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ABSTRACT 
In humans, DNA methylation marks inherited from sperm and egg are largely erased 
immediately following conception, prior to construction of the embryonic methylome. 
Exploiting a natural experiment of cyclical seasonal variation including changes in diet and 
nutritional status in rural Gambia, we replicated 134 loci with a common season-of-
conception methylation signature in two independent child cohorts. These robust 
candidates for sensitivity to early environment were highly enriched for metastable 
epialleles, parent-of-origin specific methylation and regions hypomethylated in sperm. 
They tended to co-locate with endogenous retroviral (ERV1, ERVK) elements. Identified loci 
were influenced but not determined by measured genetic variation, notably through gene-
environment interactions. To the extent that early methylation changes impact gene 
expression, environmental sensitivity during genomic remethylation in the very early 
embryo could thus constitute a sense-record-adapt mechanism linking early environment 
to later phenotype.  
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INTRODUCTION 
DNA methylation (DNAm) plays an important role in a diverse range of epigenetic processes 
in mammals including X-inactivation, genomic imprinting and the silencing of transposable 
elements1. DNAm can influence gene expression and can in turn be influenced by molecular 
processes including differential action of methyltransferases and transcription factor 
binding2,3. 
There is extensive remodelling of the human methylome in the very early embryo when 
parental gametic methylation marks are extensively erased before acquisition of 
tissues-specific marks at implantation, gastrulation and beyond4. Given these widespread 
changes in the early methylome, the days following conception may be a window of 
heightened sensitivity to the external environment, potentially stretching back to the period 
before conception coinciding with late maturation of oocytes and spermatozoa for 
methylation marks that (partially) evade periconceptional reprogramming5. 
The effects of early exposures on the mammalian methylome have been widely studied in 
animals but multiple factors make this challenging in humans. Causal pathways are difficult 
to elucidate in observational studies, and even randomised experimental designs are prone 
to confounding due to exposure-related postnatal effects and reverse causation6.   
Here we address these limitations by exploiting a natural experiment in rural Gambia where 
conceptions occur against a background of repeating annual patterns of dry (‘harvest’) and 
rainy (‘hungry’) seasons with accompanying significant changes in energy balance, diet 
composition, nutrient status and rates of infection7,8. We interrogate early embryonic events 
by focussing on metastable epialleles (MEs). First identified in isogenic mice, MEs exhibit 
stable patterns of systemic (cross-tissue) inter-individual variation (SIV) indicating stochastic 
establishment of methylation marks prior to gastrulation when tissue differentiation begins9, 
and several MEs have been shown to be sensitive to periconceptional nutrition in mice10. 
Human MEs thus serve as a useful tool for studying the effects of the early environment on 
DNAm, by enabling the use of easily biopsiable tissues (e.g. blood) that can serve as a proxy 
for systemic methylation, and by pinpointing the window of exposure to the periconceptional 
period.  
In this study we assess the influence of seasonality on DNAm in two Gambian child 
cohorts11,12, enabling robust identification of loci showing consistent effects at the ages of 24 
months and 8-9 years. Through prospective study designs, we capture conceptions 
throughout the year and use statistical models that make no prior assumptions about specific 
seasonal windows driving DNAm changes in offspring. We probe potential connections 
between season of conception (SoC)-associated loci and MEs, and investigate links with 
transposable elements and transcription factors associated with the establishment of 
methylation states in the early embryo. We also assess the influence of genetic variation and 
gene-environment interactions. Finally, by comparing our results with public DNAm data 
obtained from sperm, oocytes and multi-stage human embryos, we investigate links between 
SoC-associated loci, gametic methylation and the establishment of DNAm states in early 
embryonic development.  
The developmental origins of health and disease (DOHaD) hypothesis posits the existence of 
mechanisms linking prenatal nutrition to lifelong metabolic disease5. It has also been 
proposed that epigenetic mechanisms driving phenotypic variation would be advantageous 
in the face of changing environments and, that for such mechanisms to have evolved, the 
propensity to vary should be under genetic control13. Our description of genetically directed 
environmentally-sensitive hotspots providing a durable record of conditions during gametic 
maturation and in the very early embryo fulfils both these predictions. 
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RESULTS 
Association of DNA methylation with Gambian season of conception 
Key characteristics of the Gambian cohorts and samples analysed in this study are provided 
in Table 1 and Figure 1A. To compare year-round DNAm signatures across cohorts we 
focussed on 391,814 autosomal CpGs (‘array background’) intersecting the Illumina HM450 
and EPIC arrays used to measure DNAm in the ENID (‘discovery’) and EMPHASIS (‘replication’) 
cohorts respectively. We modelled the effect of date of conception on DNAm using Fourier 
regression14 which makes no prior assumptions about specific seasonal windows driving 
DNAm changes in offspring (see Methods). 
We began by identifying 2,091 loci (‘discovery CpGs’) showing significant seasonal variation 
in 2-year olds from the discovery cohort with a false discovery rate (FDR) < 10%. We then 
analysed seasonal effects at these loci in 8-9-year olds from the replication cohort. Fourier 
regression models revealed a heterogeneous distribution of year-round methylation peaks 
and nadirs at discovery CpGs in both cohorts (Fig. 1B, Supplementary Table 1). Next, we 
identified a subset of 134 ‘SoC-CpGs’, defined as CpGs from the discovery CpG set with an 
FDR < 10% in the replication cohort (Supplementary Table 2).  
SoC-CpGs showed a highly consistent seasonal pattern across both cohorts (Fig. 1C; Pearson 
correlation R=0.59, p=7.7x10-14 for conception date of modelled methylation maximum). 60% 
of SoC-CpGs exist as singletons, defined as having no SoC-CpG within 1,000bp, and 85% fall 
within clusters of 4 CpGs or fewer (Supplementary Table 3). SoC-CpGs are distributed 
throughout the genome (Supplementary Fig. 1) and include several CpG clusters extending 
over more than 500bp, notably at IGF1R which spans 1,323bp and covers 9 CpGs 
(Supplementary Table 4, Supplementary Fig. 2). Compared to array background and high 
variance controls, SoC-CpGs are highly enriched for intermediate methylation states, most 
notably at 10 MEs previously identified in multi-tissue screens in adult Caucasians (Figure 1D; 
Supplementary Table 5; see Table 2 for details of ME and control loci considered). SoC-CpGs 
are enriched at CpG islands but depleted in open sea and 5’ untranslated regions (proximal 
to transcriptions start sites) compared to controls (Fig. 1E).  
In the discovery cohort, SoC-CpGs and non-replicating discovery CpGs show a distinct pattern 
of methylation maxima for conceptions falling within the July-September period (Fig. 2A left). 
This pattern is particularly marked at SoC-CpGs in both cohorts (Figs. 2A and 2B top), and also 
at MEs generally (even if non-replicating) (Fig. 2B top). The July-September period 
corresponds to the peak of the Gambian rainy season, a strong validation of previous 
Gambian studies in babies and infants that focussed on conceptions at peak seasons only, 
with similar observations of increased methylation in conceptions at the peak of the rainy 
season compared to peak dry season15–17. Methylation minima fall within the February-April 
period, corresponding to the peak dry season (Supplementary Fig. 3).  
Seasonal methylation amplitude, defined as the difference between modelled methylation 
peak and nadir, is also significantly greater at SoC-CpGs, and at replicating and non-replicating 
MEs, compared to controls (Figs. 2A and 2B bottom; Supplementary Table 6; Wilcoxon Rank-
Sum test p-value ranging from 1.2x10-7 to 5.7x10-72). Furthermore, there is evidence of a 
substantial and significant decrease in seasonal amplitude at non-replicating MEs in the older 
cohort (Fig. 2B bottom; median amplitude decrease=4.4%; Wilcoxon p=6.8x10-13), and a small, 
but significant decrease at SoC-CpGs that are not known MEs (median decrease=1.0%; 
p=2.2x10-5; Supplementary Table 6). There is no corresponding amplitude decrease in 
replicating MEs, or in either control set.  
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Compared to array background, both discovery and SoC-CpG sets are highly enriched for 
MEs (approximately 6-fold in discovery set and 17-fold in set of SoC-CpGs; p=3.5x10-28 and 
1.4x10-9 respectively), whereas no significant ME enrichment is observed at high variance 
CpGs (Supplementary Table 7). Finally, intra-individual methylation states are highly 
correlated at a large majority of SoC-CpGs in both cohorts, in marked contrast to discovery 
CpGs and controls (Fig. 2C). As expected, pairwise correlations at the minority of SoC-CpGs 
showing a strong negative intra-individual correlation consist largely of a small number of 
loci with methylation maxima in dry season conceptions (as shown in Fig. 1C). 
 
