

1 **Shadow enhancers suppress input transcription factor noise through distinct 2 regulatory logic**

3 Rachel Waymack¹, Alvaro Fletcher², German Enciso^{1, 3}, Zeba Wunderlich¹

4 1. Department of Developmental and Cell Biology, University of California, Irvine, 92697
5 2. Mathematical, Computational, and Systems Biology Graduate Program, University of
6 California, Irvine, 92697
7 3. Department of Mathematics, University of California, Irvine, 92697

8

9 **Abstract**

10 Shadow enhancers, groups of seemingly redundant enhancers, are found in a wide range of
11 organisms and are critical for robust developmental patterning. However, their mechanism of
12 action is unknown. We hypothesized that shadow enhancers drive consistent expression levels by
13 buffering upstream noise through a separation of transcription factor (TF) inputs at the individual
14 enhancers. By measuring transcriptional dynamics of several *Kruppel* shadow enhancer
15 configurations in live *Drosophila* embryos, we showed individual member enhancers act largely
16 independently. We found that TF fluctuations are an appreciable source of noise that the shadow
17 enhancer pair can better buffer than duplicated enhancers. The shadow enhancer pair is uniquely
18 able to maintain low levels of expression noise across a wide range of temperatures. A stochastic
19 model demonstrated the separation of TF inputs is sufficient to explain these findings. Our
20 results suggest the widespread use of shadow enhancers is partially due to their noise suppressing
21 ability.

22

23 **Introduction**

24 The first evidence that transcription occurred in bursts, as opposed to as a smooth, continuous
25 process, was observed in *Drosophila* embryos, where electron micrographs showed that even
26 highly transcribed genes had regions of chromatin lacking associated transcripts between regions
27 of densely associated nascent transcripts (Miller & McKnight, 1979). As visualization techniques
28 have improved, it is increasingly clear that transcriptional bursting is the predominant mode of
29 expression across organisms from bacteria to mammals (Dar, et al., 2012; Sanchez & Golding,
30 2013; Zenklusen, et al., 2008; Fukaya, et al., 2016). These bursts of transcriptional activity,
31 separated by periods of relative silence, have important implications for cellular function, as
32 mRNA numbers and fluctuations largely dictate these quantities at the protein level (Csardi, et
33 al., 2015; Hansen, et al., 2018). Such fluctuations in regulatory proteins, like TFs and signaling
34 molecules, can propagate down a gene regulatory network, significantly altering the expression
35 levels or noise of downstream target genes (Blake, et al., 2003).

36 Given that protein levels fluctuate and that these fluctuations can cascade down
37 regulatory networks, this raises the question of how organisms establish and maintain the precise
38 levels of gene expression seen during development, where expression patterns can be
39 reproducible down to half-nuclear distances in *Drosophila* embryos (Dubuis, et al., 2013;
40 Gregor, et al., 2007). Many mechanisms that buffer against the noise inherent in gene expression
41 or stemming from genetic or environmental variation have been observed (Lagha, et al., 2012;

42 Stapel, et al., 2017; Raj et al., 2010). For example, organisms use temporal and spatial averaging
43 mechanisms and redundancy in genetic circuits to achieve the precision required for proper
44 development (Stapel, et al., 2017; Raj, et al., 2010; Erdman, et al., 2009; Lagha, et al., 2012).
45 Here, we propose that shadow enhancers may be another mechanism by which developmental
46 systems manage noise (Barolo, S., 2012).

47 Shadow enhancers are groups of two or more enhancers that control the same target gene
48 and drive overlapping spatiotemporal expression patterns (Barolo, S., 2012). Shadow enhancers
49 are found in many organisms, from insects to plants to mammals, and are strongly associated
50 with developmental genes (Cannavo, et al., 2016; Osterwalder, et al., 2018; Garnett, et al., 2012;
51 Bomblies, et al., 1999). These seemingly redundant enhancers have been shown to be critical for
52 proper gene expression in the face of both environmental and genetic perturbations, which may
53 exacerbate fluctuations in upstream regulators (Frankel, et al., 2010; Osterwalder, et al. 2018;
54 Perry, et al., 2010; Cheung & Ma, 2015, Chen, et al., 2015). However, shadow enhancers'
55 precise mechanism of action is still unknown. Others have proposed that having multiple
56 enhancers controlling the same promoter ensures a critical threshold of gene expression is
57 reached, perhaps by reducing the effective "failure rate" of the promoter (Lam, et al., 2015;
58 Perry, et al., 2011). An alternative, but not mutually exclusive, possibility is that shadow
59 enhancers ensure precise expression by buffering noise in upstream regulators. Several studies
60 suggest that individual enhancers of a shadow enhancer group tend to be controlled by different
61 sets of TFs, which we call a "separation of inputs" (Wunderlich, et al., 2015; Cannavo, et al.,
62 2016; Ghiasvand, et al., 2011). We hypothesize that this separation allows shadow enhancers to
63 buffer against fluctuations in TF levels.

64 The *Drosophila* gap gene *Kruppel* (*Kr*) provides a useful system in which to address the
65 mechanisms of action of shadow enhancers. During early embryogenesis, *Kr* is controlled by the
66 activity of two enhancers, proximal and distal, that are each activated by different sets of TFs
67 (Figure 1A; Wunderlich, et al., 2015). Here we focus on differences in activation, as the key
68 repressors of *Kr*, *knirps* and *giant*, are likely to regulate both enhancers. *Kr* expression during
69 this time is critical for thorax formation, and like the other gap genes in the *Drosophila* embryo,
70 has quite low noise (Preiss, et al., 1985; Dubuis, et al., 2013). By measuring live mRNA
71 dynamics, we can use the *Kr* system in *Drosophila* embryos to assess whether and how shadow
72 enhancers act to buffer noise and identify the sources of noise in the developing embryo.

73 To test our hypothesis, we measured live mRNA dynamics driven by either single *Kr*
74 enhancer, duplicated enhancers, or the shadow enhancer pair and compared the dynamics and
75 noise associated with each. We showed that the individual *Kr* enhancers can act largely
76 independently in the same nucleus while identical enhancers display correlated activity. We
77 constructed a simple mathematical model to describe this system and found that TF fluctuations
78 are necessary to reproduce the correlated activity of identical enhancers in the same nucleus.
79 Using this model, we also found that the lower expression noise driven by the shadow enhancer
80 pair compared to either duplicated enhancer is a natural consequence of the separation of TF
81 inputs. Experimentally, we found the shadow enhancer pair achieves lower noise through
82 decreases in both intrinsic and extrinsic sources of noise. Additionally, the shadow enhancer pair
83 is uniquely able to maintain low levels of expression noise across a wide range of temperatures.
84 We suggest that this noise suppression ability is one of the key features that explains the
85 prevalence of shadow enhancers in developmental systems.

86

87 **Results**

88 *Individual enhancers in the shadow enhancer pair act nearly independently within a nucleus*

89 To test our hypothesis that the separation of inputs between *Kruppel's (Kr)* shadow enhancers
90 provides them with noise-buffering capabilities, we needed to first test the ability of each
91 enhancer to act independently. If variability in gene expression is driven primarily by
92 fluctuations in upstream factors, the shadow enhancer pair, whose individual enhancers are
93 controlled by different sets of TFs, could provide a form of noise buffering. Conversely,
94 variability in upstream regulators may be low enough in the developing embryo that these
95 fluctuations are not the primary driver of downstream expression noise. If this were the case, the
96 separation of inputs is unlikely to be a key requirement of shadow enhancer function.

97 To investigate these possibilities, we measured and compared the correlation of allele
98 activity in homozygous or heterozygous embryos that carry two reporter genes. *Proximal*
99 *homozygotes* contained the proximal enhancer driving a reporter, inserted in the same location on
100 both homologous chromosomes, and *distal homozygotes* similarly had the distal enhancer driving
101 reporter expression on both homologous chromosomes (Figure 1B). We also made heterozygous
102 embryos, called *shadow heterozygotes*, which had one proximal and one distal reporter, again in
103 the same location on both homologous chromosomes. To measure live mRNA dynamics and
104 correlations in allele activity, we used the MS2-MCP reporter system (Figure 1C, D). This
105 system allows the visualization of mRNAs that contain the MS2 RNA sequence, which is bound
106 by an MCP-GFP fusion protein (Bertrand, et al., 1998). In the developing embryo, only the site
107 of nascent transcription is visible, as single transcripts are too dim, allowing us to measure the
108 rate of transcription (Garcia, et al., 2013; Lucas, et al., 2013). In blastoderm-stage embryos with
109 two MS2 reporter genes, we can observe two distinct foci of fluorescence corresponding to the
110 two alleles (Figure 1D), in line with previous results that suggest there are low levels of
111 transvection at this stage (Lim, et al., 2018; Fukaya & Levine, 2017). To confirm our ability to
112 distinguish the two alleles, we imaged transcription in embryos hemizygous for our reporter
113 constructs, which only show one spot of fluorescence per nucleus. Our counts of active
114 transcription sites in homozygous embryos correspond well to the expected value calculated
115 from hemizygous embryos (Supplemental Figure 1). Therefore, we are able to measure the
116 correlation of allele activity, though we cannot identify which spot corresponds to which
117 reporter.

118 We predicted that if variability in gene expression is driven by fluctuations in input TFs,
119 we would observe lower correlations of allele activity in shadow heterozygotes than in either the
120 proximal or distal homozygotes. However, if global factors affecting both enhancers dominate,
121 there would be no difference in allele activity correlations. During the ~1 hour of nuclear cycle
122 14 (nc14) we found that allele activity is more than twice as correlated in both proximal and
123 distal homozygotes than in shadow heterozygote embryos at 47-57% egg length, which
124 encompasses the central region of *Kr* expression during this time period (Figure 1). This
125 indicates not only that the individual member enhancers of the shadow enhancer pair can act
126 largely independently in the same nucleus, but that differential TF inputs are the primary
127 determinants of transcriptional bursts in this system. Notably, heterozygotes still show marginal
128 allele correlation, indicating that some correlation is induced by either shared input TFs or
129 factors that affect transcription globally. The independence of individual *Kr* enhancers allows for

130 the possibility that shadow enhancers can act to buffer noise by providing separate inputs to the
131 same gene expression output.

132 *Transcription factor fluctuations are required for the observed differences in the correlations of*
133 *enhancer activity*

134 To explore the conditions needed for the two *Kr* enhancers to act nearly independently within the
135 same nucleus, we generated a simple model of enhancer-driven dynamics. We considered an
136 enhancer E that interacts with a transcription factor T, which together bind to the promoter to
137 form the active promoter-enhancer complex C (Figure 2A). When the promoter is bound by the
138 enhancer, it drives the production of mRNA. Since the MS2 system only allows us to observe
139 mRNA at the site of transcription, we modeled the diffusion of mRNA away from the
140 transcription site as decay. The transcription factor T is produced in bursts of n molecules at a
141 time, and it degrades linearly. For simplicity, the transcription factor T is an abstraction of the
142 multiple activating TFs that interact with the enhancer, and T corresponds to a different set of
143 TFs for the proximal and distal enhancer. This nonlinear model generalizes the linear model by
144 Bothma et al. (Bothma et al., 2015) by explicitly taking into account the presence of TFs.

145 We estimated some model parameters directly from experimental data and others by
146 fitting using simulated annealing. The mRNA degradation parameter α and production parameter
147 r were measured directly from fluorescence data without any input from the model (see Methods
148 for details). The remaining parameters were first estimated using mathematical analysis, then
149 fine-tuned using simulated annealing. We found separate parameter sets for the proximal and
150 distal enhancers that, when used to simulate transcription, fit the experimentally measured
151 characteristics of the transcriptional traces, including transcription burst size, frequency, and
152 duration, as well as the total mRNA produced (Supplementary Figure 2).

153 We hypothesized that a model that lacks fluctuations in the input TFs could not
154 recapitulate the high correlation of transcriptional activity in homozygotes versus the low
155 correlation in heterozygotes. To test this hypothesis, we generated another model of TF
156 production. We call our original model described above *bursting TFs*. The other model is one in
157 which TF numbers are constant over time, which we call *constant TFs* and is equivalent to the
158 model in (Bothma et al., 2015). If the difference in transcription correlation between
159 homozygotes and heterozygotes is due to fluctuating numbers of TFs, we expected that the
160 bursting TFs model will recapitulate this behavior, while the constant TFs model will not.
161 However, if the constant TFs model is also able to recapitulate the observed difference in
162 correlations, then the correlations are likely a consequence of the identical enhancers simply
163 being regulated by the same set of TFs.

164 For each model, we used the 10 best parameter sets to simulate transcriptional activity in
165 homozygote and heterozygote embryos and analyzed the resulting allele correlations. We found
166 that the bursting TFs model always produced results in which both homozygote allele
167 correlations are significantly higher than the heterozygote, as observed experimentally (Figure
168 2B). None of the best fitting parameter sets for the constant TF model were able to produce the
169 experimentally-observed behavior and always resulted in similar correlations for the homozygote
170 and heterozygote embryos (Figure 2C). Therefore, in our minimalist model of enhancer-driven
171 transcription, the presence of TF fluctuations is required for the observed differences in allele
172 correlation. These results also demonstrate the advantage of using a single generic TF for each

173 enhancer. By abstracting away TF interactions, we reduced the complexity and number of
174 parameters in the model, which allowed us to explore the relationship between TF production
175 and allele correlation.

176 *The shadow enhancer pair drives less noisy expression than enhancer duplications*

177 Since the individual *Kr* enhancers can act independently, we wanted to further test whether this
178 separation of inputs enables the shadow enhancer pair to provide more stable gene expression
179 output. We compared the noise in expression driven by the shadow enhancer pair to that driven
180 by two copies of either the distal or proximal enhancer (Figure 3). If the shadow enhancer pair
181 drives lower noise, this observation, combined with our finding of enhancer independence,
182 strongly suggests that the shadow enhancer pair reduces variability and mediates robustness by
183 buffering fluctuations in upstream regulators. Alternatively, if duplicated enhancers drive similar
184 levels of expression noise, this suggests that a separation of inputs is not critical for shadow
185 enhancer's function and that shadow enhancers mediate robustness through a different
186 mechanism, such as ensuring a critical threshold of expression is met (Lam, et al., 2015; Perry, et
187 al., 2011).

188 We tracked the transcriptional activity in embryos expressing MS2 under the control of
189 the shadow enhancer pair, a duplicated proximal enhancer, or a duplicated distal enhancer
190 (Figure 3). To measure noise associated with each enhancer, we used these traces to calculate the
191 coefficient of variation (CV) of transcriptional activity across nc14. CV is the standard deviation
192 divided by the mean and provides a unitless measure of noise to allow comparisons among our
193 enhancer constructs. We then grouped these CV values by the AP position of the transcriptional
194 spots and found the average CV at each position for each enhancer construct. All of the enhancer
195 constructs display the lowest expression noise at the egg length of their peak expression (Figure
196 3A), in agreement with previous findings of an inverse relationship between mean expression
197 and noise levels (Dar et al., 2016; Supplemental Figure 3). The shadow enhancer pair's
198 expression noise is almost 30% or 15% lower, respectively, than that of the duplicated proximal
199 or distal enhancers in their positions of maximum expression.

200 If the primary function of shadow enhancers is only to ensure a critical threshold of
201 expression is reached, we would not expect to also see the lower expression noise associated
202 with the shadow enhancer pair compared to either duplicated enhancer. Furthermore, this
203 decreased expression noise is not simply a consequence of higher expression levels, as the
204 shadow enhancer pair produces less mRNA than the duplicated distal enhancer during nc14
205 (Figure 3B). The lower expression noise associated with the shadow enhancer pair suggests that
206 it is less susceptible to fluctuations in upstream TFs than multiple identical enhancers.

207 *The separation of input TFs is sufficient to explain the low noise driven by the shadow enhancer
208 pair*

209 To explore which factors drive the difference in CVs between the duplicated and shadow
210 enhancer constructs, we extended our model to have a single promoter controlled by two
211 enhancers (Figure 4A). To do so, we assumed that either or both enhancers can be looped to the
212 promoter and drive mRNA production. The rate of mRNA production when both enhancers are
213 looped is the sum of the rates driven by the individual enhancers. We assumed that some
214 parameters, e.g. the TF production rates and mRNA decay rate, are the same as the single

215 enhancer case. We allowed the parameters describing the promoter-enhancer looping dynamics
216 (k_{on} and k_{off} values) to differ, depending on the enhancer's position in the construct relative
217 to the promoter and whether another enhancer is present. To fit the k_{on} and k_{off} values, we used
218 the medians of the 10 best single enhancer parameter sets as a starting point and performed
219 simulated annealing to refine them.

220 This approach allowed us to examine how the model parameters that describe promoter-
221 enhancer looping dynamics change when two enhancers are controlling the same promoter. We
222 compared the k_{off} and k_{on} values for each enhancer in the two enhancer constructs to their values
223 from the single enhancer model. We generally found that k_{off} values increased and k_{on} values
224 decreased (Figure 4B). The effect is most pronounced in the duplicated distal enhancer, with
225 large changes to the k_{off} and k_{on} values for the enhancer in the position far from the promoter
226 (position 2). Given that our model assumes that enhancers act additively and only allows for
227 changes in the k_{off} and k_{on} values, these observed effects may indicate that either the presence of
228 a second enhancer interferes with promoter-enhancer looping or that the promoter can be
229 saturated. Our model cannot distinguish between these two possibilities, but these observations
230 are consistent with our (Supplementary Figure 4) and previous results indicating that the Kr
231 enhancers act sub-additively (Scholes, et al., 2019). Additionally, the dramatic changes in k_{off}
232 and k_{on} values in the duplicated distal enhancer are consistent with a previous assertion that
233 enhancer sub-additivity is most pronounced in cases of strong enhancers (Bothma et al., 2015).

234 We used these models to simulate transcription and predict the resulting CVs from the
235 duplicated enhancer and shadow enhancer constructs. In line with experimental data, we found
236 the model predicts that the shadow enhancer construct drives lower noise than the duplicated
237 distal or duplicated proximal enhancer constructs in the middle of the embryo. This is
238 particularly notable, as we did not explicitly fit our model to reproduce the experimentally
239 observed CVs. There is only one fundamental difference between the shadow and duplicated
240 enhancer models, namely the use of separate TF inputs for the shadow enhancers. Therefore, we
241 can conclude that the separation of input TFs is sufficient to explain the low noise driven by the
242 shadow enhancer construct.

