

1 FeGenie: a comprehensive tool for the identification of iron genes and
2 iron gene neighborhoods in genomes and metagenome assemblies
3

4 Arkadiy I. Garber^{a,b, #,*}, Kenneth H. Nealson^a, Akihiro Okamoto^c, Sean M. McAllister^d, Clara S.
5 Chan^{b, d}, Roman A. Barco^a, and Nancy Merino^{a,e,f*}

6
7 ^aDepartment of Earth Sciences, University of Southern California, Los Angeles, USA

8 ^bDepartment of Earth Sciences, University of Delaware, Newark, Delaware, USA

9 ^cInternational Center for Materials Nanoarchitectonics, National Institute for Material Science,
10 Tsukuba, Japan

11 ^dSchool of Marine Science and Policy, University of Delaware, Newark, Delaware, USA

12 ^eEarth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan

13 ^fBiosciences and Biotechnology Division, Lawrence Livermore National Lab, Livermore, USA

14
15 **Running Title:** FeGenie: rapid Fe gene identification

16
17 ***Correspondence:**

18 Arkadiy Garber

19 arkadiyg@usc.edu

20
21 Nancy Merino

22 nmerino@elsi.jp

23
24 **#Current address:**

25 Division of Biological Sciences, University of Montana, Missoula, USA

26
27 Number of Words: 6608 (Abstract: 272 words)

28 Number of Figures: 6

29 Number of Tables: 2

31 **Abstract.**

32 Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and
33 electron acceptor by iron-oxidizing and iron-reducing microorganisms, and is used in a variety of
34 biological processes, including photosynthesis and respiration. While it is the fourth most abundant
35 metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is
36 readily oxidized and precipitated. Much of our understanding of how microorganisms compete for
37 and utilize iron is based on laboratory experiments. However, the advent of next-generation
38 sequencing and the associated surge in publicly-available sequence data has now made it possible
39 to probe the structure and function of microbial communities in the environment. To bridge the
40 gap between our understanding of iron acquisition and utilization in model microorganisms and
41 the plethora of sequence data available from environmental studies, we have created a
42 comprehensive database of hidden Markov models (HMMs) that is based on genes related to iron
43 acquisition, storage, and reduction/oxidation. Along with this database, we present FeGenie, a
44 bioinformatics tool that accepts genome and metagenome assemblies as input and uses our
45 comprehensive HMM database to annotate the provided datasets with respect to iron-related genes
46 and gene clusters. An important contribution of this tool is the efficient identification of genes
47 involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked
48 by standard annotation pipelines. While this tool will not replace the reliability of culture-
49 dependent analyses of microbial physiology, it provides reliable predictions derived from the most
50 up-to-date genetic markers. FeGenie's database will be maintained and continually-updated as new
51 genetic markers are discovered. FeGenie is freely available: <https://github.com/Arkadiy-Garber/FeGenie>.

52

53

54

55

56 **Keywords:** Hidden Markov Model (HMM) database, Iron Transport, Iron Storage, Iron
57 Oxidation, Iron Reduction, Iron Gene Regulation, Magnetosome, Siderophore

58 **Introduction**

59 Iron is the fourth most abundant element in the Earth's crust (Morgan and Anders, 1980),
60 where it occurs primarily as ferrous [Fe(II)] or ferric [Fe(III)] iron. Under circumneutral pH and
61 aerobic conditions, ferrous iron spontaneously oxidizes to its ferric form, which precipitates and
62 settles out of solution becoming highly-limiting to microbial life (Emerson, 2016). Nonetheless,
63 microorganisms have evolved mechanisms to deal with this limitation, as evidenced by the variety
64 of known enzymes responsible for iron scavenging (Barry and Challis, 2009), transport (Wyckoff
65 *et al.*, 2006; Toulza *et al.*, 2012; Fillat, 2014; Lau *et al.*, 2016), and storage (Smith, 2004; Rivera,
66 2017). While iron is limiting in many natural ecosystems, environments exist where iron
67 concentrations are high enough to support communities of microorganisms capable of deriving
68 energy from iron oxidation (Emerson and Moyer, 2002; Jewell *et al.*, 2016). These environments
69 can also be inhabited by microorganisms capable of using ferric iron, usually in the form of a
70 mineral, as a terminal electron acceptor in electron transport chains (Gao *et al.*, 2006; Emerson,
71 2009; Elliott *et al.*, 2014; Quaiser *et al.*, 2014). While various marker genes, based on the study of
72 a few model organisms, have been inferred, relatively little is known about the genetics behind
73 iron oxidation and reduction (He *et al.*, 2017).

74

75 Microbial iron metabolisms (**Figure 1**) and acquisition/transport pathways (**Figure 2**) play
76 significant roles across a wide range of environments. Indeed, the prevalence of iron as a necessary
77 cofactor (Ayala-Castro *et al.*, 2008) and the dependence of life on iron, with the exception of a
78 group of homolactic bacteria (Pandey *et al.*, 1994), suggests that life evolved in an iron-rich world.
79 Moreover, the variety of microorganisms in Archaeal and Bacterial domains that are capable of
80 using iron as an electron donor or acceptor (Nealson and Saffarini, 1994; Weiss *et al.*, 2007;
81 Hedrich *et al.*, 2011; Ilbert and Bonnefoy, 2013; Fullerton *et al.*, 2017) suggests that these
82 metabolisms were either adopted very early in the history of life or benefitted from horizontal gene
83 acquisition. Over the past few decades, almost three hundred genes involved in iron transport,
84 metabolism, and transformation of iron and iron-containing minerals (e.g. magnetite, hematite,
85 ferrihydrite, olivine, etc.) have been identified. Only a small proportion of these genes are thought
86 to be involved in dissimilatory iron reduction the energy-deriving process of iron oxidation. These
87 are generally not annotated as such by established gene annotation pipelines, such as RAST
88 (Overbeek *et al.*, 2014), GhostKOALA (Kanehisa *et al.*, 2016), MAPLE (Arai *et al.*, 2018), and
89 InterProScan (Quevillon *et al.*, 2005). There are also no publicly-available hidden Markov models
90 (HMMs) for genes involved in iron oxidation and reduction, with the exception of *mtrB*
91 (TIGR03509) and *mtrC* (TIGR03507), which have HMMs available within the TIGRFAMS HMM
92 database. Moreover, many iron-related gene operons contain genes that are not exclusive to iron
93 metabolism, but, nonetheless, within that operon, play an important role in acquiring or
94 transporting iron. (e.g., *asbC* in the siderophore synthesis gene operon *asbABCDEF* is annotated
95 as an AMP-binding enzyme by the Pfam database). Herein, we make a publicly-available set of
96 HMMs based on current knowledge of iron acquisition, storage and respiratory

97 oxidation/reduction mechanisms, and integrate that with HMMs based on all available genetic
98 markers for microbial iron acquisition, utilization, and redox cycling.

99
100 We present FeGenie, a new bioinformatics tool that comes with a curated and publicly-
101 available database of profile HMMs for enzymes involved in iron acquisition and utilization.
102 FeGenie is available as a command-line tool, installed manually or *via* Conda configuration
103 [<https://conda.io/projects/conda/en/latest/>]). Users can submit genomes and metagenomes (contigs
104 or amino acid gene sequences) for identification of known iron-related pathways. FeGenie consists
105 of 208 protein families representing 12 iron-related functional categories (summarized in **Table 1**
106 and **Supplemental Table S1**). These functions are distributed across five overarching categories:
107 iron acquisition/transport, iron storage, iron gene regulation, iron redox reactions, and
108 magnetosome formation. HMMs were either manually constructed or taken from
109 Pfam/TIGRFAMS. The advantage of using HMMs, as compared to local sequence alignments, is
110 the rapid and sensitive identification of distantly-related homologs to genes of interest (Eddy,
111 2004). This is particularly important in the analysis of large environmental samples with
112 uncultivated and/or novel microorganisms.

113
114 To validate FeGenie, we tested the program against 26 microbial genomes (**Supplemental**
115 **Table S2**) with established pathways for iron acquisition, iron oxidation, and iron reduction. These
116 genomes are comprised of model organisms, including siderophore-producers, magnetotactic
117 bacteria, iron-reducers, as well as known and suspected iron-oxidizers. We demonstrate that this
118 tool efficiently identifies iron-related genes and potential operons present within selected
119 representative genomes, accurately identifying iron oxidation and reduction genes in known and
120 potential iron-oxidizers and iron-reducers, respectively. FeGenie was also used to analyze
121 members of the recently discovered Candidate Phyla Radiation (CPR) (Brown *et al.*, 2015), as
122 well as 27 publicly-available metagenomes, representative of a range of habitats that include iron-
123 rich and iron-poor marine and terrestrial systems (**Table 2**). We present the results of these
124 analyses and establish FeGenie as a straightforward and simple tool for the identification of iron-
125 related pathways in genomes and metagenomes.

126
127 **Materials and Methods**

128 *Algorithm overview*

129 FeGenie is implemented in Python 3, with three required dependencies: *HMMER* v. 3.2.1
130 (Johnson *et al.*, 2010), *BLASTp* v. 2.7.1 (Madden, 2013), and *Prodigal* v. 2.6.3 (Hyatt *et al.*, 2010).
131 External installation of these dependencies is not required if FeGenie is configured using Conda
132 (<https://conda.io/projects/conda/en/latest/>). There are two optional dependencies, which must be
133 installed externally: *R* (RCoreTeam, 2013) and *Rscript* (RCoreTeam, 2013). R packages used in
134 FeGenie include *argparse* (Davis, 2018), *ggplot2* (Wickham, 2009), *ggdendro* (de Vries and
135 Ripley, 2016), *reshape* (Wickham, 2007), *reshape2* (Wickham, 2007), *grid* (RCoreTeam, 2013),
136 *ggpubr* (Kassambara, 2017), and *tidyverse* (Wickham, 2017); users need to install these packages
137 independently using Rscript (detailed instructions on this are available within the FeGenie Wiki:

138 <https://github.com/Arkadiy-Garber/FeGenie/wiki/Installation>). The overall workflow of FeGenie
139 is outlined in **Figure 3**. User-provided input to this program includes a folder of genomes or
140 metagenomes, which must all be in FASTA format, comprised of contigs or scaffolds. First,
141 *Prodigal* (Hyatt *et al.*, 2010) is used to predict open-reading frames (ORFs). A custom library of
142 profile HMMs (library described in “*HMM development and calibration*” section) is then queried
143 against these ORFs using *hmmsearch* (Johnson *et al.*, 2010), with custom bitscore cutoffs for each
144 HMM. Additionally, genes shown to be involved in dissimilatory iron reduction but lacking
145 sufficient homologs in public repositories (precluding us from building reliable HMMs) are
146 queried against the user-provided dataset using *BLASTp* (Madden, 2013) with a default e-value
147 cutoff of 1E-10. These genes include the S-layer proteins implicated in iron reduction in
148 *Thermincola potens* JR (Carlson *et al.*, 2012), as well as porin-cytochrome-encoding operons
149 implicated in iron reduction in *Geobacter* spp. (Shi *et al.*, 2014). The results of *hmmsearch*
150 (Johnson *et al.*, 2010) and *BLAST* (Madden, 2013) are then analyzed and candidate gene
151 neighborhoods identified. Potential for dissimilatory iron oxidation and reduction is determined
152 based on a set of rules that are summarized in **Supplemental Table S3**. Even though the sensitivity
153 of each HMM has been calibrated against NCBI’s nr database (see “*HMM development and*
154 *calibration*” for details on the calibration process), we recommend that users take advantage of an
155 optional cross-validation feature of the program that allows users to search each FeGenie-
156 identified putative iron gene against a user-chosen database of reference proteins (e.g. NCBI’s nr,
157 RefSeq). Based on these analyses, FeGenie outputs the following files:

- 159 • CSV file summarizing all identified putative iron-related genes, their functional category,
160 bit-scores (shown in the context of the calibrated bit-score cutoff of the matching HMM),
161 number of canonical heme-binding motifs, amino acid sequence, and closest homolog to a
162 user-provided database (optional; e.g., NCBI nr database).
- 163 • Heatmap summary comparing the number of genes identified from each iron-related
164 category across the analyzed genomes/metagenomes.
- 165 • Three plots created with Rscript (optional): 1) Dendrogram showing the dissimilarity
166 (based on iron-gene distributions) between provided genomes or assemblies, 2) scaled
167 heatmap based on the relative distribution of iron-related genes across
168 genomes/metagenomes, and 3) dot plot showing the relative abundance of iron genes
169 across genomes. The dendrogram is produced using a Euclidian distance metric to
170 hierarchically cluster the scaled data.

172 *HMM development: Building and calibrating HMMs*

173 Collection of iron-related protein sequences occurred between May 2018–August 2019.
174 Sequences corresponding to proteins whose functions have been characterized in the literature
175 were downloaded from reviewed sequences on UniProtKB (TheUniProtConsortium, 2017) or
176 NCBI, excluding proteins that were already represented by Pfam families (Finn *et al.*, 2016)
177 (**Supplemental Table S1**). To expand the diversity of each of the collected proteins, those

178 sequences were then used as queries in a *BLASTp* v.2.6.0 (Madden, 2013) search against NCBI's
179 RefSeq (Release 89) database (Pruitt *et al.*, 2007), with a minimum amino acid identity cutoff of
180 35% (Rost, 1999) over at least 70% of the query length. These search results were then de-
181 replicated so that each seed sequence is represented by a unique set of non-overlapping BLAST
182 hits. Using *MMseqs2* (Steinegger and Söding, 2017), each seed sequence and its set of BLAST
183 hits were then collapsed with a 70% amino acid identity cutoff to remove overrepresented protein
184 sequences, which would otherwise create biases in resulting HMMs. Each collapsed set of
185 sequences was then aligned using *Muscle* v.3.8.31 (Edgar, 2004) and each alignment was manually
186 inspected and curated. These curated alignments were then used as seeds for the generation of
187 HMMs using the *hmmbuild* command from *HMMER* (Johnson *et al.*, 2010). To calibrate
188 appropriate bit score cutoffs for each HMM in the HMM library, each HMM was queried against
189 NCBI's nr database (Pruitt *et al.*, 2007) using *hmmsearch*. By manually inspecting each
190 *hmmsearch* result, we identified bit score cutoffs that optimally delineated between true and false
191 positives among hits from nr. Thus, each HMM in the FeGenie library received its own custom bit
192 score cutoff. This library represents the most comprehensive set of proteins associated with iron
193 metabolisms and pathways available at the time of collection. This database will be updated as
194 new genes relevant to iron are discovered.

195

196 *HMM development: Iron oxidation/reduction*

197 For determination of iron oxidation potential, we included the candidate iron oxidase from
198 acidophilic and neutrophilic iron-oxidizing bacteria, Cyc2 (Barco *et al.*, 2015). As shown by
199 McAllister and colleagues, Cyc2 is represented by three phylogenetically-distinct clusters
200 (McAllister *et al.*, 2019); thus, we constructed three different HMMs, specific to each cluster.
201 Cluster 1 includes sequences from most known, well-established neutrophilic iron-oxidizers but is
202 yet to be genetically or biochemically verified as an iron oxidase. Clusters 2 and 3 include
203 sequences from acidophilic iron-oxidizing bacteria, including two homologs that have been
204 biochemically verified to catalyze the oxidation of iron: Cyc2 from *Acidithiobacillus ferrooxidans*
205 (Castelle *et al.*, 2008) and Cyt572 from *Leptospirillum rubarum* (Jeans *et al.*, 2008).

206

207 FeGenie also includes MtoA as a possible, but as yet unconfirmed, indicator for iron
208 oxidation potential (Liu *et al.*, 2012a). The function of MtoA is unclear since it is homologous to
209 the iron-reducing enzyme, MtrA, of *Shewanella oneidensis* MR-1, but nonetheless it is proposed
210 to be involved in iron oxidation by Liu *et al.*, 2012a, even though there is a lack of supporting gene
211 expression data. Indeed, MtoA has been shown to rescue $\Delta mtrA$ mutants of MR-1, partially
212 recovering the ability to reduce ferric iron (Liu *et al.*, 2012a). Nonetheless, phylogenetic analysis
213 shows a separation between the *mtrA* genes utilized by known iron-reducing bacteria (particularly
214 within the *Alteromonadaceae* and *Vibrionaceae* families), and *mtoA* homologs encoded by known
215 and suspected iron-oxidizing bacteria (Garber, 2018), including members of the *Gallionellaceae*
216 (**Supplemental Figure S1**). Thus, two separate HMMs were constructed, one for MtrA homologs
217 encoded by known iron-reducers and one for MtoA homologs encoded by known and suspected

218 iron-oxidizers. The MtoA HMM includes PioA, which has been genetically-verified to be
219 necessary for iron oxidation in *Rhodopseudomonas palustris* TIE-1 (Jiao and Newman, 2007)
220 Moreover, the *mtrA*-encoding operon in iron-reducing bacteria typically encodes *mtrC*, an outer-
221 membrane cytochrome thought to participate in dissimilatory iron reduction (Lower *et al.*, 2007).
222 MtrC is not encoded by iron-oxidizing bacteria (Shi *et al.*, 2014), supporting its use as an additional
223 indicator for iron-reducing potential. In light of these ambiguities in the function MtoA,
224 identification of MtoAB by FeGenie is treated with caution as a potential iron oxidase/reductase.
225 Other HMMs used for determination of iron oxidation potential include genes from iron-oxidizing
226 Archaea: sulfocyanin (Castelle *et al.*, 2015), *foxABC* (Bathe and Norris, 2007), and *foxEYZ* (Croal
227 *et al.*, 2007).