Early stage embryo, gametic and parent-of-origin specific methylation 
Given the strong enrichment for MEs within the set of SoC-CpGs, we next analysed links to 
methylation changes in early stage human embryos, as we have done previously for MEs 
identified in a whole-genome bisulfite-seq (WGBS) multi-tissue screen18. We aligned our data 
with public reduced representation bisulfite-seq (RRBS) data from human IVF embryos4 and 
obtained informative methylation calls for 67,870 array background CpGs covered at ≥ 10x 
read depth in both inner cell mass (ICM; pre-gastrulation) and embryonic liver (post-
gastrulation) tissues. We found a highly distinctive pattern of increased intermediate 
methylation at SoC-CpGs in post-gastrulation embryonic liver tissue. This strongly contrasted 
with a general trend of genome-wide hyper- and hypo-methylation at highly variable CpGs 
and at loci mapping to array background (Fig. 3A). We observed a similar pattern at MEs (Fig. 
3A; all 1,881 ME CpGs irrespective of their association with SoC – see Table 2). 
We previously observed consistent hypomethylation at ME loci across all gametic and early 
embryonic developmental stages, most notably in sperm18. We tested the latter observation 
at SoC-CpGs by aligning our data with public sperm WGBS data19, restricting our analysis to 
the 389,360 CpGs mapping to array background that were covered at ≥ 10x. All 134 SoC-CpGs 
were covered in the WGBS dataset and these showed a marked decrease in sperm 
methylation, with 83% [76-90%] of replicated loci hypomethylated (methylation <10%) in 
sperm, compared to 49% [48%-50%] and 48% [48-48%] at loci mapping to highly variable 
CpGs and array background respectively (Fig. 3B; brackets are bootstrapped 95% CIs). This 
strong enrichment for sperm hypomethylation was also observed at ME CpGs (Fig. 3B). 
Interestingly, postnatal intermediate methylation states at SoC-CpGs were preserved in both 
Gambian cohorts irrespective of putative sperm methylation states, in contrast to loci 
mapping to high variance and array background CpGs where methylation distributions 
strongly reflected sperm hypomethylation status (Fig. 3C left). 
Our observation of increased sperm hypomethylation at SoC-associated loci, together with 
existing evidence that imprinted genes may be especially sensitive to prenatal exposures20–

22, prompted us to investigate a potential link between SoC-sensitivity and parent-of-origin 
specific methylation (PofOm). A recent study used phased WGBS methylomes to identify 
regions of PofOm in 200 Icelanders23. We analysed 699 of these PofOm CpGs overlapping 
Illumina array background (Table 2) and observed very strong enrichment for PofOm CpGs at 
SoC-CpGs and at all MEs on the array (41- and 15-fold enrichment, p=4.2x10-12 and 1.8x10-36 
respectively; Fig. 3D, green bars; Supplementary Table 8). PofOm enrichment at SoC-CpGs is 
partially driven by a large (8 CpG) region at IGF1R, and a single replicating ME-CpG proximal 
to the human imprinted 14q32 region (Supplementary Table 2). We also found evidence of 
significant but smaller PofOm enrichment amongst high variance CpGs (Fig. 3D; 
Supplementary Table 8). 
Regions of PofOm detected in postnatal samples tend to be differentially methylated in 
gametes23, and may thus have evaded the widespread epigenetic reprogramming that occurs 
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in the pre-implantation embryo24. We tested this directly by interrogating data from a whole-
genome screen for germline differentially methylated regions (gDMRs) that persist to the 
blastocyst stage and beyond25. In this analysis, gDMRs were defined as contiguous 25 CpG 
regions that were hypomethylated (mean DNAm < 25%) in one gamete and hypermethylated 
(mean DNAm > 75%) in the other, taking methylation variability into account. We began by 
observing a very large enrichment for oocyte (maternally methylated) gDMRs, but not sperm 
gDMRs, at all PofOm loci identified by Zink et al.23 (Fig. 3D, right; Supplementary Table 8), 
confirming previous observations of an excess of PofOm loci that are methylated in oocytes 
only23. We found a particularly strong 122-fold enrichment for oocyte gDMRs (oo-gDMRs) 
persisting in placenta. We next interrogated SoC-CpGs and MEs and again found evidence for 
strong enrichment of oocyte, but not sperm gDMRs, at these loci (5.6-fold enrichment for oo-
gDMRs, p=6.4x10-8; Fig. 3D, left; Supplementary Table 8). Once again this enrichment was 
particularly marked at oo-gDMRs persisting in placenta (11-fold enrichment, p=2.5x10-8; Fig. 
3D, left; Supplementary Table 8). As with sperm hypomethylation, enrichment of oo-gDMRs 
at SoC-CpGs is partially driven by multiple CpGs at IGF1R (Supplementary Table 2). The 14q32 
ME-CpG is not classified as an oo-gDMR by Sanchez-Delgado et al.25 (Fig. 3C bottom right), 
although it shows approximately 50% methylation in both Gambian cohorts as expected for 
loci with PofOm. Note that a large majority of SoC-CpGs that are hypomethylated in sperm 
are not oo-gDMRs (i.e. they are not hypermethylated in oocytes) (Fig. 3C, bottom right), 
suggesting that regional sperm hypomethylation is a key factor associated with sensitivity to 
periconceptional environment at these loci. 
 
