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ABSTRACT 1 

Hierarchical stimuli (such as a circle made of diamonds) have been widely used to 2 

study global and local processing. Two classic phenomena have been observed using 3 

these stimuli: the global advantage effect (that we identify the circle faster than the 4 

diamonds) and the incongruence effect (that we identify the circle faster when both global 5 

and local shapes are circles). Understanding them has been difficult because they occur 6 

during shape detection, where an unknown categorical judgement is made on an 7 

unknown feature representation.  8 

Here we report two essential findings. First, these phenomena are present both in 9 

a general same-different task and a visual search task, suggesting that they may be 10 

intrinsic properties of the underlying representation. Second, in both tasks, responses 11 

were explained using linear models that combined multiscale shape differences and 12 

shape distinctiveness. Thus, global and local processing can be understood as properties 13 

of a systematic underlying feature representation.  14 
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INTRODUCTION 15 

Visual objects contain features at multiple spatial scales (Oliva and Schyns, 1997; 16 

Morrison and Schyns, 2001; Ullman et al., 2002). Our perception of global and local shape 17 

have been extensively investigated using hierarchical stimuli, which contain local 18 

elements arranged to form a global shape (Figure 1). Two classic phenomena have been 19 

observed using these stimuli (Navon, 1977; Kimchi, 1992). First, the global shape can be 20 

detected faster than the local shape; this is known as the global advantage effect. Second, 21 

the global shape can be detected faster in a congruent shape (e.g. circle made of circles) 22 

than in an incongruent shape (e.g. circle made of diamonds); this is known as the global-23 

local incongruence effect. Subsequent studies have shown that these effects depend on 24 

the size, position, spacing and arrangement of the local shapes (Lamb and Robertson, 25 

1990; Kimchi, 1992; Malinowski et al., 2002; Miller and Navon, 2002).  26 

These global/local processing phenomena have since been extensively 27 

investigated for their neural basis as well as their application to a variety of disorders. 28 

Global and local processing are thought to be localized to the right and left hemispheres 29 

respectively (Fink et al., 1996; Han et al., 2002, 2004), and are mediated by brain 30 

oscillations at different frequencies (Romei et al., 2011; Liu and Luo, 2019). These 31 

phenomena have now been observed in a variety of other animals, especially during tasks 32 

that require speeded responses (Tanaka and Fujita, 2000; Cavoto and Cook, 2001; Pitteri 33 

et al., 2014; Avarguès-Weber et al., 2015). Global/local processing is impaired in a variety 34 

of clinical disorders (Bihrle et al., 1989; Robertson and Lamb, 1991; Slavin et al., 2002; 35 

Behrmann et al., 2006; Song and Hakoda, 2015), including those related to reading 36 

(Lachmann and Van Leeuwen, 2008; Franceschini et al., 2017). Finally, individual 37 

differences in global/local processing predict other aspects of object perception (Gerlach 38 

and Poirel, 2018; Gerlach and Starrfelt, 2018).  39 
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Despite these insights, we lack a deeper understanding of these phenomena for 40 

several reasons. First, they have only been observed during shape detection tasks, which 41 

involve two complex steps: a categorical response made over a complex underlying 42 

representation (Freedman and Miller, 2008; Mohan and Arun, 2012). It is therefore 43 

possible that these phenomena reflect the priorities of the categorical decision. 44 

Alternatively, they may reflect some intrinsic property of the underlying shape 45 

representation.  46 

Second, these shape detection tasks, by their design, set up a response conflict 47 

for incongruent but not congruent stimuli. This is because the incongruent stimulus 48 

contains two different shapes at the global and local levels, each associated with a 49 

different response during the global and local blocks. By contrast there is no such conflict 50 

for congruent stimuli where the global and local shapes are identical. Thus, the 51 

incongruence effect might reflect the response conflicts associated with making opposite 52 

responses in the global and local blocks (Miller and Navon, 2002). Alternatively, again, it 53 

might reflect some intrinsic property of the underlying shape representation.  54 

Third, it has long been appreciated that these phenomena depend on stimulus 55 

properties such as the size, position, spacing and arrangement of the local elements 56 

(Lamb and Robertson, 1990; Kimchi, 1992; Malinowski et al., 2002; Miller and Navon, 57 

2002). Surprisingly, hierarchical stimuli themselves have never been studied from the 58 

perspective of feature integration i.e. how the global and local shapes combine. A deeper 59 

understanding of how hierarchical stimuli are organized in perception can elucidate how 60 

these stimulus properties affect global/local processing.  61 

Thus, understanding the global advantage and incongruence effects will require 62 

reproducing them in simpler tasks, as well as understanding how global and local shape 63 

combine in the perception of hierarchical stimuli. This is not only a fundamental question 64 
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but has clinical significance since deficits in global/local processing have been reported 65 

in a variety of disorders. 66 

 67 

Overview of this study 68 

 Here we addressed the above limitations as follows. First, we devised a simpler 69 

shape task which involves subjects indicating whether two shapes are the same or 70 

different at either the global or local level. This avoids any effects due to specific shapes 71 

but still involves categorization, albeit a more general one. Second, we devised a visual 72 

search task in which subjects had to report the location of an oddball target. This task 73 

avoids any categorical judgement and the accompanying response conflicts. It also does 74 

not involve any explicit manipulation of global vs local attention unlike the global/local 75 

processing tasks. If these phenomena are present in visual search, it would imply that 76 

they reflect properties of the underlying shape representation of hierarchical stimuli. If not, 77 

they must arise from the categorization process.  78 

To understand how global and local shape combine in visual search, we asked 79 

how search difficulty for a target differing in both global and local shape from the 80 

distractors can be understood in terms of global and local shape differences. While search 81 

reaction time (RT) is the natural observation made during any search task, we have 82 

shown recently that its reciprocal (1/RT) is the more useful measure for understanding 83 

visual search (Arun, 2012; Pramod and Arun, 2014). The reciprocal of search time can 84 

be thought of as the dissimilarity between the target and distractors in visual search, and 85 

has the intuitive interpretation as the underlying salience signal that accumulates to 86 

threshold (Arun, 2012). Models based on 1/RT consistently outperform models based 87 

directly on search time (Vighneshvel and Arun, 2013; Pramod and Arun, 2014, 2016; 88 
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Sunder and Arun, 2016). Further, using this measure, a variety of object attributes as well 89 

as top-down factors such as target preview have been found to combine linearly.  90 

 We performed two experiments. In Experiment 1, we replicated the global 91 

advantage and incongruence effects in a generic same-different task. We then show that 92 

image-by-image variations in response times can be explained by two factors: 93 

dissimilarity and distinctiveness. In Experiment 2, we show that these effects can be 94 

observed even when subjects perform visual search on the same stimuli. We also show 95 

that visual search for hierarchical stimuli can be accurately explained as a linear sum of 96 

global and local feature relations. Finally we show that the factors driving the same-97 

different task responses are closely related to the visual search model.    98 
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EXPERIMENT 1: SAME-DIFFERENT TASK 99 

 In most studies of global and local processing, subjects are required to indicate 100 

which of two target shapes they saw at the global or local levels (Navon, 1977; Kimchi, 101 

1994). This approach severely limits the number of shapes that can be tested because of 102 

the combinatorial increase in the number of possible shape pairs. To overcome this 103 

limitation, we devised a same-different task in which subjects have to indicate whether 104 

two simultaneously presented shapes contain the same or different shape at the global 105 

or local level. Of particular interest to us were two questions: (1) Are the global advantage 106 

and incongruence effects observable in this more general shape detection task? (2) Do 107 

response times in this task systematically vary across stimuli and across the global and 108 

local blocks?  109 

 110 

METHODS 111 

 Here and in all experiments, subjects had normal or corrected-to-normal vision and 112 

gave written informed consent to an experimental protocol approved by the Institutional 113 

Human Ethics Committee of the Indian Institute of Science, Bangalore. Subjects were 114 

naive to the purpose of the experiment and received monetary compensation for their 115 

participation. 116 

 117 

Subjects. Sixteen human subjects (11 male, aged 20-30 years) participated in this 118 

experiment. We chose this number of subjects based on previous studies of object 119 

categorization from our lab in which this sample size yielded consistent responses 120 

(Mohan and Arun, 2012).  121 

 122 
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Stimuli. We created hierarchical stimuli by placing eight local shapes uniformly along the 123 

perimeter of a global shape. All local shapes had the same area (0.77 squared degrees 124 

of visual angle), and all global shapes occupied an area that was 25 times larger. We 125 

used seven distinct shapes at the global and local levels to create 49 hierarchical stimuli 126 

