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ABSTRACT

Hierarchical stimuli (such as a circle made of diamonds) have been widely used to
study global and local processing. Two classic phenomena have been observed using
these stimuli: the global advantage effect (that we identify the circle faster than the
diamonds) and the incongruence effect (that we identify the circle faster when both global
and local shapes are circles). Understanding them has been difficult because they occur
during shape detection, where an unknown categorical judgement is made on an
unknown feature representation.

Here we report two essential findings. First, these phenomena are present both in
a general same-different task and a visual search task, suggesting that they may be
intrinsic properties of the underlying representation. Second, in both tasks, responses
were explained using linear models that combined multiscale shape differences and
shape distinctiveness. Thus, global and local processing can be understood as properties

of a systematic underlying feature representation.
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INTRODUCTION

Visual objects contain features at multiple spatial scales (Oliva and Schyns, 1997,
Morrison and Schyns, 2001; Uliman et al., 2002). Our perception of global and local shape
have been extensively investigated using hierarchical stimuli, which contain local
elements arranged to form a global shape (Figure 1). Two classic phenomena have been
observed using these stimuli (Navon, 1977; Kimchi, 1992). First, the global shape can be
detected faster than the local shape; this is known as the global advantage effect. Second,
the global shape can be detected faster in a congruent shape (e.g. circle made of circles)
than in an incongruent shape (e.g. circle made of diamonds); this is known as the global-
local incongruence effect. Subsequent studies have shown that these effects depend on
the size, position, spacing and arrangement of the local shapes (Lamb and Robertson,
1990; Kimchi, 1992; Malinowski et al., 2002; Miller and Navon, 2002).

These global/local processing phenomena have since been extensively
investigated for their neural basis as well as their application to a variety of disorders.
Global and local processing are thought to be localized to the right and left hemispheres
respectively (Fink et al., 1996; Han et al., 2002, 2004), and are mediated by brain
oscillations at different frequencies (Romei et al., 2011; Liu and Luo, 2019). These
phenomena have now been observed in a variety of other animals, especially during tasks
that require speeded responses (Tanaka and Fujita, 2000; Cavoto and Cook, 2001; Pitteri
et al., 2014; Avargues-Weber et al., 2015). Global/local processing is impaired in a variety
of clinical disorders (Bihrle et al., 1989; Robertson and Lamb, 1991; Slavin et al., 2002;
Behrmann et al., 2006; Song and Hakoda, 2015), including those related to reading
(Lachmann and Van Leeuwen, 2008; Franceschini et al., 2017). Finally, individual
differences in global/local processing predict other aspects of object perception (Gerlach

and Poirel, 2018; Gerlach and Starrfelt, 2018).
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Despite these insights, we lack a deeper understanding of these phenomena for
several reasons. First, they have only been observed during shape detection tasks, which
involve two complex steps: a categorical response made over a complex underlying
representation (Freedman and Miller, 2008; Mohan and Arun, 2012). It is therefore
possible that these phenomena reflect the priorities of the categorical decision.
Alternatively, they may reflect some intrinsic property of the underlying shape
representation.

Second, these shape detection tasks, by their design, set up a response conflict
for incongruent but not congruent stimuli. This is because the incongruent stimulus
contains two different shapes at the global and local levels, each associated with a
different response during the global and local blocks. By contrast there is no such conflict
for congruent stimuli where the global and local shapes are identical. Thus, the
incongruence effect might reflect the response conflicts associated with making opposite
responses in the global and local blocks (Miller and Navon, 2002). Alternatively, again, it
might reflect some intrinsic property of the underlying shape representation.

Third, it has long been appreciated that these phenomena depend on stimulus
properties such as the size, position, spacing and arrangement of the local elements
(Lamb and Robertson, 1990; Kimchi, 1992; Malinowski et al., 2002; Miller and Navon,
2002). Surprisingly, hierarchical stimuli themselves have never been studied from the
perspective of feature integration i.e. how the global and local shapes combine. A deeper
understanding of how hierarchical stimuli are organized in perception can elucidate how
these stimulus properties affect global/local processing.

Thus, understanding the global advantage and incongruence effects will require
reproducing them in simpler tasks, as well as understanding how global and local shape

combine in the perception of hierarchical stimuli. This is not only a fundamental question
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but has clinical significance since deficits in global/local processing have been reported

in a variety of disorders.

Overview of this study

Here we addressed the above limitations as follows. First, we devised a simpler
shape task which involves subjects indicating whether two shapes are the same or
different at either the global or local level. This avoids any effects due to specific shapes
but still involves categorization, albeit a more general one. Second, we devised a visual
search task in which subjects had to report the location of an oddball target. This task
avoids any categorical judgement and the accompanying response conflicts. It also does
not involve any explicit manipulation of global vs local attention unlike the global/local
processing tasks. If these phenomena are present in visual search, it would imply that
they reflect properties of the underlying shape representation of hierarchical stimuli. If not,
they must arise from the categorization process.

To understand how global and local shape combine in visual search, we asked
how search difficulty for a target differing in both global and local shape from the
distractors can be understood in terms of global and local shape differences. While search
reaction time (RT) is the natural observation made during any search task, we have
shown recently that its reciprocal (1/RT) is the more useful measure for understanding
visual search (Arun, 2012; Pramod and Arun, 2014). The reciprocal of search time can
be thought of as the dissimilarity between the target and distractors in visual search, and
has the intuitive interpretation as the underlying salience signal that accumulates to
threshold (Arun, 2012). Models based on 1/RT consistently outperform models based

directly on search time (Vighneshvel and Arun, 2013; Pramod and Arun, 2014, 2016;
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Sunder and Arun, 2016). Further, using this measure, a variety of object attributes as well
as top-down factors such as target preview have been found to combine linearly.

We performed two experiments. In Experiment 1, we replicated the global
advantage and incongruence effects in a generic same-different task. We then show that
image-by-image variations in response times can be explained by two factors:
dissimilarity and distinctiveness. In Experiment 2, we show that these effects can be
observed even when subjects perform visual search on the same stimuli. We also show
that visual search for hierarchical stimuli can be accurately explained as a linear sum of
global and local feature relations. Finally we show that the factors driving the same-

different task responses are closely related to the visual search model.
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EXPERIMENT 1: SAME-DIFFERENT TASK

In most studies of global and local processing, subjects are required to indicate
which of two target shapes they saw at the global or local levels (Navon, 1977; Kimchi,
1994). This approach severely limits the number of shapes that can be tested because of
the combinatorial increase in the number of possible shape pairs. To overcome this
limitation, we devised a same-different task in which subjects have to indicate whether
two simultaneously presented shapes contain the same or different shape at the global
or local level. Of particular interest to us were two questions: (1) Are the global advantage
and incongruence effects observable in this more general shape detection task? (2) Do
response times in this task systematically vary across stimuli and across the global and

local blocks?

METHODS
Here and in all experiments, subjects had normal or corrected-to-normal vision and
gave written informed consent to an experimental protocol approved by the Institutional
Human Ethics Committee of the Indian Institute of Science, Bangalore. Subjects were
naive to the purpose of the experiment and received monetary compensation for their

participation.

Subjects. Sixteen human subjects (11 male, aged 20-30 years) participated in this
experiment. We chose this number of subjects based on previous studies of object
categorization from our lab in which this sample size yielded consistent responses

(Mohan and Arun, 2012).
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Stimuli. We created hierarchical stimuli by placing eight local shapes uniformly along the
perimeter of a global shape. All local shapes had the same area (0.77 squared degrees
of visual angle), and all global shapes occupied an area that was 25 times larger. We
used seven distinct shapes at the global and local levels to create 49 hierarchical stimuli
(all stimuli can be seen in Figure 8). Stimuli were shown as white against a black

background.

