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Abstract 9 

Shadow enhancers, groups of seemingly redundant enhancers, are found in a wide range of 10 
organisms and are critical for robust developmental patterning. However, their mechanism of 11 
action is unknown. We hypothesized that shadow enhancers drive consistent expression levels by 12 
buffering upstream noise through a separation of transcription factor (TF) inputs at the individual 13 
enhancers. By measuring transcriptional dynamics of several Kruppel shadow enhancer 14 
configurations in live Drosophila embryos, we showed individual member enhancers act largely 15 
independently. We found that TF fluctuations are an appreciable source of noise that the shadow 16 
enhancer pair can better buffer than duplicated enhancers. The shadow enhancer pair is uniquely 17 
able to maintain low levels of expression noise across a wide range of temperatures. A stochastic 18 
model demonstrated the separation of TF inputs is sufficient to explain these findings. Our 19 
results suggest the widespread use of shadow enhancers is partially due to their noise suppressing 20 
ability.   21 

 22 

Introduction 23 

The first evidence that transcription occurred in bursts, as opposed to as a smooth, continuous 24 
process, was observed in Drosophila embryos, where electron micrographs showed that even 25 
highly transcribed genes had regions of chromatin lacking associated transcripts between regions 26 
of densely associated nascent transcripts (Miller & McKnight, 1979). As visualization techniques 27 
have improved, it is increasingly clear that transcriptional bursting is the predominant mode of 28 
expression across organisms from bacteria to mammals (Dar, et al.,2012; Sanchez & Golding, 29 
2013; Zenklusen, et al., 2008; Fukaya, et al., 2016). These bursts of transcriptional activity, 30 
separated by periods of relative silence, have important implications for cellular function, as 31 
mRNA numbers and fluctuations largely dictate these quantities at the protein level (Csardi, et 32 
al., 2015; Hansen, et al., 2018). Such fluctuations in regulatory proteins, like TFs and signaling 33 
molecules, can propagate down a gene regulatory network, significantly altering the expression 34 
levels or noise of downstream target genes (Blake, et al., 2003).  35 

Given that protein levels fluctuate and that these fluctuations can cascade down 36 
regulatory networks, this raises the question of how organisms establish and maintain the precise 37 
levels of gene expression seen during development, where expression patterns can be 38 
reproducible down to half-nuclear distances in Drosophila embryos (Dubuis, et al., 2013; 39 
Gregor, et al., 2007). Many mechanisms that buffer against the noise inherent in gene expression 40 
or stemming from genetic or environmental variation have been observed (Lagha, et al., 2012; 41 
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Stapel, et al., 2017; Raj et al., 2010). For example, organisms use temporal and spatial averaging 42 
mechanisms and redundancy in genetic circuits to achieve the precision required for proper 43 
development (Stapel, et al., 2017; Raj, et al., 2010; Erdman, et al., 2009; Lagha, et al., 2012). 44 
Here, we propose that shadow enhancers may be another mechanism by which developmental 45 
systems manage noise (Barolo, S., 2012). 46 

Shadow enhancers are groups of two or more enhancers that control the same target gene 47 
and drive overlapping spatiotemporal expression patterns (Barolo, S., 2012). Shadow enhancers 48 
are found in many organisms, from insects to plants to mammals, and are strongly associated 49 
with developmental genes (Cannavo, et al., 2016; Osterwalder, et al., 2018; Garnett, et al., 2012; 50 
Bomblies, et al., 1999). These seemingly redundant enhancers have been shown to be critical for 51 
proper gene expression in the face of both environmental and genetic perturbations, which may 52 
exacerbate fluctuations in upstream regulators (Frankel, et al., 2010; Osterwalder, et al. 2018; 53 
Perry, et al., 2010; Cheung & Ma, 2015, Chen, et al., 2015). However, shadow enhancers’ 54 
precise mechanism of action is still unknown. Others have proposed that having multiple 55 
enhancers controlling the same promoter ensures a critical threshold of gene expression is 56 
reached, perhaps by reducing the effective “failure rate” of the promoter (Lam, et al., 2015; 57 
Perry, et al., 2011). An alternative, but not mutually exclusive, possibility is that shadow 58 
enhancers ensure precise expression by buffering noise in upstream regulators. Several studies 59 
suggest that individual enhancers of a shadow enhancer group tend to be controlled by different 60 
sets of TFs, which we call a “separation of inputs” (Wunderlich, et al., 2015; Cannavo, et al., 61 
2016; Ghiasvand, et al., 2011). We hypothesize that this separation allows shadow enhancers to 62 
buffer against fluctuations in TF levels.  63 

The Drosophila gap gene Kruppel (Kr) provides a useful system in which to address the 64 
mechanisms of action of shadow enhancers. During early embryogenesis, Kr is controlled by the 65 
activity of two enhancers, proximal and distal, that are each  activated by different sets of TFs 66 
(Figure 1A; Wunderlich, et al., 2015). Here we focus on differences in activation, as the key 67 
repressors of Kr, knirps and giant, are likely to regulate both enhancers. Kr expression during 68 
this time is critical for thorax formation, and like the other gap genes in the Drosophila embryo, 69 
has quite low noise (Preiss, et al., 1985; Dubuis, et al., 2013). By measuring live mRNA 70 
dynamics, we can use the Kr system in Drosophila embryos to assess whether and how shadow 71 
enhancers act to buffer noise and identify the sources of noise in the developing embryo.  72 

To test our hypothesis, we measured live mRNA dynamics driven by either single Kr 73 
enhancer, duplicated enhancers, or the shadow enhancer pair and compared the dynamics and 74 
noise associated with each. We showed that the individual Kr enhancers can act largely 75 
independently in the same nucleus while identical enhancers display correlated activity. We 76 
constructed a simple mathematical model to describe this system and found that TF fluctuations 77 
are necessary to reproduce the correlated activity of identical enhancers in the same nucleus. 78 
Using this model, we also found that the lower expression noise driven by the shadow enhancer 79 
pair compared to either duplicated enhancer is a natural consequence of the separation of TF 80 
inputs. Experimentally, we found the shadow enhancer pair achieves lower noise through 81 
decreases in both intrinsic and extrinsic sources of noise. Additionally, the shadow enhancer pair 82 
is uniquely able to maintain low levels of expression noise across a wide range of temperatures. 83 
We suggest that this noise suppression ability is one of the key features that explains the 84 
prevalence of shadow enhancers in developmental systems. 85 
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 86 

Results 87 

Individual enhancers in the shadow enhancer pair act nearly independently within a nucleus 88 

To test our hypothesis that the separation of inputs between Kruppel’s (Kr) shadow enhancers 89 
provides them with noise-buffering capabilities, we needed to first test the ability of each 90 
enhancer to act independently. If variability in gene expression is driven primarily by 91 
fluctuations in upstream factors, the shadow enhancer pair, whose individual enhancers are 92 
controlled by different sets of TFs, could provide a form of noise buffering. Conversely, 93 
variability in upstream regulators may be low enough in the developing embryo that these 94 
fluctuations are not the primary driver of downstream expression noise. If this were the case, the 95 
separation of inputs is unlikely to be a key requirement of shadow enhancer function.  96 

To investigate these possibilities, we measured and compared the correlation of allele 97 
activity in homozygous or heterozygous embryos that carry two reporter genes. Proximal 98 
homozygotes contained the proximal enhancer driving a reporter, inserted in the same location on 99 
both homologous chromosomes, and distal homozygotes similarly had the distal enhancer driving 100 
reporter expression on both homologous chromosomes (Figure 1B). We also made heterozygous 101 
embryos, called shadow heterozygotes, which had one proximal and one distal reporter, again in 102 
the same location on both homologous chromosomes. To measure live mRNA dynamics and 103 
correlations in allele activity, we used the MS2-MCP reporter system (Figure 1C, D). This 104 
system allows the visualization of mRNAs that contain the MS2 RNA sequence, which is bound 105 
by an MCP-GFP fusion protein (Bertrand, et al., 1998). In the developing embryo, only the site 106 
of nascent transcription is visible, as single transcripts are too dim, allowing us to measure the 107 
rate of transcription (Garcia, et al., 2013; Lucas, et al., 2013). In blastoderm-stage embryos with 108 
two MS2 reporter genes, we can observe two distinct foci of fluorescence corresponding to the 109 
two alleles (Figure 1D), in line with previous results that suggest there are low levels of 110 
transvection at this stage (Lim, et al., 2018; Fukaya & Levine, 2017). To confirm our ability to 111 
distinguish the two alleles, we imaged transcription in embryos hemizygous for our reporter 112 
constructs, which only show one spot of fluorescence per nucleus. Our counts of active 113 
transcription sites in homozygous embryos correspond well to the expected value calculated 114 
from hemizygous embryos (Supplemental Figure 1). Therefore, we are able to measure the 115 
correlation of allele activity, though we cannot identify which spot corresponds to which 116 
reporter. 117 

We predicted that if variability in gene expression is driven by fluctuations in input TFs, 118 
we would observe lower correlations of allele activity in shadow heterozygotes than in either the 119 
proximal or distal homozygotes. However, if global factors affecting both enhancers dominate, 120 
there would be no difference in allele activity correlations. During the ~1 hour of nuclear cycle 121 
14 (nc14) we found that allele activity is more than twice as correlated in both proximal and 122 
distal homozygotes than in shadow heterozygote embryos at 47-57% egg length, which 123 
encompasses the central region of Kr expression during this time period (Figure 1). This 124 
indicates not only that the individual member enhancers of the shadow enhancer pair can act 125 
largely independently in the same nucleus, but that differential TF inputs are the primary 126 
determinants of transcriptional bursts in this system. Notably, heterozygotes still show marginal 127 
allele correlation, indicating that some correlation is induced by either shared input TFs or 128 
factors that affect transcription globally. The independence of individual Kr enhancers allows for 129 
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the possibility that shadow enhancers can act to buffer noise by providing separate inputs to the 130 
same gene expression output. 131 

Transcription factor fluctuations are required for the observed differences in the correlations of 132 
enhancer activity 133 

To explore the conditions needed for the two Kr enhancers to act nearly independently within the 134 
same nucleus, we generated a simple model of enhancer-driven dynamics. We considered an 135 
enhancer E that interacts with a transcription factor T, which together bind to the promoter to 136 
form the active promoter-enhancer complex C (Figure 2A). When the promoter is bound by the 137 
enhancer, it drives the production of mRNA. Since the MS2 system only allows us to observe 138 
mRNA at the site of transcription, we modeled the diffusion of mRNA away from the 139 
transcription site as decay. The transcription factor T is produced in bursts of n molecules at a 140 
time, and it degrades linearly. For simplicity, the transcription factor T is an abstraction of the 141 
multiple activating TFs that interact with the enhancer, and T corresponds to a different set of 142 
TFs for the proximal and distal enhancer. This nonlinear model generalizes the linear model by 143 
Bothma et al. (Bothma et al., 2015) by explicitly taking into account the presence of TFs.  144 