(all stimuli can be seen in Figure 8). Stimuli were shown as white against a black 127 

background.   128 

 129 

Procedure. Subjects were seated ~60 cm from a computer monitor under the control of 130 

custom programs written in MATLAB with routines from PsychToolbox (Brainard, 1997). 131 

Subjects performed two blocks of the same-different task, corresponding to global or local 132 

shape matching. In both blocks, a pair of hierarchical shapes were shown to the subject 133 

and the subject had to respond if the shapes contained the same or different shape at a 134 

particular global/local level (key “Z” for same, “M” for different). Each block started with a 135 

practice block with eight trials involving hierarchical stimuli made of shapes  that were not 136 

used in the main experiment. Subjects were given feedback after each trial during the 137 

practice block. 138 

 In all blocks, each trial started with a red fixation cross (measuring 0.6° by 0.6°) 139 

presented at the centre of the screen for 750 ms. This was followed by two hierarchical 140 

stimuli (with local elements measuring 0.6° along the longer dimension and longest 141 

dimension of global shapes are 3.8°) presented on either side of the fixation cross, 142 

separated by 8° from center to center. The position of each stimulus was jittered by ± 0.8° 143 

uniformly at random along the horizontal and vertical. These two stimuli were shown for 144 

200 ms followed by a blank screen until the subject made a response, or until 5 seconds, 145 

whichever was sooner.  146 

 147 
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Stimulus pairs. To avoid any response bias, we selected stimulus pairs in each block such 148 

that the proportion of same- and different-responses were equal. Each block consisted of 149 

588 stimulus pairs. These pairs were divided equally into four groups of 147 pairs (Figure 150 

1A): (1) Pairs with global shape same, local shape same (GSLS, i.e. identical shapes); 151 

(2) Pairs with global shape same but local different (GSLD); (3) Pairs with global different 152 

but local same (GDLS) and (4) Pairs with both global and local shape different (GDLD). 153 

Since there were different number of total possible pairs in each category we selected 154 

pairs as follows: for GSLS pairs, there are 49 unique stimuli and therefore 49 pairs, so we 155 

repeated each pair three times to obtain 147 pairs. For GSLD and GDLS pairs, there are 156 

147 unique pairs, so each pair was used exactly once. For GDLD pairs, there are 441 157 

possible pairs, so we selected 147 pairs which consisted of 21 congruent pairs (i.e. each 158 

stimulus containing identical global and local shapes), 21 incongruent pairs (in which 159 

global shape of one stimulus was the local shape of the other, and vice-versa), and 105 160 

randomly chosen other pairs. The full set of 588 stimulus pairs were fixed across all 161 

subjects. Each stimulus pair was shown twice. Thus each block consisted of 588 x 2 = 162 

1176 trials. Error trials were repeated after a random number of other trials.  163 

 We removed inordinately long or short response times for each image pair using 164 

an automatic outlier detection procedure (isoutlier function, MATLAB 2018). We pooled 165 

the reaction times across subjects for each image pair, and all response times greater 166 

than three scaled median absolute deviations away from the median were removed. In 167 

practice this procedure removed ~8% of the total responses.  168 

 169 

Estimating data reliability.  170 

 To estimate an upper limit on the performance of any model, we reasoned that the 171 

performance of any model cannot exceed the reliability of the data itself. To estimate the 172 
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reliability of the data, we first calculated the average correlation between two halves of 173 

the data. However, doing so underestimates the true reliability since the correlation is 174 

based on two halves of the data rather than the entire dataset. To estimate this true 175 

reliability we applied a Spearman-Brown correction on the split-half correlation. This 176 

Spearman-Brown corrected correlation (rc) is given by rc = 2r/(1+r) where r is the 177 

correlation between the two halves. This data reliability is denoted as rc throughout the 178 

text to distinguish it from the standard Pearson’s correlation coefficient (denoted as r).   179 
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RESULTS 180 

Here, subject performed a same-different task in which they reported whether a 181 

pair of hierarchical stimuli contained the same/different shape at the global level or at the 182 

local level in separate blocks. We grouped the image pairs into four distinct types based 183 

on whether the shapes were same/different at the global/local levels. The first type 184 

comprised pairs with no difference at the global or local levels, i.e. identical images, 185 

denoted by GSLS (Figure 1A, top row). The second type comprised pairs in which both 186 

global and local shape were different, denoted by GDLD (Figure 1A, bottom row). These 187 

two were pairs elicited identical responses in the global and local blocks. The third type 188 

comprised pairs with the same global shape but different local shapes, denoted by GSLD 189 

(Figure 1C, top row). The fourth type comprised pairs differing in global shape but with 190 

identical local shapes, denoted by GDLS (Figure 1C, bottom row). These two were pairs 191 

that elicited opposite responses in the global and local blocks. Since both blocks 192 

consisted of identical image pairs, the responses in the two blocks are directly 193 

comparable and matched for image content.  194 

 195 

 196 
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 197 
Figure 1. Same-different task for global-local processing. In the global block, subjects 198 
have to indicate whether a pair of images presented contain the same shape at the global 199 
level. Likewise in the local block, they have to make same-different judgments about the 200 
shape at the local level. Block order was counterbalanced across subjects.  201 
(A) Example image-pairs with identical correct responses in the global and local blocks. 202 

In the GSLS pairs, both images are identical i.e. have the same global shape and 203 
same local shape. In the GDLD pairs, the two images differ in both global shape and 204 
local shape.  205 

(B) Bar plot comparing average response times for GSLS and GDLD pairs. Error bars 206 
indicate s.e.m. across subjects. Asterisks indicate statistical significance assessed 207 
using an ANOVA on response times (**** is p < 0.00005). 208 

(C) Example image pairs that elicited opposite responses in the global and local blocks. 209 
In the GSLD pairs, the two images contain the same global shape but differ in local 210 
shape – thus the correct response is “SAME” in the global block but “DIFFERENT” in 211 
the local block. In the GDLS pairs, the two images contain the same local shape but 212 
differ in global shape, resulting again in opposite responses in the two blocks.  213 

(D) Same as B but for GSLD and GDLS pairs.  214 
(E) Example congruent and incongruent image pairs. Congruent image pairs comprised 215 

stimuli with the same shape at the global and local levels. In the incongruent image 216 
pairs, the global shape of one image matched the local shape of the other, and vice-217 
versa. Thus each congruent image pair was exactly matched to an incongruent image 218 
pair.   219 

(F) Bar plot of average response times for congruent and incongruent image pairs. 220 
Asterisks indicate statistical significance using an ANOVA on response times (**** is 221 
p < 0.00005).   222 
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Is there a global advantage in the same-different task? 223 

Subjects were highly accurate in the task overall, but were more accurate in the 224 

global block (mean & std of accuracy across subjects: 91% ± 4% in the global block; 225 

88%±7% in the local block, p < 0.05, sign-rank test on subject-wise accuracy in the two 226 

blocks). They were also significantly faster in the global block (mean & std of response 227 

times across subjects: 702 ± 55.7 ms in the global block; 752 ± 66.7 ms in the local block; 228 

p < 0.005, sign-rank test on subject-wise average RTs in the two blocks). This pattern 229 

was true both for image pairs that elicited identical responses in the two blocks (GSLS & 230 

GDLD pairs; Figure 1B) as well as for those that elicited opposite responses (GDLS & 231 

GSLD pairs; Figure 1C). Thus, subjects were faster and more accurate in the global block 232 

across all image pairs, reflecting a robust global advantage.  233 

   234 

Is there an incongruence effect in the same-different task?  235 

Next we asked whether the incongruence effect can be observed in the same-236 

different task. To this end we compared the average RT for GDLD image pairs in which 237 

the two images were either both congruent or both incongruent (Figure 1E). Subjects 238 

responded significantly faster to congruent compared to incongruent pairs (Figure 1F). 239 

To assess the statistical significance of these effects, we performed an ANOVA on the 240 

response times with subject (16 levels), block (2 levels), congruence (2 levels) and image 241 

pair (21 levels) as factors. This revealed a significant main effect of congruence (p < 242 

0.00005), but also main effects of subject and block (p < 0.00005 in all cases), as well as 243 

significant interaction effects (p < 0.00005, between subjects and blocks; all other effects 244 

were p > 0.05). We conclude that there is a robust incongruence effect in both the global 245 

and local blocks.  246 

 247 
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Do responses in the same-different task vary systematically across image pairs?  248 

 Having established that subjects show a global advantage and incongruence 249 

effects in the same-different task, we wondered whether there were any other systematic 250 

variations in response times across image pairs. Specifically, we asked whether image 251 

pairs that evoked fast responses in one group of subjects would also elicit a fast response 252 

in another group of subjects. This was indeed the case: we found a significant correlation 253 

between the average response times of the first and second half of all subjects in both 254 

the global block (r = 0.74, p < 0.00005; Figure 2A) and the local block (r = 0.75, p < 255 