Procedure. Subjects were seated ~60 cm from a computer monitor under the control of
custom programs written in MATLAB with routines from PsychToolbox (Brainard, 1997).
Subjects performed two blocks of the same-different task, corresponding to global or local
shape matching. In both blocks, a pair of hierarchical shapes were shown to the subject
and the subject had to respond if the shapes contained the same or different shape at a
particular global/local level (key “Z” for same, “M” for different). Each block started with a
practice block with eight trials involving hierarchical stimuli made of shapes that were not
used in the main experiment. Subjects were given feedback after each trial during the
practice block.

In all blocks, each trial started with a red fixation cross (measuring 0.6° by 0.6°)
presented at the centre of the screen for 750 ms. This was followed by two hierarchical
stimuli (with local elements measuring 0.6° along the longer dimension and longest
dimension of global shapes are 3.8°) presented on either side of the fixation cross,
separated by 8° from center to center. The position of each stimulus was jittered by + 0.8°
uniformly at random along the horizontal and vertical. These two stimuli were shown for
200 ms followed by a blank screen until the subject made a response, or until 5 seconds,

whichever was sooner.
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Stimulus pairs. To avoid any response bias, we selected stimulus pairs in each block such
that the proportion of same- and different-responses were equal. Each block consisted of
588 stimulus pairs. These pairs were divided equally into four groups of 147 pairs (Figure
1A): (1) Pairs with global shape same, local shape same (GSLS, i.e. identical shapes);
(2) Pairs with global shape same but local different (GSLD); (3) Pairs with global different
but local same (GDLS) and (4) Pairs with both global and local shape different (GDLD).
Since there were different number of total possible pairs in each category we selected
pairs as follows: for GSLS pairs, there are 49 unique stimuli and therefore 49 pairs, so we
repeated each pair three times to obtain 147 pairs. For GSLD and GDLS pairs, there are
147 unique pairs, so each pair was used exactly once. For GDLD pairs, there are 441
possible pairs, so we selected 147 pairs which consisted of 21 congruent pairs (i.e. each
stimulus containing identical global and local shapes), 21 incongruent pairs (in which
global shape of one stimulus was the local shape of the other, and vice-versa), and 105
randomly chosen other pairs. The full set of 588 stimulus pairs were fixed across all
subjects. Each stimulus pair was shown twice. Thus each block consisted of 588 x 2 =
1176 trials. Error trials were repeated after a random number of other trials.

We removed inordinately long or short response times for each image pair using
an automatic outlier detection procedure (isoutlier function, MATLAB 2018). We pooled
the reaction times across subjects for each image pair, and all response times greater
than three scaled median absolute deviations away from the median were removed. In

practice this procedure removed ~8% of the total responses.

Estimating data reliability.
To estimate an upper limit on the performance of any model, we reasoned that the

performance of any model cannot exceed the reliability of the data itself. To estimate the

Page 9 of 53


https://doi.org/10.1101/777110
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/777110; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

173 reliability of the data, we first calculated the average correlation between two halves of
174 the data. However, doing so underestimates the true reliability since the correlation is
175 based on two halves of the data rather than the entire dataset. To estimate this true
176 reliability we applied a Spearman-Brown correction on the split-half correlation. This
177  Spearman-Brown corrected correlation (rc) is given by rc = 2r/(1+r) where r is the
178 correlation between the two halves. This data reliability is denoted as rc throughout the

179 textto distinguish it from the standard Pearson’s correlation coefficient (denoted as r).
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RESULTS

Here, subject performed a same-different task in which they reported whether a
pair of hierarchical stimuli contained the same/different shape at the global level or at the
local level in separate blocks. We grouped the image pairs into four distinct types based
on whether the shapes were same/different at the global/local levels. The first type
comprised pairs with no difference at the global or local levels, i.e. identical images,
denoted by GSLS (Figure 1A, top row). The second type comprised pairs in which both
global and local shape were different, denoted by GDLD (Figure 1A, bottom row). These
two were pairs elicited identical responses in the global and local blocks. The third type
comprised pairs with the same global shape but different local shapes, denoted by GSLD
(Figure 1C, top row). The fourth type comprised pairs differing in global shape but with
identical local shapes, denoted by GDLS (Figure 1C, bottom row). These two were pairs
that elicited opposite responses in the global and local blocks. Since both blocks
consisted of identical image pairs, the responses in the two blocks are directly

comparable and matched for image content.
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198 Figure 1. Same-different task for global-local processing. In the global block, subjects
199 have to indicate whether a pair of images presented contain the same shape at the global
200 level. Likewise in the local block, they have to make same-different judgments about the
201 shape at the local level. Block order was counterbalanced across subjects.

202 (A) Example image-pairs with identical correct responses in the global and local blocks.

203 In the GSLS pairs, both images are identical i.e. have the same global shape and
204 same local shape. In the GDLD pairs, the two images differ in both global shape and
205 local shape.

206 (B)Bar plot comparing average response times for GSLS and GDLD pairs. Error bars
207 indicate s.e.m. across subjects. Asterisks indicate statistical significance assessed
208 using an ANOVA on response times (**** is p < 0.00005).

209 (C)Example image pairs that elicited opposite responses in the global and local blocks.
210 In the GSLD pairs, the two images contain the same global shape but differ in local
211 shape — thus the correct response is “SAME” in the global block but “DIFFERENT” in
212 the local block. In the GDLS pairs, the two images contain the same local shape but
213 differ in global shape, resulting again in opposite responses in the two blocks.

214 (D) Same as B but for GSLD and GDLS pairs.
215 (E) Example congruent and incongruent image pairs. Congruent image pairs comprised

216 stimuli with the same shape at the global and local levels. In the incongruent image
217 pairs, the global shape of one image matched the local shape of the other, and vice-
218 versa. Thus each congruent image pair was exactly matched to an incongruent image
219 pair.

220 (F) Bar plot of average response times for congruent and incongruent image pairs.

221 Asterisks indicate statistical significance using an ANOVA on response times (**** is

222 p < 0.00005).
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Is there a global advantage in the same-different task?

Subjects were highly accurate in the task overall, but were more accurate in the
global block (mean & std of accuracy across subjects: 91% + 4% in the global block;
88%x7% in the local block, p < 0.05, sign-rank test on subject-wise accuracy in the two
blocks). They were also significantly faster in the global block (mean & std of response
times across subjects: 702 £ 55.7 ms in the global block; 752 + 66.7 ms in the local block;
p < 0.005, sign-rank test on subject-wise average RTs in the two blocks). This pattern
was true both for image pairs that elicited identical responses in the two blocks (GSLS &
GDLD pairs; Figure 1B) as well as for those that elicited opposite responses (GDLS &
GSLD pairs; Figure 1C). Thus, subjects were faster and more accurate in the global block

across all image pairs, reflecting a robust global advantage.

Is there an incongruence effect in the same-different task?

Next we asked whether the incongruence effect can be observed in the same-
different task. To this end we compared the average RT for GDLD image pairs in which
the two images were either both congruent or both incongruent (Figure 1E). Subjects
responded significantly faster to congruent compared to incongruent pairs (Figure 1F).
To assess the statistical significance of these effects, we performed an ANOVA on the
response times with subject (16 levels), block (2 levels), congruence (2 levels) and image
pair (21 levels) as factors. This revealed a significant main effect of congruence (p <
0.00005), but also main effects of subject and block (p < 0.00005 in all cases), as well as
significant interaction effects (p < 0.00005, between subjects and blocks; all other effects
were p > 0.05). We conclude that there is a robust incongruence effect in both the global

and local blocks.
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Do responses in the same-different task vary systematically across image pairs?
Having established that subjects show a global advantage and incongruence
effects in the same-different task, we wondered whether there were any other systematic
variations in response times across image pairs. Specifically, we asked whether image
pairs that evoked fast responses in one group of subjects would also elicit a fast response
in another group of subjects. This was indeed the case: we found a significant correlation
between the average response times of the first and second half of all subjects in both
the global block (r = 0.74, p < 0.00005; Figure 2A) and the local block (r = 0.75, p <
0.000005; Figure 2B). This correlation was present in all four image types as well in both

blocks (Figure 2).

