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recently published, FAD-curated model, based
ABSTRACT on Recon3D reconstruction. We  used
transcriptomics (available via GEO database with

Refsum disease is an inborn error of metabolism identifier GSE138379), metabolomics, and

that is characterised by a defect in peroxisomal
a-oxidation of the branched-chain fatty acid
phytanic acid. The disorder presents with late-
onset progressive retinitis pigmentosa and
polyneuropathy and can be  diagnosed
biochemically by elevated levels of phytanic acid
in plasma and tissues of patients. To date, no
cure exists for Refsum disease, but phytanic acid
levels in patients can be reduced by
plasmapheresis and a strict diet.

In this study, we reconstructed a fibroblast-
specific genome-scale model based on the

proteomics data (available via ProteomeXchange
with identifier PXD015518), which we obtained
from healthy controls and Refsum disease patient
fibroblasts incubated with phytol, a precursor of
phytanic acid.

Our model correctly represents the metabolism
of phytanic acid and displays fibroblast-specific
metabolic functions. Using this model, we
investigated the metabolic phenotype of Refsum
disease at the genome-scale, and we studied the
effect of phytanic acid on cell metabolism. We
identified 53 metabolites that were predicted to
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discriminate between Healthy and Refsum
disease patients, several of which with a link to
amino acid metabolism. Ultimately, these
insights in metabolic changes may provide leads
for pathophysiology and therapy.

1. Introduction

Peroxisomes are organelles that, among other
functions, are crucial for cellular lipid
metabolism. They perform both anabolic and
catabolic processes, including the o- and pB-
oxidation of very-long-chain fatty acids,
dicarboxylic acids, and methyl-branched-chain
fatty acids [1]. Furthermore, peroxisomes are
involved in the biosynthesis of ether
phospholipids, including plasmalogens, bile
acids, and essential polyunsaturated fatty acids
such as docosahexaenoic acid [2].

Refsum disease is an inborn error of metabolism
(IEM) that is caused by biallelic mutations in the
gene encoding phytanoyl-CoA 2-hydroxylase
(PHYH), resulting in defective a-oxidation of the
branched-chain  fatty acid phytanic acid
(3,7,11,15-tetramethylhexadecanoic acid) [3].
Phytanic acid contains a 3-methyl group and is
therefore not a substrate for peroxisomal B-
oxidation. Consequently, phytanic acid first
needs to undergo a-oxidation, thereby producing
pristanic acid, which then can be further
degraded by p-oxidation [2]. An alternative
metabolic pathway for the breakdown of
phytanic acid is w-oxidation, which takes place
in the endoplasmic reticulum [4]. The end
product of w-oxidation of phytanic acid is 3-
methyladipic acid (3-MAA), and ®-oxidation has
been described to be upregulated in patients with
Refsum disease [5]. Refsum disease was first
described in 1945 and is clinically characterised
by progressive retinitis pigmentosa,
polyneuropathy, cerebellar ataxia, and deafness
[5]. Biochemically, Refsum disease is diagnosed
by elevated levels of phytanic acid in plasma and
tissues. Phytanic acid solely derives from the
diet, and patients with Refsum disease are mostly
diagnosed in late childhood [3,5]. To date,
patient management focuses on the reduction of
phytanic acid levels by plasmapheresis and a
strict diet to reduce the intake of dairy-derived
fat [6].

Recently, computational models have become
valuable tools to study the complex behaviour of

metabolic networks. One type of computational
models is genome-scale models of metabolism,
which contain all currently known stoichiometric
information of metabolic reactions, together with
enzyme and pathway annotation [7]. These
models can further be constrained and validated
by incorporation of different types of data,
including mRNA and metabolite profiles, as well
as biochemical and phenotypic information [8].
To date, the most comprehensive human models
are Recon 3D [9] and HMR 2.0 [10], which are
consensus metabolic reconstructions that were
built to describe all known metabolic reactions
within the human body. Besides, a few tissue-
and cell-type-specific models have been
developed by incorporating tissue- or cell-
specific transcriptomics and proteomics data.
These models can be used to predict possible
ranges of metabolic fluxes for all enzymes in the
network. Flux ranges in diseased and control
models can be compared to discover functional
changes in the metabolic network. These may be
used as biomarkers or give insight into the
biochemical origin of disease symptoms [11-15].