0.000005; Figure 2B). This correlation was present in all four image types as well in both 256 

blocks (Figure 2).   257 

 258 

 259 
Figure 2. Consistency of response times in the same-different task 260 
(A) Average response times for one half of the subjects in the global block of the same-261 

different task plotted against those of the other half. Asterisks indicate statistical 262 
significance (* is p < 0.05, ** is p < 0.005 etc).  263 

(B) Same as (A) but for the local block.  264 
 265 

Are responses in the global and local block related?  266 

 Having established that response times are systematic within each block, we next 267 

investigated how responses in the global and local block are related for the same image 268 
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pairs presented in both blocks. First, we compared responses to image pairs that elicit 269 

identical responses in both blocks. These are the GSLS pairs (which elicit a SAME 270 

response in both blocks) and GDLD pairs (that elicit a DIFFERENT response in both 271 

blocks). This revealed a positive but not significant correlation between the responses to 272 

the GSLS pairs in both blocks (r = 0.15, p = 0.32 across 49 image pairs; Figure 3A). By 273 

contrast the responses to the GDLD pairs, which were many more in number (n = 147), 274 

showed a significant positive correlation between the global and local blocks (r = 0.24, p 275 

< 0.005; Figure 3A). Second, we compared image pairs that elicited opposite responses 276 

in the global and local blocks, namely the GSLD and GDLS pairs. This revealed a 277 

significant negative correlation in both cases (r = -0.20, p < 0.05 for GSLD pairs, r = -0.23, 278 

p < 0.0005 for GDLS pairs; Figure 3B). Thus, image pairs that are hard to categorize as 279 

SAME are easier to categorize as DIFFERENT.  280 

 Note that in all cases, the correlation between responses in the global and local 281 

blocks were relatively small (only r = ~0.2; Figure 3) compared to the consistency of the 282 

responses within each block (split-half correlation = 0.75 in the global block; 0.74 in the 283 

local block; p < 0.00005 for both the conditions; Figure 2). These low correlations suggest 284 

that responses in the global and local blocks are qualitatively different.  285 

 286 

 287 
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 288 
Figure 3. Responses to hierarchical stimuli in global and local blocks.  289 
(A) Average response times in the local block plotted against the global block, for image 290 

pairs with identical responses in the global and local blocks. These are the GSLS pairs 291 
(red crosses, n = 49) which elicited the “SAME” response in both blocks, and the 292 
GDLD pairs (blue crosses, n = 147) which elicited the “DIFFERENT” responses in 293 
both blocks.  294 

(B) Average response times in the local block plotted against the global block, for image 295 
pairs with opposite responses in the global and local blocks. These are the GSLD 296 
pairs (open circles, n = 147) which elicit the “SAME” response in the global block but 297 
the “DIFFERENT” response in the local block, and the GDLS pairs (filled circles, n = 298 
147) which likewise elicit opposite responses in the two blocks.  299 

  300 
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What factors influence response times in the same-different task?  301 

 So far we have shown that the global advantage and incongruence effects are 302 

present in a same-different task, and that response times vary systematically in each 303 

block across image pairs. However these findings do not explain why some image pairs 304 

elicit slower responses than others (Figure 2).   305 

Consider a schematic of perceptual space depicted in Figure 4A. We hypothesized 306 

that the response time for an image pair in the global block could depend on two factors. 307 

The first factor is the dissimilarity between the two images. If the two images have the 308 

same global shape (thus requiring a “SAME” response), then the response time would be 309 

proportionally longer as the local shapes become more dissimilar. By contrast, if two 310 

images differ in global shape (thus requiring a “DIFFERENT” response), then the 311 

response time would be shorter if the two images are more dissimilar (Figure 4B). Thus, 312 

shape dissimilarity between the two images can have opposite effects on response time 313 

depending on whether the response is same or different. The second factor is the 314 

distinctiveness of the images relative to all other images. We reasoned that a shape that 315 

is distinct from all other shapes should evoke a faster response since there are fewer 316 

competing stimuli in its vicinity. This factor is required to explain systematic variation in 317 

response times for identical images (e.g. GSLS pairs) where the first factor (dissimilarity) 318 

plays no role. But more generally, distinctiveness could play a role even when both 319 

images are different. Below we describe how distinctiveness and dissimilarity can be used 320 

to predict response time variations in the same-different task.  321 

  322 
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 323 
Figure 4. Understanding same-different responses  324 
(A) To elucidate how same-different responses are related to the underlying perceptual 325 

space, consider a perceptual space consisting of many hierarchical stimuli. In this 326 
space, nearby stimuli are perceptually similar.  327 

(B) We hypothesized that subjects make “SAME” or “DIFFERENT” responses to an image 328 
pair driven by the dissimilarity between the two images. In the global block, when two 329 
images have the same global shape, we predict that response times are longer when 330 
the two images are more dissimilar. Thus, two diamonds made using Xs and Zs evoke 331 
a faster response than two diamonds made of circles or Xs, because the latter pair is 332 
more dissimilar than the former. By contrast, when two images differ in global shape, 333 
responses are faster when they are more dissimilar.  334 

(C) We also hypothesized that shapes that are more distinct i.e. far away from other 335 
shapes will elicit faster responses because there are no surrounding distractors. Thus, 336 
the diamond made of circles, which is far away from all other stimuli in panel A, will 337 
elicit a faster response than a diamond made of Zs.  338 

  339 
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Effect of distinctiveness on same-different responses in the global block  340 

How do we estimate distinctiveness? We reasoned that if distinctiveness was the 341 

only influence on response time to identical images, then images that elicited fast 342 

responses must be more distinctive than those that elicit slow responses. We therefore 343 

took the reciprocal of the average response time for each GSLS pair (across trials and 344 

subjects) as a measure of distinctiveness for that image. The estimated distinctiveness 345 

for the hierarchical stimuli in the global block is depicted in Figure 5A. It can be seen that 346 

shapes with a global circle (“O”) are more distinctive than shapes containing the global 347 

shape “A”. In other words, subjects responded faster when they saw these shapes.  348 

Having estimated distinctiveness of each image using the GSLS pairs, we asked 349 

whether it would predict responses to other pairs. For each image pair containing two 350 

different images, we calculated the net distinctiveness as the sum of the distinctiveness 351 

of the two individual images. We then plotted the average response times for each GSLD 352 

pair (which evoked a “SAME” response) in the global block against the net distinctiveness. 353 

This revealed a striking negative correlation (r = -0.71, p < 0.00005; Figure 5B). In other 354 

words, subjects responded quickly to distinctive images. We performed a similar analysis 355 

for the GDLS and GDLD pairs (which evoke a “DIFFERENT” response). This too revealed 356 

a negative correlation (r = -0.46, p < 0.00005 across all GDLS and GDLD pairs, r = -0.38, 357 

p < 0.0005 for GDLS pairs; Figure 5C; r = -0.54, p <0.0005 for GDLD pairs). We conclude 358 

that image pairs containing distinctive images elicit faster responses.  359 

If distinctiveness measured from GSLS pairs is so effective in predicting responses 360 

to all other pairs, we wondered whether it can also explain the incongruence effect. To do 361 

so, we compared the net distinctiveness of congruent pairs with that of the incongruent 362 

pairs. Indeed, congruent pairs were more distinctive (average distinctiveness, mean ± sd: 363 
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3.31 ± 0.11 s-1 for congruent pairs, 3.17 ± 0.14 xx s-1 for incongruent pairs, p < 0.005, 364 

sign-rank test across 21 image pairs; Figure 5D).  365 

 366 

 367 
Figure 5. Understanding the contribution of distinctiveness  368 

(A) Global distinctiveness (1/RT) of each hierarchical stimulus, estimated from GSLS 369 
pairs in the global block. 370 

(B) Observed response times for GSLD pairs in the global block plotted against the 371 
net global distinctiveness estimated from panel A.  372 

(C) Observed response times for GDLS and GDLD pairs plotted against net global 373 
distinctiveness estimated from panel A. 374 

(D) Net global distinctiveness calculated for congruent and incongruent image pairs. 375 
Error bars represents standard deviation across pairs.   376 

(E) Local distinctiveness (1/RT) for each hierarchical stimulus estimated from GSLS 377 
pairs in the local block. 378 

(F) Observed response times for GDLS pairs in the local block plotted against the net 379 
local distinctiveness estimated as in panel D.  380 

(G) Observed response times for GSLD & GDLD pairs in the local block plotted 381 
against the net local distinctiveness estimated as in panel D.  382 