We estimated some model parameters directly from experimental data and others by 145 
fitting using simulated annealing. The mRNA degradation parameter α and production parameter 146 
r were measured directly from fluorescence data without any input from the model (see Methods 147 
for details). The remaining parameters were first estimated using mathematical analysis, then 148 
fine-tuned using simulated annealing. We found separate parameter sets for the proximal and 149 
distal enhancers that, when used to simulate transcription, fit the experimentally measured 150 
characteristics of the transcriptional traces, including transcription burst size, frequency, and 151 
duration, as well as the total mRNA produced (Supplementary Figure 2).  152 

We hypothesized that a model that lacks fluctuations in the input TFs could not 153 
recapitulate the high correlation of transcriptional activity in homozygotes versus the low 154 
correlation in heterozygotes. To test this hypothesis, we generated another model of TF 155 
production. We call our original model described above bursting TFs. The other model is one in 156 
which TF numbers are constant over time, which we call constant TFs and is equivalent to the 157 
model in (Bothma et al., 2015). If the difference in transcription correlation between 158 
homozygotes and heterozygotes is due to fluctuating numbers of TFs, we expected that the 159 
bursting TFs model will recapitulate this behavior, while the constant TFs model will not. 160 
However, if the constant TFs model is also able to recapitulate the observed difference in 161 
correlations, then the correlations are likely a consequence of the identical enhancers simply 162 
being regulated by the same set of TFs. 163 

For each model, we used the 10 best parameter sets to simulate transcriptional activity in 164 
homozygote and heterozygote embryos and analyzed the resulting allele correlations. We found 165 
that the bursting TFs model always produced results in which both homozygote allele 166 
correlations are significantly higher than the heterozygote, as observed experimentally (Figure 167 
2B). None of the best fitting parameter sets for the constant TF model were able to produce the 168 
experimentally-observed behavior and always resulted in similar correlations for the homozygote 169 
and heterozygote embryos (Figure 2C). Therefore, in our minimalist model of enhancer-driven 170 
transcription, the presence of TF fluctuations is required for the observed differences in allele 171 
correlation. These results also demonstrate the advantage of using a single generic TF for each 172 
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enhancer. By abstracting away TF interactions, we reduced the complexity and number of 173 
parameters in the model, which allowed us to explore the relationship between TF production 174 
and allele correlation.  175 

The shadow enhancer pair drives less noisy expression than enhancer duplications 176 

Since the individual Kr enhancers can act independently, we wanted to further test whether this 177 
separation of inputs enables the shadow enhancer pair to provide more stable gene expression 178 
output. We compared the noise in expression driven by the shadow enhancer pair to that driven 179 
by two copies of either the distal or proximal enhancer (Figure 3). If the shadow enhancer pair 180 
drives lower noise, this observation, combined with our finding of enhancer independence, 181 
strongly suggests that the shadow enhancer pair reduces variability and mediates robustness by 182 
buffering fluctuations in upstream regulators. Alternatively, if duplicated enhancers drive similar 183 
levels of expression noise, this suggests that a separation of inputs is not critical for shadow 184 
enhancer’s function and that shadow enhancers mediate robustness through a different 185 
mechanism, such as ensuring a critical threshold of expression is met (Lam, et al., 2015; Perry, et 186 
al., 2011). 187 

We tracked the transcriptional activity in embryos expressing MS2 under the control of 188 
the shadow enhancer pair, a duplicated proximal enhancer, or a duplicated distal enhancer 189 
(Figure 3). To measure noise associated with each enhancer, we used these traces to calculate the 190 
coefficient of variation (CV) of transcriptional activity across nc14. CV is the standard deviation 191 
divided by the mean and provides a unitless measure of noise to allow comparisons among our 192 
enhancer constructs. We then grouped these CV values by the AP position of the transcriptional 193 
spots and found the average CV at each position for each enhancer construct. All of the enhancer 194 
constructs display the lowest expression noise at the egg length of their peak expression (Figure 195 
3A), in agreement with previous findings of an inverse relationship between mean expression 196 
and noise levels (Dar et al., 2016; Supplemental Figure 3). The shadow enhancer pair’s 197 
expression noise is almost 30% or 15% lower, respectively, than that of the duplicated proximal 198 
or distal enhancers in their positions of maximum expression.  199 

 If the primary function of shadow enhancers is only to ensure a critical threshold of 200 
expression is reached, we would not expect to also see the lower expression noise associated 201 
with the shadow enhancer pair compared to either duplicated enhancer. Furthermore, this 202 
decreased expression noise is not simply a consequence of higher expression levels, as the 203 
shadow enhancer pair produces less mRNA than the duplicated distal enhancer during nc14 204 
(Figure 3B).  The lower expression noise associated with the shadow enhancer pair suggests that 205 
it is less susceptible to fluctuations in upstream TFs than multiple identical enhancers.  206 

The separation of input TFs is sufficient to explain the low noise driven by the shadow enhancer 207 
pair 208 

To explore which factors drive the difference in CVs between the duplicated and shadow 209 
enhancer constructs, we extended our model to have a single promoter controlled by two 210 
enhancers (Figure 4A). To do so, we assumed that either or both enhancers can be looped to the 211 
promoter and drive mRNA production. The rate of mRNA production when both enhancers are 212 
looped is the sum of the rates driven by the individual enhancers. We assumed that some 213 
parameters, e.g. the TF production rates and mRNA decay rate, are the same as the single 214 
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enhancer case. We allowed the parameters describing the promoter-enhancer looping dynamics 215 
(the kon  and koff  values) to differ, depending on the enhancer’s position in the construct relative 216 
to the promoter and whether another enhancer is present. To fit the kon  and koff  values, we used 217 
the medians of the 10 best single enhancer parameter sets as a starting point and performed 218 
simulated annealing to refine them.  219 

This approach allowed us to examine how the model parameters that describe promoter-220 
enhancer looping dynamics change when two enhancers are controlling the same promoter. We 221 
compared the koff  and kon values for each enhancer in the two enhancer constructs to their values 222 
from the single enhancer model. We generally found that koff  values increased and  kon values 223 
decreased (Figure 4B). The effect is most pronounced in the duplicated distal enhancer, with 224 
large changes to the koff  and kon values for the enhancer in the position far from the promoter 225 
(position 2). Given that our model assumes that enhancers act additively and only allows for 226 
changes in the  koff  and kon values, these observed effects may indicate that either the presence of 227 
a second enhancer interferes with promoter-enhancer looping or that the promoter can be 228 
saturated. Our model cannot distinguish between these two possibilities, but these observations 229 
are consistent with our (Supplementary Figure 4) and previous results indicating that the Kr 230 
enhancers act sub-additively (Scholes, et al., 2019). Additionally, the dramatic changes in koff  231 
and kon values in the duplicated distal enhancer are consistent with a previous assertion that 232 
enhancer sub-additivity is most pronounced in cases of strong enhancers (Bothma et al., 2015). 233 

We used these models to simulate transcription and predict the resulting CVs from the 234 
duplicated enhancer and shadow enhancer constructs. In line with experimental data, we found 235 
the model predicts that the shadow enhancer construct drives lower noise than the duplicated 236 
distal or duplicated proximal enhancer constructs in the middle of the embryo. This is 237 
particularly notable, as we did not explicitly fit our model to reproduce the experimentally 238 
observed CVs. There is only one fundamental difference between the shadow and duplicated 239 
enhancer models, namely the use of separate TF inputs for the shadow enhancers. Therefore, we 240 
can conclude that the separation of input TFs is sufficient to explain the low noise driven by the 241 
shadow enhancer construct. 242 

The shadow enhancer pair buffers against intrinsic and extrinsic sources of noise 243 

To further validate that the more stable expression driven by the shadow enhancer pair is due to 244 
its separation of inputs, we compared the extrinsic and intrinsic noise associated with the shadow 245 
enhancer pair to that associated with either single or duplicated enhancers. To do so, we 246 
measured the transcriptional dynamics of embryos with two identical reporters in each nucleus 247 
and calculated noise sources using the approach of Elowitz, et al. (Elowitz, et al., 2002). Intrinsic 248 
noise corresponds to sources of noise, such as TF binding and unbinding, that affect each allele 249 
separately. It is quantified by the degree to which the activities of the two reporters in a single 250 
nucleus differ. Extrinsic noise corresponds to global sources of noise, such as TF levels, that 251 
affect both alleles simultaneously. It is measured by the degree to which the activities of the two 252 
reporters change together. Intrinsic and extrinsic noise are defined such that, when squared, their 253 
sum is equal to total noise2, which corresponds to the CV2 of the two identical alleles in each 254 
nucleus in our system (see Methods). Because our data do not meet one key assumption needed 255 
to measure extrinsic and intrinsic noise with the two reporter approach (see Discussion; 256 
Supplementary Figure 5), we use the terms inter-allele noise and covariance in place of intrinsic 257 
and extrinsic noise.  258 
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Based on our separation of inputs hypothesis and CV data, we expected the total noise 259 
associated with the shadow enhancer pair to be lower than that associated with the duplicated 260 
enhancers. We predicted that the shadow enhancer pair will mediate lower total expression noise 261 
through lower covariance, as the two member enhancers are regulated by different TFs. Given 262 
the complexity of predicting inter-allele noise from first principles (see Supplementary Note), we 263 
predicted that constructs with two enhancers will have lower inter-allele noise than single 264 
enhancer constructs, but did not have a strong prediction regarding the relative inter-allele noise 265 
among the different two-enhancer constructs. Comparisons of noise between the single and 266 
duplicated enhancer constructs would further allow us to discern whether reductions in noise are 267 
generally associated with two-enhancer constructs or whether this is a particular feature of the 268 
shadow enhancer pair.   269 

Neither the duplicated proximal nor distal enhancers drive significantly lower total noise 270 
than the corresponding single enhancers, indicating that the addition of an identical enhancer is 271 
not sufficient to reduce expression noise in this system (Figure 5A). The shadow enhancer pair 272 
drives lower total expression noise than either single or duplicated enhancer, consistent with the  273 
temporal CV data in Figure 3. The median total expression noise associated with the duplicated 274 
distal and duplicated proximal enhancers is 1.4 or 2.4 times higher, respectively, than that 275 
associated with the shadow enhancer pair (Figure 5A). Note that for measurements of noise, our 276 
distal construct places the enhancer at the endogenous spacing from the promoter, as we wanted 277 
to control for positional effects on expression and noise (Scholes, et al., 2019; Supplemental 278 
Figure 6).  279 

In line with our expectations, the shadow enhancer pair has significantly lower 280 
covariance levels than either single or duplicated enhancers (Figure 5B). The shadow enhancer 281 
pair also has lower inter-allele noise than all of the other constructs, though these differences are 282 
only marginally significant (p = 0.13) when compared to the duplicated distal enhancer. 283 
Covariance makes a larger contribution to the total noise for the duplicated distal enhancer and 284 
the shadow enhancer pair, while inter-allele noise is the larger source of noise for the single 285 
distal enhancer and the single or duplicated proximal enhancers (Figure 5B).   286 