228
229 Determination of iron reduction potential is dependent on the identification of homologs
230 to various porin-cytochrome operons, including *mtrCAB* (Pitts *et al.*, 2003), as well as two operons
231 from *Desulfovibrio ferrophilus* (Deng *et al.*, 2018), various porin-cytochrome operons identified
232 in *Geobacteraceae* (Shi *et al.*, 2014), and genes encoding S-layer-associated proteins implicated
233 in iron reduction in *Thermincola potens* JR (Carlson *et al.*, 2012). Additionally, we included the
234 flavin-dependent operon that was implicated in iron reduction in *Listeria monocytogenes* (Light *et*
235 *al.*, 2018).

236
237 Seed sequences for MtrA, MtoA, and Cyc2 were manually-curated, aligned using *Muscle*,
238 and used for the building of HMMs. Due to the highly-divergent nature of Cyc2's porin domain,
239 identification of Cyc2 is dependent upon the presence of a heme-binding motif and length of at
240 least 375 amino acids, which is considered long enough to encode an outer membrane porin (Tamm
241 *et al.*, 2004).

242
243 *HMM development: Siderophore synthesis*

244 FeGenie can also be used to identify siderophore synthesis genes and potential operons.
245 Siderophores are microbially-produced products (500–1200 Da) that have a preference for binding
246 ferric iron (up to 10^{-53} M) (Ehrlich and Newman, 2008), enabling microorganisms to obtain this
247 largely-insoluble iron form. There are over 500 identified siderophores, categorized as
248 catecholates, hydroxamates, or hydroxycarboxylic acids (Kadi and Challis, 2009).
249 Microorganisms can synthesize siderophores *via* the NRPS (nonribosomal peptide synthetase) or
250 NIS (NRPS-independent siderophore) pathways (Carroll and Moore, 2018). The NRPSs are
251 megaenzymes that consist of modular domains (adenylation, thiolation, and condensation
252 domains) to incorporate and sequentially link amino acids, keto acids, fatty acids, or hydroxy acids
253 (Gulick, 2017). The NRPSs are highly selective and predictable based on the product produced,
254 and FeGenie will identify putative siderophore synthesis genes based on the genomic proximity of
255 each identified gene (**Table 1**). In contrast, the NIS pathway consists of multiple enzymes that
256 each have a single role in the production of a siderophore, such as aerobactin, which was the first
257 siderophore discovered to be synthesized by this pathway (Kadi and Challis, 2009). The operon

258 involved in aerobactin biosynthesis is *iucABCD*, and homologs of the genes *iucA* and *iucC* (which
259 are included in FeGenie) are indicators of siderophore production *via* the NIS pathway (Carroll
260 and Moore, 2018). The HMM library that represents siderophore synthesis consists of HMMs
261 derived from the Pfam database, as well as those constructed here (**Table 1**). Because many
262 different siderophore synthesis pathways share homologous genes, we developed HMMs that were
263 sensitive to the entirety of each gene family, rather than for each individual siderophore.
264 **Supplemental File 1** summarizes the gene families from which HMMs were built and includes
265 gene families for siderophore export, iron uptake and transport, and heme degradation. Although
266 FeGenie cannot predict the exact siderophore produced, FeGenie enables users to identify putative
267 (and potentially-novel) siderophore synthesis operons, which can then be confirmed by external
268 programs, such as antiSMASH (Weber *et al.*, 2015), a bioinformatics tool to identify biosynthetic
269 gene clusters.
270

271 *HMM development: Siderophore and heme transport*

272 Similar to siderophore synthesis, transport genes for siderophores, heme/hemophores, and
273 transferrin/lactoferrin are represented by HMMs specific to gene families. This is particularly the
274 case for the Ton system (TonB-ExbB-ExbD protein complex), a commonly used transport
275 mechanism in Gram-negative bacteria located in the cytoplasmic membrane (**Figure 2**) (Krewulak
276 and Vogel, 2011; Contreras *et al.*, 2014). Although the Ton system can uptake other metabolites
277 (e.g., vitamin B12), the identification of such genes by FeGenie suggests only the potential for
278 siderophore, heme, and transferrin/lactoferrin transport, since it is the sole system known to
279 transport these iron-bearing molecules, thus far, for Gram-negative bacteria (Faraldo-Gómez and
280 Sansom, 2003; Caza and Kronstad, 2013). In Gram-positive bacteria, siderophore and
281 heme/hemophore/lactoferrin/transferrin transport pathways are different: siderophores are
282 delivered to an ATP-binding cassette (ABC) importer from a receptor protein (Brown and Holden,
283 2002) while hemes, hemophores, transferrin, and lactoferrin are delivered via a receptor protein
284 and a series of cell-wall chaperone proteins (Contreras *et al.*, 2014). HMMs used by FeGenie to
285 infer siderophore and heme transport include both custom-made and Pfam models (**Table 1 and**
286 **Supplemental Table S1**).
287

288 *HMM development: Iron uptake*

289 FeGenie also features a set of genes implicated in the transport of ferrous and ferric iron
290 ions. Some examples of these include *futA1* and *futA2* (Katoh *et al.*, 2001), which bind both ferrous
291 and ferric iron (Kranzler *et al.*, 2014), although there is preference for Fe(II) (Koropatkin *et al.*,
292 2007). Some iron transporters may also work in conjunction with heme, siderophore, or
293 transferrin/lactoferrin transport, such as the iron transport operon *EfeUOB*. Other genetic markers
294 for iron transport encompassed by FeGenie's HMM library include *feoABC* (Lau *et al.*, 2016),
295 *fbpABC* (Adhikari *et al.*, 1996), and others listed in **Table 1 and Supplemental Table S1**.
296
297

298 *HMM development: Heme utilization*

299 Heme oxygenase and transport genes define another strategy that microorganisms,
300 especially pathogens, use to obtain iron from their environment. In particular, heme oxygenases
301 enable pathogens to obtain iron from a host through oxidative cleavage of heme, thereby releasing
302 iron (Wilks and Heinzl, 2014). Heme oxygenases are categorized into two groups: 1) “canonical”
303 heme oxygenases (HmuO, PigA, and HemO), which degrade heme to biliverdin and carbon
304 monoxide, and 2) “non-canonical” heme oxygenases (IsdG, IsdI, MhuD, and Isd-LmHde), which
305 degrade heme to products like staphylobilin (IsdG and IsdI) and mycobilin (MhuD) (Wilks and
306 Heinzl, 2014). All these heme oxygenase genes are included in FeGenie’s HMM library. Similarly,
307 orthologs to known heme transport genes are also identified by FeGenie, including the five
308 bacterial heme transport systems (Contreras *et al.*, 2014): IsdX1, IsdX2, HasA, HxuA, and
309 Rv0203.

310

311 *Acquisition of representative genomes from RefSeq and Candidate Phyla Radiation*

312 Genome sequences were downloaded from the NCBI RefSeq and GenBank database
313 (Pruitt *et al.*, 2007) on November 4, 2017. Genomes from the Candidate Phyla Radiation were
314 obtained using the NCBI accession IDs found in Hug *et al.* (2016). All NCBI accessions are listed
315 in **Supplemental Table S2**, as well as **Supplemental Files 2, 3 10, and 11**.

316

317 *Acquisition and assembly of environmental metagenomes*

- 318 • *Loihi Seamount, Mid-Atlantic Ridge, and Mariana Backarc Iron microbial mats*: Eight iron
319 mat metagenomes, three from Loihi Seamount, four from the Mid-Atlantic Ridge, and one
320 from the Mariana Backarc, were sequenced and assembled (details in McAllister *et al.*,
321 2019). Syringe samples represent active samples from the edge of iron mats. Scoop and
322 slurp samples represent bulk samples, which include deeper mat material. Assembly data
323 available from JGI Sequence Project IDs Gp0295814-Gp0295821 and Gp0295823.
- 324 • *The Cedars, a terrestrial serpentinite-hosted system*: Metagenome assemblies were
325 downloaded from the NCBI GenBank database (BioProject Accession ID: PRJDB2971):
326 GCA_002581605.1 (GPS1 2012), GCA_002581705.1 (GPS1 2011), GCA_002581825.1
327 (BS5 2012), and GCA_002583255.1 (BS5 2011) (Suzuki *et al.*, 2017). GPS1 (Grotto Pool
328 Springs) is sourced by deep groundwater while BS5 (Barnes Springs 5) is sourced by ~15%
329 deep groundwater and ~85% shallow groundwater. Both environments host highly-alkaline
330 and highly-reducing waters. Two samples were collected from each spring and represent
331 temporal duplicates taken approximately one year apart. These metagenomes were
332 processed as described in Suzuki *et al.* (2017).
- 333 • *Amazon River plume estuary*: Raw metagenome reads were downloaded from NCBI’s
334 Sequence Read Archive (SRA) corresponding to BioSamples SAMN02628402 (Station 3),
335 SAMN02628424 (Station 27), and SAMN02628416 (Station 10); these correspond to
336 samples taken along a salinity gradient formed as the Amazon River flows into the Atlantic
337 Ocean (Satinsky *et al.*, 2017). Station 10 represents water samples taken nearest to the

338 source of river water, and Station 27 represents the sample taken furthest away from the
339 river. Raw reads were quality trimmed using *Trimmomatic* v.0.36 (Bolger *et al.*, 2014) with
340 a sliding window of 4 base pairs (bp) and minimum average quality threshold of 15
341 (phred33) within that window; reads shorter than 36 bp were discarded. *SPAdes* v.3.10
342 (Bankevich *et al.*, 2012) with the ‘--meta’ flag and default k-mers was used for assembly
343 of high-quality reads into contigs.

- 344 • *Jinata Hot Springs*: This metagenome assembly was provided by Dr. Lewis Ward and
345 processed as described by Ward *et al.* (2019). The assembly is located in the NCBI database
346 under accession PRJNA392119. Raw metagenome data are represented by accession
347 numbers SRX4741377-SRX4741380. This ecosystem represents a hot spring where low-
348 oxygen and iron-rich fresh groundwater mixes with oxic and iron-deplete ocean water.
- 349 • *Rifle Aquifer*: ORFs from the assembled Rifle Aquifer metagenome were downloaded from
350 the supplemental dataset published by Jewell *et al.* (2016).
- 351 • *Tara Oceans*: Assembled and published contigs corresponding to the fraction that was
352 binned into draft genomes were originally processed and analyzed by Tully *et al.* (2018)
353 and downloaded from Figshare (<http://dx.doi.org/10.6084/m9.figshare.5188273>). This
354 dataset represents a globally-distributed set of marine metagenomes collected from the
355 sunlit portion of the water column. The global distribution is defined by the Longhurst
356 geographical provinces.

357

358

359 **Results and Discussion**

360 *Validation of FeGenie Against Representative Genomes from RefSeq*

361 We validated FeGenie by showing that it accurately identifies and classifies iron-related
362 genes in representative organisms known to encode them. A total of 574 genomes were analyzed,
363 representing all genus representatives available in RefSeq (**Supplemental Files 2 and 3**). Here,
364 we present the results from a select set of 26 genomes (**Supplemental Table S2, Supplemental**
365 **Files 4 and 5**), including known iron-oxidizers (e.g., *Mariprofundus ferrooxidans* PV-1 and
366 *Rhodopseudomonas palustris* TIE-1), iron-reducers (e.g., *Shewanella oneidensis* MR-1 and
367 *Geobacter sulfurreducens* PCA), magnetotactic bacteria (*Magnetospirillum magneticum* AMB-1),
368 siderophore synthesis and uptake model microorganisms (e.g. *Bacillus anthracis* and
369 *Pseudomonas aeruginosa*), and others (as listed in **Supplemental Table S1**). These genomes were
370 chosen to showcase FeGenie’s capacity to detect key genes relevant to the microbial iron-cycle
371 (**Figure 4**).

372

373 Putative iron oxidation genes were detected in iron-oxidizing bacteria, including
374 *Sideroxydans lithotrophicus* ES-1, *Rhodobacter ferrooxidans* SW2, *Mariprofundus ferrooxydans*
375 PV-1, *Rhodopseudomonas palustris* TIE-1, *Sulfolobus metallicus*, and *Ferroplasma acidarmanus*
376 (Emerson *et al.*, 2013). *S. lithotrophicus* is a known iron-oxidizer and was found to encode *mtoAB*
377 (Liu *et al.*, 2012a) and three copies of *cyc2* within its genome (Emerson *et al.*, 2013). Since *mtoAB*

378 are homologous to genes also implicated in iron reduction (*mtrAB*), FeGenie classified these genes
379 as potentially related to iron oxidation or iron reduction (i.e. the “potential iron oxidation/potential
380 iron reduction” category).

381
382 FeGenie accurately identified iron-reduction genes and operons in known iron-reducing
383 bacteria. For example, *Shewanella oneidensis* MR-1, a model organism for iron reduction, was
384 found to encode both copies of its porin-cytochrome module: *mtrCAB* and *mtrDEF* (*mtrDEF* is
385 homologous to *mtrCAB*, and was identified as such by FeGenie). Additionally, FeGenie identified
386 two more operons that each encode only *mtrAB*, which FeGenie categorizes as “probable iron
387 reduction” due to the lack of *mtrC*. Interestingly, within the *mtrCABDEF* operon, FeGenie also
388 identified the ferrous iron transport genes *feoAB*, which could be involved in the uptake of ferrous
389 iron that is generated during iron reduction. This same operon also encodes a catalase (not included
390 in FeGenie), which is a heme-containing protein that deals with oxidative stress and may
391 potentially be expressed together with the iron-reduction genes to deal with the oxidative stress of
392 high intracellular iron concentrations (Touati, 2000) potentially resulting from dissimilatory iron
393 reduction.

394
395 Some of the identified iron-reducers, for example, *R. ferrireducens* (Finneran *et al.*, 2003),
396 *G. sulfurreducens* (Lovley and Phillips, 1988) and *G. bemandjiensis*, also encode the cluster 3 *cyc2*,
397 which FeGenie uses as a marker for iron oxidation. This gene has been confirmed as an iron-
398 oxidase in *Leptospirillum rubarum* (Castelle *et al.*, 2008; Jeans *et al.*, 2008) and is also encoded
399 by neutrophilic, obligate iron-oxidizers (Castelle *et al.*, 2008; Barco *et al.*, 2015). We note that the
400 branch lengths within cluster 3 of the *cyc2* phylogenetic tree are very long (McAllister *et al.*, 2019),
401 and biochemical and genetic characterization of all these cluster 3 *cyc2* homologs as iron oxidases
402 is a work in progress. It is also worth noting that iron-reducing bacteria may not always be tested
403 for iron oxidation ability.

404
405 *Magnetospirillum magneticum* AMB-1, a known magnetotactic bacterium (Matsunaga *et*
406 *al.*, 2005), was positive for magnetosome formation genes. *M. magneticum* AMB-1 also encodes
407 *mtrAB* which FeGenie uses as a marker for “probable iron reduction”. *M. magneticum* AMB-1
408 lacks the outer-membrane cytochrome (MtrC) that is always found within the *mtrCAB* operon of
409 iron-reducing bacteria (Richardson *et al.*, 2012; White *et al.*, 2016). However, experimental
410 evidence demonstrated that AMB-1 is an iron-reducing bacterium (Matsunaga *et al.*, 2005).
411 Without any other candidate iron reductases in AMB-1’s genome, this indicates that MtrAB may
412 be utilized in iron reduction without the outer-membrane component.

413
414 FeGenie was also used to identify iron acquisition and transport genes in model
415 microorganisms, including siderophore transport and synthesis genes, heme transport and
416 oxygenases, and Fe(II)/Fe(III) transport. It is worth noting that in these organisms not linked to
417 respiratory iron oxidation or dissimilatory iron reduction, FeGenie did not identify genes related

418 to these metabolisms. In *Escherichia coli* and *Bacillus subtilis*, FeGenie identified three genes that
419 are necessary for the uptake of iron, *efeUOB* (Cao *et al.*, 2007), in addition to other iron transport
420 genes (**Supplemental File 4**). Iron transport potential was also identified in nearly every genome
421 analyzed (including the CPR, discussed more in the section “*Case Study: Iron-related genes*
422 *encoded within the Candidate Phyla Radiation*”). This is expected, given that iron is a necessary
423 micronutrient for the vast majority of life. As an example of FeGenie’s capability to identify the
424 siderophore gene families, we will focus on siderophore synthesis by *Bacillus anthracis*. *B.*
425 *anthracis* is known to produce anthrabactin (*bacACEBF*) and petrobactin (*asbABCDEF*) (Oves-
426 Costales *et al.*, 2007). Both operons were correctly identified by FeGenie (**Supplemental File 4**).
427 Since the ORFs from each operon were annotated according to the gene family that each gene
428 belongs to (**Supplemental File 1**), users can cross-validate these genes with **Supplemental File 1**
429 and confirm their identity through external pipelines. Further confirmation of these two operons
430 by antiSMASH (Weber *et al.*, 2015) (**Supplemental Table 4**) demonstrates the utility of FeGenie
431 to identify siderophore synthesis gene operons.
432

433 Genes involved in heme transport and lysis were also identified in some of the model
434 organisms. For example, in *Pseudomonas aeruginosa* PAO1, FeGenie identified *hasA* downstream
435 to a TonB-dependent heme receptor. The rest of the *hasA* operon, however, was identified as part
436 of the siderophore transport pathway. This is because some of the genes in the heme-transport
437 operon *hasRADEF* are related to siderophore transport genes. This ambiguity in function
438 demonstrates the weakness of FeGenie (and culture-independent, database-based approaches in
439 general) and underscores the need to compare all identified putative iron-related genes against
440 NCBI’s nr or RefSeq databases to see the annotations associated with the closest homologs
441 available in public repositories. This step will add additional confidence that a gene identified as
442 iron-related is indeed so, based on its closest known relative.
443

444 FeGenie was also used to analyze the iron relevant genes encoded by five phototrophs,
445 *Chlorobium tepidum* TLS, *Synechocystis* IPPAS B-1465, *Prochlorococcus marinus*, and two
446 strains of *Acaryochloris marinus*. As expected, the five analyzed phototrophs do not show genetic
447 potential for iron oxidation or reduction. Generally, a higher number of genes related to iron and
448 siderophore transport were identified in the anaerobic green-sulfur photoautotroph *C. tepidum*
449 TLS, as compared to the freshwater and marine phototrophs, *Synechocystis* and *Prochlorococcus*,
450 respectively. This may be due to the fact that *C. tepidum* performs anoxygenic photosynthesis in
451 anaerobic, sulfide-rich niches (Eisen *et al.*, 2002), which are often devoid of soluble iron. The
452 lower iron conditions encountered by *C. tepidum* may necessitate higher genetic potential for iron
453 acquisition. Interestingly, the open-ocean cyanobacterium *P. marinus* was not found to encode any
454 genes for transport or synthesis of siderophores. Genes for heme transport or lysis were also not
455 found in this genome. Indeed, *P. marinus* is known for its ability to subsist in low iron regimes,
456 not through increasing its iron income but through lowering of its iron expenditures (Partensky *et*

457 *al.*, 1999; Rusch *et al.*, 2010). Nonetheless, *P. marinus* seems to encode genes involved in the
458 storage (ferritin) and transport (*yfeAB*) of iron, and these gene were identified by FeGenie.