A Response consistency, Global block B Response consistency, Local block
14- All 490 pairs, r = 0.74*** 147 All 490 pairs, r = 0.75****
x GSLS, 49 pairs, r = 0.84"*** x GSLS, 49 pairs, r=067***

O GSLD, 147 pairs, r = 0.71****
X GDLD, 147 pairs, r = 0.69****
O GDLS, 147 pairs, r = 0.75"***

O GDLS, 147 pairs, r = 0.67****
o X GDLD, 147 pairs, r = 0.78***
" O GSLD, 147 pairs, r = 0.77****

Mean RTs of second eight Subjects in
Global Block

Mean RTs of second eight Subjects in
Local Block

o
wn

Mean RTs of first eight Subjects in 14 0.5 Mean RTs of first eight Subjects in 1.4
Global Block Local Block

Figure 2. Consistency of response times in the same-different task

(A) Average response times for one half of the subjects in the global block of the same-
different task plotted against those of the other half. Asterisks indicate statistical
significance (* is p < 0.05, ** is p < 0.005 etc).

(B) Same as (A) but for the local block.

Are responses in the global and local block related?

Having established that response times are systematic within each block, we next

investigated how responses in the global and local block are related for the same image
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pairs presented in both blocks. First, we compared responses to image pairs that elicit
identical responses in both blocks. These are the GSLS pairs (which elicit a SAME
response in both blocks) and GDLD pairs (that elicit a DIFFERENT response in both
blocks). This revealed a positive but not significant correlation between the responses to
the GSLS pairs in both blocks (r = 0.15, p = 0.32 across 49 image pairs; Figure 3A). By
contrast the responses to the GDLD pairs, which were many more in number (n = 147),
showed a significant positive correlation between the global and local blocks (r = 0.24, p
< 0.005; Figure 3A). Second, we compared image pairs that elicited opposite responses
in the global and local blocks, namely the GSLD and GDLS pairs. This revealed a
significant negative correlation in both cases (r =-0.20, p <0.05 for GSLD pairs, r =-0.23,
p < 0.0005 for GDLS pairs; Figure 3B). Thus, image pairs that are hard to categorize as
SAME are easier to categorize as DIFFERENT.

Note that in all cases, the correlation between responses in the global and local
blocks were relatively small (only r = ~0.2; Figure 3) compared to the consistency of the
responses within each block (split-half correlation = 0.75 in the global block; 0.74 in the
local block; p < 0.00005 for both the conditions; Figure 2). These low correlations suggest

that responses in the global and local blocks are qualitatively different.
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Figure 3. Responses to hierarchical stimuli in global and local blocks.

(A) Average response times in the local block plotted against the global block, for image
pairs with identical responses in the global and local blocks. These are the GSLS pairs
(red crosses, n = 49) which elicited the “SAME” response in both blocks, and the
GDLD pairs (blue crosses, n = 147) which elicited the “DIFFERENT” responses in

both blocks.

(B) Average response times in the local block plotted against the global block, for image
pairs with opposite responses in the global and local blocks. These are the GSLD
pairs (open circles, n = 147) which elicit the “SAME” response in the global block but
the “DIFFERENT” response in the local block, and the GDLS pairs (filled circles, n =
147) which likewise elicit opposite responses in the two blocks.
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What factors influence response times in the same-different task?

So far we have shown that the global advantage and incongruence effects are
present in a same-different task, and that response times vary systematically in each
block across image pairs. However these findings do not explain why some image pairs
elicit slower responses than others (Figure 2).

Consider a schematic of perceptual space depicted in Figure 4A. We hypothesized
that the response time for an image pair in the global block could depend on two factors.
The first factor is the dissimilarity between the two images. If the two images have the
same global shape (thus requiring a “SAME” response), then the response time would be
proportionally longer as the local shapes become more dissimilar. By contrast, if two
images differ in global shape (thus requiring a “DIFFERENT” response), then the
response time would be shorter if the two images are more dissimilar (Figure 4B). Thus,
shape dissimilarity between the two images can have opposite effects on response time
depending on whether the response is same or different. The second factor is the
distinctiveness of the images relative to all other images. We reasoned that a shape that
is distinct from all other shapes should evoke a faster response since there are fewer
competing stimuli in its vicinity. This factor is required to explain systematic variation in
response times for identical images (e.g. GSLS pairs) where the first factor (dissimilarity)
plays no role. But more generally, distinctiveness could play a role even when both
images are different. Below we describe how distinctiveness and dissimilarity can be used

to predict response time variations in the same-different task.
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A Schematic of Perceptual Space
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Figure 4. Understanding same-different responses
(A) To elucidate how same-different responses are related to the underlying perceptual
space, consider a perceptual space consisting of many hierarchical stimuli. In this
space, nearby stimuli are perceptually similar.
(B) We hypothesized that subjects make “SAME” or “DIFFERENT” responses to an image
pair driven by the dissimilarity between the two images. In the global block, when two
images have the same global shape, we predict that response times are longer when
the two images are more dissimilar. Thus, two diamonds made using Xs and Zs evoke
a faster response than two diamonds made of circles or Xs, because the latter pair is
more dissimilar than the former. By contrast, when two images differ in global shape,
responses are faster when they are more dissimilar.
(C)We also hypothesized that shapes that are more distinct i.e. far away from other
shapes will elicit faster responses because there are no surrounding distractors. Thus,
the diamond made of circles, which is far away from all other stimuli in panel A, will
elicit a faster response than a diamond made of Zs.
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Effect of distinctiveness on same-different responses in the global block

How do we estimate distinctiveness? We reasoned that if distinctiveness was the
only influence on response time to identical images, then images that elicited fast
responses must be more distinctive than those that elicit slow responses. We therefore
took the reciprocal of the average response time for each GSLS pair (across trials and
subjects) as a measure of distinctiveness for that image. The estimated distinctiveness
for the hierarchical stimuli in the global block is depicted in Figure 5A. It can be seen that
shapes with a global circle (“O”) are more distinctive than shapes containing the global
shape “A”. In other words, subjects responded faster when they saw these shapes.

Having estimated distinctiveness of each image using the GSLS pairs, we asked
whether it would predict responses to other pairs. For each image pair containing two
different images, we calculated the net distinctiveness as the sum of the distinctiveness
of the two individual images. We then plotted the average response times for each GSLD
pair (which evoked a “SAME” response) in the global block against the net distinctiveness.
This revealed a striking negative correlation (r = -0.71, p < 0.00005; Figure 5B). In other
words, subjects responded quickly to distinctive images. We performed a similar analysis
forthe GDLS and GDLD pairs (which evoke a “DIFFERENT” response). This too revealed
a negative correlation (r = -0.46, p < 0.00005 across all GDLS and GDLD pairs, r =-0.38,
p < 0.0005 for GDLS pairs; Figure 5C; r = -0.54, p <0.0005 for GDLD pairs). We conclude
that image pairs containing distinctive images elicit faster responses.

If distinctiveness measured from GSLS pairs is so effective in predicting responses
to all other pairs, we wondered whether it can also explain the incongruence effect. To do
so, we compared the net distinctiveness of congruent pairs with that of the incongruent

pairs. Indeed, congruent pairs were more distinctive (average distinctiveness, mean + sd:
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3.31 + 0.11 s for congruent pairs, 3.17 + 0.14 xx s for incongruent pairs, p < 0.005,

sign-rank test across 21 image pairs; Figure 5D).
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Figure 5. Understanding the contribution of distinctiveness

(A) Global distinctiveness (1/RT) of each hierarchical stimulus, estimated from GSLS
pairs in the global block.