(H) Net local distinctiveness calculated for congruent and incongruent image pairs. 383 
Error bar represents standard deviation across pairs.  384 

 385 

  386 
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Effect of distinctiveness on same-different responses in the local block  387 

We observed similar trends in the local block. Again, we estimated distinctiveness 388 

for each image as the reciprocal of the response time to the GSLS trials in the local block 389 

(Figure 5E). It can be seen that shapes containing a local circle were more distinctive 390 

compared to shapes containing a local diamond (Figure 5E). Interestingly, the 391 

distinctiveness estimated in the local block was uncorrelated with the distinctiveness 392 

estimated in the global block (r = 0.16, p = 0.25).  393 

As with the global block, we obtained a significant negative correlation between 394 

the response times for GDLS pairs (which evoked a “SAME” response) and the net 395 

distinctiveness (r = -0.58, p < 0.00005; Figure 5F). Likewise, we obtained a significant 396 

negative correlation between the response times of GSLD and GDLD pairs (both of which 397 

evoke “DIFFERENT” responses in the local block) with net distinctiveness (r = -0.22, p < 398 

0.0005 across 294 GSLD and GDLD pairs; Figure 5G; r = -0.24, p < 0.005 for GSLD pairs; 399 

r = -0.18, p < 0.05 for GDLD pairs). We conclude that distinctive images elicit faster 400 

responses.  401 

Finally, we asked whether differences in net distinctiveness can explain the 402 

difference between congruent and incongruent pairs. As expected, local distinctiveness 403 

was significantly larger for congruent compared to incongruent pairs (average 404 

distinctiveness, mean ± sd: 3.08 ± 0.05 s-1 for congruent pairs, 2.91 ± 0.11 s-1 for 405 

incongruent pairs, p < 0.00005, sign-rank test across 21 image pairs; Figure 5H).  406 

 The above analyses show that distinctiveness directly estimated from response 407 

times to identical images can predict responses to other image pairs containing non-408 

identical images. By contrast, there is no direct subset of image pairs that can be used to 409 

measure the contribution of image dissimilarity to response times. We therefore devised 410 

a quantitative model for the response times to estimate the underlying image 411 
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dissimilarities and elucidate the contribution of dissimilarity and distinctiveness. Because 412 

high dissimilarity can increase response times for “SAME” responses and decrease 413 

response times for “DIFFERENT” responses, we devised two separate models for these 414 

two types of responses, as detailed below.  415 

 416 

Can “SAME” responses be predicted using distinctiveness and dissimilarity?  417 

 Recall that “SAME” responses in the global block are made to image pairs in which 418 

the global shape is the same and local shape is different. Let AB denote a hierarchical 419 

stimulus made of shape A at the global level and B at the local level. We can denote any 420 

image pair eliciting a “SAME” response in global block as AB and AC, since the global 421 

shape will be identical. Then according to our model, the response time (SRT) taken to 422 

respond to an image pair AB & AC is given by:  423 

𝑆𝑅𝑇(𝐴𝐵, 𝐴𝐶)  =  𝑘𝐺 ∗ 𝐺𝐷 + 𝑘𝐿 ∗ 𝐿𝐷 +  𝐿𝐵𝐶 424 

 where GD is the sum of the global distinctiveness of AB and AC (estimated from 425 

GSLS pairs in the global block), LD is the sum of local distinctiveness of AB and AC 426 

(estimated from GSLS pairs in the local block), kG, kL are constants that specify the 427 

contribution of GD and LD towards the response time, and LBC denotes the dissimilarity 428 

between local shapes B and C. Since there are 7 possible local shapes there are only 7C2 429 

= 21 possible local shape terms. When this equation is written down for each GSLD pair, 430 

we get a system of linear equations of the form y = Xb where y is a 147 x 1 vector 431 

containing the GSLD response times, X is a 147 x 23 matrix containing the net global 432 

distinctiveness and net local distinctiveness as the first two columns, and 0/1 in the other 433 

columns corresponding to whether a given local shape pair is present in that image pair 434 

or not, and b is a 23 x 1 vector of unknowns containing the weights kG, kL and the 21 435 
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estimated local dissimilarities. Because there are 147 equations and only 22 unknowns, 436 

we can estimate the unknown vector b using linear regression.  437 

 The performance of this model is summarized in Figure 6. The model-predicted 438 

response times were strongly correlated with the observed response times for the GSLD 439 

pairs in the global block (r = 0.86, p < 0.00005; Figure 6A). These model fits were close 440 

to the reliability of the data (rc = 0.84 ± 0.02; see Methods), suggesting that the model 441 

explained nearly all the explainable variance in the data. However the model fits do not 442 

elucidate which factor contributes more towards response times. To do so, we performed 443 

a partial correlation analysis in which we calculated the correlation between observed 444 

response times and each factor after regressing out the contributions of the other two 445 

factors. For example, to estimate the contribution of global distinctiveness, we calculated 446 

the correlation between observed response times and global distinctiveness after 447 

regressing out the contribution of local distinctiveness and the estimated local dissimilarity 448 

values corresponding to each image pair. This revealed a significant negative correlation 449 

(r = -0.81, p < 0.00005; Figure 6A, inset). Likewise, we obtained a significant positive 450 

partial correlation between local dissimilarities and observed response times after 451 

regressing out the other factors (r = 0.69, p < 0.00005; Figure 6A, inset). However, local 452 

distinctiveness showed  positive partial correlation (r = 0.30, p = 0.0005) suggesting that 453 

locally distinctive shapes slow down responses in the global block. Thus, response times 454 

are faster for more globally distinctive image pairs, and slower for more dissimilar image 455 

pairs.  456 

 We obtained similar results for local “SAME” responses. As before, the response 457 

time for “SAME” responses in the local block to an image pair (AB, CB) was written as  458 

𝑆𝑅𝑇(𝐴𝐵, 𝐶𝐵) =  𝑘𝐺 ∗ 𝐺𝐷 +  𝑘𝐿 ∗ 𝐿𝐷 + 𝐺𝐴𝐶 459 
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where SRT is the response time, GD and LD are the net global and net local 460 

distinctiveness of the images AB and CB respectively, kG, kL are unknown constants that 461 

specify the contribution of the net global and local distinctiveness and GAC is the 462 

dissimilarity between the global shapes A and C. As before this model is applicable to all 463 

the LSGD pairs (n = 147), has 23 free parameters and can be solved using straightforward 464 

linear regression.  465 

 The model fits for local “SAME” responses is depicted in Figure 6B. We obtained 466 

a striking correlation between predicted and observed response times (r = 0.72, p < 467 

0.00005; Figure 6B). This correlation was close to the reliability of the data itself (rc = 0.80 468 

± 0.03), suggesting that the model explains nearly all the explainable variance in the 469 

response times. To estimate the unique contribution of distinctiveness and dissimilarity, 470 

we performed a partial correlation analysis as before. We obtained a significant partial 471 

negative correlation between observed response times and local distinctiveness after 472 

regressing out global distinctiveness and global dissimilarity (r = -0.70, p < 0.00005; 473 

Figure 6B, inset). We also obtained a significant positive partial correlation between 474 

observed response times and global dissimilarity after factoring out both distinctiveness 475 

terms (r = 0.47, p < 0.00005; Figure 6B, inset). Finally, as before, global distinctiveness 476 

showed a positive correlation with local “SAME” responses after accounting for the other 477 

factors (r = 0.36, p < 0.00005; Figure 6B inset).  478 
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 479 
Figure 6. Quantitative model for the Same-Different task  480 

(A) Observed vs predicted response times for “SAME” responses in the global block. 481 
Inset: partial correlation between observed response times and each factor while 482 
regressing out all other factors. Error bars represents 68% confidence intervals, 483 
corresponding to ±1 standard deviation from the mean.   484 

(B) Same as (A) but for “SAME” responses in the local block. 485 
(C) Same as (A) but for “DIFFERENT” responses in the global block.   486 
(D) Same as (A) but for “DIFFERENT” responses in the local block.   487 
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Can “DIFFERENT” responses be predicted using distinctiveness and dissimilarity?  488 

 We used a similar approach to predict “DIFFERENT” responses in the global and 489 

local blocks. Specifically, for any image pair AB and CD, the response time according to 490 

the model is written as  491 

𝐷𝑅𝑇(𝐴𝐵, 𝐶𝐷)  =  𝑘𝐺 ∗ 𝐺𝐷 +  𝑘𝐿 ∗ 𝐿𝐷 −  𝐺𝐴𝐶  −  𝐿𝐵𝐷 492 

 where DRT is the response time for making a “DIFFERENT” response, GD and 493 

LD are the net global and net local distinctiveness of the images AB and CD respectively, 494 

kG, kL are unknown constants that specify their contributions, GAC is the dissimilarity 495 

between the global shapes A and C, and LBD is the dissimilarity between the local shapes 496 