459

460 FeGenie was also used to analyze the iron gene inventory of two strains of the
461 cyanobacterium *Acaryochloris marina*, MBIC11017 and CCME 5410. *Acaryochloris marina*
462 are unique in that they use chlorophyll *d* to capture far-red light during photosynthesis (Swingley
463 *et al.*, 2008), a strategy that may have offered a competitive edge over other cyanobacteria, and
464 led to genome expansion and accumulation of an unusually-large number of gene duplicates
465 (Swingley *et al.*, 2008). FeGenie results demonstrate that strain MBIC11017 encodes more genes
466 associated with iron acquisition via siderophore synthesis, iron/siderophore transport, and heme
467 lysis. This is consistent with the isolation of MBIC11017 from a habitat that is more iron-deplete
468 than the one from which CCME 5410 was isolated (Miller *et al.*, 2011). Moreover, Miller and
469 colleagues have reported a large number of gene duplicates in strain MBIC11017 that are
470 predicted to be involved in iron acquisition (Miller *et al.*, 2011). The duplication of genes
471 involved in iron acquisition may be a strategy used for adaptation to a low-iron niche via
472 increased gene dosage (Gallagher and Miller, 2018). The detection of these genomic differences
473 by FeGenie further demonstrates its utility in genomic studies.

474

475 After validating FeGenie against model microorganisms, we utilized FeGenie to examine
476 the iron-related genes and gene neighborhoods in environmental metagenomes, human oral
477 biofilm isolates, and members of the CPR.

478

479 *Case Study: Iron redox and acquisition in diverse environmental metagenomes*

480 FeGenie was used to analyze 27 metagenomic datasets, representing a broad range of
481 environments, including hydrothermal vent iron mats, a river plume, the open ocean, hot springs,
482 and a serpentinite-hosted ecosystem (see **Materials and Methods** and **Table 2** for site
483 descriptions). Generally, FeGenie's analysis indicate that there are discernable differences in iron
484 maintenance and metabolism strategies based on locale, likely due to differential iron availability
485 and general redox conditions (**Figure 5A, Supplemental Files 6 and 7**). For example, where iron
486 oxidation and reduction gene counts are high, there appears to be fewer genes for iron acquisition.
487 As expected, the genetic potential for iron acquisition and storage appears to be more important in
488 environments where microorganisms are more likely to encounter iron limitations (Crosa, 1989;
489 Andrews, 1998). This is supported by hierarchical clustering of the iron gene abundances across
490 analyzed metagenomes (**Figure 5B**), an optional step in FeGenie's pipeline. This offers support
491 for FeGenie's ability to provide meaningful insights into the iron-related genomic potential in
492 environmental metagenomic datasets.

493

494 FeGenie demonstrates the potential for iron oxidation and reduction in environments that
495 are rich in reduced iron, including the Rifle Aquifer (Jewell *et al.*, 2016), Jinata Hot Springs (Ward,
496 2017; Ward *et al.*, 2019), and at Loihi Seamount, Mid-Atlantic Ridge, and Mariana Backarc

497 hydrothermal vent iron mats (McAllister *et al.*, 2019). FeGenie also demonstrates the potential for
498 these metabolisms to occur in other environments, including the Amazon river plume (Satinsky *et*
499 *al.*, 2017) and in the open ocean (Tully *et al.*, 2018) (**Figure 5A**). While *cyc2* appears to be the
500 most widely-distributed gene that is associated with iron oxidation, other putative iron oxidases
501 are also identified (e.g. sulfocyanin, *mtoAB*, *foxE*). Iron reduction is predicted from the occurrence
502 of homologs to *mtrCAB*, as well as various porin-cytochrome operons homologous to those
503 encoded by *Geobacter* and *Desulfovibrio* species. In addition, we identified homologs to the
504 cytochrome OmcS from *Geobacter sulfurreducens*, thought to be involved in long-distance
505 extracellular electron transfer (Wang *et al.*, 2019), in Loihi iron mats and the open ocean. The
506 presence of significant iron reduction in the open ocean water column is not expected due to
507 generally low iron concentrations. However, as previously suggested by Chiu *et al.* (2017), niche-
508 specific strategies, such as association with particulate matter or flocs, may take place in the iron-
509 deplete water column and host microbially-mediated iron cycling.
510

511 While iron oxidation and reduction are predicted in a range of environmental samples
512 analyzed, the greatest number of iron redox genes are predicted in iron-rich ecosystems. Genes
513 associated with dissimilatory iron reduction often coincide with those for iron oxidation.
514 Exceptions to this include the upper centimeters (i.e. syringe samples) of iron mats from Loihi and
515 the Mariana Backarc (McAllister *et al.*, 2019); these samples encode many genes for iron
516 oxidation, but have no genes linked exclusively to iron reduction. This may indicate that 1) iron
517 reducers form a non-detectable fraction of the community in those samples, 2) that the geochemical
518 regimes present there do not favor dissimilatory iron reduction, or 3) that there are other, currently
519 unknown, mechanisms for iron reduction occurring. For example, the surficial iron mat sample
520 from the Loihi Seamount appears to have the highest amount of genes related to iron oxidation,
521 and none related to iron reduction; that also happens to be the sample dominated by the iron-
522 oxidizing Zetaproteobacteria at 96% relative abundance (McAllister *et al.*, 2019). Nonetheless, the
523 predicted occurrence of iron reduction in most (7/10) of the iron oxidizer-dominated ecosystems
524 indicates potential interdependence, or even syntrophic interactions, between iron-oxidizing and
525 iron-reducing microorganisms (Emerson, 2009).
526

527 Metagenomes from the Cedars (Suzuki *et al.*, 2017), a hyperalkaline terrestrial
528 serpentinite-hosted site, encodes a diversity of iron acquisition genes, similar to that observed in
529 the open ocean, suggesting potential iron-limiting conditions. Accordingly, we did not detect any
530 genes associated with iron reduction or oxidation. However, Gibbs energy calculations suggest
531 that iron oxidation and reduction are both feasible metabolisms in serpentinite-hosted systems
532 (Cardace *et al.*, 2015), and electrochemical enrichment of a magnetite-reducer (Rowe *et al.*, 2017)
533 indicates that dissimilatory iron reduction may be occurring within the rare biosphere, biofilms on
534 surfaces of iron-bearing minerals, or iron-containing flocs.
535

536 Genes potentially involved in magnetosome formation (*mam*) are present in only one of
537 the 27 metagenomes analyzed: Arabian Sea surface waters (Tully *et al.*, 2018). The one potential
538 magnetosome-related operon from the Arabian Sea encodes six of the ten *mam* markers used
539 (*mamMOPAQ*B). FeGenie strictly reports potential homologs to the *mam* operon genes if the
540 operon is at least 50% complete. Thus, the general lack of magnetosome formation in the other
541 metagenomes could be a result of FeGenie's strict rules. Alternatively, the microbial communities
542 represented by these metagenomes either 1) do not have magnetotactic microorganisms present at
543 a detectable level or 2) magnetotactic microorganisms present within these communities utilize an
544 unknown strategy for magnetosome formation and/or magnetotaxis.

545

546 *Case Study: Iron acquisition by bacteria living in the human oral biofilm*

547 The microbial capability to uptake iron is critical to understanding human oral infections
548 (Wang *et al.*, 2012). This is because host iron-binding proteins, such as transferrin, lactoferrin,
549 hemoglobin, and ferritin, maintain an environment of low free iron concentrations (estimated 10^{-18}
550 M free iron in living tissues (Weinberg, 1978)), inhibiting bacterial growth (Mukherjee, 1985).
551 Here, we used FeGenie to analyze four representative strains from the human oral biofilm
552 community: *Aggregatibacter actinomycetemcomitans* Y4, *Capnocytophaga ochracea* DSM 7271,
553 *Porphyromonas gingivalis* W83, and *Streptococcus mutans* UA159. Given that these four strains
554 are members of the human oral biofilm (Welch *et al.*, 2016), their iron acquisition systems may be
555 tailored towards the specific strategies needed to survive in the human oral biofilm. Three of these
556 isolates (all except *P. gingivalis*) show generally-high numbers of genes involved in iron transport
557 (**Figure 4, Supplemental Files 4 and 5**). *A. actinomycetemcomitans* and *P. gingivalis* have
558 potential genes for heme transport, in line with a previous report of *P. gingivalis* being incapable
559 of synthesizing heme, requiring exogenous iron addition for survival (Roper *et al.*, 2000). *A.*
560 *actinomycetemcomitans*, *P. gingivalis*, and *Streptococcus mutans* also show high genetic potential
561 for siderophore uptake, but no genes implicated in siderophore synthesis. This suggests that if they
562 do uptake siderophores, they may do so as "cheaters" (bacteria that uptake siderophores produced
563 by other organisms) (Hibbing *et al.*, 2010). In contrast, *C. ochracea* encodes both siderophore
564 uptake and synthesis genes. No genes associated with dissimilatory iron reduction or oxidation
565 were detected in any of the oral biofilm isolates.

566

567 *Case Study: Iron-related genes encoded within the Candidate Phyla Radiation*

568 FeGenie was used to identify the iron-related genes encoded by members of the Candidate
569 Phyla Radiation (CPR), the genomes of which have previously been reconstructed from a
570 metagenome from the Rifle aquifer (Anantharaman *et al.*, 2016). The CPR are largely unexplored
571 with respect to phenotype and role in the environment (Brown *et al.*, 2015). Nonetheless, CPR
572 members are defined by relatively small genomes and very limited metabolic capacity, suggesting
573 that symbiotic lifestyles are likely prevalent among these phyla (Danczak *et al.*, 2017). While we
574 present results for only a select set of 17 CPR genomes (**Supplemental Files 8 and 9**), all publicly-
575 available CPR strains were analyzed (**Supplemental Files 10 and 11**). The 17 selected genomes

576 were chosen to demonstrate differences within these genomes with regard to genomic potential for
577 iron acquisition and utilization. The CPR members presented here include members of the
578 candidate phyla OP9 (Caldatribacterium), as well as *Candidata* Rokubacteria, Nealsonbacteria,
579 Zixibacteria, and the novel Archaeal phylum AR4.

580
581 Genes for siderophore synthesis were detected in only one of the CPR genomes analyzed
582 (**Figure 6**), while potential for siderophore transport is found in nearly all of the genomes.
583 Candidates for heme transport genes were found in only 4 of the 17 CPR strains analyzed. Out of
584 the 17 CPR genomes analyzed, none were found to encode genes associated with iron acquisition
585 from heme or hemophores, although the heme transport gene *hmuV* was identified in *Candidatus*
586 Nitrospira defluvii and *Candidatus* Raymondbacteria. Interestingly, some CPR microbes, such as
587 *Candidatus* Nealsonbacteria, do not seem to encode any genes associated with iron maintenance
588 or metabolism, with the exception of some putative iron transporters. One possible reason for this
589 is that these microorganisms, whose genomes are considerably smaller than typical free-living
590 bacteria, are obligate symbionts (Hug *et al.*, 2016) and may be obtaining iron from their host or
591 using the host's cellular machinery for iron acquisition and utilization.

592
593 *Candidata* Lindowbacteria, Rokubacteria, Aminicenantes, Handelsmanbacteria, and
594 Nitrospira defluvii show genetic potential for iron oxidation *via* homologs to either *cyc2* or
595 sulfocyanin genes. *Candidatus* Nitrospira defluvii, a close relative of the iron-oxidizing
596 *Leptospirillum* (Lücker *et al.*, 2010) also encodes *aclAB* and, thus, may be capable of carbon
597 fixation *via* the reverse tricarboxylic acid cycle (rTCA). While this metagenome-assembled
598 genome was previously reported as a potential nitrite-oxidizer (Lücker *et al.*, 2010), here we report
599 that it could potentially contribute to primary production using energy generated from iron
600 oxidation. Within the genome of *Candidatus* Tectomicrobia, FeGenie identified homologs to
601 *mtrAB*. These iron reduction-related genes have not been previously reported in this candidate
602 phylum (Wilson *et al.*, 2014), demonstrating FeGenie's ability to help identify biological processes
603 not previously identified in other reports. *Candidata* Zixibacteria, Tectomicrobia, Dadabacteria,
604 and Handelsmanbacteria also encode genes implicated in iron reduction *via* porin-cytochrome
605 operons that share homology with those encoded by iron-reducing *Geobacter* spp.. Taken together,
606 these results suggest a potential role in iron cycling for some of the CPR members. Future culture-
607 dependent, physiological work is needed to confirm this potential.

608
609 **Conclusion**

610 Here, we describe a new HMM database of iron-related genes and a bioinformatics tool,
611 FeGenie, that utilizes this database to analyze genomes and metagenomes. We validated this tool
612 against a select set of 26 isolate genomes and demonstrate that FeGenie accurately detects genes
613 related to iron oxidation/reduction, magnetosome formation, iron regulation, iron transport,
614 siderophore synthesis, and iron storage. Analysis of 27 environmental metagenomes using
615 FeGenie further validated this tool, revealed differences in iron maintenance and potential

616 metabolic strategies across diverse ecosystems, and demonstrates that FeGenie can provide useful
617 insights into the iron gene inventories across habitats. We also used FeGenie to provide insights
618 into the iron metabolisms of 17 of the recently discovered CPR microorganisms, and revealed
619 genetic potential not identified in previous reports. FeGenie will be continuously updated with new
620 versions as new iron-related genes are discovered.

621

622 **Data Availability:**

623 <https://github.com/Arkadiy-Garber/FeGenie>

624

625 **Acknowledgments**

626 We gratefully thank the following people for their support, advice, and comments: David
627 Emerson, Benjamin Tully, Lewis Ward, Michael Lee, Bonita Lam, Elif Koeksoy, Jeffrey Kimbrel,
628 Shino Suzuki, Catherine Armbruster, Thomas Hanson, and Shawn Polson. Dave Emerson
629 provided many useful insights and guidance on development of the iron-related gene database.
630 Ben Tully provided advice and feedback related to the bioinformatics pipeline and HMM
631 development. Lewis Ward generously provided the metagenome assembly for Jinata Hot Springs.
632 Michael Lee, Bonita Lam, Jeffrey Kimbrel, and Elif Koeksoy tested FeGenie and provided
633 comments to improve FeGenie. Shino Suzuki provided comments for The Cedars metagenomes.
634 Catherine Armbruster provided advice and guidance on iron acquisition pathways and program
635 aesthetics. N.M. was supported by NASA Grant NNA13AA92A and Air Force Office of Scientific
636 Research Grant FA9550-14-1-0114. A.I.G. was supported by NSF EAR grant 1638216 to K.H.N.
637 C.S.C and S.M.M. were supported by NSF Geobiology and Low Temperature Geochemistry Grant
638 EAR-1833525, NSF Biological Oceanography grant OCE- 1155290, and ONR grant N00014-17-
639 1-2640.

640

641

642 **Author Contributions**

643 A.I.G., N.M., and C.S.C. contributed to creating the HMM database. A.I.G programmed FeGenie.
644 N.M. developed the concept. S.M.M. collected and processed metagenomic samples from the
645 Loihi Seamount, Mid-Atlantic Ridge, and Mariana Backarc. A.I.G., N.M., A.O., S.M.M, C.S.C.
646 and K.H.N. wrote the paper.

647

648 **Conflict of Interest**

649 The authors declare no competing financial interests in relation to this work.

650

References

651

652 Adhikari, P., Berish, S.A., Nowalk, A.J., Veraldi, K.L., Morse, S.A., and Mietzner, T.A. (1996).
653 The *fbpABC* locus of *Neisseria gonorrhoeae* functions in the periplasm-to-cytosol
654 transport of iron. *J Bacteriol* 178(7), 2145-2149. doi: 10.1128/jb.178.7.2145-2149.1996.

655 Andrews, S.C. (1998). Iron storage in Bacteria. *Adv Microbiol Physiol* 40, 281-351. doi:
656 10.1016/S0065-2911(08)60134-4.