243 *The shadow enhancer pair buffers against intrinsic and extrinsic sources of noise*

244 To further validate that the more stable expression driven by the shadow enhancer pair is due to
245 its separation of inputs, we compared the extrinsic and intrinsic noise associated with the shadow
246 enhancer pair to that associated with either single or duplicated enhancers. To do so, we
247 measured the transcriptional dynamics of embryos with two identical reporters in each nucleus
248 and calculated noise sources using the approach of Elowitz, et al. (Elowitz, et al., 2002). Intrinsic
249 noise corresponds to sources of noise, such as TF binding and unbinding, that affect each allele
250 separately. It is quantified by the degree to which the activities of the two reporters in a single
251 nucleus differ. Extrinsic noise corresponds to global sources of noise, such as TF levels, that
252 affect both alleles simultaneously. It is measured by the degree to which the activities of the two
253 reporters change together. Intrinsic and extrinsic noise are defined such that, when squared, their
254 sum is equal to total noise², which corresponds to the CV² of the two identical alleles in each
255 nucleus in our system (see Methods). Because our data do not meet one key assumption needed
256 to measure extrinsic and intrinsic noise with the two reporter approach (see Discussion;
257 Supplementary Figure 5), we use the terms inter-allele noise and covariance in place of intrinsic
258 and extrinsic noise.

259 Based on our separation of inputs hypothesis and CV data, we expected the total noise
260 associated with the shadow enhancer pair to be lower than that associated with the duplicated
261 enhancers. We predicted that the shadow enhancer pair will mediate lower total expression noise
262 through lower covariance, as the two member enhancers are regulated by different TFs. Given
263 the complexity of predicting inter-allele noise from first principles (see Supplementary Note), we
264 predicted that constructs with two enhancers will have lower inter-allele noise than single
265 enhancer constructs, but did not have a strong prediction regarding the relative inter-allele noise
266 among the different two-enhancer constructs. Comparisons of noise between the single and
267 duplicated enhancer constructs would further allow us to discern whether reductions in noise are
268 generally associated with two-enhancer constructs or whether this is a particular feature of the
269 shadow enhancer pair.

270 Neither the duplicated proximal nor distal enhancers drive significantly lower total noise
271 than the corresponding single enhancers, indicating that the addition of an identical enhancer is
272 not sufficient to reduce expression noise in this system (Figure 5A). The shadow enhancer pair
273 drives lower total expression noise than either single or duplicated enhancer, consistent with the
274 temporal CV data in Figure 3. The median total expression noise associated with the duplicated
275 distal and duplicated proximal enhancers is 1.4 or 2.4 times higher, respectively, than that
276 associated with the shadow enhancer pair (Figure 5A). Note that for measurements of noise, our
277 distal construct places the enhancer at the endogenous spacing from the promoter, as we wanted
278 to control for positional effects on expression and noise (Scholes, et al., 2019; Supplemental
279 Figure 6).

280 In line with our expectations, the shadow enhancer pair has significantly lower
281 covariance levels than either single or duplicated enhancers (Figure 5B). The shadow enhancer
282 pair also has lower inter-allele noise than all of the other constructs, though these differences are
283 only marginally significant ($p = 0.13$) when compared to the duplicated distal enhancer.
284 Covariance makes a larger contribution to the total noise for the duplicated distal enhancer and
285 the shadow enhancer pair, while inter-allele noise is the larger source of noise for the single
286 distal enhancer and the single or duplicated proximal enhancers (Figure 5B).

287 The lower total noise and covariance of the shadow enhancer pair support our hypothesis
288 that, by separating regulation of the member enhancers, the shadow enhancer pair can buffer
289 against upstream fluctuations. The lower inter-allele noise associated with the shadow enhancer
290 pair warrants further investigation. A simple theoretical approach predicts that two enhancer
291 constructs will have lower inter-allele noise (see Supplementary Note). Given that this is not
292 universally observed in our data, this suggests that there is still much to discover about how
293 inter-allele noise changes as additional enhancers control a gene's transcription.

294 *The shadow enhancer pair drives low noise at several temperatures*

295 We showed the *Kr* shadow enhancer pair drives expression with lower total noise than either
296 single or duplicated enhancer, yet previous studies have generally found individual member
297 enhancers of a shadow enhancer set are dispensable under ideal conditions (Frankel, et al., 2010;
298 Perry et al., 2011; Osterwalder, et al., 2018). However, in the face of environmental or genetic
299 stress, the full shadow enhancer group is necessary for proper development (Frankel et al., 2010;
300 Osterwalder, et al., 2018; Perry, et al., 2011). We therefore decided to investigate whether
301 temperature stress causes significant increases in expression noise and whether the shadow
302 enhancer pair or duplicated enhancers can buffer potential increases in noise.

303 Similar to our findings at ambient temperature (26.5°C), the shadow enhancer pair drives
304 lower total noise than all other tested enhancer constructs at 32°C (Figure 6B). At 32°C, the
305 duplicated distal and duplicated proximal enhancers display 35% or 52%, respectively, higher
306 total noise than the shadow enhancer pair. At 17°C, the shadow enhancer pair has approximately
307 46% lower total noise than either the single or duplicated proximal enhancer, 21% lower total
308 noise than the single distal enhancer, and is not significantly different than the duplicated distal
309 enhancer (Figure 6A). As seen by the variety of shapes in the temperature response curves
310 (Figure 6C), temperature perturbations have enhancer-specific effects, suggesting input TFs may
311 differ in their response to temperature change. The low noise driven by the shadow enhancer pair
312 across conditions is consistent with previous studies showing shadow enhancers are required for
313 robust gene expression at elevated and lowered temperatures (Frankel, et al., 2010; Perry, et al.,
314 2010).

315

316 Discussion

317 Fluctuations in the levels of transcripts and proteins are an unavoidable challenge to precise
318 developmental patterning (Raser & O’Shea, 2005; Arias & Hayward, 2006; Hansen, et al.,
319 2018). Given that shadow enhancers are common and necessary for robust gene expression
320 (Osterwalder, et al., 2018; Frankel, et al., 2010; Perry, et al., 2010), we proposed that shadow
321 enhancers may function to buffer the effects of fluctuations in the levels of key developmental
322 TFs. To address this, we have, for the first time, extensively characterized the noise associated
323 with shadow enhancers critical for patterning the early *Drosophila* embryo. By tracking biallelic
324 transcription in living embryos, we tested the hypothesis that shadow enhancers buffer noise
325 through a separation of TF inputs to the individual member enhancers. Our results show that TF
326 fluctuations play a significant role in transcriptional noise and that a shadow enhancer pair is
327 better able to buffer both extrinsic and intrinsic sources of noise than duplicated enhancers.
328 Using a simple mathematical model, we found that fluctuations in TF levels are required to
329 reproduce the observed correlations between reporter activity and that the low noise driven by
330 the shadow enhancer pair is a natural consequence of the separation of TF inputs to the member
331 enhancers. Lastly, we showed that a shadow enhancer pair is uniquely able to buffer expression
332 noise across a wide range of temperatures. Together, these results support the hypothesis that the
333 separation of inputs of shadow enhancers allow them to buffer input TF noise and therefore drive
334 more robust gene expression patterns during development.

335 *Temporal fluctuations in transcription factor levels drive expression noise in the embryo*

336 When measured in fixed embryos, the TFs used in *Drosophila* embryonic development show
337 remarkably precise expression patterns, displaying errors smaller than the width of a single
338 nucleus (Dubuis, et al., 2013; Gregor, et al., 2007; Little 2013; He, et al., 2008). It therefore was
339 unclear whether fluctuations in these regulators play a significant role in transcriptional noise in
340 the developing embryo. By measuring the temporal dynamics of the individual *Kr* enhancers,
341 each of which is controlled by different transcriptional activators, we show that TF fluctuations
342 do significantly contribute to the noise in transcriptional output of a single enhancer. Within a
343 nucleus, expression controlled by the two different *Kr* enhancers is far less correlated than
344 expression driven by two copies of the same enhancer, indicating that TF inputs, as opposed to
345 more global factors, are the primary regulators of transcriptional bursting in this system.

346 Given that individual *Kr* enhancers are influenced by fluctuations in input TFs, it may
347 seem puzzling that endogenous *Kr* expression patterns are rather reproducible (Little 2013).
348 Previous work has cited the role of spatial and temporal averaging, which buffers noisy nascent
349 transcriptional dynamics to generate more precise expression levels. Shadow enhancers operate
350 upstream of this averaging, driving less noisy nascent transcription than either single enhancers
351 or enhancer duplications.

352 *A stochastic model underscores importance of transcription factor fluctuations*

353 We developed a stochastic mathematical model of *Kr* enhancer dynamics and mRNA production
354 that recapitulates our main experimental results. This model is based on that by (Bothma, et al.,
355 2015), but it is expanded to include the dynamics of a TF that regulates each enhancer. We
356 placed a strong emphasis on the simplicity of this model, e.g. by using a single abstract TF for
357 each enhancer. This choice both avoids a combinatorial explosion of parameters and makes the
358 model results and parameters easier to interpret. One of the most notable features of the model is
359 that it recreates the differences in noise between shadow and duplicated enhancer constructs
360 without any additional fitting, indicating that these differences are a direct result of the
361 separation of input TFs to the proximal and distal enhancers.

362 Future versions of this model can include refinements. For example, in the current model,
363 we do not include the influence of repressiveTFs or fluctuations that affect transcription globally.
364 The absence of these features may partially explain the non-zero correlation experimentally
365 observed in the shadow heterozygote embryos. Future experiments and models can also be
366 designed to identify the mechanism of enhancer non-additivity: changes in promoter-enhancer
367 looping, saturation of the promoter, or other mechanisms.

368 *Noise source decomposition suggests competition between reporters*

369 In our investigation of sources of noise, we decomposed total noise into extrinsic and intrinsic
370 components as in (Elowitz, et al., 2002). In that study, the authors showed that the activity of one
371 reporter did not inhibit expression of the other reporter, and therefore their calculations assume
372 no negative covariance between the reporters' expression output. In our system, we found a
373 small amount of negative covariance between the activity of two alleles in the same nucleus
374 (Supplemental Figure 5). For this reason, we called our measurements covariance and inter-allele
375 noise. The negative covariance we observe indicates that activity at one allele can sometimes
376 interfere with activity at the other allele, suggesting competition for limited amounts of a factor
377 necessary for reporter visualization. The two possible limiting factors are MCP-GFP or an
378 endogenous factor required for transcription. If MCP-GFP were limiting, we would expect to see
379 the highest levels of negative covariance at the center of the embryo, where the highest number
380 of transcripts are produced and bound by MCP-GFP. Since the fraction of nuclei with negative
381 covariance is highest at the edges of the expression domain (Supplementary Figure 5), the
382 limiting resource is likely not MCP-GFP, but instead a spatially-patterned endogenous factor,
383 like a TF.

384 Currently, the field largely assumes that adding reporters does not appreciably affect
385 expression of other genes. However, sequestering TFs within repetitive regions of DNA can
386 impact gene expression (Liu, et al., 2007; Janssen, et al., 2000), and a few case studies show that
387 reporters can affect endogenous gene expression (Laboulaye, et al., 2018; Thompson & Gasson,
388 2001). If TF competition is responsible for the observed negative covariance between reporters, a

389 closer examination of the effects of transgenic reporters on the endogenous system is warranted.
390 In addition, TF competition may be a feature, not a bug, of developmental gene expression
391 control, as modeling has indicated that molecular competition can decrease expression noise and
392 correlate expression of multiple targets (Yuan, et al., 2018).

393 *Additional functions of shadow enhancers and outlook*

394 There are likely several features of shadow enhancers selected by evolution outside of their
395 noise-suppression capabilities. Preger-Ben Noon, et al. recently showed that all shadow
396 enhancers of *shavenbaby*, a developmental TF gene in *Drosophila*, drive expression patterns in
397 tissues and times outside of their previously-characterized domains in the larval cuticle (Preger-
398 Ben Noon, et al., 2018). This suggests that shadow enhancers, while seemingly redundant at one
399 developmental stage, may play separate, non-redundant roles in other stages or tissues. In several
400 other cases, both members of a shadow enhancer pair are required for the precise expression
401 pattern generated by the endogenous locus (El-Sherif & Levine, 2016; Perry, et al., 2012;
402 Dunipace, et al., 2011; Perry, et al., 2011; Yan, et al., 2017). In the case of *Kr*, the early
403 embryonic enhancers drive observable levels of expression in additional tissues and time points,
404 but these expression patterns overlap those driven by additional, generally stronger, enhancers,
405 suggesting that the primary role of the proximal and distal enhancers is in early embryonic
406 patterning (Hoch, et al., 1990). In addition, the endogenous expression domain of *Kr* is best
407 recapitulated by the pair of shadow enhancers (El-Sherif & Levine, 2016). Therefore, while we
408 cannot rule out the possibility that the proximal and distal enhancers perform separate functions
409 at later stages, it seems that their primary function, and evolutionary substrate, is controlling
410 *Kruppel* expression pattern and noise levels during early embryonic development.

411 Here, we have investigated the details of shadow enhancer function for a particular
412 system, and we expect that some key observations may generalize to many sets of shadow
413 enhancers. Shadow enhancers seem to be a general feature of developmental systems (Cannavo,
414 et al., 2016; Osterwalder, et al., 2018), but the diversity among them has yet to be specifically
415 addressed. While we worked with a pair of shadow enhancers with clearly separated TF
416 activators, shadow enhancers can come in much larger groups and with varying degrees of TF
417 input separation between the individual enhancers (Cannavo, et al., 2016; Osterwalder, et al.,
418 2018). To discern how expression dynamics and noise driven by shadow enhancers depend on
419 their degree of TF input separation, we are investigating these characteristics in additional sets of
420 shadow enhancers with varying degrees of differential TF regulation. Our current experimental
421 data and computational results, combined with that gathered from additional shadow enhancers
422 will inform fuller models of how developmental systems ensure precision and robustness.

423

424 **Materials and Methods**

425 *Generation of transgenic reporter fly lines*

426 The single, duplicated, or shadow enhancers were each cloned into the pBphi vector, upstream of
427 the *Kruppel* promoter, 24 MS2 repeats, and a *yellow* reporter gene as in (Fukaya, et al., 2016).
428 We defined the proximal enhancer as chromosome 2R:25224832-25226417, the distal enhancer
429 as chromosome 2R:25222618-25223777, and the promoter as chromosome 2R:25226611-
430 25226951, using the *Drosophila melanogaster* dm6 release coordinates. The precise sequences

431 for each reporter construct are given in Supplementary File 1. For the allele correlation
432 experiments, each enhancer was cloned 192 bp upstream of the *Kr* promoter, separated by the
433 endogenous sequence found between the proximal enhancer and the promoter. For
434 transcriptional noise experiments, the distal enhancer was placed at its endogenous spacing, 2835
435 bp upstream of the promoter, and the proximal enhancer sequence was replaced by a region of
436 the lambda genome that is predicted to have few relevant TF binding sites. In the shadow
437 enhancer pair or duplicated enhancer constructs, the two enhancers were separated by the
438 sequence separating the proximal and distal enhancers in the endogenous locus.

439 Using phiC31-mediated integration, each reporter construct was integrated into the same site on
440 the second chromosomes by injection into yw; PBac{y[+]-attP-3B}VK00002 (BDRC stock
441 #9723) embryos by BestGene Inc. (Chino Hills, CA). To produce embryos with biallelic
442 expression of the MS2 reporter, female flies expressing RFP-tagged histones and GFP-tagged
443 MCP (yw; His-RFP/Cyo; MCP-GFP/TM3.Sb) were crossed with males containing one of the
444 enhancer-MS2 reporter constructs. Virgin female F1 offspring were then mated with males of the
445 same parental genotype, except in the case of shadow heterozygous flies, which were mated with
446 males containing the other single enhancer-MS2 reporter.

447 *Sample preparation and image acquisition*

448 Live embryos were collected prior to nc14, dechorionated, mounted on a permeable membrane,
449 immersed in Halocarbon 27 oil, and put under a glass coverslip as in (Garcia, et al., 2013).
450 Individual embryos were then imaged on a Nikon A1R point scanning confocal microscope
451 using a 60X/1.4 N.A. oil immersion objective and laser settings of 40uW for 488nm and 35uW
452 for 561nm. To track transcription, 21 slice Z-stacks, at 0.5um steps, were taken throughout the
453 length of nc14 at roughly 30 second intervals. To identify the Z-stack's position in the embryo,
454 the whole embryo was imaged after the end of nc14 at 20x using the same laser power settings.
455 Later in the analysis, each transcriptional spot's location is described as falling into one of 42 AP
456 bins, with the first bin at the anterior of the embryo. Unless otherwise indicated, embryos were
457 imaged at ambient temperature, which was on average 26.5°C. To image at other temperatures,
458 embryos were either heated or cooled using the Bioscience Tools (Highland, CA) heating-
459 cooling stage and accompanying water-cooling unit.

460 *Calculation of transcription parameters*

461 For every spot of transcription imaged, the fluorescence traces across the time of nc14 were first
462 subject to smoothing by the LOWESS method with a span of 10%. The resulting smoothed
463 traces were used to measure transcriptional parameters and noise. Traces consisting of fewer than
464 three time frames were removed from calculations. To calculate transcription parameters, we
465 used the smoothed traces to determine if the promoter was active or inactive at each time point.
466 A promoter was called active if the slope of its trace (change in fluorescence) between that point
467 and the next was greater than or equal to the instantaneous fluorescence value calculated for one
468 mRNA molecule (F_{RNAP} , described below). Once called active, the promoter is considered
469 active until the slope of the fluorescence trace becomes less than or equal to the negative
470 instantaneous fluorescence value of one mRNA molecule, at which point it is called inactive
471 until another active point is reached. The instantaneous fluorescence of a single mRNA was
472 chosen as the threshold because we reasoned that an increase in fluorescence greater than or
473 equal to that of a single transcript is indicative of an actively producing promoter, while a
474 decrease in fluorescence greater than that associated with a single transcript indicates transcripts

475 are primarily dissociating from, not being produced, at this locus. Visual inspection of
476 fluorescence traces agreed well with the burst calling produced by this method (Supplemental
477 Figure 7).