In the last decade, a paradigm shift occurred in
the field of IEMs. Today, IEMs are no longer
viewed according to the “one gene, one disease”
paradigm as proposed more than 100 years ago,
but recognised to be complex diseases [16].
However, only few studies using systems biology
and multi-omics approaches that are widely used
for complex diseases have been published for
IEMs [8,9,14,17-22].

In this study, we aim to investigate the metabolic
phenotype of Refsum disease at the genome-
scale, and to study the effect of phytanic acid on
cell metabolism. Cultured fibroblasts contain
most metabolic functions present in the human
body, and biochemical and functional studies in
cultured skin fibroblasts are important tools for
the diagnosis of patients with a peroxisomal
disorder [23]. Therefore, we reconstructed a
fibroblast-specific genome-scale model based on
fibroblast specific transcriptomics,
metabolomics, and proteomics data, and starting
from the recently published Recon3D-based
model. We obtained these data from healthy
controls and Refsum disease patient fibroblasts
incubated with phytol, a precursor of phytanic
acid. Since flavoproteins play a crucial role in
lipid metabolism, we integrated our recently
curated set of FAD-related reactions [20]. The
resulting model reflects the in vivo situation in
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fibroblasts and demonstrates the physiological
effects of a defective a-oxidation. Ultimately,
such insights in metabolic changes may provide
leads for pathophysiology and therapy.

2. Results

Model curation and generating a fibroblast-
specific model

For this study, we used an updated version of the
Recon 3D model in which flavoprotein-related
metabolism was curated [20]. This addition was
essential for this study because many enzymes in
fatty acid metabolism are flavoproteins, which
carry FAD as a cofactor. Furthermore, a known
alternative route for phytanic acid degradation,
w-oxidation, was not accounted for in Recon 3D.
In this pathway, phytanic acid is first converted
into  m-hydroxy-phytanic acid, followed by
oxidation to the corresponding dicarboxylic acid
(w-carboxyphytanic acid; see Fig. 1A). After
activation to their CoA-esters, dicarboxylic acids
have been shown to enter the peroxisome via
ABCD3 [24], and are then degraded via
peroxisomal B-oxidation [25]. It is assumed that
o-carboxyphytanic acid follows the same
pathway as an unbranched long-chain
dicarboxylic acid. The final product of phytanic
acid breakdown via m-oxidation is 3-MAA,
which has been identified in urine from patients
with Refsum disease [26].

To optimise the model, we added 25 reactions
involved in the w-oxidation and the subsequent
B-oxidation of phytanic acid. Furthermore, 17
reactions involved in phytanic acid metabolism
were deleted, because they were duplicates of
other reactions in the model. Lastly, we
examined the import/export reaction boundaries
and blocked the flux of several drug metabolism
pathways, such as those of statins, ibuprofen,
paracetamol, and antibiotics. These pathways
were not relevant for this study but could play a
role in the model outcome. All changes to the
model are summarized in Supplementary Table
1. The resulting curated model was called
Recon3D_X_c and is available in on GitHub
(https://github.com/WegrzynAB/Papers).

To create a fibroblast-specific model, we
generated a fibroblast dataset related to the
metabolic genes included in the model. To this
end, we cultured human primary control
fibroblasts (n=6) and Refsum disease patient-
derived fibroblasts with a defect in a-oxidation
(n=5) under standardised conditions, and