(B) Observed response times for GSLD pairs in the global block plotted against the
net global distinctiveness estimated from panel A.

(C) Observed response times for GDLS and GDLD pairs plotted against net global
distinctiveness estimated from panel A.

(D) Net global distinctiveness calculated for congruent and incongruent image pairs.
Error bars represents standard deviation across pairs.

(E) Local distinctiveness (1/RT) for each hierarchical stimulus estimated from GSLS
pairs in the local block.

(F) Observed response times for GDLS pairs in the local block plotted against the net
local distinctiveness estimated as in panel D.

(G) Observed response times for GSLD & GDLD pairs in the local block plotted
against the net local distinctiveness estimated as in panel D.

(H) Net local distinctiveness calculated for congruent and incongruent image pairs.
Error bar represents standard deviation across pairs.
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Effect of distinctiveness on same-different responses in the local block

We observed similar trends in the local block. Again, we estimated distinctiveness
for each image as the reciprocal of the response time to the GSLS trials in the local block
(Figure 5E). It can be seen that shapes containing a local circle were more distinctive
compared to shapes containing a local diamond (Figure 5E). Interestingly, the
distinctiveness estimated in the local block was uncorrelated with the distinctiveness
estimated in the global block (r = 0.16, p = 0.25).

As with the global block, we obtained a significant negative correlation between
the response times for GDLS pairs (which evoked a “SAME” response) and the net
distinctiveness (r = -0.58, p < 0.00005; Figure 5F). Likewise, we obtained a significant
negative correlation between the response times of GSLD and GDLD pairs (both of which
evoke “DIFFERENT” responses in the local block) with net distinctiveness (r = -0.22, p <
0.0005 across 294 GSLD and GDLD pairs; Figure 5G; r =-0.24, p < 0.005 for GSLD pairs;
r = -0.18, p < 0.05 for GDLD pairs). We conclude that distinctive images elicit faster
responses.

Finally, we asked whether differences in net distinctiveness can explain the
difference between congruent and incongruent pairs. As expected, local distinctiveness
was significantly larger for congruent compared to incongruent pairs (average
distinctiveness, mean * sd: 3.08 + 0.05 s for congruent pairs, 2.91 + 0.11 s* for
incongruent pairs, p < 0.00005, sign-rank test across 21 image pairs; Figure 5H).

The above analyses show that distinctiveness directly estimated from response
times to identical images can predict responses to other image pairs containing non-
identical images. By contrast, there is no direct subset of image pairs that can be used to
measure the contribution of image dissimilarity to response times. We therefore devised

a quantitative model for the response times to estimate the underlying image
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dissimilarities and elucidate the contribution of dissimilarity and distinctiveness. Because
high dissimilarity can increase response times for “SAME” responses and decrease
response times for “DIFFERENT” responses, we devised two separate models for these

two types of responses, as detailed below.

Can “SAME” responses be predicted using distinctiveness and dissimilarity?

Recall that “SAME” responses in the global block are made to image pairs in which
the global shape is the same and local shape is different. Let AB denote a hierarchical
stimulus made of shape A at the global level and B at the local level. We can denote any
image pair eliciting a “SAME” response in global block as AB and AC, since the global
shape will be identical. Then according to our model, the response time (SRT) taken to
respond to an image pair AB & AC is given by:

SRT(AB,AC) = kg *GD + k, LD + Lg,

where GD is the sum of the global distinctiveness of AB and AC (estimated from
GSLS pairs in the global block), LD is the sum of local distinctiveness of AB and AC
(estimated from GSLS pairs in the local block), ke, kL are constants that specify the
contribution of GD and LD towards the response time, and Lsc denotes the dissimilarity
between local shapes B and C. Since there are 7 possible local shapes there are only "C>
= 21 possible local shape terms. When this equation is written down for each GSLD pair,
we get a system of linear equations of the form y = Xb where y is a 147 x 1 vector
containing the GSLD response times, X is a 147 x 23 matrix containing the net global
distinctiveness and net local distinctiveness as the first two columns, and 0/1 in the other
columns corresponding to whether a given local shape pair is present in that image pair

or not, and b is a 23 x 1 vector of unknowns containing the weights ke, k. and the 21
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estimated local dissimilarities. Because there are 147 equations and only 22 unknowns,
we can estimate the unknown vector b using linear regression.

The performance of this model is summarized in Figure 6. The model-predicted
response times were strongly correlated with the observed response times for the GSLD
pairs in the global block (r = 0.86, p < 0.00005; Figure 6A). These model fits were close
to the reliability of the data (rc = 0.84 £ 0.02; see Methods), suggesting that the model
explained nearly all the explainable variance in the data. However the model fits do not
elucidate which factor contributes more towards response times. To do so, we performed
a partial correlation analysis in which we calculated the correlation between observed
response times and each factor after regressing out the contributions of the other two
factors. For example, to estimate the contribution of global distinctiveness, we calculated
the correlation between observed response times and global distinctiveness after
regressing out the contribution of local distinctiveness and the estimated local dissimilarity
values corresponding to each image pair. This revealed a significant negative correlation
(r = -0.81, p < 0.00005; Figure 6A, inset). Likewise, we obtained a significant positive
partial correlation between local dissimilarities and observed response times after
regressing out the other factors (r = 0.69, p < 0.00005; Figure 6A, inset). However, local
distinctiveness showed positive partial correlation (r = 0.30, p = 0.0005) suggesting that
locally distinctive shapes slow down responses in the global block. Thus, response times
are faster for more globally distinctive image pairs, and slower for more dissimilar image
pairs.

We obtained similar results for local “SAME” responses. As before, the response
time for “SAME” responses in the local block to an image pair (AB, CB) was written as
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where SRT is the response time, GD and LD are the net global and net local
distinctiveness of the images AB and CB respectively, kg, k. are unknown constants that
specify the contribution of the net global and local distinctiveness and Gac is the
dissimilarity between the global shapes A and C. As before this model is applicable to all
the LSGD pairs (n = 147), has 23 free parameters and can be solved using straightforward
linear regression.

The model fits for local “SAME” responses is depicted in Figure 6B. We obtained
a striking correlation between predicted and observed response times (r = 0.72, p <
0.00005; Figure 6B). This correlation was close to the reliability of the data itself (rc = 0.80
+ 0.03), suggesting that the model explains nearly all the explainable variance in the
response times. To estimate the unique contribution of distinctiveness and dissimilarity,
we performed a partial correlation analysis as before. We obtained a significant partial
negative correlation between observed response times and local distinctiveness after
regressing out global distinctiveness and global dissimilarity (r = -0.70, p < 0.00005;
Figure 6B, inset). We also obtained a significant positive partial correlation between
observed response times and global dissimilarity after factoring out both distinctiveness
terms (r = 0.47, p < 0.00005; Figure 6B, inset). Finally, as before, global distinctiveness
showed a positive correlation with local “SAME” responses after accounting for the other

factors (r = 0.36, p < 0.00005; Figure 6B inset).
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483 regressing out all other factors. Error bars represents 68% confidence intervals,
484 corresponding to =1 standard deviation from the mean.
485 (B) Same as (A) but for “SAME” responses in the local block.
486 (C) Same as (A) but for “DIFFERENT” responses in the global block.
487 (D) Same as (A) but for “DIFFERENT” responses in the local block.
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Can “DIFFERENT” responses be predicted using distinctiveness and dissimilarity?
We used a similar approach to predict “DIFFERENT” responses in the global and
local blocks. Specifically, for any image pair AB and CD, the response time according to
the model is written as
DRT(AB,CD) = kg +GD + ky LD — Gac — Lgp

where DRT is the response time for making a “DIFFERENT” response, GD and
LD are the net global and net local distinctiveness of the images AB and CD respectively,
ke, k. are unknown constants that specify their contributions, Gac is the dissimilarity
between the global shapes A and C, and Lgp is the dissimilarity between the local shapes
B and D. Note that, unlike the “SAME” response model, the sign of Gac and Lsp is negative
because large global or local dissimilarity should speed up “DIFFERENT” responses. The
resulting model, which applies to both GDLS and GDLD pairs, consists of 44 free
parameters which are the two constants specifying the contribution of the global and local
distinctiveness and 21 terms each for the pairwise dissimilarities at the global and local
levels respectively. As before, this is a linear model whose free parameters can be
estimated using straightforward linear regression.

