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ABSTRACT

In humans, DNA methylation marks inherited from sperm and egg are largely erased
immediately following conception, prior to construction of the embryonic methylome.
Exploiting a natural experiment of cyclical seasonal variation including changes in diet and
nutritional status in rural Gambia, we replicated 134 loci with a common season-of-
conception methylation signature in two independent child cohorts. These robust
candidates for sensitivity to early environment were highly enriched for metastable
epialleles, parent-of-origin specific methylation and regions hypomethylated in sperm.
They tended to co-locate with endogenous retroviral (ERV1, ERVK) elements. Identified loci
were influenced but not determined by measured genetic variation, notably through gene-
environment interactions. To the extent that early methylation changes impact gene
expression, environmental sensitivity during genomic remethylation in the very early
embryo could thus constitute a sense-record-adapt mechanism linking early environment
to later phenotype.
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INTRODUCTION

DNA methylation (DNAm) plays an important role in a diverse range of epigenetic processes
in mammals including X-inactivation, genomic imprinting and the silencing of transposable
elements®. DNAm can influence gene expression and can in turn be influenced by molecular
processes including differential action of methyltransferases and transcription factor
binding?3.

There is extensive remodelling of the human methylome in the very early embryo when
parental gametic methylation marks are extensively erased before acquisition of
tissues-specific marks at implantation, gastrulation and beyond®. Given these widespread
changes in the early methylome, the days following conception may be a window of
heightened sensitivity to the external environment, potentially stretching back to the period
before conception coinciding with late maturation of oocytes and spermatozoa for
methylation marks that (partially) evade periconceptional reprogramming®.

The effects of early exposures on the mammalian methylome have been widely studied in
animals but multiple factors make this challenging in humans. Causal pathways are difficult
to elucidate in observational studies, and even randomised experimental designs are prone
to confounding due to exposure-related postnatal effects and reverse causation®.

Here we address these limitations by exploiting a natural experiment in rural Gambia where
conceptions occur against a background of repeating annual patterns of dry (‘harvest’) and
rainy (‘hungry’) seasons with accompanying significant changes in energy balance, diet
composition, nutrient status and rates of infection”8. We interrogate early embryonic events
by focussing on metastable epialleles (MEs). First identified in isogenic mice, MEs exhibit
stable patterns of systemic (cross-tissue) inter-individual variation (SIV) indicating stochastic
establishment of methylation marks prior to gastrulation when tissue differentiation begins®,
and several MEs have been shown to be sensitive to periconceptional nutrition in mice®.
Human MEs thus serve as a useful tool for studying the effects of the early environment on
DNAm, by enabling the use of easily biopsiable tissues (e.g. blood) that can serve as a proxy
for systemic methylation, and by pinpointing the window of exposure to the periconceptional
period.

In this study we assess the influence of seasonality on DNAm in two Gambian child
cohorts''*2, enabling robust identification of loci showing consistent effects at the ages of 24
months and 8-9 years. Through prospective study designs, we capture conceptions
throughout the year and use statistical models that make no prior assumptions about specific
seasonal windows driving DNAm changes in offspring. We probe potential connections
between season of conception (SoC)-associated loci and MEs, and investigate links with
transposable elements and transcription factors associated with the establishment of
methylation states in the early embryo. We also assess the influence of genetic variation and
gene-environment interactions. Finally, by comparing our results with public DNAm data
obtained from sperm, oocytes and multi-stage human embryos, we investigate links between
SoC-associated loci, gametic methylation and the establishment of DNAm states in early
embryonic development.

The developmental origins of health and disease (DOHaD) hypothesis posits the existence of
mechanisms linking prenatal nutrition to lifelong metabolic disease’. It has also been
proposed that epigenetic mechanisms driving phenotypic variation would be advantageous
in the face of changing environments and, that for such mechanisms to have evolved, the
propensity to vary should be under genetic control*3. Our description of genetically directed
environmentally-sensitive hotspots providing a durable record of conditions during gametic
maturation and in the very early embryo fulfils both these predictions.
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RESULTS
Association of DNA methylation with Gambian season of conception

Key characteristics of the Gambian cohorts and samples analysed in this study are provided
in Table 1 and Figure 1A. To compare year-round DNAm signatures across cohorts we
focussed on 391,814 autosomal CpGs (‘array background’) intersecting the Illumina HM450
and EPIC arrays used to measure DNAm in the ENID (‘discovery’) and EMPHASIS (‘replication’)
cohorts respectively. We modelled the effect of date of conception on DNAm using Fourier
regression'* which makes no prior assumptions about specific seasonal windows driving
DNAm changes in offspring (see Methods).

We began by identifying 2,091 loci (‘discovery CpGs’) showing significant seasonal variation
in 2-year olds from the discovery cohort with a false discovery rate (FDR) < 10%. We then
analysed seasonal effects at these loci in 8-9-year olds from the replication cohort. Fourier
regression models revealed a heterogeneous distribution of year-round methylation peaks
and nadirs at discovery CpGs in both cohorts (Fig. 1B, Supplementary Table 1). Next, we
identified a subset of 134 ‘SoC-CpGs’, defined as CpGs from the discovery CpG set with an
FDR < 10% in the replication cohort (Supplementary Table 2).

SoC-CpGs showed a highly consistent seasonal pattern across both cohorts (Fig. 1C; Pearson
correlation R=0.59, p=7.7x10* for conception date of modelled methylation maximum). 60%
of SoC-CpGs exist as singletons, defined as having no SoC-CpG within 1,000bp, and 85% fall
within clusters of 4 CpGs or fewer (Supplementary Table 3). SoC-CpGs are distributed
throughout the genome (Supplementary Fig. 1) and include several CpG clusters extending
over more than 500bp, notably at /IGFIR which spans 1,323bp and covers 9 CpGs
(Supplementary Table 4, Supplementary Fig. 2). Compared to array background and high
variance controls, SoC-CpGs are highly enriched for intermediate methylation states, most
notably at 10 MEs previously identified in multi-tissue screens in adult Caucasians (Figure 1D;
Supplementary Table 5; see Table 2 for details of ME and control loci considered). SoC-CpGs
are enriched at CpG islands but depleted in open sea and 5’ untranslated regions (proximal
to transcriptions start sites) compared to controls (Fig. 1E).

In the discovery cohort, SoC-CpGs and non-replicating discovery CpGs show a distinct pattern
of methylation maxima for conceptions falling within the July-September period (Fig. 2A left).
This pattern is particularly marked at SoC-CpGs in both cohorts (Figs. 2A and 2B top), and also
at MEs generally (even if non-replicating) (Fig. 2B top). The July-September period
corresponds to the peak of the Gambian rainy season, a strong validation of previous
Gambian studies in babies and infants that focussed on conceptions at peak seasons only,
with similar observations of increased methylation in conceptions at the peak of the rainy
season compared to peak dry season®>~”. Methylation minima fall within the February-April
period, corresponding to the peak dry season (Supplementary Fig. 3).

Seasonal methylation amplitude, defined as the difference between modelled methylation
peak and nadir, is also significantly greater at SoC-CpGs, and at replicating and non-replicating
MEs, compared to controls (Figs. 2A and 2B bottom; Supplementary Table 6; Wilcoxon Rank-
Sum test p-value ranging from 1.2x107 to 5.7x10°72). Furthermore, there is evidence of a
substantial and significant decrease in seasonal amplitude at non-replicating MEs in the older
cohort (Fig. 2B bottom; median amplitude decrease=4.4%; Wilcoxon p=6.8x10"3), and a small,
but significant decrease at SoC-CpGs that are not known MEs (median decrease=1.0%;
p=2.2x107>; Supplementary Table 6). There is no corresponding amplitude decrease in
replicating MEs, or in either control set.
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Compared to array background, both discovery and SoC-CpG sets are highly enriched for
MEs (approximately 6-fold in discovery set and 17-fold in set of SoC-CpGs; p=3.5x1028 and
1.4x107° respectively), whereas no significant ME enrichment is observed at high variance
CpGs (Supplementary Table 7). Finally, intra-individual methylation states are highly
correlated at a large majority of SoC-CpGs in both cohorts, in marked contrast to discovery
CpGs and controls (Fig. 2C). As expected, pairwise correlations at the minority of SoC-CpGs
showing a strong negative intra-individual correlation consist largely of a small number of
loci with methylation maxima in dry season conceptions (as shown in Fig. 1C).