657 Angerer, A., Gaisser, S., and Braun, V. (1990). Nucleotide sequences of the *sfuA*, *sfuB*, and *sfuC*
658 genes of *Serratia marcescens* suggest a periplasmic-binding-protein-dependent iron
659 transport mechanism. *J Bacteriol* 172(2), 572-578. doi: 10.1128/jb.172.2.572-578.1990.

660 Anzaldi, L.L., and Skaar, E.P. (2010). Overcoming the heme paradox: heme toxicity and
661 tolerance in bacterial pathogens. *Infect Immun* 78(12), 4977-4989. doi:
662 10.1128/IAI.00613-10.

663 Arai, W., Taniguchi, T., Goto, S., Moriya, Y., Uehara, H., Takemoto, K., et al. (2018). MAPLE
664 2.3.0: an improved system for evaluating the functionomes of genomes and
665 metagenomes. *Biosci Biotechnol Biochem* 82(9), 1515-1517. doi:
666 10.1080/09168451.2018.1476122.

667 Ayala-Castro, C., Saini, A., and Outten, F.W. (2008). Fe-S cluster assembly pathways in
668 bacteria. *Microbiol Mol Biol Rev* 72(1), 110-125. doi: 10.1128/MMBR.00034-07.

669 Balado, M., Osorio, C.R., and Lemos, M.L. (2008). Biosynthetic and regulatory elements
670 involved in the production of the siderophore vanchrombactin in *Vibrio anguillarum*.
671 *Microbiol* 154, 1400-1413. doi: 10.1099/mic.0.2008/016618-0.

672 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., et al. (2012).
673 SPAdes: A new genome assembly algorithm and its application to single-cell
674 sequencing. *J Comput Biol* 19(5), 455-477. doi: 10.1089/cmb.2012.0021.

675 Barco, R.A., Emerson, D., Sylvan, J.B., Orcutt, B.N., Jacobson Meyers, M.E., Ramírez, G.A., et
676 al. (2015). New insight into microbial iron oxidation as revealed by the proteomic profile
677 of an obligate iron-oxidizing chemolithoautotroph. *Appl Environ Microbiol* 81(17), 5927-
678 5937. doi: 10.1128/AEM.01374-15.

679 Barghouthi, S., Payne, S.M., Arceneaux, J.E., and Byers, B.R. (1991). Cloning, mutagenesis, and
680 nucleotide sequence of a siderophore biosynthetic gene (*amoA*) from *Aeromonas*
681 *hydrophila*. *J Bacteriol* 173(16), 5121-5128. doi: 10.1128/jb.173.16.5121-5128.1991.

682 Barry, S.M., and Challis, G.L. (2009). Recent advances in siderophore biosynthesis. *Curr Opin*
683 *Chem Biol* 13(2), 205-215. doi: 10.1016/j.cbpa.2009.03.008.

684 Bathe, S., and Norris, P.R. (2007). Ferrous iron- and sulfur-induced genes in *Sulfolobus*
685 *metallicus*. *Appl Environ Microbiol* 73(8), 2491-2497. doi: 10.1128/AEM.02589-06.

686 Bearden, S.W., Staggs, T.M., and Perry, R.D. (1998). An ABC transporter system of *Yersinia*
687 *pestis* allows utilization of chelated iron by *Escherichia coli* SAB11. *J Bacteriol* 180(5),
688 1135-1147.

689 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina
690 sequence data. *Bioinformatics* 30(15), 2114-2120. doi: 10.1093/bioinformatics/btu170.

691 Braun, M., Killmann, H., Maier, E., Benz, R., and Braun, V. (2002). Diffusion through channel
692 derivatives of the *Escherichia coli* FhuA transport protein. *Eur J Biochem* 269(20), 4948-
693 4959. doi: 10.1046/j.1432-1033.2002.03195.x.

694 Braun, V. (2003). Iron uptake by *Escherichia coli*. *Front Biosci* 8, s1409-1421.

695 Brillet, K., Ruffenach, F., Adams, H., Journet, L., Gasser, V., Hoegy, F., et al. (2012). An ABC
696 transporter with two periplasmic binding proteins involved in iron acquisition in
697 *Pseudomonas aeruginosa*. *ACS Chem Biol* 7(12), 2036–2045. doi: 10.1021/cb300330v.
698 Brown, C.T., Hug, L.A., Thomas, B.C., Sharon, I., Castelle, C.J., Singh, A., et al. (2015).
699 Unusual biology across a group comprising more than 15% of domain Bacteria. *Nature*
700 523(7559), 208-211. doi: 10.1038/nature14486.
701 Brown, J.S., and Holden, D.W. (2002). Iron acquisition by Gram-positive bacterial pathogens.
702 *Microbes Infect* 4(11), 1149-1156. doi: 10.1016/S1286-4579(02)01640-4.
703 Cao, J., Woodhall, M.R., Alvarez, J., Cartron, M.L., and Andrews, S.C. (2007). EfeUOB
704 (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe²⁺ transporter
705 that is cryptic in *Escherichia coli* K-12 but functional in *E. coli* O157:H7: Low pH, Fe²⁺
706 transporter in *E. coli*. *Mol Microbiol* 65(4), 857-875. doi: 10.1111/j.1365-
707 2958.2007.05802.x.
708 Cardace, D., Meyer-Dombard, D.R., Woycheese, K.M., and Arcilla, C.A. (2015). Feasible
709 metabolisms in high pH springs of the Philippines. *Front Microbiol* 6(10), 1-16. doi:
710 10.3389/fmicb.2015.00010.
711 Carlson, H.K., Lavarone, A.T., Gorur, A., Yeo, B.S., Tran, R., Melnyk, R.A., et al. (2012).
712 Surface multiheme c-type cytochromes from *Thermincola potens* and implications for
713 respiratory metal reduction by Gram-positive bacteria. *Proc Natl Acad Sci USA* 109(5),
714 1702-1707. doi: 10.1073/pnas.1112905109.
715 Carroll, C.S., and Moore, M.M. (2018). Ironing out siderophore biosynthesis: a review of non-
716 ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. *Crit Rev
717 Biochem Mol Biol*, 1-26. doi: 10.1080/10409238.2018.1476449.
718 Castelle, C., Guiral, M., Malarte, G., Ledgham, F., Leroy, G., Brugna, M., et al. (2008). A new
719 iron-oxidizing/O₂-reducing supercomplex spanning both inner and outer membranes,
720 isolated from the extreme acidophile *Acidithiobacillus ferrooxidans*. *J Biolog Chem*
721 283(38), 25803-25811. doi: 10.1074/jbc.M802496200.
722 Castelle, C.J., Roger, M., Bauzan, M., Brugna, M., Lignon, S., Nimtz, M., et al. (2015). The
723 aerobic respiratory chain of the acidophilic archaeon *Ferroplasma acidiphilum*: A
724 membrane-bound complex oxidizing ferrous iron. *Biochim Biophys Acta* 1847, 717-728.
725 doi: 10.1016/j.bbabi.2015.04.006.
726 Caza, M., and Kronstad, J.W. (2013). Shared and distinct mechanisms of iron acquisition by
727 bacterial and fungal pathogens of humans. *Front Cell Infect Microbiol* 3(80), 1-23. doi:
728 10.3389/fcimb.2013.00080.
729 Chan, C., McAllister, S.M., Garber, A.I., Hallahan, B.J., and Rozovsky, S. (2018). Fe oxidation
730 by a fused cytochrome-porin common to diverse Fe-oxidizing bacteria. *bioRxiv*. doi:
731 10.1101/228056.
732 Chiu, B.K., Kato, S., McAllister, S.M., Field, E.K., and Chan, C.S. (2017). Novel Pelagic Iron-
733 Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone.
734 *Frontiers in Microbiology* 8. doi: ARTN 1280
735 10.3389/fmicb.2017.01280.
736 Cianciotto, N.P. (2015). An update on iron acquisition by *Legionella pneumophila*: new
737 pathways for siderophore uptake and ferric iron reduction. *Future Microbiol* 10(5), 841-
738 851. doi: 10.2217/fmb.15.21.
739 Contreras, H., Chim, N., Credali, A., and Goulding, C.W. (2014). Heme uptake in bacterial
740 pathogens. *Curr Opin Chem Biol* 19, 34-41. doi: 10.1016/j.cbpa.2013.12.014.

741 Cornelis, P., and Dingemans, J. (2013). *Pseudomonas aeruginosa* adapts its iron uptake strategies
742 in function of the type of infections. *Front Cell Infect Microbiol* 3, 75. doi:
743 10.3389/fcimb.2013.00075.

744 Coulton, J.W., Mason, P., and Allatt, D.D. (1987). *fhuC* and *fhuD* genes for iron(III)-ferrichrome
745 transport into *Escherichia coli* K-12. *J Bacteriol* 169(8), 3844-3849.

746 Croal, L.R., Jiao, Y., and Newman, D.K. (2007). The *fox* Operon from *Rhodobacter* strain SW2
747 Promotes Phototrophic Fe (II) Oxidation in *Rhodobacter capsulatus* SB1003. *J Bacteriol*
748 189(5), 1774-1782. doi: 10.1128/JB.01395-06.

749 Crosa, J.H. (1989). Genetics and Molecular-Biology of Siderophore-Mediated Iron Transport in
750 Bacteria. *Microbiological Reviews* 53(4), 517-530.

751 Crosa, J.H., and Walsh, C.T. (2002). Genetics and assembly line enzymology of siderophore
752 biosynthesis in bacteria. *Microbiol Mol Biol Rev* 66(2), 223-249. doi:
753 10.1128/MMBR.66.2.223-249.2002.

754 Danczak, R.E., Johnston, M.D., Kenah, C., Slattery, M., Wrighton, K.C., and Wilkins, M.J.
755 (2017). Members of the Candidate Phyla Radiation are functionally differentiated by
756 carbon- and nitrogen-cycling capabilities. *Microbiome* 5. doi: ARTN 112
757 10.1186/s40168-017-0331-1.

758 Davis, T.L. (2018). Argparse: Command Line Optional and Positional Argument Parser. *R*
759 package version 2.0.0, <https://CRAN.R-project.org/package=argparse>.

760 de Vries, A., and Ripley, B.D. (2016). Ggdendro: Create Dendrograms and Tree Diagrams Using
761 'ggplot2'. *R package version 0.1-20*, <https://CRAN.R-project.org/package=ggdendro>.

762 Deng, X., Dohmae, N., Nealon, K.H., Hashimoto, K., and Okamoto, A. (2018). Multi-heme
763 cytochromes provide a pathway for survival in energy-limited environments. *Science*
764 *Advances* 4(2). doi: ARTN eaao5682
765 10.1126/sciadv.eaao5682.

766 Dixon, S.D., Janes, B.K., Bourgis, A., Carlson, P.E., Jr., and Hanna, P.C. (2012). Multiple ABC
767 transporters are involved in the acquisition of petrobactin in *Bacillus anthracis*. *Mol*
768 *Microbiol* 84(2), 370-382. doi: 10.1111/j.1365-2958.2012.08028.x.

769 Duong, T., Park, K., Kim, T., Kang, S.W., Hahn, M.J., Hwang, H.Y., et al. (2014). Structural and
770 functional characterization of an Isd-type haem-degradation enzyme from *Listeria*
771 *monocytogenes*. *Acta Crystallogr D Biol Crystallogr* 70(Pt 3), 615-626. doi:
772 10.1107/S1399004713030794.

773 Eddy, S.R. (2004). What is a hidden Markov model? *Nat Biotechnol* 22(10), 1315-1316.

774 Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
775 throughput. *Nucleic Acids Res* 32(5), 1792-1797. doi: 10.1093/nar/gkh340.

776 Ehrlich, H.L., and Newman, D.K. (2008). *Geomicrobiology, Fifth Edition*. United States: CRC
777 Press.

778 Elliott, A.V.C., Plach, J.M., Droppo, I.G., and Warren, L.A. (2014). Collaborative microbial Fe-
779 redox cycling by pelagic floc bacteria across wide ranging oxygenated aquatic systems.
780 *Chem Geol* 366, 90-102. doi: 10.1016/j.chemgeo.2013.11.017.

781 Emerson, D. (2009). Potential for Iron-reduction and Iron-cycling in Iron. *Geomicrobiol J* 26(8),
782 639-647. doi: 10.1080/01490450903269985.

783 Emerson, D. (2016). The irony of iron - Biogenic iron oxides as an iron source to the ocean.
784 *Front Microbiol* 6, 1-6. doi: 10.3389/fmib.2015.01502.

785 Emerson, D., Field, E. K., Chertkov, O., Davenport, K. W., Goodwin, L., Munk, C., ... Woyke,
786 T. (2013). Comparative genomics of freshwater Fe-oxidizing bacteria: Implications for

787 physiology, ecology, and systematics. *Frontiers in Microbiology*, 4, 1–17.
788 <https://doi.org/10.3389/fmicb.2013.00254>

789 Emerson, D., and Moyer, C.L. (2002). Neutrophilic Fe-oxidizing bacteria are abundant at the
790 Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. *Appl
791 Environ Microbiol* 68(6), 3085–3093. doi: 10.1128/AEM.68.6.3085-3093.2002.

792 Escolar, L., Pérez-Martín, J., and de Lorenzo, V. (1998). Binding of the fur (ferric uptake
793 regulator) repressor of *Escherichia coli* to arrays of the GATAAT sequence. *J Mol Biol*
794 283(3), 537–547. doi: 10.1006/jmbi.1998.2119.

795 Faraldo-Gómez, J.D., and Sansom, M.S.P. (2003). Acquisition of siderophores in Gram-negative
796 bacteria. *Nat Rev Mol Cell Biol* 4(2), 105–116. doi: 10.1038/nrm1015.

797 Fillat, M.F. (2014). The fur (ferric uptake regulator) superfamily: Diversity and versatility of key
798 transcriptional regulators. *Arch Biochem Biophys* 546, 41–52. doi:
799 10.1016/j.abb.2014.01.029.

800 Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., et al. (2016). The
801 Pfam protein families database: towards a more sustainable future. *Nucleic Acids Res*
802 44(D1), D279–285. doi: 10.1093/nar/gkv1344.

803 Finneran, K.T., Johnsen, C.V., and Lovley, D.R. (2003). *Rhodoferax ferrireducens* sp. nov., a
804 psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction
805 of Fe (II). *Int J Syst Evol Microbiol* 53(Pt 3), 669–673. doi: 10.1099/ijss.0.02298-0.

806 Friedman, J., Lad, L., Deshmukh, R., Li, H., Wilks, A., and Poulos, T.L. (2003). Crystal
807 structures of the NO- and CO-bound heme oxygenase from *Neisseriae meningitidis*.
808 Implications for O₂ activation. *J Biol Chem* 278(36), 34654–34659. doi:
809 10.1074/jbc.M302985200.

810 Friedman, J., Lad, L., Li, H., Wilks, A., and Poulos, T.L. (2004). Structural basis for novel delta-
811 regioselective heme oxygenation in the opportunistic pathogen *Pseudomonas aeruginosa*.
812 *Biochem* 43(18), 5239–5245. doi: 10.1021/bi049687g.

813 Fullerton, H., Hager, K.W., McAllister, S.M., and Moyer, C.L. (2017). Hidden diversity revealed
814 by genome-resolved metagenomics of iron-oxidizing microbial mats from Lo'ihi
815 Seamount, Hawai'i. *ISME J* 11(8), 1900–1914. doi: 10.1038/ismej.2017.40.

816 Gallagher, A. L., & Miller, S. R. (2018). GBE Expression of Novel Gene Content Drives
817 Adaptation to Low Iron in the Cyanobacterium *Acaryochloris*, 10(6), 1484–1492.
818 <https://doi.org/10.1093/gbe/evy099>

819 Gao, H., Obraztsova, A., Stewart, N., Popa, R., Fredrickson, J.K., Tiedje, J.M., et al. (2006).
820 *Shewanella loihica* sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean.
821 *Int J Syst Evol Microbiol* 56(8), 1911–1916. doi: 10.1099/ijss.0.64354-0.

822 Garber, A.I. (2018). *The Role of a Porin-Cytochrome Fusion in Neutrophilic Fe Oxidation:
823 Insights from Functional Characterization and Metatranscriptomics*. M.Sc., University
824 of Delaware.

825 Garcia-Herrero, A., Peacock, R.S., Howard, S.P., and Vogel, H.J. (2007). The solution structure
826 of the periplasmic domain of the TonB system ExbD protein reveals an unexpected
827 structural homology with siderophore-binding proteins. *Mol Microbiol* 66(4), 872–889.
828 doi: 10.1111/j.1365-2958.2007.05957.x.

829 Gong, S., Bearden, S.W., Geoffroy, V.A., Fetherston, J.D., and Perry, R.D. (2001).
830 Characterization of the *Yersinia pestis* Yfu ABC inorganic iron transport system. *Infect
831 Immun* 69(5), 2829–2837. doi: 10.1128/IAI.67.5.2829-2837.2001.

832 Grant, R.A., Filman, D.J., Finkel, S.E., Kolter, R., and Hogle, J.M. (1998). The crystal structure
833 of Dps, a ferritin homolog that binds and protects DNA. *Nat Struct Biol* 5(4), 294-303.

834 Graves, A.B., Morse, R.P., Chao, A., Iniguez, A., Goulding, C.W., and Liptak, M.D. (2014).
835 Crystallographic and spectroscopic insights into heme degradation by *Mycobacterium*
836 *tuberculosis* MhuD. *Inorg Chem* 53(12), 5931–5940. doi: 10.1021/ic500033b.

837 Gray-Owen, S.D., Loosmore, S., and Schryvers, A.B. (1995). Identification and characterization
838 of genes encoding the human transferrin-binding proteins from *Haemophilus influenzae*.
839 *Infect Immun* 63(4), 1201-1210.