The model fits for “DIFFERENT” responses in the global block are summarized in
Figure 6C. We obtained a striking correlation between observed response times and
predicted response times (r = 0.82, p < 0.00005; Figure 6C). This correlation was close
to the data reliability itself (rc = 0.84  0.02), implying that the model explained nearly all
the explainable variance in the data. To estimate the unique contributions of each term,
we performed a partial correlation analysis as before. We obtained a significant negative
partial correlation between observed response times and global distinctiveness after
regressing out all other factors (r = -0.21, p < 0.0005; Figure 6C, inset). We also obtained

a significant negative partial correlation between observed response times and both
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dissimilarity terms (r = -0.76, p < 0.00005 for global terms; r = -0.33, p < 0.00005 for local
terms; Figure 6C, inset). However we note that the contribution of global terms is larger
than the contribution of local terms. As before, local distinctiveness did not contribute
significantly to “DIFFERENT” responses in the global block (r = -0.06, p = 0.34; Figure
6C, inset). We conclude that “DIFFERENT” responses in the global block are faster for
globally distinctive image pairs, and for dissimilar image pairs.

We obtained similar results for “DIFFERENT” responses in the local block for
GSLD and GDLD pairs. Model predictions were strongly correlated with observed
response times (r = 0.87, p < 0.00005; Figure 6D). This correlation was close to the data
reliability (rc = 0.85 + 0.01) suggesting that the model explained nearly all the variance in
the response times. A partial correlation analysis revealed a significant negative partial
correlation for all terms except global distinctiveness (correlation between observed RT
and each factor after accounting for all others: r = -0.26, p < 0.00005 for local
distinctiveness, r = -0.04, p = 0.55 for global distinctiveness, r = -0.32, p < 0.00005 for
global terms, r = -0.86, p < 0.00005 for local terms). In contrast to the global block, the
contribution of global terms was smaller than that of the local terms. We conclude that
‘DIFFERENT” responses in the local block are faster for locally distinctive image pairs

and for dissimilar image pairs.

Relation between “SAME” and “DIFFERENT” model parameters

Next we asked whether the dissimilarity terms estimated from “SAME” and
‘DIFFERENT” responses were related. In the global block, we obtained a significant
positive correlation between the local dissimilarity terms (Table 1). Likewise, the global
and local terms estimated from “DIFFERENT” responses were significantly correlated

(Table 1). In general, only 3 out of 15 (20%) of all possible pairs were negatively

Page 27 of 53


https://doi.org/10.1101/777110
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/777110; this version posted September 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

538 correlated, and the median pairwise correlation across all model term pairs was
539 significantly above zero (median correlation: 0.14, p < 0.01). Taken together these
540 positive correlations imply that the dissimilarities driving the “SAME” and “DIFFERENT”
541 responses at both global and local levels are driven by a common underlying shape

542  representation.

543
GDS | GDG | GDL | LSG | LDG | LDL
Global SAME model, L terms 1]0.54*| 0.17 | 0.14 | 0.09 | 0.48*
Global DIFFERENT model, Global terms 1] 0.24]0.34| 0.30|0.47*
Global DIFFERENT model, Local terms 1] 0.03|-0.08| 0.14
Local SAME model, Global terms 1| 0.11 ] -0.04
Local DIFFERENT model, Global terms 1]-0.31
Local DIFFERENT model, Local terms 1

544 Table 1: Correlation between estimated dissimilarity terms within and across
545 models. Each entry represents the correlation coefficient between pairs of model terms.
546  Asterisks represent statistical significance (* is p < 0.05). Column labels are identical to
547  row labels but are abbreviated for ease of display.

548
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549 EXPERIMENT 2: VISUAL SEARCH

550 There are two main findings from Experiment 1. First, subjects show a robust
551 global advantage and an incongruence effect in the same-different task. These effects
552 could arise from the underlying categorization process or the underlying visual
553 representation. To distinguish between these possibilities would require a task devoid of
554  categorical judgments. To this end, we devised a visual search task in which subjects
555 have to locate an oddball target among multiple identical distractors, rather than making
556 a categorical shape judgment. Second, responses in the same-different task were
557  explained using two factors: distinctiveness and dissimilarity, but it is not clear how these
558 factors relate to the visual search representation.

559 We sought to address four fundamental questions. First, are the global advantage
560 and incongruence effects present in visual search? Second, can performance in the
561 same-different task be explained in terms of the responses in the visual search task?
562  Third, can we understand how global and local features combine in visual search? Finally,
563 can the dissimilarity and distinctiveness terms in the same-different model of Experiment
564 1 be related to some aspect of the visual representations observed during visual search?
565

566 METHODS

567  Subjects. Eight right-handed subjects (6 male, aged 23-30 years) participated in the
568 study. We selected this number of subjects here and in subsequent experiments based
569 on the fact that similar sample sizes have yielded extremely consistent visual search data
570 in our previous studies (Mohan and Arun, 2012; Vighneshvel and Arun, 2013; Pramod
571 and Arun, 2016).

572
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Stimuli. We used the same set of 49 stimuli as in Experiment 1, which were created by
combining 7 possible shapes at the global level with 7 possible shapes at the local level

in all possible combinations.

Procedure. Subjects were seated approximately 60 cm from a computer. Each subject
performed a baseline motor block, a practice block and then the main visual search block.
In the baseline block, on each trial a white circle appeared on either side of the screen
and subjects had to indicate the side on which the circle appeared. We included this block
so that subjects would become familiar with the key press associated with each side of
the screen, and in order to estimate a baseline motor response time for each subject. In
the practice block, subjects performed 20 correct trials of visual search involving unrelated
objects to become familiarized with the main task.

Each trial of main experiment started with a red fixation cross presented at the
centre of the screen for 500 ms. This was followed by a 4 x 4 search array measuring 24°
square with a spacing of 2.25° between the centers of adjacent items. Images were were
slightly larger in size (1.2x) compared to Experiment 1 to ensure that the local elements
were clearly visible. The search array consisted of 15 identical distractors and one oddball
target placed at a randomly chosen location in the grid. Subjects were asked to locate the
oddball target and respond with a key press (“Z” for left, “M” for right) within 10 seconds,
failing which the trial was aborted and repeated later. A red vertical line was presented at
the centre of the screen to facilitate left/right judgments.

Search displays corresponding to each possible image pair were presented two
times, with either image in a pair as target (with target position on the left in one case and
on the right in the other). Thus, there were 49C2 = 1,176 unique searches and 2,352 total

trials. Trials in which the subject made an error or did not respond within 10 s were
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repeated randomly later. In practice, these repeated trials were very few in number,
because subjects accuracy was extremely high (mean and std accuracy: 98.4% * 0.7%

across subjects).