B and D. Note that, unlike the “SAME” response model, the sign of GAC and LBD is negative 497 

because large global or local dissimilarity should speed up “DIFFERENT” responses. The 498 

resulting model, which applies to both GDLS and GDLD pairs, consists of 44 free 499 

parameters which are the two constants specifying the contribution of the global and local 500 

distinctiveness and 21 terms each for the pairwise dissimilarities at the global and local 501 

levels respectively. As before, this is a linear model whose free parameters can be 502 

estimated using straightforward linear regression.  503 

 The model fits for “DIFFERENT” responses in the global block are summarized in 504 

Figure 6C. We obtained a striking correlation between observed response times and 505 

predicted response times (r = 0.82, p < 0.00005; Figure 6C). This correlation was close 506 

to the data reliability itself (rc = 0.84 ± 0.02), implying that the model explained nearly all 507 

the explainable variance in the data. To estimate the unique contributions of each term, 508 

we performed a partial correlation analysis as before. We obtained a significant negative 509 

partial correlation between observed response times and global distinctiveness after 510 

regressing out all other factors (r = -0.21, p < 0.0005; Figure 6C, inset). We also obtained 511 

a significant negative partial correlation between observed response times and both 512 
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dissimilarity terms (r = -0.76, p < 0.00005 for global terms; r = -0.33, p < 0.00005 for local 513 

terms; Figure 6C, inset). However we note that the contribution of global terms is larger 514 

than the contribution of local terms. As before, local distinctiveness did not contribute 515 

significantly to “DIFFERENT” responses in the global block (r = -0.06, p = 0.34; Figure 516 

6C, inset). We conclude that “DIFFERENT” responses in the global block are faster for 517 

globally distinctive image pairs, and for dissimilar image pairs.  518 

 We obtained similar results for “DIFFERENT” responses in the local block for 519 

GSLD and GDLD pairs. Model predictions were strongly correlated with observed 520 

response times (r = 0.87, p < 0.00005; Figure 6D). This correlation was close to the data 521 

reliability (rc = 0.85 ± 0.01) suggesting that the model explained nearly all the variance in 522 

the response times. A partial correlation analysis revealed a significant negative partial 523 

correlation for all terms except global distinctiveness (correlation between observed RT 524 

and each factor after accounting for all others: r = -0.26, p < 0.00005 for local 525 

distinctiveness, r = -0.04, p = 0.55 for global distinctiveness, r = -0.32, p < 0.00005 for 526 

global terms, r = -0.86, p < 0.00005 for local terms). In contrast to the global block, the 527 

contribution of global terms was smaller than that of the local terms. We conclude that 528 

“DIFFERENT” responses in the local block are faster for locally distinctive image pairs 529 

and for dissimilar image pairs.  530 

 531 

Relation between “SAME” and “DIFFERENT” model parameters 532 

 Next we asked whether the dissimilarity terms estimated from “SAME” and 533 

“DIFFERENT” responses were related. In the global block, we obtained a significant 534 

positive correlation between the local dissimilarity terms (Table 1). Likewise, the global 535 

and local terms estimated from “DIFFERENT” responses were significantly correlated 536 

(Table 1). In general, only 3 out of 15 (20%) of all possible pairs were negatively 537 
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correlated, and the median pairwise correlation across all model term pairs was 538 

significantly above zero (median correlation: 0.14, p < 0.01). Taken together these 539 

positive correlations imply that the dissimilarities driving the “SAME” and “DIFFERENT” 540 

responses at both global and local levels are driven by a common underlying shape 541 

representation.  542 

 543 

 GDS GDG GDL LSG LDG LDL 

Global SAME model, L terms 1 0.54* 0.17 0.14 0.09 0.48* 

Global DIFFERENT model, Global terms  1 0.24 0.34 0.30 0.47* 

Global DIFFERENT model, Local terms   1 0.03 -0.08 0.14 

Local SAME model, Global terms    1 0.11 -0.04 

Local DIFFERENT model, Global terms     1 -0.31 

Local DIFFERENT model, Local terms      1 

Table 1: Correlation between estimated dissimilarity terms within and across 544 
models. Each entry represents the correlation coefficient between pairs of model terms. 545 
Asterisks represent statistical significance (* is p < 0.05). Column labels are identical to 546 
row labels but are abbreviated for ease of display.  547 
  548 
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EXPERIMENT 2: VISUAL SEARCH 549 

 There are two main findings from Experiment 1. First, subjects show a robust 550 

global advantage and an incongruence effect in the same-different task. These effects 551 

could arise from the underlying categorization process or the underlying visual 552 

representation. To distinguish between these possibilities would require a task devoid of 553 

categorical judgments. To this end, we devised a visual search task in which subjects 554 

have to locate an oddball target among multiple identical distractors, rather than making 555 

a categorical shape judgment. Second, responses in the same-different task were 556 

explained using two factors: distinctiveness and dissimilarity, but it is not clear how these 557 

factors relate to the visual search representation.  558 

 We sought to address four fundamental questions. First, are the global advantage 559 

and incongruence effects present in visual search? Second, can performance in the 560 

same-different task be explained in terms of the responses in the visual search task? 561 

Third, can we understand how global and local features combine in visual search? Finally, 562 

can the dissimilarity and distinctiveness terms in the same-different model of Experiment 563 

1 be related to some aspect of the visual representations observed during visual search?  564 

 565 

METHODS 566 

Subjects. Eight right-handed subjects (6 male, aged 23-30 years) participated in the 567 

study. We selected this number of subjects here and in subsequent experiments based 568 

on the fact that similar sample sizes have yielded extremely consistent visual search data 569 

in our previous studies (Mohan and Arun, 2012; Vighneshvel and Arun, 2013; Pramod 570 

and Arun, 2016).  571 

 572 
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Stimuli. We used the same set of 49 stimuli as in Experiment 1, which were created by 573 

combining 7 possible shapes at the global level with 7 possible shapes at the local level 574 

in all possible combinations.  575 

 576 

Procedure. Subjects were seated approximately 60 cm from a computer. Each subject 577 

performed a baseline motor block, a practice block and then the main visual search block. 578 

In the baseline block, on each trial a white circle appeared on either side of the screen 579 

and subjects had to indicate the side on which the circle appeared. We included this block 580 

so that subjects would become familiar with the key press associated with each side of 581 

the screen, and in order to estimate a baseline motor response time for each subject. In 582 

the practice block, subjects performed 20 correct trials of visual search involving unrelated 583 

objects to become familiarized with the main task.  584 

 Each trial of main experiment started with a red fixation cross presented at the 585 

centre of the screen for 500 ms. This was followed by a 4 x 4 search array measuring 24° 586 

square with a spacing of 2.25° between the centers of adjacent items. Images were were 587 

slightly larger in size (1.2x) compared to Experiment 1 to ensure that the local elements 588 

were clearly visible. The search array consisted of 15 identical distractors and one oddball 589 

target placed at a randomly chosen location in the grid. Subjects were asked to locate the 590 

oddball target and respond with a key press (“Z” for left, “M” for right) within 10 seconds, 591 

failing which the trial was aborted and repeated later. A red vertical line was presented at 592 

the centre of the screen to facilitate left/right judgments.  593 

 Search displays corresponding to each possible image pair were presented two 594 

times, with either image in a pair as target (with target position on the left in one case and 595 

on the right in the other). Thus, there were 49C2 = 1,176 unique searches and 2,352 total 596 

trials. Trials in which the subject made an error or did not respond within 10 s were 597 
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repeated randomly later. In practice, these repeated trials were very few in number, 598 

because subjects accuracy was extremely high (mean and std accuracy: 98.4% ± 0.7% 599 

across subjects).  600 

 601 

Model fitting 602 

 We measured the perceived dissimilarity between every pair of images by taking 603 

the reciprocal of the average search time for that pair across subjects and trials. We 604 

constructed a quantitative model for this perceived dissimilarity following the part 605 

summation model developed in our previous study (Pramod and Arun, 2016). Let each 606 

hierarchical stimulus be denoted as AB where A is the shape at the global level and B is 607 

the local shape. The net dissimilarity between two hierarchical stimuli AB & CD is given 608 

by:  609 

d(AB,CD) = GAC + LBD + XAD + XBC + WAB + WCD + constant 610 

where GAC is the dissimilarity between the global shapes, LBD is the dissimilarity between 611 

the local shapes, XAD & XBC are the across-object dissimilarities between the global shape 612 

of one stimulus and the local shape of the other, and WAB & WCD are the dissimilarities 613 

between global and local shape within each object. Thus there are 4 sets of unknown 614 

parameters in the model, corresponding to global terms, local term, across-object terms 615 

and within-object terms. Each set contains pairwise dissimilarities between the 7 shapes 616 

used to create the stimuli. Note that model terms repeat across image pairs: for instance, 617 

the term GAC is present for every image pair in which A is a global shape of one and C is 618 

the global shape of the other. Writing this equation for each of the 1,176 image pairs 619 

results in a total of 1176 equations corresponding to each image pair, but with only 21 620 

shape pairs x 4 types (global, local, across, within) + 1 = 85 free parameters. The 621 

advantage of this model is that it allows each set of model terms to behave independently, 622 
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thereby allowing potentially different shape representations to emerge for each type 623 

through the course of model fitting.  624 

 This simultaneous set of equations can be written as y = Xb where y is a 1,176 x 625 