840 Grossman, M.J., Hinton, S.M., Minak-Bernero, V., Slaughter, C., and Stiefel, E.I. (1992).
841 Unification of the ferritin family of proteins. *Proc Natl Acad Sci USA* 89(6), 2419-2423.
842 doi: 10.1073/pnas.89.6.2419.

843 Guedon, E., and Helmann, J.D. (2003). Origins of metal ion selectivity in the DtxR/MntR family
844 of metalloregulators. *Mol Microbiol* 48(2), 495-506.

845 Gulick, A.M. (2017). Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE
846 pathogens. *Nat Prod Rep* 34(8), 981-1009. doi: 10.1039/C7NP00029D.

847 Hantke, K., Nicholson, G., Rabsch, W., and Winkelmann, G. (2003). Salmochelins, siderophores
848 of *Salmonella enterica* and uropathogenic *Escherichia coli* strains, are recognized by the
849 outer membrane receptor IroN. *Proc Natl Acad Sci USA* 100(7), 3677-3682. doi:
850 10.1073/pnas.0303020100.

851 He, S., Barco, R. A., Emerson, D., & Roden, E. E. (2017). Comparative Genomic Analysis of
852 Neutrophilic Iron (II) Oxidizer Genomes for Candidate Genes in Extracellular Electron
853 Transfer, 8(August), 1–17. <https://doi.org/10.3389/fmicb.2017.01584>

854 Hedrich, S., Schlömann, M., & Barrie Johnson, D. (2011). The iron-oxidizing proteobacteria.
855 *Microbiology*, 157(6), 1551–1564. <https://doi.org/10.1099/mic.0.045344-0>

856 Honsa, E.S., Maresco, A.W., and Highlander, S.K. (2014). Molecular and evolutionary analysis
857 of NEAr-iron Transporter (NEAT) domains. *PLoS One* 9(8), e104794. doi:
858 10.1371/journal.pone.0104794.

859 Hu, Y., Jiang, F., Guo, Y., Shen, X., Zhang, Y., Zhang, R., et al. (2011). Crystal structure of
860 HugZ, a novel heme oxygenase from *Helicobacter pylori*. *J Biol Chem* 286(2), 1537-
861 1544. doi: 10.1074/jbc.M110.172007.

862 Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J., Castelle, C.J., et al. (2016).
863 A new view of the tree of life. *Nat Microbiol* 1(5), 1-6. doi: 10.1038/nmicrobiol.2016.48.

864 Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010).
865 Prodigal: Prokaryotic gene recognition and translation initiation site identification. *BMC
866 Bioinformatics* 11, 119. doi: 10.1186/1471-2105-11-119.

867 Ilbert, M., and Bonnefoy, V. (2013). Insight into the evolution of the iron oxidation pathways.
868 *Biochim Biophys Acta* 1827(2), 161-175. doi: 10.1016/j.bbabi.2012.10.001.

869 Jeans, C., Singer, S.W., Chan, C.S., VerBerkmoes, N.C., Shah, M., Hettich, R.L., et al. (2008).
870 Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified
871 directly from a natural acidophilic microbial community. *ISME J* 2(5), 542-550. doi:
872 10.1038/ismej.2008.17.

873 Jewell, T.N.M., Karaoz, U., Brodie, E.L., Williams, K.H., and Beller, H.R. (2016).
874 Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to
875 C, S, N and Fe cycling in a shallow alluvial aquifer. *ISME J* 10(9), 2106-2117. doi:
876 10.1038/ismej.2016.25.

877 Jiao, Y., and Newman, D.K. (2007). The *pio* operon is essential for phototrophic Fe(II) oxidation
878 in *Rhodopseudomonas palustris* TIE-1. *J Bacteriol* 189(5), 1765-1773. doi:
879 10.1128/JB.00776-06.

880 Johnson, L.S., Eddy, S.R., and Portugaly, E. (2010). Hidden Markov model speed heuristic and
881 iterative HMM search procedure. *BMC Bioinformatics* 11, 431. doi: 10.1186/1471-2105-
882 11-431.

883 Kadi, N., and Challis, G.L. (2009). "Chapter 17 Siderophore Biosynthesis," in *Methods in*
884 *Enzymology*. Elsevier), 431-457.

885 Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG
886 Tools for Functional Characterization of Genome and Metagenome Sequences. *J Mol*
887 *Biol* 428(4), 726-731. doi: 10.1016/j.jmb.2015.11.006.

888 Kassambara, A. (2017). Ggpibr: 'ggplot2' Based Publication Ready Plots. *R package version*
889 *0.1.6*, <https://CRAN.R-project.org/package=ggpibr>.

890 Katoh, H., Hagino, N., Grossman, A.R., and Ogawa, T. (2001). Genes essential to iron transport
891 in the Cyanobacterium *Synechocystis* sp. strain PCC 6803. *J Bacteriol* 183(9), 2779-
892 2784. doi: 10.1128/JB.183.9.2779-2784.2001.

893 Keating, T.A., Marshall, C.G., and Walsh, C.T. (2000). Reconstitution and characterization of
894 the *Vibrio cholerae* vibriobactin synthetase from VibB, VibE, VibF, and VibH.
895 *Biochemistry* 39(50), 15522-15530. doi: 10.1021/bi0016523.

896 Kolinko, S., Richter, M., Glockner, F.O., Brachmann, A., and Schuler, D. (2016). Single-cell
897 genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set
898 of magnetosome genes. *Environ Microbiol* 18(1), 21-37. doi: 10.1111/1462-2920.12907.

899 Koropatkin, N., Randich, A.M., Bhattacharyya-Pakrasi, M., Pakrasi, H.B., and Smith, T.J.
900 (2007). The Structure of the iron-binding protein, FutA1, from *Synechocystis* 6803. *J Biol*
901 *Chem* 282(37), 27468-27477. doi: 10.1074/jbc.M704136200.

902 Köster, W., and Braun, V. (1989). Iron-hydroxamate transport into *Escherichia coli* K12:
903 localization of FhuD in the periplasm and of FhuB in the cytoplasmic membrane. *Mol*
904 *Gen Genet* 217, 233-239.

905 Kranzler, C., Lis, H., Finkel, O.M., Schmetterer, G., Shaked, Y., and Keren, N. (2014).
906 Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria.
907 *ISME J* 8(2), 409-417. doi: 10.1038/ismej.2013.161.

908 Krewulak, K.D., and Vogel, H.J. (2011). TonB or not TonB: is that the question? *Biochem Cell*
909 *Biol* 89(2), 87-97. doi: 10.1139/O10-141.

910 Lamont, I.L., and Martin, L.W. (2003). Identification and characterization of novel pyoverdine
911 synthesis genes in *Pseudomonas aeruginosa*. *Microbiology* 149(Pt 4), 833-842. doi:
912 10.1099/mic.0.26085-0.

913 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature*
914 *Methods*, 9(4), 357-359. <https://doi.org/10.1038/nmeth.1923>

915 Lau, C.K., Krewulak, K.D., and Vogel, H.J. (2016). Bacterial ferrous iron transport: the Feo
916 system. *FEMS Microbiol Rev* 40(2), 273-298. doi: 10.1093/femsre/fuv049.

917 Lemos, M.L., Balado, M., and Osorio, C.R. (2010). Anguibactin- versus vanchrobactin-mediated
918 iron uptake in *Vibrio anguillarum*: evolution and ecology of a fish pathogen. *Environ*
919 *Microbiol Rep* 2(1), 19-26. doi: 10.1111/j.1758-2229.2009.00103.x.

920 Light, S.H., Su, L., Rivera-Lugo, R., Cornejo, J.A., Louie, A., Iavarone, A.T., et al. (2018). A
921 flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria.
922 *Nature* 562(7725), 140-144. doi: 10.1038/s41586-018-0498-z.

923 Liu, J., Wang, Z., Belchik, S.M., Edwards, M.J., Liu, C., Kennedy, D.W., et al. (2012a).
924 Identification and characterization of MtoA: A decaheme c-type cytochrome of the
925 neutrophilic Fe(II)-oxidizing bacterium *Sideroxydans lithotrophicus* ES-1. *Front*
926 *Microbiol* 3, 1-11. doi: 10.3389/fmicb.2012.00037.

927 Liu, X., Gong, J., Wei, T., Wang, Z., Du, Q., Zhu, D., et al. (2012b). Crystal structure of HutZ, a
928 heme storage protein from *Vibrio cholerae*: A structural mismatch observed in the region
929 of high sequence conservation. *BMC Struc Biol* 12, 23. doi: 10.1186/1472-6807-12-23.

930 Lovley, D.R., and Phillips, E.J. (1988). Novel mode of microbial energy metabolism: organic
931 carbon oxidation coupled to dissimilatory reduction of iron or manganese. *Appl Environ*
932 *Microbiol* 54(6), 1472-1480.

933 Lower, B.H., Shi, L., Yongsunthon, R., Droubay, T.C., McCready, D.E., and Lower, S.K.
934 (2007). Specific bonds between an iron oxide surface and outer membrane cytochromes
935 MtrC and OmcA from *Shewanella oneidensis* MR-1. *Journal of Bacteriology* 189(13),
936 4944-4952. doi: 10.1128/JB.01518-06.

937 Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., & Vacherie, B. (2010). A Nitrospira
938 metagenome illuminates the physiology and evolution of globally important nitrite-
939 oxidizing bacteria, 107(30), 13479–13484. <https://doi.org/10.1073/pnas.1003860107>

940 Lynch, D., O'Brien, J., Welch, T., Clarke, P., Cuiv, P.O., Crosa, J.H., et al. (2001). Genetic
941 organization of the region encoding regulation, biosynthesis, and transport of rhizobactin
942 1021, a siderophore produced by *Sinorhizobium meliloti*. *J Bacteriol* 183(8), 2576-2585.
943 doi: 10.1128/JB.183.8.2576-2585.2001.

944 Madden, T. (2013). "The BLAST Sequence Analysis Tool", in: *The NCBI Handbook [Internet]*.
945 2nd edition ed. (Bethesda, MD: National Center for Biotechnology Information).

946 Magoc, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve
947 genome assemblies, 27(21), 2957–2963. <https://doi.org/10.1093/bioinformatics/btr507>

948 Mahé, B., Masclaux, C., Rauscher, L., Enard, C., and Expert, D. (1995). Differential expression
949 of two siderophore-dependent iron-acquisition pathways in *Erwinia chrysanthemi* 3937:
950 Characterization of a novel ferrisiderophore permease of the ABC transporter family. *Mol*
951 *Microbiol* 18(1), 33-43. doi: 10.1111/j.1365-2958.1995.mmi_18010033.x.

952 Martínez, J.L., Herrero, M., and de Lorenzo, V. (1994). The organization of intercistronic
953 regions of the aerobactin operon of pColV-K30 may account for the differential
954 expression of the iucABCD iutA genes. *J Mol Biol* 238(2), 288-293.

955 Matsui, T., Furukawa, M., Unno, M., Tomita, T., and Ikeda-Saito, M. (2005). Roles of distal Asp
956 in heme oxygenase from *Corynebacterium diphtheriae*, HmuO: A water-driven oxygen
957 activation mechanism. *J Biol Chem* 280, 2981-2989. doi: 10.1074/jbc.M410263200.

958 Matsunaga, T., Okamura, Y., Fukuda, Y., and Wahyudi, A.T. (2005). Complete genome
959 sequence of the facultative anaerobic magnetotactic bacterium *Magnetospirillum* sp.
960 strain AMB-1. *DNA Res* 12(3), 157-166. doi: 10.1093/dnares/dsi002.

961 May, J.J., Wendrich, T.M., and Marahiel, M.A. (2001). The *dhb* operon of *Bacillus subtilis*
962 encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-
963 glycine-threonine trimeric ester bacillibactin. *J Biol Chem* 276(10), 7209-7217. doi:
964 10.1074/jbc.M009140200.

965 McAllister, S.M., Polson, S.W., Butterfield, D.A., Glazer, B.T., Sylvan, J.B., and Chan, C.S.
966 (2019). Validating the Cyc2 neutrophilic Fe oxidation pathway using meta-omics of
967 Zetaproteobacteria iron mats at marine hydrothermal vents. *bioRxiv*. doi:
968 <https://doi.org/10.1101/722066>.

969 Miethke, M., Klotz, O., Linne, U., May, J.J., Beckering, C.L., and Marahiel, M.A. (2006). Ferri-
970 bacillibactin uptake and hydrolysis in *Bacillus subtilis*. *Mol Microbiol* 61(6), 1413-1427.
971 doi: 10.1111/j.1365-2958.2006.05321.x.

972 Miethke, M., Monteferrante, C.G., Marahiel, M.A., and van Dijl, J.M. (2013). The *Bacillus*
973 *subtilis* EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric
974 iron. *Biochim Biophys Acta* 1833(10), 2267-2278. doi: 10.1016/j.bbamcr.2013.05.027.

975 Miller, S. R., Wood, A. M., Blankenship, R. E., Kim, M., & Ferriera, S. (2011). Dynamics of
976 Gene Duplication in the Genomes of Chlorophyll d -Producing Cyanobacteria :
977 Implications for the Ecological Niche, 3, 601–613. <https://doi.org/10.1093/gbe/evr060>

978 Morgan, J.W., and Anders, E. (1980). Chemical composition of Earth, Venus, and Mercury.
979 *Proc Natl Acad Sci USA* 77(12), 6973-6977.

980 Morrissey, J.A., Cockayne, A., Hill, P.J., and Williams, P. (2000). Molecular cloning and
981 analysis of a putative siderophore ABC transporter from *Staphylococcus aureus*. *Infect*
982 *Immun* 68(11), 6281-6288.

983 Morton, D.J., Seale, T.W., Madore, L.L., VanWagoner, T.M., Whitby, P.W., and Stull, T.L.
984 (2007). The haem-haemopexin utilization gene cluster (*hxuCBA*) as a virulence factor of
985 *Haemophilus influenzae*. *Microbiol* 153(Pt 1), 215-224. doi: 10.1099/mic.0.2006/000190-
986 0.

987 Moynie, L., Luscher, A., Rolo, D., Pletzer, D., Tortajada, A., Weingart, H., et al. (2017).
988 Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from
989 *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. *Antimicrob Agents Chemother*
990 61(4). doi: 10.1128/AAC.02531-16.

991 Mukherjee, S. (1985). The Role of Crevicular Fluid Iron in Periodontal Disease. *J Periodontol*
992 56 Suppl 11S, 22-27. doi: 10.1902/jop.1985.56.11s.22.

993 Nealson, K.H., and Saffarini, D. (1994). Iron and manganese in anaerobic respiration:
994 Environmental significance, physiology, and regulation. *Ann Rev Microbiol* 48, 311–343.

995 Norris, P.R., Laigle, L., and Slade, S. (2018). Cytochromes in anaerobic growth of
996 *Acidithiobacillus ferrooxidans*. *Microbiol* 164(3), 383-394. doi: 10.1099/mic.0.000616.

997 Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes : a new
998 versatile metagenomic assembler, 824–834. <https://doi.org/10.1101/gr.213959.116.4>

999 Ochsner, U.A., Johnson, Z., and Vasil, M.L. (2000). Genetics and regulation of two distinct
1000 haem-uptake systems, *phu* and *has*, in *Pseudomonas aeruginosa*. *Microbiology* 146(Pt 1),
1001 185-198. doi: 10.1099/00221287-146-1-185.

1002 Ollinger, J., Song, K.B., Antelmann, H., Hecker, M., and Helmann, J.D. (2006). Role of the Fur
1003 regulon in iron transport in *Bacillus subtilis*. *J Bacteriol* 188(10), 3664-3673. doi:
1004 10.1128/JB.188.10.3664-3673.2006.

1005 Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., et al. (2014). The SEED
1006 and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST).
1007 *Nucleic Acids Res* 42(D1), D206-D214. doi: 10.1093/nar/gkt1226.

1008 Oves-Costales, D., Kadi, N., Fogg, M.J., Song, L., Wilson, K.S., and Challis, G.L. (2007).
1009 Enzymatic logic of anthrax stealth siderophore biosynthesis: AsBA catalyzes ATP-
1010 dependent condensation of citric acid and spermidine. *J Am Chem Soc* 129(27), 8416-
1011 8417. doi: 10.1021/ja072391o.

1012 Pandey, A., Bringel, F., and Meyer, J. (1994). Iron requirement and search for siderophores in
1013 lactic acid bacteria. *Appl Microbiol Biotechnol* 40(5), 735-739. doi:
1014 10.1007/BF00173337.

1015 Park, S., Choi, S., and Choe, J. (2012). *Bacillus subtilis* HmoB is a heme oxygenase with a novel
1016 structure. *BMB Rep* 45(4), 239-241.

1017 Peuckert, F., Ramos-Vega, A.L., Miethke, M., Schwörer, C.J., Albrecht, A.G., Oberthür, M., et
1018 al. (2011). The siderophore binding protein FeuA shows limited promiscuity toward
1019 exogenous triscatecholates. *Chem Biol* 18(7), 907-919. doi:
1020 10.1016/j.chembiol.2011.05.006.

1021 Pitts, K.E., Dobbin, P.S., Reyes-Ramirez, F., Thomson, A.J., Richardson, D.J., and Seward, H.E.
1022 (2003). Characterization of the *Shewanella oneidensis* MR-1 decaheme cytochrome
1023 MtrA: Expression in *Escherichia coli* confers the ability to reduce soluble Fe(III)
1024 chelates. *J Biol Chem* 278(30), 27758-27765. doi: 10.1074/jbc.M302582200.

1025 Pruitt, K.D., Tatusova, T., and Maglott, D.R. (2007). NCBI reference sequences (RefSeq): a
1026 curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic
1027 Acids Res* 35(Database issue), D61-65. doi: 10.1093/nar/gkl842.