harvested cells after 96 h to isolate RNA and
protein. The cells were either incubated with
phytol, a precursor of phytanic acid, or with the
solvent ethanol (Fig. 1B). Our primary dataset
consisted of the data obtained from
transcriptomics (RNAseq) and proteomics (shot-
gun) measurements. In the principal component
analysis (PCA), no separation was seen between
the groups of fibroblasts (Fig. S1C and D).
Differential analysis of the transcriptomics and
proteomics data revealed only 12 differentially
expressed genes and 18 proteins between the
control fibroblasts and fibroblasts defective in a-
oxidation (Fig. S1). All differentially expressed
genes and 15 proteins were upregulated in the
Refsum group relative to controls, while no
genes and only three proteins were
downregulated. These upregulated genes and
proteins were primarily involved in cell cycle
control and structure (Supplementary Table 4).
When we tested the correlation between protein
and RNA levels in the subset of genes that were
included in our database, six proteins that were
detected in the shot-gun proteomics were not
present in the transcriptomics data, even though
protein and RNA fractions were obtained from
the same sample (Fig. S1C). To complement our
own data, we therefore included publicly
available information of tissue-specific gene and
protein expression levels present in the Human
Protein  Atlas  (Uhlen et al 2015,
www.proteinatlas.org), published transcriptomics
and proteomics data obtained from fibroblasts
[28], OMIM information [29], fibroblast-specific
information published along with the Recon 2
model [8], and information on metabolic assays
that are used for diagnostic approaches in
fibroblasts (Supplementary Table 2). To generate
the fibroblast-specific model, the activity of
metabolic reactions was constrained in a two-
step manner (Fig. 1C). First, all genes involved
in metabolic pathways that were not detected in
our transcriptomics data with < 10 raw counts
were initially marked as ‘inactive’ (0 in a
Boolean vector). Secondly, all these genes were
manually cross-examined with our generated
database to determine whether the gene was
expressed in fibroblasts (either on RNA or
protein level). If expressed in skin fibroblasts, the
gene was changed to ‘active’ (1 in a Boolean
vector). Finally, the FASTCORE algorithm [30]
was used to create a flux consistent fibroblast-
specific network. This procedure resulted in the
final model, ‘fibroblast CTRL’, which was used
for further analysis.
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Model characterisation

First, we tested whether the fibroblast-specific
model showed physiological resemblance to
fibroblasts in vivo. To this end, we used a set of
metabolic tasks defined by Thiele et al. [8] and
focused explicitly at the metabolic tasks known
to be crucial for fibroblast metabolism, i.e. the
conversion of glutamine to a-ketoglutarate [31]),
or which are known to be absent in fibroblasts,
i.e. bile acid metabolism [32]. The fibroblast-
specific model completed 208 out of all 419
generic  tasks  (Supplementary Table 5),
demonstrating that the fibroblast model
adequately reflects general human metabolism.
Additionally, specific reactions known to be
present or absent in fibroblasts were also
accurately predicted (Table 1), including
diagnostically relevant genes (Supplementary
Table 5).

Subsequently, we simulated the capacity of the
fibroblast-specific model to produce ATP from
phytanic acid as the single carbon source under
aerobic conditions in a minimal medium
(consisting of only ions, oxygen, water, and
riboflavin). ATP utilisation is explicitly defined
in the model and is corrected for ATP
investments required for ATP synthesis, such as
reactions involved in cofactor synthesis,
metabolite transport, and substrate activation.
The ATP utilisation flux was used as an
objective function of which the value was
maximised in the steady-state calculation. Since
the flux through the ATP utilisation reaction
equals that of ATP production after subtraction
of ATP costs at steady state, it reflects the net
ATP production from a single carbon source (in
this case phytanic acid). In contrast to the initial
Recon 3D_FAD model, the curated model
(Recon3D_FAD_X) and the fibroblast-specific
model (fibroblast CTRL) showed a net ATP
production flux of 68.5 and 61.65 mmol - g DW™
. h, respectively, at a forced phytanic acid
uptake flux of 1 mmol - g DW™ - h™.

Furthermore, we created a Refsum disease model
(fibroblast_RD) by setting the flux through the
phytanoyl-CoA-hydroxylase (PHYH,
HGNC:8940) reaction to 0. The fibroblast RD
model was able to metabolise phytanoyl-CoA in
minimal  medium  conditions  (Fig. 2,
Supplementary Table 3), albeit at a much lower
flux than control (38.8 mmol - g DW™ . h).
These results implied that o-oxidation of
phytanic acid and the subsequent B-oxidation in