1 vector of observed pairwise dissimilarities between hierarchical stimuli, X is a 1,176 x 626 

85 matrix containing 0, 1 or 2 (indicating how many times a part pair of a given type 627 

occurred in that image pair) and b is a 85 x 1 vector of unknown part-part dissimilarities 628 

of each type (corresponding, across and within). We solved this equation using standard 629 

linear regression (regress function, MATLAB).  630 

 The results described in the main text, for ease of exposition, are based on fitting 631 

the model to all pairwise dissimilarities, which could result in overfitting. To assess this 632 

possibility, we fitted the model each time on 80% of the data and calculated its predictions 633 

on the held-out 20%. This too yielded a strong positive correlation across many 80-20 634 

splits (r = 0.85 ± 0.01, p < 0.00005 in all cases), indicating that the model is not overfitting 635 

to the data.  636 

  637 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/777110doi: bioRxiv preprint 

https://doi.org/10.1101/777110
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Page 33 of 53 
 

RESULTS 638 

Subjects performed searches corresponding to all possible pairs of hierarchical 639 

stimuli (49C2 = 1176 pairs). Subjects were highly accurate in the task (mean ± sd 640 

accuracy: 98.4% ± 0.7% across subjects).  641 

Note that each image pair in visual search has a one-to-one correspondence with 642 

an image pair used in the same-different task. Thus, we have GDLS, GSLD and GDLD 643 

pairs in the visual search task. However, there are no GSLS pairs in visual search since 644 

these pairs correspond to identical images, and can have no oddball search.  645 

 646 

Is there a global advantage effect in visual search?  647 

We set out to investigate whether there is a global advantage effect in visual 648 

search. We compared searches with target differing only in global shape (i.e. GDLS pairs) 649 

with equivalent searches in which the target differed only in local shape (i.e. GSLD pairs). 650 

Two example searches are depicted in Figure 7A-B. It can be readily seen that finding a 651 

target differing in global shape (Figure 7A) is much easier than finding the same shape 652 

difference in local shape (Figure 7B).  653 

The above observation held true across all GDLS/GSLD searches. Subjects were 654 

equally accurate on GDLS searches and GSLD searches (accuracy, mean ± sd: 98% ± 655 

1% for GDLS, 98% ± 1% for GSLD, p = 0.48, sign-rank test across subject-wise 656 

accuracy). However they were faster on GDLS searches compared to GSLD searches 657 

(search times, mean ± sd: 1.90 ± 0.40 s across 147 GDLS pairs, 2.11 ± 0.56 s across 147 658 

GSLD pairs; Figure 7C).  659 

To assess the statistical significance of this difference, we performed an ANOVA 660 

on the search times with subject (8 levels), pairs (7x21 = 147 levels), and hierarchical 661 

level (same-global/same-local) as factors. This revealed a significant main effect of 662 
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hierarchical level (p < 0.00005). We also observed significant main effects of subject and 663 

pairs (p < 0.005). All two-way interactions except subject x shape were also significant (p 664 

< 0.00005) but these did not alter the general direction of the effect as evidenced by the 665 

fact that searches for the same global shape were harder than for the same local shape 666 

on average in 82 of 147 pairs (56%) across all subjects. We conclude that searching for 667 

a target differing in global shape is easier than searching for a target differing in local 668 

shape. Thus, there is a robust global advantage effect in visual search.  669 

  670 
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 671 

 672 
Figure 7. Odd ball visual search task.  673 
(A) Example search array with an oddball target differing only in global shape from the 674 

distractors. The actual experiment used 4x4 search arrays with stimuli shown as white 675 
against a black background.  676 

(B) Example search array with an oddball target differing only in local shape from the 677 
distractors.  678 

(C) Average response times for GDLS and GSLD pairs. Error bars represent s.e.m across 679 
subjects. Asterisks indicate statistical significance calculated using a rank-sum test 680 
across 147 pairs ( * is p < 0.05)..   681 

(D) Example search array with two congruent stimuli.  682 
(E) Example search array with two incongruent stimuli.  683 
(F) Average response time for congruent and incongruent stimulus pairs. Error bars 684 

represent s.e.m across subjects. Asterisks indicate statistical significance using an 685 
ANOVA on response times (*** is p < 0.0005).  686 

 687 

 688 

  689 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/777110doi: bioRxiv preprint 

https://doi.org/10.1101/777110
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Page 36 of 53 
 

Is there an incongruence effect in visual search?  690 

            Next we compared whether searches involving a pair of congruent stimuli were 691 

easier than those with incongruent stimuli. Two example searches are shown in Figure 692 

7D-E. It can be readily seen that search involving the congruent stimuli (Figure 7D) is 693 

easier than the search involving incongruent stimuli (Figure 7E), even though both 694 

searches involve a difference in global shape (circle to square) and a difference in local 695 

shape (circle to square).  696 

 To establish whether this was true across all 21 searches of this type, we 697 

performed an ANOVA on the search times with subject (8 levels), shape pair (7C2 = 21 698 

levels) and congruence (2 levels) as factors. This revealed a significant main effect of 699 

congruence (average search times: 1.13 s for congruent pairs, 1.36 s for incongruent 700 

pairs; p < 0.00005). We also observed a significant main effect of subject and shape pair 701 

(p <0.00005), and importantly no significant interaction effects (p > 0.2 for all interactions). 702 

We conclude that search involving congruent stimuli are easier than searches involving 703 

incongruent stimuli. Thus, there is a robust incongruence effect in visual search.  704 

 705 

Are there systematic variations in responses in the visual search task?   706 

Having established that subjects showed a robust global advantage effect and 707 

incongruence effects, we wondered whether there were other systematic variations in 708 

their responses as well. Indeed, response times were highly systematic as evidenced by 709 

a strong correlation between two halves of the subjects (split-half correlation between RT 710 

of odd- and even-numbered subjects: r = 0.83, p < 0.00005).  711 

Previous studies have shown that the reciprocal of search time can be taken as a 712 

measure of dissimilarity between the target and distractors. We therefore took the 713 

reciprocal of the average search time across all subjects (and trials) for each image pair 714 
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as a measure of dissimilarity between the two stimuli. Because we performed all pairwise 715 

searches between the hierarchical stimuli, it becomes possible to visualize these stimuli 716 

in visual search space using multidimensional scaling (MDS). Briefly, multidimensional 717 

scaling estimates the 2D coordinates of each stimulus such that distances between these 718 

coordinates match best with the observed distances. In two dimensions with 49 719 

hierarchical stimuli, there are only 49 x 2 = 98 unknown coordinates that have to match 720 

the 49C2 = 1,176 observed distances. We emphasize that multidimensional scaling only 721 

offers a way to visualize the representation of the hierarchical stimuli at a glance; we did 722 

not use the estimated 2D coordinates for any subsequent analysis but rather used the 723 

directly observed distances themselves.  724 

The multidimensional scaling plot obtained from the observed visual search data 725 

is shown in Figure 8. Two interesting patterns can be seen. First, stimuli with the same 726 

global shape clustered together, indicating that these are hard searches. Second, 727 

congruent stimuli (i.e. with the same shape at the global and local levels) were further 728 

apart compared to incongruent stimuli (with different shapes at the two levels), indicating 729 

that searches involving congruent stimuli are easier than incongruent stimuli. These 730 

observations concur with the global advantage and incongruence effect described above 731 

in visual search.  732 

  733 
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 734 
Figure 8. Visualization of hierarchical stimuli in visual search space.  735 

Representation of hierarchical stimuli in visual search space, as obtained using 736 
multidimensional scaling. Stimuli of the same color correspond to the same global 737 
shape for ease of visualization. The actual stimuli were white shapes on a black 738 
background in the actual experiment. In this plot, nearby points represent hard 739 
searches. The correlation coefficient at the top right indicates the degree of match 740 
between the two-dimensional distances depicted here with the observed search 741 
dissimilarities in the experiment. Asterisks indicate statistical significance: **** is p < 742 
0.00005.  743 