The lower total noise and covariance of the shadow enhancer pair support our hypothesis 287 
that, by separating regulation of the member enhancers, the shadow enhancer pair can buffer 288 
against upstream fluctuations. The lower inter-allele noise associated with the shadow enhancer 289 
pair warrants further investigation. A simple theoretical approach predicts that two enhancer 290 
constructs will have lower inter-allele noise (see Supplementary Note). Given that this is not 291 
universally observed in our data, this suggests that there is still much to discover about how 292 
inter-allele noise changes as additional enhancers control a gene’s transcription.    293 

The shadow enhancer pair drives low noise at several temperatures 294 

We showed the Kr shadow enhancer pair drives expression with lower total noise than either 295 
single or duplicated enhancer, yet previous studies have generally found individual member 296 
enhancers of a shadow enhancer set are dispensable under ideal conditions (Frankel, et al., 2010; 297 
Perry et al., 2011; Osterwalder, et al., 2018). However, in the face of environmental or genetic 298 
stress, the full shadow enhancer group is necessary for proper development (Frankel et al., 2010; 299 
Osterwalder, et al., 2018; Perry, et al., 2011). We therefore decided to investigate whether 300 
temperature stress causes significant increases in expression noise and whether the shadow 301 
enhancer pair or duplicated enhancers can buffer potential increases in noise.  302 
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Similar to our findings at ambient temperature (26.5°C), the shadow enhancer pair drives 303 
lower total noise than all other tested enhancer constructs at 32°C (Figure 6B). At 32°C, the 304 
duplicated distal and duplicated proximal enhancers display 35% or 52%, respectively, higher 305 
total noise than the shadow enhancer pair. At 17°C, the shadow enhancer pair has approximately 306 
46% lower total noise than either the single or duplicated proximal enhancer, 21% lower total 307 
noise than the single distal enhancer, and is not significantly different than the duplicated distal 308 
enhancer (Figure 6A). As seen by the variety of shapes in the temperature response curves 309 
(Figure 6C), temperature perturbations have enhancer-specific effects, suggesting input TFs may 310 
differ in their response to temperature change. The low noise driven by the shadow enhancer pair 311 
across conditions is consistent with previous studies showing shadow enhancers are required for 312 
robust gene expression at elevated and lowered temperatures (Frankel, et al., 2010; Perry, et al., 313 
2010).  314 

 315 

Discussion 316 

Fluctuations in the levels of transcripts and proteins are an unavoidable challenge to precise 317 
developmental patterning (Raser & O’Shea, 2005; Arias & Hayward, 2006; Hansen, et al., 318 
2018). Given that shadow enhancers are common and necessary for robust gene expression 319 
(Osterwalder, et al., 2018; Frankel, et al., 2010; Perry, et al., 2010), we proposed that shadow 320 
enhancers may function to buffer the effects of fluctuations in the levels of key developmental 321 
TFs. To address this, we have, for the first time, extensively characterized the noise associated 322 
with shadow enhancers critical for patterning the early Drosophila embryo. By tracking biallelic 323 
transcription in living embryos, we tested the hypothesis that shadow enhancers buffer noise 324 
through a separation of TF inputs to the individual member enhancers. Our results show that TF 325 
fluctuations play a significant role in transcriptional noise and that a shadow enhancer pair is 326 
better able to buffer both extrinsic and intrinsic sources of noise than duplicated enhancers. 327 
Using a simple mathematical model, we found that fluctuations in TF levels are required to 328 
reproduce the observed correlations between reporter activity and that the low noise driven by 329 
the shadow enhancer pair is a natural consequence of the separation of TF inputs to the member 330 
enhancers. Lastly, we showed that a shadow enhancer pair is uniquely able to buffer expression 331 
noise across a wide range of temperatures. Together, these results support the hypothesis that the 332 
separation of inputs of shadow enhancers allow them to buffer input TF noise and therefore drive 333 
more robust gene expression patterns during development.  334 

Temporal fluctuations in transcription factor levels drive expression noise in the embryo 335 

When measured in fixed embryos, the TFs used in Drosophila embryonic development show 336 
remarkably precise expression patterns, displaying errors smaller than the width of a single 337 
nucleus (Dubuis, et al., 2013; Gregor, et al., 2007; Little 2013; He, et al., 2008). It therefore was 338 
unclear whether fluctuations in these regulators play a significant role in transcriptional noise in 339 
the developing embryo. By measuring the temporal dynamics of the individual Kr enhancers, 340 
each of which is controlled by different transcriptional activators, we show that TF fluctuations 341 
do significantly contribute to the noise in transcriptional output of a single enhancer. Within a 342 
nucleus, expression controlled by the two different Kr enhancers is far less correlated than 343 
expression driven by two copies of the same enhancer, indicating that TF inputs, as opposed to 344 
more global factors, are the primary regulators of transcriptional bursting in this system.  345 
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 Given that individual Kr enhancers are influenced by fluctuations in input TFs, it may 346 
seem puzzling that endogenous Kr expression patterns are rather reproducible (Little 2013). 347 
Previous work has cited the role of spatial and temporal averaging, which buffers noisy nascent 348 
transcriptional dynamics to generate more precise expression levels. Shadow enhancers operate 349 
upstream of this averaging, driving less noisy nascent transcription than either single enhancers 350 
or enhancer duplications. 351 

A stochastic model underscores importance of transcription factor fluctuations 352 

We developed a stochastic mathematical model of Kr enhancer dynamics and mRNA production 353 
that recapitulates our main experimental results. This model is based on that by (Bothma, et al., 354 
2015), but it is expanded to include the dynamics of a TF that regulates each enhancer.  We 355 
placed a strong emphasis on the simplicity of this model, e.g. by using a single abstract TF for 356 
each enhancer. This choice both avoids a combinatorial explosion of parameters and makes the 357 
model results and parameters easier to interpret. One of the most notable features of the model is 358 
that it recreates the differences in noise between shadow and duplicated enhancer constructs 359 
without any additional fitting, indicating that these differences are a direct result of the 360 
separation of input TFs to the proximal and distal enhancers. 361 

  Future versions of this model can include refinements. For example, in the current model, 362 
we do not include the influence of repressiveTFs or fluctuations that affect transcription globally. 363 
The absence of these features may partially explain the non-zero correlation experimentally 364 
observed in the shadow heterozygote embryos. Future experiments and models can also be 365 
designed to identify the mechanism of enhancer non-additivity: changes in promoter-enhancer 366 
looping, saturation of the promoter, or other mechanisms. 367 

Noise source decomposition suggests competition between reporters 368 

In our investigation of sources of noise, we decomposed total noise into extrinsic and intrinsic 369 
components as in (Elowitz, et al., 2002). In that study, the authors showed that the activity of one 370 
reporter did not inhibit expression of the other reporter, and therefore their calculations assume 371 
no negative covariance between the reporters’ expression output. In our system, we found a 372 
small amount of negative covariance between the activity of two alleles in the same nucleus 373 
(Supplemental Figure 5). For this reason, we called our measurements covariance and inter-allele 374 
noise. The negative covariance we observe indicates that activity at one allele can sometimes 375 
interfere with activity at the other allele, suggesting competition for limited amounts of a factor 376 
necessary for reporter visualization. The two possible limiting factors are MCP-GFP or an 377 
endogenous factor required for transcription. If MCP-GFP were limiting, we would expect to see 378 
the highest levels of negative covariance at the center of the embryo, where the highest number 379 
of transcripts are produced and bound by MCP-GFP. Since the fraction of nuclei with negative 380 
covariance is highest at the edges of the expression domain (Supplementary Figure 5), the 381 
limiting resource is likely not MCP-GFP, but instead a spatially-patterned endogenous factor, 382 
like a TF. 383 

Currently, the field largely assumes that adding reporters does not appreciably affect 384 
expression of other genes. However, sequestering TFs within repetitive regions of DNA can 385 
impact gene expression (Liu, et al., 2007; Janssen, et al., 2000), and a few case studies show that 386 
reporters can affect endogenous gene expression (Laboulaye, et al., 2018; Thompson & Gasson, 387 
2001). If TF competition is responsible for the observed negative covariance between reporters, a 388 
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closer examination of the effects of transgenic reporters on the endogenous system is warranted. 389 
In addition, TF competition may be a feature, not a bug, of developmental gene expression 390 
control, as modeling has indicated that molecular competition can decrease expression noise and 391 
correlate expression of multiple targets (Yuan, et al., 2018). 392 

Additional functions of shadow enhancers and outlook 393 

There are likely several features of shadow enhancers selected by evolution outside of their 394 
noise-suppression capabilities. Preger-Ben Noon, et al. recently showed that all shadow 395 
enhancers of shavenbaby, a developmental TF gene in Drosophila, drive expression patterns in 396 
tissues and times outside of their previously-characterized domains in the larval cuticle (Preger-397 
Ben Noon, et al., 2018). This suggests that shadow enhancers, while seemingly redundant at one 398 
developmental stage, may play separate, non-redundant roles in other stages or tissues. In several 399 
other cases, both members of a shadow enhancer pair are required for the precise expression 400 
pattern generated by the endogenous locus (El-Sherif & Levine, 2016; Perry, et al., 2012; 401 
Dunipace, et al., 2011; Perry, et al., 2011; Yan, et al., 2017). In the case of Kr, the early 402 
embryonic enhancers drive observable levels of expression in additional tissues and time points, 403 
but these expression patterns overlap those driven by additional, generally stronger, enhancers, 404 
suggesting that the primary role of the proximal and distal enhancers is in early embryonic 405 
patterning (Hoch, et al., 1990). In addition, the endogenous expression domain of Kr is best 406 
recapitulated by the pair of shadow enhancers (El-Sherif & Levine, 2016). Therefore, while we 407 
cannot rule out the possibility that the proximal and distal enhancers perform separate functions 408 
at later stages, it seems that their primary function, and evolutionary substrate, is controlling 409 
Kruppel expression pattern and noise levels during early embryonic development. 410 

Here, we have investigated the details of shadow enhancer function for a particular 411 
system, and we expect that some key observations may generalize to many sets of shadow 412 
enhancers. Shadow enhancers seem to be a general feature of developmental systems (Cannavo, 413 
et al., 2016; Osterwalder, et al., 2018), but the diversity among them has yet to be specifically 414 
addressed. While we worked with a pair of shadow enhancers with clearly separated TF 415 
activators, shadow enhancers can come in much larger groups and with varying degrees of TF 416 
input separation between the individual enhancers (Cannavo, et al., 2016; Osterwalder, et a., 417 
2018). To discern how expression dynamics and noise driven by shadow enhancers depend on 418 
their degree of TF input separation, we are investigating these characteristics in additional sets of 419 
shadow enhancers with varying degrees of differential TF regulation. Our current experimental 420 
data and computational results, combined with that gathered from additional shadow enhancers 421 
will inform fuller models of how developmental systems ensure precision and robustness. 422 