Enrichment of transposable elements and transcription factors associated with genomic 
imprinting 
Variable methylation states at MEs are associated with neighbouring transposable elements 
(TEs) in murine models26,27, and we have previously observed enrichment for specific proximal 
endogenous retroviruses (ERV1 and ERVK) in screens for human MEs18,22. Here we found 
evidence for enrichment of human ERV1 and ERVK at SoC-CpGs, and for 4 ERV classes at MEs 
mapping to array background: ERV1, ERVK, ERVL and ERV-MaLR (Supplementary Table 7). We 
also observed significant enrichment for these ERV classes amongst highly variable loci 
(Supplementary Table 7). 
Enrichment for PofOm at SoC-CpGs loci suggests a potential link to mechanisms implicated in 
the maintenance of PofOm and genomic imprinting in the early embryo. Our previous analysis 
of MEs identified from WGBS data found enrichment for proximal binding sites for 3 
transcription factors (TFs: CTCF, ZFP57 and TRIM28) linked to such mechanisms28. Here we 
found no evidence for enrichment of these TFs at SoC-CpGs, but we did find evidence of 
enrichment for proximal CTCF and ZFP57 binding at MEs mapping to array background 
(Supplementary Table 7), partially confirming ME enrichment for these TFs at ME loci on 
lllumina arrays. 
 
Influence of genotype and gene-environment interactions 
Genetic variation, primarily in cis, is a major driver of inter-individual variation in DNAm29, 
and there is evidence that CpG sites with systemic inter-individual variation (SIV), a hallmark 
of MEs, show higher levels of heritability30.  
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A previous analysis quantified methylation variance explained by additive genetic variation, 
and common and non-shared environment in 1,464 twin pairs from the British E-Risk study30. 
We began by reproducing the result from Hannon et al.30 that non-shared environment 
(which includes measurement error) explains the major part of methylation variance in array 
background (Fig. 4A). We further found a marked increase in methylation variance explained 
by additive genetic effects at SoC-CpGs and high variance CpGs on the array (Fig. 4A). On the 
assumption that the former will be enriched for MEs exhibiting SIV, this supports the finding 
by Hannon et al. of increased heritability at loci that are more correlated in blood and brain, 
suggestive of SIV30. 
We next directly explored the influence of genotype and environment at SoC-CpGs in the 
EMPHASIS (replication) cohort, for which we had data on 293 individuals measured at 286,552 
polymorphic variants on the Illumina Global Screening Array (GSA)12. Following a similar 
strategy to that used in a recent study in the GUSTO cohort31, we performed a screen for 
genetic effects on DNAm. We began by analysing genome-wide SNP-DNAm associations at 
SoC-CpGs, and at a random sample of array background and high-variance control CpGs (see 
Table 2) to identify putative methylation quantitative trait loci (mQTL). We also tested for 
gene-environment interactions (GxE) on DNAm (see Methods for further details).  
We next selected the most significant (‘winning’) mQTL (G1) and GxE (G2) SNP for each SoC-
CpG (Supplementary Table 9). 8.2% of SoC-CpGs had a significant associated mQTL 
(FDR<10%). No significant GxE associations were identified, although it should be noted that 
this analysis had reduced power to detect these. A small number of winning G1 and G2 SNPs 
mapped to two CpGs (G1: 6 SNPs; G2: 3 SNPs), but none mapped to more than two 
(Supplementary Table 10). Furthermore, no pattern of SNP clustering was discernible 
(Supplementary Fig. 4). Together these observations suggest that DNAm at SoC-CpGs is not 
primarily driven by genetic variants at any specific locus covered by the GSA. 
To assess the potential for genetic confounding of SoC-associated DNAm patterns, we tested 
each winning G1 and G2 SNP for association with SoC using 5 different genotypic models. 
Accounting for the number of SNPs tested, only one of the 258 unique G1 and G2 SNPs passed 
a Bonferroni-adjusted significance threshold (G1 SNP: rs11922293; Supplementary Table 11). 
This mQTL SNP was associated with a single SoC-CpG and was not close (<10Mbp) to any other 
winning G1 SNP, confirming no evidence of widespread confounding of SoC-associated DNAm 
by genetic loci on the GSA. 
We next ran a series of Fourier regression models to determine the relative proportions of 
methylation variance explained by E (periconceptional environment only), G1 (mQTL only) 
and G2xE (including E and G2 main effects, but excluding G1 main effects) models (see 
Methods for further details). Results for SoC-CpGs were compared to randomly selected high 
variance and control CpGs (see Table 2). Variance explained by E, G1 and G2xE models was 
assessed using adjusted R2 values to account for increasing model complexity. In each case 
adjusted R2 values were compared to a baseline model that included the same set of 
covariates (principal components, age and sex) used in Fourier regression models for the main 
seasonality analysis. At SoC-CpGs, mQTL (G1) models explained significantly more 
methylation variance than seasonality alone (E models). However, gene-environment (G2xE) 
models explained significantly more methylation variance than both G1 and E models (Fig. 
4B, Supplementary Table 12). A formal assessment of ‘winning models’, using the Akaike 
Information Criterion (AIC) to account for differences in model complexity determined that 
G2xE models provided the best fit for 94% of SoC-CpGs, compared with 33% and 29% for 
random and high variance controls respectively (Fig.4B inset).  
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As expected, year-round DNAm at a CpG where G1 is the winning model indicates a strong 
mQTL effect on mean methylation (Fig. 4C, bottom left). In contrast, at a CpG where GxE 
effects dominate, the strength of the seasonality effect is modified by genotype (Fig. 4C, top 
left; dashed lines); revealing a strong seasonal pattern that is not apparent when modelling 
data unstratified by genotype (same figure, solid red line). Scatter plots of underlying 
individual-level DNAm data adjusted for baseline covariates support these observations (Fig. 
4C right). 
A recent analysis of GxE effects in the GUSTO cohort revealed a similar dominance of GxE 
effects at a subset of variable CpGs when considering a range of in utero environmental 
effects including maternal BMI, smoking and maternal depression31. Speculating that these 
loci may be similarly sensitive to periconceptional environment, we tested SoC-CpGs and 
controls for enrichment of 889 GxE CpGs identified by Teh et al.31 that overlapped array 
background. We observed a highly significant 17-fold enrichment of these GxE CpGs amongst 
SoC-CpGs (p=1.6x10-05; Supplementary Table 7). We found a smaller, but still highly significant 
7-fold enrichment amongst the much larger set of the top 5% of CpGs by methylation variance 
(p=1.9x10-97), suggesting that enrichment for Teh et al. GxE CpGs amongst SoC-CpGs is not 
purely driven by Teh et al.’s focus on highly variable CpGs. 
 
