expression output.

Transcription factor fluctuations are required for the observed differences in the correlations of
enhancer activity

To explore the conditions needed for the two Kr enhancers to act nearly independently within the
same nucleus, we generated a simple model of enhancer-driven dynamics. We considered an
enhancer E that interacts with a transcription factor T, which together bind to the promoter to
form the active promoter-enhancer complex C (Figure 2A). When the promoter is bound by the
enhancer, it drives the production of mRNA. Since the MS2 system only allows us to observe
mRNA at the site of transcription, we modeled the diffusion of mMRNA away from the
transcription site as decay. The transcription factor T is produced in bursts of » molecules at a
time, and it degrades linearly. For simplicity, the transcription factor T is an abstraction of the
multiple activating TFs that interact with the enhancer, and T corresponds to a different set of
TFs for the proximal and distal enhancer. This nonlinear model generalizes the linear model by
Bothma et al. (Bothma et al., 2015) by explicitly taking into account the presence of TFs.

We estimated some model parameters directly from experimental data and others by
fitting using simulated annealing. The mRNA degradation parameter a and production parameter
r were measured directly from fluorescence data without any input from the model (see Methods
for details). The remaining parameters were first estimated using mathematical analysis, then
fine-tuned using simulated annealing. We found separate parameter sets for the proximal and
distal enhancers that, when used to simulate transcription, fit the experimentally measured
characteristics of the transcriptional traces, including transcription burst size, frequency, and
duration, as well as the total mRNA produced (Supplementary Figure 2).

We hypothesized that a model that lacks fluctuations in the input TFs could not
recapitulate the high correlation of transcriptional activity in homozygotes versus the low
correlation in heterozygotes. To test this hypothesis, we generated another model of TF
production. We call our original model described above bursting TFs. The other model is one in
which TF numbers are constant over time, which we call constant TFs and is equivalent to the
model in (Bothma et al., 2015). If the difference in transcription correlation between
homozygotes and heterozygotes is due to fluctuating numbers of TFs, we expected that the
bursting TFs model will recapitulate this behavior, while the constant TFs model will not.
However, if the constant TFs model is also able to recapitulate the observed difference in
correlations, then the correlations are likely a consequence of the identical enhancers simply
being regulated by the same set of TFs.

For each model, we used the 10 best parameter sets to simulate transcriptional activity in
homozygote and heterozygote embryos and analyzed the resulting allele correlations. We found
that the bursting TFs model always produced results in which both homozygote allele
correlations are significantly higher than the heterozygote, as observed experimentally (Figure
2B). None of the best fitting parameter sets for the constant TF model were able to produce the
experimentally-observed behavior and always resulted in similar correlations for the homozygote
and heterozygote embryos (Figure 2C). Therefore, in our minimalist model of enhancer-driven
transcription, the presence of TF fluctuations is required for the observed differences in allele
correlation. These results also demonstrate the advantage of using a single generic TF for each
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enhancer. By abstracting away TF interactions, we reduced the complexity and number of
parameters in the model, which allowed us to explore the relationship between TF production
and allele correlation.

The shadow enhancer pair drives less noisy expression than enhancer duplications

Since the individual Kr enhancers can act independently, we wanted to further test whether this
separation of inputs enables the shadow enhancer pair to provide more stable gene expression
output. We compared the noise in expression driven by the shadow enhancer pair to that driven
by two copies of either the distal or proximal enhancer (Figure 3). If the shadow enhancer pair
drives lower noise, this observation, combined with our finding of enhancer independence,
strongly suggests that the shadow enhancer pair reduces variability and mediates robustness by
buffering fluctuations in upstream regulators. Alternatively, if duplicated enhancers drive similar
levels of expression noise, this suggests that a separation of inputs is not critical for shadow
enhancer’s function and that shadow enhancers mediate robustness through a different
mechanism, such as ensuring a critical threshold of expression is met (Lam, et al., 2015; Perry, et
al., 2011).

We tracked the transcriptional activity in embryos expressing MS2 under the control of
the shadow enhancer pair, a duplicated proximal enhancer, or a duplicated distal enhancer
(Figure 3). To measure noise associated with each enhancer, we used these traces to calculate the
coefficient of variation (CV) of transcriptional activity across ncl14. CV is the standard deviation
divided by the mean and provides a unitless measure of noise to allow comparisons among our
enhancer constructs. We then grouped these CV values by the AP position of the transcriptional
spots and found the average CV at each position for each enhancer construct. All of the enhancer
constructs display the lowest expression noise at the egg length of their peak expression (Figure
3A), in agreement with previous findings of an inverse relationship between mean expression
and noise levels (Dar et al., 2016; Supplemental Figure 3). The shadow enhancer pair’s
expression noise is almost 30% or 15% lower, respectively, than that of the duplicated proximal
or distal enhancers in their positions of maximum expression.

If the primary function of shadow enhancers is only to ensure a critical threshold of
expression is reached, we would not expect to also see the lower expression noise associated
with the shadow enhancer pair compared to either duplicated enhancer. Furthermore, this
decreased expression noise is not simply a consequence of higher expression levels, as the
shadow enhancer pair produces less mRNA than the duplicated distal enhancer during nc14
(Figure 3B). The lower expression noise associated with the shadow enhancer pair suggests that
it is less susceptible to fluctuations in upstream TFs than multiple identical enhancers.

The separation of input TF's is sufficient to explain the low noise driven by the shadow enhancer
pair

To explore which factors drive the difference in CVs between the duplicated and shadow
enhancer constructs, we extended our model to have a single promoter controlled by two
enhancers (Figure 4A). To do so, we assumed that either or both enhancers can be looped to the
promoter and drive mRNA production. The rate of mRNA production when both enhancers are
looped is the sum of the rates driven by the individual enhancers. We assumed that some
parameters, e.g. the TF production rates and mRNA decay rate, are the same as the single
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215  enhancer case. We allowed the parameters describing the promoter-enhancer looping dynamics
216  (the kon and k,y values) to differ, depending on the enhancer’s position in the construct relative
217  to the promoter and whether another enhancer is present. To fit the k., and k. values, we used
218  the medians of the 10 best single enhancer parameter sets as a starting point and performed

219  simulated annealing to refine them.

220 This approach allowed us to examine how the model parameters that describe promoter-
221  enhancer looping dynamics change when two enhancers are controlling the same promoter. We
222 compared the ko and ko, values for each enhancer in the two enhancer constructs to their values
223 from the single enhancer model. We generally found that k,; values increased and k., values
224  decreased (Figure 4B). The effect is most pronounced in the duplicated distal enhancer, with
225  large changes to the ko and k.. values for the enhancer in the position far from the promoter
226  (position 2). Given that our model assumes that enhancers act additively and only allows for
227  changes in the ko and ko, values, these observed effects may indicate that either the presence of
228  asecond enhancer interferes with promoter-enhancer looping or that the promoter can be

229  saturated. Our model cannot distinguish between these two possibilities, but these observations
230  are consistent with our (Supplementary Figure 4) and previous results indicating that the Kr

231  enhancers act sub-additively (Scholes, et al., 2019). Additionally, the dramatic changes in ko5
232 and ko, values in the duplicated distal enhancer are consistent with a previous assertion that

233 enhancer sub-additivity is most pronounced in cases of strong enhancers (Bothma et al., 2015).

234 We used these models to simulate transcription and predict the resulting CVs from the
235 duplicated enhancer and shadow enhancer constructs. In line with experimental data, we found
236  the model predicts that the shadow enhancer construct drives lower noise than the duplicated
237  distal or duplicated proximal enhancer constructs in the middle of the embryo. This is

238  particularly notable, as we did not explicitly fit our model to reproduce the experimentally

239  observed CVs. There is only one fundamental difference between the shadow and duplicated
240  enhancer models, namely the use of separate TF inputs for the shadow enhancers. Therefore, we
241  can conclude that the separation of input TFs is sufficient to explain the low noise driven by the
242 shadow enhancer construct.