478 Using these traces and promoter states, we measured burst size, frequency and duration. Burst
479 size is defined as the integrated area under the curve of each transcriptional burst. Duration is
480 defined as the amount of time occurring between the frame a promoter is determined active and
481 the frame it is next determined inactive. Frequency is defined as the number of bursts occurring
482 in the period of time from the first time the promoter is called active until 50 minutes into nc14
483 or the movie ends, whichever is first. The time of first activity was used for frequency
484 calculations because the different enhancer constructs showed different characteristic times to
485 first transcriptional burst during nc14. For these, and all other measurements, we control for
486 position of the transcription trace by first individually analyzing the trace and then using all the
487 traces in each AP bin to calculate summary statistics of the transcriptional dynamics and noise
488 values at that AP position.

489 *Conversion of integrated fluorescence to mRNA molecules*

490 To put our results in physiologically relevant units, we calibrated our fluorescence measurements
491 in terms of mRNA molecules. As in (Lammers, et al., 2018), for our microscope, we determined
492 a calibration factor, α , between our MS2 signal integrated over nc13, F_{MS2} , and the number of
493 mRNAs generated by a single allele from the same reporter construct in the same time interval,
494 N_{FISH} , using the *hunchback* P2 enhancer reporter construct (Garcia et al., 2013). Using this
495 conversion factor, we can calculate the integrated fluorescence of a single mRNA (F_1) as well as
496 the instantaneous fluorescence of an mRNA molecule (F_{RNAP}). With our microscope, F_{RNAP} is
497 379 AU/RNAP and F_1 is 1338 AU/RNAP·min. With these values, we are able to convert both
498 integrated and instantaneous fluorescence into total mRNAs produced and number of nascent
499 mRNAs present at a single time point, by dividing by F_1 and F_{RNAP} , respectively.

500 *Calculation of noise metrics*

501 To calculate the temporal CV each transcriptional spot i , we used the formula:

502
$$CV(i) = \text{mean}(m^i(t))/\text{standard deviation}(m^i(t))$$

503 where $m^i(t)$ is the fluorescence of spot i and time t .

504 We also decomposed the total noise experienced in each nucleus to inter-allele noise and co-
505 variance, analogous to the approach of (Elowitz, et al., 2002).

506 Inter-allele noise is calculated one nucleus at a time. It is the mean square difference between the
507 fluorescence of the two alleles in a single nucleus:

508
$$\eta_{IA}^2 = \frac{\langle (m_1(t) - m_2(t))^2 \rangle}{2\langle m_1(t) \rangle \langle m_2(t) \rangle}$$

509 where $m_1(t)$ is the fluorescence of one allele in the nucleus at time t , and $m_2(t)$ is the fluorescence
510 of the other allele in the same nucleus and the angled brackets indicate the mean across the time
511 of nc14.

512 Covariance is the covariance of the activity of the two alleles in the same nucleus across the time
513 of nc14:

514
$$\eta_{CV}^2 = \frac{\langle m_1(t)m_2(t) \rangle - \langle m_1(t) \rangle \langle m_2(t) \rangle}{\langle m_1(t) \rangle \langle m_2(t) \rangle}$$

515 The inter-allele and covariance values are defined such that they sum to give the total
516 transcriptional noise displayed by the two alleles in a single nucleus.

517
$$\eta_{tot}^2 = \frac{\langle m_1(t)^2 + m_2(t)^2 \rangle - 2\langle m_1(t) \rangle \langle m_2(t) \rangle}{2\langle m_1(t) \rangle \langle m_2(t) \rangle}$$

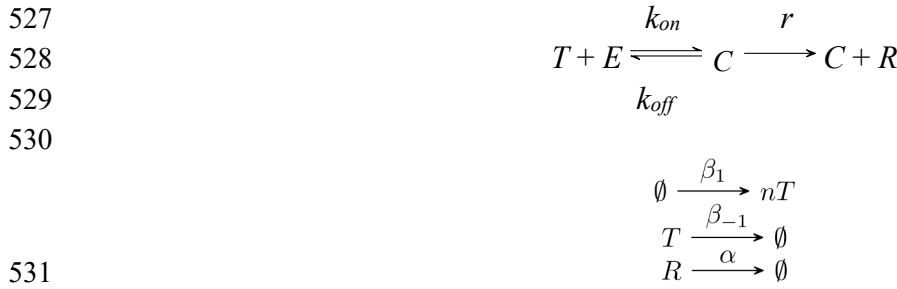
518 This total noise value is equal to the coefficient of variation of the expression of the two alleles
519 in a single nucleus across the time of nc14.

520 *Statistical methods*

521 To determine any significant differences in total noise, covariance, or inter-allele noise values
522 between the different enhancer constructs, we performed Kruskal-Wallis tests with the
523 Bonferroni multiple comparison correction.

524 *Description of the single enhancer model and associated parameters*

525 We constructed a model of enhancer-driven transcription based on the following chemical
526 reaction network,



532 where E is an enhancer that interacts with a transcription factor T , which together bind to the
533 promoter at a rate k_{on} to form the active promoter-enhancer complex C . When the promoter is in
534 this active form, it leads to the production of mRNA denoted by R , which degrades by diffusion
535 from the gene locus at a rate α . Transcription is interrupted whenever the complex C
536 disassociates spontaneously at a rate k_{off} . In the bursting TFs model, the transcription factor T
537 appears at a rate β_1 and degrades at a rate β_{-1} . To recapitulate *Kruppel* expression patterns, the
538 value of β_1 was assumed to be given by

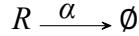
539 (1)
$$f(x) = c \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

540

541 where x is the percentage along the length of the egg and c is a scaling constant. Since *Kruppel*
542 activity peaks near the center of the egg, we chose $\mu = 50$, while c and σ were fitted along with
543 the other parameters. Lastly, n was assumed to be fixed across the length of the egg.

544 We also generated a constant TF model, which is an adaptation of the model in (Bothma et al.,
545 2015). This model implicitly assumes that TF numbers are constant and, therefore, are
546 incorporated into the value of k_{on} as described by the reactions

547



552 In this case, the value for T was fitted for each bin in a similar way to β_1 , i.e. the constant number
553 of TFs was assumed to be described by equation (1) (values were rounded to the nearest integer).

554 To simulate the transcriptional traces, we implemented a stochastic approach. Individual
555 chemical events such as enhancer-promoter looping take place at random times and are
556 influenced by transcription factor numbers. Individual trajectories of chemical species over time
557 were calculated using the Gillespie algorithm (Gillespie, 1976), and these trajectories are
558 comparable to the experimentally measured transcriptional traces. Since the enhancer is either
559 bound or not bound to the promoter, we imposed the constraint that $C + E = 1$ when simulating
560 model dynamics.

561

562 *Estimation of model parameters from experimental data*

563 To yield a starting estimate for the k_{on} and k_{off} parameters, we defined the start and end of a burst
564 as the time when the reactions $E \xrightarrow{k_{\text{on}}} C$ and $C \xrightarrow{k_{\text{off}}} E$ occur, respectively. The length of the i^{th} burst was defined as the range of $[b_i, p_i]$ where b_i corresponds to the time of the i^{th} instance of the
565 reaction $E \xrightarrow{k_{\text{on}}} C$ and p_i to the time of the i^{th} instance of the reaction $C \xrightarrow{k_{\text{off}}} E$. The time between
566 the i^{th} burst and the $i + 1^{\text{th}}$ burst is $[p_i, b_{i+1}]$. The Gillespie algorithm dictates that the time spent in
567 any given state is determined by an exponentially distributed random variable with a rate
568 parameter equal to the product of two parts: the sum of rate constants of the outgoing reactions,
569 and the number of possible reactions. If the enhancer is either bound or unbound, we have that C
570 = 1 or $E = 1$, respectively. Therefore, by letting t_b be the average time between bursts and t_d be
571 the average duration of a burst, we can write

573
$$t_b = \lim_{M \rightarrow \infty} \frac{1}{M} \sum_{j=1}^M \left(\frac{1}{N-1} \sum_{i=1}^{N-1} (b_{i+1} - p_{i,j}) \right) = \frac{1}{k_{\text{on}} ET} \approx \frac{1}{k_{\text{on}}},$$

574 and

575
$$t_d = \lim_{M \rightarrow \infty} \frac{1}{M} \sum_{j=1}^M \left(\frac{1}{N} \sum_{i=1}^N (p_{i,j} - b_{i,j}) \right) = \frac{1}{k_{\text{off}} C} = \frac{1}{k_{\text{off}}},$$

577

578 where N is the number of bursts for spot j , $b_{i,j}$ and $p_{i,j}$ denote the beginning and end of burst i in
579 spot j respectively, and M denotes the total number of spots in the egg. The right-hand sides are
580 given by the expected value of the exponential distribution and the assumption that, on average,
581 T is close to 1. While this may not be the case for T , the assumption provides a convenient upper
582 bound for the average time between bursts, which is likely not to have a much smaller value for a
583 lower bound. (A low enough value of t_b would imply nearly constant fluorescence intensity
584 instead of bursts.) Finally, the average duration of a burst t_d can be calculated directly from the

585 data and used to obtain k_{off} by calculating $1/t_d$. Similarly, the average time between bursts t_b is
586 readily available from the data giving us $k_{\text{on}} \approx 1/t_b$.

587 We were able to directly estimate mRNA production and degradation rates from the
588 experimental data. To estimate α , we focused on periods of mRNA decay; i.e. periods where no
589 active transcription is taking place and are thus described by

590
$$R' = -\alpha R,$$

591 which in turn can be solved to be

592 (2)
$$R = ce^{-ta},$$

593 where c is a constant of integration. Taking the derivative of equation 2 yields

594 (3)
$$R'(t) = -ace^{-ta},$$

595 which corresponds to the slope of the decaying burst. We define the interval of decay of the i^{th}
596 burst as $[p_i, b_{i+1}]$. For some point $t_0 \in (p_i, b_{i+1})$, let $R_0 = R(t_0) = ce^{-t_0\alpha}$. Solving this expression for c
597 gives that $c = R_0 e^{t_0\alpha}$. Substituting for c in equation 3 evaluated at t_0 results in $R'(t_0) = -\alpha R_0 e^{t_0\alpha} e^{-t_0\alpha}$
598 $= -\alpha R_0$. Then, it follows that

599 (4)
$$\alpha = -\frac{R'(t_0)}{R_0}.$$

600 In other words, the rate of decay of mRNA fluorescence can be calculated from any trace by
601 taking the ratio of the slope during burst decay and its intensity at a given time $t_0 \in (p_i, b_{i+1})$.

602 Adjacent measurements of fluorescence intensity from the single enhancer systems were used to
603 approximate the slope at each point in the traces. Then, equation 4 was applied to each point. A
604 histogram of all calculated values was generated (Supplemental Figure 8). In this figure, there
605 was a clear peak, which provided us with an estimate of $\alpha \approx 1.95$.

606 The estimation of r was done for periods of active transcription, which are also accompanied by
607 simultaneous mRNA decay. By noting that $C = 1$ during mRNA transcription, we can
608 approximate these periods as the zeroth order process

609
$$\emptyset \xrightleftharpoons{\frac{r}{\alpha}} R$$

610 The differential equation associated with this system is given by

611 (5)
$$R' = r - \alpha R,$$

612 and has steady state $R^* = r/\alpha$. Equation 5 can be solved explicitly for R by choosing

613
$$R(t) = \frac{r}{\alpha} + ce^{-t\alpha},$$

614 where c is a constant of integration. For two adjacent measurements at times t_1 and t_2 we can
615 write their respective measured amounts of mRNA as

616 (6)
$$R_1 = \frac{r}{\alpha} + c_1 e^{-t_1 \alpha},$$

619

620 and

621 (7)
$$R_2 = \frac{r}{\alpha} + c_2 e^{-t_2 \alpha}.$$

622

623 Solving for c_1 and c_2 gives

624
$$c_1 = (R_1 - \frac{r}{\alpha}) e^{t_1 \alpha}$$

624
$$c_2 = (R_2 - \frac{r}{\alpha}) e^{t_2 \alpha}.$$

625 The short-term fluctuations of mRNA from R_1 to R_2 between two adjacent discrete time points in
626 the stochastic system can be approximated by equations 6 and 7. This implies that

627
$$(R_1 - \frac{r}{\alpha}) e^{t_1 \alpha} = (R_2 - \frac{r}{\alpha}) e^{t_2 \alpha},$$

628 which in turn gives

629
$$r = \alpha \frac{R_1 - R_2 e^{\alpha \Delta t}}{1 - e^{\alpha \Delta t}}.$$

630 Therefore, the estimation of r can be computed given two adjacent measurements of fluorescence
631 and the time between them. Finally, we used a similar approach as done with α to calculate
632 values of r from fluorescence data. However, unlike α , r was calculated for each bin to account
633 for differences in transcriptional efficiency across the length of the embryo.

634 *Parameter fitting with simulated annealing*

635 Simulations and parameter fitting were done with MATLAB®. Optimization in fitting was done
636 by minimizing the sum of squared errors (SSE) between the normalized vectors of burst
637 properties and allele correlations of the experimental and simulated data. In particular, a vector y
638 of experimental data was created by concatenating the following vectors: burst size, integrated
639 fluorescence, frequency, duration, and allele correlation across the length of the embryo. The
640 vector y was subsequently normalized by dividing each burst property by the largest element in
641 their respective vectors (except correlation which by definition is unitless between -1 and 1). A
642 vector x was created in an analogous fashion to y but using simulated instead of experimental
643 data. However, x was normalized using the same elements that were used to normalize y . Then,
644 the discrepancy between the experimental and simulated data was measured by

645
$$SSE = \sum_{i=1}^n (y_i - x_i)^2.$$

646 We used a high-performance computing cluster to compute 200 independent runs of parameter
647 fitting with simulated annealing for each model variant. The algorithm requires an initial guess
648 of the parameter set P_0 , an initial temperature Γ_0 , a final temperature Γ' , the number of iterations
649 per temperature N , and a cooling factor μ . Then, each iteration is as follows:

650 (1) If the current iteration i is such that $i > N$, then update the current temperature $\Gamma_k = \mu^k \Gamma_0$ to
651 $\mu^{k+1} \Gamma_0$ and set $i = 0$. Otherwise, set i to $i + 1$.

652 (2) Check if $\Gamma_k < \Gamma'$. If so, return the current parameter set P_j and terminate.

653 (3) Choose a parameter randomly from P_j and multiply it by a value sampled from a normal
654 distribution with a mean equal to 1. The standard deviation of such distribution should be
655 continuously updated to be Γ_k . The result of this step is the newly generated parameter set P_{j+1} .
656 (4) Calculate ΔE as the difference in SSE between the data generated by P_j and that generated
657 by P_{j+1} . Update P_j to P_{j+1} if $\Delta E < 0$ or with probability $p < e^{\Delta E / \Gamma_k}$ where p is a uniformly distributed
658 random number.
659 (5) Repeat all steps until termination.

660

661 To generate our results, we chose $\Gamma_0 = 1$, $\Gamma' = \Gamma_0/10$, $N = 30$, and $\mu = 0.8$. We observed an
662 improvement in the quality of the fittings by using analysis-derived parameter values as initial
663 guesses instead of values given through random sampling. The sampled space ranged from 10^{-3}
664 to 10^3 for all parameters, except n , which was sampled from 10^0 to 10^2 , and σ , which was
665 randomly chosen to be an integer between 1 and 20. Equal numbers of parameter values were
666 sampled at each order of magnitude. The analysis in the section above was used to estimate the
667 parameters in P_0 . Parameters that were not estimated in the previous section were given the
668 following initial guesses: $n = 10$, $\beta_{-1} = 1$, $\sigma = 6$, and $c = 40$. Initial guesses for c and σ were based
669 on the experimental observation that there is little transcription outside of 20-80% egg length.
670 Based on this observation, simulations were limited to this egg length range, as well. For the
671 constant TFs model, both analysis-derived and random initial parameter values were used to
672 maximize the likelihood of finding any parameter set capable of recapitulating the observed
673 allele correlation.

674

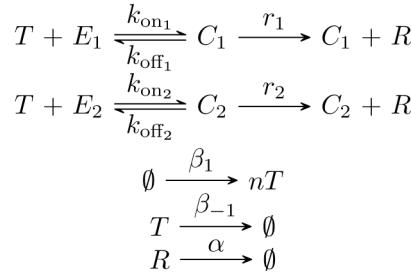
675 *Generation of simulated experimental data*

676 Parameter sets resulting from fitting were sorted in ascending order based on their sum of
677 squared errors, and the 10 lowest error parameter sets are what we called the 10 best parameter
678 sets. For all figures, we simulated 80 spots per bin and simulated each bin 5 times to generate
679 error bars. Data for the distal enhancer at the proximal location was used to reproduce simulated
680 allele correlations in all cases.

681 Gillespie simulations update the counts of each chemical species at random time intervals.
682 However, for ease of parameter fitting and to better recapitulate the experiments, we generated
683 data in two distinct timescales: one consisting of 30 second intervals after which mRNA counts
684 were recorded, and another consisting of random time intervals generated by the algorithm after
685 which chemical counts were updated. The former one was used for all parameter fitting rounds
686 and generation of figures.

687 *Description of two enhancer model, parameter estimation, and fitting*

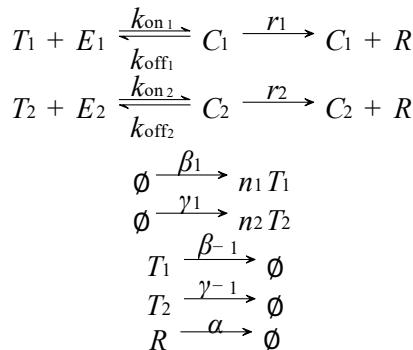
688 To explore two enhancer systems, we expanded our previous model to include an additional
689 enhancer. First, we considered duplicated enhancer systems, which consist of either two
690 proximal or two distal enhancers. Enhancers were denoted by E_1 and E_2 , which correspond to two
691 identical enhancers that exist in different locations relative to the promoter. They are activated by
692 the same transcription factors as described by the reactions



693

694 Without loss of generality, we used E_1 to denote the enhancer at the proximal location and E_2 to
 695 denote the enhancer at the distal location. This model describes independent enhancer dynamics;
 696 i.e. the behavior of one enhancer does not affect the behavior of the other, and, as such, both
 697 enhancers can be simultaneously looped to the promoter. Consequently, to account for potential
 698 enhancer interference or competition for the promoter, we assumed distinct k_{on} and k_{off} values for
 699 each enhancer in the duplicated enhancer constructs. We also used distinct values of r for each
 700 distal enhancer in the duplicated distal construct since fluorescence data was available for this
 701 enhancer at the proximal and endogenous location. For proximal enhancers, we assume $r_1 = r_2$.