1028 Quaiser, A., Bodi, X., Dufresne, A., Naquin, D., Francez, A.J., Dheilly, A., et al. (2014).
1029 Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics.
1030 *PLoS ONE* 9(7), 1-9. doi: 10.1371/journal.pone.0102561.

1031 Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., et al. (2005).
1032 InterProScan: protein domains identifier. *Nucleic Acids Res* 33, W116-W120. doi:
1033 10.1093/nar/gki442.

1034 RCoreTeam (2013). *R: A language and environment for statistical computing* [Online]. Vienna,
1035 Austria. Available: <http://www.R-project.org/> [Accessed].

1036 Reniere, M.L., Ukpabi, G.N., Harry, S.R., Stec, D.F., Krull, R., Wright, D.W., et al. (2010). The
1037 IsdG-family of heme oxygenases degrades heme to a novel chromophore. *Mol Microbiol*
1038 75(6), 1529-1538. doi: 10.1111/j.1365-2958.2010.07076.x.

1039 Rivera, M. (2017). Bacterioferritin: Structure, dynamics, and protein-protein interactions at play
1040 in iron storage and mobilization. *Acc Chem Res* 50(2), 331-340. doi:
1041 10.1021/acs.accounts.6b00514.

1042 Rodriguez, G.M., Voskuil, M.I., Gold, B., Schoolnik, G.K., and Smith, I. (2002). ideR, an
1043 essential gene in *Mycobacterium tuberculosis*: Role of IdeR in iron-dependent gene
1044 expression, iron metabolism, and oxidative stress response. *Infect Immun* 70(7), 3371-
1045 3381. doi: 10.1128/IAI.70.7.3371-3381.2002.

1046 Rost, B. (1999). Twilight zone of protein sequence alignments. *Protein Eng Des Sel* 12(2), 85-
1047 94. doi: 10.1093/protein/12.2.85.

1048 Sachla, A.J., Ouattara, M., Romero, E., Agniswamy, J., Weber, I.T., Gadda, G., et al. (2016). In
1049 vitro heme biotransformation by the HupZ enzyme from Group A *Streptococcus*.
1050 *Biometals* 29(4), 593-609. doi: 10.1007/s10534-016-9937-1.

1051 Santos, T.C., Silva, M.A., Morgado, L., Dantas, J.M., and Salgueiro, C.A. (2015). Diving into
1052 the redox properties of *Geobacter sulfurreducens* cytochromes: a model for extracellular
1053 electron transfer. *Dalton Trans* 44(20), 9335-9344. doi: 10.1039/C5DT00556F.

1054 Satinsky, B.M., Smith, C.B., Sharma, S., Landa, M., Medeiros, P.M., Coles, V.J., et al. (2017).
1055 Expression patterns of elemental cycling genes in the Amazon River Plume. *ISME J*
1056 11(8), 1852-1864. doi: 10.1038/ismej.2017.46.

1057 Schneider, S., Sharp, K.H., Barker, P.D., and Paoli, M. (2006). An induced fit conformational
1058 change underlies the binding mechanism of the heme transport proteobacteria-protein
1059 HemS. *J Biol Chem* 281(43), 32606-32610. doi: 10.1074/jbc.M607516200.

1060 Shi, L., Fredrickson, J.K., and Zachara, J.M. (2014). Genomic analyses of bacterial porin-
1061 cytochrome gene clusters. *Front Microbiol* 5(657), 1-10. doi: 10.3389/fmicb.2014.00657.

1062 Skaar, E.P., Gaspar, A.H., and Schneewind, O. (2004). IsdG and IsdI, heme-degrading enzymes
1063 in the cytoplasm of *Staphylococcus aureus*. *J Biol Chem* 279, 436-443. doi:
1064 10.1074/jbc.M307952200.

1065 Smith, J.L. (2004). The physiological role of ferritin-like compounds in bacteria. *Crit Rev
1066 Microbiol* 30(3), 173-185. doi: 10.1080/10408410490435151.

1067 Steinegger, M., and Söding, J. (2017). MMseqs2 enables sensitive protein sequence searching for
1068 the analysis of massive data sets. *Nature Biotechnol* 35(11), 1026-1028. doi:
1069 10.1038/nbt.3988.

1070 Suits, M.D., Jaffer, N., and Jia, Z. (2006). Structure of the *Escherichia coli* O157:H7 heme
1071 oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the
1072 heme coordinating residue His-193. *J Biol Chem* 281(48), 36776-36782. doi:
1073 10.1074/jbc.M607684200.

1074 Suzuki, K., Tanabe, T., Moon, Y.H., Funahashi, T., Nakao, H., Narimatsu, S., et al. (2006).
1075 Identification and transcriptional organization of aerobactin transport and biosynthesis
1076 cluster genes of *Vibrio cholerae*. *Res Microbiol* 157(8), 730-740. doi:
1077 10.1016/j.resmic.2006.05.001.

1078 Suzuki, S., Ishii, S., Hoshino, T., Rietze, A., Tenney, A., Morrill, P.L., et al. (2017). Unusual
1079 metabolic diversity of hyperalkaliphilic microbial communities associated with
1080 subterranean serpentinization at The Cedars. *ISME J* 11, 2584-2598. doi:
1081 10.1038/ismej.2017.111.

1082 Swingley, W. D., Chen, M., Cheung, P. C., Conrad, A. L., Dejesa, L. C., Hao, J., ... Touchman,
1083 J. W. (2010). Niche adaptation and genome expansion in the chlorophyll d-producing
1084 cyanobacterium *Acaryochloris marina*. *105*(6).

1085 Tan, W., Verma, V., Jeong, K., Kim, S.Y., Jung, C.H., Lee, S.E., et al. (2014). Molecular
1086 characterization of vulnibactin biosynthesis in *Vibrio vulnificus* indicates the existence of
1087 an alternative siderophore. *Front Microbiol* 5, 1-11. doi: 10.3389/fmicb.2014.00001.

1088 Tanabe, T., Funahashi, T., Nakao, H., Miyoshi, S., Shinoda, S., and Yamamoto, S. (2003).
1089 Identification and characterization of genes required for biosynthesis and transport of the
1090 siderophore vibrioferin in *Vibrio parahaemolyticus*. *J Bacteriol* 185(23), 6938-6949.
1091 doi: 10.1128/JB.185.23.6938-6949.2003.

1092 The UniProt Consortium (2017). UniProt: the universal protein knowledgebase. *Nucleic Acids Res*
1093 45(D1), D158-D169. doi: 10.1093/nar/gkw1099.

1094 Tong, Y., and Guo, M. (2009). Bacterial heme-transport proteins and their heme-coordination
1095 modes. *Arch Biochem Biophys* 481(1), 1-15. doi: 10.1016/j.abb.2008.10.013.

1096 Touati, D. (2000). Iron and oxidative stress in bacteria. *Arch Biochem Biophys* 373(1), 1-6. doi:
1097 DOI 10.1006/abbi.1999.1518.

1098 Toulza, E., Tagliabue, A., Blain, S., and Piganeau, G. (2012). Analysis of the global ocean
1099 sampling (GOS) project for trends in iron uptake by surface ocean microbes. *PLoS ONE*
1100 7(2), e30931. doi: 10.1371/journal.pone.0030931.

1101 Tullius, M.V., Harmston, C.A., Owens, C.P., Chim, N., Morse, R.P., McMath, L.M., et al.
1102 (2011). Discovery and characterization of a unique mycobacterial heme acquisition
1103 system. *Proc Natl Acad Sci USA* 108(12), 5051-5056. doi: 10.1073/pnas.1009516108.

1104 Tully, B.J., Graham, E.D., and Heidelberg, J.F. (2018). The reconstruction of 2,631 draft
1105 metagenome-assembled genomes from the global oceans. *Sci Data* 5(170103). doi:
1106 10.1038/sdata.2017.203.

1107 Uebe, R., and Schuler, D. (2016). Magnetosome biogenesis in magnetotactic bacteria. *Nat Rev
1108 Microbiol* 14(10), 621-637. doi: 10.1038/nrmicro.2016.99.

1109 Wang, F.B., Gu, Y.Q., O'Brien, J.P., Yi, S.M., Yalcin, S.E., Srikanth, V., et al. (2019). Structure
1110 of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over
1111 Micrometers. *Cell* 177(2), 361-+. doi: 10.1016/j.cell.2019.03.029.

1112 Wang, R.K., Kaplan, A., Guo, L.H., Shi, W.Y., Zhou, X.D., Lux, R., et al. (2012). The Influence
1113 of Iron Availability on Human Salivary Microbial Community Composition. *Microbial
1114 Ecology* 64(1), 152-161. doi: 10.1007/s00248-012-0013-2.

1115 Wang, S., Wu, Y., and Outten, F.W. (2011). Fur and the novel regulator YqjI control
1116 transcription of the ferric reductase gene yqjH in *Escherichia coli*. *J Bacteriol* 193(2),
1117 563-574. doi: 10.1128/JB.01062-10.

1118 Ward, L.M. (2017). *Microbial Evolution and Rise of Oxygen: the Roles of Contingency and
1119 Context in Shaping the Biosphere through Time*. PhD, California Institute of Technology.

1120 Ward, L.M., Idei, A., Nakagawa, M., Ueno, Y., Fischer, W.W., and McGlynn, S.E. (2019).
1121 Geochemical and metagenomic characterization of Jinata Onsen, a Proterozoic-analog
1122 hot spring, reveals novel microbial diversity including iron-tolerant phototrophs and
1123 thermophilic lithotrophs. *bioRxiv*, p.428698.

1124 Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H.U., Brucolieri, R., et al. (2015). antiSMASH
1125 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters.
1126 *Nucleic Acids Res* 43(W1), W237-W243. doi: 10.1093/nar/gkv437.

1127 Weinberg, E.D. (1978). Iron and Infection. *Microbiol Rev* 42(1), 45-66.

1128 Weiss, J.V., Rentz, J.A., Plaia, T., Neubauer, S.C., Merrill-Floyd, M., Lilburn, T., et al. (2007).
1129 Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of
1130 wetland plants and description of *Ferritrophicum radicicola* gen. nov. sp. nov., and
1131 *Sideroxydans paludicola* sp. nov. *Geomicrobiol J* 24(7-8), 559-570. doi:
1132 10.1080/01490450701670152.

1133 Welch, J.L.M., Rossetti, B.J., Rieken, C.W., Dewhirst, F.E., and Borisy, G.G. (2016).
1134 Biogeography of a human oral microbiome at the micron scale. *Proceedings of the
1135 National Academy of Sciences of the United States of America* 113(6), E791-E800. doi:
1136 10.1073/pnas.1522149113.

1137 Wertheimer, A.M., Verweij, W., Chen, Q., Crosa, L.M., Nagasawa, M., Tolmisky, M.E., et al.
1138 (1999). Characterization of the *angR* gene of *Vibrio anguillarum*: essential role in
1139 virulence. *Infect Immun* 67(12), 6496-6509.

1140 White, G.F., Edwards, M.J., Gomez-Perez, L., Richardson, D.J., Butt, J.N., and Clarke, T.A.
1141 (2016). *Mechanisms of bacterial extracellular electron exchange*. Elsevier Ltd.

1142 Wickham, H. (2007). Reshaping data with the reshape package. *J Stat Softw* 21(12), 1-20.

1143 Wickham, H. (2009). *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

1144 Wickham, H. (2017). Tidyverse: Easily Install and Load the 'Tidyverse'. *R package version
1145 1.2.1*, <https://CRAN.R-project.org/package=tidyverse>.

1146 Wilks, A., and Heinzl, G. (2014). Heme oxygenation and the widening paradigm of heme
1147 degradation. *Arch Biochem Biophys* 544, 87-95. doi: 10.1016/j.abb.2013.10.013.

1148 Wilson, M. C., Mori, T., Ru, C., ... Matsunaga, S. (2014). An environmental bacterial taxon with
1149 a large and distinct metabolic repertoire. <https://doi.org/10.1038/nature12959>

1150 Wójtowicz, H., Guevara, T., Tallant, C., Olczak, M., Sroka, A., Potempa, J., et al. (2009).
1151 Unique structure and stability of HmuY, a novel heme-binding protein of *Porphyromonas*
1152 *gingivalis*. *PLoS Pathog* 5(5), e1000419. doi: 10.1371/journal.ppat.1000419.
1153 Wyckoff, E.E., Mey, A.R., Leimbach, A., Fisher, C.F., and Payne, S.M. (2006). Characterization
1154 of ferric and ferrous iron transport systems in *Vibrio cholerae*. *J Bacteriol* 188(18), 6515-
1155 6523. doi: 10.1128/JB.00626-06.
1156 Wyckoff, E.E., Smith, S.L., and Payne, S.M. (2001). VibD and VibH are required for late steps
1157 in vibriobactin biosynthesis in *Vibrio cholerae*. *J Bacteriol* 183(5), 1830-1834. doi:
1158 10.1128/JB.183.5.1830-1834.2001.
1159 Wyckoff, E.E., Valle, A.M., Smith, S.L., and Payne, S.M. (1999). A multifunctional ATP-
1160 binding cassette transporter system from *Vibrio cholerae* transports vibriobactin and
1161 enterobactin. *J Bacteriol* 181(24), 7588-7596.
1162 Youard, Z.A., Wenner, N., and Reimann, C. (2011). Iron acquisition with the natural
1163 siderophore enantiomers pyochelin and enantio-pyochelin in *Pseudomonas* species.
1164 *Biometals* 24(3), 513-522. doi: 10.1007/s10534-010-9399-9.
1165 Zhang, R., Zhang, J., Guo, G., Mao, X., Tong, W., Zhang, Y., et al. (2011). Crystal structure of
1166 *Campylobacter jejuni* ChuZ: a split-barrel family heme oxygenase with a novel heme-
1167 binding mode. *Biochem Biophys Res Commun* 415(1), 82-87. doi:
1168 10.1016/j.bbrc.2011.10.016.
1169

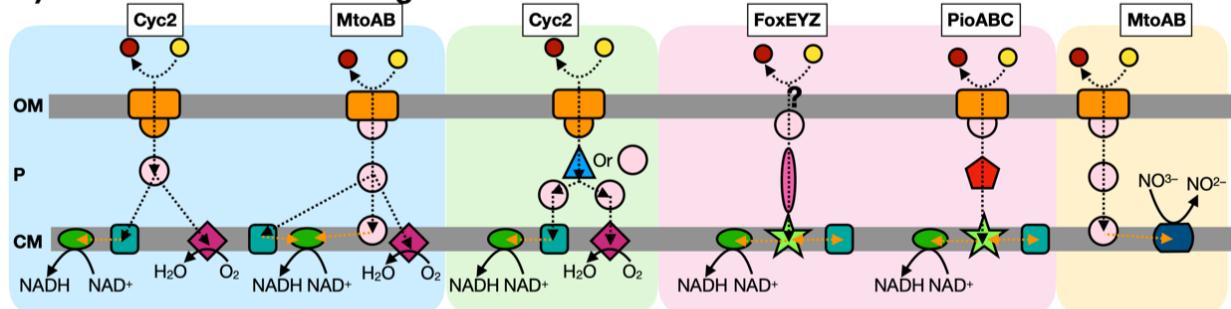
1170 **Table 1. Summary of iron-related protein families that are represented as pHMMs in FeGenie.** Bolded and underlined HMMs
 1171 are derived from Pfam or TIGRFAMs databases. Other HMMs were created by using select sequences. See **Supplemental Table S1**
 1172 for more information, including the corresponding Pfam or TIGRFAMs families and the sequences used to create the HMMs.