243 The shadow enhancer pair buffers against intrinsic and extrinsic sources of noise

244  To further validate that the more stable expression driven by the shadow enhancer pair is due to
245 its separation of inputs, we compared the extrinsic and intrinsic noise associated with the shadow
246  enhancer pair to that associated with either single or duplicated enhancers. To do so, we

247  measured the transcriptional dynamics of embryos with two identical reporters in each nucleus
248  and calculated noise sources using the approach of Elowitz, et al. (Elowitz, et al., 2002). Intrinsic
249  noise corresponds to sources of noise, such as TF binding and unbinding, that affect each allele
250  separately. It is quantified by the degree to which the activities of the two reporters in a single
251  nucleus differ. Extrinsic noise corresponds to global sources of noise, such as TF levels, that

252 affect both alleles simultaneously. It is measured by the degree to which the activities of the two
253 reporters change together. Intrinsic and extrinsic noise are defined such that, when squared, their
254 sum is equal to total noise?, which corresponds to the CV? of the two identical alleles in each

255  nucleus in our system (see Methods). Because our data do not meet one key assumption needed
256  to measure extrinsic and intrinsic noise with the two reporter approach (see Discussion;

257  Supplementary Figure 5), we use the terms inter-allele noise and covariance in place of intrinsic
258  and extrinsic noise.
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Based on our separation of inputs hypothesis and CV data, we expected the total noise
associated with the shadow enhancer pair to be lower than that associated with the duplicated
enhancers. We predicted that the shadow enhancer pair will mediate lower total expression noise
through lower covariance, as the two member enhancers are regulated by different TFs. Given
the complexity of predicting inter-allele noise from first principles (see Supplementary Note), we
predicted that constructs with two enhancers will have lower inter-allele noise than single
enhancer constructs, but did not have a strong prediction regarding the relative inter-allele noise
among the different two-enhancer constructs. Comparisons of noise between the single and
duplicated enhancer constructs would further allow us to discern whether reductions in noise are
generally associated with two-enhancer constructs or whether this is a particular feature of the
shadow enhancer pair.

Neither the duplicated proximal nor distal enhancers drive significantly lower total noise
than the corresponding single enhancers, indicating that the addition of an identical enhancer is
not sufficient to reduce expression noise in this system (Figure 5A). The shadow enhancer pair
drives lower total expression noise than either single or duplicated enhancer, consistent with the
temporal CV data in Figure 3. The median total expression noise associated with the duplicated
distal and duplicated proximal enhancers is 1.4 or 2.4 times higher, respectively, than that
associated with the shadow enhancer pair (Figure SA). Note that for measurements of noise, our
distal construct places the enhancer at the endogenous spacing from the promoter, as we wanted
to control for positional effects on expression and noise (Scholes, et al., 2019; Supplemental
Figure 6).

In line with our expectations, the shadow enhancer pair has significantly lower
covariance levels than either single or duplicated enhancers (Figure 5B). The shadow enhancer
pair also has lower inter-allele noise than all of the other constructs, though these differences are
only marginally significant (p = 0.13) when compared to the duplicated distal enhancer.
Covariance makes a larger contribution to the total noise for the duplicated distal enhancer and
the shadow enhancer pair, while inter-allele noise is the larger source of noise for the single
distal enhancer and the single or duplicated proximal enhancers (Figure 5B).

The lower total noise and covariance of the shadow enhancer pair support our hypothesis
that, by separating regulation of the member enhancers, the shadow enhancer pair can buffer
against upstream fluctuations. The lower inter-allele noise associated with the shadow enhancer
pair warrants further investigation. A simple theoretical approach predicts that two enhancer
constructs will have lower inter-allele noise (see Supplementary Note). Given that this is not
universally observed in our data, this suggests that there is still much to discover about how
inter-allele noise changes as additional enhancers control a gene’s transcription.

The shadow enhancer pair drives low noise at several temperatures

We showed the Kr shadow enhancer pair drives expression with lower total noise than either
single or duplicated enhancer, yet previous studies have generally found individual member
enhancers of a shadow enhancer set are dispensable under ideal conditions (Frankel, et al., 2010;
Perry et al., 2011; Osterwalder, et al., 2018). However, in the face of environmental or genetic
stress, the full shadow enhancer group is necessary for proper development (Frankel et al., 2010;
Osterwalder, et al., 2018; Perry, et al., 2011). We therefore decided to investigate whether
temperature stress causes significant increases in expression noise and whether the shadow
enhancer pair or duplicated enhancers can buffer potential increases in noise.
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Similar to our findings at ambient temperature (26.5°C), the shadow enhancer pair drives
lower total noise than all other tested enhancer constructs at 32°C (Figure 6B). At 32°C, the
duplicated distal and duplicated proximal enhancers display 35% or 52%, respectively, higher
total noise than the shadow enhancer pair. At 17°C, the shadow enhancer pair has approximately
46% lower total noise than either the single or duplicated proximal enhancer, 21% lower total
noise than the single distal enhancer, and is not significantly different than the duplicated distal
enhancer (Figure 6A). As seen by the variety of shapes in the temperature response curves
(Figure 6C), temperature perturbations have enhancer-specific effects, suggesting input TFs may
differ in their response to temperature change. The low noise driven by the shadow enhancer pair
across conditions is consistent with previous studies showing shadow enhancers are required for
robust gene expression at elevated and lowered temperatures (Frankel, et al., 2010; Perry, et al.,
2010).

Discussion

Fluctuations in the levels of transcripts and proteins are an unavoidable challenge to precise
developmental patterning (Raser & O’Shea, 2005; Arias & Hayward, 2006; Hansen, et al.,
2018). Given that shadow enhancers are common and necessary for robust gene expression
(Osterwalder, et al., 2018; Frankel, et al., 2010; Perry, et al., 2010), we proposed that shadow
enhancers may function to buffer the effects of fluctuations in the levels of key developmental
TFs. To address this, we have, for the first time, extensively characterized the noise associated
with shadow enhancers critical for patterning the early Drosophila embryo. By tracking biallelic
transcription in living embryos, we tested the hypothesis that shadow enhancers buffer noise
through a separation of TF inputs to the individual member enhancers. Our results show that TF
fluctuations play a significant role in transcriptional noise and that a shadow enhancer pair is
better able to buffer both extrinsic and intrinsic sources of noise than duplicated enhancers.
Using a simple mathematical model, we found that fluctuations in TF levels are required to
reproduce the observed correlations between reporter activity and that the low noise driven by
the shadow enhancer pair is a natural consequence of the separation of TF inputs to the member
enhancers. Lastly, we showed that a shadow enhancer pair is uniquely able to buffer expression
noise across a wide range of temperatures. Together, these results support the hypothesis that the
separation of inputs of shadow enhancers allow them to buffer input TF noise and therefore drive
more robust gene expression patterns during development.

Temporal fluctuations in transcription factor levels drive expression noise in the embryo

When measured in fixed embryos, the TFs used in Drosophila embryonic development show
remarkably precise expression patterns, displaying errors smaller than the width of a single
nucleus (Dubuis, et al., 2013; Gregor, et al., 2007; Little 2013; He, et al., 2008). It therefore was
unclear whether fluctuations in these regulators play a significant role in transcriptional noise in
the developing embryo. By measuring the temporal dynamics of the individual Kr enhancers,
each of which is controlled by different transcriptional activators, we show that TF fluctuations
do significantly contribute to the noise in transcriptional output of a single enhancer. Within a
nucleus, expression controlled by the two different Kr enhancers is far less correlated than
expression driven by two copies of the same enhancer, indicating that TF inputs, as opposed to
more global factors, are the primary regulators of transcriptional bursting in this system.
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Given that individual Kr enhancers are influenced by fluctuations in input TFs, it may
seem puzzling that endogenous Kr expression patterns are rather reproducible (Little 2013).
Previous work has cited the role of spatial and temporal averaging, which buffers noisy nascent
transcriptional dynamics to generate more precise expression levels. Shadow enhancers operate
upstream of this averaging, driving less noisy nascent transcription than either single enhancers
or enhancer duplications.

A stochastic model underscores importance of transcription factor fluctuations

We developed a stochastic mathematical model of Kr enhancer dynamics and mRNA production
that recapitulates our main experimental results. This model is based on that by (Bothma, et al.,
2015), but it is expanded to include the dynamics of a TF that regulates each enhancer. We
placed a strong emphasis on the simplicity of this model, e.g. by using a single abstract TF for
each enhancer. This choice both avoids a combinatorial explosion of parameters and makes the
model results and parameters easier to interpret. One of the most notable features of the model is
that it recreates the differences in noise between shadow and duplicated enhancer constructs
without any additional fitting, indicating that these differences are a direct result of the
separation of input TFs to the proximal and distal enhancers.

Future versions of this model can include refinements. For example, in the current model,
we do not include the influence of repressiveTFs or fluctuations that affect transcription globally.
The absence of these features may partially explain the non-zero correlation experimentally
observed in the shadow heterozygote embryos. Future experiments and models can also be
designed to identify the mechanism of enhancer non-additivity: changes in promoter-enhancer
looping, saturation of the promoter, or other mechanisms.

Noise source decomposition suggests competition between reporters

In our investigation of sources of noise, we decomposed total noise into extrinsic and intrinsic
components as in (Elowitz, et al., 2002). In that study, the authors showed that the activity of one
reporter did not inhibit expression of the other reporter, and therefore their calculations assume
no negative covariance between the reporters’ expression output. In our system, we found a
small amount of negative covariance between the activity of two alleles in the same nucleus
(Supplemental Figure 5). For this reason, we called our measurements covariance and inter-allele
noise. The negative covariance we observe indicates that activity at one allele can sometimes
interfere with activity at the other allele, suggesting competition for limited amounts of a factor
necessary for reporter visualization. The two possible limiting factors are MCP-GFP or an
endogenous factor required for transcription. If MCP-GFP were limiting, we would expect to see
the highest levels of negative covariance at the center of the embryo, where the highest number
of transcripts are produced and bound by MCP-GFP. Since the fraction of nuclei with negative
covariance is highest at the edges of the expression domain (Supplementary Figure 5), the
limiting resource is likely not MCP-GFP, but instead a spatially-patterned endogenous factor,
like a TF.