 744 

  745 
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How do global and local shape combine in visual search?  746 

 So far we have shown that the global advantage and incongruence effects in the 747 

same-different task also arise in the visual search task, suggesting that these effects are 748 

intrinsic to the underlying representation of these hierarchical stimuli. However, these 749 

findings do not provide any fundamental insight into the underlying representation or how 750 

it is organized. For instance, why are incongruent shapes more similar than congruent 751 

shapes? How do global and local shape combine?  752 

 To address these issues, we asked whether search for pairs of hierarchical stimuli 753 

can be explained in terms of shape differences and interactions at the global and local 754 

levels. To build a quantitative model, we drew upon our previous studies in which the 755 

dissimilarity between objects differing in multiple features was found to be accurately 756 

explained as a linear sum of part-part dissimilarities (Pramod and Arun, 2014, 2016; 757 

Sunder and Arun, 2016). Consider a hierarchical stimulus AB, where A represents the 758 

global shape and B is the local shape. Then, according to the model (which we dub the 759 

multiscale part sum model), the dissimilarity between two hierarchical stimuli AB & CD 760 

can be written as a sum of all possible pairwise dissimilarities between the parts A, B, C 761 

and D as follows (Figure 6A):  762 

d(AB,CD) = GAC + LBD + XAD + XBC + WAB + WCD + constant 763 

 where GAC is the dissimilarity between the global shapes, LBD is the dissimilarity 764 

between the local shapes, XAD & XBC are the across-object dissimilarities between the 765 

global shape of one stimulus and the local shape of the other, and WAB & WCD are the 766 

dissimilarities between global and local shape within each object. Since there are 7 767 

possible global shapes, there are 7C2 = 21 pairwise global-global dissimilarities 768 

corresponding to GAB, GAC, GAD, etc, and likewise for L, X and W terms. Thus in all the 769 

model has 21 part-part relations x 4 types + 1 constant = 85 free parameters. Importantly, 770 
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the multiscale part sum model allows for completely independent shape representations 771 

at the global level, local level and even for comparisons across objects and within object. 772 

The model works because the same global part dissimilarity GAC can occur in many 773 

shapes where the same pair of global shapes A & C are paired with various other local 774 

shapes.   775 

 776 

Performance of the part sum model  777 

  To summarize, we used a multiscale part sum model that explains the dissimilarity 778 

between two hierarchical stimuli as a sum of pairwise shape comparisons across multiple 779 

scales. To evaluate model performance, we plotted the observed dissimilarities between 780 

hierarchical stimuli against the dissimilarities predicted by the part sum model (Figure 9B). 781 

This revealed a striking correlation (r = 0.88, p < 0.00005; Figure 9B). This high degree 782 

of fit matches the reliability of the data (mean ± sd reliability: rc = 0.84 ± 0.01; see 783 

Methods). 784 

This model also yielded several insights into the underlying representation. First, 785 

because each group of parameters in the part sum model represent pairwise part 786 

dissimilarities, we asked whether they all reflect a common underlying shape 787 

representation. To this end we plotted the estimated part relations at the local level (L 788 

terms), the across-object global-local relations (X terms) and the within-object relations 789 

(W terms) against the global part relations (G terms). This revealed a significant 790 

correlation for all terms (correlation with global terms: r = 0.60, p < 0.005 for L terms, r = 791 

0.75, p < 0.00005 for X terms, r = -0.60, p < 0.005 for W terms; Figure 9C). This is 792 

consistent with the finding that hierarchical stimuli and large/small stimuli are driven by a 793 

common representation at the neural level (Sripati and Olson, 2009).  794 
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Second, cross-scale within-object (W terms) were negative (average: -0.04, p < 795 

0.005, sign-rank test on 21 within-object terms). In other words, the effect of within-object 796 

dissimilarity is to increase overall dissimilarity when global and local shapes are similar 797 

to each other and decrease overall dissimilarity when they are dissimilar.  798 

Third, we visualized this common shape representation using multidimensional 799 

scaling on the pairwise global coefficients estimated by the model. The resulting plot 800 

(Figure 9D) reveals a systematic arrangement whereby similar global shapes are nearby. 801 

Ultimately, the multiscale part sum model uses this underlying part representation 802 

determines the overall dissimilarity between hierarchical stimuli. 803 

 804 

  805 
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 806 
Figure 9. Global and local shape integration in hierarchical stimuli  807 
(A) We investigated how global and local shape combine in visual search using the 808 

multiscale part sum model. According to the model, the dissimilarity between two 809 
hierarchical stimuli can be explained as a weighted sum of shape differences at the 810 
global level, local level and cross-scale differences across and within objects (see 811 
text).  812 

(B) Observed dissimilarity plotted against predicted dissimilarity for all 1,176 object pairs 813 
in the experiment.  814 

(C) Local and cross-scale model terms plotted against global terms. Coloured lines 815 
indicates the corresponding best fitting line. Asterisks indicate statistical significance: 816 
*** is p < 0.0005, **** is p < 0.00005.  817 

(D) Visualization of global shape relations recovered by the multiscale model, as obtained 818 
using multidimensional scaling analysis.  819 

 820 

  821 
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Can the multiscale model explain the global advantage and incongruence effect?  822 

 Having established that the full multiscale part sum model yielded excellent 823 

quantitative fits, we asked whether it can explain the global advantage and incongruence 824 

effects.  825 

 First, the global advantage effect in visual search is the finding that shapes differing 826 

in global shape are more dissimilar than shapes differing in local shape. This is explained 827 

by the multiscale part sum model by the fact that global part relations are significantly 828 

larger in magnitude compared to local terms (average magnitude across 21 pairwise 829 

terms: 0.42 ± 0.17 s-1 for global, 0.30 ± 0.11 s-1 for local, p < 0.005, sign-rank test).  830 

 Second, how does the multiscale part sum model explain the incongruence effect? 831 

We first confirmed that the model shows the same pattern as the observed data (Figure 832 

10A). To this end we examined how each model term in the model works for congruent 833 

and incongruent shapes (Figure 10B). First, note that the terms corresponding to global 834 

and local shape relations are identical for both congruent and incongruent stimuli so these 835 

cannot explain the incongruence effect. However, congruent and incongruent stimuli differ 836 

in the cross-scale interactions both across and within stimuli. For a congruent pair, which 837 

have the same shape at the global and local level, the contribution of within-object terms 838 

is zero, and the contribution of across-object terms is non-zero, resulting in an overall 839 

larger dissimilarity (Figure 10B). In contrast, for an incongruent pair, the within-object 840 

terms are negative and across-object terms are zero, leading to a smaller overall 841 

dissimilarity.  842 

 To summarize, the multiscale model explains qualitative features of visual search 843 

such as the global advantage and incongruence effects, and explains visual search for 844 

hierarchical stimuli using a linear sum of multiscale part differences. The excellent fits of 845 

the model indicate that shape information combines linearly across multiple scales.  846 
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 847 
Figure 10. Incongruence effect in visual search.  848 
(A) Average dissimilarity for congruent and incongruent image pairs for observed 849 

dissimilarities (left) and dissimilarities predicted by the multiscale part sum model 850 
(right). Error bars indicate sd across image pairs. Asterisks indicate statistical 851 
significance, as calculated using an ANOVA, with conventions as before.  852 

(B) Schematic illustrating how the multiscale model predicts the incongruence effect. For 853 
both congruent and incongruent searches, the contribution of global and local terms 854 
in the model is identical. However for congruent searches, the net dissimilarity is large 855 
because cross-scale across terms are non-zero and within-object terms are zero 856 
(since the same shape is present at both scales). In contrast, for incongruent 857 
searches, the net dissimilarity is small because across-object terms are zero (since 858 
the local shape of one is the global shape of the other) and within-object terms are 859 
non-zero and negative.  860 

 861 

Relating same-different model parameters to visual search  862 

 Recall that the responses in the same-different task were explained using two 863 

factors, distinctiveness and dissimilarity (Figure 6). We wondered whether these factors 864 

are related to any aspect of the visual search representation.  865 

 We first asked whether the distinctiveness of each image as estimated from the 866 

GSLS pairs in the same-different task is related to the hierarchical stimulus representation 867 

in visual search. We accordingly calculated a measure of global distinctiveness in visual 868 

search as follows: for each image, we calculated its average dissimilarity (1/RT in visual 869 

search) to all other images with the same global shape. Likewise, we calculated local 870 

search distinctiveness as the average dissimilarity between a given image and all other 871 

images with the same local shape. We then asked how the global and local 872 

distinctiveness estimated from the same-different task are related to the global and local 873 

search distinctiveness estimated from visual search.  874 
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 We obtained a striking double-dissociation: global distinctiveness estimated in the 875 

same-different task was correlated only with global but not local search distinctiveness (r 876 