 423 

Materials and Methods 424 

Generation of transgenic reporter fly lines 425 

The single, duplicated, or shadow enhancers were each cloned into the pBphi vector, upstream of 426 
the Kruppel promoter, 24 MS2 repeats, and a yellow reporter gene as in (Fukaya, et al., 2016). 427 
We defined the proximal enhancer as chromosome 2R:25224832-25226417, the distal enhancer 428 
as chromosome 2R:25222618-25223777, and the promoter as chromosome 2R:25226611-429 
25226951, using the Drosophila melanogaster dm6 release coordinates. The precise sequences 430 
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for each reporter construct are given in Supplementary File 1.  For the allele correlation 431 
experiments, each enhancer was cloned 192 bp upstream of the Kr promoter, separated by the 432 
endogenous sequence found between the proximal enhancer and the promoter. For 433 
transcriptional noise experiments, the distal enhancer was placed at its endogenous spacing, 2835 434 
bp upstream of the promoter, and the proximal enhancer sequence was replaced by a region of 435 
the lambda genome that is predicted to have few relevant TF binding sites. In the shadow 436 
enhancer pair or duplicated enhancer constructs, the two enhancers were separated by the 437 
sequence separating the proximal and distal enhancers in the endogenous locus.  438 

Using phiC31-mediated integration, each reporter construct was integrated into the same site on 439 
the second chromosomes by injection into yw; PBac{y[+]-attP-3B}VK00002 (BDRC stock 440 
#9723) embryos by BestGene Inc. (Chino Hills, CA). To produce embryos with biallelic 441 
expression of the MS2 reporter, female flies expressing RFP-tagged histones and GFP-tagged 442 
MCP (yw; His-RFP/Cyo; MCP-GFP/TM3.Sb) were crossed with males containing one of the 443 
enhancer-MS2 reporter constructs. Virgin female F1 offspring were then mated with males of the 444 
same parental genotype, except in the case of shadow heterozygous flies, which were mated with 445 
males containing the other single enhancer-MS2 reporter.  446 

Sample preparation and image acquisition  447 

Live embryos were collected prior to nc14, dechorionated, mounted on a permeable membrane, 448 
immersed in Halocarbon 27 oil, and put under a glass coverslip as in (Garcia, et al., 2013). 449 
Individual embryos were then imaged on a Nikon A1R point scanning confocal microscope 450 
using a 60X/1.4 N.A. oil immersion objective and laser settings of 40uW for 488nm and 35uW 451 
for 561nm. To track transcription, 21 slice Z-stacks, at 0.5um steps, were taken throughout the 452 
length of nc14 at roughly 30 second intervals. To identify the Z-stack’s position in the embryo, 453 
the whole embryo was imaged after the end of nc14 at 20x using the same laser power settings. 454 
Later in the analysis, each transcriptional spot’s location is described as falling into one of 42 AP 455 
bins, with the first bin at the anterior of the embryo. Unless otherwise indicated, embryos were 456 
imaged at ambient temperature, which was on average 26.5°C. To image at other temperatures, 457 
embryos were either heated or cooled using the Bioscience Tools (Highland, CA) heating-458 
cooling stage and accompanying water-cooling unit.  459 

Calculation of transcription parameters 460 

For every spot of transcription imaged, the fluorescence traces across the time of nc14 were first 461 
subject to smoothing by the LOWESS method with a span of 10%. The resulting smoothed 462 
traces were used to measure transcriptional parameters and noise. Traces consisting of fewer than 463 
three time frames were removed from calculations. To calculate transcription parameters, we 464 
used the smoothed traces to determine if the promoter was active or inactive at each time point. 465 
A promoter was called active if the slope of its trace (change in fluorescence) between that point 466 
and the next was greater than or equal to the instantaneous fluorescence value calculated for one 467 
mRNA molecule (FRNAP , described below).  Once called active, the promoter is considered 468 
active until the slope of the fluorescence trace becomes less than or equal to the negative 469 
instantaneous fluorescence value of one mRNA molecule, at which point it is called inactive 470 
until another active point is reached. The instantaneous fluorescence of a single mRNA was 471 
chosen as the threshold because we reasoned that an increase in fluorescence greater than or 472 
equal to that of a single transcript is indicative of an actively producing promoter, while a 473 
decrease in fluorescence greater than that associated with a single transcript indicates transcripts 474 
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are primarily dissociating from, not being produced, at this locus. Visual inspection of 475 
fluorescence traces agreed well with the burst calling produced by this method (Supplemental 476 
Figure 7).  477 

Using these traces and promoter states, we measured burst size, frequency and duration. Burst 478 
size is defined as the integrated area under the curve of each transcriptional burst. Duration is 479 
defined as the amount of time occurring between the frame a promoter is determined active and 480 
the frame it is next determined inactive. Frequency is defined as the number of bursts occurring 481 
in the period of time from the first time the promoter is called active until 50 minutes into nc14 482 
or the movie ends, whichever is first. The time of first activity was used for frequency 483 
calculations because the different enhancer constructs showed different characteristic times to 484 
first transcriptional burst during nc14. For these, and all other measurements, we control for 485 
position of the transcription trace by first individually analyzing the trace and then using all the 486 
traces in each AP bin to calculate summary statistics of the transcriptional dynamics and noise 487 
values at that AP position.  488 

Conversion of integrated fluorescence to mRNA molecules 489 

To put our results in physiologically relevant units, we calibrated our fluorescence measurements 490 
in terms of mRNA molecules. As in (Lammers, et al., 2018), for our microscope, we determined 491 
a calibration factor, α, between our MS2 signal integrated over nc13, FMS2,and the number of 492 
mRNAs generated by a single allele from the same reporter construct in the same time interval, 493 
NFISH, using the hunchback P2 enhancer reporter construct (Garcia et al., 2013). Using this 494 
conversion factor, we can calculate the integrated fluorescence of a single mRNA (F1) as well as 495 
the instantaneous fluorescence of an mRNA molecule (FRNAP). With our microscope, FRNAP is 496 
379 AU/RNAP and F1 is 1338 AU/RNAP∙min. With these values, we are able to convert both 497 
integrated and instantaneous fluorescence into total mRNAs produced and number of nascent 498 
mRNAs present at a single time point, by dividing by F1 and  FRNAP, respectively.   499 

Calculation of noise metrics 500 

To calculate the temporal CV each transcriptional spot i, we used the formula: 501 

CV(i) = mean(mi(t))/standard deviation(mi(t)) 502 

where mi(t) is the fluorescence of spot i and time t. 503 

We also decomposed the total noise experienced in each nucleus to inter-allele noise and co-504 
variance, analogous to the approach of (Elowitz, et al., 2002).  505 

Inter-allele noise is calculated one nucleus at a time. It is the mean square difference between the 506 
fluorescence of the two alleles in a single nucleus: 507 

 !"#
$ =

〈'()(+)-(.(+)/
.
〉

$〈()(+)〉〈(.(+)〉
 508 

where m1(t) is the fluorescence of one allele in the nucleus at time t, and m2(t) is the fluorescence 509 
of the other allele in the same nucleus and the angled brackets indicate the mean across the time 510 
of nc14. 511 

Covariance is the covariance of the activity of the two alleles in the same nucleus across the time 512 
of nc14: 513 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/778092doi: bioRxiv preprint 

https://doi.org/10.1101/778092
http://creativecommons.org/licenses/by-nc/4.0/


 

 13 

 !12
$ =

〈()(+)(.(+)〉-〈()(+)〉〈(.(+)〉

〈()(+)〉〈(.(+)〉
 514 

The inter-allele and covariance values are defined such that they sum to give the total 515 
transcriptional noise displayed by the two alleles in a single nucleus.  516 

 !+3+
$ =

〈()(+)
.4(.(+)

.〉-$〈()(+)〉〈(.(+)〉

$〈()(+)〉〈(.(+)〉
 517 

This total noise value is equal to the coefficient of variation of the expression of the two alleles 518 
in a single nucleus across the time of nc14.  519 

Statistical methods 520 

To determine any significant differences in total noise, covariance, or inter-allele noise values 521 
between the different enhancer constructs, we performed Kruskal-Wallis tests with the 522 
Bonferroni multiple comparison correction.  523 

Description of the single enhancer model and associated parameters 524 

We constructed a model of enhancer-driven transcription based on the following chemical 525 
reaction network, 526 

                  kon  r 527 
T + E  C + R 528 

              koff 529 
 530 

 531 

where E is an enhancer that interacts with a transcription factor T, which together bind to the 532 
promoter at a rate kon to form the active promoter-enhancer complex C. When the promoter is in 533 
this active form, it leads to the production of mRNA denoted by R, which degrades by diffusion 534 
from the gene locus at a rate α. Transcription is interrupted whenever the complex C 535 
disassociates spontaneously at a rate koff. In the bursting TFs model, the transcription factor T 536 
appears at a rate β1 and degrades at a rate β−1. To recapitulate Kruppel expression patterns, the 537 
value of β1 was assumed to be given by 538 

(1) , 539 
 540 
where x is the percentage along the length of the egg and c is a scaling constant. Since Kruppel 541 
activity peaks near the center of the egg, we chose µ = 50, while c and σ were fitted along with 542 
the other parameters. Lastly, n was assumed to be fixed across the length of the egg. 543 

We also generated a constant TF model, which is an adaptation of the model in (Bothma et al., 544 
2015). This model implicitly assumes that TF numbers are constant and, therefore, are 545 
incorporated into the value of kon as described by the reactions 546 

C 
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 547 

 548 
    koff 549 

 550 
R  ∅ 551 

In this case, the value for T was fitted for each bin in a similar way to β1, i.e. the constant number 552 
of TFs was assumed to be described by equation (1) (values were rounded to the nearest integer). 553 

To simulate the transcriptional traces, we implemented a stochastic approach. Individual 554 
chemical events such as enhancer-promoter looping take place at random times and are 555 
influenced by transcription factor numbers. Individual trajectories of chemical species over time 556 
were calculated using the Gillespie algorithm (Gillespie, 1976), and these trajectories are 557 
comparable to the experimentally measured transcriptional traces. Since the enhancer is either 558 
bound or not bound to the promoter, we imposed the constraint that C + E = 1 when simulating 559 
model dynamics. 560 
 561 
Estimation of model parameters from experimental data 562 