Currently, the field largely assumes that adding reporters does not appreciably affect
expression of other genes. However, sequestering TFs within repetitive regions of DNA can
impact gene expression (Liu, et al., 2007; Janssen, et al., 2000), and a few case studies show that
reporters can affect endogenous gene expression (Laboulaye, et al., 2018; Thompson & Gasson,
2001). If TF competition is responsible for the observed negative covariance between reporters, a
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closer examination of the effects of transgenic reporters on the endogenous system is warranted.
In addition, TF competition may be a feature, not a bug, of developmental gene expression
control, as modeling has indicated that molecular competition can decrease expression noise and
correlate expression of multiple targets (Yuan, et al., 2018).

Additional functions of shadow enhancers and outlook

There are likely several features of shadow enhancers selected by evolution outside of their
noise-suppression capabilities. Preger-Ben Noon, et al. recently showed that all shadow
enhancers of shavenbaby, a developmental TF gene in Drosophila, drive expression patterns in
tissues and times outside of their previously-characterized domains in the larval cuticle (Preger-
Ben Noon, et al., 2018). This suggests that shadow enhancers, while seemingly redundant at one
developmental stage, may play separate, non-redundant roles in other stages or tissues. In several
other cases, both members of a shadow enhancer pair are required for the precise expression
pattern generated by the endogenous locus (El-Sherif & Levine, 2016; Perry, et al., 2012;
Dunipace, et al., 2011; Perry, et al., 2011; Yan, et al., 2017). In the case of Kr, the early
embryonic enhancers drive observable levels of expression in additional tissues and time points,
but these expression patterns overlap those driven by additional, generally stronger, enhancers,
suggesting that the primary role of the proximal and distal enhancers is in early embryonic
patterning (Hoch, et al., 1990). In addition, the endogenous expression domain of K7 is best
recapitulated by the pair of shadow enhancers (EI-Sherif & Levine, 2016). Therefore, while we
cannot rule out the possibility that the proximal and distal enhancers perform separate functions
at later stages, it seems that their primary function, and evolutionary substrate, is controlling
Kruppel expression pattern and noise levels during early embryonic development.

Here, we have investigated the details of shadow enhancer function for a particular
system, and we expect that some key observations may generalize to many sets of shadow
enhancers. Shadow enhancers seem to be a general feature of developmental systems (Cannavo,
et al., 2016; Osterwalder, et al., 2018), but the diversity among them has yet to be specifically
addressed. While we worked with a pair of shadow enhancers with clearly separated TF
activators, shadow enhancers can come in much larger groups and with varying degrees of TF
input separation between the individual enhancers (Cannavo, et al., 2016; Osterwalder, et a.,
2018). To discern how expression dynamics and noise driven by shadow enhancers depend on
their degree of TF input separation, we are investigating these characteristics in additional sets of
shadow enhancers with varying degrees of differential TF regulation. Our current experimental
data and computational results, combined with that gathered from additional shadow enhancers
will inform fuller models of how developmental systems ensure precision and robustness.

Materials and Methods
Generation of transgenic reporter fly lines

The single, duplicated, or shadow enhancers were each cloned into the pBphi vector, upstream of
the Kruppel promoter, 24 MS2 repeats, and a yellow reporter gene as in (Fukaya, et al., 2016).
We defined the proximal enhancer as chromosome 2R:25224832-25226417, the distal enhancer
as chromosome 2R:25222618-25223777, and the promoter as chromosome 2R:25226611-
25226951, using the Drosophila melanogaster dmb6 release coordinates. The precise sequences
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for each reporter construct are given in Supplementary File 1. For the allele correlation
experiments, each enhancer was cloned 192 bp upstream of the K» promoter, separated by the
endogenous sequence found between the proximal enhancer and the promoter. For
transcriptional noise experiments, the distal enhancer was placed at its endogenous spacing, 2835
bp upstream of the promoter, and the proximal enhancer sequence was replaced by a region of
the lambda genome that is predicted to have few relevant TF binding sites. In the shadow
enhancer pair or duplicated enhancer constructs, the two enhancers were separated by the
sequence separating the proximal and distal enhancers in the endogenous locus.

Using phiC31-mediated integration, each reporter construct was integrated into the same site on
the second chromosomes by injection into yw; PBac{y[+]-attP-3B} VK00002 (BDRC stock
#9723) embryos by BestGene Inc. (Chino Hills, CA). To produce embryos with biallelic
expression of the MS2 reporter, female flies expressing RFP-tagged histones and GFP-tagged
MCP (yw; His-RFP/Cyo; MCP-GFP/TM3.Sb) were crossed with males containing one of the
enhancer-MS2 reporter constructs. Virgin female F1 offspring were then mated with males of the
same parental genotype, except in the case of shadow heterozygous flies, which were mated with
males containing the other single enhancer-MS2 reporter.

Sample preparation and image acquisition

Live embryos were collected prior to nc14, dechorionated, mounted on a permeable membrane,
immersed in Halocarbon 27 oil, and put under a glass coverslip as in (Garcia, et al., 2013).
Individual embryos were then imaged on a Nikon A1R point scanning confocal microscope
using a 60X/1.4 N.A. oil immersion objective and laser settings of 40uW for 488nm and 35uW
for 561nm. To track transcription, 21 slice Z-stacks, at 0.5um steps, were taken throughout the
length of nc14 at roughly 30 second intervals. To identify the Z-stack’s position in the embryo,
the whole embryo was imaged after the end of nc14 at 20x using the same laser power settings.
Later in the analysis, each transcriptional spot’s location is described as falling into one of 42 AP
bins, with the first bin at the anterior of the embryo. Unless otherwise indicated, embryos were
imaged at ambient temperature, which was on average 26.5°C. To image at other temperatures,
embryos were either heated or cooled using the Bioscience Tools (Highland, CA) heating-
cooling stage and accompanying water-cooling unit.

Calculation of transcription parameters

For every spot of transcription imaged, the fluorescence traces across the time of nc14 were first
subject to smoothing by the LOWESS method with a span of 10%. The resulting smoothed
traces were used to measure transcriptional parameters and noise. Traces consisting of fewer than
three time frames were removed from calculations. To calculate transcription parameters, we
used the smoothed traces to determine if the promoter was active or inactive at each time point.
A promoter was called active if the slope of its trace (change in fluorescence) between that point
and the next was greater than or equal to the instantaneous fluorescence value calculated for one
mRNA molecule (Frnar , described below). Once called active, the promoter is considered
active until the slope of the fluorescence trace becomes less than or equal to the negative
instantaneous fluorescence value of one mRNA molecule, at which point it is called inactive
until another active point is reached. The instantaneous fluorescence of a single mRNA was
chosen as the threshold because we reasoned that an increase in fluorescence greater than or
equal to that of a single transcript is indicative of an actively producing promoter, while a
decrease in fluorescence greater than that associated with a single transcript indicates transcripts
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are primarily dissociating from, not being produced, at this locus. Visual inspection of
fluorescence traces agreed well with the burst calling produced by this method (Supplemental
Figure 7).

Using these traces and promoter states, we measured burst size, frequency and duration. Burst
size 1s defined as the integrated area under the curve of each transcriptional burst. Duration is
defined as the amount of time occurring between the frame a promoter is determined active and
the frame it is next determined inactive. Frequency is defined as the number of bursts occurring
in the period of time from the first time the promoter is called active until 50 minutes into nc14
or the movie ends, whichever is first. The time of first activity was used for frequency
calculations because the different enhancer constructs showed different characteristic times to
first transcriptional burst during nc14. For these, and all other measurements, we control for
position of the transcription trace by first individually analyzing the trace and then using all the
traces in each AP bin to calculate summary statistics of the transcriptional dynamics and noise
values at that AP position.

Conversion of integrated fluorescence to mRNA molecules

To put our results in physiologically relevant units, we calibrated our fluorescence measurements
in terms of mMRNA molecules. As in (Lammers, et al., 2018), for our microscope, we determined
a calibration factor, o, between our MS2 signal integrated over nc13, Fus2,and the number of
mRNAs generated by a single allele from the same reporter construct in the same time interval,
NrisH, using the hunchback P2 enhancer reporter construct (Garcia et al., 2013). Using this
conversion factor, we can calculate the integrated fluorescence of a single mRNA (F;) as well as
the instantaneous fluorescence of an mRNA molecule (Frnap). With our microscope, Frnap 1s
379 AU/RNAP and F; is 1338 AU/RNAP-min. With these values, we are able to convert both
integrated and instantaneous fluorescence into total mRNAs produced and number of nascent
mRNAs present at a single time point, by dividing by Fi and Frnap, respectively.