the peroxisomes are less efficient in the ATP
production and could require a richer growth
media supplemented with glutathione (Figure S2,
uptake flux for glutathione was set at 1 mmol - g
DW™ . h™). Supplementation of glutathione to
the minimum media allowed all studied models
to break down phytanic acid, albeit with very
strong differences in the total ATP vyields. The
net ATP production flux of 46.50 mmol - g DW™
-h™ and 86.46 mmol - g DW™ - h™ was shown for
the initial Recon 3D_FAD model and the
fibroblast. RD model respectively, while much
higher net ATP production flux of 116.5 mmol -
g DW?! . h?, and 109.3 mmol - g DW™ - h* was
seen for the Recon3D_FAD X, and the
fibroblast. CTRL models (Fig S2). Similarly, we
analysed the amino-acid catabolism in the
models. All amino acids could be catabolised to
yield ATP in the Recon3D_FAD_X model.
However, the fibroblast-specific models were
unable to metabolise asparagine, histidine, and
threonine, as well as nearly no ATP yield from
phenylalanine and tyrosine. Furthermore, net
ATP production from tryptophan was lower in
fibroblast-specific compared to the generic
model (Fig. 2). In the minimum media
supplemented with glutathione and pantothenic
acid all amino acids were broken down;
however, asparagine, histidine, phenylalanine,
threonine, and tyrosine were showing a strong
decrease in the ATP vyield in the fibroblast
models compared to the generic models (Fig S2).

To investigate the effect of a defective a-
oxidation on the flux distribution in the curated,
fibroblast-specific  model, we used the
fibroblast. RD model to sample the steady-state
solution space using the ACHR algorithm [33].
Since genome-scale models typically have
multiple steady-state solutions, in this procedure,
the solution space reflects the flux ranges found
for each reaction when sampling many steady-
state solutions (see Methods for details). To be
able to compare the results of this analysis with
the data from the in vitro fibroblast studies, rich
media were used. As expected, the total flux of
phytanic acid uptake into the cell was decreased
in the fibroblast RD model when compared to
the fibroblast CTRL model. Because of the
simulated deletion of the PHYH gene, a-
oxidation was abolished entirely in the
fibroblast RD model, whereas it was active in
the fibroblast CTRL model (Fig. 3). Pathways
involved in w-oxidation, however, were active in
both models (Fig. 3). Interestingly, both pathway
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fluxes were significantly smaller than their
maximum rates as obtained from the simulation
wherein the maximum flux of an o- or -
oxidation pathways were used as objective
functions (Fig. 3, insert).

Metabolic characterisation of fibroblasts
cultured in vitro

To qualitatively validate our model predictions,
we obtained fibroblast-specific metabolomics
data. Similar to the transcriptomics and
proteomics experiments, we cultured human
primary control fibroblasts (n=6) and Refsum
disease patient-derived fibroblasts (n=5) under
standardised conditions, and collected cell
culture medium and cells every 24h for four
consecutive days. The cells were incubated with
phytol, or with the solvent ethanol (Fig. 1B).
First, we measured the levels of total phytanic
acid in cells incubated with or without phytol for
96h. The addition of phytol resulted in increased
levels of phytanic acid when compared to
untreated cells. This was expected, as phytol is
converted to phytanic acid once taken up into the
cell [34]. In addition, phytanic acid levels were
increased in fibroblasts with a defect in a-
oxidation when compared to control fibroblasts
when phytol was added to the medium (Fig. 2C),
reflecting impaired oxidation of phytanic acid.

Furthermore, we measured amino acid profiles in
the cell culture medium. We observed no
significant changes between the control and
Refsum disease groups (Fig. 4B and Fig. S4A) at
measured time points. However, a few changes
were seen in the rates of uptake or secretion of
amino acids (Fig. 4C, and Fig S3). Notably,
citrulline and sarcosine have shown to change the
directionality in the two groups. While citrulline
is secreted, and sarcosine consumed in the
healthy fibroblasts exposed to phytol for 96
hours, this situation is reversed in RD fibroblasts.
Furthermore, uptake of asparagine is decreased
in the RD fibroblasts compared to the healthy
ones (Fig. 4C). Other amino acids show some
minor differences in their uptake or secretion
rates; however, those are not significant (Fig.
S3).

Finally, glucose levels (Fig. S2B), cellular
protein levels (Fig. S2C), and cell content (Fig.
S2D) were similar between the control

fibroblasts and the RD fibroblasts with a defect
in a-oxidation after 96 hours of cell culture.