To yield a starting estimate for the kon and koff parameters, we defined the start and end of a burst 563 

as the time when the reactions 6
789
:; 	= and =

78>>
:⎯; 	6 occur, respectively. The length of the ith 564 

burst was defined as the range of [bi,pi] where bi corresponds to the time of the ith instance of the 565 

reaction  6
789
:; 	= and pi  to the time of the ith instance of the reaction  =

78>>
:⎯; 	6. The time between 566 

the ith burst and the i + 1th burst is [pi,bi+1]. The Gillespie algorithm dictates that the time spent in 567 
any given state is determined by an exponentially distributed random variable with a rate 568 
parameter equal to the product of two parts: the sum of rate constants of the outgoing reactions, 569 
and the number of possible reactions. If the enhancer is either bound or unbound, we have that C 570 
= 1 or E = 1, respectively. Therefore, by letting tb be the average time between bursts and td be 571 
the average duration of a burst, we can write 572 

 573 
 574 

and 575 

 576 

 577 

where N is the number of bursts for spot j, bij and pij denote the beginning and end of burst i in 578 
spot j respectively, and M denotes the total number of spots in the egg. The right-hand sides are 579 
given by the expected value of the exponential distribution and the assumption that, on average, 580 
T is close to 1. While this may not be the case for T, the assumption provides a convenient upper 581 
bound for the average time between bursts, which is likely not to have a much smaller value for a 582 
lower bound. (A low enough value of tb would imply nearly constant fluorescence intensity 583 
instead of bursts.) Finally, the average duration of a burst td can be calculated directly from the 584 

on 

1 

off 

1 td  =  lim  , 

α 

, 
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data and used to obtain koff by calculating 1/td. Similarly, the average time between bursts tb is 585 
readily available from the data giving us kon ≈ 1/tb. 586 

We were able to directly estimate mRNA production and degradation rates from the 587 
experimental data. To estimate α, we focused on periods of mRNA decay; i.e. periods where no 588 
active transcription is taking place and are thus described by 589 

R’ = −αR, 590 

which in turn can be solved to be 591 

(2) R = ce−tα, 592 

where c is a constant of integration. Taking the derivative of equation 2 yields 593 

(3) R’(t) = −αce−tα, 594 
 595 
which corresponds to the slope of the decaying burst. We define the interval of decay of the ith 596 
burst as [pi,bi+1]. For some point t0 ∈ (pi,bi+1), let R0 = R(t0) = ce−t0α. Solving this expression for c 597 
gives that c = R0et0α. Substituting for c in equation 3 evaluated at t0 results in R’(t0) = −αR0et0αe−t0α 598 
= −αR0. Then, it follows that 599 

(4)  600 

 601 
In other words, the rate of decay of mRNA fluorescence can be calculated from any trace by 602 
taking the ratio of the slope during burst decay and its intensity at a given time t0 ∈ (pi,bi+1). 603 

Adjacent measurements of fluorescence intensity from the single enhancer systems were used to 604 
approximate the slope at each point in the traces. Then, equation 4 was applied to each point. A 605 
histogram of all calculated values was generated (Supplemental Figure 8). In this figure, there 606 
was a clear peak, which provided us with an estimate of α ≈ 1.95. 607 

The estimation of r was done for periods of active transcription, which are also accompanied by 608 
simultaneous mRNA decay. By noting that C = 1 during mRNA transcription, we can 609 
approximate these periods as the zeroth order process 610 

 611 

The differential equation associated with this system is given by 612 

(5) R’ = r − αR, 613 

and has steady state R∗ = r/α. Equation 5 can be solved explicitly for R by choosing 614 

, 615 
where c is a constant of integration. For two adjacent measurements at times t1 and t2 we can 616 
write their respective measured amounts of mRNA as 617 

(6) , 618 
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 619 
and 620 

(7) . 621 

 622 
Solving for c1 and c2 gives 623 

 624 
The short-term fluctuations of mRNA from R1 to R2 between two adjacent discrete time points in 625 
the stochastic system can be approximated by equations 6 and 7. This implies that 626 

, 627 
which in turn gives 628 

. 629 
Therefore, the estimation of r can be computed given two adjacent measurements of fluorescence 630 
and the time between them. Finally, we used a similar approach as done with α to calculate 631 
values of r from fluorescence data. However, unlike α, r was calculated for each bin to account 632 
for differences in transcriptional efficiency across the length of the embryo. 633 

Parameter fitting with simulated annealing 634 

Simulations and parameter fitting were done with MATLAB®. Optimization in fitting was done 635 
by minimizing the sum of squared errors (SSE) between the normalized vectors of burst 636 
properties and allele correlations of the experimental and simulated data. In particular, a vector y 637 
of experimental data was created by concatenating the following vectors: burst size, integrated 638 
fluorescence, frequency, duration, and allele correlation across the length of the embryo. The 639 
vector y was subsequently normalized by dividing each burst property by the largest element in 640 
their respective vectors (except correlation which by definition is unitless between -1 and 1). A 641 
vector x was created in an analogous fashion to y but using simulated instead of experimental 642 
data. However, x was normalized using the same elements that were used to normalize y. Then, 643 
the discrepancy between the experimental and simulated data was measured by 644 

SSE = ∑ (CD −	FD)
$G

DHI  .  645 

We used a high-performance computing cluster to compute 200 independent runs of parameter 646 
fitting with simulated annealing for each model variant. The algorithm requires an initial guess 647 
of the parameter set P0, an initial temperature Γ0, a final temperature Γ’, the number of iterations 648 
per temperature N, and a cooling factor µ. Then, each iteration is as follows: 649 
(1) If the current iteration i is such that i > N, then update the current temperature Γk = µkΓ0 to 650 
µk+1Γ0 and set i = 0. Otherwise, set i to i + 1. 651 
(2) Check if Γk < Γ’. If so, return the current parameter set Pj and terminate. 652 
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(3) Choose a parameter randomly from Pj and multiply it by a value sampled from a normal 653 
distribution with a mean equal to 1. The standard deviation of such distribution should be 654 
continuously updated to be Γk. The result of this step is the newly generated parameter set Pj+1. 655 
(4) Calculate ∆E as the difference in SSE between the data generated by Pj and that generated 656 
by Pj+1. Update Pj to Pj+1 if ∆E < 0 or with probability p < e∆E/Γk where p is a uniformly distributed 657 
random number. 658 
(5) Repeat all steps until termination. 659 

 660 

To generate our results, we chose Γ0 = 1, Γ’ = Γ0/10, N = 30, and µ = 0.8. We observed an 661 
improvement in the quality of the fittings by using analysis-derived parameter values as initial 662 
guesses instead of values given through random sampling. The sampled space ranged from 10−3 663 
to 103 for all parameters, except n, which was sampled from 100 to 102, and σ, which was 664 
randomly chosen to be an integer between 1 and 20. Equal numbers of parameter values were 665 
sampled at each order of magnitude. The analysis in the section above was used to estimate the 666 
parameters in P0. Parameters that were not estimated in the previous section were given the 667 
following initial guesses: n = 10, β−1 = 1, σ = 6, and c = 40. Initial guesses for c and σ were based 668 
on the experimental observation that there is little transcription outside of 20-80% egg length. 669 
Based on this observation, simulations were limited to this egg length range, as well. For the 670 
constant TFs model, both analysis-derived and random initial parameter values were used to 671 
maximize the likelihood of finding any parameter set capable of recapitulating the observed 672 
allele correlation. 673 
 674 
Generation of simulated experimental data 675 
Parameter sets resulting from fitting were sorted in ascending order based on their sum of 676 
squared errors, and the 10 lowest error parameter sets are what we called the 10 best parameter 677 
sets. For all figures, we simulated 80 spots per bin and simulated each bin 5 times to generate 678 
error bars. Data for the distal enhancer at the proximal location was used to reproduce simulated 679 
allele correlations in all cases. 680 

Gillespie simulations update the counts of each chemical species at random time intervals. 681 
However, for ease of parameter fitting and to better recapitulate the experiments, we generated 682 
data in two distinct timescales: one consisting of 30 second intervals after which mRNA counts 683 
were recorded, and another consisting of random time intervals generated by the algorithm after 684 
which chemical counts were updated. The former one was used for all parameter fitting rounds 685 
and generation of figures. 686 

Description of two enhancer model, parameter estimation, and fitting 687 

To explore two enhancer systems, we expanded our previous model to include an additional 688 
enhancer. First, we considered duplicated enhancer systems, which consist of either two 689 
proximal or two distal enhancers. Enhancers were denoted by E1 and E2, which correspond to two 690 
identical enhancers that exist in different locations relative to the promoter. They are activated by 691 
the same transcription factors as described by the reactions 692 
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 693 

Without loss of generality, we used E1 to denote the enhancer at the proximal location and E2 to 694 
denote the enhancer at the distal location. This model describes independent enhancer dynamics; 695 
i.e. the behavior of one enhancer does not affect the behavior of the other, and, as such, both 696 
enhancers can be simultaneously looped to the promoter. Consequently, to account for potential 697 
enhancer interference or competition for the promoter, we assumed distinct kon and koff values for 698 
each enhancer in the duplicated enhancer constructs. We also used distinct values of r for each 699 
distal enhancer in the duplicated distal construct since fluorescence data was available for this 700 
enhancer at the proximal and endogenous location. For proximal enhancers, we assume r1 = r2. 701 

To describe the dynamics of the shadow enhancer pair, we denoted the activators for E1 (the 702 
proximal enhancer) and E2 (the distal enhancer) by T1 and T2, respectively: 703 

 704 

The production rate of T2, γ1, was calculated in the same way as production rate of T1, β1, but 705 
differed in the values of c and σ. The two enhancer models were also used to calculate allele 706 
correlation between homozygotes and heterozygotes because a distinction between the mRNA 707 
produced by C1 and C2 was made. This approach works because, e.g., when considering the 708 
homozygote embryos, each single enhancer resides in the same nucleus and is therefore affected 709 
by the same fluctuating TF numbers. In the duplicated enhancer model, each enhancer E1 or E2 is 710 
affected by the same fluctuations in the number of transcription factor T. An analogous logic 711 
applies to the heterozygotes. 712 

To fit the two enhancer models to experimental data, we retained several parameters from the 713 
single enhancer models. Parameters r and α were directly calculated from the data, and, as such, 714 
did not vary across models. We assume that parameters concerning transcription factors (β1, β−1, 715 
γ1, γ−1, n1, and n2) are not affected by the presence of an additional enhancer. Therefore, in our 716 
model, only kon and koff are free to change. To fit the values of kon1, kon2, koff1, and koff2, we set the 717 

T 1 + E 1 
k on 1 
k off 1 

C 1 r 1 C 1 + R 

T 2 + E 2 
k on 2 
k off 2 

C 2 r 2 C 2 + R 

∅ 
β 1 

n 1 T 1 
∅ 

γ 1 
n 2 T 2 

T 1 
β − 1 

∅ 
T 2 

γ − 1 
∅ 

R α ∅ 
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other model parameters to the median values of the 10 best parameter sets in the respective 718 
single enhancer model. We then used a similar simulating annealing approach to fit the kon and 719 
koff values. We used the resulting values to simulate transcriptional traces and to calculate the 720 
predicted CV values shown in Figure 4. 721 
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 936 
 937 