Early stage embryo, gametic and parent-of-origin specific methylation

Given the strong enrichment for MEs within the set of SoC-CpGs, we next analysed links to
methylation changes in early stage human embryos, as we have done previously for MEs
identified in a whole-genome bisulfite-seq (WGBS) multi-tissue screen'®. We aligned our data
with public reduced representation bisulfite-seq (RRBS) data from human IVF embryos* and
obtained informative methylation calls for 67,870 array background CpGs covered at > 10x
read depth in both inner cell mass (ICM; pre-gastrulation) and embryonic liver (post-
gastrulation) tissues. We found a highly distinctive pattern of increased intermediate
methylation at SoC-CpGs in post-gastrulation embryonic liver tissue. This strongly contrasted
with a general trend of genome-wide hyper- and hypo-methylation at highly variable CpGs
and at loci mapping to array background (Fig. 3A). We observed a similar pattern at MEs (Fig.
3A; all 1,881 ME CpGs irrespective of their association with SoC — see Table 2).

We previously observed consistent hypomethylation at ME loci across all gametic and early
embryonic developmental stages, most notably in sperm?2. We tested the latter observation
at SoC-CpGs by aligning our data with public sperm WGBS data®®, restricting our analysis to
the 389,360 CpGs mapping to array background that were covered at > 10x. All 134 SoC-CpGs
were covered in the WGBS dataset and these showed a marked decrease in sperm
methylation, with 83% [76-90%] of replicated loci hypomethylated (methylation <10%) in
sperm, compared to 49% [48%-50%] and 48% [48-48%)] at loci mapping to highly variable
CpGs and array background respectively (Fig. 3B; brackets are bootstrapped 95% Cls). This
strong enrichment for sperm hypomethylation was also observed at ME CpGs (Fig. 3B).
Interestingly, postnatal intermediate methylation states at SoC-CpGs were preserved in both
Gambian cohorts irrespective of putative sperm methylation states, in contrast to loci
mapping to high variance and array background CpGs where methylation distributions
strongly reflected sperm hypomethylation status (Fig. 3C left).

Our observation of increased sperm hypomethylation at SoC-associated loci, together with
existing evidence that imprinted genes may be especially sensitive to prenatal exposures?®-
22 prompted us to investigate a potential link between SoC-sensitivity and parent-of-origin
specific methylation (PofOm). A recent study used phased WGBS methylomes to identify
regions of PofOm in 200 Icelanders?®. We analysed 699 of these PofOm CpGs overlapping
Illumina array background (Table 2) and observed very strong enrichment for PofOm CpGs at
SoC-CpGs and at all MEs on the array (41- and 15-fold enrichment, p=4.2x10"'2 and 1.8x1073®
respectively; Fig. 3D, green bars; Supplementary Table 8). PofOm enrichment at SoC-CpGs is
partially driven by a large (8 CpG) region at IGFIR, and a single replicating ME-CpG proximal
to the human imprinted 14932 region (Supplementary Table 2). We also found evidence of
significant but smaller PofOm enrichment amongst high variance CpGs (Fig. 3D;
Supplementary Table 8).

Regions of PofOm detected in postnatal samples tend to be differentially methylated in
gametes?3, and may thus have evaded the widespread epigenetic reprogramming that occurs
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in the pre-implantation embryo?*. We tested this directly by interrogating data from a whole-
genome screen for germline differentially methylated regions (gDMRs) that persist to the
blastocyst stage and beyond?®°. In this analysis, gDMRs were defined as contiguous 25 CpG
regions that were hypomethylated (mean DNAm < 25%) in one gamete and hypermethylated
(mean DNAmM > 75%) in the other, taking methylation variability into account. We began by
observing a very large enrichment for oocyte (maternally methylated) gDMRs, but not sperm
gDMRs, at all PofOm loci identified by Zink et al.?? (Fig. 3D, right; Supplementary Table 8),
confirming previous observations of an excess of PofOm loci that are methylated in oocytes
only?3. We found a particularly strong 122-fold enrichment for oocyte gDMRs (0o-gDMRs)
persisting in placenta. We next interrogated SoC-CpGs and MEs and again found evidence for
strong enrichment of oocyte, but not sperm gDMRs, at these loci (5.6-fold enrichment for oo-
gDMRs, p=6.4x10%; Fig. 3D, left; Supplementary Table 8). Once again this enrichment was
particularly marked at oo-gDMRs persisting in placenta (11-fold enrichment, p=2.5x10%; Fig.
3D, left; Supplementary Table 8). As with sperm hypomethylation, enrichment of oo-gDMRs
at SoC-CpGs is partially driven by multiple CpGs at IGF1R (Supplementary Table 2). The 14g32
ME-CpG is not classified as an oo-gDMR by Sanchez-Delgado et al.?> (Fig. 3C bottom right),
although it shows approximately 50% methylation in both Gambian cohorts as expected for
loci with PofOm. Note that a large majority of SoC-CpGs that are hypomethylated in sperm
are not 0o-gDMRs (i.e. they are not hypermethylated in oocytes) (Fig. 3C, bottom right),
suggesting that regional sperm hypomethylation is a key factor associated with sensitivity to
periconceptional environment at these loci.

Enrichment of transposable elements and transcription factors associated with genomic
imprinting

Variable methylation states at MEs are associated with neighbouring transposable elements
(TEs) in murine models?%?7, and we have previously observed enrichment for specific proximal
endogenous retroviruses (ERV1 and ERVK) in screens for human MEs'®?2, Here we found
evidence for enrichment of human ERV1 and ERVK at SoC-CpGs, and for 4 ERV classes at MEs
mapping to array background: ERV1, ERVK, ERVL and ERV-MalLR (Supplementary Table 7). We
also observed significant enrichment for these ERV classes amongst highly variable loci
(Supplementary Table 7).

Enrichment for PofOm at SoC-CpGs loci suggests a potential link to mechanisms implicated in
the maintenance of PofOm and genomic imprinting in the early embryo. Our previous analysis
of MEs identified from WGBS data found enrichment for proximal binding sites for 3
transcription factors (TFs: CTCF, ZFP57 and TRIM28) linked to such mechanisms?%. Here we
found no evidence for enrichment of these TFs at SoC-CpGs, but we did find evidence of
enrichment for proximal CTCF and ZFP57 binding at MEs mapping to array background
(Supplementary Table 7), partially confirming ME enrichment for these TFs at ME loci on
[llumina arrays.

Influence of genotype and gene-environment interactions

Genetic variation, primarily in cis, is a major driver of inter-individual variation in DNAmM?,
and there is evidence that CpG sites with systemic inter-individual variation (SIV), a hallmark
of MEs, show higher levels of heritability3°.
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A previous analysis quantified methylation variance explained by additive genetic variation,
and common and non-shared environment in 1,464 twin pairs from the British E-Risk study3°.
We began by reproducing the result from Hannon et al.3° that non-shared environment
(which includes measurement error) explains the major part of methylation variance in array
background (Fig. 4A). We further found a marked increase in methylation variance explained
by additive genetic effects at SoC-CpGs and high variance CpGs on the array (Fig. 4A). On the
assumption that the former will be enriched for MEs exhibiting SIV, this supports the finding
by Hannon et al. of increased heritability at loci that are more correlated in blood and brain,
suggestive of SIV3°,

We next directly explored the influence of genotype and environment at SoC-CpGs in the
EMPHASIS (replication) cohort, for which we had data on 293 individuals measured at 286,552
polymorphic variants on the Illumina Global Screening Array (GSA)*2. Following a similar
strategy to that used in a recent study in the GUSTO cohort3!, we performed a screen for
genetic effects on DNAmM. We began by analysing genome-wide SNP-DNAm associations at
SoC-CpGs, and at a random sample of array background and high-variance control CpGs (see
Table 2) to identify putative methylation quantitative trait loci (mQTL). We also tested for
gene-environment interactions (GxE) on DNAm (see Methods for further details).