DISCUSSION 
We have exploited a natural experiment in rural Gambia whereby human conceptions are 
‘randomised’ to contrasting environmental (especially dietary) conditions to examine 
whether these differential exposures leave a discernible signature on the offspring 
methylome. We identified 134 ‘SoC-CpGs’ with strong evidence of sensitivity to season of 
conception in independent, different-aged cohorts. Importantly, these cohorts have 
contrasting confounding structures, notably with regard to the timing of sample collection, 
the latter eliminating potential confounding due to seasonal differences in leukocyte 
composition. These results, derived from analysis of Illumina array data, suggest there may 
be many more hotspots sensitive to periconceptional environment across the human 
methylome. 
This analysis contrasts with previous epigenetic studies in this setting that have focussed on 
single cohorts and analysed methylation differences between individuals conceived at the 
peaks of the Gambian dry and rainy seasons only15–17,22,32. 
Multiple lines of evidence support the notion that methylation states at these loci are 
established in the early embryo. First, they are highly enriched for human MEs and related 
loci with characteristic methylation signatures suggestive of establishment early in embryonic 
development17,18. Second, like MEs, season-associated loci exhibit highly unusual methylation 
dynamics in early stage embryos8. Third, also in common with MEs, they have distinctive 
gametic methylation patterns, notably an increased proportion displaying hypomethylation 
in sperm18. 
Greater methylation in offspring conceived at the peak of the Gambian rainy season is 
consistent with previous findings at putative MEs and correlated regions of SIV in this 
population15–17,22,32,33. This observation is now greatly strengthened by the application of 
Fourier regression to model the effect of periconceptional environment in year-round 
conceptions – an approach that makes no prior assumption of where methylation peaks and 
nadirs may occur. The number of identified SoC-CpGs is also substantially increased in this 
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study, and comparisons with high variance and array-wide control CpGs increase confidence 
that these findings are not statistical artefacts. 
A large majority of SoC-CpGs have not previously been identified as MEs, but given the 
supporting evidence described above, we speculate that many are likely to be so. In particular 
evidence of an attenuation of SoC effects at known MEs in older children suggests that 
screens for MEs in adults used in this analysis are likely to have missed signatures of 
metastability that are present in early postnatal tissues. SoC effect attenuation could also 
explain the lack of replication of SoC associations at the majority of CpGs from the discovery 
set. Importantly, this would have implications for detecting the effect of periconceptional 
exposures on DNAm in samples collected beyond the neonatal and early childhood periods, 
an important consideration for epigenetic epidemiological studies since non-persisting 
methylation differences could still have a significant impact on early developmental 
trajectories with life-long consequences34,35. 
Methylation states at SoC-associated loci which are distributed throughout the genome are 
highly correlated within individuals, strongly suggesting that a common mechanism is at play. 
This contrasts with a recent study of murine MEs located within intracisternal A particle 
insertions (IAPs, of which the Agouti locus is a paradigm example36), where no intra-individual 
correlation between stochastic methylation states was observed, although it is important to 
note that the mice were not exposed to different environments27. 
Potential insights into mechanisms linking periconceptional environment to DNAm changes 
in postnatal tissues come from our investigations of the methylation status and genomic 
context of SoC-CpGs.  
First, we observed a strong overlap of SoC-CpGs with regions that are known to be 
hypomethylated in sperm. A minority of these loci are hypermethylated in oocytes with 
parent-of-origin-specific methylation persisting in postnatal tissues. This latter observation 
aligns with a growing body of evidence linking early environment, notably nutritional factors 
involved in one-carbon (C1) metabolism with methylation at imprinted regions20,21. Indeed 
we have previously noted an association between season of conception and several C1 
metabolites at a maternally imprinted region at the small non-coding RNA VTRNA2-122, 
consistent with evidence of ‘polymorphic imprinting’ linked to prenatal environment at this 
locus23,37. Furthermore, we previously found strong enrichment for proximal binding sites of 
several transcription factors (TFs) associated with the maintenance of PofOm in the early 
embryo at MEs18, although we were unable to replicate this at SoC-associated loci identified 
in this study. This might reflect the relatively small proportion of PofOm loci in the set of SoC-
CpGs, or factors related to the biased methylome coverage of Illumina arrays. More targeted 
experimental work is required to determine the extent of SoC effects at imprinted loci.  
Second, a feature of SoC-CpGs, including those with no evidence of PofOm, is a strong 
enrichment for ERV elements, most notably ERV1 and ERVK. This was also observed at MEs 
on the Illumina array, confirming our previous observations18,22. Enrichment of ERVs at SoC-
CpGs is notable since most environment-sensitive mouse MEs are associated with IAPs (which 
are rodent-specific ERVs)27, and Krab zinc-finger protein (KZFP)-mediated repression of 
transposable elements (TEs) including ERVs has been proposed as a driver of the rapid 
evolution of gene regulation38. The KZFP ZFP57 is particularly interesting in this respect since 
its binding to DNA is linked both to repression of TEs and to the maintenance of genomic 
imprints in the pre-implantation embryo20,39. We previously identified a putative SoC-
associated DMR in the ZFP57 promoter in blood from Gambian infants22, and a proximal CpG 
21kbp from this DMR is in the set of discovery CpGs in this study, indicating a putative SoC 
association in Gambian 2 year-olds. It is possible that non-replication of the SoC-association 
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at ZFP57 in the older Gambian cohort reflects the more general attenuation of SoC effects 
described above. Interestingly there is some evidence that the ZFP57 DMR, which lies 3kb 
upstream of the transcription start site, is established in the early embryo17. Given the 
important function of ZFP57 in pre-implantation methylation dynamics, its potential role as 
an environmentally-sensitive regulator of genome-wide SoC effects on DNA remains an open 
question.  
Third, DNAm at SoC-associated loci is highly enriched for intermediate methylation states, in 
strong contrast to array-wide CpG methylation and to high variance CpGs in the discovery 
cohort. Intermediate methylation at MEs is observed in Gambians and in non-Africans15,16,40–