Model fitting

We measured the perceived dissimilarity between every pair of images by taking
the reciprocal of the average search time for that pair across subjects and trials. We
constructed a quantitative model for this perceived dissimilarity following the part
summation model developed in our previous study (Pramod and Arun, 2016). Let each
hierarchical stimulus be denoted as AB where A is the shape at the global level and B is
the local shape. The net dissimilarity between two hierarchical stimuli AB & CD is given
by:

d(AB,CD) = Gac + Lep + Xap + Xsc + Was + Wep + constant

where Gac is the dissimilarity between the global shapes, Lsp is the dissimilarity between
the local shapes, Xap & Xsc are the across-object dissimilarities between the global shape
of one stimulus and the local shape of the other, and Was & Wcp are the dissimilarities
between global and local shape within each object. Thus there are 4 sets of unknown
parameters in the model, corresponding to global terms, local term, across-object terms
and within-object terms. Each set contains pairwise dissimilarities between the 7 shapes
used to create the stimuli. Note that model terms repeat across image pairs: for instance,
the term Gac is present for every image pair in which A is a global shape of one and C is
the global shape of the other. Writing this equation for each of the 1,176 image pairs
results in a total of 1176 equations corresponding to each image pair, but with only 21
shape pairs x 4 types (global, local, across, within) + 1 = 85 free parameters. The

advantage of this model is that it allows each set of model terms to behave independently,
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thereby allowing potentially different shape representations to emerge for each type
through the course of model fitting.

This simultaneous set of equations can be written as y = Xb where y isa 1,176 x
1 vector of observed pairwise dissimilarities between hierarchical stimuli, X is a 1,176 x
85 matrix containing 0, 1 or 2 (indicating how many times a part pair of a given type
occurred in that image pair) and b is a 85 x 1 vector of unknown part-part dissimilarities
of each type (corresponding, across and within). We solved this equation using standard
linear regression (regress function, MATLAB).

The results described in the main text, for ease of exposition, are based on fitting
the model to all pairwise dissimilarities, which could result in overfitting. To assess this
possibility, we fitted the model each time on 80% of the data and calculated its predictions
on the held-out 20%. This too yielded a strong positive correlation across many 80-20
splits (r = 0.85 £ 0.01, p < 0.00005 in all cases), indicating that the model is not overfitting

to the data.
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RESULTS
Subjects performed searches corresponding to all possible pairs of hierarchical
stimuli (°C2 = 1176 pairs). Subjects were highly accurate in the task (mean * sd
accuracy: 98.4% = 0.7% across subjects).
Note that each image pair in visual search has a one-to-one correspondence with
an image pair used in the same-different task. Thus, we have GDLS, GSLD and GDLD
pairs in the visual search task. However, there are no GSLS pairs in visual search since

these pairs correspond to identical images, and can have no oddball search.

Is there a global advantage effect in visual search?

We set out to investigate whether there is a global advantage effect in visual
search. We compared searches with target differing only in global shape (i.e. GDLS pairs)
with equivalent searches in which the target differed only in local shape (i.e. GSLD pairs).
Two example searches are depicted in Figure 7A-B. It can be readily seen that finding a
target differing in global shape (Figure 7A) is much easier than finding the same shape
difference in local shape (Figure 7B).

The above observation held true across all GDLS/GSLD searches. Subjects were
equally accurate on GDLS searches and GSLD searches (accuracy, mean + sd: 98% +
1% for GDLS, 98% + 1% for GSLD, p = 0.48, sign-rank test across subject-wise
accuracy). However they were faster on GDLS searches compared to GSLD searches
(search times, mean + sd: 1.90 + 0.40 s across 147 GDLS pairs, 2.11 £ 0.56 s across 147
GSLD pairs; Figure 7C).

To assess the statistical significance of this difference, we performed an ANOVA
on the search times with subject (8 levels), pairs (7x21 = 147 levels), and hierarchical

level (same-global/same-local) as factors. This revealed a significant main effect of
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663 hierarchical level (p < 0.00005). We also observed significant main effects of subject and
664 pairs (p < 0.005). All two-way interactions except subject x shape were also significant (p
665 < 0.00005) but these did not alter the general direction of the effect as evidenced by the
666 fact that searches for the same global shape were harder than for the same local shape
667 on average in 82 of 147 pairs (56%) across all subjects. We conclude that searching for
668 a target differing in global shape is easier than searching for a target differing in local
669 shape. Thus, there is a robust global advantage effect in visual search.

670
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Figure 7. Odd ball visual search task.

(A) Example search array with an oddball target differing only in global shape from the
distractors. The actual experiment used 4x4 search arrays with stimuli shown as white
against a black background.

(B) Example search array with an oddball target differing only in local shape from the
distractors.

(C) Average response times for GDLS and GSLD pairs. Error bars represent s.e.m across
subjects. Asterisks indicate statistical significance calculated using a rank-sum test
across 147 pairs (*is p < 0.05)..

(D) Example search array with two congruent stimuli.

(E) Example search array with two incongruent stimuli.

(F) Average response time for congruent and incongruent stimulus pairs. Error bars
represent s.e.m across subjects. Asterisks indicate statistical significance using an
ANOVA on response times (*** is p < 0.0005).
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Is there an incongruence effect in visual search?

Next we compared whether searches involving a pair of congruent stimuli were
easier than those with incongruent stimuli. Two example searches are shown in Figure
7D-E. It can be readily seen that search involving the congruent stimuli (Figure 7D) is
easier than the search involving incongruent stimuli (Figure 7E), even though both
searches involve a difference in global shape (circle to square) and a difference in local
shape (circle to square).

To establish whether this was true across all 21 searches of this type, we
performed an ANOVA on the search times with subject (8 levels), shape pair ('C2 = 21
levels) and congruence (2 levels) as factors. This revealed a significant main effect of
congruence (average search times: 1.13 s for congruent pairs, 1.36 s for incongruent
pairs; p < 0.00005). We also observed a significant main effect of subject and shape pair
(p <0.00005), and importantly no significant interaction effects (p > 0.2 for all interactions).
We conclude that search involving congruent stimuli are easier than searches involving

incongruent stimuli. Thus, there is a robust incongruence effect in visual search.

Are there systematic variations in responses in the visual search task?

Having established that subjects showed a robust global advantage effect and
incongruence effects, we wondered whether there were other systematic variations in
their responses as well. Indeed, response times were highly systematic as evidenced by
a strong correlation between two halves of the subjects (split-half correlation between RT
of odd- and even-numbered subjects: r = 0.83, p < 0.00005).

Previous studies have shown that the reciprocal of search time can be taken as a
measure of dissimilarity between the target and distractors. We therefore took the

reciprocal of the average search time across all subjects (and trials) for each image pair
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as a measure of dissimilarity between the two stimuli. Because we performed all pairwise
searches between the hierarchical stimuli, it becomes possible to visualize these stimuli
in visual search space using multidimensional scaling (MDS). Briefly, multidimensional
scaling estimates the 2D coordinates of each stimulus such that distances between these
coordinates match best with the observed distances. In two dimensions with 49
hierarchical stimuli, there are only 49 x 2 = 98 unknown coordinates that have to match
the 4°C2 = 1,176 observed distances. We emphasize that multidimensional scaling only
offers a way to visualize the representation of the hierarchical stimuli at a glance; we did
not use the estimated 2D coordinates for any subsequent analysis but rather used the
directly observed distances themselves.

The multidimensional scaling plot obtained from the observed visual search data
is shown in Figure 8. Two interesting patterns can be seen. First, stimuli with the same
global shape clustered together, indicating that these are hard searches. Second,
congruent stimuli (i.e. with the same shape at the global and local levels) were further
apart compared to incongruent stimuli (with different shapes at the two levels), indicating
that searches involving congruent stimuli are easier than incongruent stimuli. These
observations concur with the global advantage and incongruence effect described above

in visual search.
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Representation of hierarchical stimuli in visual search space
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Figure 8. Visualization of hierarchical stimuli in visual search space.