We next selected the most significant (‘winning’) mQTL (G1) and GxE (G2) SNP for each SoC-
CpG (Supplementary Table 9). 8.2% of SoC-CpGs had a significant associated mQTL
(FDR<10%). No significant GXE associations were identified, although it should be noted that
this analysis had reduced power to detect these. A small number of winning G1 and G2 SNPs
mapped to two CpGs (G1: 6 SNPs; G2: 3 SNPs), but none mapped to more than two
(Supplementary Table 10). Furthermore, no pattern of SNP clustering was discernible
(Supplementary Fig. 4). Together these observations suggest that DNAm at SoC-CpGs is not
primarily driven by genetic variants at any specific locus covered by the GSA.

To assess the potential for genetic confounding of SoC-associated DNAm patterns, we tested
each winning G1 and G2 SNP for association with SoC using 5 different genotypic models.
Accounting for the number of SNPs tested, only one of the 258 unique G1 and G2 SNPs passed
a Bonferroni-adjusted significance threshold (G1 SNP: rs11922293; Supplementary Table 11).
This mQTL SNP was associated with a single SoC-CpG and was not close (<10Mbp) to any other
winning G1 SNP, confirming no evidence of widespread confounding of SoC-associated DNAm
by genetic loci on the GSA.

We next ran a series of Fourier regression models to determine the relative proportions of
methylation variance explained by E (periconceptional environment only), G1 (mQTL only)
and G2xE (including E and G2 main effects, but excluding G1 main effects) models (see
Methods for further details). Results for SoC-CpGs were compared to randomly selected high
variance and control CpGs (see Table 2). Variance explained by E, G1 and G2xE models was
assessed using adjusted R? values to account for increasing model complexity. In each case
adjusted R? values were compared to a baseline model that included the same set of
covariates (principal components, age and sex) used in Fourier regression models for the main
seasonality analysis. At SoC-CpGs, mQTL (G1) models explained significantly more
methylation variance than seasonality alone (E models). However, gene-environment (G2xE)
models explained significantly more methylation variance than both G1 and E models (Fig.
4B, Supplementary Table 12). A formal assessment of ‘winning models’, using the Akaike
Information Criterion (AIC) to account for differences in model complexity determined that
G2xE models provided the best fit for 94% of SoC-CpGs, compared with 33% and 29% for
random and high variance controls respectively (Fig.4B inset).
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As expected, year-round DNAm at a CpG where G1 is the winning model indicates a strong
mQTL effect on mean methylation (Fig. 4C, bottom left). In contrast, at a CpG where GxE
effects dominate, the strength of the seasonality effect is modified by genotype (Fig. 4C, top
left; dashed lines); revealing a strong seasonal pattern that is not apparent when modelling
data unstratified by genotype (same figure, solid red line). Scatter plots of underlying
individual-level DNAm data adjusted for baseline covariates support these observations (Fig.
4C right).

A recent analysis of GxE effects in the GUSTO cohort revealed a similar dominance of GxE
effects at a subset of variable CpGs when considering a range of in utero environmental
effects including maternal BMI, smoking and maternal depression3!. Speculating that these
loci may be similarly sensitive to periconceptional environment, we tested SoC-CpGs and
controls for enrichment of 889 GxE CpGs identified by Teh et al.3! that overlapped array
background. We observed a highly significant 17-fold enrichment of these GXxE CpGs amongst
SoC-CpGs (p=1.6x10"; Supplementary Table 7). We found a smaller, but still highly significant
7-fold enrichment amongst the much larger set of the top 5% of CpGs by methylation variance
(p=1.9x10"7), suggesting that enrichment for Teh et al. GXE CpGs amongst SoC-CpGs is not
purely driven by Teh et al.’s focus on highly variable CpGs.

DISCUSSION

We have exploited a natural experiment in rural Gambia whereby human conceptions are
‘randomised’ to contrasting environmental (especially dietary) conditions to examine
whether these differential exposures leave a discernible signature on the offspring
methylome. We identified 134 ‘SoC-CpGs’ with strong evidence of sensitivity to season of
conception in independent, different-aged cohorts. Importantly, these cohorts have
contrasting confounding structures, notably with regard to the timing of sample collection,
the latter eliminating potential confounding due to seasonal differences in leukocyte
composition. These results, derived from analysis of Illumina array data, suggest there may
be many more hotspots sensitive to periconceptional environment across the human
methylome.

This analysis contrasts with previous epigenetic studies in this setting that have focussed on
single cohorts and analysed methylation differences between individuals conceived at the
peaks of the Gambian dry and rainy seasons only*>-17:22:32,

Multiple lines of evidence support the notion that methylation states at these loci are
established in the early embryo. First, they are highly enriched for human MEs and related
loci with characteristic methylation signatures suggestive of establishment early in embryonic
development!”8, Second, like MEs, season-associated loci exhibit highly unusual methylation
dynamics in early stage embryos®. Third, also in common with MEs, they have distinctive
gametic methylation patterns, notably an increased proportion displaying hypomethylation
in sperm?é.

Greater methylation in offspring conceived at the peak of the Gambian rainy season is
consistent with previous findings at putative MEs and correlated regions of SIV in this
population?>-17:223233 Thjs observation is now greatly strengthened by the application of
Fourier regression to model the effect of periconceptional environment in year-round
conceptions — an approach that makes no prior assumption of where methylation peaks and
nadirs may occur. The number of identified SoC-CpGs is also substantially increased in this
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study, and comparisons with high variance and array-wide control CpGs increase confidence
that these findings are not statistical artefacts.

A large majority of SoC-CpGs have not previously been identified as MEs, but given the
supporting evidence described above, we speculate that many are likely to be so. In particular
evidence of an attenuation of SoC effects at known MEs in older children suggests that
screens for MEs in adults used in this analysis are likely to have missed signatures of
metastability that are present in early postnatal tissues. SoC effect attenuation could also
explain the lack of replication of SoC associations at the majority of CpGs from the discovery
set. Importantly, this would have implications for detecting the effect of periconceptional
exposures on DNAm in samples collected beyond the neonatal and early childhood periods,
an important consideration for epigenetic epidemiological studies since non-persisting
methylation differences could still have a significant impact on early developmental
trajectories with life-long consequences3*%.

Methylation states at SoC-associated loci which are distributed throughout the genome are
highly correlated within individuals, strongly suggesting that a common mechanism is at play.
This contrasts with a recent study of murine MEs located within intracisternal A particle
insertions (IAPs, of which the Agoutilocus is a paradigm example®), where no intra-individual
correlation between stochastic methylation states was observed, although it is important to
note that the mice were not exposed to different environments?’.

Potential insights into mechanisms linking periconceptional environment to DNAm changes
in postnatal tissues come from our investigations of the methylation status and genomic
context of SoC-CpGs.

First, we observed a strong overlap of SoC-CpGs with regions that are known to be
hypomethylated in sperm. A minority of these loci are hypermethylated in oocytes with
parent-of-origin-specific methylation persisting in postnatal tissues. This latter observation
aligns with a growing body of evidence linking early environment, notably nutritional factors
involved in one-carbon (C1) metabolism with methylation at imprinted regions?®21. Indeed
we have previously noted an association between season of conception and several C1
metabolites at a maternally imprinted region at the small non-coding RNA VTRNA2-1?2,
consistent with evidence of ‘polymorphic imprinting’ linked to prenatal environment at this
locus?337, Furthermore, we previously found strong enrichment for proximal binding sites of
several transcription factors (TFs) associated with the maintenance of PofOm in the early
embryo at MEs'8, although we were unable to replicate this at SoC-associated loci identified
in this study. This might reflect the relatively small proportion of PofOm loci in the set of SoC-
CpGs, or factors related to the biased methylome coverage of lllumina arrays. More targeted
experimental work is required to determine the extent of SoC effects at imprinted loci.