702 To describe the dynamics of the shadow enhancer pair, we denoted the activators for E_1 (the
 703 proximal enhancer) and E_2 (the distal enhancer) by T_1 and T_2 , respectively:



704

705 The production rate of T_2 , γ_1 , was calculated in the same way as production rate of T_1 , β_1 , but
 706 differed in the values of c and σ . The two enhancer models were also used to calculate allele
 707 correlation between homozygotes and heterozygotes because a distinction between the mRNA
 708 produced by C_1 and C_2 was made. This approach works because, e.g., when considering the
 709 homozygote embryos, each single enhancer resides in the same nucleus and is therefore affected
 710 by the same fluctuating TF numbers. In the duplicated enhancer model, each enhancer E_1 or E_2 is
 711 affected by the same fluctuations in the number of transcription factor T. An analogous logic
 712 applies to the heterozygotes.

713 To fit the two enhancer models to experimental data, we retained several parameters from the
 714 single enhancer models. Parameters r and α were directly calculated from the data, and, as such,
 715 did not vary across models. We assume that parameters concerning transcription factors (β_1 , β_{-1} ,
 716 γ_1 , γ_{-1} , n_1 , and n_2) are not affected by the presence of an additional enhancer. Therefore, in our
 717 model, only k_{on} and k_{off} are free to change. To fit the values of $k_{\text{on}1}$, $k_{\text{on}2}$, $k_{\text{off}1}$, and $k_{\text{off}2}$, we set the

718 other model parameters to the median values of the 10 best parameter sets in the respective
719 single enhancer model. We then used a similar simulating annealing approach to fit the k_{on} and
720 k_{off} values. We used the resulting values to simulate transcriptional traces and to calculate the
721 predicted CV values shown in Figure 4.

722

723 **Acknowledgements**

724 The authors would like to thank Hernan Garcia for providing advice on MS2 imaging, the MCP-
725 GFP fly line, and a plasmid containing the MS2 reporter construct, Nick Lammers for assistance
726 in the calibration of MS2 signal to mRNA counts, Clarissa Scholes for assistance in image
727 processing, Lily Li for assistance in data analysis and comments on the text, and Thomas
728 Schilling and Rahul Warrior for useful suggestions for the project.

729

730 **Competing Interests**

731 The authors have no competing interests.

732

733 **Funding**

734 This work was supported by NIH grants R00-HD073191, R01-095246, and a Hellman
735 Foundation Fellowship to Z.W., NIH grant T32-EB009418 to A. F., an ARCS Foundation
736 Fellowship to R.W., and NSF grant DMS1763272 and Simons Foundation grant 594598 from
737 the University of California, Irvine, NSF-Simons Center for Multiscale Cell Fate Research to
738 Z.W and G.E.

739

740 **References**

741 Arias, Alfonso Martinez, and Penelope Hayward. 2006. “Filtering Transcriptional Noise
742 during Development: Concepts and Mechanisms.” *Nature Reviews Genetics* 7 (1): 34–
743 44. <https://doi.org/10.1038/nrg1750>.

744 Barolo, Scott. 2012. “Shadow Enhancers: Frequently Asked Questions about Distributed
745 Cis-Regulatory Information and Enhancer Redundancy.” *BioEssays : News and*
746 *Reviews in Molecular, Cellular and Developmental Biology* 34 (2): 135–41.
747 <https://doi.org/10.1002/bies.201100121>.

748 Bertrand, Edouard, Pascal Chartrand, Matthias Schaefer, Shailesh M. Shenoy, Robert H.
749 Singer, and Roy M. Long. 1998. “Localization of ASH1 mRNA Particles in Living
750 Yeast.” *Molecular Cell* 2 (4): 437–45. [https://doi.org/10.1016/S1097-2765\(00\)80143-4](https://doi.org/10.1016/S1097-2765(00)80143-4).

752 Biggin, Mark D. 2011. “Animal Transcription Networks as Highly Connected, Quantitative
753 Continua.” *Developmental Cell* 21 (4): 611–26.
754 <https://doi.org/10.1016/J.DEVCEL.2011.09.008>.

755 Blake, William J., Mads KÆrn, Charles R. Cantor, and J. J. Collins. 2003. “Noise in
756 Eukaryotic Gene Expression.” *Nature* 422 (6932): 633–37.
757 <https://doi.org/10.1038/nature01546>.

758 Bomblies, Kirsten, Nicole Dagenais, and Detlef Weigel. 1999. “Redundant Enhancers
759 Mediate Transcriptional Repression of AGAMOUS by APETALA2.” *Developmental
760 Biology* 216 (1): 260–64. <https://doi.org/10.1006/DBIO.1999.9504>.

761 Bothma, Jacques P., Hernan G Garcia, Samuel Ng, Michael W Perry, Thomas Gregor, and
762 Michael Levine. 2015. “Enhancer Additivity and Non-Additivity Are Determined by
763 Enhancer Strength in the Drosophila Embryo.”
<https://doi.org/10.7554/eLife.07956.001>.

764 Bothma, Jacques P., Matthew R. Norstad, Simon Alamos, and Hernan G. Garcia. 2018.
765 “LlamaTags: A Versatile Tool to Image Transcription Factor Dynamics in Live
766 Embryos.” *Cell* 173 (7): 1810-1822.e16. <https://doi.org/10.1016/j.cell.2018.03.069>.

767 Cannavò, Enrico, Pierre Khoueiry, David A. Garfield, Paul Geleher, Thomas Zichner, E.
768 Hilary Gustafson, Lucia Ciglar, Jan O. Korbel, and Eileen E.M. Furlong. 2016.
769 “Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks.”
770 *Current Biology* 26 (1): 38–51. <https://doi.org/10.1016/j.cub.2015.11.034>.

771 Chen, Jun, Viola Nolte, and Christian Schlötterer. 2015. “Temperature Stress Mediates
772 Decanalization and Dominance of Gene Expression in *Drosophila Melanogaster*.”
773 *PLoS Genetics* 11 (2): e1004883. <https://doi.org/10.1371/journal.pgen.1004883>.

774 Cheung, David, and Jun Ma. 2015. “Probing the Impact of Temperature on Molecular
775 Events in a Developmental System.” *Scientific Reports* 5.
776 <https://doi.org/10.1038/srep13124>.

777 Csárdi, Gábor, Alexander Franks, David S Choi, Edoardo M Airoldi, and D Allan
778 Drummond. 2015. “Accounting for Experimental Noise Reveals That mRNA Levels,
779 Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein
780 Levels in Yeast.” *PLoS Genetics* 11 (5): e1005206.
781 <https://doi.org/10.1371/journal.pgen.1005206>.

782 Dar, Roy D., Sydney M. Shaffer, Abhyudai Singh, Brandon S. Razooky, Michael L.
783 Simpson, Arjun Raj, and Leor S. Weinberger. 2016. “Transcriptional Bursting
784 Explains the Noise–Versus–Mean Relationship in mRNA and Protein Levels.” Edited
785 by Ashok Chauhan. *PLOS ONE* 11 (7): e0158298.
786 <https://doi.org/10.1371/journal.pone.0158298>.

787 Dar, Roy D, Brandon S Razooky, Abhyudai Singh, Thomas V Trimeloni, James M
788 McCollum, Chris D Cox, Michael L Simpson, and Leor S Weinberger. 2012.
789 “Transcriptional Burst Frequency and Burst Size Are Equally Modulated across the
790 Human Genome.” *Proceedings of the National Academy of Sciences of the United
791 States of America* 109 (43): 17454–59. <https://doi.org/10.1073/pnas.1213530109>.

792 Dubuis, Julien O, Reba Samanta, and Thomas Gregor. 2013. “Accurate Measurements of
793 Dynamics and Reproducibility in Small Genetic Networks.” *Molecular Systems
794 Biology* 9: 639. <https://doi.org/10.1038/msb.2012.72>.

795 Dunipace, Leslie, Anil Ozdemir, and Angelike Stathopoulos. 2011. “Complex Interactions
796 between Cis-Regulatory Modules in Native Conformation Are Critical for Drosophila
797 Snail Expression.” *Development* 138: 4566. <https://doi.org/10.1242/dev.074377>.

798

799 El-Sherif, Ezzat, and Michael Levine. 2016. "Shadow Enhancers Mediate Dynamic Shifts
800 of Gap Gene Expression in the Drosophila Embryo." *Current Biology*. Vol. 26.
801 <https://doi.org/10.1016/j.cub.2016.02.054>.

802 Elowitz, Michael B., Arnold J. Levine, Eric D. Siggia, and Peter S. Swain. 2002.
803 "Stochastic Gene Expression in a Single Cell." *Science* 297 (5584).

804 Erdmann, Thorsten, Martin Howard, and Pieter Rein ten Wolde. 2009. "Role of Spatial
805 Averaging in the Precision of Gene Expression Patterns." *Physical Review Letters* 103
806 (25): 258101. <https://doi.org/10.1103/PhysRevLett.103.258101>.

807 Frankel, Nicolás, Gregory K Davis, Diego Vargas, Shu Wang, François Payre, and David L
808 Stern. 2010. "Phenotypic Robustness Conferred by Apparently Redundant
809 Transcriptional Enhancers." *Nature* 466 (7305): 490–93.
810 <https://doi.org/10.1038/nature09158>.

811 Fukaya, Takashi, and Michael Levine. 2017. "Transvection." *Current Biology* 27 (19):
812 R1047–49. <https://doi.org/10.1016/j.CUB.2017.08.001>.

813 Fukaya, Takashi, Bomyi Lim, and Michael Levine. 2016. "Enhancer Control of
814 Transcriptional Bursting." *Cell* 166 (2): 358–68.
815 <https://doi.org/10.1016/j.cell.2016.05.025>.

816 Garcia, Hernan G, Mikhail Tikhonov, Albert Lin, and Thomas Gregor. 2013. "Quantitative
817 Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to
818 Patterning." *Current Biology : CB* 23 (21): 2140–45.
819 <https://doi.org/10.1016/j.cub.2013.08.054>.

820 Garnett, Aaron T, Tyler A Square, and Daniel M Medeiros. 2012. "BMP, Wnt and FGF
821 Signals Are Integrated through Evolutionarily Conserved Enhancers to Achieve
822 Robust Expression of Pax3 and Zic Genes at the Zebrafish Neural Plate Border." *Development (Cambridge, England)* 139 (22): 4220–31.
823 <https://doi.org/10.1242/dev.081497>.

824 Ghiasvand, Noor M, Dellaney D Rudolph, Mohammad Mashayekhi, Joseph A Brzezinski,
825 Daniel Goldman, Tom Glaser, and Tom Glaser. 2011. "Deletion of a Remote Enhancer
826 near ATOH7 Disrupts Retinal Neurogenesis, Causing NCRNA Disease." *Nature Neuroscience* 14 (5): 578–86. <https://doi.org/10.1038/nn.2798>.

827 Gregor, Thomas, David W Tank, Eric F Wieschaus, and William Bialek. 2007. "Probing the
828 Limits to Positional Information." *Cell* 130 (1): 153–64.
829 <https://doi.org/10.1016/j.cell.2007.05.025>.

830 Hansen, Maike M.K., Ravi V. Desai, Michael L. Simpson, and Leor S. Weinberger. 2018.
831 "Cytoplasmic Amplification of Transcriptional Noise Generates Substantial Cell-to-
832 Cell Variability." *Cell Systems* 7 (4): 384-397.e6.
833 <https://doi.org/10.1016/j.CELS.2018.08.002>.

834 He, Feng, Ying Wen, Jingyuan Deng, Xiaodong Lin, Long Jason Lu, Renjie Jiao, and Jun
835 Ma. 2008. "Probing Intrinsic Properties of a Robust Morphogen Gradient in
836 Drosophila." *Developmental Cell* 15 (4): 558–67.
837 <https://doi.org/10.1016/j.DEVCEL.2008.09.004>.

838 Hoch, Michael, Christian Schroder1, Eveline Seifert2, and Herbert Jackle. 1990. "Cis-
839 Acting Control Elements for Kruppel Expression in the Drosophila Embryo." *The
840 EMBO Journal* 9 (8): 2587–95.
841 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552291/pdf/emboj00235-0229.pdf>.

842

843

844 Janssen, Sam, Olivier Cuvier, Martin Müller, and Ulrich K Laemmli. 2000. “Specific Gain-
845 and Loss-of-Function Phenotypes Induced by Satellite-Specific DNA-Binding Drugs
846 Fed to *Drosophila Melanogaster*.” *Molecular Cell* 6 (5): 1013–24.
847 [https://doi.org/10.1016/S1097-2765\(00\)00100-3](https://doi.org/10.1016/S1097-2765(00)00100-3).

848 Laboulaye, Mallory A., Xin Duan, Mu Qiao, Irene E. Whitney, and Joshua R. Sanes. 2018.
849 “Mapping Transgene Insertion Sites Reveals Complex Interactions Between Mouse
850 Transgenes and Neighboring Endogenous Genes.” *Frontiers in Molecular
851 Neuroscience* 11 (October): 385. <https://doi.org/10.3389/fnmol.2018.00385>.

852 Lagha, Mounia, Jacques P Bothma, and Michael Levine. 2012. “Mechanisms of
853 Transcriptional Precision in Animal Development.” *Trends in Genetics : TIG* 28 (8):
854 409–16. <https://doi.org/10.1016/j.tig.2012.03.006>.

855 Lam, Daniel D, Flavio S J de Souza, Sofia Nasif, Miho Yamashita, Rodrigo López-Leal,
856 Veronica Otero-Corcho, Kana Meece, et al. 2015. “Partially Redundant Enhancers
857 Cooperatively Maintain Mammalian Pomp Expression above a Critical Functional
858 Threshold.” *PLoS Genetics* 11 (2): e1004935.
859 <https://doi.org/10.1371/journal.pgen.1004935>.

860 Lim, Bomyi, Tyler Heist, Michael Levine, and Takashi Fukaya. 2018. “Visualization of
861 Transvection in Living *Drosophila* Embryos.” *Molecular Cell* 70 (2): 287–296.e6.
862 <https://doi.org/10.1016/J.MOLCEL.2018.02.029>.

863 Little, Shawn C, Mikhail Tikhonov, and Thomas Gregor. 2013. “Precise Developmental
864 Gene Expression Arises from Globally Stochastic Transcriptional Activity.” *Cell* 154
865 (4): 789–800. <https://doi.org/10.1016/j.cell.2013.07.025>.

866 Liu, Xiaowei, Bo Wu, Jaroslaw Szary, Eric M Kofoed, and Fred Schaufele. 2007.
867 “Functional Sequestration of Transcription Factor Activity by Repetitive DNA.” *The
868 Journal of Biological Chemistry* 282 (29): 20868–76.
869 <https://doi.org/10.1074/jbc.M702547200>.

870 Lucas, Tanguy, Teresa Ferraro, Baptiste Roelens, Jose De Las Heras Chanes, Aleksandra
871 M. Walczak, Mathieu Coppey, and Nathalie Dostatni. 2013. “Live Imaging of Bicoid-
872 Dependent Transcription in *Drosophila* Embryos.” *Current Biology* 23 (21): 2135–39.
873 <https://doi.org/10.1016/J.CUB.2013.08.053>.

874 Miller Jr., Oscar L., and Steven L. McKnight. 1979. “Post-Replicative Nonribosomal
875 Transcription Units in *D. Melanogaster* Embryos.” *Cell* 17 (3): 551–63.
876 [https://doi.org/10.1016/0092-8674\(79\)90263-0](https://doi.org/10.1016/0092-8674(79)90263-0).

877 Osterwalder, Marco, Iros Barozzi, Virginie Tissières, Yoko Fukuda-Yuzawa, Brandon J.
878 Mannion, Sarah Y. Afzal, Elizabeth A. Lee, et al. 2018. “Enhancer Redundancy
879 Provides Phenotypic Robustness in Mammalian Development.” *Nature* 554 (7691):
880 239–43. <https://doi.org/10.1038/nature25461>.

881 Perry, Michael W., Alistair N. Boettiger, Jacques P. Bothma, and Michael Levine. 2010.
882 “Shadow Enhancers Foster Robustness of *Drosophila* Gastrulation.” *Current Biology*
883 20 (17): 1562–67. <https://doi.org/10.1016/J.CUB.2010.07.043>.

884 Perry, Michael W., Alistair N. Boettiger, and Michael Levine. 2011. “Multiple Enhancers
885 Ensure Precision of Gap Gene-Expression Patterns in the *Drosophila* Embryo.”
886 *Proceedings of the National Academy of Sciences* 108 (33): 13570–75.
887 <https://doi.org/10.1073/PNAS.1109873108>.

888 Perry, Michael W., Jacques P. Bothma, Ryan D. Luu, and Michael Levine. 2012. “Precision
889 of Hunchback Expression in the *Drosophila* Embryo.” *Current Biology* 22 (23): 2247–
890 52. <https://doi.org/10.1016/J.CUB.2012.09.051>.

891 Preger-Ben Noon, Ella, Gonzalo Sabarís, Daniela M Ortiz, Jonathan Sager, Anna
892 Liebowitz, David L Stern, and Nicolás Frankel. 2018. “Comprehensive Analysis of a
893 Cis-Regulatory Region Reveals Pleiotropy in Enhancer Function.” *Cell Reports* 22
894 (11): 3021–31. <https://doi.org/10.1016/j.celrep.2018.02.073>.

895 Preiss, A, U B Rosenberg, A Kienlin, E Seifert, and H Jäckle. n.d. “Molecular Genetics of
896 Krüppel, a Gene Required for Segmentation of the *Drosophila* Embryo.” *Nature* 313
897 (5997): 27–32. Accessed January 11, 2019.
898 <http://www.ncbi.nlm.nih.gov/pubmed/3917552>.

899 Raj, Arjun, Scott A Rifkin, Erik Andersen, and Alexander van Oudenaarden. 2010.
900 “Variability in Gene Expression Underlies Incomplete Penetrance.” *Nature* 463
901 (7283): 913–18. <https://doi.org/10.1038/nature08781>.

902 Raser, Jonathan M, and Erin K O’Shea. 2005. “Noise in Gene Expression: Origins,
903 Consequences, and Control.” *Science (New York, N.Y.)* 309 (5743): 2010–13.
904 <https://doi.org/10.1126/science.1105891>.