Calculation of noise metrics

To calculate the temporal CV each transcriptional spot i, we used the formula:
CV(i) = mean(mi(f))/standard deviation(m‘(f))

where m'(f) is the fluorescence of spot i and time ¢.

We also decomposed the total noise experienced in each nucleus to inter-allele noise and co-
variance, analogous to the approach of (Elowitz, et al., 2002).

Inter-allele noise is calculated one nucleus at a time. It is the mean square difference between the
fluorescence of the two alleles in a single nucleus:

2 _ (i ®O-me®)*)
TA ™ 2(m,y (D)) m2 ()

where m;(t) 1s the fluorescence of one allele in the nucleus at time ¢, and m2(?) is the fluorescence
of the other allele in the same nucleus and the angled brackets indicate the mean across the time
of ncl4.

Covariance is the covariance of the activity of the two alleles in the same nucleus across the time
of ncl4:
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5 (M ©Omy©)—(my (©))ma (D)
>14 fev = (M (O)(ma (0)

515  The inter-allele and covariance values are defined such that they sum to give the total
516  transcriptional noise displayed by the two alleles in a single nucleus.

(ma (2 +m5(£)2)—2(my () ima (0)
1 2 =
>17 Mtot 2(m1 (©)mz (1))

518  This total noise value is equal to the coefficient of variation of the expression of the two alleles
519  in a single nucleus across the time of nc14.

520  Statistical methods

521  To determine any significant differences in total noise, covariance, or inter-allele noise values
522 between the different enhancer constructs, we performed Kruskal-Wallis tests with the
523  Bonferroni multiple comparison correction.

524  Description of the single enhancer model and associated parameters

525  We constructed a model of enhancer-driven transcription based on the following chemical
526  reaction network,

527 kon r
528 T+E C C+R
529 kofy
530
0 i’ nT
T—>
531 R—">0

532 where E is an enhancer that interacts with a transcription factor 7, which together bind to the
533  promoter at a rate k., to form the active promoter-enhancer complex C. When the promoter is in
534  this active form, it leads to the production of mRNA denoted by R, which degrades by diffusion
535  from the gene locus at a rate a. Transcription is interrupted whenever the complex C

536  disassociates spontaneously at a rate kofr. In the bursting TFs model, the transcription factor 7'
537  appears at a rate 1 and degrades at a rate f-1. To recapitulate Kruppel expression patterns, the
538  value of f1 was assumed to be given by

1 (z—m)?
(x) = ¢ e 202
539 (D) (@) V2mo? ,

540

541  where x is the percentage along the length of the egg and c is a scaling constant. Since Kruppel
542 activity peaks near the center of the egg, we chose 4 = 50, while ¢ and ¢ were fitted along with
543  the other parameters. Lastly, n was assumed to be fixed across the length of the egg.

544  We also generated a constant TF model, which is an adaptation of the model in (Bothma et al.,
545  2015). This model implicitly assumes that TF numbers are constant and, therefore, are
546  incorporated into the value of k., as described by the reactions
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547
Tkon r
548 EFE—C——C+R
549 koft
550
551 R_ % ¢

552  In this case, the value for 7" was fitted for each bin in a similar way to f1, i.e. the constant number
553  of TFs was assumed to be described by equation (1) (values were rounded to the nearest integer).

554  To simulate the transcriptional traces, we implemented a stochastic approach. Individual

555  chemical events such as enhancer-promoter looping take place at random times and are

556 influenced by transcription factor numbers. Individual trajectories of chemical species over time
557  were calculated using the Gillespie algorithm (Gillespie, 1976), and these trajectories are

558  comparable to the experimentally measured transcriptional traces. Since the enhancer is either
559  bound or not bound to the promoter, we imposed the constraint that C + £ = 1 when simulating
560  model dynamics.

561

562  Estimation of model parameters from experimental data

563  To yield a starting estimate for the k., and k. parameters, we defined the start and end of a burst

k Ko ]
564 as the time when the reactions E — C and € —3 E occur, respectively. The length of the ith
565  burst was defined as the range of [b;,p;] where b; corresponds to the time of the i instance of the

566  reaction E ko—? C and p; to the time of the i instance of the reaction C ko—f{ E. The time between
567  the i"burst and the i + 1" burst is [p;,b:+1]. The Gillespie algorithm dictates that the time spent in
568 any given state is determined by an exponentially distributed random variable with a rate

569  parameter equal to the product of two parts: the sum of rate constants of the outgoing reactions,
570  and the number of possible reactions. If the enhancer is either bound or unbound, we have that C
571 =1 or E =1, respectively. Therefore, by letting #, be the average time between bursts and 7, be
572  the average duration of a burst, we can write

573 ) 1 M 1 N-1 S 1
574 ty = A}I_I)HOO i ; N_1 ;(biﬂj —pi;) | = o '
575 and ' LM N . |

t 14 b'L«' - - 7’
576 4 Moo M /:ZI (N ;(p i ")> kogtC kot
577

578  where N is the number of bursts for spot j, b;and p;; denote the beginning and end of burst i in
579  spotj respectively, and M denotes the total number of spots in the egg. The right-hand sides are
580  given by the expected value of the exponential distribution and the assumption that, on average,
581 T is close to 1. While this may not be the case for 7, the assumption provides a convenient upper
582  bound for the average time between bursts, which is likely not to have a much smaller value for a
583  lower bound. (A low enough value of #, would imply nearly constant fluorescence intensity

584  instead of bursts.) Finally, the average duration of a burst z; can be calculated directly from the
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585  data and used to obtain kosrby calculating 1/7,. Similarly, the average time between bursts #; is
586  readily available from the data giving us kon = 1/#.

587  We were able to directly estimate mRNA production and degradation rates from the
588  experimental data. To estimate a, we focused on periods of mRNA decay; i.e. periods where no
589 active transcription is taking place and are thus described by

590 R’ =—aR,

591 which in turn can be solved to be

592 (2) R=ce™,

593  where c is a constant of integration. Taking the derivative of equation 2 yields
594 (3) R(f) = —ace™,

595

596  which corresponds to the slope of the decaying burst. We define the interval of decay of the i
597  burst as [p;,bi+1]. For some point 7 € (p;,bi+1), let Ro= R(t) = ce *. Solving this expression for ¢
598  gives that ¢ = Roe™. Substituting for ¢ in equation 3 evaluated at 7 results in R’(fo) = —aRoe"%e "**
599  =—aRo. Then, it follows that

600  (4) Ry

601
602  In other words, the rate of decay of mRNA fluorescence can be calculated from any trace by
603  taking the ratio of the slope during burst decay and its intensity at a given time #o € (p;,bi+1).

604  Adjacent measurements of fluorescence intensity from the single enhancer systems were used to
605  approximate the slope at each point in the traces. Then, equation 4 was applied to each point. A
606  histogram of all calculated values was generated (Supplemental Figure 8). In this figure, there
607  was a clear peak, which provided us with an estimate of o =~ 1.95.

608  The estimation of » was done for periods of active transcription, which are also accompanied by
609  simultaneous mRNA decay. By noting that C = 1 during mRNA transcription, we can
610  approximate these periods as the zeroth order process

r

611 0 ——R

612  The differential equation associated with this system is given by
613 (%) R’=r—aR,
614  and has steady state R* = r/a. Equation 5 can be solved explicitly for R by choosing

R(t) = % + et

’

615
616  where c is a constant of integration. For two adjacent measurements at times #; and > we can
617  write their respective measured amounts of mRNA as

r -
Rl = — +ce i

618 (6) a ,
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619
620 and

_ Z —tacx
621 (7) Be=gtae™
622

623  Solving for ¢ and c> gives
_ _ 1 ti1x
C1 = (Rl a)e
e — _ E tao
624 ¢z = (ftz = 2)e".

625  The short-term fluctuations of mRNA from R, to R; between two adjacent discrete time points in
626  the stochastic system can be approximated by equations 6 and 7. This implies that

r r
(R1 — E)etla = (R2 — E)etZQ

627 )
628  which in turn gives

L Rl — RQ@QAI‘/
629 r=a 1 — eaAt

630  Therefore, the estimation of » can be computed given two adjacent measurements of fluorescence
631  and the time between them. Finally, we used a similar approach as done with a to calculate

632  values of » from fluorescence data. However, unlike a, » was calculated for each bin to account
633  for differences in transcriptional efficiency across the length of the embryo.