= 0.55, p < 0.00005 for global search distinctiveness; r = 0.036, p = 0.55 for local search 877 

distinctiveness; Figure 11A). Likewise, local distinctiveness estimated in the same-878 

different task was correlated only with local search distinctiveness but not global 879 

distinctiveness (r = 0.35, p < 0.05 for local search distinctiveness; r = 0.05, p = 0.76 for 880 

global search distinctiveness; Figure 11B).  881 

 882 
Figure 11. Relation between same-different model parameters and visual search 883 

(A) Correlation between distinctiveness estimated from GSLS trials in the global block 884 
of the same-different (SD) task with global and local search distinctiveness. Error 885 
bars represents 68% confidence intervals, corresponding to ±1 standard deviation 886 
from the mean.  887 

(B) Correlation between distinctiveness estimated from GSLS trials in the local block 888 
of the same-different task with global and local search distinctiveness.  889 

  890 
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Next we investigated whether the global and local shape dissimilarity terms 891 

estimated from the same-different task were related to the global and local terms in the 892 

part-sum model. Many of these correlations were positive and significant (Table 2), 893 

suggesting that all dissimilarities are driven by a common shape representation.  894 

 We conclude that both distinctiveness and dissimilarity terms in the same-different 895 

task are systematically related to the underlying representation in visual search.  896 

 897 

Same-Different Model Terms Correlation with 
Visual Search 
Global Terms  

Correlation with 
Visual Search 
Local Terms 

Same-Different Task, Global Block 

Same model Local Terms 0.47* 0.76**** 

Different model Global Terms 0.69**** 0.82**** 

Different Model Local Terms 0.02 0 

   

Same-Different task, Local Block 

Same model Local Terms 0.37 0.11 

Different model Global Terms 0.38 0.21 

Different Model Local terms  0.14  0.6** 

Table 2. Comparison of model parameters across tasks. Each entry represents the 898 
correlation coefficient between model terms estimated from the same-different task and 899 
global and local terms from the visual search model. Asterisks represent statistical 900 
significance (* is p < 0.05, **** is p < 0.00005 etc).  901 
 902 

Comparison of part-sum model with other models 903 

 The above results show that search for hierarchical stimuli is best explained using 904 

the reciprocal of search time (1/RT), or search dissimilarity. That models based on 1/RT 905 

provides a better account than RT-based models was based on our previous findings 906 

(Vighneshvel and Arun, 2013; Pramod and Arun, 2014, 2016; Sunder and Arun, 2016). 907 

To reconfirm this finding, we fit RT and 1/RT based models to the data in this experiment. 908 

Indeed, 1/RT based models provided a better fit to the data (Section S1). 909 

 The above results are also based on a model in which the net dissimilarity is based 910 

on part differences at the global and local levels as well as cross-scale differences across 911 

and within object. This raises the question of whether simpler models based on a subset 912 
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of these terms would provide an equivalent fit. However, this was not the case: the full 913 

model yielded the best fits despite having more free parameters (Section S1).  914 

 915 

Simplifying hierarchical stimuli  916 

One fundamental issue with hierarchical stimuli is that the global shape is formed 917 

using the local shapes, making them inextricably linked. We therefore wondered whether 918 

hierarchical stimuli can be systematically related to simpler stimuli in which the global and 919 

local shape are independent of each other. We devised a set of “interior-exterior” shapes 920 

whose representation in visual search can be systematically linked to that of the 921 

hierarchical stimuli, and thereby simplifying their underlying representation. Even here, 922 

we found that the dissimilarity between interior-exterior stimuli can be explained as a 923 

linear sum of shape relations across multiple scales (Section S2). Moreover, changing 924 

the position, size and grouping status of the local elements leads to systematic changes 925 

in the model parameters (Section S3-5). These findings provide a deeper understanding 926 

of how shape information combines across multiple scales.   927 
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GENERAL DISCUSSION 928 

 Classic perceptual phenomena such as the global advantage and incongruence 929 

effects have been difficult to understand because they have observed during shape 930 

detection tasks, where a complex category judgment is made on a complex feature 931 

representation. Here, we have shown that these phenomena are not a consequence of 932 

the categorization process but rather are explained by intrinsic properties of the 933 

underlying shape representation. Moreover, this underlying representation is governed 934 

by a simple rule whereby global and local features combine linearly.  935 

 Our findings in support of this conclusion are: (1) Global advantage and 936 

incongruence effects are present in a same-different task as well as in a visual search 937 

task devoid of any shape categorization; (2) Responses in the same-different task were 938 

accurately predicted using two factors: dissimilarity and distinctiveness; (3) Dissimilarities 939 

in visual search were explained using a simple linear rule whereby the net dissimilarity is 940 

a sum of pairwise multiscale shape dissimilarities. Below we discuss how these results 941 

relate to the existing literature.  942 

 943 

Explaining global advantage and incongruence effects 944 

 We have shown that the global advantage and incongruence effects also occur in 945 

visual search, implying that they are intrinsic properties of the underlying representation. 946 

Moreover we show that this representation is organized according to a simple linear rule 947 

whereby global and local features combine linearly (Figure 9). This model provides a 948 

simple explanation of both effects. The global advantage occurs simply because global 949 

part relations are more salient than local relations (Figure 9C). The interference effect 950 

occurs because congruent stimuli are more dissimilar (or equivalently, more distinctive) 951 
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than incongruent stimuli, which in turn is because the within-object part differences are 952 

zero for part relations (Figure 10).  953 

Finally, it has long been observed that the global advantage and interference 954 

effects vary considerably on the visual angle, eccentricity and shapes of the local 955 

elements (Navon, 1977; Navon and Norman, 1983; Kimchi, 1992; Poirel et al., 2008). Our 956 

results offer a systematic approach to understand these variations: the multiscale model 957 

parameters varied systematically with the position, size and grouping status of the local 958 

elements (Section S3-5).   959 

 960 

Understanding same-different task performance  961 

 We have found that image-by-image variations in response times in the same-962 

different task can be accurately explained using a quantitative model. To the best of our 963 

knowledge, there are no such quantitative models for the same-different task. According 964 

to our model, responses in the same-different task are driven by two factors: dissimilarity 965 

and distinctiveness.  966 

The first factor is the dissimilarity between two images in a pair. Notably, it has 967 

opposite effects on “SAME” and “DIFFERENT” responses. This makes intuitive sense 968 

because if images are more dissimilar, it should make “SAME” responses harder and 969 

“DIFFERENT” responses easier. It is also consistent with the common models of 970 

decision-making (Gold and Shadlen, 2002) and categorization (Ashby and Maddox, 1994; 971 

Mohan and Arun, 2012), where responses are triggered when a decision variable 972 

exceeds a criterion value. In this case, the decision variable is the dissimilarity.  973 

 The second factor is distinctiveness. Response times were faster for images that 974 

are more distinctive, i.e. far away from other stimuli. This makes intuitive sense because 975 

nearby stimuli can act as distractors and slow down responses. Importantly, the 976 
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distinctiveness of an image in the global block matched best with its average distance 977 

from all other stimuli with the same global shape (Figure 11A). Conversely the 978 

distinctiveness in the local block matched best with its average distance from all other 979 

shapes with the same local shape (Figure 11B). This finding is concordant with norm-980 

based accounts of object representations (Sigala et al., 2002; Leopold et al., 2006), 981 

wherein objects are represented relative to an underlying average. We speculate that this 982 

underlying average is biased by the level of attention, making stimuli distinctive at the 983 

local or global level depending on the block. Testing these intriguing possibilities will 984 

require recording neural responses during global and local processing.  985 

 986 

Linearity in visual search  987 

 We have found that the net dissimilarity between hierarchical stimuli can be 988 

understood as a linear sum of shape relations across multiple scales. This finding is 989 

consistent with our previous studies showing that the net dissimilarity in visual search is 990 

a linear sum of elemental feature differences (Pramod and Arun, 2014) as well as of local 991 

and configural differences (Pramod and Arun, 2016). Likewise, the net dissimilarity in a 992 

search for a target among multiple distractors can be understood as a sum of the 993 

dissimilarity of the constituent searches (Vighneshvel and Arun, 2013). More recently, we 994 

have demonstrated that knowledge of a forthcoming target adds linearly to bottom-up 995 

dissimilarity (Sunder and Arun, 2016). Taken together, these findings suggest that a 996 

variety of factors combine in visual search according to a simple linear rule.  997 

  998 
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