905 Sanchez, Alvaro, and Ido Golding. 2013. “Genetic Determinants and Cellular Constraints in
906 Noisy Gene Expression.” *Science (New York, N.Y.)* 342 (6163): 1188–93.
907 <https://doi.org/10.1126/science.1242975>.

908 Scholes, Clarissa, Kelly M Biette, Timothy T Harden, and Angela H DePace. 2019. “Signal
909 Integration by Shadow Enhancers and Enhancer Duplications Varies across the
910 *Drosophila* Embryo.” *Cell Reports* 26 (9): 2407–2418.e5.
911 <https://doi.org/10.1016/j.celrep.2019.01.115>.

912 Stapel, L Carine, Christoph Zechner, and Nadine L Vastenhouw. 2017. “Uniform Gene
913 Expression in Embryos Is Achieved by Temporal Averaging of Transcription Noise.”
914 *Genes & Development* 31 (16): 1635–40. <https://doi.org/10.1101/gad.302935.117>.

915 Thompson, A, and M J Gasson. 2001. “Location Effects of a Reporter Gene on Expression
916 Levels and on Native Protein Synthesis in *Lactococcus Lactis* and *Saccharomyces*
917 *Cerevisiae*.” *Applied and Environmental Microbiology* 67 (8): 3434–39.
918 <https://doi.org/10.1128/AEM.67.8.3434-3439.2001>.

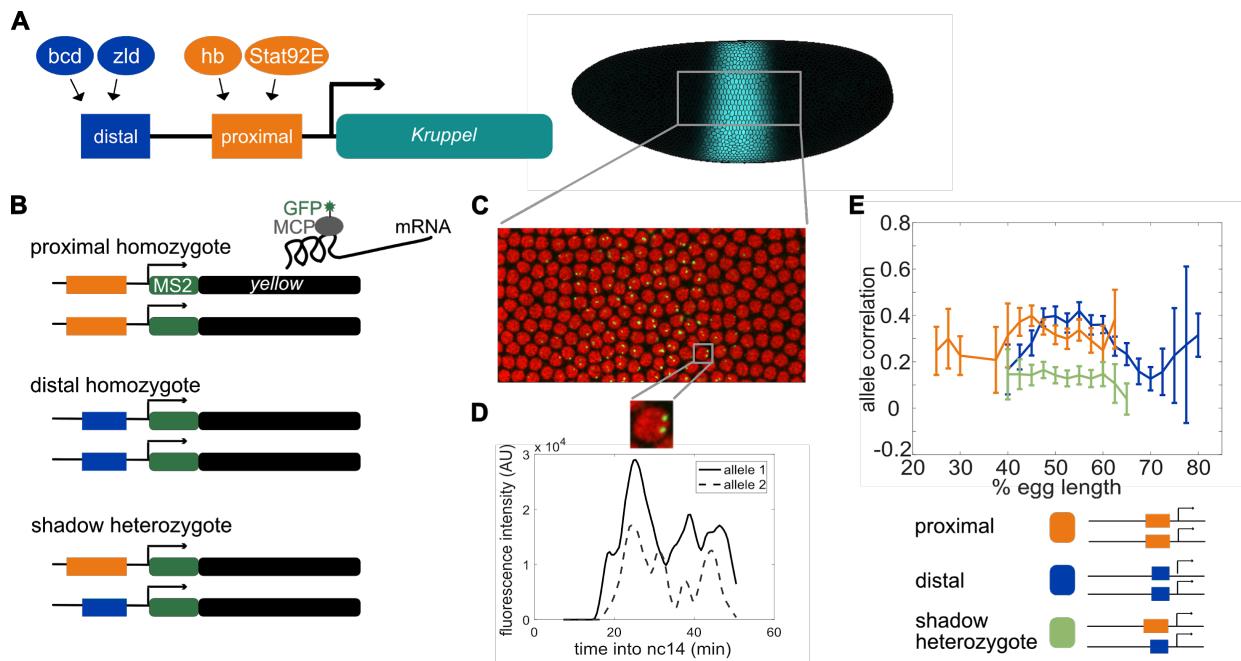
919 Wunderlich, Zeba, Meghan D J Bragdon, Ben J Vincent, Jonathan A White, Javier Estrada,
920 and Angela H DePace. 2015. “Krüppel Expression Levels Are Maintained through
921 Compensatory Evolution of Shadow Enhancers.” *Cell Reports* 12 (11): 1740–47.
922 <https://doi.org/10.1016/j.celrep.2015.08.021>.

923 Yan, Jenny, Caitlin Anderson, Kayla Viets, Sang Tran, Gregory Goldberg, Stephen Small,
924 and Robert J Johnston. 2017. “Regulatory Logic Driving Stable Levels of Defective
925 Proventriculus Expression during Terminal Photoreceptor Specification in Flies.”
926 *Development (Cambridge, England)* 144 (5): 844–55.
927 <https://doi.org/10.1242/dev.144030>.

928 Yuan, Ye, Lei Wei, Tao Hu, Shuailin Li, Tianrun Cheng, Jinzhi Lei, Zhen Xie, Michael Q.
929 Zhang, and Xiaowo Wang. 2018. “Quantitative Understanding of Molecular
930 Competition as a Hidden Layer of Gene Regulatory Network.” *BioRxiv*, February,
931 258129. <https://doi.org/10.1101/258129>.

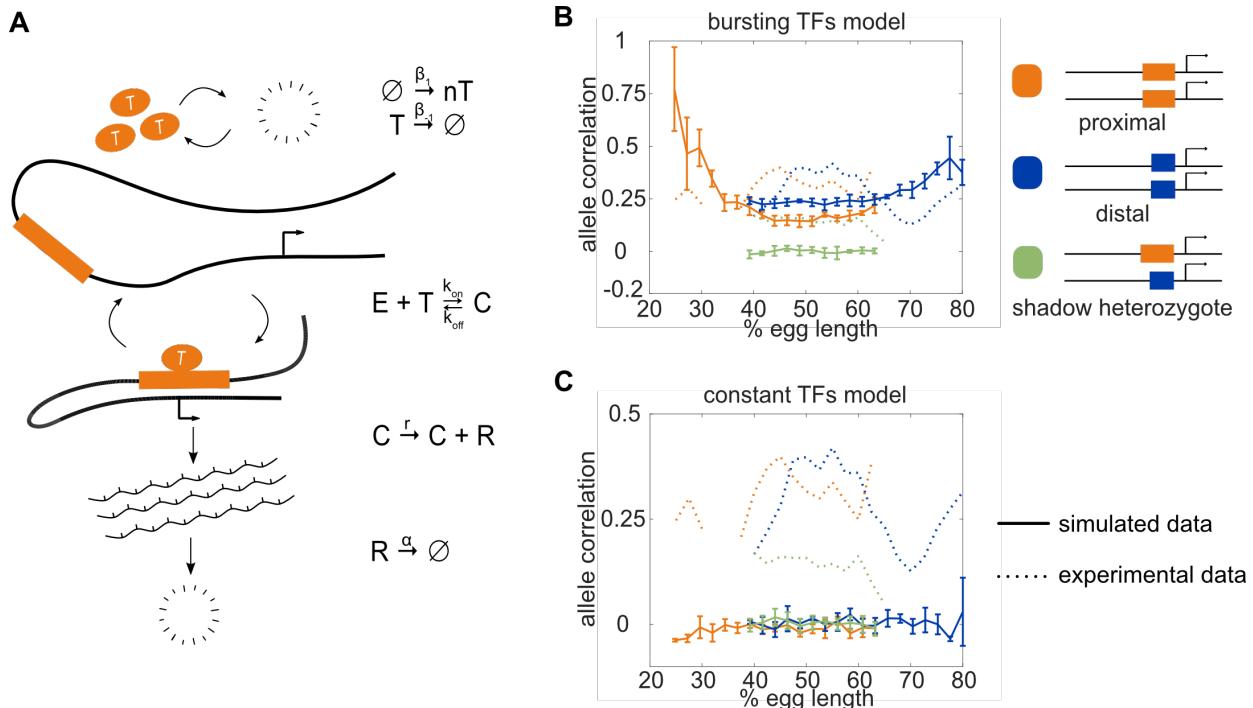
932 Zenklusen, Daniel, Daniel R Larson, and Robert H Singer. 2008. “Single-RNA Counting
933 Reveals Alternative Modes of Gene Expression in Yeast.” *Nature Structural &*
934 *Molecular Biology* 15 (12): 1263–71. <https://doi.org/10.1038/nsmb.1514>.
935

936
937



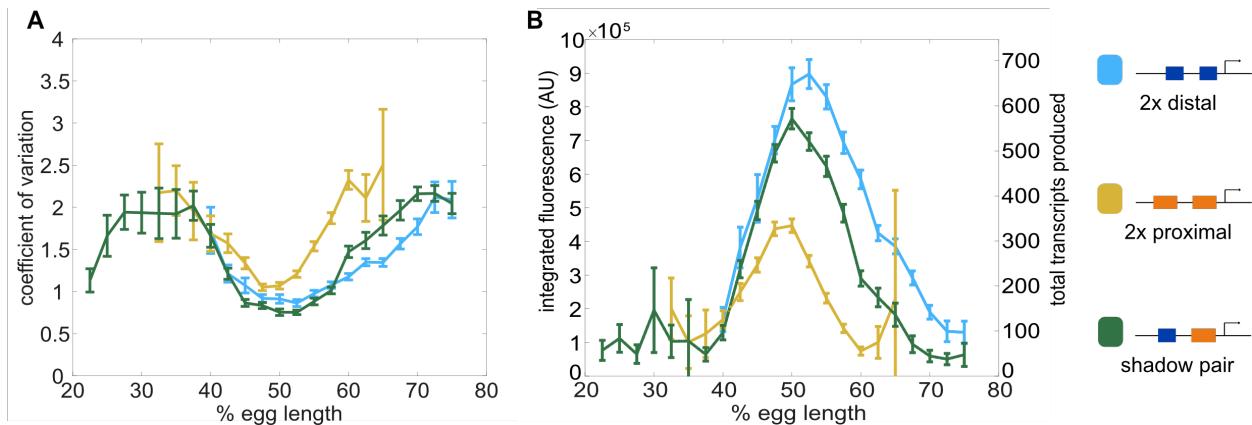
938

Figure 1: Dual allele imaging shows the individual *Kruppel* enhancers drive largely independent transcriptional dynamics. A. Schematic of the endogenous *Kruppel* locus with distal (blue) and proximal (orange) shadow enhancers driving *Kr* (teal) expression in the central region of the embryo. Known transcriptional activators of the two enhancers are shown. **B.** Schematics of single enhancer reporter constructs driving expression of MS2 and a *yellow* reporter. When transcribed, the MS2 sequence forms stem loops that are bound by GFP-tagged MCP expressed in the embryos. Proximal embryos have expression on each allele controlled by the 1.5kb proximal enhancer at its endogenous spacing from the *Kr* promoter, while distal embryos have expression on each allele controlled by the 1.1kb distal enhancer at the same spacing from the *Kr* promoter. Shadow heterozygote embryos have expression on one allele controlled by the proximal enhancer and expression on the other allele controlled by the distal enhancer. **C.** Still frame from live imaging experiment where nuclei are red circles and active sites of transcription are green spots. MCP-GFP is visible as spots above background at sites of nascent transcription (Garcia, et al., 2013). **D.** The fluorescence of each allele in individual nuclei can be tracked across time as a measure of transcriptional activity. Graph shows a representative trace of transcriptional activity of the two alleles in a single nucleus across the time of nc14. These traces are used to calculate the correlation of allele activity in each nucleus. Correlation values are grouped by position of the nucleus along the egg length and averaged across all imaged nuclei in all embryos of each construct. **E.** Graph of average correlation between the two alleles in each nucleus as a function of egg length. 0% egg length corresponds to the anterior end. Error bars indicate 95% confidence intervals. The shadow heterozygotes have much lower allele correlation than either homozygote, demonstrating that the individual shadow enhancers drive nearly independent transcriptional activity and that upstream fluctuations in regulators are a significant driver of transcriptional bursts. The total number of nuclei used in calculations for each construct by AP bin are given in Supplementary Table 2.



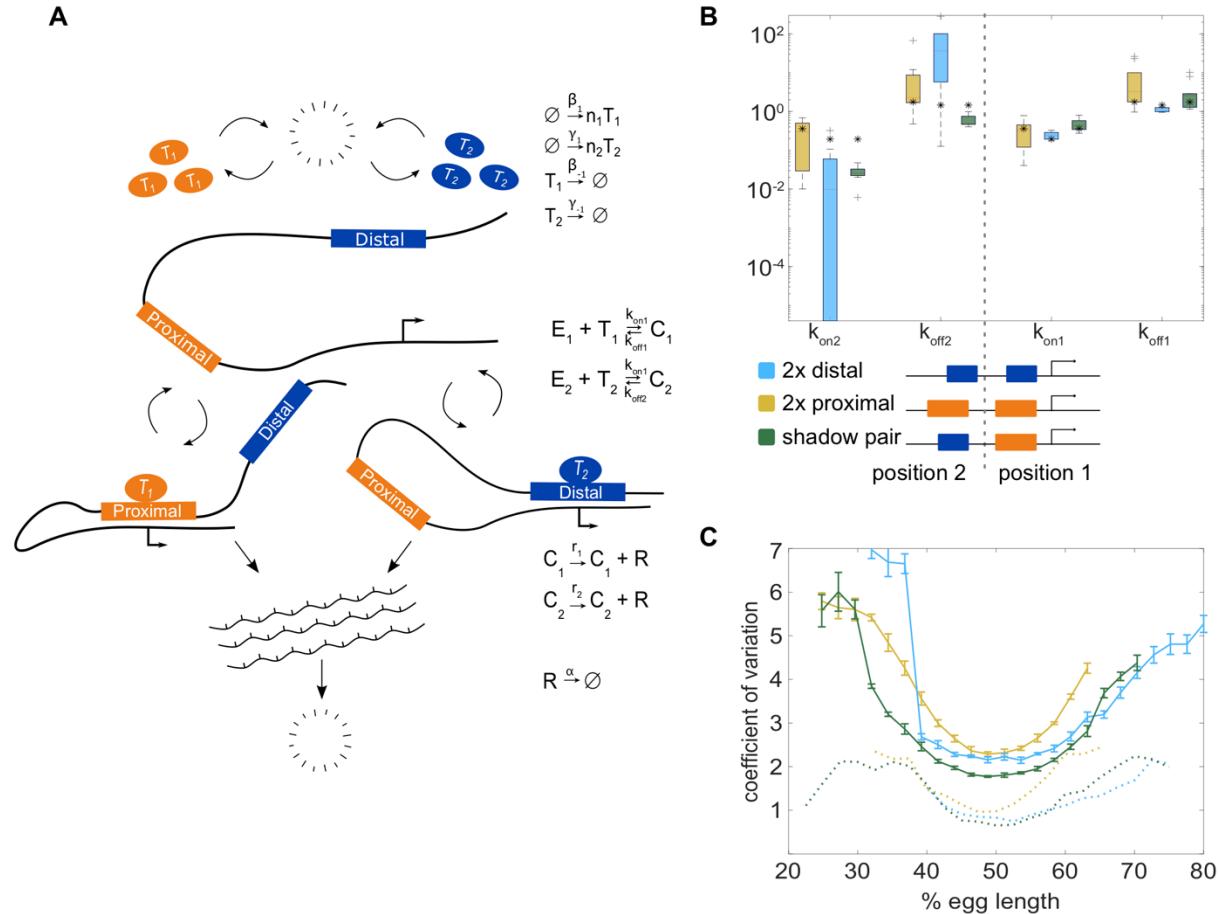
964

965 **Figure 2: Model of enhancer-driven dynamics demonstrates TF fluctuations are required**
 966 **for correlated reporter activity.** To investigate the factors required for the observed correlated
 967 behavior of identical enhancers and largely independent behavior of the individual enhancers, we
 968 developed a simple stochastic model of enhancer-driven transcription. **A.** Schematic of model of
 969 transcription driven by a single enhancer (the *bursting TFs* model). For each enhancer, we
 970 assume there is a single activating TF, T, that appears in bursts of size n molecules at a rate β_1 ,
 971 which varies by the position in the embryo. TFs degrade linearly at rate β_2 . When present, T can
 972 bind the enhancer, E, to form a transcriptionally active complex, C, at a rate k_{on} and dissociates at
 973 rate k_{off} . This complex then produces mRNA at an experimentally determined rate r that degrades
 974 at an experimentally determined rate, α . **B.** The bursting TFs model is able to recapitulate the
 975 experimentally observed pattern of allele correlation. We plot the correlation between the two
 976 alleles in a nucleus as a function of egg length. Simulated data is created using the lowest energy
 977 parameter set for each enhancer. The data shown is the average of five simulated embryos that
 978 have 80 transcriptional spots per AP bin. In B and C simulated data are shown by solid lines,
 979 experimental data are shown by dotted lines. **C.** The constant TFs model fails to recapitulate the
 980 experimentally observed pattern of allele correlation. Without TF fluctuations, both heterozygous
 981 and homozygous embryos display independent allele activity. Error bars in B and C represent
 982 95% confidence intervals.