Predicting physiological effects of defective a-
oxidation

To investigate other flux changes in the
fibroblast RD model when compared to the
fibroblast. CTRL model, we explored the steady-
state flux distribution obtained by the sampling
of the solution space in the model. We studied
changes in the flux ranges of the exchange
reactions between control and disease models
after forcing a minimum uptake of phytanic acid
0.1 mmol - g DW™ - h') in the models. Shlomi et
al. [19] proposed that if the secretion flux
through the exchange reaction is high, it may
lead to a high metabolite concentration outside of
the cell. In contrast, if uptake is more prevalent,
then the extracellular concentration is expected
to be lower under the studied conditions.
Exchange reactions in the model define the
model boundaries. They allow some metabolites
to be imported in or secreted from the cell,
enabling the model to reach a steady-state. The
two models responded differently to the forced
phytanic acid uptake flux (Fig 5). The mean
value of the phytanic acid flux was reduced by
85% in the fibroblast_ RD model when compared
to the fibroblast CTRL model, and secretion of
pristanic acid was absent in the RD model (Fig.
5A). The export reaction of 3-MAA, which is the
end product of subsequent ®- and B-oxidation of
phytanic acid (Fig 4B and Fig 1A), did not show
a significant change in its mean flux, while 2,6-
dimethylheptanoyl carnitine, one of the end
products of canonical degradation pathway of
phytanic acid, showed 100% decrease of the flux
rate in RD. Besides these known metabolites
associated with a defect in a-oxidation, we
identified 49 other boundary metabolites that
were significantly changed (FDR < 0.05 and
log,FC > 1.3) between the fibroblast_RD and the
fibroblast CTRL models (Supplementary Table
6). Of these, 24 flux changes were predicted to
lead to higher extracellular concentrations in the
absence of PHYH activity, including L-alanine
and 3-mercaptolactate-cysteine disulphide (Fig.
5C), caproic acid (Fig. 5D), 2-hydroxybutyrate,
and malonyl carnitine, and several di and
tripeptides (Supplementary Table 6). On the
other hand, 27 distribution flux changes were
predicted to result in reduced extracellular
concentrations in Refsum disease fibroblasts,
such as lactate (Fig. 5C), N-acetyl-asparagine, L-
citrulline (Supplementary Table 6) and several
di- and tri-peptides (Fig. 5E, and Supplementary
Table 6). These changes depend either on the
lower/higher uptake rate or on a lower/higher
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secretion rate (Fig. 5C-E). Interestingly, the rate
of secretion of citrulline in our in vitro study
showed a significant decrease (Fig. 4C)
confirming one of our model predictions.

3. Discussion

In this study, we present a fibroblast-specific
metabolic model for Refsum disease. Using
transcriptomics and proteomics data, we
developed a cell-specific metabolic network
based on Recon 3D_FAD [20]. Cell-type-
specific metabolic models have been reported
earlier [13,14,17,21,22,35], and are essential
tools to study specific research questions. We
studied the effect of phytanic acid loading on the
metabolic fluxes in a fibroblast-specific model
for Refsum disease, which is characterised by a
defect in a-oxidation. Phytanic acid is a natural
ligand of peroxisome proliferator receptor «o
(PPARq) [3,4]. Furthermore, elevated levels of
phytanic acid have been reported to induce
lipotoxicity in the brain [36]. Many of these
findings, however, derive from in vitro
experiments. The consequences of phytanic acid
accumulation have also been studied in a mouse
model of Refsum disease, which resembles the
clinical symptoms of patients [3,37]. Notably,
these mice showed no disease phenotype when
fed a regular diet, but only developed the
phenotype resembling Refsum disease when
challenged with a phytol-enriched diet [37].
Studies in humans, however, are scarce due to
limited options for invasive  studies.
Computational modelling of human cells or
tissues is meant to fill this gap partly. In our
study, we curated the existing genome-scale
model by including pathway information for ®-
oxidation and following B-oxidation of phytanic
acid and constrained the model to obtain a
fibroblast-specific model based on generated data
as well as existing databases. The reconstruction
of metabolic networks is an iterative process, and
updates will assure better accuracy and
prediction of the human metabolic model [38].