 938 

Figure 1: Dual allele imaging shows the individual Kruppel enhancers drive largely 939 
independent transcriptional dynamics. A. Schematic of the endogenous Kruppel locus with 940 
distal (blue) and proximal (orange) shadow enhancers driving Kr (teal) expression in the central 941 
region of the embryo. Known transcriptional activators of the two enhancers are shown. B. 942 
Schematics of single enhancer reporter constructs driving expression of MS2 and a yellow 943 
reporter. When transcribed, the MS2 sequence forms stem loops that are bound by GFP-tagged 944 
MCP expressed in the embryos. Proximal embryos have expression on each allele controlled by 945 
the 1.5kb proximal enhancer at its endogenous spacing from the Kr promoter, while distal 946 
embryos have expression on each allele controlled by the 1.1kb distal enhancer at the same 947 
spacing from the Kr promoter. Shadow heterozygote embryos have expression on one allele 948 
controlled by the proximal enhancer and expression on the other allele controlled by the distal 949 
enhancer. C. Still frame from live imaging experiment where nuclei are red circles and active 950 
sites of transcription are green spots. MCP-GFP is visible as spots above background at sites of 951 
nascent transcription (Garcia, et al., 2013). D. The fluorescence of each allele in individual 952 
nuclei can be tracked across time as a measure of transcriptional activity. Graph shows a 953 
representative trace of transcriptional activity of the two alleles in a single nucleus across the 954 
time of nc14. These traces are used to calculate the correlation of allele activity in each nucleus. 955 
Correlation values are grouped by position of the nucleus along the egg length and averaged 956 
across all imaged nuclei in all embryos of each construct. E. Graph of average correlation 957 
between the two alleles in each nucleus as a function of egg length. 0% egg length corresponds 958 
to the anterior end. Error bars indicate 95% confidence intervals.  The shadow heterozygotes 959 
have much lower allele correlation than either homozygote, demonstrating that the individual 960 
shadow enhancers drive nearly independent transcriptional activity and that upstream 961 
fluctuations in regulators are a significant driver of transcriptional bursts. The total number of 962 
nuclei used in calculations for each construct by AP bin are given in Supplementary Table 2.  963 
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 964 

Figure 2: Model of enhancer-driven dynamics demonstrates TF fluctuations are required 965 
for correlated reporter activity. To investigate the factors required for the observed correlated 966 
behavior of identical enhancers and largely independent behavior of the individual enhancers, we 967 
developed a simple stochastic model of enhancer-driven transcription. A. Schematic of model of 968 
transcription driven by a single enhancer (the bursting TFs model). For each enhancer, we 969 
assume there is a single activating TF, T, that appears in bursts of size n molecules at a rate β1, 970 
which varies by the position in the embryo. TFs degrade linearly at rate β-1. When present, T can 971 
bind the enhancer, E, to form a transcriptionally active complex, C, at a rate kon and dissociates at 972 
rate koff. This complex then produces mRNA at an experimentally determined rate r that degrades 973 
at an experimentally determined rate, α. B. The bursting TFs model is able to recapitulate the 974 
experimentally observed pattern of allele correlation. We plot the correlation between the two 975 
alleles in a nucleus as a function of egg length. Simulated data is created using the lowest energy 976 
parameter set for each enhancer. The data shown is the average of five simulated embryos that 977 
have 80 transcriptional spots per AP bin. In B and C simulated data are shown by solid lines, 978 
experimental data are shown by dotted lines. C. The constant TFs model fails to recapitulate the 979 
experimentally observed pattern of allele correlation. Without TF fluctuations, both heterozygous 980 
and homozygous embryos display independent allele activity. Error bars in B and C represent 981 
95% confidence intervals.  982 
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 983 

Figure 3: Shadow enhancer pair produces lower expression noise than duplicated 984 
enhancers. To investigate whether the shadow enhancer pair drives less noisy expression, we 985 
calculate the coefficient of variation (CV) associated with the shadow enhancer pair or either 986 
duplicated enhancer across time of nc14. A. The shadow enhancer pair displays lower temporal 987 
expression noise than either duplicated enhancer. Graph is mean coefficient of variation of 988 
fluorescence traces across time as a function of embryo position. B. The shadow enhancer pair 989 
shows the lowest expression noise, but not the highest expression levels, indicating that the lower 990 
noise is not simply a function of higher expression. Graph is average total expression during 991 
nc14 as a function of embryo position. Error bars in A and B represent 95% confidence intervals. 992 
Total number of transcriptional spots used for graphs are given in Supplementary Table 1 by 993 
construct and AP bin.    994 
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 995 

Figure 4: The two enhancer model recapitulates low expression noise associated with the 996 
shadow enhancer pair. To assess whether the separation of input TFs mediates the lower 997 
expression noise driven by the shadow enhancer pair, we expanded our model to incorporate two 998 
enhancers driving transcription. A. Schematic of the two enhancer model. We assume that when 999 
two enhancers control a single promoter, either or both can loop to the promoter and drive 1000 
transcription. We defined model parameters as in Figure 2, and only allowed the kon and koff 1001 
values to vary from the single enhancer model. B. To understand the effect of adding a second 1002 
enhancer, we examined how the kon and koff values vary from those in the single enhancer model. 1003 
We plotted the distribution of the values for kon and koff  for each enhancer in the three different 1004 
constructs measured. The distribution shows the values derived from the 10 best-fitting 1005 
parameter sets, and the black star in each column indicates the kon or koff value from the 1006 
corresponding single enhancer model.  In general, the koff values increased relative to the single 1007 
enhancer model, and the kon  values decreased, indicating that the presence of a second enhancer 1008 
inhibits the activity of the first. C. Graph of average coefficient of variation of simulated or 1009 
experimental transcriptional traces as a function of egg length. The model is able to recapitulate 1010 
the lower expression noise seen with the shadow enhancer pair with no additional fitting, 1011 
indicating that the separation of TF inputs to the two enhancers is sufficient to explain this 1012 
observation. Simulated data are shown in solid lines, experimental data are shown in dotted lines. 1013 
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 1014 

Figure 5: Shadow enhancer pair achieves lower total noise by buffering global and allele-1015 
specific sources of noise. To determine how the shadow enhancer pair produces lower 1016 
expression noise, we calculated the total noise associated with each enhancer construct and 1017 
decomposed this into the contributions of covariance and inter-allele noise. Covariance is a 1018 
measure of how the activities of the two alleles in a nucleus change together and is indicative of 1019 
global sources of noise. Inter-allele noise is a measure of how the activities of the two alleles 1020 
differ and is indicative of allele-specific sources of noise. A. The shadow enhancer pair has 1021 
lower total noise than single or duplicated enhancers. Circles are total noise values for individual 1022 
nuclei in AP bin of peak expression for the given enhancer construct. Horizontal line represents 1023 
the median. The y-axis is limited to 75th percentile of the proximal enhancer, which has the 1024 
largest noise values. The shadow enhancer pair has significantly lower total noise than all other 1025 
constructs. B. The shadow enhancer pair displays significantly lower covariance than either 1026 
single or duplicated enhancer and significantly lower inter-allele noise than both single 1027 
enhancers and the duplicated proximal enhancer. The left half of each violin plot shows the 1028 
distribution of covariance values of nuclei in the AP bin of peak expression, while the right half 1029 
shows the distribution of inter-allele noise values. Horizontal lines represent median. The y-axis 1030 
is again limited to the 75th percentile of enhancer with the largest noise values, which is 1031 
duplicated proximal. The lower covariance and inter-allele noise associated with the shadow 1032 
enhancer pair indicates it is better able to buffer both global and allele-specific sources of noise.  1033 
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C. p-value table of Kruskal-Wallis pairwise comparison of the total noise values of each 1034 
enhancer construct. p-value gradient legend applies to C and D. D. p-value table of Kruskal-1035 
Wallis pairwise comparison of covariance (on left) and inter-allele noise (on right) values for 1036 
each enhancer construct. Bonferroni multiple comparison corrections were used for p-values in C 1037 
and D. Total number of nuclei used in noise calculations are given in Supplementary Table 2.     1038 
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 1039 

 1040 

Figure 6: Shadow enhancer pair maintains lower total noise across temperature 1041 
perturbations. To test the ability of each enhancer construct to buffer temperature perturbations, 1042 
we measured the total expression noise associated with each for embryos imaged at 17°C or 1043 
32°C. A. The shadow enhancer pair displays significantly lower total noise than the single or 1044 
duplicated proximal enhancer and the single distal enhancer at 17°C. Circles are total noise 1045 
values for individual nuclei in AP bin of peak expression for the given enhancer construct and 1046 
horizontal bars represent medians. The y-axis is limited to 75th percentile of construct with 1047 
highest total noise at 17°C (single proximal). B. The shadow enhancer pair has significantly 1048 
lower total noise than all other constructs at 32°C. The y-axis is limited to 75th percentile of the 1049 
enhancer construct with highest total noise at 32°C (duplicated proximal). C. Temperature 1050 
changes have different effects on the total noise associated with the different enhancers. The 1051 
median total noise value at the AP bin of peak expression at the three measured temperatures is 1052 
shown for each enhancer construct. Within each enhancer, the median total noise values are 1053 
shown left to right for 17°C, 26.5°C, and 32°C. D. p-value table of Kruskal-Wallis pairwise 1054 
comparison of the total noise values of each enhancer construct at 17°C. p-value gradient legend 1055 
applies to D and E. E. p-value table of Kruskal-Wallis pairwise comparison of the total noise 1056 
values of each enhancer construct at 32°C.       1057 

 1058 

  1059 
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Supplemental Figures: 1060 

 1061 

Supplemental Figure 1: Correspondence of observed and expected number of spots. To 1062 
ensure that we can accurately measure two spots of expression in the embryo, we compared the 1063 
number of transcriptional spots seen in embryos hemizygous or homozygous for each construct. 1064 
Our rationale was that in the absence of transvection, the number of transcriptional spots in 1065 
homozygous embryos should be twice the number in embryos expressing the reporter on only 1066 
one allele. The number of transcriptional spots tracked during nc14 in the AP bin of maximum 1067 
expression was counted for all embryos imaged for each homozygous and hemizygous construct. 1068 
The graph shows the average of this value for homozygous embryos, divided by double the value 1069 
observed in the corresponding hemizygous construct. Assuming no transvection occurs, this 1070 
value should be close to 1. The ratio of observed to expected number of spots is close to 1 for all 1071 
of our enhancer constructs, indicating we are reliably able to track the two individual spots of 1072 
transcription in single nuclei.   1073 
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 1074 