Representation of hierarchical stimuli in visual search space, as obtained using
multidimensional scaling. Stimuli of the same color correspond to the same global
shape for ease of visualization. The actual stimuli were white shapes on a black
background in the actual experiment. In this plot, nearby points represent hard
searches. The correlation coefficient at the top right indicates the degree of match
between the two-dimensional distances depicted here with the observed search
dissimilarities in the experiment. Asterisks indicate statistical significance: **** is p <
0.00005.
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How do global and local shape combine in visual search?

So far we have shown that the global advantage and incongruence effects in the
same-different task also arise in the visual search task, suggesting that these effects are
intrinsic to the underlying representation of these hierarchical stimuli. However, these
findings do not provide any fundamental insight into the underlying representation or how
it is organized. For instance, why are incongruent shapes more similar than congruent
shapes? How do global and local shape combine?

To address these issues, we asked whether search for pairs of hierarchical stimuli
can be explained in terms of shape differences and interactions at the global and local
levels. To build a quantitative model, we drew upon our previous studies in which the
dissimilarity between objects differing in multiple features was found to be accurately
explained as a linear sum of part-part dissimilarities (Pramod and Arun, 2014, 2016;
Sunder and Arun, 2016). Consider a hierarchical stimulus AB, where A represents the
global shape and B is the local shape. Then, according to the model (which we dub the
multiscale part sum model), the dissimilarity between two hierarchical stimuli AB & CD
can be written as a sum of all possible pairwise dissimilarities between the parts A, B, C
and D as follows (Figure 6A):

d(AB,CD) = Gac + Lep + Xap + Xsc + Was + Webp + constant

where Gac is the dissimilarity between the global shapes, Lsp is the dissimilarity
between the local shapes, Xap & Xsc are the across-object dissimilarities between the
global shape of one stimulus and the local shape of the other, and Was & Wcp are the
dissimilarities between global and local shape within each object. Since there are 7
possible global shapes, there are 7C2. = 21 pairwise global-global dissimilarities
corresponding to Gas, Gac, Gab, etc, and likewise for L, X and W terms. Thus in all the

model has 21 part-part relations x 4 types + 1 constant = 85 free parameters. Importantly,
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the multiscale part sum model allows for completely independent shape representations
at the global level, local level and even for comparisons across objects and within object.
The model works because the same global part dissimilarity Gac can occur in many
shapes where the same pair of global shapes A & C are paired with various other local

shapes.

Performance of the part sum model

To summarize, we used a multiscale part sum model that explains the dissimilarity
between two hierarchical stimuli as a sum of pairwise shape comparisons across multiple
scales. To evaluate model performance, we plotted the observed dissimilarities between
hierarchical stimuli against the dissimilarities predicted by the part sum model (Figure 9B).
This revealed a striking correlation (r = 0.88, p < 0.00005; Figure 9B). This high degree
of fit matches the reliability of the data (mean + sd reliability: rc = 0.84 + 0.01; see
Methods).

This model also yielded several insights into the underlying representation. First,
because each group of parameters in the part sum model represent pairwise part
dissimilarities, we asked whether they all reflect a common underlying shape
representation. To this end we plotted the estimated part relations at the local level (L
terms), the across-object global-local relations (X terms) and the within-object relations
(W terms) against the global part relations (G terms). This revealed a significant
correlation for all terms (correlation with global terms: r = 0.60, p < 0.005 for L terms, r =
0.75, p < 0.00005 for X terms, r = -0.60, p < 0.005 for W terms; Figure 9C). This is
consistent with the finding that hierarchical stimuli and large/small stimuli are driven by a

common representation at the neural level (Sripati and Olson, 2009).
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795 Second, cross-scale within-object (W terms) were negative (average: -0.04, p <
796  0.005, sign-rank test on 21 within-object terms). In other words, the effect of within-object
797  dissimilarity is to increase overall dissimilarity when global and local shapes are similar
798  to each other and decrease overall dissimilarity when they are dissimilar.

799 Third, we visualized this common shape representation using multidimensional
800 scaling on the pairwise global coefficients estimated by the model. The resulting plot
801 (Figure 9D) reveals a systematic arrangement whereby similar global shapes are nearby.
802 Ultimately, the multiscale part sum model uses this underlying part representation
803 determines the overall dissimilarity between hierarchical stimuli.

804

805
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Figure 9. Global and local shape integration in hierarchical stimuli

(A)We investigated how global and local shape combine in visual search using the
multiscale part sum model. According to the model, the dissimilarity between two
hierarchical stimuli can be explained as a weighted sum of shape differences at the
global level, local level and cross-scale differences across and within objects (see
text).

(B) Observed dissimilarity plotted against predicted dissimilarity for all 1,176 object pairs
in the experiment.

(C)Local and cross-scale model terms plotted against global terms. Coloured lines
indicates the corresponding best fitting line. Asterisks indicate statistical significance:
*** js p < 0.0005, **** js p < 0.00005.

(D) Visualization of global shape relations recovered by the multiscale model, as obtained
using multidimensional scaling analysis.
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Can the multiscale model explain the global advantage and incongruence effect?

Having established that the full multiscale part sum model yielded excellent
guantitative fits, we asked whether it can explain the global advantage and incongruence
effects.

First, the global advantage effect in visual search is the finding that shapes differing
in global shape are more dissimilar than shapes differing in local shape. This is explained
by the multiscale part sum model by the fact that global part relations are significantly
larger in magnitude compared to local terms (average magnitude across 21 pairwise
terms: 0.42 £ 0.17 s* for global, 0.30 £ 0.11 s* for local, p < 0.005, sign-rank test).

Second, how does the multiscale part sum model explain the incongruence effect?
We first confirmed that the model shows the same pattern as the observed data (Figure
10A). To this end we examined how each model term in the model works for congruent
and incongruent shapes (Figure 10B). First, note that the terms corresponding to global
and local shape relations are identical for both congruent and incongruent stimuli so these
cannot explain the incongruence effect. However, congruent and incongruent stimuli differ
in the cross-scale interactions both across and within stimuli. For a congruent pair, which
have the same shape at the global and local level, the contribution of within-object terms
is zero, and the contribution of across-object terms is non-zero, resulting in an overall
larger dissimilarity (Figure 10B). In contrast, for an incongruent pair, the within-object
terms are negative and across-object terms are zero, leading to a smaller overall
dissimilarity.

To summarize, the multiscale model explains qualitative features of visual search
such as the global advantage and incongruence effects, and explains visual search for
hierarchical stimuli using a linear sum of multiscale part differences. The excellent fits of

the model indicate that shape information combines linearly across multiple scales.
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Figure 10. Incongruence effect in visual search.

(A) Average dissimilarity for congruent and incongruent image pairs for observed
dissimilarities (left) and dissimilarities predicted by the multiscale part sum model
(right). Error bars indicate sd across image pairs. Asterisks indicate statistical
significance, as calculated using an ANOVA, with conventions as before.

(B) Schematic illustrating how the multiscale model predicts the incongruence effect. For
both congruent and incongruent searches, the contribution of global and local terms
in the model is identical. However for congruent searches, the net dissimilarity is large
because cross-scale across terms are non-zero and within-object terms are zero
(since the same shape is present at both scales). In contrast, for incongruent
searches, the net dissimilarity is small because across-object terms are zero (since
the local shape of one is the global shape of the other) and within-object terms are
non-zero and negative.

Relating same-different model parameters to visual search

Recall that the responses in the same-different task were explained using two
factors, distinctiveness and dissimilarity (Figure 6). We wondered whether these factors
are related to any aspect of the visual search representation.