Using the curated model, we aimed to get an
insight into metabolic changes that may provide
leads for pathophysiology and biomarkers.
Genome-scale metabolic-models have been
described to be useful tools for these aims [8-
10,14,19-22,35]. In our fibroblast-specific model
resembling Refsum disease, the flux of phytanic
acid uptake was significantly reduced, reflecting

the accumulation of phytanic acid in the body, a
known biomarker for Refsum disease [3]. On the
other hand, the average 3-MAA secretion rate
was not changed between the models. Our results
show that it is more desirable for metabolism to
lower the phytanic acid uptake rather than
increase the - oxidation. However, an average
sampled flux of 3-MAA secretion was 60 times
lower than its maximum theoretical yield (Fig. 3,
Fig.5B) showing that the w-oxidation pathway
can be further upregulated, if the uptake of
phytanic acid is increased reports that o-
oxidation was upregulated, as described in
patients with peroxisomal disorders,
complementing partially peroxisomal a- and -
oxidation [4,39].

Besides the changes in the known biomarkers,
the model predicted aberrant flux distributions,
leading to accumulation or reduction of
extracellular metabolites in the Refsum fibroblast
model when compared to the healthy model.
Interestingly, di and tripeptides were predicted to
be changing significantly between the patient and
healthy models (Fig. 5F). Biologically active
peptides [40] have been found to play important
roles in the metabolic functions, including
intercellular signal transmission [41] and neuron
signal  transmission [42,43].  Furthermore,
specific peptides are involved in the processes
that lead to disease development, and their
presence could indicate specific diseases, i.e.,
serve as disease biomarkers [44-47]. However,
the power of the prediction and the value of these
metabolic changes in relation to the pathogenesis
of phytanic acid in patients with Refsum disease
requires further analysis. If validated, our
predictions could lead to potential therapeutic
strategies to intervene with the accumulation of
phytanic acid in these patients. The upregulation
of m-oxidation as an escape route for the
breakdown of phytanic acid, and also very-long-
chain fatty acids, has been studied in vitro for
diseases such as Refsum disease and X-linked
adrenoleukodystrophy  (ALD) [3,39]. The
activation of the cytochrome P450 family (CYP)
4A enzymes, which are known to induce -
oxidation, has indeed been an attractive target for
therapeutic interventions. However, until now,
studies using compounds or drugs to upregulate
w-oxidation via CYP4A have not been
performed successfully [48]. Our model predicts
(Fig. 2 and Fig. S2) that increase in the
glutathione levels could not only protect the cells
from the oxidative stress postulated to play a role
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in Refsum disease [49] but potentially also
support the phytanic acid breakdown via the ®-
oxidation pathway. However, the clinical value
of our predictions remains to be evaluated.
Fortunately, as mentioned before, a mouse model
of Refsum disease exists in which a systemic
whole-body effect of phytanic acid accumulation
has been studied [37]. Since mice, similarly to
humans express ol Thydroxylases from the CYP4
family, the studies of phytanic acid w-oxidation
rates could be performed with either glutathione-
enriched diet, or in combination with previously
proposed CYP4 inducers: fibrates and statins[4],
to determine the clinical potential of our finding.

4, Materialsand M ethods

Cell culture

Skin fibroblast cell lines from six controls and
five patients with genetically confirmed Refsum
disease were wused. All cell lines were
anonymised. Fibroblasts were cultured in 75-cm?
flasks for transcriptomics and proteomics
analysis, and in 25-cm? flasks for metabolomics
experiments. Cells were cultured in Ham’s F-10
medium with L-glutamine, supplemented with
10% foetal calf serum (Invitrogen, Carlsbad, CA,
USA), 25 mM Hepes, 100 U/mL penicillin and
100 pg/mL streptomycin and 250 pg/mL
amphotericin in a humidified atmosphere of 5%
CO2 at 37 CC. Cells were seeded on the same
day and incubated for the indicated time points
(Fig. 1B). Cells were incubated with 25 uM
phytol, dissolved in ethanol, or ethanol as the
vehicle. Cells were harvested by trypsinisation
(0.5% trypsin-EDTA, Invitrogen) and washed
once with phosphate-buffered saline and twice
with 0.9% NaCl, followed by centrifugation at 4
[1C (16100 x g for 5 min) to obtain cell pellets.
For metabolomics experiments, the cell culture
medium was collected before harvesting. Cell
pellets and medium samples were stored at -80
00C until analysis.