634 Parameter fitting with simulated annealing

635  Simulations and parameter fitting were done with MATLAB®. Optimization in fitting was done
636 by minimizing the sum of squared errors (SSE) between the normalized vectors of burst

637  properties and allele correlations of the experimental and simulated data. In particular, a vector y
638  of experimental data was created by concatenating the following vectors: burst size, integrated
639  fluorescence, frequency, duration, and allele correlation across the length of the embryo. The
640  vector y was subsequently normalized by dividing each burst property by the largest element in
641  their respective vectors (except correlation which by definition is unitless between -1 and 1). A
642  vector x was created in an analogous fashion to y but using simulated instead of experimental
643  data. However, x was normalized using the same elements that were used to normalize y. Then,
644  the discrepancy between the experimental and simulated data was measured by

645 SSE=Y11(y;i — x1)*.

646  We used a high-performance computing cluster to compute 200 independent runs of parameter
647  fitting with simulated annealing for each model variant. The algorithm requires an initial guess
648  of the parameter set Py, an initial temperature I'o, a final temperature I"’, the number of iterations
649  per temperature N, and a cooling factor u. Then, each iteration is as follows:

650 (1) If the current iteration i is such that i > N, then update the current temperature I'y = u*T’ to
651  u*'Tpand set i = 0. Otherwise, seti to i + 1.

652  (2) Check if I'y < IT". If so, return the current parameter set P;and terminate.
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653  (3) Choose a parameter randomly from P; and multiply it by a value sampled from a normal
654  distribution with a mean equal to 1. The standard deviation of such distribution should be
655  continuously updated to be I's. The result of this step is the newly generated parameter set Pj+1.
656  (4) Calculate AE as the difference in SSE between the data generated by P;and that generated
657 by Pj+1. Update P;to Pj+1 if AE < 0 or with probability p < e*#T*where p is a uniformly distributed
658  random number.

659  (5) Repeat all steps until termination.
660

661  To generate our results, we chose ['v=1, 1" =T1¢/10, N=30, and u = 0.8. We observed an

662  improvement in the quality of the fittings by using analysis-derived parameter values as initial
663  guesses instead of values given through random sampling. The sampled space ranged from 1073
664  to 103 for all parameters, except n, which was sampled from 10°to 102, and ¢, which was

665  randomly chosen to be an integer between 1 and 20. Equal numbers of parameter values were
666  sampled at each order of magnitude. The analysis in the section above was used to estimate the
667  parameters in Py. Parameters that were not estimated in the previous section were given the

668  following initial guesses: n =10, f-1=1, 6 = 6, and ¢ = 40. Initial guesses for ¢ and ¢ were based
669  on the experimental observation that there is little transcription outside of 20-80% egg length.
670  Based on this observation, simulations were limited to this egg length range, as well. For the
671  constant TFs model, both analysis-derived and random initial parameter values were used to
672  maximize the likelihood of finding any parameter set capable of recapitulating the observed

673  allele correlation.

674

675  Generation of simulated experimental data

676  Parameter sets resulting from fitting were sorted in ascending order based on their sum of

677  squared errors, and the 10 lowest error parameter sets are what we called the 10 best parameter
678  sets. For all figures, we simulated 80 spots per bin and simulated each bin 5 times to generate
679  error bars. Data for the distal enhancer at the proximal location was used to reproduce simulated
680 allele correlations in all cases.

681  Gillespie simulations update the counts of each chemical species at random time intervals.

682  However, for ease of parameter fitting and to better recapitulate the experiments, we generated
683  data in two distinct timescales: one consisting of 30 second intervals after which mRNA counts
684  were recorded, and another consisting of random time intervals generated by the algorithm after
685  which chemical counts were updated. The former one was used for all parameter fitting rounds
686  and generation of figures.

687  Description of two enhancer model, parameter estimation, and fitting

688  To explore two enhancer systems, we expanded our previous model to include an additional

689  enhancer. First, we considered duplicated enhancer systems, which consist of either two

690  proximal or two distal enhancers. Enhancers were denoted by £ and E>, which correspond to two
691 identical enhancers that exist in different locations relative to the promoter. They are activated by
692  the same transcription factors as described by the reactions
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693 R——>10

694  Without loss of generality, we used E1to denote the enhancer at the proximal location and E> to
695  denote the enhancer at the distal location. This model describes independent enhancer dynamics;
696 1i.e. the behavior of one enhancer does not affect the behavior of the other, and, as such, both

697  enhancers can be simultaneously looped to the promoter. Consequently, to account for potential
698  enhancer interference or competition for the promoter, we assumed distinct kon and kot values for
699  each enhancer in the duplicated enhancer constructs. We also used distinct values of » for each
700  distal enhancer in the duplicated distal construct since fluorescence data was available for this
701  enhancer at the proximal and endogenous location. For proximal enhancers, we assume 71 = 7.

702 To describe the dynamics of the shadow enhancer pair, we denoted the activators for £ (the
703  proximal enhancer) and E> (the distal enhancer) by 77 and 7>, respectively:

kOnl 'l
T+ E1 = — >C1 + R
off]

konz r2
D+ E~— (& >+ R
kott

(D‘%’—’ ni T
(DJ)—’ n

B-1

Tn 0@

704

705  The production rate of 7>, y1, was calculated in the same way as production rate of 77, £, but

706  differed in the values of ¢ and ¢. The two enhancer models were also used to calculate allele

707  correlation between homozygotes and heterozygotes because a distinction between the mRNA
708  produced by Ciand C> was made. This approach works because, e.g., when considering the

709  homozygote embryos, each single enhancer resides in the same nucleus and is therefore affected
710 by the same fluctuating TF numbers. In the duplicated enhancer model, each enhancer E; or E> is
711  affected by the same fluctuations in the number of transcription factor T. An analogous logic

712 applies to the heterozygotes.

713 To fit the two enhancer models to experimental data, we retained several parameters from the
714  single enhancer models. Parameters » and a were directly calculated from the data, and, as such,
715  did not vary across models. We assume that parameters concerning transcription factors (f1, f-1,
716  y1, y-1, n1, and m2) are not affected by the presence of an additional enhancer. Therefore, in our
717  model, only ko, and ks are free to change. To fit the values of kont, kon2, kofr1, and kotr2, we set the
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718  other model parameters to the median values of the 10 best parameter sets in the respective
719  single enhancer model. We then used a similar simulating annealing approach to fit the k,, and
720 koyvalues. We used the resulting values to simulate transcriptional traces and to calculate the
721  predicted CV values shown in Figure 4.
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939  Figure 1: Dual allele imaging shows the individual Kruppel enhancers drive largely

940  independent transcriptional dynamics. A. Schematic of the endogenous Kruppel locus with
941  distal (blue) and proximal (orange) shadow enhancers driving K7 (teal) expression in the central
942  region of the embryo. Known transcriptional activators of the two enhancers are shown. B.

943  Schematics of single enhancer reporter constructs driving expression of MS2 and a yellow

944  reporter. When transcribed, the MS2 sequence forms stem loops that are bound by GFP-tagged
945  MCP expressed in the embryos. Proximal embryos have expression on each allele controlled by
946  the 1.5kb proximal enhancer at its endogenous spacing from the Kr promoter, while distal

947  embryos have expression on each allele controlled by the 1.1kb distal enhancer at the same

948  spacing from the Kr promoter. Shadow heterozygote embryos have expression on one allele
949  controlled by the proximal enhancer and expression on the other allele controlled by the distal
950  enhancer. C. Still frame from live imaging experiment where nuclei are red circles and active
951  sites of transcription are green spots. MCP-GFP is visible as spots above background at sites of
952  nascent transcription (Garcia, et al., 2013). D. The fluorescence of each allele in individual

953  nuclei can be tracked across time as a measure of transcriptional activity. Graph shows a

954  representative trace of transcriptional activity of the two alleles in a single nucleus across the
955  time of ncl4. These traces are used to calculate the correlation of allele activity in each nucleus.
956  Correlation values are grouped by position of the nucleus along the egg length and averaged
957 across all imaged nuclei in all embryos of each construct. E. Graph of average correlation

958  between the two alleles in each nucleus as a function of egg length. 0% egg length corresponds
959  to the anterior end. Error bars indicate 95% confidence intervals. The shadow heterozygotes
960  have much lower allele correlation than either homozygote, demonstrating that the individual
961  shadow enhancers drive nearly independent transcriptional activity and that upstream

962  fluctuations in regulators are a significant driver of transcriptional bursts. The total number of
963  nuclei used in calculations for each construct by AP bin are given in Supplementary Table 2.
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965  Figure 2: Model of enhancer-driven dynamics demonstrates TF fluctuations are required
966  for correlated reporter activity. To investigate the factors required for the observed correlated
967  behavior of identical enhancers and largely independent behavior of the individual enhancers, we
968  developed a simple stochastic model of enhancer-driven transcription. A. Schematic of model of
969 transcription driven by a single enhancer (the bursting TFs model). For each enhancer, we

970  assume there is a single activating TF, T, that appears in bursts of size n molecules at a rate B,
971  which varies by the position in the embryo. TFs degrade linearly at rate B.;. When present, T can
972  bind the enhancer, E, to form a transcriptionally active complex, C, at a rate k., and dissociates at
973  rate koy. This complex then produces mRNA at an experimentally determined rate » that degrades
974  at an experimentally determined rate, a. B. The bursting TFs model is able to recapitulate the