42, and this coincides with a similar observation at MEs in post-gastrulation embryonic 
tissues18. This latter observation includes measurements from single conceptuses, with 
methyl-seq read-level analyses indicating that intermediate methylation is driven by 
extended regions of variegated methylation states within an individual18.  
Taken together, the above evidence suggests that a periconceptional environmental 
exposure may perturb methylation by nudging the ratio of methylated to unmethylated 
alleles at hotspots of variegated and/or parent-of-origin-specific methylation in the early 
post-gastrulation embryo. These hotspots appear to be concentrated in regions that are 
hypomethylated in sperm, and, in the case of PofOm, additionally hypermethylated in 
oocytes. In the latter case, methylation states could be driven by an environmentally-sensitive 
gain of methylation on the paternal allele that is propagated through development; 
incomplete reprogramming on the maternal allele leaving residual traces or modest de novo 
methylation at some later point. A deeper understanding of mechanisms will require further 
investigation in cell and animal models.  
Several SoC-CpGs with evidence of PofOm map to an intronic region of the IGF1R gene. Zink 
et al.23 were unable to demonstrate PofO allele-specific expression (PofO-ASE) in this region 
although others have found evidence of maternal imprinting of an intronic lncRNA at this 
gene in cancerous cells43,44. Interestingly, loss of IGF1 receptors gives rise to a major decrease 
in expression at multiple imprinted genes in mice suggesting a pathway by which IGF1R might 
regulate growth and metabolism during early development45. IGF1R signalling is implicated in 
fetal growth, glucose metabolism and cancer46–48, and DNAm differences at IGF1R have been 
observed in birthweight-discordant adult twins49. Another SoC-associated locus with PofOm 
is approximately 300kbp from the 14q32 DLK1-MEG3 imprinted region, close to the imprinted 
C14MC microRNA cluster50, and within 80kb of a region with PofO-ASE23. Epigenetic and 
transcriptional changes at several C14MC microRNAs have been implicated in cancer51–53, and 
genetic and epigenetic mutations in the 14q32 region are linked to imprinting disorders 
including Temple syndrome54,55. 
Another notable SoC-CpG is within 1000bp of a metastable variably methylated region (VMR) 
at the intron2/exon3 boundary of the POMC gene. POMC is a key regulator of appetite 
through the production of melanocyte-stimulating hormones in the hypothalamus42. 
Hypermethylation at the VMR reduces POMC expression by interfering with P300 TF binding 
at the intron2/exon3 boundary of the gene56, and is linked to the presence of a primate-
specific Alu element (transposon)57. This region has previously been associated with SoC and 
certain C1 metabolites in Gambian infants42, and is associated with obesity in children and 
adults42,56. It is interesting to note that hypermethylation of the POMC SoC-CpG and the VMR 
occurs in conceptions at the height of the Gambian rainy season, a period also known as the 
‘hungry season’ when stocks from the previous year’s harvest are depleted. A link between 
POMC VMR hypermethylation established in the early embryo that persists into postnatal life, 
reduced POMC expression and corresponding reduced satiety signalling could therefore 
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constitute a ‘predictive-adaptive-response’, whereby an individual’s early developmental 
trajectory is tuned to its anticipated postnatal environment58. One could then speculate that 
SoC-CpGs, as loci with evidence of SoC effects that persist into later childhood (i.e. that 
replicate in the older cohort), are specifically designed for that purpose. 
DNAm is strongly influenced by genotype and the latter is therefore a potential confounder 
when studying the effects of environmental exposures in human populations. A strength of 
our quasi-randomised Gambian seasonal model is that it minimises the potential for genetic 
confounding of modelled seasonal DNAm patterns, on the assumption that the timing of 
conceptions is not linked to genetic variants influencing DNAm. However, it is still possible 
that such variants might confound our observations, for example if they promote embryo 
survival under conditions of environmental stress. We tested this possibility using genetic 
data available for the EMPHASIS (replication) cohort, and found no evidence of genetic 
associations driving inter-individual methylation differences at multiple SoC-associated loci in 
cis or trans. 
We did however uncover interesting evidence of gene–periconceptional-environment 
interactions at SoC-CpGs that explained a greater proportion of methylation variance than 
environmental or direct genetic factors alone. While our analysis was constrained by reduced 
power and by limited coverage of the genotyping array, confidence in this observation is 
increased through our comparison of genetic effects at SoC-CpGs with high variance and 
array-wide controls. The potential dominance of GxE effects was supported by very strong 
enrichment for CpGs showing gene–in utero environment interaction effects that similarly 
explained a greater proportion of methylation variance in a study of the Singaporean GUSTO 
cohort31. Widespread GxE interaction effects could manifest through the action of 
environmental factors on gene variant-associated transcription factors, although once again 
we found no evidence of clustered genetic variants driving these effects at multiple SoC-CpGs.  
We have previously argued that the definition of MEs should be extended to include genomic 
regions whose DNAm state is under partial but non-deterministic genetic influence in 
genetically heterogeneous human populations18, and we would argue that the above 
observations at SoC-CpGs that exhibit many of the characteristics of MEs support this. Further 
analysis in larger datasets with high-resolution genotyping combined with functional analysis 
using cell models will be required to fully understand the relative contributions of 
environment and genetics to DNAm variation at regions of the type highlighted in this study. 
There is increasing interest in the phenomenon of methylation variability as a marker of 
disease and of prenatal adversity59,60, and in genetic variation as a potential driver of 
methylation variance61. In the context of this study, widespread GxE interaction effects on 
DNAm would lead to reduced power to detect SoC associations, suggesting that these 
associations will be easier to detect in adequately powered analyses stratified by genotype. 
A further intriguing possibility suggested by our gene-environment interaction analysis is that 
certain genetic variants could have been selected through their ability to enable graded, 
environmentally-responsive methylation patterns at MEs and SoC-associated loci that are 
able to sense the periconceptional environment, record the information, and adapt the 
phenotype accordingly. This mechanism was previously proposed in a theoretical population 
genetic model of selectable phenotypic variation in changing environments13. As discussed 
with reference to periconceptional programming of the POMC gene above, such a mechanism 
would be adaptive where phenotypic development is directed to better fit the anticipated 
future environment, but may otherwise become maladaptive, leading to later disease, if the 
environment changes5. 
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Materials and Methods 
Gambian cohorts and sample processing 
Detailed descriptions of the Gambian cohorts analysed in the season of conception study are 
published elsewhere11,12. Briefly, for the younger cohort, blood samples from 233 children 
aged 2 years (median[IQR]: 731[729,733] days old) were collected from participants in the 
Early Nutrition and Immune Development (“ENID”) study11. DNA was extracted, bisulfite-
converted and hybridised to Illumina HumanMethylation450 (hereafter “HM450”) arrays 
following standard protocols (see Van Baak et al.17 for further details). For the older cohort, 
DNA was extracted from blood samples from 289 children aged 8-9 (9.0[8.6,9.2] years) 
participating in the Epigenetic Mechanisms linking Pre-conceptional nutrition and Health 
Assessed in India and Sub-Saharan Africa (“EMPHASIS”) study12, and was bisulfite-converted 
and hybridised to Illumina Infinium Methylation EPIC (hereafter “EPIC”) arrays, again using 
standard protocols. 
 