Category	Function	Protein Families
Iron acquisition	Iron(II)/(III) transport	Efe <u>UOB</u> ¹ , FbpABC ² , SfuABC ³ , YfuABC ⁴ , FeoAB(C) ⁵ , FutA1 ⁶ , FutA2 ⁶ , FutB ⁶ , FutC ⁶ , YfeABCD ⁷
	Heme oxygenase	ChuS ⁸ , ChuZ ⁹ , HemO ^{10,11} , PigA ^{10,11} , Hem <u>RSTUV</u> ¹² , HmoB ¹³ , HmuO ¹⁴ , HugZ ¹⁵ , HupZ ¹⁶ , Isd-LmHde ¹⁷ , IsdG ¹⁸ , IsdI ¹⁹ , MhuD ²⁰ , PhuS ²¹ (in PhuRSTUVW)
	Heme transport	Has <u>RADE(B)F</u> ²² , Hmu <u>RSTUV</u> ²² , HmuY ²³ , <u>HmuY</u> ²³ , HutZ ²⁴ , Hxu <u>CBA</u> ²⁵ , IsdX1 ²⁶ , IsdX2 ²⁶ , Phu <u>RSTUVW</u> ²¹ , Rv0203 ²⁷
	Transferrin/Lactoferrin	Tbp <u>AB</u> (Lbp <u>AB</u>) ²⁸ , Sst <u>ABCD</u> ²⁹
	Siderophore synthesis	Acs <u>ABCDEF</u> ³⁰ , AmoA ³¹ , AngR ³² , Asb <u>ABCDEF</u> ³³ , DhbACEBF ³⁴ , entD- feP <u>A</u> -fes-entF-fep <u>ECGDB</u> -entCEBA-ybdA ³⁵ , IroD in Iro <u>NBCDE</u> ³⁶ , IucABCD ^{37,38} , IutA ^{37,38} , MbtIJABCDEF ³⁵ , LbtA ³⁹ (in LbtUABC), PchABCDEF ³⁵ , PvdQAPMNOFEDJHLGS ⁴⁰ , PvsABCDE ⁴¹ , VenB ⁴² , Vab genes in VabR-fur-vabGA-fur- VabCEBSFH-fur-fvtA-vabD ⁴³ , Vib genes in VibB-vibEC-vibA- vibH-viu <u>PDGC</u> -vibD and viuAB-vibF ⁴⁴⁻⁴⁶ , RhbABCDEF-rhrA- rhtA ⁴⁷
	Siderophore transport	BesA ⁴⁸ , Cbr <u>ABCD</u> ⁴⁹ , TonB-ExbB-ExbD ⁵⁰ , Fat <u>ABCD</u> ⁵¹ , Fec <u>IRABCDE</u> ⁵² , FeuABC-yusV ⁵³ , Fhu <u>ACDB</u> ⁵⁴⁻⁵⁶ , FhuF ⁵⁴⁻⁵⁶ , Fpt <u>ABCX</u> ⁵⁷ , Fpu <u>AB</u> ⁵⁸ , FpuC ⁵⁸ , FpuD ⁵⁸ , Fpv <u>IR-FpvA</u> - FpvGHJKCDEF ⁵⁹ , FvtA in VabR-fur-vabGA-fur-VabCEBSFH-fur- fvtA-vabD ⁴³ , Hat <u>CDB</u> ³⁷ , IroN <u>BCDE</u> ³⁶ , LbtUABC ³⁹ , PirA ⁶⁰ , PiuA ⁶⁰ , Pvu <u>ABCDE</u> ⁴¹ , Viu genes in VibB-vibEC-vibA-vibH-viu <u>PDGC</u> -vibD and viuAB-vibF ⁴⁴⁻⁴⁶ , YfiZ -yfhA ⁶¹ , YfiY ⁶¹ , YqjH ⁶² , ybdA and Fep genes in entD- feP <u>A</u> -fes-entF-fep <u>ECGDB</u> -entCEBA-ybdA ³⁵

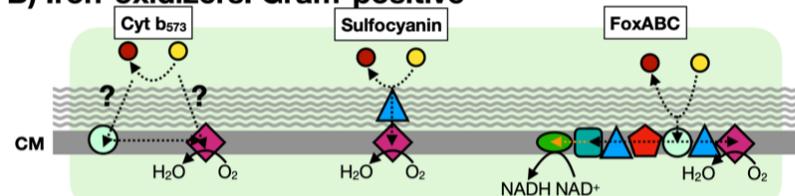
Iron Gene regulation	Transcriptional regulation	DtxR ⁶³ , FecR (in FecIRABCDE) ⁵² , FeoC in FeoAB(C) ⁵ , Fur ⁶⁴ , IdeR ⁶⁵ , YqjI ⁶² , RhrA in RhbABCDEF-rhrA-rhtA ⁴⁷
Iron oxidation and reduction	Iron oxidation	Cyc1 ^{66,67} , Cyc2 ^{66,67,68} , FoxABC ⁶⁹ , FoxEYZ ⁷⁰ , Sulfocyanin ⁷¹ , PioA <u>BC</u> ⁷²
	Probable iron oxidation and possible iron reduction	MtoA <u>AB</u> ⁷³ , Cyc2 (cluster 3)
	Dissimilatory iron reduction	CymA ⁷⁴ , Mtr <u>CAB</u> ⁷⁵ , OmcF ⁷⁶ , OmcS ⁷⁶ , OmcZ ⁷⁶ , FmnA-dmkA-fmnB-pplA-ndh2-eetAB-dmkB ⁷⁷ , DFE_0448-0451, DFE_0461-0465 ⁷⁸
	Probable iron reduction	MtrCB, MtrAB, MtoAB-MtrC
Iron storage	Iron storage	Bfr ⁷⁹ , DpsA ⁸⁰ , Ftn ⁸¹
Magnetosome-related	Magnetosome formation	MamABEJKLMOPQI ^{82,83} (Note: These genes are found in all known magnetotactic microorganisms, except for <i>mamL</i> which is found in magnetite-producing magnetotactic microorganisms ⁸¹)

1¹Miethke *et al.*, 2013, ²Adhikari *et al.*, 1996, ³Angerer *et al.*, 1990, ⁴Gong *et al.*, 2001, ⁵Lau *et al.*, 2016, ⁶Katoh *et al.*, 2001b, ⁷Bearden *et al.*, 1998, ⁸Suits *et al.*, 2006, ⁹Zhang *et al.*, 2011, ¹⁰Friedman *et al.*, 2003, ¹¹Friedman *et al.*, 2004, ¹²Schneider *et al.*, 2006, ¹³Park *et al.*, 2012, ¹⁴Matsui *et al.*, 2005, ¹⁵Hu *et al.*, 2011, ¹⁶Sachla *et al.*, 2016, ¹⁷Duong *et al.*, 2014, ¹⁸Reniere *et al.*, 2010, ¹⁹Skaar *et al.*, 2004, ²⁰Graves *et al.*, 2014, ²¹Ochsner *et al.*, 2000, ²²Tong and Guo, 2009, ²³Wójtowicz *et al.*, 2009, ²⁴Liu *et al.*, 2012b, ²⁵Morton *et al.*, 2007, ²⁶Honsa *et al.*, 2014, ²⁷Tullius *et al.*, 2011, ²⁸Gray-Owen *et al.*, 1995, ²⁹Morrissey *et al.*, 2000, ³⁰Carroll and Moore, 2018, ³¹Barghouthi *et al.*, 1991, ³²Wertheimer *et al.*, 1999, ³³Oves-Costales *et al.*, 2007, ³⁴May *et al.*, 2001, ³⁵Crosa and Walsh, 2002, ³⁶Hantke *et al.*, 2003, ³⁷Suzuki *et al.*, 2006, ³⁸Martínez *et al.*, 1994, ³⁹Cianciotto, 2015, ⁴⁰Lamont and Martin, 2003, ⁴¹Tanabe *et al.*, 2003, ⁴²Tan *et al.*, 2014, ⁴³Balado *et al.*, 2008, ⁴⁴Wyckoff *et al.*, 2001, ⁴⁵Keating *et al.*, 2000, ⁴⁶Wyckoff *et al.*, 1999, ⁴⁷Lynch *et al.*, 2001, ⁴⁸Miethke *et al.*, 2006, ⁴⁹Mahé *et al.*, 1995, ⁵⁰Garcia-Herrero *et al.*, 2007, ⁵¹Lemos *et al.*, 2010, ⁵²Braun, 2003, ⁵³Peuckert *et al.*, 2011, ⁵⁴Köster and Braun, 1989, ⁵⁵Coulton *et al.*, 1987, ⁵⁶Braun *et al.*, 2002, ⁵⁷Youard *et al.*, 2011, ⁵⁸Dixon *et al.*, 2012, ⁵⁹Brillet *et al.*, 2012, ⁶⁰Moynie *et al.*, 2017, ⁶¹Ollinger *et al.*, 2006, ⁶²Wang *et al.*, 2011, ⁶³Guedon and Helmann, 2003, ⁶⁴Escolar *et al.*, 1998, ⁶⁵Rodriguez *et al.*, 2002, ⁶⁶Castelle *et al.*, 2008, ⁶⁷Barco *et al.*, 2015, ⁶⁸McAllister *et al.*, 2019, ⁶⁹Bathe and Norris, 2007, ⁷⁰Croal *et al.*, 2007,

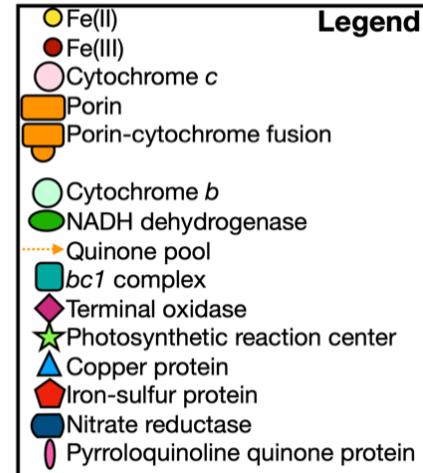
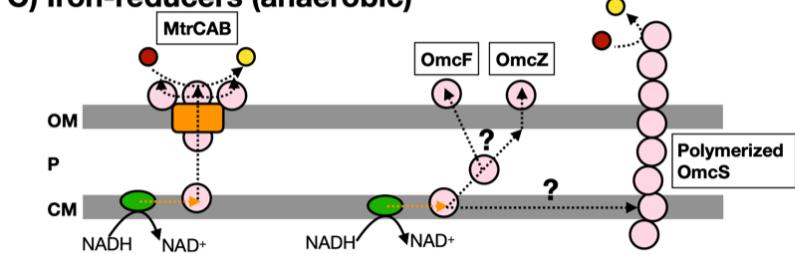
1184 ⁷¹Ilbert and Bonnefoy, 2013, ⁷²Liu *et al.*, 2012a, ⁷³Jiao and Newman, 2007, ⁷⁴Castelle *et al.*, 2015, ⁷⁵Pitts *et al.*, 2003, ⁷⁶Santos *et al.*, 2015, ⁷⁷Light
1185 *et al.*, 2018, ⁷⁸Deng *et al.*, 2018, ⁷⁹Grossman *et al.*, 1992, ⁸⁰Grant *et al.*, 1998, ⁸¹Andrews, 1998, ⁸²Uebe and Schuler, 2016, ⁸³Kolinko *et al.*, 2016.
1186


1187 **Table 2. Summary of metagenomes analyzed.** The list of 27 previously published metagenomes, representing a wide range of
1188 habitats from iron-rich to iron-poor marine and terrestrial systems. *Prodigal* v. 2.6.3 (Hyatt et al., 2010) was used to predict the
1189 number of open reading frames (ORFs) in each metagenome dataset. See **section “Acquisition and assembly of environmental**
1190 **metagenomes” (Materials and Methods)** for more detailed description and acquisition.
1191

Dataset	Environment description	NCBI Accession No.	Predicted ORFs	Reference
Amazon River Plume (Station 3)	River/ocean mixing, intermediate salinity	SAMN02628402	377,266	Satinsky <i>et al.</i> , 2017
Amazon River Plume (Station 10)	River/ocean mixing, low salinity	SAMN02628416	143,340	Satinsky <i>et al.</i> , 2017
Amazon River Plume (Station 27)	River/ocean mixing, high salinity	SAMN02628424	278,301	Satinsky <i>et al.</i> , 2017
The Cedars (BS5 2011)	Serpentinizing, alkaline groundwater (shallow source)	GCA_002583255.1	32,646	Suzuki <i>et al.</i> , 2017
The Cedars (BS5 2012)	Serpentinizing, alkaline groundwater (shallow source)	GCA_002581825.1	50,323	Suzuki <i>et al.</i> , 2017
The Cedars (GPS1 2011)	Serpentinizing, alkaline groundwater (deep source)	GCA_002581705.1	86,466	Suzuki <i>et al.</i> , 2017
The Cedars (GPS1 2012)	Serpentinizing, alkaline groundwater (deep source)	GCA_002581605.1	78,321	Suzuki <i>et al.</i> , 2017
Jinata Hot Springs	Iron-rich groundwater, mixed with seawater	PRJNA392119	992,695	Ward <i>et al.</i> , 2017
Loihi Seamount (S1) (i.e. Syringe Sample)	Marine hydrothermal vent Fe microbial mat (surficial syringe sample)	SRR6114197	146,898	McAllister <i>et al.</i> , 2019

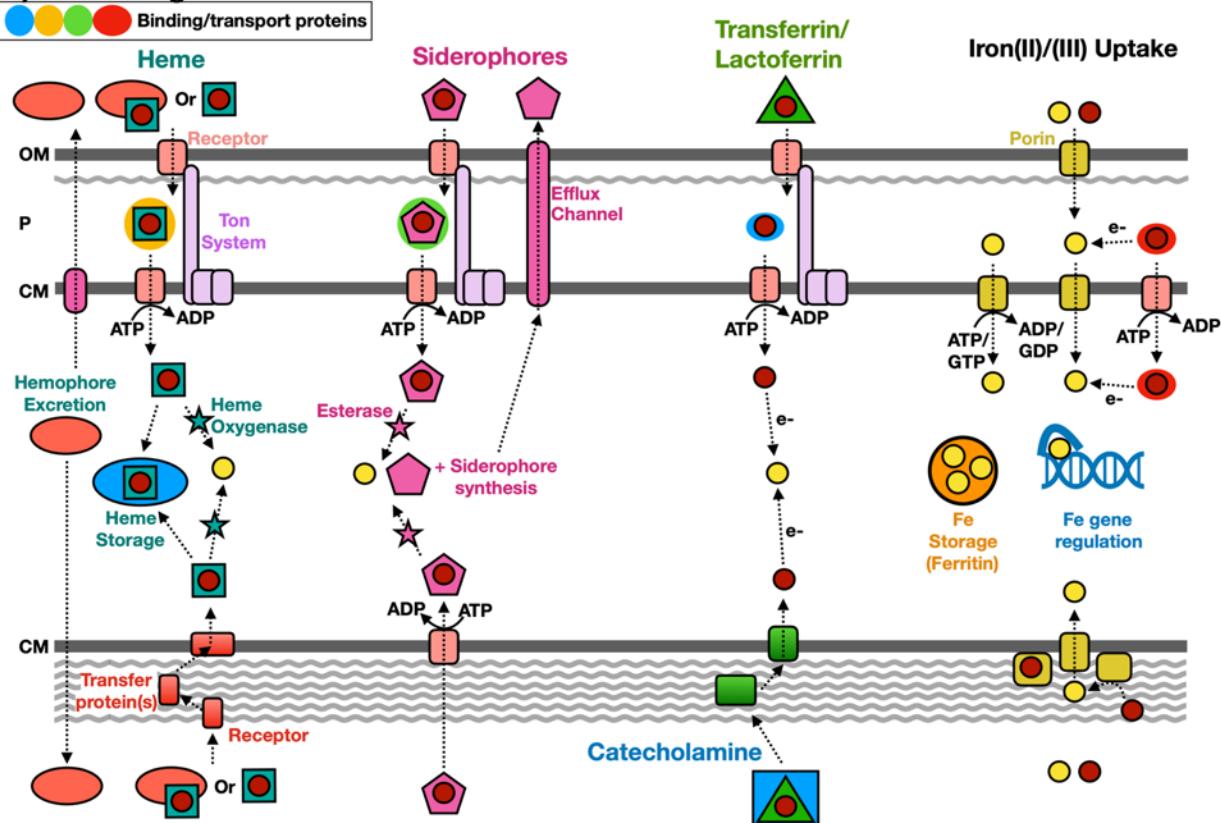

Loihi Seamount (S6) (i.e. Scoop Sample 1)	Marine hydrothermal vent Fe microbial mat (bulk scoop sample)	Gp0295815	390,888	McAllister <i>et al.</i> , 2019
Loihi Seamount (S19) (i.e. Scoop Sample 2)	Marine hydrothermal vent Fe microbial mat (bulk scoop sample)	Gp0295816	827,472	McAllister <i>et al.</i> , 2019
Mid-Atlantic Ridge, Rainbow (664-BS3) (i.e. Syringe Sample 1)	Marine hydrothermal vent Fe microbial mat (surface syringe sample)	Gp0295819	414,137	McAllister <i>et al.</i> , 2019
Mid-Atlantic Ridge, Rainbow (664-SC8) (i.e. Scoop Sample)	Marine hydrothermal vent Fe microbial mat (bulk scoop sample)	Gp0295820	597,486	McAllister <i>et al.</i> , 2019
Mid-Atlantic Ridge, TAG (665-MMA12) (i.e. Syringe Sample 2)	Marine hydrothermal vent Fe microbial mat (surface syringe sample)	Gp0295821	255,314	McAllister <i>et al.</i> , 2019
Mid-Atlantic Ridge, Snakepit (667-BS4) (i.e. Syringe Sample 3)	Marine hydrothermal vent Fe microbial mat (surface syringe sample)	Gp0295823	422,234	McAllister <i>et al.</i> , 2019
Mariana Backarc, Urashima (801-BM1-B4, S7) (i.e. Scoop Sample)	Marine hydrothermal vent Fe microbial mat (surface syringe sample)	Gp0295817	365,851	McAllister <i>et al.</i> , 2019
Arabian Sea metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	398,870	Tully <i>et al.</i> , 2018
Chile/Peru Coast metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	375,779	Tully <i>et al.</i> , 2018
East Africa Coast metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	464,070	Tully <i>et al.</i> , 2018

Indian Ocean metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	178,873	Tully <i>et al.</i> , 2018
Mediterranean metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	607,005	Tully <i>et al.</i> , 2018
North Atlantic metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	673,120	Tully <i>et al.</i> , 2018
North Pacific metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	601,358	Tully <i>et al.</i> , 2018
Red Sea metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	331,387	Tully <i>et al.</i> , 2018
South Atlantic metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	735,385	Tully <i>et al.</i> , 2018
South Pacific metagenome (<i>Tara</i>)	Marine surface water	PRJNA391943	1,128,901	Tully <i>et al.</i> , 2018
Rifle Aquifer	Terrestrial subsurface aquifer	Jewell <i>et al.</i> , 2016 (supplemental data)	203,744	Jewell <i>et al.</i> , 2016