975  experimentally observed pattern of allele correlation. We plot the correlation between the two
976 alleles in a nucleus as a function of egg length. Simulated data is created using the lowest energy
977  parameter set for each enhancer. The data shown is the average of five simulated embryos that
978  have 80 transcriptional spots per AP bin. In B and C simulated data are shown by solid lines,

979  experimental data are shown by dotted lines. C. The constant TFs model fails to recapitulate the
980  experimentally observed pattern of allele correlation. Without TF fluctuations, both heterozygous
981 and homozygous embryos display independent allele activity. Error bars in B and C represent
982  95% confidence intervals.
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984  Figure 3: Shadow enhancer pair produces lower expression noise than duplicated

985  enhancers. To investigate whether the shadow enhancer pair drives less noisy expression, we
986 calculate the coefficient of variation (CV) associated with the shadow enhancer pair or either

987  duplicated enhancer across time of nc14. A. The shadow enhancer pair displays lower temporal
988  expression noise than either duplicated enhancer. Graph is mean coefficient of variation of

989  fluorescence traces across time as a function of embryo position. B. The shadow enhancer pair
990  shows the lowest expression noise, but not the highest expression levels, indicating that the lower
991  noise is not simply a function of higher expression. Graph is average total expression during

992  ncl4 as a function of embryo position. Error bars in A and B represent 95% confidence intervals.
993  Total number of transcriptional spots used for graphs are given in Supplementary Table 1 by

994  construct and AP bin.
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995
996  Figure 4: The two enhancer model recapitulates low expression noise associated with the
997  shadow enhancer pair. To assess whether the separation of input TFs mediates the lower
998  expression noise driven by the shadow enhancer pair, we expanded our model to incorporate two
999  enhancers driving transcription. A. Schematic of the two enhancer model. We assume that when
1000  two enhancers control a single promoter, either or both can loop to the promoter and drive
1001  transcription. We defined model parameters as in Figure 2, and only allowed the ko, and ko
1002 values to vary from the single enhancer model. B. To understand the effect of adding a second
1003  enhancer, we examined how the k,, and &, values vary from those in the single enhancer model.
1004  We plotted the distribution of the values for k., and k.4 for each enhancer in the three different
1005  constructs measured. The distribution shows the values derived from the 10 best-fitting
1006  parameter sets, and the black star in each column indicates the ko, or ko value from the
1007  corresponding single enhancer model. In general, the k.5 values increased relative to the single
1008  enhancer model, and the k., values decreased, indicating that the presence of a second enhancer
1009 inhibits the activity of the first. C. Graph of average coefficient of variation of simulated or
1010  experimental transcriptional traces as a function of egg length. The model is able to recapitulate
1011 the lower expression noise seen with the shadow enhancer pair with no additional fitting,
1012 indicating that the separation of TF inputs to the two enhancers is sufficient to explain this
1013 observation. Simulated data are shown in solid lines, experimental data are shown in dotted lines.
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1015  Figure S: Shadow enhancer pair achieves lower total noise by buffering global and allele-
1016  specific sources of noise. To determine how the shadow enhancer pair produces lower

1017  expression noise, we calculated the total noise associated with each enhancer construct and

1018  decomposed this into the contributions of covariance and inter-allele noise. Covariance is a
1019  measure of how the activities of the two alleles in a nucleus change together and is indicative of
1020  global sources of noise. Inter-allele noise is a measure of how the activities of the two alleles
1021  differ and is indicative of allele-specific sources of noise. A. The shadow enhancer pair has
1022 lower total noise than single or duplicated enhancers. Circles are total noise values for individual
1023 nuclei in AP bin of peak expression for the given enhancer construct. Horizontal line represents
1024  the median. The y-axis is limited to 75th percentile of the proximal enhancer, which has the
1025  largest noise values. The shadow enhancer pair has significantly lower total noise than all other
1026  constructs. B. The shadow enhancer pair displays significantly lower covariance than either
1027  single or duplicated enhancer and significantly lower inter-allele noise than both single

1028  enhancers and the duplicated proximal enhancer. The left half of each violin plot shows the
1029  distribution of covariance values of nuclei in the AP bin of peak expression, while the right half
1030  shows the distribution of inter-allele noise values. Horizontal lines represent median. The y-axis
1031  is again limited to the 75th percentile of enhancer with the largest noise values, which is

1032 duplicated proximal. The lower covariance and inter-allele noise associated with the shadow
1033  enhancer pair indicates it is better able to buffer both global and allele-specific sources of noise.
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1034  C. p-value table of Kruskal-Wallis pairwise comparison of the total noise values of each

1035  enhancer construct. p-value gradient legend applies to C and D. D. p-value table of Kruskal-

1036  Wallis pairwise comparison of covariance (on left) and inter-allele noise (on right) values for
1037  each enhancer construct. Bonferroni multiple comparison corrections were used for p-values in C
1038  and D. Total number of nuclei used in noise calculations are given in Supplementary Table 2.
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1041  Figure 6: Shadow enhancer pair maintains lower total noise across temperature

1042  perturbations. To test the ability of each enhancer construct to buffer temperature perturbations,
1043 we measured the total expression noise associated with each for embryos imaged at 17°C or
1044  32°C. A. The shadow enhancer pair displays significantly lower total noise than the single or
1045  duplicated proximal enhancer and the single distal enhancer at 17°C. Circles are total noise

1046 values for individual nuclei in AP bin of peak expression for the given enhancer construct and
1047  horizontal bars represent medians. The y-axis is limited to 75th percentile of construct with

1048  highest total noise at 17°C (single proximal). B. The shadow enhancer pair has significantly
1049  lower total noise than all other constructs at 32°C. The y-axis is limited to 75th percentile of the
1050  enhancer construct with highest total noise at 32°C (duplicated proximal). C. Temperature

1051  changes have different effects on the total noise associated with the different enhancers. The
1052  median total noise value at the AP bin of peak expression at the three measured temperatures is
1053  shown for each enhancer construct. Within each enhancer, the median total noise values are
1054  shown left to right for 17°C, 26.5°C, and 32°C. D. p-value table of Kruskal-Wallis pairwise
1055  comparison of the total noise values of each enhancer construct at 17°C. p-value gradient legend
1056  applies to D and E. E. p-value table of Kruskal-Wallis pairwise comparison of the total noise
1057  values of each enhancer construct at 32°C.

1058
1059
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Supplemental Figures:

Obs/Expected # of spots

4
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distal 2x distal proximal 2x proximal shadow pair

Supplemental Figure 1: Correspondence of observed and expected number of spots. To
ensure that we can accurately measure two spots of expression in the embryo, we compared the
number of transcriptional spots seen in embryos hemizygous or homozygous for each construct.
Our rationale was that in the absence of transvection, the number of transcriptional spots in
homozygous embryos should be twice the number in embryos expressing the reporter on only
one allele. The number of transcriptional spots tracked during nc14 in the AP bin of maximum
expression was counted for all embryos imaged for each homozygous and hemizygous construct.
The graph shows the average of this value for homozygous embryos, divided by double the value
observed in the corresponding hemizygous construct. Assuming no transvection occurs, this
value should be close to 1. The ratio of observed to expected number of spots is close to 1 for all
of our enhancer constructs, indicating we are reliably able to track the two individual spots of
transcription in single nuclei.
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Supplemental Figure 2: Single enhancer models recreate observed transcriptional bursting
properties. To investigate whether our model is accurately simulating our experimental system,
we compared the transcriptional burst properties produced by model simulations of transcription
to those observed experimentally (see Supplementary Figure 7 for description of burst
properties). A. Graphs of average values of transcriptional burst properties, total mRNA
produced during nc14, burst frequency, burst duration, and burst size associated with the
proximal enhancer as a function of egg length. In A and B, simulated data are represented with
solid lines and experimental data are shown with dotted lines. B. Graphs of average values of
transcriptional burst properties as in A, associated with the distal enhancer. For both the proximal
and distal enhancers, our model is largely able to recapitulate the experimentally observed
transcriptional burst properties associated with each enhancer. C. The median and CV values of
the model parameters for the proximal enhancer in the top 10 performing parameter sets. D. The
median and CV values of the model parameters for the distal enhancer in the top 10 performing
parameter sets. Explanations of model parameters are given in the Methods.
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1090  Supplemental Figure 3: Temporal CV as a function of mean fluorescence. To investigate the
1091  relationship between our noise measurement of temporal CV and the mean activity of each

1092  construct, we plotted the temporal CV of each transcription spot as a function of its mean

1093  fluorescence. A. Distal; B. Proximal; C. 2x Proximal; D. 2x Distal; E. Shadow pair. With all
1094  constructs, we find the general trend that CV decreases with increasing average expression,