Second, a feature of SoC-CpGs, including those with no evidence of PofOm, is a strong
enrichment for ERV elements, most notably ERV1 and ERVK. This was also observed at MEs
on the Illumina array, confirming our previous observations'®?2, Enrichment of ERVs at SoC-
CpGs is notable since most environment-sensitive mouse MEs are associated with IAPs (which
are rodent-specific ERVs)?’, and Krab zinc-finger protein (KZFP)-mediated repression of
transposable elements (TEs) including ERVs has been proposed as a driver of the rapid
evolution of gene regulation®. The KZFP ZFP57 is particularly interesting in this respect since
its binding to DNA is linked both to repression of TEs and to the maintenance of genomic
imprints in the pre-implantation embryo?®3°. We previously identified a putative SoC-
associated DMR in the ZFP57 promoter in blood from Gambian infants??, and a proximal CpG
21kbp from this DMR is in the set of discovery CpGs in this study, indicating a putative SoC
association in Gambian 2 year-olds. It is possible that non-replication of the SoC-association
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at ZFP57 in the older Gambian cohort reflects the more general attenuation of SoC effects
described above. Interestingly there is some evidence that the ZFP57 DMR, which lies 3kb
upstream of the transcription start site, is established in the early embryo'’. Given the
important function of ZFP57 in pre-implantation methylation dynamics, its potential role as
an environmentally-sensitive regulator of genome-wide SoC effects on DNA remains an open
question.

Third, DNAm at SoC-associated loci is highly enriched for intermediate methylation states, in
strong contrast to array-wide CpG methylation and to high variance CpGs in the discovery
cohort. Intermediate methylation at MEs is observed in Gambians and in non-Africans®> 1640~
42 and this coincides with a similar observation at MEs in post-gastrulation embryonic
tissues'®. This latter observation includes measurements from single conceptuses, with
methyl-seq read-level analyses indicating that intermediate methylation is driven by
extended regions of variegated methylation states within an individual®®.

Taken together, the above evidence suggests that a periconceptional environmental
exposure may perturb methylation by nudging the ratio of methylated to unmethylated
alleles at hotspots of variegated and/or parent-of-origin-specific methylation in the early
post-gastrulation embryo. These hotspots appear to be concentrated in regions that are
hypomethylated in sperm, and, in the case of PofOm, additionally hypermethylated in
oocytes. In the latter case, methylation states could be driven by an environmentally-sensitive
gain of methylation on the paternal allele that is propagated through development;
incomplete reprogramming on the maternal allele leaving residual traces or modest de novo
methylation at some later point. A deeper understanding of mechanisms will require further
investigation in cell and animal models.

Several SoC-CpGs with evidence of PofOm map to an intronic region of the IGFIR gene. Zink
et al.?® were unable to demonstrate PofO allele-specific expression (PofO-ASE) in this region
although others have found evidence of maternal imprinting of an intronic IncRNA at this
gene in cancerous cells**#4, Interestingly, loss of IGF1 receptors gives rise to a major decrease
in expression at multiple imprinted genes in mice suggesting a pathway by which /IGF1R might
regulate growth and metabolism during early development®. IGF1R signalling is implicated in
fetal growth, glucose metabolism and cancer?®=*, and DNAm differences at IGF1R have been
observed in birthweight-discordant adult twins*>. Another SoC-associated locus with PofOm
is approximately 300kbp from the 14q32 DLK1-MEG3 imprinted region, close to the imprinted
C14MC microRNA cluster®®, and within 80kb of a region with PofO-ASE?3. Epigenetic and
transcriptional changes at several C14MC microRNAs have been implicated in cancer®'=3, and
genetic and epigenetic mutations in the 14932 region are linked to imprinting disorders
including Temple syndrome>*°>,

Another notable SoC-CpG is within 1000bp of a metastable variably methylated region (VMR)
at the intron2/exon3 boundary of the POMC gene. POMC is a key regulator of appetite
through the production of melanocyte-stimulating hormones in the hypothalamus®?.
Hypermethylation at the VMR reduces POMC expression by interfering with P300 TF binding
at the intron2/exon3 boundary of the gene®®, and is linked to the presence of a primate-
specific Alu element (transposon)®’. This region has previously been associated with SoC and
certain C1 metabolites in Gambian infants*?, and is associated with obesity in children and
adults*?°®, It is interesting to note that hypermethylation of the POMC SoC-CpG and the VMR
occurs in conceptions at the height of the Gambian rainy season, a period also known as the
‘hungry season’ when stocks from the previous year’s harvest are depleted. A link between
POMCVMR hypermethylation established in the early embryo that persists into postnatal life,
reduced POMC expression and corresponding reduced satiety signalling could therefore
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constitute a ‘predictive-adaptive-response’, whereby an individual’s early developmental
trajectory is tuned to its anticipated postnatal environment®8. One could then speculate that
SoC-CpGs, as loci with evidence of SoC effects that persist into later childhood (i.e. that
replicate in the older cohort), are specifically designed for that purpose.

DNAm is strongly influenced by genotype and the latter is therefore a potential confounder
when studying the effects of environmental exposures in human populations. A strength of
our quasi-randomised Gambian seasonal model is that it minimises the potential for genetic
confounding of modelled seasonal DNAm patterns, on the assumption that the timing of
conceptions is not linked to genetic variants influencing DNAm. However, it is still possible
that such variants might confound our observations, for example if they promote embryo
survival under conditions of environmental stress. We tested this possibility using genetic
data available for the EMPHASIS (replication) cohort, and found no evidence of genetic
associations driving inter-individual methylation differences at multiple SoC-associated loci in
cis or trans.

We did however uncover interesting evidence of gene—periconceptional-environment
interactions at SoC-CpGs that explained a greater proportion of methylation variance than
environmental or direct genetic factors alone. While our analysis was constrained by reduced
power and by limited coverage of the genotyping array, confidence in this observation is
increased through our comparison of genetic effects at SoC-CpGs with high variance and
array-wide controls. The potential dominance of GxE effects was supported by very strong
enrichment for CpGs showing gene—in utero environment interaction effects that similarly
explained a greater proportion of methylation variance in a study of the Singaporean GUSTO
cohort3!. Widespread GxE interaction effects could manifest through the action of
environmental factors on gene variant-associated transcription factors, although once again
we found no evidence of clustered genetic variants driving these effects at multiple SoC-CpGs.

We have previously argued that the definition of MEs should be extended to include genomic
regions whose DNAm state is under partial but non-deterministic genetic influence in
genetically heterogeneous human populations®, and we would argue that the above
observations at SoC-CpGs that exhibit many of the characteristics of MEs support this. Further
analysis in larger datasets with high-resolution genotyping combined with functional analysis
using cell models will be required to fully understand the relative contributions of
environment and genetics to DNAm variation at regions of the type highlighted in this study.

There is increasing interest in the phenomenon of methylation variability as a marker of
disease and of prenatal adversity>>®°, and in genetic variation as a potential driver of
methylation variance®!. In the context of this study, widespread GxE interaction effects on
DNAm would lead to reduced power to detect SoC associations, suggesting that these
associations will be easier to detect in adequately powered analyses stratified by genotype.

A further intriguing possibility suggested by our gene-environment interaction analysis is that
certain genetic variants could have been selected through their ability to enable graded,
environmentally-responsive methylation patterns at MEs and SoC-associated loci that are
able to sense the periconceptional environment, record the information, and adapt the
phenotype accordingly. This mechanism was previously proposed in a theoretical population
genetic model of selectable phenotypic variation in changing environments'3. As discussed
with reference to periconceptional programming of the POMC gene above, such a mechanism
would be adaptive where phenotypic development is directed to better fit the anticipated
future environment, but may otherwise become maladaptive, leading to later disease, if the
environment changes®.
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Materials and Methods

Gambian cohorts and sample processing

Detailed descriptions of the Gambian cohorts analysed in the season of conception study are
published elsewhere!®'2, Briefly, for the younger cohort, blood samples from 233 children
aged 2 years (median[IQR]: 731[729,733] days old) were collected from participants in the
Early Nutrition and Immune Development (“ENID”) study®!. DNA was extracted, bisulfite-
converted and hybridised to lllumina HumanMethylation450 (hereafter “HM450”) arrays
following standard protocols (see Van Baak et al.’ for further details). For the older cohort,
DNA was extracted from blood samples from 289 children aged 8-9 (9.0[8.6,9.2] years)
participating in the Epigenetic Mechanisms linking Pre-conceptional nutrition and Health
Assessed in India and Sub-Saharan Africa (“EMPHASIS”) study'?, and was bisulfite-converted
and hybridised to lllumina Infinium Methylation EPIC (hereafter “EPIC”) arrays, again using
standard protocols.