A) Iron-oxidizers: Gram-negative

B) Iron-oxidizers: Gram-positive

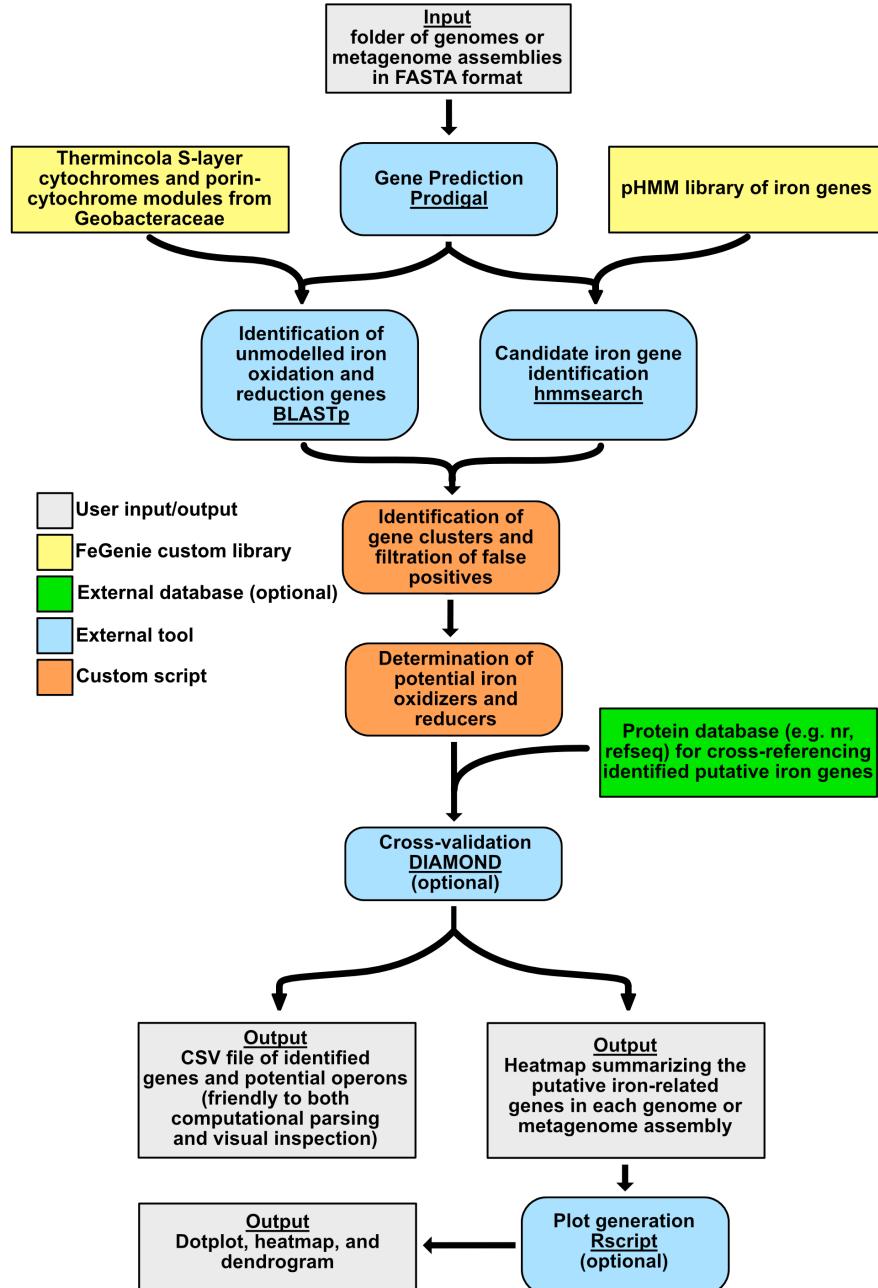
C) Iron-reducers (anaerobic)



1193

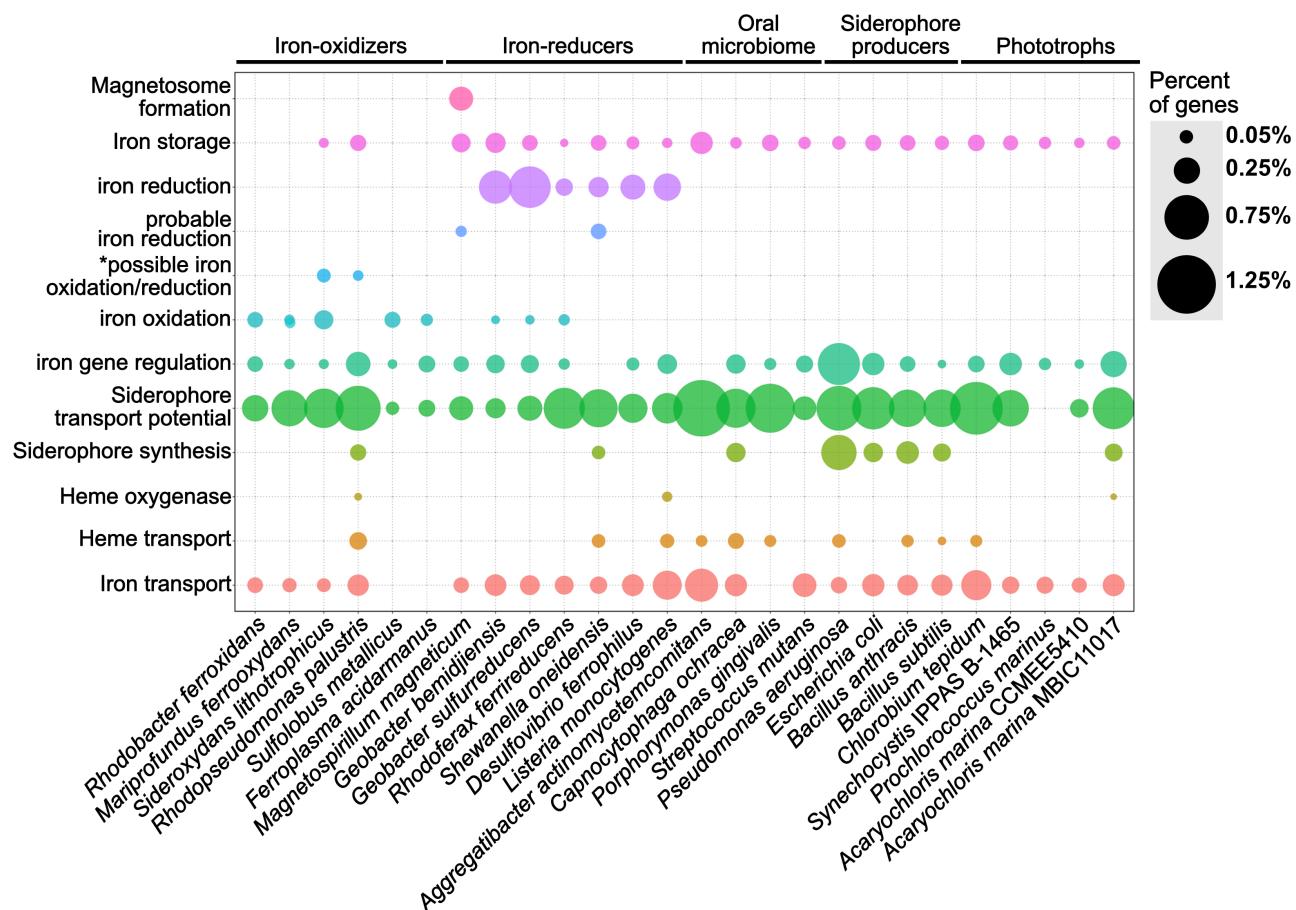
1194 **Figure 1. Scheme of known iron-oxidizers and iron-reducers.** There are several different types of iron-
 1195 oxidizers known, with more information on Gram-negative bacteria compared to Gram-positive bacteria
 1196 (note: the acidophilic aerobic iron-oxidizers can use either a copper protein or cytochrome *c* to transfer
 1197 electrons in the periplasm). For iron-reducers, there are only two mechanisms known and under anaerobic
 1198 conditions. The genes identified by FeGenie are in boxes above each type, with the exception of Cyt b₅₇₃,
 1199 which has yet to be confirmed for iron oxidation (White et al., 2016). FeGenie does not include pili and
 1200 flavin-related genes since these genes are commonly associated with other functions/metabolisms.
 1201 Modified from White et al. (2016) OM = outer membrane, P = periplasm, and CM = cytoplasmic
 1202 membrane.

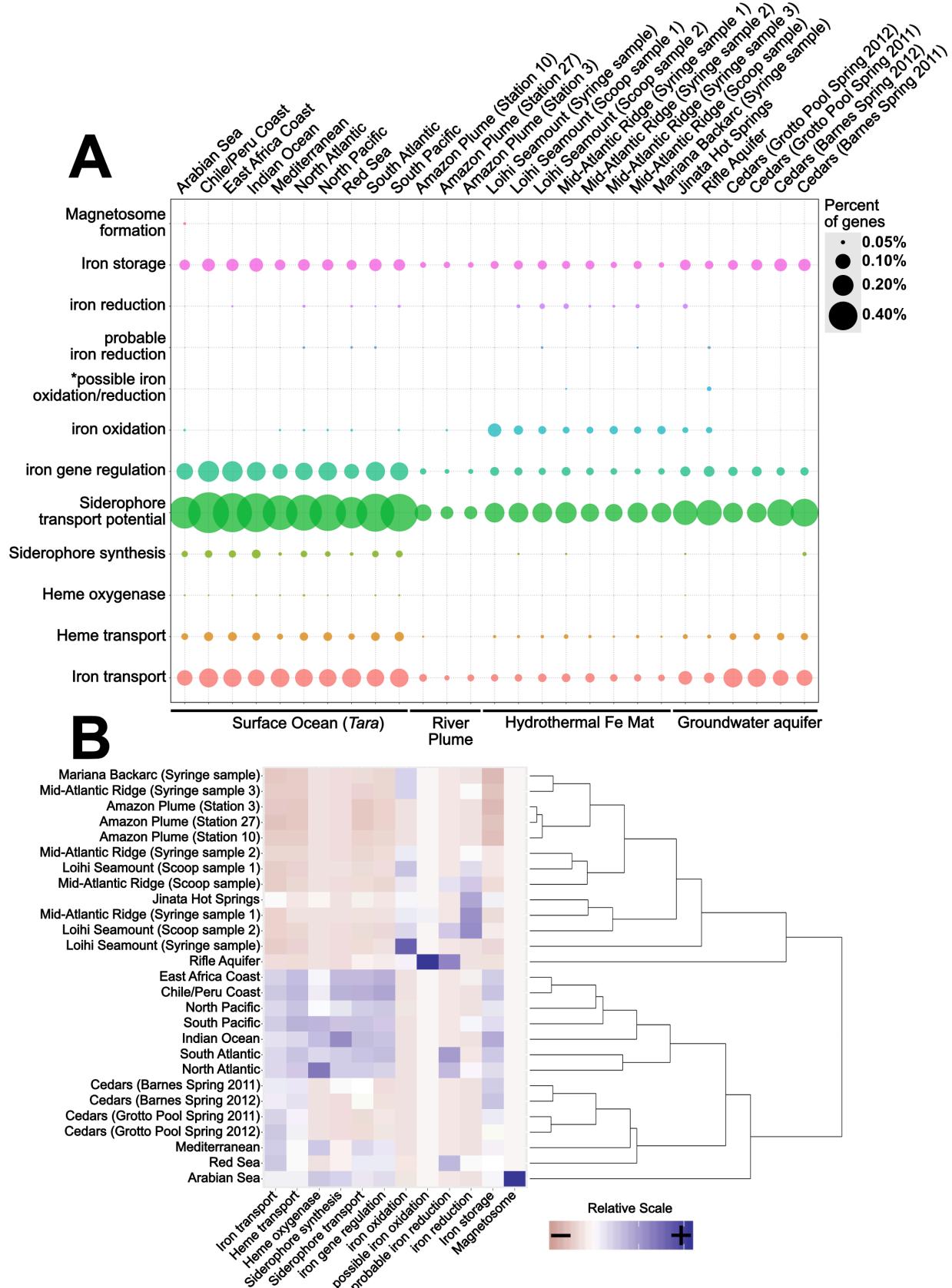
1203


A) Gram-negative bacteria

B) Gram-positive bacteria

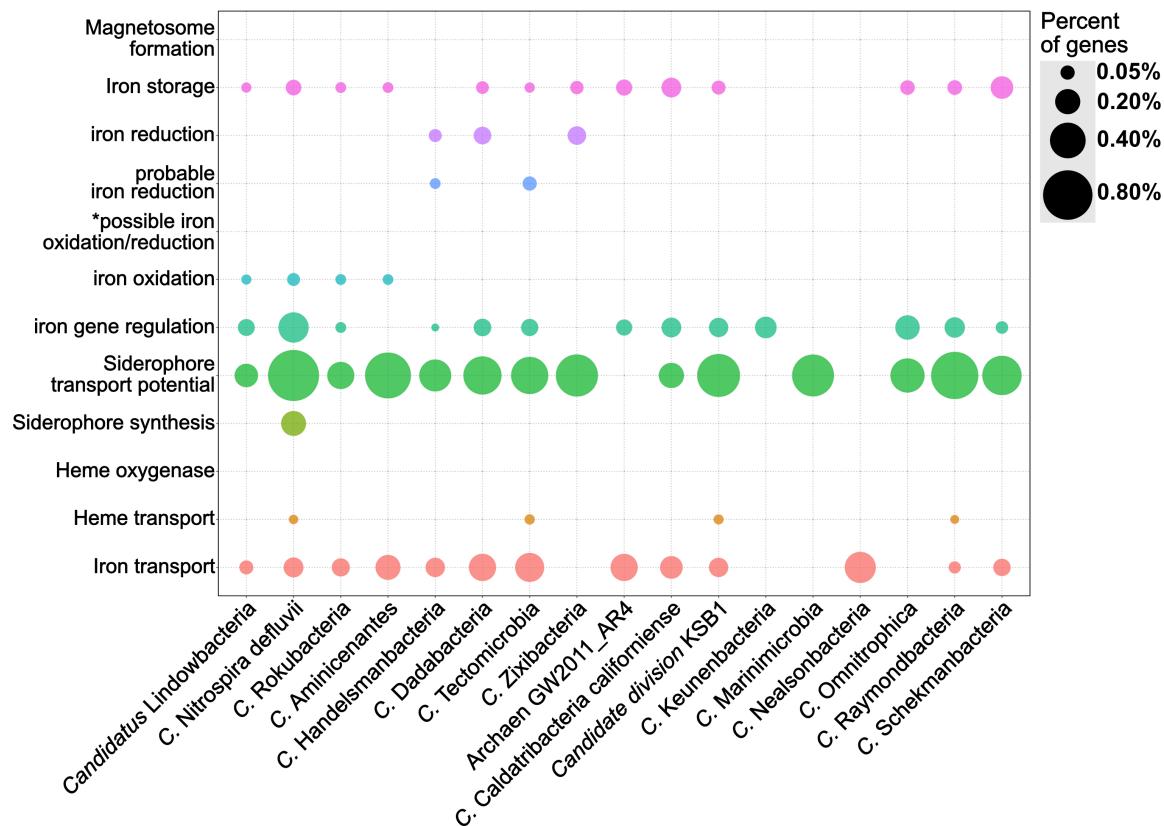
1204


1205 **Figure 2. Scheme of known iron acquisition, storage, and regulation pathways.** Gram-negative (A)
1206 and Gram-positive (B) bacteria have different mechanisms to uptake iron due to differences in the cell
1207 membrane structure. Iron(II)/(III) uptake can also be mediated extracellularly by redox cycling secondary
1208 metabolites, such as phenazine-1-carboxylic acid (Cornelis and Dingemans, 2013). OM = outer
1209 membrane, P = periplasm, and CM = cytoplasmic membrane. Modified from Anzaldi and Skaar, 2010;
1210 Contreras *et al.*, 2014; Caza and Kronstad, 2013; Lau *et al.*, 2016; Kranzler *et al.*, 2014.


1211

1212 **Figure 3. FeGenie algorithm overview.** Color-coded to represent various aspects of the program,
1213 including external programs/dependencies, optional databases for cross-reference, and custom Python
1214 scripts

1215



1216 **Figure 4. Dot plot showing the relative abundance of different iron gene categories within 24**
1217 **representative isolate genomes.** The isolate genomes were selected as model microorganisms to
1218 demonstrate the accuracy of FeGenie for identifying genes involved in iron oxidation and reduction, iron
1219 transport (including siderophores and heme), iron storage, and iron gene regulation. The genomes were
1220 obtained from the NCBI RefSeq and GenBank databases and analyzed by FeGenie. The size of each dot
1221 reflects the number of genes identified for each category and normalized to the number of protein-coding
1222 genes predicted within each genome. *This category is reserved for genes related to the MtoAB/PioAB
1223 gene family.

1225 **Figure 5. (A) Dot plot showing the distribution of iron genes on 27 metagenomes and (B) a scaled**
1226 **heatmap with accompanying dendrogram showing the hierarchical clustering of metagenome**
1227 **datasets based on identified iron genes.** The dot plot shows the relative abundance of iron genes across
1228 27 metagenomes. The dendrogram was created using *Rscript* by hierarchically-clustering the distance
1229 matrix (Euclidian), which is created from a scaled version of FeGenie's matrix output, which summarizes
1230 the amount of iron genes for each category present in each metagenome assembly. The FeGenie output
1231 summary is represented as the heatmap, which is created from the same scaled matrix that was used for
1232 the dendrogram. The size of each dot reflects the number of genes identified for each category,
1233 normalized to the number of protein-coding genes predicted within each metagenome. *This category is
1234 reserved for genes related to the MtoAB/PioAB gene family.

1235

1236

1237 **Figure 6. Dot plot showing the relative abundance of different iron gene categories 17 genomes**
1238 **from the Candidate Phyla Radiation (B)**. The genomes were obtained from the NCBI RefSeq and
1239 GenBank databases and analyzed by FeGenie. *This category is reserved for genes related to the
1240 MtoAB/PioAB gene family.