1095  flattening out at a baseline noise level specific to each enhancer construct.
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1097  Supplemental Figure 4: Individual Kr enhancers display sub-additive behavior. To assess
1098  the way input from two enhancers is integrated at the Kr promoter, we compared the

1099  experimentally observed mRNA production of duplicated enhancers to that predicted from
1100  additive behavior of the single enhancers. A. The duplicated distal enhancer displays sub-

1101 additive behavior. The solid line is the experimentally observed total mRNA produced by the
1102 duplicated distal enhancer during nc14 as a function of egg length and the dotted line is that
1103 expected by doubling the total mMRNA produced by the single distal enhancer. B. The duplicated
1104  proximal enhancer also acts sub-additively. The solid line is the experimentally observed total
1105 mRNA produced by the proximal enhancer during nc14 as a function of egg length and the
1106  dotted line is that expected by doubling the total mRNA produced by the single proximal

1107  enhancer. These results, along with the observation that ko values increased and k., values
1108  decreased in our model with the addition of a second enhancer, suggests that the Kr enhancers
1109  compete with each other for interactions with the promoter.
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Supplemental Figure 5: Fraction of nuclei with negative covariance of allele activity. To
identify the likely cause of the observed negative covariance between allele activity in some
nuclei, we calculated the fraction of nuclei displaying negative covariance out of all nuclei that
had active reporter transcription. Graphs show the fraction of transcribing nuclei with negative
covariance as a function of egg length for each reporter construct, with a black circle indicating
the position along the embryo of maximal expression for that construct. A. Distal; B. Proximal;
C. 2x Proximal; D. 2x Distal; E. Shadow pair. Note that for all constructs, the highest rates of
negative covariance are outside of the region of maximal reporter expression. MCP-GFP is
expressed uniformly along the length of the embryo and we would therefore expect if MCP-GFP
were the limiting factor, we would see the highest rates of negative covariance in the center of
the expression pattern, where the highest number of transcripts are produced. Instead, the highest
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1122 rates of negative covariance are seen at the edges of the Kr expression pattern, suggesting a
1123 spatially patterned factor, such as a TF, may be what is limiting.
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1126  Supplemental Figure 6: Position-dependent effects on distal enhancer. To best mimic the
1127  endogenous system, we looked at expression driven by the distal enhancer at its endogenous
1128  spacing from the promoter for our noise calculations. In this construct we replaced the sequence
1129  of the proximal enhancer with sequence of the same length from the lambda phage genome
1130  predicted to have low number of Drosophila TF binding sites. This increased distance from the
1131  promoter had observable effects on the transcriptional dynamics and noise associated with the
1132 distal enhancer. A. Comparison of total transcriptional expression mediated by the distal

1133 enhancer at its endogenous spacing or proximal to the promoter. The distal enhancer at its

1134 endogenous spacing, shown as the solid line, produces significantly more total mRNA in the
1135  center region of expression than the distal enhancer proximal to the promoter, shown as the
1136  dotted line. B. Comparison of the average number of transcripts produced per transcriptional
1137  burst by each distal enhancer configuration as a function of egg length. C. Average burst

1138  frequency associated with either distal enhancer configuration as a function of egg length. D.
1139  Average burst duration associated with either distal enhancer configuration as a function of egg
1140  length. E. Coefficient of variation of transcriptional activity across nc14 for each distal enhancer
1141  configuration as a function of egg length. F. Total expression noise associated with either distal
1142 enhancer configuration at the AP bin of that construct’s peak expression. The total noise

1143 distribution for the distal enhancer proximal to the promoter is on the left and that for the distal
1144  enhancer at its endogenous spacing from the promoter is on the right. The distal enhancer at its
1145  endogenous spacing displays significantly higher total noise (p = 0.018) than the distal enhancer
1146  proximal to the promoter. Each circle represents the total noise of an individual nucleus and the
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1147  horizontal bar marks the median total noise value. Y-axis limited to the 75th percentile of the
1148  construct with the highest total noise values (distal promoter at endogenous spacing).

39


https://doi.org/10.1101/778092
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/778092; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

1149

A «10° burst calling B 104 burst size

D qal I

3:/1.8 $1_37

> | 2

T 14 g 1-4:

2 =

£ 1 =1

[0} o L

O r c

s )

8 0.6¢ 2 0.6/

(%] [0) L

e | 5

S 0.2 E 0.2/ | |

0 70 20 . 30 40 _ 50 0 0 20 30 40 50
time into nc14 (min) time into nc14 (min)
C total mRNA produced D 104 burst frequency
=14000 ' ' ' ' = #Bursts ' 7 )
=z <D( 35 active time = frequency Z3vm = 0-16 bursts/min |
> >
% 10000 B
5 525
E E
() L [0}
S 6000 S 15
() [0}
O O
] (%)
o o
5 2000 ¢ 3 05
0 10 20 30 40 50 0 10 20 30 40 50
time into nc14 (min) time into nc14 (min)
E .
0% ‘ burst dyratlon

=)

< 5

2

c :

S :

£ 3

[0

(@]

c

(0]

(@]

0

o 1r

o

= :

0O 10 20 30 40
1150 time into nc14 (min)

1151  Supplemental Figure 7: Visual inspection of burst calling algorithm

1152 To extract the bursting parameters examined (burst size, frequency, and duration), individual
1153  fluorescence traces were first smoothed using the LOWESS method with a span of 0.1. Our burst
1154  calling algorithm then determined the periods of promoter activity or inactivity based on the

1155  slope of the fluorescence trace. A. Representative fluorescence trace of a single spot across the
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time of nc14. Black open circles indicate time points where the promoter is called “on”, red filled
circles indicate time points where the promoter is called “off”. B. Same trace as in A with
shading representing the area under the curve used to calculate the size of the first burst. This
area is calculated using the trapz function in MATLAB and is done for each burst, from the time
point the promoter is called “on” until the next time it is called “on”. C-E show additional
representative fluorescence traces of single transcriptional spots across the time of nc14. C. A
trace with shading representing the area under the entire curve during nc14 used to calculate the
total amount of mRNA produced. This area is calculated using the trapz function in MATLAB
and is done from the time the promoter is first called active until 50 minutes into nc14 or the
movie ends, whichever comes first. D. Burst frequency is calculated by dividing the number of
bursts that occur from the time the promoter is first called active until 50 minutes into nc14 or
the movie ends, whichever comes first. E. Burst duration is defined as the amount of time
between when the promoter is called active and it is next called inactive.
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Supplemental Figure 8: mRNA production and decay rates can be directly estimated from
experimental data. The mRNA degradation parameter a and production parameter » were
measured directly from fluorescence data without any input from the model. A. To estimate a,
we used adjacent measurements of fluorescence intensity to approximate the slope at each point
in the fluorescence traces. These values are compared with an exponential rate of mRNA decay
(see Methods) and the resulting predicted values are shown in the histogram. Periods of mRNA
production have negative a values and periods of decay have positive values. The histogram
shows a distinct peak for o > 0, which provided us with an estimate of o = 1.95. B. A similar
computational approach was used to calculate values of 7 from fluorescence data (see Methods).
We calculated different values of » for each bin to account for differences in transcriptional
efficiency across the length of the embryo due to factors that are not explicitly included in the
model. For example, different combinations of TF bound to the enhancer may give rise to
different mRNA production rates. Different values of » were found for the proximal and distal
enhancers. Notice that distal » values shown correspond to the distal enhancer at the proximal

location.
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Additional Supplementary Materials

Supplementary Note: A note describing the theoretical estimates of inter-allele noise in single
and two enhancer constructs.

Supplementary Table 1: Number of total single alleles tracked for each construct.

Each row corresponds to a construct, named in column 42, and columns 1-41 correspond to that
AP bin of the embryo. The value in each cell in columns 1-41 is the number of single
transcriptional spots used in calculations of burst size, frequency, and duration and CV in that
AP bin for the given construct. The value in column 43 is the total number of independently
imaged embryos for that construct.

Supplementary Table 2: Number of nuclei tracked for each construct.

Each row corresponds to a construct, named in column 42, and columns 1-41 correspond to that
AP bin of the embryo. The value in each cell in columns 1-41 is the number of nuclei used for
correlation and total noise/covariance/inter-allele noise calculations in that AP bin for the given
construct. The value in column 43 is the total number of independently imaged embryos for that
construct.

Supplementary File 1: The sequences of all the enhancer constructs generated in this paper.
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Supplementary Note

To make a prediction about the expected change in inter-allele noise between single and two
enhancer reporter constructs, we used the theory put forth in (Sanchez and Kondev, 2008;
Sanchez et al., 2011). This formalism can be used to calculate the expected mean and variance of
the transcriptional output of a promoter, given the possible states of the promoter, transition rates
between states, and the rate of transcription resulting from each state. In these papers, the authors
apply their formalism to different promoter architectures. Here, we generate a simpler model, in
which we abstract away the individual transcription factor (TF) binding configurations, which
would be numerous and poorly parametrized, and simply define states by whether an enhancer is
looped to the promoter and activating transcription. Since these models do not account for
fluctuations that would contribute to extrinsic noise, e.g. fluctuations in TF or RNA polymerase
levels, they can predict the dependence of intrinsic noise on enhancer arrangement.