Methylation array pre-processing and normalisation

Raw intensity IDAT files from the HM450 and EPIC arrays were processed using the meffil®?
package in R using standard meffil defaults. Briefly, this comprised probe and sample quality
control steps (filtering on bisulfite conversion efficiency, low probe detection p-values and
bead numbers, high number of failed samples per probe, high number of failed probes per
sample, correlation between technical replicates); methylation-derived sex checks; removal
of ambiguously mapping (i.e. cross-hybridising) probes; removal of probes containing SNPs at
the CpG site or at a single base extension; and removal of non-autosomal CpGs. Following
filtering, methylation data was normalised with dye-bias and background correction using the
noob method®3, followed by Functional Normalisation to reduce technical variation based on
principal component analysis of control probes on the arrays®. After pre-processing and
normalisation, methylation data comprised methylation Beta values for 421,026 CpGs on the
HMA450 array for 233 individuals from the ENID cohort, and 802,283 CpGs on the EPIC array
for 289 individuals from the EMPHASIS cohort. Finally 391,814 CpGs intersecting both arrays
were carried forward for statistical analysis.

Statistical modelling

Variation of DNAm with date of conception was modelled using Fourier regression4%>, This
models the relationship between a response variable (here DNAm) and a cyclical predictor
(here date of conception). The latter is considered cyclical, since the modelled effect for an
individual conceived on the 31% December should be ‘close’ to that for an individual
conceived on the 1% of January. This is achieved by deconvolving the predictor into a series
of pairs of sin and cosine terms, and obtaining estimates for the regression coefficients 3 and
v in the following model:

m n
Mij = Z a; + Z ,BTjSin(rei) + yerOS(TQi) + €ij
r=1

k=1

Where, for each individual i and CpG j:
M, is the logit-transformed methylation Beta value®®;
oy is the k,;, of m adjustment covariates;
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0. is the date of conception in radians in the interval [0, 2xt], with 1%t January = 0 and 31°
December = 2w, modelled as n pairs of Fourier terms, sin 6.+ cos & + ... + sin n6, + cos néb;
B. and v, are the estimated regression coefficients for the 7" sin and cosine term
respectively;

and g; is the error term.

With a single pair of Fourier terms (i.e. n=1), this gives a sinusoidal pattern of variation, with
a single maximum and minimum whose phase (position) and amplitude (distance between
maximum and minimum) is determined by [, and y; with the constraint that the maximum
and minimum are 6 months apart. More complex patterns of seasonal variation are afforded
by higher frequency pairs of Fourier terms (r>1).

For both cohorts, adjustment covariates included child sex, and the first six principal
components (PCs) obtained from unsupervised principal component analysis (PCA) of the
normalised methylation M-values. The latter was used to account for unmeasured and
measured technical variation (due to bisulfite conversion sample plate, array slide etc) and
for cell composition effects (see Supplementary Tables 13 and 14). 450k Sentrix Column was
included as an additional adjustment covariate for the ENID cohort since this was not robustly
captured by any of the first 6 PCs (Supplementary Table 13). Child age was included as an
additional adjustment covariate for the EMPHASIS cohort, since child ages ranged from 8 to
9 years, plus maternal nutritional intervention group (see Chandak et al.*? for further details).

For CpG j, coefficient estimates 3;, y;and p-value p; were determined as follows:

1. Fit model with a single pair of Fourier terms (n=1) using Im() in R to obtain estimates
for B; and y,. Determine model goodness-of-fit by likelihood ratio test (LRT using
Irtest() in R) by comparing the full model with a baseline model containing adjustment
covariates only. Determine model p-value (p1) from the corresponding LRT chi-
squared statistic.

2. If p1 < 0.05, fit a second model with two pairs of Fourier terms (n=2) to obtain
estimates B+, B2+ and y;+, 72«. Determine model goodness-of-fit by LRT comparing this
model with the model in 1. above. Model p-value (pz) is the corresponding LRT chi-
squared statistic.

3. If p120.05: p; = p1;and select model with coefficients 3,3, , y; =7
if p1 < 0.05:

if p2 < 0.001: p; = p2; and select model with coefficients B; -+, Bo- and y; = y1+, Yo+
if p2 2 0.001: p; = py; and select model with coefficients B;=B:, v = Vi

Identification of ‘discovery CpGs’ and ‘SoC-CpGs’

From the analysis in the discovery (ENID) cohort, CpG p-values as described above were used
to compute a false discovery rate for each CpG accounting for multiple testing (assuming
391,814 independent tests corresponding to the number of loci in array background) using
the Benjamini & Hochberg method (p.adust() in R with method="fdr’). 2,091 CpGs had a
FDR<10% and formed the set of discovery CpGs.

In the replication analysis, CpGs from the discovery CpG set were analysed in the replication
(EMPHASIS) cohort using the same regression modelling approach. After accounting for 2,091
multiple tests, 134 CpGs had a FDR<10% and these formed the set of replicating ‘SoC-CpGs’.
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Additional modelling of seasonal variation in blood cell composition

Seasonal variation in blood cell composition was modelled by Fourier regression with sex
(ENID+EMPHASIS) and age (EMPHASIS only) as adjustment covariates. Cell count estimates
using the Houseman method®’ were obtained using the estimateCellCounts() from minfiin R.
In each case the best fitting model with one or two pairs of Fourier terms was determined by
LRT. Best fit models indicated no consistent or marked seasonal differences within and
between cohorts (Supplementary Figure 5).

CpG sets considered in analyses

Summary information on curated sets of CpGs considered in the analyses is provided in Table
2. Further information on these is provided below.

i 1,881 ME CpGs overlap one or more of the following curated sets of loci, all of
which have evidence of systemic inter-individual variation of DNAm with
establishment in the early embryo: putative MEs identified in a multi-tissue WGBS
screen in Kessler et al.’®; and CpGs exhibiting ‘epigenetic supersimilarity’ and/or
SIV described in Van Baak et al.*’.

ii. 699 parent-of-origin-specific CpGs (PofOm CpGs) overlapping 229 regions with
PofOm identified in Supplementary Table 1 from Zink et al.%.

jii. 889 GXE CpGs listed in Teh et al.3! Supplementary Table 6. These are highly variable
loci where methylation variance is best explained by GXE models, with E covering
a range of in utero exposures.

Early stage embryo and sperm methylation data

RRBS methylation data from Guo et al.* was downloaded from GEO (accession number
GSE49828). Only CpGs covered at >= 10x in pre-gastrulation inner cell mass and post-
gastrulation embryonic liver were considered in this analysis. Further details are provided in
Kessler et al.*8,

Sperm methylation data from Okae et al.'® was downloaded from the Japanese Genotype-
phenotype Archive (accession number SO00000000006); only CpGs covered at > 10x were
considered in this analysis.

Germline gDMRs

gDMRs, defined as contiguous 25 CpG regions that were hypomethylated (mean DNAm +1SD
< 25%) in one gamete and hypermethylated (mean DNAm -1SD > 75%) in the other, were
previously identified by Sanchez-Delgado et al.?>. Persistence of PofOm to the blastocyst and
placental stages was established by identifying overlappig intermediately methylated regions
in the relevant embryonic tissues, with confirmation of PofOm expression at multiple DMRs?°.
See Sanchez-Delgado et al.?® for further details.