RNA & protein Isolation for RNAseg and
Shotgun proteomics measurements

RNA and protein were isolated from the cell
pellets from the T75 cultures using TRIzol™
Reagent (ThermoFisher Scientific) using supplier
protocol for RNA and protein extraction. RNA
pellets were dissolved in 50uL of RNase free
water, and RNA concentrations were measured
using NanoDrop™ 2000 Spectrophotometer
(ThermoFisher Scientific). Protein pellets were
dissolved in 200 uL 5% SDS solution and protein
concentrations were determined using Pierce™

BCA Protein
Scientific).

Assay Kit (ThermoFisher

RNAseq

Sample Preparation and sequencing

First quality check of and RNA quantification of
the samples was performed by capillary
electrophoresis using the LabChip GX (Perkin
Elmer). Non-degraded RNA-samples were
selected for subsequent sequencing analysis.
Sequence libraries were generated using the
Nextflex Rapid Illumina Directional RNA-Seq
Library Prep Kit (Bioo Scientific) using the
Sciclone NGS Liquid Handler (Perkin Elmer).
The obtained cDNA fragment libraries were
sequenced on an Illumina Nextseqg500 using
default parameters (single read 1x75bp) in pools
of multiple samples, producing on average 4
million reads per sample.

Gene expression quantification

The trimmed fastQ files were aligned to build
human_glk v37 Ensemble [50] release 75
reference genome using hisat/0.1.5-beta-goolf-
1.7.20 [51] with default settings. Before gene
guantification, SAMtools/1.2-goolf-1.7.20 [52]
was used to sort the aligned reads. The gene-
level quantification was performed by HTSeq-
count: HTSeq/0.6.1p1 [53] using --mode=union,
with Ensembl release 75 [50] was used as a gene
annotation database.

Calculate QC metricson raw and aligned data
Quality control (QC) metrics are calculated for
the raw sequencing data. This is done using the
tool FastQC (FastQC/0.11.3-Java-1.7.0_80) [54].
QC metrics are calculated for the aligned reads
using Picard-tools (picard/1.130-Java-1.7.0_80)
[55] CollectRnaSegMetrics, MarkDuplicates,
CollectInsertSize- Metrics and SAMtools/1.2-
goolf-1.7.20 flagstat.

Shotgun proteomics

In-gel digestion and strong cation-exchange
(SCX) fractionation

Protein samples were mixed with LDS loading
buffer (NUPAGE) at a concentration of 3.4 ug
total protein. The sample was run briefly into a
precast 4-12% Bis-Tris gels (Novex, ran for
maximally 5 min at 100 V). The gel was stained
with Biosafe Coomassie G-250 stain (Biorad),
and after destaining with milliQ-H,O, the band
containing all proteins was excised from the gel.
The gel band was sliced into small pieces,
washed subsequently with 30% and 50% v/v
acetonitrile in 100 mM ammonium bicarbonate
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(dissolved in milliQ-H,0), each incubated at RT
for 30 min while mixing (500 rpm) and lastly
with 100% acetonitrile for 5 min, before drying
the gel pieces in an oven at 37 °C. The proteins
were reduced with 20 uL ten mM dithiothreitol
(in 100 mM ammonium bicarbonate dissolved in
milliQ-H,0O, 30 min, 55 °C) and alkylated with
20 pL 55 mM iodoacetamide (in 100 mM
ammonium bicarbonate dissolved in milliQ-H,0,
30 min, in the dark at RT). The gel pieces were
washed with 50% v/v acetonitrile in 100 mM
ammonium bicarbonate (dissolved in milliQ-
H,0) for 30 min while mixing (500 rpm) and
dried in an oven at 37 °C) before overnight
digestion with 20 uL trypsin (1:100 g/g,
sequencing grade modified trypsin V5111,
Promega) at 37 °C. The next day, the residual
liquid was collected before elution of the proteins
from the gel pieces with 20 pL 75% v/v
acetonitrile plus 5% v/v formic acid (incubation
20 min at RT, mixing 500 rpm). The elution
fraction was combined with the residual liquid
and was dried under vacuum and resuspended in
30 uL of 20% v/v acetonitrile plus 0.4% v/v
formic acid (dissolved in milliQ-H,O) for SCX
fractionation. Samples were loaded onto an SCX
StageTips (20 pL tip StageTip, Thermo
Scientific) according to the manufacturer’s
instructions, except that the elution solvent (500
mM ammonium acetate in 20% v/v acetonitrile,
dissolved in milliQ-H,0) plus 0.4% v/v formic
acid was used instead of the 1M NaCl solution in
this protocol during initialization. After loading
and washing of the peptides according to the
protocol, the peptides were eluted in three
separate fractions by stepwise elutions (30 pL
each) of 25 mM, 150 mM and 500 mM
ammonium acetate in 20% v/v acetonitrile
(dissolved in milliQ-H,O). The collected flow-
through was polled with the last elution fraction.
The elution fractions were dried under vacuum
and resuspended in 8 uL 0.1% v/v formic acid
(dissolved in milliQ-H,0).