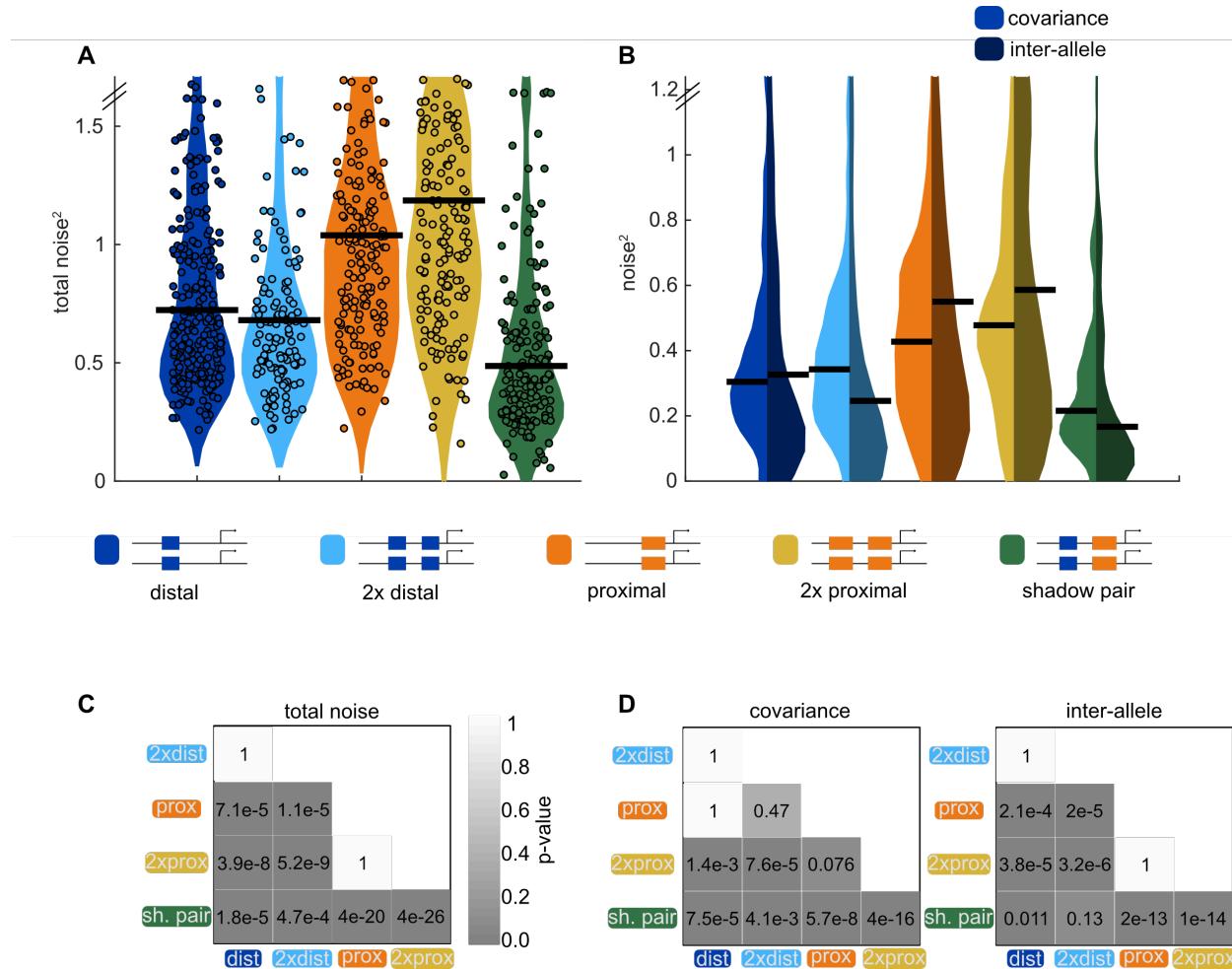
983

984 **Figure 3: Shadow enhancer pair produces lower expression noise than duplicated**
985 **enhancers.** To investigate whether the shadow enhancer pair drives less noisy expression, we
986 calculate the coefficient of variation (CV) associated with the shadow enhancer pair or either
987 duplicated enhancer across time of nc14. **A.** The shadow enhancer pair displays lower temporal
988 expression noise than either duplicated enhancer. Graph is mean coefficient of variation of
989 fluorescence traces across time as a function of embryo position. **B.** The shadow enhancer pair
990 shows the lowest expression noise, but not the highest expression levels, indicating that the lower
991 noise is not simply a function of higher expression. Graph is average total expression during
992 nc14 as a function of embryo position. Error bars in A and B represent 95% confidence intervals.
993 Total number of transcriptional spots used for graphs are given in Supplementary Table 1 by
994 construct and AP bin.



995

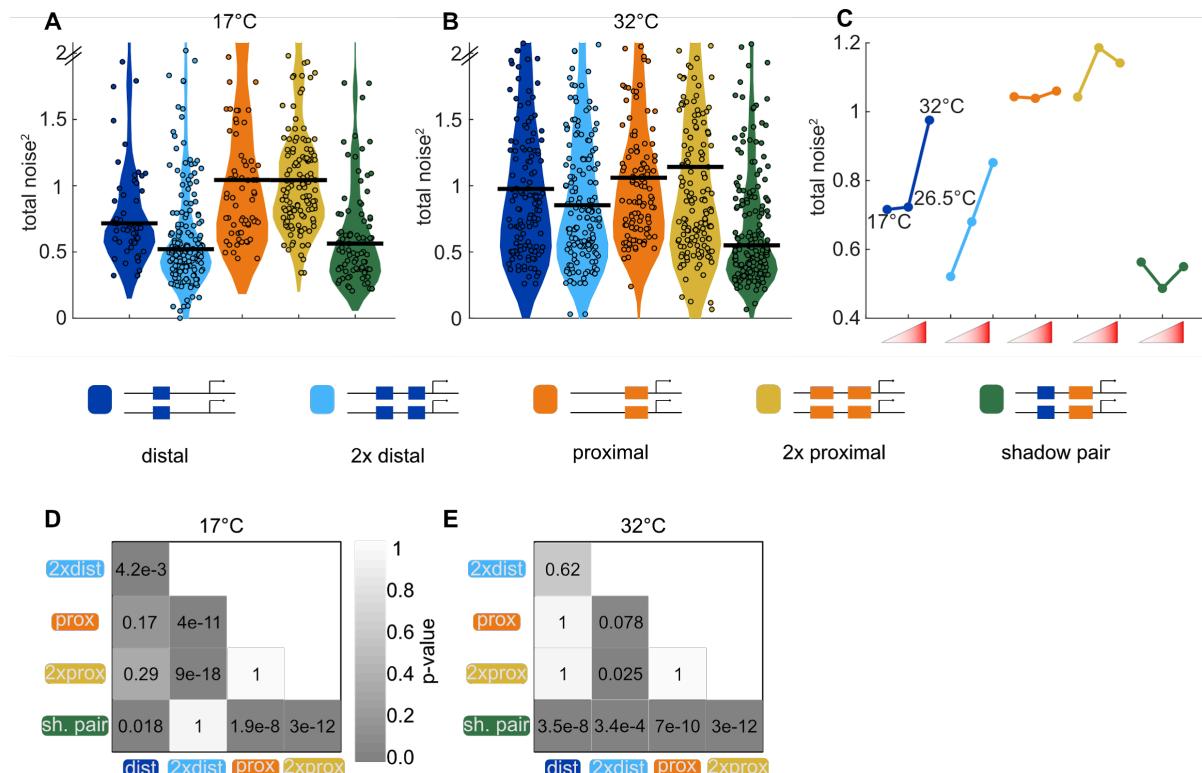
996 **Figure 4: The two enhancer model recapitulates low expression noise associated with the**
 997 **shadow enhancer pair.** To assess whether the separation of input TFs mediates the lower
 998 expression noise driven by the shadow enhancer pair, we expanded our model to incorporate two
 999 enhancers driving transcription. **A.** Schematic of the two enhancer model. We assume that when
 1000 two enhancers control a single promoter, either or both can loop to the promoter and drive
 1001 transcription. We defined model parameters as in Figure 2, and only allowed the k_{on} and k_{off}
 1002 values to vary from the single enhancer model. **B.** To understand the effect of adding a second
 1003 enhancer, we examined how the k_{on} and k_{off} values vary from those in the single enhancer model.
 1004 We plotted the distribution of the values for k_{on} and k_{off} for each enhancer in the three different
 1005 constructs measured. The distribution shows the values derived from the 10 best-fitting
 1006 parameter sets, and the black star in each column indicates the k_{on} or k_{off} value from the
 1007 corresponding single enhancer model. In general, the k_{off} values increased relative to the single
 1008 enhancer model, and the k_{on} values decreased, indicating that the presence of a second enhancer
 1009 inhibits the activity of the first. **C.** Graph of average coefficient of variation of simulated or
 1010 experimental transcriptional traces as a function of egg length. The model is able to recapitulate
 1011 the lower expression noise seen with the shadow enhancer pair with no additional fitting,
 1012 indicating that the separation of TF inputs to the two enhancers is sufficient to explain this
 1013 observation. Simulated data are shown in solid lines, experimental data are shown in dotted lines.



1015 **Figure 5: Shadow enhancer pair achieves lower total noise by buffering global and allele-**
 1016 **specific sources of noise.** To determine how the shadow enhancer pair produces lower
 1017 expression noise, we calculated the total noise associated with each enhancer construct and
 1018 decomposed this into the contributions of covariance and inter-allele noise. Covariance is a
 1019 measure of how the activities of the two alleles in a nucleus change together and is indicative of
 1020 global sources of noise. Inter-allele noise is a measure of how the activities of the two alleles
 1021 differ and is indicative of allele-specific sources of noise. **A.** The shadow enhancer pair has
 1022 lower total noise than single or duplicated enhancers. Circles are total noise values for individual
 1023 nuclei in AP bin of peak expression for the given enhancer construct. Horizontal line represents
 1024 the median. The y-axis is limited to 75th percentile of the proximal enhancer, which has the
 1025 largest noise values. The shadow enhancer pair has significantly lower total noise than all other
 1026 constructs. **B.** The shadow enhancer pair displays significantly lower covariance than either
 1027 single or duplicated enhancer and significantly lower inter-allele noise than both single
 1028 enhancers and the duplicated proximal enhancer. The left half of each violin plot shows the
 1029 distribution of covariance values of nuclei in the AP bin of peak expression, while the right half
 1030 shows the distribution of inter-allele noise values. Horizontal lines represent median. The y-axis
 1031 is again limited to the 75th percentile of enhancer with the largest noise values, which is
 1032 duplicated proximal. The lower covariance and inter-allele noise associated with the shadow
 1033 enhancer pair indicates it is better able to buffer both global and allele-specific sources of noise.

1034 **C.** *p*-value table of Kruskal-Wallis pairwise comparison of the total noise values of each
1035 enhancer construct. *p*-value gradient legend applies to C and D. **D.** *p*-value table of Kruskal-
1036 Wallis pairwise comparison of covariance (on left) and inter-allele noise (on right) values for
1037 each enhancer construct. Bonferroni multiple comparison corrections were used for *p*-values in C
1038 and D. Total number of nuclei used in noise calculations are given in Supplementary Table 2.

1039



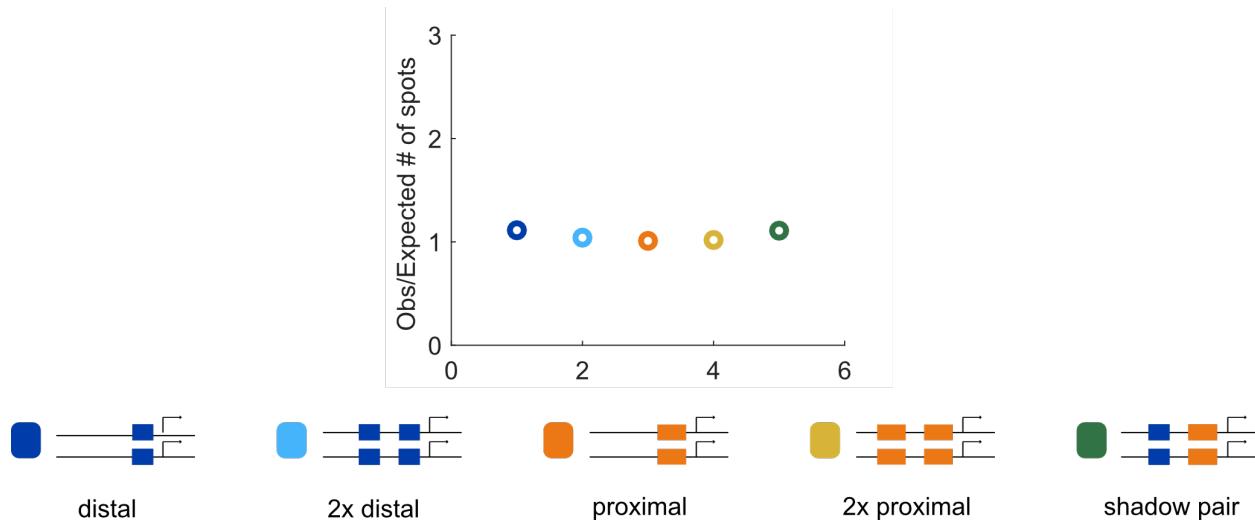
1040

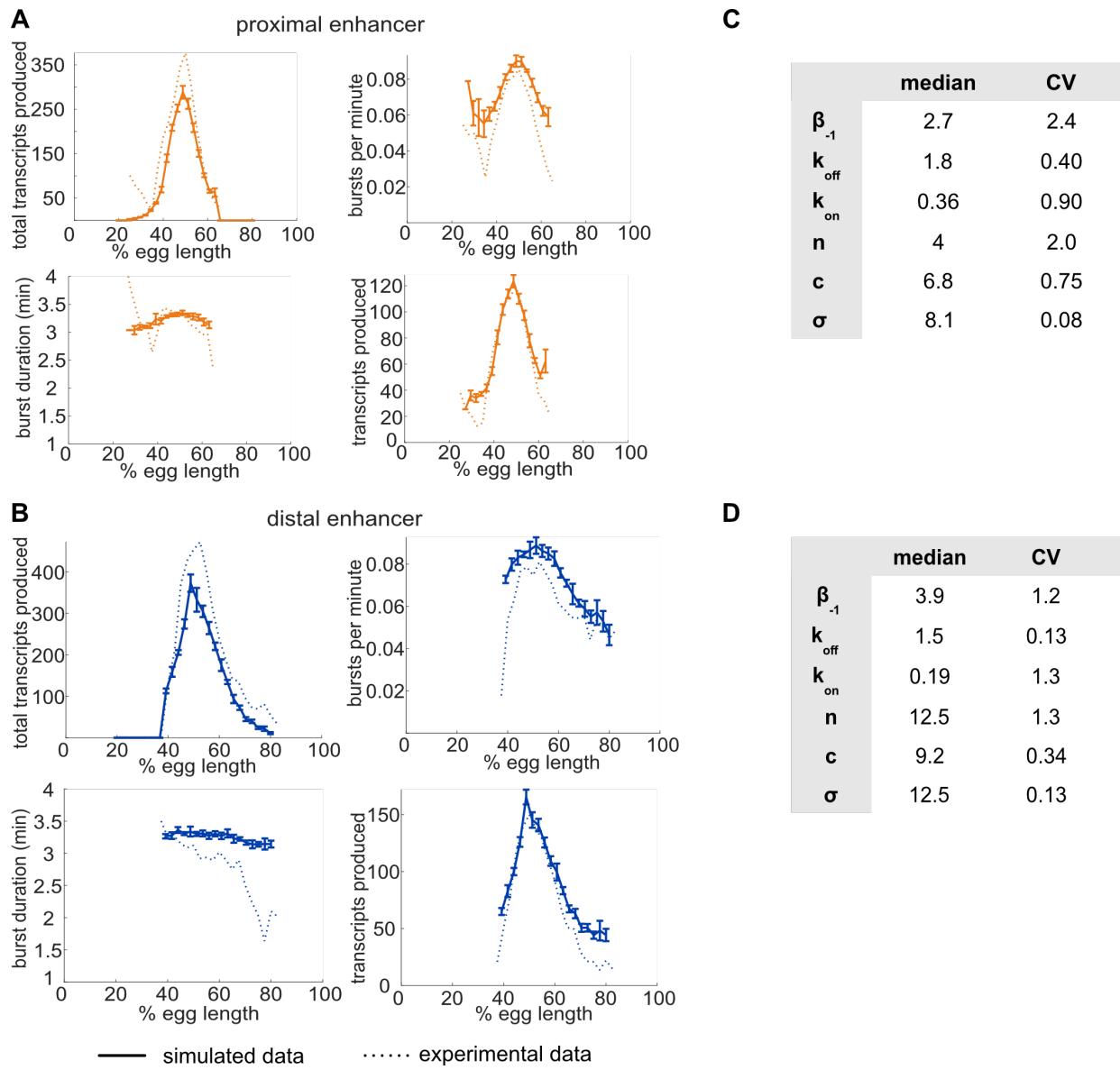
Figure 6: Shadow enhancer pair maintains lower total noise across temperature perturbations. To test the ability of each enhancer construct to buffer temperature perturbations, we measured the total expression noise associated with each for embryos imaged at 17°C or 32°C. **A.** The shadow enhancer pair displays significantly lower total noise than the single or duplicated proximal enhancer and the single distal enhancer at 17°C. Circles are total noise values for individual nuclei in AP bin of peak expression for the given enhancer construct and horizontal bars represent medians. The y-axis is limited to 75th percentile of construct with highest total noise at 17°C (single proximal). **B.** The shadow enhancer pair has significantly lower total noise than all other constructs at 32°C. The y-axis is limited to 75th percentile of the enhancer construct with highest total noise at 32°C (duplicated proximal). **C.** Temperature changes have different effects on the total noise associated with the different enhancers. The median total noise value at the AP bin of peak expression at the three measured temperatures is shown for each enhancer construct. Within each enhancer, the median total noise values are shown left to right for 17°C, 26.5°C, and 32°C. **D.** *p*-value table of Kruskal-Wallis pairwise comparison of the total noise values of each enhancer construct at 17°C. *p*-value gradient legend applies to D and E. **E.** *p*-value table of Kruskal-Wallis pairwise comparison of the total noise values of each enhancer construct at 32°C.