Supplemental Figure 2: Single enhancer models recreate observed transcriptional bursting 1075 
properties. To investigate whether our model is accurately simulating our experimental system, 1076 
we compared the transcriptional burst properties produced by model simulations of transcription 1077 
to those observed experimentally (see Supplementary Figure 7 for description of burst 1078 
properties). A. Graphs of average values of transcriptional burst properties, total mRNA 1079 
produced during nc14, burst frequency, burst duration, and burst size associated with the 1080 
proximal enhancer as a function of egg length. In A and B, simulated data are represented with 1081 
solid lines and experimental data are shown with dotted lines. B. Graphs of average values of 1082 
transcriptional burst properties as in A, associated with the distal enhancer. For both the proximal 1083 
and distal enhancers, our model is largely able to recapitulate the experimentally observed 1084 
transcriptional burst properties associated with each enhancer. C. The median and CV values of 1085 
the model parameters for the proximal enhancer in the top 10 performing parameter sets. D. The 1086 
median and CV values of the model parameters for the distal enhancer in the top 10 performing 1087 
parameter sets. Explanations of model parameters are given in the Methods. 1088 
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1089 
Supplemental Figure 3: Temporal CV as a function of mean fluorescence. To investigate the 1090 
relationship between our noise measurement of temporal CV and the mean activity of each 1091 
construct, we plotted the temporal CV of each transcription spot as a function of its mean 1092 
fluorescence. A. Distal; B. Proximal; C. 2x Proximal; D. 2x Distal; E. Shadow pair. With all 1093 
constructs, we find the general trend that CV decreases with increasing average expression, 1094 
flattening out at a baseline noise level specific to each enhancer construct.    1095 
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 1096 

Supplemental Figure 4: Individual Kr enhancers display sub-additive behavior. To assess 1097 
the way input from two enhancers is integrated at the Kr promoter, we compared the 1098 
experimentally observed mRNA production of duplicated enhancers to that predicted from 1099 
additive behavior of the single enhancers. A. The duplicated distal enhancer displays sub-1100 
additive behavior. The solid line is the experimentally observed total mRNA produced by the 1101 
duplicated distal enhancer during nc14 as a function of egg length and the dotted line is that 1102 
expected by doubling the total mRNA produced by the single distal enhancer. B. The duplicated 1103 
proximal enhancer also acts sub-additively. The solid line is the experimentally observed total 1104 
mRNA produced by the proximal enhancer during nc14 as a function of egg length and the 1105 
dotted line is that expected by doubling the total mRNA produced by the single proximal 1106 
enhancer. These results, along with the observation that koff values increased and kon values 1107 
decreased in our model with the addition of a second enhancer, suggests that the Kr enhancers 1108 
compete with each other for interactions with the promoter.   1109 
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 1110 

Supplemental Figure 5: Fraction of nuclei with negative covariance of allele activity. To 1111 
identify the likely cause of the observed negative covariance between allele activity in some 1112 
nuclei, we calculated the fraction of nuclei displaying negative covariance out of all nuclei that 1113 
had active reporter transcription. Graphs show the fraction of transcribing nuclei with negative 1114 
covariance as a function of egg length for each reporter construct, with a black circle indicating 1115 
the position along the embryo of maximal expression for that construct. A. Distal; B. Proximal; 1116 
C. 2x Proximal; D. 2x Distal; E. Shadow pair. Note that for all constructs, the highest rates of 1117 
negative covariance are outside of the region of maximal reporter expression. MCP-GFP is 1118 
expressed uniformly along the length of the embryo and we would therefore expect if MCP-GFP 1119 
were the limiting factor, we would see the highest rates of negative covariance in the center of 1120 
the expression pattern, where the highest number of transcripts are produced. Instead, the highest 1121 
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rates of negative covariance are seen at the edges of the Kr expression pattern, suggesting a 1122 
spatially patterned factor, such as a TF, may be what is limiting.  1123 
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 1124 

 1125 

Supplemental Figure 6: Position-dependent effects on distal enhancer. To best mimic the 1126 
endogenous system, we looked at expression driven by the distal enhancer at its endogenous 1127 
spacing from the promoter for our noise calculations. In this construct we replaced the sequence 1128 
of the proximal enhancer with sequence of the same length from the lambda phage genome 1129 
predicted to have low number of Drosophila TF binding sites. This increased distance from the 1130 
promoter had observable effects on the transcriptional dynamics and noise associated with the 1131 
distal enhancer. A. Comparison of total transcriptional expression mediated by the distal 1132 
enhancer at its endogenous spacing or proximal to the promoter. The distal enhancer at its 1133 
endogenous spacing, shown as the solid line, produces significantly more total mRNA in the 1134 
center region of expression than the distal enhancer proximal to the promoter, shown as the 1135 
dotted line. B. Comparison of the average number of transcripts produced per transcriptional 1136 
burst by each distal enhancer configuration as a function of egg length. C. Average burst 1137 
frequency associated with either distal enhancer configuration as a function of egg length. D. 1138 
Average burst duration associated with either distal enhancer configuration as a function of egg 1139 
length. E. Coefficient of variation of transcriptional activity across nc14 for each distal enhancer 1140 
configuration as a function of egg length. F. Total expression noise associated with either distal 1141 
enhancer configuration at the AP bin of that construct’s peak expression. The total noise 1142 
distribution for the distal enhancer proximal to the promoter is on the left and that for the distal 1143 
enhancer at its endogenous spacing from the promoter is on the right. The distal enhancer at its 1144 
endogenous spacing displays significantly higher total noise (p = 0.018) than the distal enhancer 1145 
proximal to the promoter.  Each circle represents the total noise of an individual nucleus and the 1146 
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horizontal bar marks the median total noise value. Y-axis limited to the 75th percentile of the 1147 
construct with the highest total noise values (distal promoter at endogenous spacing).           1148 
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 1149 

 1150 

Supplemental Figure 7: Visual inspection of burst calling algorithm  1151 

To extract the bursting parameters examined (burst size, frequency, and duration), individual 1152 
fluorescence traces were first smoothed using the LOWESS method with a span of 0.1. Our burst 1153 
calling algorithm then determined the periods of promoter activity or inactivity based on the 1154 
slope of the fluorescence trace. A. Representative fluorescence trace of a single spot across the 1155 
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time of nc14. Black open circles indicate time points where the promoter is called “on”, red filled 1156 
circles indicate time points where the promoter is called “off”. B. Same trace as in A with 1157 
shading representing the area under the curve used to calculate the size of the first burst. This 1158 
area is calculated using the trapz function in MATLAB and is done for each burst, from the time 1159 
point the promoter is called “on” until the next time it is called “on”. C-E show additional 1160 
representative fluorescence traces of single transcriptional spots across the time of nc14. C. A 1161 
trace with shading representing the area under the entire curve during nc14 used to calculate the 1162 
total amount of mRNA produced. This area is calculated using the trapz function in MATLAB 1163 
and is done from the time the promoter is first called active until 50 minutes into nc14 or the 1164 
movie ends, whichever comes first. D. Burst frequency is calculated by dividing the number of 1165 
bursts that occur from the time the promoter is first called active until 50 minutes into nc14 or 1166 
the movie ends, whichever comes first. E. Burst duration is defined as the amount of time 1167 
between when the promoter is called active and it is next called inactive.         1168 
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 1169 

 1170 

Supplemental Figure 8: mRNA production and decay rates can be directly estimated from 1171 
experimental data. The mRNA degradation parameter α and production parameter r were 1172 
measured directly from fluorescence data without any input from the model. A. To estimate α, 1173 
we used adjacent measurements of fluorescence intensity to approximate the slope at each point 1174 
in the fluorescence traces. These values are compared with an exponential rate of mRNA decay 1175 
(see Methods) and the resulting predicted values are shown in the histogram. Periods of mRNA 1176 
production have negative α values and periods of decay have positive values. The histogram 1177 
shows a distinct peak for α > 0, which provided us with an estimate of α ≈ 1.95. B. A similar 1178 
computational approach was used to calculate values of r from fluorescence data (see Methods). 1179 
We calculated different values of r for each bin to account for differences in transcriptional 1180 
efficiency across the length of the embryo due to factors that are not explicitly included in the 1181 
model. For example, different combinations of TF bound to the enhancer may give rise to 1182 
different mRNA production rates. Different values of r were found for the proximal and distal 1183 
enhancers.  Notice that distal r values shown correspond to the distal enhancer at the proximal 1184 
location.  1185 
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Additional Supplementary Materials 1186 

Supplementary Note: A note describing the theoretical estimates of inter-allele noise in single 1187 
and two enhancer constructs. 1188 

 1189 

Supplementary Table 1: Number of total single alleles tracked for each construct.  1190 

Each row corresponds to a construct, named in column 42, and columns 1-41 correspond to that 1191 
AP bin of the embryo. The value in each cell in columns 1-41 is the number of single 1192 
transcriptional spots used in calculations of burst size, frequency, and duration and CV in that 1193 
AP bin for the given construct. The value in column 43 is the total number of independently 1194 
imaged embryos for that construct.  1195 

 1196 

Supplementary Table 2: Number of nuclei tracked for each construct.  1197 

Each row corresponds to a construct, named in column 42, and columns 1-41 correspond to that 1198 
AP bin of the embryo. The value in each cell in columns 1-41 is the number of nuclei used for 1199 
correlation and total noise/covariance/inter-allele noise calculations in that AP bin for the given 1200 
construct. The value in column 43 is the total number of independently imaged embryos for that 1201 
construct.  1202 

 1203 

Supplementary File 1: The sequences of all the enhancer constructs generated in this paper. 1204 
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Supplementary Note 
 
To make a prediction about the expected change in inter-allele noise between single and two 
enhancer reporter constructs, we used the theory put forth in (Sánchez and Kondev, 2008; 
Sanchez et al., 2011). This formalism can be used to calculate the expected mean and variance of 
the transcriptional output of a promoter, given the possible states of the promoter, transition rates 
between states, and the rate of transcription resulting from each state. In these papers, the authors 
apply their formalism to different promoter architectures. Here, we generate a simpler model, in 
which we abstract away the individual transcription factor (TF) binding configurations, which 
would be numerous and poorly parametrized, and simply define states by whether an enhancer is 
looped to the promoter and activating transcription. Since these models do not account for 
fluctuations that would contribute to extrinsic noise, e.g. fluctuations in TF or RNA polymerase 
levels, they can predict the dependence of intrinsic noise on enhancer arrangement. 
 
To apply this model to our system, we use theses parameters: 
g degradation rate of mRNA 
p production rate of mRNA 
k on rate for enhancer-promoter looping 
l off rate for enhancer-promoter looping 

 
Below, we describe several models that represent different configurations of either one or two 
enhancers controlling a single promoter and provide the variables, as defined in (Sanchez et al., 
2011), needed to calculate the coefficient of intrinsic variation (CV) associated with each model. 
Briefly, R  and r describe the production rates of mRNA in the different promoter-enhancer 
staets, and K contains the transition rates in and out of states. Key assumptions are that the 
parameters describing this system are independent of both the position of the enhancer relative to 
the promoter and the presence of a second enhancer controlling the same promoter. We chose to 
make these simplifying assumptions to give the reader a general sense of the expected behavior 
of noise when adding an additional enhancer, since the possible behaviors are nearly infinite with 
the removal of these simplifying assumptions. 
 