To apply this model to our system, we use theses parameters:
vy  degradation rate of mRNA
p  production rate of mRNA
k  on rate for enhancer-promoter looping
[ offrate for enhancer-promoter looping

Below, we describe several models that represent different configurations of either one or two
enhancers controlling a single promoter and provide the variables, as defined in (Sanchez et al.,
2011), needed to calculate the coefficient of intrinsic variation (CV) associated with each model.
Briefly, R and r describe the production rates of mRNA in the different promoter-enhancer
staets, and K contains the transition rates in and out of states. Key assumptions are that the
parameters describing this system are independent of both the position of the enhancer relative to
the promoter and the presence of a second enhancer controlling the same promoter. We chose to
make these simplifying assumptions to give the reader a general sense of the expected behavior
of noise when adding an additional enhancer, since the possible behaviors are nearly infinite with
the removal of these simplifying assumptions.

Model 1: Single enhancer
In this model, there is a single enhancer controlling one promoter.

States Rate of mRNA production
Enhancer-promoter unlooped 0

Enhancer-promoter looped p

K=[-k [k -l

R=[00;0p]

r=[0p]
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Model 2: OR model
In this model, there are two enhancers controlling one promoter, transcription is activated if
either enhancer is looped, and both enhancers can’t be bound at the same time.

States Rate of mRNA production
Enhancers-promoter unlooped 0
Enhancer 1-promoter looped p
Enhancer 2-promoter looped p

K=[2k | Lk -l 0;k 0 -]
R=[000;0p0;00p]
r=1[0p p]

Model 3: Additive model

In this model, there are two enhancers controlling one promoter, transcription is activated if
either enhancer is looped, and, if both enhancers are bound, transcription occurs at twice the rate
of single enhancer looping states.

States Rate of mRNA production
Enhancers-promoter unlooped 0

Enhancer 1-promoter looped p

Enhancer 2-promoter looped p

Both enhancers looped 2p

K=[2k 11 0;k k1 0 Ik 0 -k-l [;0 k k-2I]
R=[0000;0p00;00p0;0002p]
r=[0pp2p]

Model 4: Synergistic model

In this model, there are two enhancers controlling one promoter, transcription is activated if
either enhancer is looped, and, if both enhancers are bound, transcription occurs at three times
the rate of single enhancer looping states.

States Rate of mRNA production
Enhancers-promoter unlooped 0

Enhancer 1-promoter looped p

Enhancer 2-promoter looped p

Both enhancers looped 3p

K=[2k 11 0;k k1 0 Ik 0 -kl [;0 k k-2I]
R=[0000;0p00;00p0;000 3p]
r=[0pp3p]
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Model 5: XOR model
In this model, there are two enhancers controlling one promoter, transcription is activated if
either enhancer is looped, and, if both enhancers are bound, no transcription occurs.

States Rate of mRNA production
Enhancers-promoter unlooped 0
Enhancer 1-promoter looped p
Enhancer 2-promoter looped p
Both enhancers looped 0

K=[2k 1 1 O;k k1 0 Lk O -kl 1:0 k k-20]
R=[0000;0p00;00p0;0000]
r=[0pp0]

To explore the behavior of CV in these different models, we use several approaches.

Figure 1: CV decreases upon the addition of a second enhancer.
Here we plot the mean expression level versus CV for the five models above and one set of
parameters, k =/ =1,p =1,y=0.1. The single enhancer model (dark purple) drives the highest
CV, indicating that, under the assumptions of our models, adding an additional enhancer
generally lowers intrinsic noise. Except for XOR model (yellow), all other models produce more
mRNA than the single enhancer model. The other colors are: blue, OR model; green, additive
model; brown, synergistic model.
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Figure 2: In most cases, two enhancer models drive lower noise than the single enhancer
model.

Here we plot the CV as a function of /, the rate of promoter-enhancer dissociation, for the five
models above and vary / from 0.1 to 10 on a logarithmic scale withk =1,p =1,y=0.1. With
the exception of the XOR model with low /, the single enhancer model drives a higher CV than
the models with two enhancers for the same value of /.
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The results above show that, under the simplifying assumptions that the production rates and on-
off rates of enhancers are independent of the position and number of enhancers, the addition of a
second enhancer generally lowers the predicted intrinsic noise. In our experimental data (Figure
5), we only observe a significant decrease in interallele noise for the shadow enhancer pair
compared to the single distal or single proximal enhancer. Duplications of either the proximal or
distal enhancer do not have significantly lower noise than their respective single enhancer
constructs. Therefore, we expect that the simple addition of an identical enhancer likely does not
fulfill the simplifying parameter assumptions used here and suggests that further investigation is
needed to understand the complexity of the relationship between interallele noise and the
numbers of enhancers controlling a promoter.
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AP Bins (anterior to posterior) Construct Name No of Embryos

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 249 623 1038 1616 1710 1874 1929 1530 1551 1246 809 597 261 145 56 22 23 15 0 0 0 0 0 0 0 KrDist 11
0 0 0 0 0 0 0 0 0 0 53 54 70 37 18 115 181 479 996 1673 1613 1270 973 542 190 62 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 20 269 668 1219 1625 2083 2121 1779 1476 1019 521 155 108 120 34 0 0 0 0 0 0 0 0 0 0 0 KrBothSep 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 115 196 403 368 439 410 364 309 276 196 58 0 0 0 0 0 0 0 0 0 0 0 0 0 KrDistEmpty 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 29 78 185 202 194 152 91 18 6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 KrProxEmpty 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 249 586 1368 1280 1755 1775 1583 1508 1191 1013 717 294 94 83 0 0 0 0 0 0 0 0 0 0 KrDistDuplicN 8
0 0 0 0 0 0 0 0 0 0 0 0 0 20 12 20 114 521 1180 1551 1586 1471 1031 609 171 42 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProxDuplic 10
0 0 0 0 0 0 0 0 0 25 33 36 43 27 19 41 181 1023 1477 2012 1842 2472 1550 1250 755 443 222 48 23 12 9 0 0 0 0 0 0 0 0 0 0 KrBoth 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 94 181 342 385 398 340 294 242 95 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 KrBothEmpty

0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 27 88 398 664 800 1017 1190 708 580 436 287 291 166 135 117 34 1 0 0 0 0 0 0 0 0 0 KrDist32C 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 109 226 593 958 1133 1092 1150 799 446 132 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx32C 7
0 0 0 0 0 0 0 0 0 0 0 9 12 55 31 246 676 1219 1789 2051 2025 1842 1599 888 592 267 79 67 36 10 0 0 0 0 0 0 0 0 0 0 0 KrBoth32C 13
0 0 0 0 0 0 0 0 0 51 58 36 32 20 57 126 266 640 1199 1475 1455 1317 1012 710 307 31 13 0 2 0 1 0 0 0 0 0 0 0 0 0 0 Kr2xProx32C 12
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 3 20 115 231 326 240 226 106 21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Kr2xProxEmpty 5
0 0 0 0 0 0 0 0 2 1 1 0 0 0 3 56 219 728 1373 1745 2056 2368 2094 1851 1375 1199 821 140 55 0 0 0 0 0 0 0 0 0 0 0 0 KrDist17C 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 35 373 701 1517 1349 1884 1475 1339 1278 815 707 438 308 97 0 0 0 0 0 0 0 0 0 0 0 Kr2xDist32C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 134 261 392 753 1157 1102 1108 1038 922 677 296 43 1 1 0 0 0 0 0 0 0 0 0 0 0 0 KrBoth17C 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 90 680 1269 1815 1752 1975 1829 1497 1151 1030 870 328 91 12 0 0 0 0 0 0 0 0 0 0 0 Kr2xDist17C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 664 703 691 606 431 312 158 61 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx17C 3
0 0 0 0 0 0 0 0 0 0 0 0 0o 37 8 6 14 211 645 956 1079 922 778 445 43 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Kr2xProx17C 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 53 259 391 478 628 595 524 409 269 158 59 34 21 0 0 0 0 0 0 0 0 0 0 0 Kr2xDistEmpty 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 11 56 565 1548 2340 2852 2894 2063 1453 817 577 303 133 35 11 0 0 0 0 0 0 0 0 0 0 0 KrEndogDist 13
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 43 577 794 1409 1470 1467 1317 1169 825 699 486 178 70 1 0 0 0 0 0 0 0 0 0 0 0 KrEndogDist32C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 384 577 609 762 888 908 849 683 538 364 162 96 61 32 14 29 0 0 0 0 0 0 0 0 KrEndogDist17C 5
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