We first asked whether the distinctiveness of each image as estimated from the
GSLS pairs in the same-different task is related to the hierarchical stimulus representation
in visual search. We accordingly calculated a measure of global distinctiveness in visual
search as follows: for each image, we calculated its average dissimilarity (1/RT in visual
search) to all other images with the same global shape. Likewise, we calculated local
search distinctiveness as the average dissimilarity between a given image and all other
images with the same local shape. We then asked how the global and local

distinctiveness estimated from the same-different task are related to the global and local

search distinctiveness estimated from visual search.
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875 We obtained a striking double-dissociation: global distinctiveness estimated in the
876 same-different task was correlated only with global but not local search distinctiveness (r
877 =0.55, p <0.00005 for global search distinctiveness; r = 0.036, p = 0.55 for local search
878  distinctiveness; Figure 11A). Likewise, local distinctiveness estimated in the same-
879 different task was correlated only with local search distinctiveness but not global
880 distinctiveness (r = 0.35, p < 0.05 for local search distinctiveness; r = 0.05, p = 0.76 for

881 global search distinctiveness; Figure 11B).
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883 Figure 11. Relation between same-different model parameters and visual search
884 (A) Correlation between distinctiveness estimated from GSLS trials in the global block
885 of the same-different (SD) task with global and local search distinctiveness. Error
886 bars represents 68% confidence intervals, corresponding to £1 standard deviation
887 from the mean.
888 (B) Correlation between distinctiveness estimated from GSLS trials in the local block
889 of the same-different task with global and local search distinctiveness.
890
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Next we investigated whether the global and local shape dissimilarity terms
estimated from the same-different task were related to the global and local terms in the
part-sum model. Many of these correlations were positive and significant (Table 2),
suggesting that all dissimilarities are driven by a common shape representation.

We conclude that both distinctiveness and dissimilarity terms in the same-different

task are systematically related to the underlying representation in visual search.

Same-Different Model Terms

Correlation with
Visual Search
Global Terms

Correlation with
Visual Search
Local Terms

Same-Different Task, Global Block

Same model Local Terms 0.47* 0.76%***
Different model Global Terms 0.69**** 0.82%***
Different Model Local Terms 0.02 0
Same-Different task, Local Block

Same model Local Terms 0.37 0.11
Different model Global Terms 0.38 0.21
Different Model Local terms 0.14 0.6**

Table 2. Comparison of model parameters across tasks. Each entry represents the
correlation coefficient between model terms estimated from the same-different task and
global and local terms from the visual search model. Asterisks represent statistical
significance (* is p < 0.05, **** is p < 0.00005 etc).
Comparison of part-sum model with other models

The above results show that search for hierarchical stimuli is best explained using
the reciprocal of search time (1/RT), or search dissimilarity. That models based on 1/RT
provides a better account than RT-based models was based on our previous findings
(Vighneshvel and Arun, 2013; Pramod and Arun, 2014, 2016; Sunder and Arun, 2016).
To reconfirm this finding, we fit RT and 1/RT based models to the data in this experiment.
Indeed, 1/RT based models provided a better fit to the data (Section S1).

The above results are also based on a model in which the net dissimilarity is based

on part differences at the global and local levels as well as cross-scale differences across

and within object. This raises the question of whether simpler models based on a subset
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of these terms would provide an equivalent fit. However, this was not the case: the full

model yielded the best fits despite having more free parameters (Section S1).

Simplifying hierarchical stimuli

One fundamental issue with hierarchical stimuli is that the global shape is formed
using the local shapes, making them inextricably linked. We therefore wondered whether
hierarchical stimuli can be systematically related to simpler stimuli in which the global and
local shape are independent of each other. We devised a set of “interior-exterior” shapes
whose representation in visual search can be systematically linked to that of the
hierarchical stimuli, and thereby simplifying their underlying representation. Even here,
we found that the dissimilarity between interior-exterior stimuli can be explained as a
linear sum of shape relations across multiple scales (Section S2). Moreover, changing
the position, size and grouping status of the local elements leads to systematic changes
in the model parameters (Section S3-5). These findings provide a deeper understanding

of how shape information combines across multiple scales.
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GENERAL DISCUSSION

Classic perceptual phenomena such as the global advantage and incongruence
effects have been difficult to understand because they have observed during shape
detection tasks, where a complex category judgment is made on a complex feature
representation. Here, we have shown that these phenomena are not a consequence of
the categorization process but rather are explained by intrinsic properties of the
underlying shape representation. Moreover, this underlying representation is governed
by a simple rule whereby global and local features combine linearly.

Our findings in support of this conclusion are: (1) Global advantage and
incongruence effects are present in a same-different task as well as in a visual search
task devoid of any shape categorization; (2) Responses in the same-different task were
accurately predicted using two factors: dissimilarity and distinctiveness; (3) Dissimilarities
in visual search were explained using a simple linear rule whereby the net dissimilarity is
a sum of pairwise multiscale shape dissimilarities. Below we discuss how these results

relate to the existing literature.

Explaining global advantage and incongruence effects

We have shown that the global advantage and incongruence effects also occur in
visual search, implying that they are intrinsic properties of the underlying representation.
Moreover we show that this representation is organized according to a simple linear rule
whereby global and local features combine linearly (Figure 9). This model provides a
simple explanation of both effects. The global advantage occurs simply because global
part relations are more salient than local relations (Figure 9C). The interference effect

occurs because congruent stimuli are more dissimilar (or equivalently, more distinctive)
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than incongruent stimuli, which in turn is because the within-object part differences are
zero for part relations (Figure 10).

Finally, it has long been observed that the global advantage and interference
effects vary considerably on the visual angle, eccentricity and shapes of the local
elements (Navon, 1977; Navon and Norman, 1983; Kimchi, 1992; Poirel et al., 2008). Our
results offer a systematic approach to understand these variations: the multiscale model
parameters varied systematically with the position, size and grouping status of the local

elements (Section S3-5).

Understanding same-different task performance

We have found that image-by-image variations in response times in the same-
different task can be accurately explained using a quantitative model. To the best of our
knowledge, there are no such quantitative models for the same-different task. According
to our model, responses in the same-different task are driven by two factors: dissimilarity
and distinctiveness.

The first factor is the dissimilarity between two images in a pair. Notably, it has
opposite effects on “SAME” and “DIFFERENT” responses. This makes intuitive sense
because if images are more dissimilar, it should make “SAME” responses harder and
‘DIFFERENT” responses easier. It is also consistent with the common models of
decision-making (Gold and Shadlen, 2002) and categorization (Ashby and Maddox, 1994;
Mohan and Arun, 2012), where responses are triggered when a decision variable
exceeds a criterion value. In this case, the decision variable is the dissimilarity.

The second factor is distinctiveness. Response times were faster for images that
are more distinctive, i.e. far away from other stimuli. This makes intuitive sense because

nearby stimuli can act as distractors and slow down responses. Importantly, the
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distinctiveness of an image in the global block matched best with its average distance
from all other stimuli with the same global shape (Figure 11A). Conversely the
distinctiveness in the local block matched best with its average distance from all other
shapes with the same local shape (Figure 11B). This finding is concordant with norm-
based accounts of object representations (Sigala et al., 2002; Leopold et al., 2006),
wherein objects are represented relative to an underlying average. We speculate that this
underlying average is biased by the level of attention, making stimuli distinctive at the
local or global level depending on the block. Testing these intriguing possibilities will

require recording neural responses during global and local processing.

Linearity in visual search

We have found that the net dissimilarity between hierarchical stimuli can be
understood as a linear sum of shape relations across multiple scales. This finding is
consistent with our previous studies showing that the net dissimilarity in visual search is
a linear sum of elemental feature differences (Pramod and Arun, 2014) as well as of local
and configural differences (Pramod and Arun, 2016). Likewise, the net dissimilarity in a
search for a target among multiple distractors can be understood as a sum of the
dissimilarity of the constituent searches (Vighneshvel and Arun, 2013). More recently, we
have demonstrated that knowledge of a forthcoming target adds linearly to bottom-up
dissimilarity (Sunder and Arun, 2016). Taken together, these findings suggest that a

variety of factors combine in visual search according to a simple linear rule.
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