1058

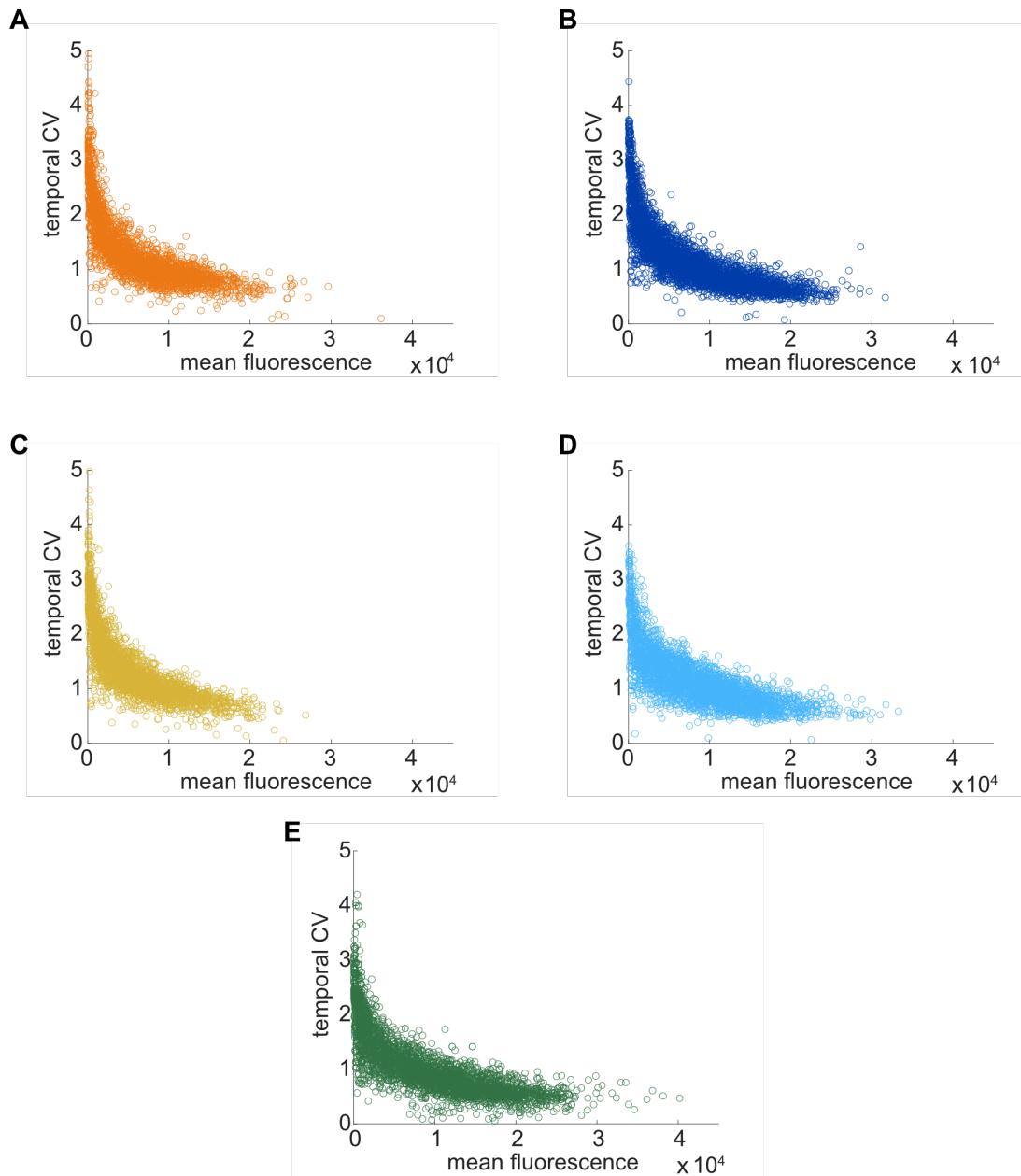
1059

1060 **Supplemental Figures:**



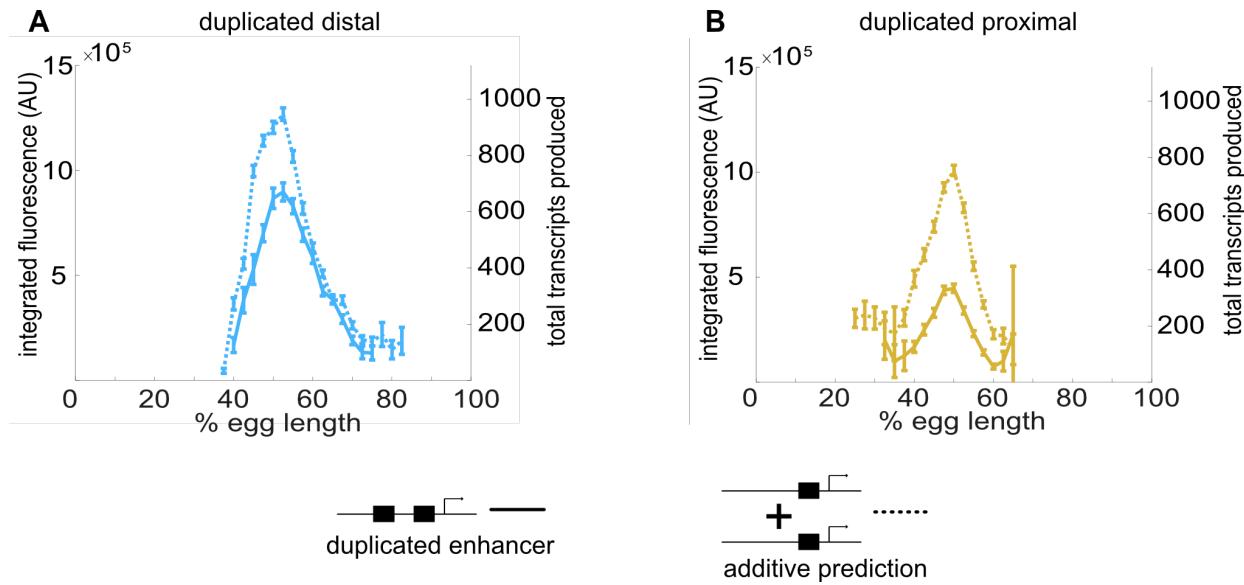


1075 **Supplemental Figure 2: Single enhancer models recreate observed transcriptional bursting**
1076 **properties.** To investigate whether our model is accurately simulating our experimental system,
1077 we compared the transcriptional burst properties produced by model simulations of transcription
1078 to those observed experimentally (see Supplementary Figure 7 for description of burst
1079 properties). **A.** Graphs of average values of transcriptional burst properties, total mRNA
1080 produced during nc14, burst frequency, burst duration, and burst size associated with the
1081 proximal enhancer as a function of egg length. In A and B, simulated data are represented with
1082 solid lines and experimental data are shown with dotted lines. **B.** Graphs of average values of
1083 transcriptional burst properties as in A, associated with the distal enhancer. For both the proximal
1084 and distal enhancers, our model is largely able to recapitulate the experimentally observed
1085 transcriptional burst properties associated with each enhancer. **C.** The median and CV values of
1086 the model parameters for the proximal enhancer in the top 10 performing parameter sets. **D.** The
1087 median and CV values of the model parameters for the distal enhancer in the top 10 performing
1088 parameter sets. Explanations of model parameters are given in the Methods.



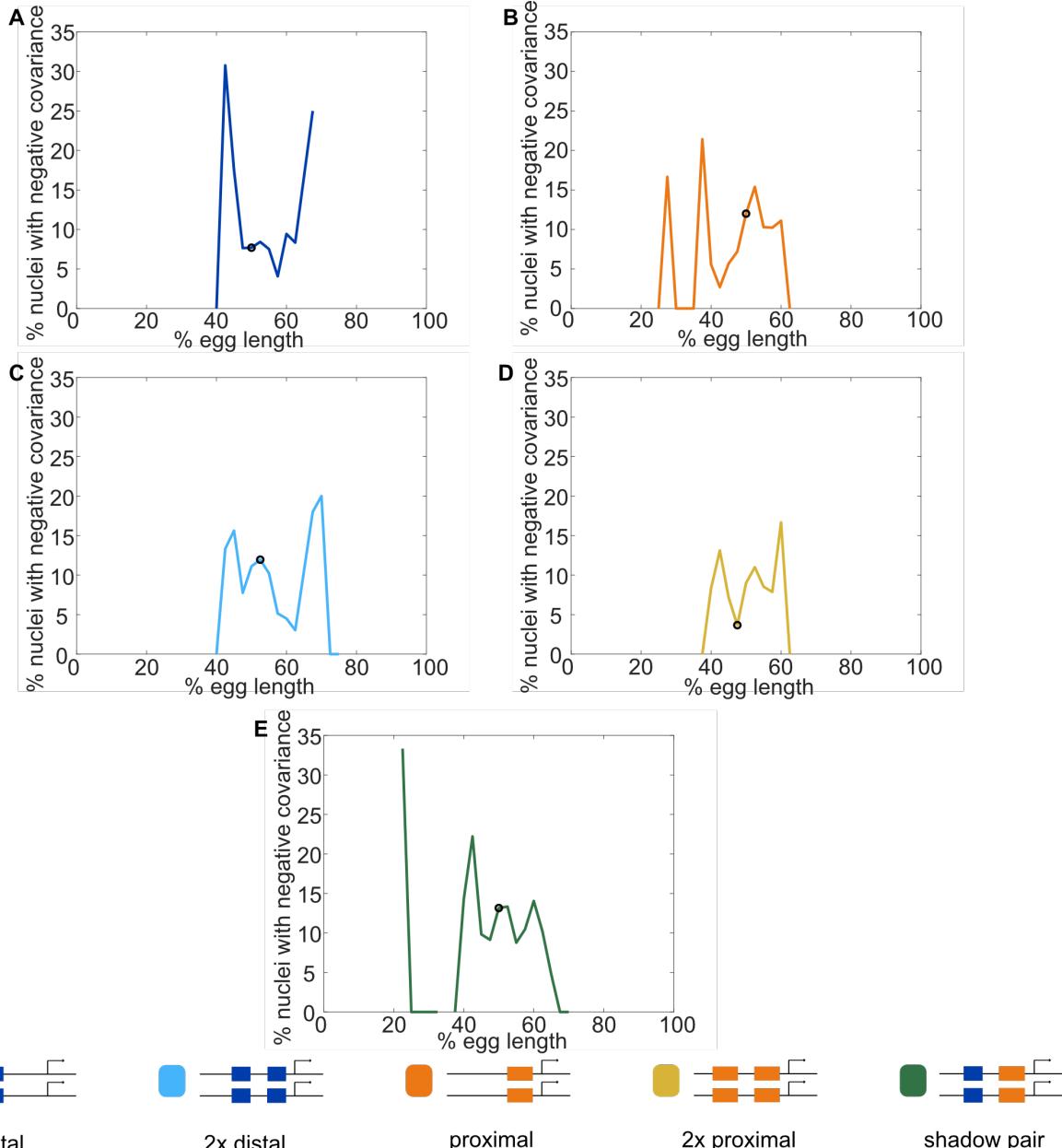
1089
1090
1091
1092
1093
1094
1095

Supplemental Figure 3: Temporal CV as a function of mean fluorescence. To investigate the relationship between our noise measurement of temporal CV and the mean activity of each construct, we plotted the temporal CV of each transcription spot as a function of its mean fluorescence. **A.** Distal; **B.** Proximal; **C.** 2x Proximal; **D.** 2x Distal; **E.** Shadow pair. With all constructs, we find the general trend that CV decreases with increasing average expression, flattening out at a baseline noise level specific to each enhancer construct.



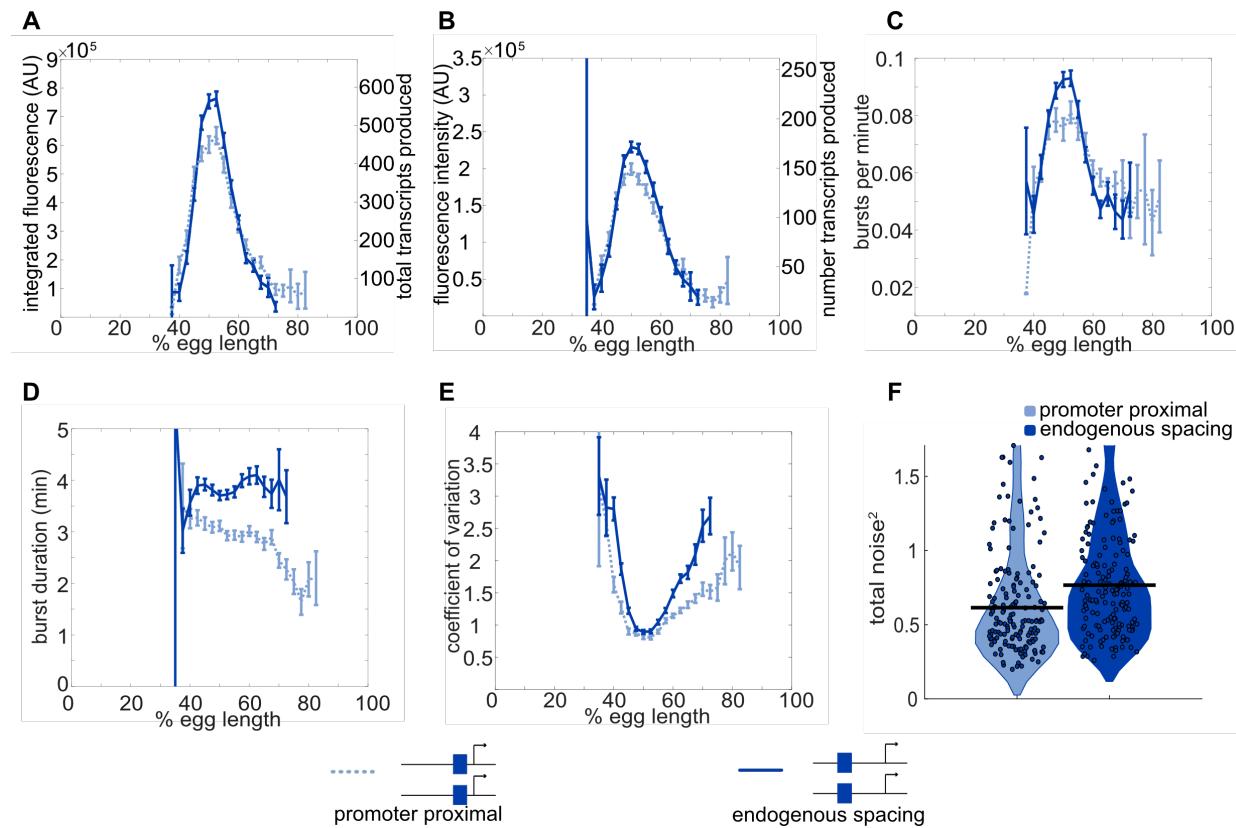
1096

1097 **Supplemental Figure 4: Individual *Kr* enhancers display sub-additive behavior.** To assess
1098 the way input from two enhancers is integrated at the *Kr* promoter, we compared the
1099 experimentally observed mRNA production of duplicated enhancers to that predicted from
1100 additive behavior of the single enhancers. **A.** The duplicated distal enhancer displays sub-
1101 additive behavior. The solid line is the experimentally observed total mRNA produced by the
1102 duplicated distal enhancer during nc14 as a function of egg length and the dotted line is that
1103 expected by doubling the total mRNA produced by the single distal enhancer. **B.** The duplicated
1104 proximal enhancer also acts sub-additively. The solid line is the experimentally observed total
1105 mRNA produced by the proximal enhancer during nc14 as a function of egg length and the
1106 dotted line is that expected by doubling the total mRNA produced by the single proximal
1107 enhancer. These results, along with the observation that k_{off} values increased and k_{on} values
1108 decreased in our model with the addition of a second enhancer, suggests that the *Kr* enhancers
1109 compete with each other for interactions with the promoter.



1122 rates of negative covariance are seen at the edges of the *Kr* expression pattern, suggesting a
1123 spatially patterned factor, such as a TF, may be what is limiting.

1124

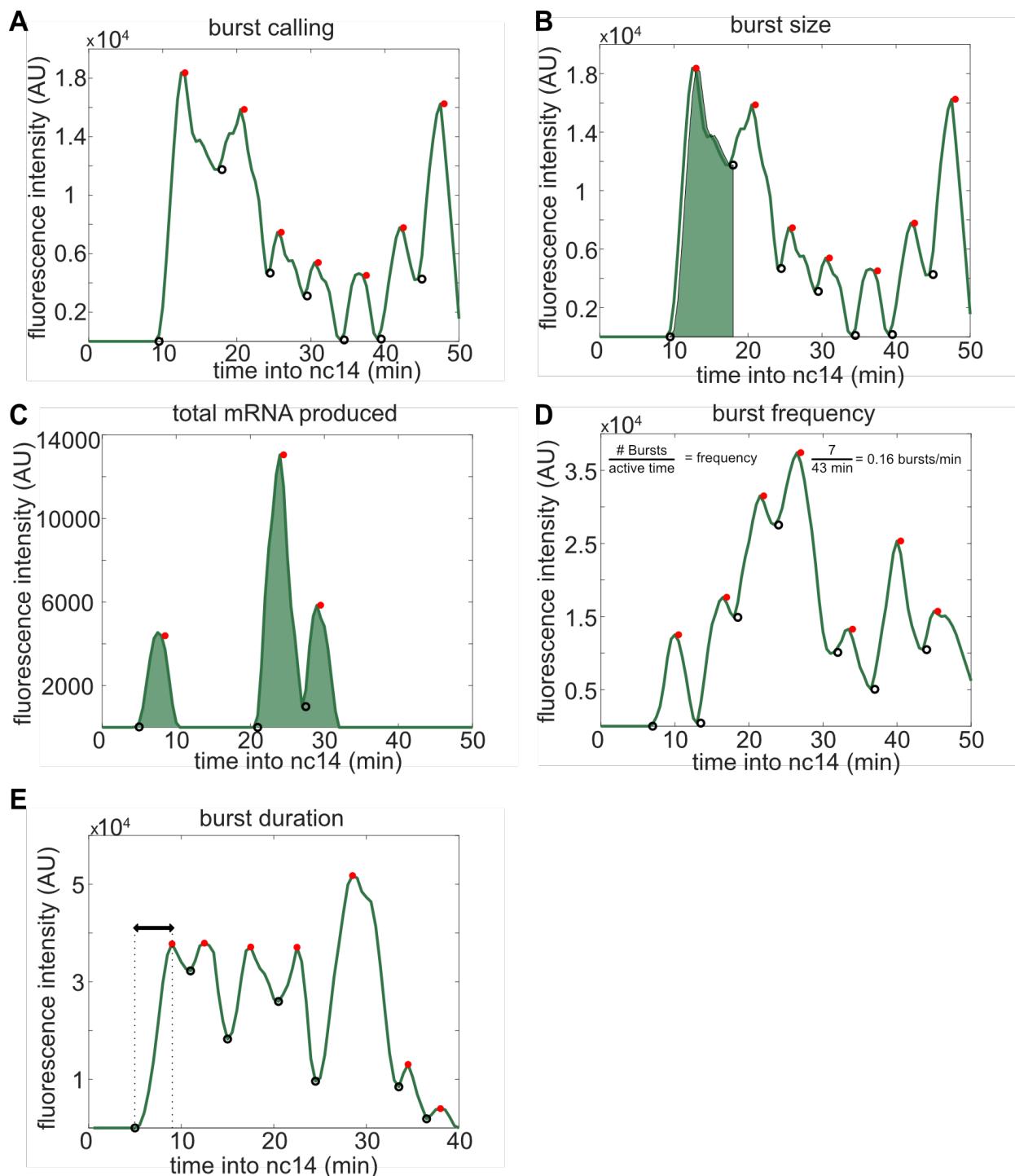


1125

1126 **Supplemental Figure 6: Position-dependent effects on distal enhancer.** To best mimic the
 1127 endogenous system, we looked at expression driven by the distal enhancer at its endogenous
 1128 spacing from the promoter for our noise calculations. In this construct we replaced the sequence
 1129 of the proximal enhancer with sequence of the same length from the lambda phage genome
 1130 predicted to have low number of *Drosophila* TF binding sites. This increased distance from the
 1131 promoter had observable effects on the transcriptional dynamics and noise associated with the
 1132 distal enhancer. **A.** Comparison of total transcriptional expression mediated by the distal
 1133 enhancer at its endogenous spacing or proximal to the promoter. The distal enhancer at its
 1134 endogenous spacing, shown as the solid line, produces significantly more total mRNA in the
 1135 center region of expression than the distal enhancer proximal to the promoter, shown as the
 1136 dotted line. **B.** Comparison of the average number of transcripts produced per transcriptional
 1137 burst by each distal enhancer configuration as a function of egg length. **C.** Average burst
 1138 frequency associated with either distal enhancer configuration as a function of egg length. **D.**
 1139 Average burst duration associated with either distal enhancer configuration as a function of egg
 1140 length. **E.** Coefficient of variation of transcriptional activity across nc14 for each distal enhancer
 1141 configuration as a function of egg length. **F.** Total expression noise associated with either distal
 1142 enhancer configuration at the AP bin of that construct's peak expression. The total noise
 1143 distribution for the distal enhancer proximal to the promoter is on the left and that for the distal
 1144 enhancer at its endogenous spacing from the promoter is on the right. The distal enhancer at its
 1145 endogenous spacing displays significantly higher total noise ($p = 0.018$) than the distal enhancer
 1146 proximal to the promoter. Each circle represents the total noise of an individual nucleus and the

1147 horizontal bar marks the median total noise value. Y-axis limited to the 75th percentile of the
1148 construct with the highest total noise values (distal promoter at endogenous spacing).