Model 1: Single enhancer 
In this model, there is a single enhancer controlling one promoter. 
States     Rate of mRNA production 
Enhancer-promoter unlooped  0 
Enhancer-promoter looped  p 
 
K = [-k   l; k   -l] 
R = [0 0; 0 p] 
r = [0 p] 
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Model 2: OR model 
In this model, there are two enhancers controlling one promoter, transcription is activated if 
either enhancer is looped, and both enhancers can’t be bound at the same time. 
States     Rate of mRNA production 
Enhancers-promoter unlooped 0 
Enhancer 1-promoter looped  p 
Enhancer 2-promoter looped  p 
 
K = [-2k   l   l; k   -l   0; k   0   -l] 
R = [0 0 0; 0 p 0; 0 0 p] 
r = [0 p p] 
 
Model 3: Additive model 
In this model, there are two enhancers controlling one promoter, transcription is activated if 
either enhancer is looped, and, if both enhancers are bound, transcription occurs at twice the rate 
of single enhancer looping states. 
  
States     Rate of mRNA production 
Enhancers-promoter unlooped 0 
Enhancer 1-promoter looped  p 
Enhancer 2-promoter looped  p 
Both enhancers looped  2p 
 
K = [-2k   l   l   0; k   -k-l   0   l; k   0   -k-l  l; 0   k   k -2l] 
R = [0 0 0 0; 0 p 0 0; 0 0 p 0; 0 0 0 2p] 
r = [0 p p 2p] 
 
Model 4: Synergistic model 
In this model, there are two enhancers controlling one promoter, transcription is activated if 
either enhancer is looped, and, if both enhancers are bound, transcription occurs at three times 
the rate of single enhancer looping states. 
States     Rate of mRNA production 
Enhancers-promoter unlooped 0 
Enhancer 1-promoter looped  p 
Enhancer 2-promoter looped  p 
Both enhancers looped  3p 
 
K = [-2k   l   l   0; k   -k-l   0   l; k   0   -k-l  l; 0   k   k -2l] 
R = [0 0 0 0; 0 p 0 0; 0 0 p 0; 0 0 0 3p] 
r = [0 p p 3p] 
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Model 5: XOR model 
In this model, there are two enhancers controlling one promoter, transcription is activated if 
either enhancer is looped, and, if both enhancers are bound, no transcription occurs. 
States     Rate of mRNA production 
Enhancers-promoter unlooped 0 
Enhancer 1-promoter looped  p 
Enhancer 2-promoter looped  p 
Both enhancers looped  0 
 
K = [-2k   l   l   0; k   -k-l   0   l; k   0   -k-l  l; 0   k   k -2l] 
R = [0 0 0 0; 0 p 0 0; 0 0 p 0; 0 0 0 0] 
r = [0 p p 0] 
 
To explore the behavior of CV in these different models, we use several approaches. 
 
Figure 1: CV decreases upon the addition of a second enhancer.  
Here we plot the mean expression level versus CV for the five models above and one set of 
parameters, k  = l  = 1, p  = 1, g = 0.1. The single enhancer model (dark purple) drives the highest 
CV, indicating that, under the assumptions of our models, adding an additional enhancer 
generally lowers intrinsic noise. Except for XOR model (yellow), all other models produce more 
mRNA than the single enhancer model. The other colors are: blue, OR model; green, additive 
model; brown, synergistic model. 
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Figure 2: In most cases, two enhancer models drive lower noise than the single enhancer 
model. 
Here we plot the CV as a function of l, the rate of promoter-enhancer dissociation, for the five 
models above and vary l from 0.1 to 10 on a logarithmic scale with k   = 1, p  = 1, g = 0.1. With 
the exception of the XOR model with low l, the single enhancer model drives a higher CV than 
the models with two enhancers for the same value of l. 
 

 
 
The results above show that, under the simplifying assumptions that the production rates and on-
off rates of enhancers are independent of the position and number of enhancers, the addition of a 
second enhancer generally lowers the predicted intrinsic noise. In our experimental data (Figure 
5), we only observe a significant decrease in interallele noise for the shadow enhancer pair 
compared to the single distal or single proximal enhancer. Duplications of either the proximal or 
distal enhancer do not have significantly lower noise than their respective single enhancer 
constructs. Therefore, we expect that the simple addition of an identical enhancer likely does not 
fulfill the simplifying parameter assumptions used here and suggests that further investigation is 
needed to understand the complexity of the relationship between interallele noise and the 
numbers of enhancers controlling a promoter.   
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AP Bins (anterior to posterior) Construct Name No of Embryos
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 249 623 1038 1616 1710 1874 1929 1530 1551 1246 809 597 261 145 56 22 23 15 0 0 0 0 0 0 0 KrDist 11
0 0 0 0 0 0 0 0 0 0 53 54 70 37 18 115 181 479 996 1673 1613 1270 973 542 190 62 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 20 269 668 1219 1625 2083 2121 1779 1476 1019 521 155 108 120 34 0 0 0 0 0 0 0 0 0 0 0 KrBothSep 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 115 196 403 368 439 410 364 309 276 196 58 0 0 0 0 0 0 0 0 0 0 0 0 0 KrDistEmpty 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 29 78 185 202 194 152 91 18 6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 KrProxEmpty 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 249 586 1368 1280 1755 1775 1583 1508 1191 1013 717 294 94 83 0 0 0 0 0 0 0 0 0 0 KrDistDuplicN 8
0 0 0 0 0 0 0 0 0 0 0 0 0 20 12 20 114 521 1180 1551 1586 1471 1031 609 171 42 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProxDuplic 10
0 0 0 0 0 0 0 0 0 25 33 36 43 27 19 41 181 1023 1477 2012 1842 2472 1550 1250 755 443 222 48 23 12 9 0 0 0 0 0 0 0 0 0 0 KrBoth 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 94 181 342 385 398 340 294 242 95 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 KrBothEmpty 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 27 88 398 664 800 1017 1190 708 580 436 287 291 166 135 117 34 1 0 0 0 0 0 0 0 0 0 KrDist32C 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 109 226 593 958 1133 1092 1150 799 446 132 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx32C 7
0 0 0 0 0 0 0 0 0 0 0 9 12 55 31 246 676 1219 1789 2051 2025 1842 1599 888 592 267 79 67 36 10 0 0 0 0 0 0 0 0 0 0 0 KrBoth32C 13
0 0 0 0 0 0 0 0 0 51 58 36 32 20 57 126 266 640 1199 1475 1455 1317 1012 710 307 31 13 0 2 0 1 0 0 0 0 0 0 0 0 0 0 Kr2xProx32C 12
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 3 20 115 231 326 240 226 106 21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Kr2xProxEmpty 5
0 0 0 0 0 0 0 0 2 1 1 0 0 0 3 56 219 728 1373 1745 2056 2368 2094 1851 1375 1199 821 140 55 0 0 0 0 0 0 0 0 0 0 0 0 KrDist17C 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 35 373 701 1517 1349 1884 1475 1339 1278 815 707 438 308 97 0 0 0 0 0 0 0 0 0 0 0 Kr2xDist32C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 134 261 392 753 1157 1102 1108 1038 922 677 296 43 1 1 0 0 0 0 0 0 0 0 0 0 0 0 KrBoth17C 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 90 680 1269 1815 1752 1975 1829 1497 1151 1030 870 328 91 12 0 0 0 0 0 0 0 0 0 0 0 Kr2xDist17C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 664 703 691 606 431 312 158 61 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx17C 3
0 0 0 0 0 0 0 0 0 0 0 0 0 37 8 6 14 211 645 956 1079 922 778 445 43 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Kr2xProx17C 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 53 259 391 478 628 595 524 409 269 158 59 34 21 0 0 0 0 0 0 0 0 0 0 0 Kr2xDistEmpty 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 11 56 565 1548 2340 2852 2894 2063 1453 817 577 303 133 35 11 0 0 0 0 0 0 0 0 0 0 0 KrEndogDist 13
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 43 577 794 1409 1470 1467 1317 1169 825 699 486 178 70 1 0 0 0 0 0 0 0 0 0 0 0 KrEndogDist32C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 384 577 609 762 888 908 849 683 538 364 162 96 61 32 14 29 0 0 0 0 0 0 0 0 KrEndogDist17C 5
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AP Bins (anterior to posterior) Construct Name No of Embryos
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 28 80 116 176 193 194 220 185 213 170 107 73 25 15 2 2 2 0 0 0 0 0 0 0 0 KrDist 11
0 0 0 0 0 0 0 0 0 0 8 6 4 1 1 14 18 74 141 222 200 169 136 88 18 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 30 64 129 126 159 176 175 178 165 133 100 40 11 7 0 0 0 0 0 0 0 0 0 0 KrDistDuplicN 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 12 61 167 191 200 200 164 89 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProxDuplic 10
0 0 0 0 0 0 0 0 0 3 3 2 1 2 0 2 21 126 173 219 190 240 171 153 121 59 21 8 5 0 1 0 0 0 0 0 0 0 0 0 0 KrBoth 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 8 46 78 88 104 118 79 74 62 44 48 21 10 7 1 0 0 0 0 0 0 0 0 0 0 KrDist32C 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 31 85 120 133 118 144 126 66 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx32C 7
0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 26 77 140 187 209 205 185 184 134 110 60 8 2 1 3 0 0 0 0 0 0 0 0 0 0 0 KrBoth32C 13
0 0 0 0 0 0 0 0 0 4 7 2 4 1 6 20 38 104 193 191 179 169 143 103 45 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Kr2xProx32C 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 32 97 143 190 208 242 214 215 185 187 127 20 8 0 0 0 0 0 0 0 0 0 0 0 0 KrDist17C 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 48 83 172 130 185 159 158 166 128 108 73 51 17 0 0 0 0 0 0 0 0 0 0 0 Kr2xDist32C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 33 37 73 103 95 97 102 99 92 49 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrBoth17C 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 69 146 203 182 203 199 185 150 147 118 46 7 0 0 0 0 0 0 0 0 0 0 0 0 Kr2xDist17C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 73 79 79 72 72 61 34 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KrProx17C 3
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 27 111 139 143 134 127 68 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Kr2xProx17C 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 52 137 170 182 178 173 172 106 72 24 4 0 0 0 0 0 0 0 0 0 0 0 0 0 KrEndogDist 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 70 85 152 160 168 168 164 124 103 68 24 7 0 0 0 0 0 0 0 0 0 0 0 0 KrEndogDist32C 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 60 62 79 93 87 89 77 68 54 8 8 2 0 0 0 0 0 0 0 0 0 0 0 KrEndogDist17C 4
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