Transposable elements and transcription factors

Transposable element regions determined by RepeatMasker were downloaded from the
UCSC hg19 annotations repository. Further details on these and ZFP57, TRIM28 and CTCF
transcription factor binding sites in human embryonic kidney and human embryonic stem
cells used in this analysis are described in Kessler et al.*,
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Gene and Gene-environment interaction analyses

Gene-DNAm association analysis were performed on all 289 individuals from the EMPHASIS
(replication) cohort, since this was the only cohort with associated genetic data. 134 SoC-
CpGs, plus a random sample of 2,091 array background and high variance controls were
considered in this analysis (see Table 2). Genotypes were obtained from the I[llumina Infinium
Global Screening Array-24 v1.0 Beadchip (lllumina, California, U.S.) following standard
protocols®®, with 642,824 SNPs available for analysis after QC of which 286,552 were
polymorphic in this dataset. To minimise the influence of low frequency homozygous variants
in linear models, analysis was restricted to SNPs with 10 or more homozygous variants,
resulting in a final dataset comprising 174,489 SNPs with a minimum minor allele frequency
(MAF) of 11.4%.

Identification of ‘winning’ gene (G1) and gene-environment interaction (G2) SNPs

Environment (E), and genome-wide genetic (G) and gene-environment (GxE) associations
were assessed using the GEM package from Bioconductor®, following a similar strategy to
that described in Teh et al.3.

In total, 3 separate models were considered for each CpG, j:

1. E-model:
M; ~ covs + sinf + cos0

This is the same model used in the main Fourier regression analysis for the EMPHASIS
cohort described above, with seasonality modelled as one pair of Fourier terms (sin®,
cos0) and covs corresponding to the same adjustment covariates used in the main
analysis.

2. G-model:
M; ~ covs + cosO + G
when sinB is the most significant Fourier term in E-model
OR
M; ~ covs +sinB + G
when cos0 is the most significant Fourier term in E-model.

Here, G is SNP genotype coded as allelic dosage (0,1,2) and covs are adjustment
covariates as described above. In each case the less significant Fourier term from the
E-model is included as an additional covariate to ensure unbiased comparison
between E, G and GxE models.

3. GxE-model
M; ~ covs + cosB+ G + G x sin@
when sinB is the most significant Fourier term in E-model
OR

M; ~ covs + sin@ + G + G x cosO
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when cos0 is the most significant Fourier term in E-model.

Here, G and covs are as described above. Again, in each case the less significant Fourier
term from the E-model is included as an additional covariate to ensure unbiased
comparison between E, G and GxE models.

For each CpG the winning ‘G1’ and ‘G2’ SNPs were selected as the SNP with the smallest p-
value for G and GxE model coefficients respectively. Models with winning G1 and G2 SNPs are
referred to as G1 and G2xE models below.

E, G1 and G2xE model comparisons

To account for model complexity (i.e. differing numbers of terms in regeression models),
comparisons of methylation variance explained by E, G1 and G2xE models (Figure 4b bar plots,
Supplementary Table 12) are based on adjusted R-squared values. In each case, for each CpG

Aade2 = adj Rzmodel - adJ chov
Where adjR%model is the adjusted R? value for the full model, and adjR%v is the adjusted R? for
the covariate-only model, including the less-significant Fourier term as described above. In
the case of E-only models, the full model includes the most significant Fourier term (sin or

cosine), and the covariate-only model includes all other model covariates including the less
significant Fourier term.

Winning models (Figure 4b pie charts) are those with the lowest value of the Akaike
Information Criterion (AIC7).

All bootstrapped confidence intervals presented in this paper use 1,000 bootstrap samples.

Acknowledgements

The Gambian ENID trial was jointly funded by the UK Medical Research Council (MRC) and the
Department for International Development (DFID) under the MRC/DFID Concordat
agreement (MRC Program MC-A760-5QX00). Methylation analysis of ENID samples was
supported by the Bill & Melinda Gates Foundation (grant no: OPP1 066947), and we
acknowledge the work of Z. Herceg, M. N. Routledge, Y. Y. Gong, and H. Hernandez-Vargas in
acquiring this data. The Gambian EMPHASIS study is jointly funded by MRC, DFID and the
Department of Biotechnology, Ministry of Science and Technology, India under the Newton
Fund initiative (MRC grant no.: MR/N006208/1 and DBT grant no.: BT/IN/DBT-
MRC/DFID/24/GRC/2015-16). We acknowledge the work of the full EMPHASIS Study Group
(www.emphasisstudy.org) in acquiring this data.



https://doi.org/10.1101/777508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/777508; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat.
Rev. Genet. 14, 204-220 (2013).

Jeltsch, A. Molecular Enzymology of Mammalian DNA Methyltransferases. in DNA
Methylation: Basic Mechanisms 203—-225 (Springer-Verlag). doi:10.1007/3-540-
31390-7_7

Feldmann, A. et al. Transcription Factor Occupancy Can Mediate Active Turnover of
DNA Methylation at Regulatory Regions. PLoS Genet. 9, (2013).

Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511,
606—610 (2014).

Fleming, T. P. et al. Origins of lifetime health around the time of conception: causes
and consequences. Lancet 391, 1842—-1852 (2018).

Birney, E., Smith, G. D. & Greally, J. M. Epigenome-wide Association Studies and the
Interpretation of Disease -Omics. PLOS Genet. 12, e1006105 (2016).

Moore, S. E. et al. Prenatal or early postnatal events predict infectious deaths in
young adulthood in rural Africa. Int. J. Epidemiol. 28, 1088-95 (1999).
Dominguez-Salas, P. et al. DNA methylation potential: Dietary intake and blood
concentrations of one-carbon metabolites and cofactors in rural African women. Am.
J. Clin. Nutr., 97, 1217-1227 (2013).

Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I. & Whitelaw, E. Metastable
epialleles in mammals. Trends Genet. 18, 348-51 (2002).

Anderson, 0. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: an interplay of
dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr.
Biochem. 23, 853—859 (2012).

Moore, S. E. et al. A randomized trial to investigate the effects of pre-natal and infant
nutritional supplementation on infant immune development in rural Gambia: the
ENID trial: Early Nutrition and Immune Development. BMC Pregnancy Childbirth 12,
107 (2012).

Chandak, G. R. et al. Protocol for the EMPHASIS study; epigenetic mechanisms linking
maternal pre-conceptional nutrition and children’s health in India and Sub-Saharan
Africa. BMC Nutr. 3, 81 (2017).

Feinberg, A. P. & Irizarry, R. A. Stochastic epigenetic variation as a driving force of
development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. 107, 1757—-
1764 (2010).

Rayco-Solon, P., Fulford, A. & Prentice AM. Differential effects of seasonality on
preterm birth and intrauterine growth. Am. J. Clin. Nutr. 81, 134-139 (2005).
Waterland, R. A. et al. Season of conception in rural gambia affects DNA methylation
at putative human metastable epialleles. PLoS Genet. 6, e1001252 (2010).
Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA
methylation of human metastable epialleles. Nat. Commun. 5, 1-7 (2014).

Van Baak, T. E. et al. Epigenetic supersimilarity of monozygotic twin pairs. Genome
Biol. 19, 2 (2018).

Kessler, N. J., Waterland, R. A., Prentice, A. M. & Silver, M. J. Establishment of
environmentally sensitive DNA methylation states in the very early human embryo.
Sci. Adv. 4, eaat2624 (2018).

Okae, H. et al. Genome-Wide Analysis of DNA Methylation Dynamics during Early
Human Development. PLoS Genet. 10, e1004868 (2014).

Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R. & Riccio, A. Genomic


https://doi.org/10.1101/777508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/777508; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

imprinting disorders: lessons on how genome, epigenome and environment interact.
Nat. Rev. Genet. (2019). doi:10.1038/s41576-018-0092-0

21. James, P. et al. Candidate genes linking maternal nutrient exposure to offspring
health via DNA methylation: a review of existing evidence in humans with specific
focus on one-carbon metabolism. Int. J. Epidemiol. 1-28 (2018).
doi:10.1093/ije/dyy153

22. Silver, M. et al. Independent genomewide screens identify the tumor suppressor
VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome
Biol. 16, 118 (2015).