Methylation array pre-processing and normalisation 
Raw intensity IDAT files from the HM450 and EPIC arrays were processed using the meffil62 
package in R using standard meffil defaults. Briefly, this comprised probe and sample quality 
control steps (filtering on bisulfite conversion efficiency, low probe detection p-values and 
bead numbers, high number of failed samples per probe, high number of failed probes per 
sample, correlation between technical replicates); methylation-derived sex checks; removal 
of ambiguously mapping (i.e. cross-hybridising) probes; removal of probes containing SNPs at 
the CpG site or at a single base extension; and removal of non-autosomal CpGs. Following 
filtering, methylation data was normalised with dye-bias and background correction using the 
noob method63, followed by Functional Normalisation to reduce technical variation based on 
principal component analysis of control probes on the arrays64. After pre-processing and 
normalisation, methylation data comprised methylation Beta values for 421,026 CpGs on the 
HM450 array for 233 individuals from the ENID cohort, and 802,283 CpGs on the EPIC array 
for 289 individuals from the EMPHASIS cohort. Finally 391,814 CpGs intersecting both arrays 
were carried forward for statistical analysis. 
 
Statistical modelling 
Variation of DNAm with date of conception was modelled using Fourier regression14,65. This 
models the relationship between a response variable (here DNAm) and a cyclical predictor 
(here date of conception). The latter is considered cyclical, since the modelled effect for an 
individual conceived on the 31st December should be ‘close’ to that for an individual 
conceived on the 1st of January. This is achieved by deconvolving the predictor into a series 
of pairs of sin and cosine terms, and obtaining estimates for the regression coefficients b and 
g in the following model: 
 

𝑀"# = %𝛼"'

(

')*

+%𝛽-#sin(𝑟𝜃") + γ-#cos(𝑟𝜃")
8

-)*

+ 𝜀"#  

 
Where, for each individual i and CpG j: 
Mij is the logit-transformed methylation Beta value66; 
aik is the kth of m adjustment covariates; 
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qi is the date of conception in radians in the interval [0, 2p], with 1st January = 0 and 31st 
December = 2p, modelled as n pairs of Fourier terms, sin qi + cos qi + ... + sin nqi + cos nqi; 
br and gr are the estimated regression coefficients for the rth sin and cosine term 
respectively; 
and eij is the error term. 

With a single pair of Fourier terms (i.e. n=1), this gives a sinusoidal pattern of variation, with 
a single maximum and minimum whose phase (position) and amplitude (distance between 
maximum and minimum) is determined by b1 and g1, with the constraint that the maximum 
and minimum are 6 months apart. More complex patterns of seasonal variation are afforded 
by higher frequency pairs of Fourier terms (r>1). 
For both cohorts, adjustment covariates included child sex, and the first six principal 
components (PCs) obtained from unsupervised principal component analysis (PCA) of the 
normalised methylation M-values. The latter was used to account for unmeasured and 
measured technical variation (due to bisulfite conversion sample plate, array slide etc) and 
for cell composition effects (see Supplementary Tables 13 and 14). 450k Sentrix Column was 
included as an additional adjustment covariate for the ENID cohort since this was not robustly 
captured by any of the first 6 PCs (Supplementary Table 13). Child age was included as an 
additional adjustment covariate for the EMPHASIS cohort, since child ages ranged from 8 to 
9 years, plus maternal nutritional intervention group (see Chandak et al.12 for further details).  
For CpG j, coefficient estimates bj , gj and p-value pj were determined as follows: 

1. Fit model with a single pair of Fourier terms (n=1) using lm() in R to obtain estimates 
for b1 and g1. Determine model goodness-of-fit by likelihood ratio test (LRT using 
lrtest() in R) by comparing the full model with a baseline model containing adjustment 
covariates only. Determine model p-value (p1) from the corresponding LRT chi-
squared statistic. 

2. If p1 < 0.05, fit a second model with two pairs of Fourier terms (n=2) to obtain 
estimates b1* , b2* and g1* , g2*. Determine model goodness-of-fit by LRT comparing this 
model with the model in 1. above. Model p-value (p2) is the corresponding LRT chi-
squared statistic. 

3. If p1 ≥ 0.05: pj = p1; and select model with coefficients bj = b1 , gj = g1  
if p1 < 0.05: 
    if p2 < 0.001: pj = p2; and select model with coefficients bj = b1* , b2* and gj = g1* , g2*  
    if p2 ≥ 0.001: pj = p1; and select model with coefficients bj = b1 , gj = g1  

 
Identification of ‘discovery CpGs’ and ‘SoC-CpGs’ 
From the analysis in the discovery (ENID) cohort, CpG p-values as described above were used 
to compute a false discovery rate for each CpG accounting for multiple testing (assuming 
391,814 independent tests corresponding to the number of loci in array background) using 
the Benjamini & Hochberg method (p.adust() in R with method=’fdr’). 2,091 CpGs had a 
FDR<10% and formed the set of discovery CpGs. 
In the replication analysis, CpGs from the discovery CpG set were analysed in the replication 
(EMPHASIS) cohort using the same regression modelling approach. After accounting for 2,091 
multiple tests, 134 CpGs had a FDR<10% and these formed the set of replicating ‘SoC-CpGs’. 
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Additional modelling of seasonal variation in blood cell composition  
Seasonal variation in blood cell composition was modelled by Fourier regression with sex 
(ENID+EMPHASIS) and age (EMPHASIS only) as adjustment covariates. Cell count estimates 
using the Houseman method67 were obtained using the estimateCellCounts() from minfi in R. 
In each case the best fitting model with one or two pairs of Fourier terms was determined by 
LRT. Best fit models indicated no consistent or marked seasonal differences within and 
between cohorts (Supplementary Figure 5). 
 