1149



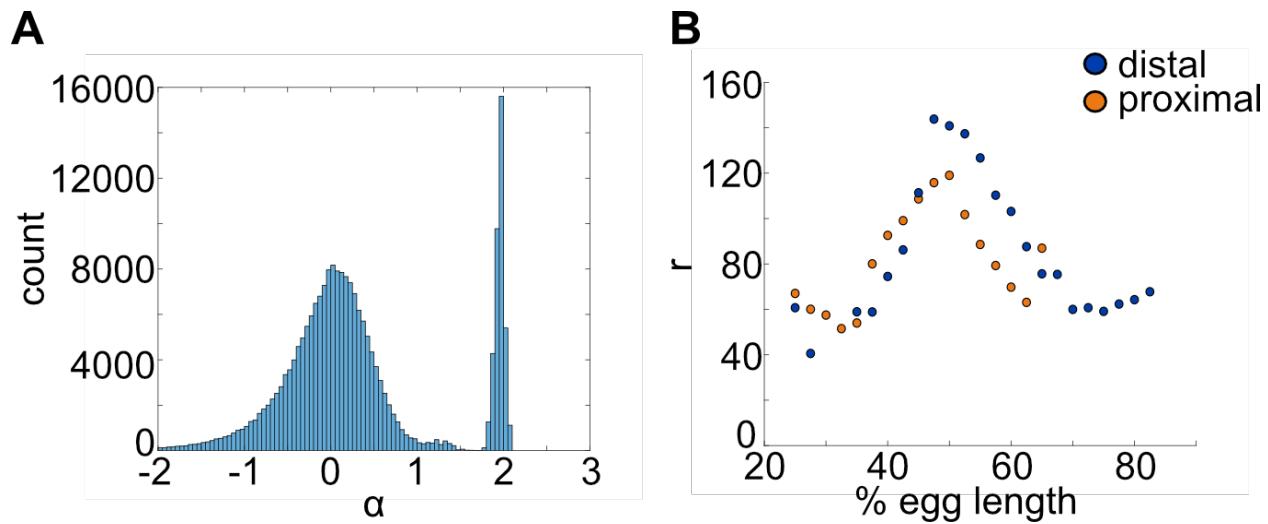
1150

1151 **Supplemental Figure 7: Visual inspection of burst calling algorithm**

1152 To extract the bursting parameters examined (burst size, frequency, and duration), individual
1153 fluorescence traces were first smoothed using the LOWESS method with a span of 0.1. Our burst
1154 calling algorithm then determined the periods of promoter activity or inactivity based on the
1155 slope of the fluorescence trace. **A.** Representative fluorescence trace of a single spot across the

1156 time of nc14. Black open circles indicate time points where the promoter is called “on”, red filled
1157 circles indicate time points where the promoter is called “off”. **B.** Same trace as in A with
1158 shading representing the area under the curve used to calculate the size of the first burst. This
1159 area is calculated using the trapz function in MATLAB and is done for each burst, from the time
1160 point the promoter is called “on” until the next time it is called “on”. C-E show additional
1161 representative fluorescence traces of single transcriptional spots across the time of nc14. **C.** A
1162 trace with shading representing the area under the entire curve during nc14 used to calculate the
1163 total amount of mRNA produced. This area is calculated using the trapz function in MATLAB
1164 and is done from the time the promoter is first called active until 50 minutes into nc14 or the
1165 movie ends, whichever comes first. **D.** Burst frequency is calculated by dividing the number of
1166 bursts that occur from the time the promoter is first called active until 50 minutes into nc14 or
1167 the movie ends, whichever comes first. **E.** Burst duration is defined as the amount of time
1168 between when the promoter is called active and it is next called inactive.

1169



1170

1171 **Supplemental Figure 8: mRNA production and decay rates can be directly estimated from**
1172 **experimental data.** The mRNA degradation parameter α and production parameter r were
1173 measured directly from fluorescence data without any input from the model. **A.** To estimate α ,
1174 we used adjacent measurements of fluorescence intensity to approximate the slope at each point
1175 in the fluorescence traces. These values are compared with an exponential rate of mRNA decay
1176 (see Methods) and the resulting predicted values are shown in the histogram. Periods of mRNA
1177 production have negative α values and periods of decay have positive values. The histogram
1178 shows a distinct peak for $\alpha > 0$, which provided us with an estimate of $\alpha \approx 1.95$. **B.** A similar
1179 computational approach was used to calculate values of r from fluorescence data (see Methods).
1180 We calculated different values of r for each bin to account for differences in transcriptional
1181 efficiency across the length of the embryo due to factors that are not explicitly included in the
1182 model. For example, different combinations of TF bound to the enhancer may give rise to
1183 different mRNA production rates. Different values of r were found for the proximal and distal
1184 enhancers. Notice that distal r values shown correspond to the distal enhancer at the proximal
1185 location.

1186 **Additional Supplementary Materials**

1187 **Supplementary Note:** A note describing the theoretical estimates of inter-allele noise in single
1188 and two enhancer constructs.

1189

1190 **Supplementary Table 1: Number of total single alleles tracked for each construct.**

1191 Each row corresponds to a construct, named in column 42, and columns 1-41 correspond to that
1192 AP bin of the embryo. The value in each cell in columns 1-41 is the number of single
1193 transcriptional spots used in calculations of burst size, frequency, and duration and CV in that
1194 AP bin for the given construct. The value in column 43 is the total number of independently
1195 imaged embryos for that construct.

1196

1197 **Supplementary Table 2: Number of nuclei tracked for each construct.**

1198 Each row corresponds to a construct, named in column 42, and columns 1-41 correspond to that
1199 AP bin of the embryo. The value in each cell in columns 1-41 is the number of nuclei used for
1200 correlation and total noise/covariance/inter-allele noise calculations in that AP bin for the given
1201 construct. The value in column 43 is the total number of independently imaged embryos for that
1202 construct.

1203

1204 **Supplementary File 1:** The sequences of all the enhancer constructs generated in this paper.

Supplementary Note

To make a prediction about the expected change in inter-allele noise between single and two enhancer reporter constructs, we used the theory put forth in (Sánchez and Kondev, 2008; Sanchez et al., 2011). This formalism can be used to calculate the expected mean and variance of the transcriptional output of a promoter, given the possible states of the promoter, transition rates between states, and the rate of transcription resulting from each state. In these papers, the authors apply their formalism to different promoter architectures. Here, we generate a simpler model, in which we abstract away the individual transcription factor (TF) binding configurations, which would be numerous and poorly parametrized, and simply define states by whether an enhancer is looped to the promoter and activating transcription. Since these models do not account for fluctuations that would contribute to extrinsic noise, e.g. fluctuations in TF or RNA polymerase levels, they can predict the dependence of intrinsic noise on enhancer arrangement.

To apply this model to our system, we use these parameters:

γ	degradation rate of mRNA
p	production rate of mRNA
k	on rate for enhancer-promoter looping
l	off rate for enhancer-promoter looping

Below, we describe several models that represent different configurations of either one or two enhancers controlling a single promoter and provide the variables, as defined in (Sanchez et al., 2011), needed to calculate the coefficient of *intrinsic* variation (CV) associated with each model. Briefly, \mathbf{R} and \mathbf{r} describe the production rates of mRNA in the different promoter-enhancer states, and \mathbf{K} contains the transition rates in and out of states. Key assumptions are that the parameters describing this system are independent of both the position of the enhancer relative to the promoter and the presence of a second enhancer controlling the same promoter. We chose to make these simplifying assumptions to give the reader a general sense of the expected behavior of noise when adding an additional enhancer, since the possible behaviors are nearly infinite with the removal of these simplifying assumptions.

Model 1: Single enhancer

In this model, there is a single enhancer controlling one promoter.

States	Rate of mRNA production
Enhancer-promoter unlooped	0
Enhancer-promoter looped	p

$$\mathbf{K} = [-k \ l; k \ -l]$$

$$\mathbf{R} = [0 \ 0; 0 \ p]$$

$$\mathbf{r} = [0 \ p]$$

Model 2: OR model

In this model, there are two enhancers controlling one promoter, transcription is activated if either enhancer is looped, and both enhancers can't be bound at the same time.

<u>States</u>	<u>Rate of mRNA production</u>
Enhancers-promoter unlooped	0
Enhancer 1-promoter looped	p
Enhancer 2-promoter looped	p

$$\mathbf{K} = [-2k \ l \ l; k \ -l \ 0; k \ 0 \ -l]$$

$$\mathbf{R} = [0 \ 0 \ 0; 0 \ p \ 0; 0 \ 0 \ p]$$

$$\mathbf{r} = [0 \ p \ p]$$

Model 3: Additive model

In this model, there are two enhancers controlling one promoter, transcription is activated if either enhancer is looped, and, if both enhancers are bound, transcription occurs at twice the rate of single enhancer looping states.

<u>States</u>	<u>Rate of mRNA production</u>
Enhancers-promoter unlooped	0
Enhancer 1-promoter looped	p
Enhancer 2-promoter looped	p
Both enhancers looped	$2p$

$$\mathbf{K} = [-2k \ l \ l \ 0; k \ -k-l \ 0 \ l; k \ 0 \ -k-l \ l; 0 \ k \ k \ -2l]$$

$$\mathbf{R} = [0 \ 0 \ 0 \ 0; 0 \ p \ 0 \ 0; 0 \ 0 \ p \ 0; 0 \ 0 \ 0 \ 2p]$$

$$\mathbf{r} = [0 \ p \ p \ 2p]$$

Model 4: Synergistic model

In this model, there are two enhancers controlling one promoter, transcription is activated if either enhancer is looped, and, if both enhancers are bound, transcription occurs at three times the rate of single enhancer looping states.

<u>States</u>	<u>Rate of mRNA production</u>
Enhancers-promoter unlooped	0
Enhancer 1-promoter looped	p
Enhancer 2-promoter looped	p
Both enhancers looped	$3p$

$$\mathbf{K} = [-2k \ l \ l \ 0; k \ -k-l \ 0 \ l; k \ 0 \ -k-l \ l; 0 \ k \ k \ -2l]$$

$$\mathbf{R} = [0 \ 0 \ 0 \ 0; 0 \ p \ 0 \ 0; 0 \ 0 \ p \ 0; 0 \ 0 \ 0 \ 3p]$$

$$\mathbf{r} = [0 \ p \ p \ 3p]$$

Model 5: XOR model

In this model, there are two enhancers controlling one promoter, transcription is activated if either enhancer is looped, and, if both enhancers are bound, no transcription occurs.

States	Rate of mRNA production
Enhancers-promoter unlooped	0
Enhancer 1-promoter looped	p
Enhancer 2-promoter looped	p
Both enhancers looped	0

$$K = [-2k \ l \ l \ 0; k \ -k-l \ 0 \ l; k \ 0 \ -k-l \ l; 0 \ k \ k \ -2l]$$

$$R = [0 \ 0 \ 0 \ 0; 0 \ p \ 0 \ 0; 0 \ 0 \ p \ 0; 0 \ 0 \ 0 \ 0]$$

$$r = [0 \ p \ 0]$$

To explore the behavior of CV in these different models, we use several approaches.

Figure 1: CV decreases upon the addition of a second enhancer.

Here we plot the mean expression level versus CV for the five models above and one set of parameters, $k = l = 1$, $p = 1$, $\gamma = 0.1$. The single enhancer model (dark purple) drives the highest CV, indicating that, under the assumptions of our models, adding an additional enhancer generally lowers intrinsic noise. Except for XOR model (yellow), all other models produce more mRNA than the single enhancer model. The other colors are: blue, OR model; green, additive model; brown, synergistic model.

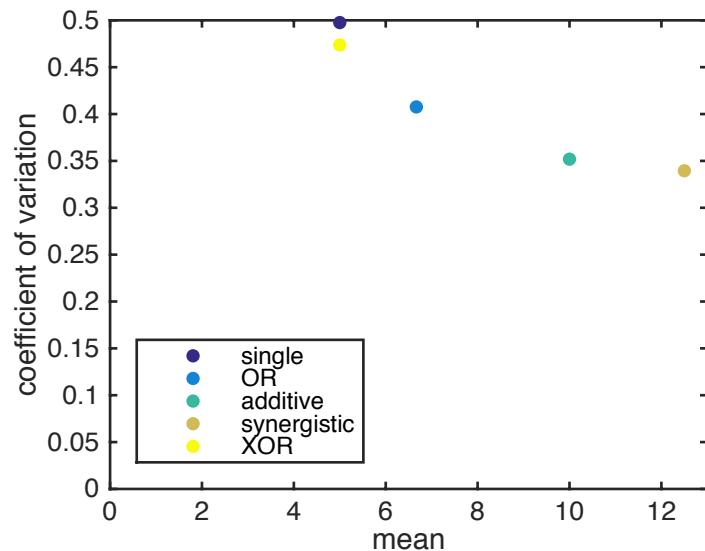
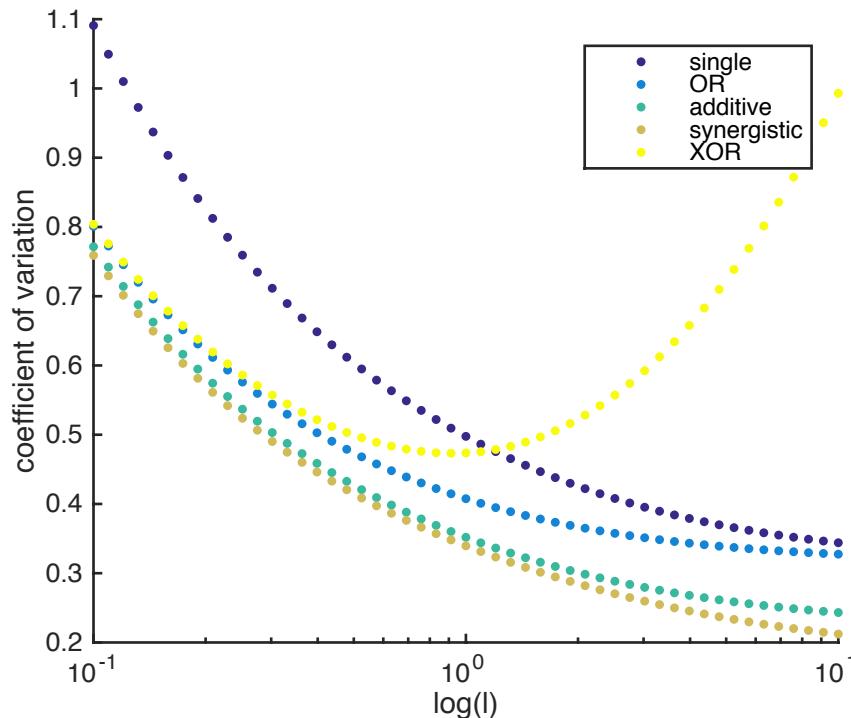


Figure 2: In most cases, two enhancer models drive lower noise than the single enhancer model.

Here we plot the CV as a function of l , the rate of promoter-enhancer dissociation, for the five models above and vary l from 0.1 to 10 on a logarithmic scale with $k = 1$, $p = 1$, $\gamma = 0.1$. With the exception of the XOR model with low l , the single enhancer model drives a higher CV than the models with two enhancers for the same value of l .



The results above show that, under the simplifying assumptions that the production rates and on-off rates of enhancers are independent of the position and number of enhancers, the addition of a second enhancer generally lowers the predicted intrinsic noise. In our experimental data (Figure 5), we only observe a significant decrease in interallele noise for the shadow enhancer pair compared to the single distal or single proximal enhancer. Duplications of either the proximal or distal enhancer do not have significantly lower noise than their respective single enhancer constructs. Therefore, we expect that the simple addition of an identical enhancer likely does not fulfill the simplifying parameter assumptions used here and suggests that further investigation is needed to understand the complexity of the relationship between interallele noise and the numbers of enhancers controlling a promoter.

References

Sanchez A, Garcia HG, Jones D, Phillips R, Kondev J. 2011. Effect of promoter architecture on the cell-to-cell variability in gene expression. *PLoS Comput Biol* 7: e1001100. 10.1371/journal.pcbi.1001100.

Sánchez A, Kondev J. 2008. Transcriptional control of noise in gene expression. *Proc Natl Acad Sci U S A* 105: 5081-5086. 10.1073/pnas.0707904105.