23.  Zink, F. et al. Insights into imprinting from parent-of-origin phased methylomes and
transcriptomes. Nat. Genet. 50, 1542—1552 (2018).

24. Meyenn, F. Von & Reik, W. Forget the Parents : Epigenetic Reprogramming in Human
Germ Cells. Cell 1248-1251 (2015).

25. Sanchez-Delgado, M. et al. Human Oocyte-Derived Methylation Differences Persist in
the Placenta Revealing Widespread Transient Imprinting. PLOS Genet. 12, e1006427
(2016).

26. Waterland, R. A. & lJirtle, R. L. Transposable elements: targets for early nutritional
effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293—-300 (2003).

27. Kazachenka, A. et al. |dentification, Characterization, and Heritability of Murine
Metastable Epialleles: Implications for Non-genetic Inheritance. Cell 1-13 (2018).
doi:10.1016/j.cell.2018.09.043

28. Kessler, N. J., Waterland, R. A., Prentice, A. M. & Silver, M. J. SUPP INFO
Establishment of environmentally-sensitive DNA methylation states in the very early
human embryo. Sci. Adv. (in Press. (2018). doi:10.1126/sciadv.aat2624

29. Gaunt, T.R. et al. Systematic identification of genetic influences on methylation
across the human life course. Genome Biol. 17, 61 (2016).

30. Hannon, E. et al. Characterizing genetic and environmental influences on variable
DNA methylation using monozygotic and dizygotic twins. PLoS Genet. 14, 1-27
(2018).

31. Teh, A. L. et al. The effect of genotype and in utero environment on inter-individual
variation in neonate DNA methylomes. Genome Res. (2014).
doi:10.1101/gr.171439.113

32. Kihnen, P. et al. Interindividual Variation in DNA Methylation at a Putative POMC
Metastable Epiallele Is Associated with Obesity. Cell Metab. 24, 502-509 (2016).

33. Gunasekara, C. J. et al. A genomic atlas of systemic interindividual epigenetic
variation in humans. Genome Biol. 20, 105 (2019).

34. Vukic, M., Wu, H. & Daxinger, L. Making headway towards understanding how
epigenetic mechanisms contribute to early-life effects. Philos. Trans. R. Soc. B Biol.
Sci. 374, 20180126 (2019).

35.  Simpkin, A. J. et al. Longitudinal analysis of DNA methylation associated with birth
weight and gestational age. Hum. Mol. Genet. 24, 3752-3763 (2015).

36. Morgan, H. D., Sutherland, H. G. E., Martin, D. I. K. & Whitelaw, E. Epigenetic
inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314-318 (1999).

37. Carpenter, B. L. et al. Mother—child transmission of epigenetic information by tunable
polymorphic imprinting. Proc. Natl. Acad. Sci. 201815005 (2018).
doi:10.1073/pnas.1815005115

38. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and
disease. Nature 571, 489—-499 (2019).

39. Imbeault, M., Helleboid, P. Y. & Trono, D. KRAB zinc-finger proteins contribute to the


https://doi.org/10.1101/777508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/777508; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

available under aCC-BY 4.0 International license.

evolution of gene regulatory networks. Nature 543, 550-554 (2017).

Finer, S. et al. Is famine exposure during developmental life in rural Bangladesh
associated with a metabolic and epigenetic signature in young adulthood? A historical
cohort study. BMJ Open 6, e011768 (2016).

Clark, J. et al. Associations between placental CpG methylation of metastable
epialleles and childhood body mass index across ages one, two and ten in the
Extremely Low Gestational Age Newborns (ELGAN) cohort. Epigenetics 0,
15592294.2019.1633865 (2019).

Kidhnen, P. et al. Interindividual Variation in DNA Methylation at a Putative POMC
Metastable Epiallele Is Associated with Obesity. Cell Metab. 24, 502-509 (2016).
Kang, L. et al. Aberrant allele-switch imprinting of a novel IGF1R intragenic antisense
non-coding RNA in breast cancers. Eur. J. Cancer 51, 260-270 (2015).

Sun, J. et al. A novel antisense long noncoding RNA within the IGF1Rgene locus is
imprinted in hematopoietic malignancies. Nucleic Acids Res. 42, 9588-9601 (2014).
Boucher, J. et al. Insulin and insulin-like growth factor 1 receptors are required for
normal expression of imprinted genes. Proc. Natl. Acad. Sci. 111, 14512-14517
(2014).

Randhawa, R. & Cohen, P. The role of the insulin-like growth factor system in prenatal
growth. Mol. Genet. Metab. 86, 84—90 (2005).

Aguirre, G. A, Ita, J. R., Garza, R. G. & Castilla-Cortazar, I. Insulin-like growth factor-1
deficiency and metabolic syndrome. J. Transl. Med. 14, 1-23 (2016).

Larsson, O., Girnita, A. & Girnita, L. Role of insulin-like growth factor | receptor
signalling in cancer. Br. J. Cancer 92, 2097-2101 (2005).

Tsai, P.-C. et al. DNA Methylation Changes in the IGF1R Gene in Birth Weight
Discordant Adult Monozygotic Twins. Twin Res. Hum. Genet. 18, 635—-646 (2015).
Malnou, E. C., Umlauf, D., Mouysset, M. & Cavaillé, J. Imprinted MicroRNA Gene
Clusters in the Evolution, Development, and Functions of Mammalian Placenta. Front.
Genet. 9, (2019).

Nayak, S. et al. Novel internal regulators and candidate miRNAs within miR-379/miR-
656 MmiRNA cluster can alter cellular phenotype of human glioblastoma. Sci. Rep. 8,
7673 (2018).

Kumar, A. et al. Identification of miR-379/miR-656 (C14MC) cluster downregulation
and associated epigenetic and transcription regulatory mechanism in
oligodendrogliomas. J. Neurooncol. 139, 23-31 (2018).

Gonzalez-Vallinas, M. et al. Epigenetically Regulated Chromosome 14932 miRNA
Cluster Induces Metastasis and Predicts Poor Prognosis in Lung Adenocarcinoma
Patients. Mol. Cancer Res. 16, 390-402 (2018).

Beygo, J. et al. New insights into the imprinted MEG8-DMR in 14932 and clinical and
molecular description of novel patients with Temple syndrome. Eur. J. Hum. Genet.
25, 935-945 (2017).

Eggermann, T. et al. Imprinting disorders: a group of congenital disorders with
overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenetics
7,123 (2015).

Kuehnen, P. et al. An Alu Element—Associated Hypermethylation Variant of the POMC
Gene Is Associated with Childhood Obesity. PLoS Genet. 8, e1002543 (2012).
Kuehnen, P. & Krude, H. Alu elements and human common diseases like obesity.
Mob. Genet. Elements 2, 197-201 (2012).

Low, F. M., Gluckman, P. D. & Hanson, M. A. Developmental Plasticity, Epigenetics
and Human Health. Evol. Biol. 39, 650-665 (2012).


https://doi.org/10.1101/777508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/777508; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

available under aCC-BY 4.0 International license.

Webster, A. P. et al. Increased DNA methylation variability in rheumatoid arthritis-
discordant monozygotic twins. Genome Med. 10, 1-12 (2018).

Tobi, E. W. et al. DNA methylation as a mediator of the association between prenatal
adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 4, eaao4364
(2018).

Ek, W. E. et al. Genetic variants influencing phenotypic variance heterogeneity. Hum.
Mol. Genet. 27, 799-810 (2018).

Min, J. L., Hemani, G., Davey Smith, G., Relton, C. & Suderman, M. Meffil: efficient
normalization and analysis of very large DNA methylation datasets. Bioinformatics 34,
3983-3989 (2018).

Triche, T. J., Weisenberger, D. J., Van Den Berg, D., Laird, P. W. & Siegmund, K. D.
Low-level processing of lllumina Infinium DNA Methylation BeadArrays. Nucleic Acids
Res. 41, 1-11 (2013).