CpG sets considered in analyses 
Summary information on curated sets of CpGs considered in the analyses is provided in Table 
2. Further information on these is provided below. 

i. 1,881 ME CpGs overlap one or more of the following curated sets of loci, all of 
which have evidence of systemic inter-individual variation of DNAm with 
establishment in the early embryo: putative MEs identified in a multi-tissue WGBS 
screen in Kessler et al.18; and CpGs exhibiting ‘epigenetic supersimilarity’ and/or 
SIV described in Van Baak et al.17. 

ii. 699 parent-of-origin-specific CpGs (PofOm CpGs) overlapping 229 regions with 
PofOm identified in Supplementary Table 1 from Zink et al.23. 

iii. 889 GxE CpGs listed in Teh et al.31 Supplementary Table 6. These are highly variable 
loci where methylation variance is best explained by GxE models, with E covering 
a range of in utero exposures. 

 
Early stage embryo and sperm methylation data 
RRBS methylation data from Guo et al.4 was downloaded from GEO (accession number 
GSE49828). Only CpGs covered at >= 10x in pre-gastrulation inner cell mass and post-
gastrulation embryonic liver were considered in this analysis. Further details are provided in 
Kessler et al.18. 
Sperm methylation data from Okae et al.19 was downloaded from the Japanese Genotype-
phenotype Archive (accession number S00000000006); only CpGs covered at ≥ 10x were 
considered in this analysis. 
 
Germline gDMRs 
gDMRs, defined as contiguous 25 CpG regions that were hypomethylated (mean DNAm +1SD 
< 25%) in one gamete and hypermethylated (mean DNAm -1SD > 75%) in the other, were 
previously identified by Sanchez-Delgado et al.25. Persistence of PofOm to the blastocyst and 
placental stages was established by identifying overlappig intermediately methylated regions 
in the relevant embryonic tissues, with confirmation of PofOm expression at multiple DMRs25. 
See Sanchez-Delgado et al.25 for further details. 
 
Transposable elements and transcription factors 
Transposable element regions determined by RepeatMasker were downloaded from the 
UCSC hg19 annotations repository. Further details on these and ZFP57, TRIM28 and CTCF 
transcription factor binding sites in human embryonic kidney and human embryonic stem 
cells used in this analysis are described in Kessler et al.18. 
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Gene and Gene-environment interaction analyses 
Gene-DNAm association analysis were performed on all 289 individuals from the EMPHASIS 
(replication) cohort, since this was the only cohort with associated genetic data. 134 SoC-
CpGs, plus a random sample of 2,091 array background and high variance controls were 
considered in this analysis (see Table 2). Genotypes were obtained from the Illumina Infinium 
Global Screening Array-24 v1.0 Beadchip  (Illumina, California, U.S.) following standard 
protocols68, with 642,824 SNPs available for analysis after QC of which 286,552 were 
polymorphic in this dataset. To minimise the influence of low frequency homozygous variants 
in linear models, analysis was restricted to SNPs with 10 or more homozygous variants, 
resulting in a final dataset comprising 174,489 SNPs with a minimum minor allele frequency 
(MAF) of 11.4%. 
 
Identification of ‘winning’ gene (G1) and gene-environment interaction (G2) SNPs 
Environment (E), and genome-wide genetic (G) and gene-environment (GxE) associations 
were assessed using the GEM package from Bioconductor69, following a similar strategy to 
that described in Teh et al.31.  
 
In total, 3 separate models were considered for each CpG, j: 
 

1. E-model: 

Mj ~ covs + sinq + cosq 
This is the same model used in the main Fourier regression analysis for the EMPHASIS 
cohort described above, with seasonality modelled as one pair of Fourier terms (sinq, 
cosq) and covs corresponding to the same adjustment covariates used in the main 
analysis. 
 

2. G-model: 

Mj ~ covs + cosq + G 

when sinq is the most significant Fourier term in E-model 

OR 
Mj ~ covs + sinq + G 

when cosq is the most significant Fourier term in E-model. 
Here, G is SNP genotype coded as allelic dosage (0,1,2) and covs are adjustment 
covariates as described above. In each case the less significant Fourier term from the 
E-model is included as an additional covariate to ensure unbiased comparison 
between E, G and GxE models. 
 

3. GxE-model 

Mj ~ covs + cosq + G + G x sinq 

when sinq is the most significant Fourier term in E-model 
OR 

Mj ~ covs + sinq + G + G x cosq 
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when cosq is the most significant Fourier term in E-model. 
Here, G and covs are as described above. Again, in each case the less significant Fourier 
term from the E-model is included as an additional covariate to ensure unbiased 
comparison between E, G and GxE models. 
 

For each CpG the winning ‘G1’ and ‘G2’ SNPs were selected as the SNP with the smallest p-
value for G and GxE model coefficients respectively. Models with winning G1 and G2 SNPs are 
referred to as G1 and G2xE models below. 
 
E, G1 and G2xE model comparisons 
To account for model complexity (i.e. differing numbers of terms in regeression models), 
comparisons of methylation variance explained by E, G1 and G2xE models (Figure 4b bar plots, 
Supplementary Table 12) are based on adjusted R-squared values. In each case, for each CpG  

DadjR2 = adjR2
model – adjR2

cov 
Where adjR2

model is the adjusted R2 value for the full model, and adjR2
cov is the adjusted R2 for 

the covariate-only model, including the less-significant Fourier term as described above. In 
the case of E-only models, the full model includes the most significant Fourier term (sin or 
cosine), and the covariate-only model includes all other model covariates including the less 
significant Fourier term. 
Winning models (Figure 4b pie charts) are those with the lowest value of the Akaike 
Information Criterion (AIC70). 
 
All bootstrapped confidence intervals presented in this paper use 1,000 bootstrap samples. 
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TABLES 
 

Table 1. Gambian seasonality-methylation analysis: cohort characteristics 

 
 
cohort 

sample 
size 

Age at 
sample 
collection % male tissue methylation array 

ENID 
(discovery) 233 2y 50.6 peripheral blood Illumina Infinium HM450 

EMPHASIS 
(replication) 289 8-9y 54.3 peripheral blood Illumina Infinium MethylationEPIC 
 
 
Table 2. CpG sets considered in this analysis. See Methods for further details. 

CpG set  Number of CpGs  Notes 

Array background 391,814 Intersection of CpGs on Illumina HM450 (discovery) 
and EPIC (replication) cohort arrays, post QC 

Discovery CpGs 2,091 SoC-associated loci identified in the discovery cohort 
(FDR<10%) 

SoC-CpGs 134 ‘Discovery CpGs’ with significant seasonal variation in 
the replication cohort (FDR<10%) 

Metastable 
epialleles (MEs) 

1,881 ME CpGs identified in multi-tissue screens by Van Baak 
et al17 and Kessler et al18 overlapping array background 

Parent-of-origin 
specific methylation 

699 Parent-of-origin specific methylation loci identified in 
Zink et al23 overlapping array background 

GxE CpGs 889 CpGs with evidence of Gx(in utero)E interactions 
identified in Teh et al.31 overlapping array background 

High variance  
top 5% 

18,281 CpGs in the top 5% by methylation variance in the 
discovery cohort 

High variance 
Controls* 

2,091 Random sample of 2,091 CpGs from the ‘high variance 
top 5%’ set 

Random controls* 2,091 Random sample of 2,091 CpGs from array background 

* random subsamples of equal size to the discovery CpG set. Used for computational tractability in 
modelling analyses 
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Figure 1. Association of periconceptional environment with DNA methylation 1. A: Relationship between
date of conception and date of sample collection for discovery and replication cohorts in the Gambian seasonality-
DNAm analysis. DNAm differences associated with season of conception are potentially confounded by season of
sample collection in the discovery cohort (ENID - top), since samples are collected at age 2yrs. This is not the case
in the replication cohort (EMPHASIS - bottom) where all samples are collected in the Gambian dry season. B:
Modelled seasonal change in methylation for 2,091 discovery CpGs in the discovery (top) and replication (bottom)
cohorts. 61 ME CpGs are marked in red and the remaining 2,030 in blue. C: Conception date of modelled
methylation maximum in each cohort for 134 replicated CpGs. D: Distribution of mean DNAm values (data from
both cohorts combined) at i) SoC-CpGs that are known MEs (n=10 marked in red); ii) other SoC-CpGs (n=124,
blue); and iii) high variance and array background CpGs as controls (n=18,281 & 391,484; light/dark grey
respectively). E: Distribution of SoC-CpGs and controls with respect to CpG islands (left) and gene locations
(right). Error bars are bootstraped 95% CIs. N / S Shore / Shelf: North / South Shore / Shelf respectively (regions
proximal to CpG Islands defined in Illumina manifest).
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Figure 2. Association of periconceptional environment with DNA methylation 2. A: Date of
modelled DNAm maximum vs seasonal amplitude in each cohort for (replicating) SoC-CpGs (n=134,
dark blue) and non-replicating discovery CpGs (n=1,957, light blue). Seasonal amplitude is defined as
the distance between modelled methylation peak and nadir (see inset). B: Date of conception at
modelled methylation maxima (top) and seasonal amplitude (bottom) for i) SoC-CpGs that are known
MEs (red); ii) other replicating CpGs (blue); iii) non-replicating MEs in discovery set (pink) and iv)
random and high variance controls (light/dark grey respectively). C: Distribution of intra-individual
pairwise methylation correlations for CpG sets in discovery (left) and replication (right) cohorts.
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Figure 3. Early embryo DNA methylation dynamics at SoC loci. A: Proportion of intermediately
methylated (10-90%) sites in pre-gastrulation inner cell mass (ICM) and post-gastrulation embryonic liver
(emb liver) tissues, measured in RRBS embryo methylation data from Guo et al.4. Data comprises 67,870
CpGs covered at >=10x in both ICM and emb liver by Guo et al. that overlap array background, including 36
SoC-CpGs and 470 ME CpGs. Error bars represent bootstrapped 95% confidence intervals. B: Proportion
of hypomethylated sites (methylation <10%) using sperm WGBS data from Okae et al.19 Data comprises
389,360 CpGs covered at >10x and includes all 134 SoC-CpGs and 1,881 ME CpGs. Bootstrapped CIs as
above. C: (Left) Mean methylation at SoC-CpGs and controls, measured across all n=522 individuals in
both cohorts, sub-divided according to whether loci are hypomethylated (top) or not hypomethylated
(bottom) in sperm in the Okae et al. dataset. (Right) as left but further sub-divided according to whether loci
or oocyte gDMRs (top) or not (bottom). CpGs mapping to the IGF1R and 14q32 replicating regions are
marked as green triangles. Note that the 14q32 CpG is also an ME. D: (Left) Enrichment of oocyte
(oo=maternally methylated) and sperm (sp=paternally methylated) gDMRs25 and PofOm23 at SoC-CpGs, all
MEs and CpGs in the top 5% by variance set. Analyses includes loci with PofOm that persists at the
blastocyst (blast) and placental (plac) stages. (Right) positive control analysis demonstrating that PofOm
loci identified in postnatal samples by Zink et al.23 are very highly enriched for maternal gDMRs. Dashed
horizontal is OR=1. Note different y-axis scales..
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Figure 4. Influence of genotype, periconceptional environment and gene-environment
interactions on DNAm. A: Mean methylation variance explained attributable to additive genetic (A),
common (C) and non-shared (E) environment effects for replicated CpGs, CpGs in the top 5% by
variance and Illumina array background. Estimates for CpGs on the Illumina 450k are from Hannon et
al30. Error bars represent bootstrapped 95% confidence intervals. B: Proportion of methylation
variance explained by E, G and GxE models for SoC-CpGs and random and high variance control
CpGs. ∆ adjR2 is the additional variance explained by the specified model, over and above a
covariate-only model (see Methods for further details). Pie charts show proportion of winning models,
assessed using AIC. Note that E-only is never the winning model. C: (Left) Examples of ME-CpGs in
the replicated set with GxE (top) and G (bottom) winning models. Illumina CpG and rs identifiers for the
most significant SNP are shown. Curves show Fourier regression model fitted values for E-only model
(solid red line) for all individuals, and for individuals stratified by genotype (dashed lines). A/a
major/minor alleles. (Right) Scatter plots of DNAm adjusted for baseline covariates, stratified by
season of conception (left) and additionally stratified by minor allele count (right). For ease of
visualisation, seasons are dichotomised: dry season=Jan-Jun (orange); rainy season=Jul-Dec (green).
Black horizontal lines are stratified mean values.
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