Fortin, J. P. et al. Functional normalization of 450k methylation array data improves
replication in large cancer studies. Genome Biol. 15, 0—42 (2014).

Nabwera, H. M., Fulford, A. J., Moore, S. E. & Prentice, A. M. Growth faltering in rural
Gambian children after four decades of interventions: a retrospective cohort study.
Lancet Glob. Heal. 5, e208—e216 (2017).

Du, P. et al. Comparison of Beta-value and M-value methods for quantifying
methylation levels by microarray analysis. BMC Bioinformatics 11, 587 (2010).

Jaffe, A. E. & Irizarry, R. a. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol. 15, R31 (2014).

Guo, Y. et al. lllumina human exome genotyping array clustering and quality control.
Nat. Protoc. 9, 2643-2662 (2014).

Pan, H., Holbrook, J. D., Karnani, N. & Kwoh, C. K. Gene, Environment and
Methylation (GEM): a tool suite to efficiently navigate large scale epigenome wide
association studies and integrate genotype and interaction between genotype and
environment. BMC Bijoinformatics 17, 299 (2016).

Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat.
Contr. 19, 716-723 (1974).


https://doi.org/10.1101/777508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/777508; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

TABLES

Table 1. Gambian seasonality-methylation analysis: cohort characteristics

Age at
sample sample
cohort size  collection % male tissue methylation array
ENID
(discovery) 233 2y 50.6 peripheral blood Illlumina Infinium HM450
EMPHASIS
(replication) 289  8-9y 54.3 peripheral blood Illlumina Infinium MethylationEPIC

Table 2. CpG sets considered in this analysis. See Methods for further details.

CpG set Number of CpGs Notes

Array background 391,814 Intersection of CpGs on lllumina HM450 (discovery)
and EPIC (replication) cohort arrays, post QC

Discovery CpGs 2,091 SoC-associated loci identified in the discovery cohort
(FDR<10%)

SoC-CpGs 134 ‘Discovery CpGs’ with significant seasonal variation in
the replication cohort (FDR<10%)

Metastable 1,881 ME CpGs identified in multi-tissue screens by Van Baak

epialleles (MEs) et al'’ and Kessler et al*® overlapping array background

Parent-of-origin 699 Parent-of-origin specific methylation loci identified in

specific methylation Zink et al* overlapping array background

GxE CpGs 889 CpGs with evidence of Gx(in utero)E interactions
identified in Teh et al.3! overlapping array background

High variance 18,281 CpGs in the top 5% by methylation variance in the

top 5% discovery cohort

High variance 2,091 Random sample of 2,091 CpGs from the ‘high variance

Controls* top 5%’ set

Random controls* 2,091 Random sample of 2,091 CpGs from array background

* random subsamples of equal size to the discovery CpG set. Used for computational tractability in
modelling analyses
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Figure 1. Association of periconceptional environment with DNA methylation 1. A: Relationship between
date of conception and date of sample collection for discovery and replication cohorts in the Gambian seasonality-
DNAm analysis. DNAm differences associated with season of conception are potentially confounded by season of
sample collection in the discovery cohort (ENID - top), since samples are collected at age 2yrs. This is not the case
in the replication cohort (EMPHASIS - bottom) where all samples are collected in the Gambian dry season. B:
Modelled seasonal change in methylation for 2,091 discovery CpGs in the discovery (top) and replication (bottom)
cohorts. 61 ME CpGs are marked in red and the remaining 2,030 in blue. C: Conception date of modelled
methylation maximum in each cohort for 134 replicated CpGs. D: Distribution of mean DNAm values (data from
both cohorts combined) at i) SoC-CpGs that are known MEs (n=10 marked in red); ii) other SoC-CpGs (n=124,
blue); and iii) high variance and array background CpGs as controls (n=18,281 & 391,484; light/dark grey
respectively). E: Distribution of SoC-CpGs and controls with respect to CpG islands (left) and gene locations
(right). Error bars are bootstraped 95% Cls. N /S Shore / Shelf: North / South Shore / Shelf respectively (regions
proximal to CpG Islands defined in lllumina manifest).
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Figure 2. Association of periconceptional environment with DNA methylation 2. A: Date of
modelled DNAmM maximum vs seasonal amplitude in each cohort for (replicating) SoC-CpGs (n=134,
dark blue) and non-replicating discovery CpGs (n=1,957, light blue). Seasonal amplitude is defined as
the distance between modelled methylation peak and nadir (see inset). B: Date of conception at
modelled methylation maxima (top) and seasonal amplitude (bottom) for i) SoC-CpGs that are known
MEs (red); ii) other replicating CpGs (blue); iii) non-replicating MEs in discovery set (pink) and iv)
random and high variance controls (light/dark grey respectively). C: Distribution of intra-individual
pairwise methylation correlations for CpG sets in discovery (left) and replication (right) cohorts.
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Figure 3. Early embryo DNA methylation dynamics at SoC loci. A: Proportion of intermediately
methylated (10-90%) sites in pre-gastrulation inner cell mass (ICM) and post-gastrulation embryonic liver
(emb liver) tissues, measured in RRBS embryo methylation data from Guo et al.. Data comprises 67,870
CpGs covered at >=10x in both ICM and emb liver by Guo et al. that overlap array background, including 36
SoC-CpGs and 470 ME CpGs. Error bars represent bootstrapped 95% confidence intervals. B: Proportion
of hypomethylated sites (methylation <10%) using sperm WGBS data from Okae et al.'® Data comprises
389,360 CpGs covered at >10x and includes all 134 SoC-CpGs and 1,881 ME CpGs. Bootstrapped Cls as
above. C: (Left) Mean methylation at SoC-CpGs and controls, measured across all n=522 individuals in
both cohorts, sub-divided according to whether loci are hypomethylated (top) or not hypomethylated
(bottom) in sperm in the Okae ef al. dataset. (Right) as left but further sub-divided according to whether loci
or oocyte gDMRs (top) or not (bottom). CpGs mapping to the IGF1R and 14q32 replicating regions are
marked as green triangles. Note that the 1432 CpG is also an ME. D: (Left) Enrichment of oocyte
(oo=maternally methylated) and sperm (sp=paternally methylated) gDMRs25 and PofOm?23 at SoC-CpGs, all
MEs and CpGs in the top 5% by variance set. Analyses includes loci with PofOm that persists at the
blastocyst (blast) and placental (plac) stages. (Right) positive control analysis demonstrating that PofOm
loci identified in postnatal samples by Zink et al.2® are very highly enriched for maternal gDMRs. Dashed
horizontal is OR=1. Note different y-axis scales..
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Figure 4. Influence of genotype, periconceptional environment and gene-environment
interactions on DNAm. A: Mean methylation variance explained attributable to additive genetic (A),
common (C) and non-shared (E) environment effects for replicated CpGs, CpGs in the top 5% by
variance and lllumina array background. Estimates for CpGs on the Illlumina 450k are from Hannon et
al’0. Error bars represent bootstrapped 95% confidence intervals. B: Proportion of methylation
variance explained by E, G and GxE models for SoC-CpGs and random and high variance control
CpGs. A adjR? is the additional variance explained by the specified model, over and above a
covariate-only model (see Methods for further details). Pie charts show proportion of winning models,
assessed using AIC. Note that E-only is never the winning model. C: (Left) Examples of ME-CpGs in
the replicated set with GxE (top) and G (bottom) winning models. lllumina CpG and rs identifiers for the
most significant SNP are shown. Curves show Fourier regression model fitted values for E-only model
(solid red line) for all individuals, and for individuals stratified by genotype (dashed lines). A/a
major/minor alleles. (Right) Scatter plots of DNAm adjusted for baseline covariates, stratified by
season of conception (left) and additionally stratified by minor allele count (right). For ease of
visualisation, seasons are dichotomised: dry season=Jan-Jun (orange); rainy season=Jul-Dec (green).
Black horizontal lines are stratified mean values.
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