LC-MSanalyss

Discovery mass spectrometric analyses were
performed on a quadrupole orbitrap mass
spectrometer equipped with a nano-electrospray
ion source (Orbitrap Q Exactive Plus, Thermo
Scientific). Chromatographic separation of the
peptides was performed by liquid
chromatography (LC) on a nano-HPLC system
(Ultimate 3000, Dionex) using a nano-LC
column (Acclaim PepMapC100 C18, 75 um x 50
cm, 2 um, 100 A, Dionex, buffer A: 0.1% v/v

formic acid, dissolved in milliQ-H,O, buffer B:
0.1% v/v formic acid, dissolved in acetonitrile).
In general, 6 pL was injected using the pL-
pickup method with buffer A as a transport liquid
from a cooled autosampler (5 °C) and loaded
onto a trap column (uPrecolumn cartridge,
Acclaim PepMap100 C18, 5 um, 100 A, 300
pmx5 mm, Dionex). Peptides were separated on
the nano-LC column using a linear gradient from
2-40% buffer B in 117 min at a flow rate of 200
nL/min. The mass spectrometer was operated in
positive ion mode and data-dependent acquisition
mode (DDA) using a top-10 method. MS spectra
were acquired at a resolution of 70.000 at m/z
200 over a scan range of 300 to 1650 m/z with an
AGC target of 3e° ions and a maximum injection
time of 50 ms. Peptide fragmentation was
performed with  higher energy collision
dissociation (HCD) using normalised collision
energy (NCE) of 27. The intensity threshold for
ions selection was set at 2.0 e* with a charge
exclusion of 1< and >7. The MS/MS spectra
were acquired at a resolution of 17.500 at m/z
200, an AGC target of 1e° ions and a maximum
injection time of 50 ms and the isolation window
setto 1.6 m/z

LC-MS data analysis

LC-MS raw data were processed with MaxQuant
(version 1.5.2.8) [56]. Peptide and protein
identification was carried out with Andromeda
against a  human  SwissProt  database
(www.uniprot.org, downloaded November 10,
2016, 20,161 entries) and a contaminant database
(298 entries). The searches were performed using
the following parameters: precursor mass
tolerance was set to 10 ppm, and fragment mass
tolerance was set to 20 ppm. For peptide
identification two miss cleavages were allowed, a
carbamidomethylation on cysteine residues as a
static modification and oxidation of methionine
residues as a variable modification. Peptides and
proteins were identified with an FDR of 1%. For
protein identification, at least one unique peptide
had to be detected, and the match between runs
option was enabled. Proteins were quantified
with the MaxLFQ algorithm [57] considering
unique peptides and a minimum ratio count of
one. Results were exported as tab-separated *.txt
for further data analysis.

Differential analysis of transcriptomics and
proteomics

Differential gene/protein expression analysis
based on the negative binomial distribution was
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performed using DESeq2 [58]. Genes for which
summed across all samples raw counts were
higher than 20 were analysed. Protein intensities
were transformed to integers and analysed
similarly to the transcriptomics data.

Cell growth

Fibroblasts were seeded in 96-well plate with a
density of 2000cells/well and cultured in 200uL
of medium for seven days. XxCELLigence system
(ACEA Biosciences Inc.) was used to monitor
cells attachment and growth in real-time [59].
Areas under the curve were calculated using
Prism7 (GraphPad Software).

M etabolomics

Determination of protein concentration in cell
pellets

Cell pellets were sonicated in 250uL of water.
Protein concentration was determined using the
Pierce™ BCA Protein Assay Kit (ThermoFisher
Scientific).

Amino-acid profile

To analyse the amino-acid profile of medium
from cell cultures 100uL of the medium sample
was mixed with 100uL of internal standard
(12mg of norleucine mixed with 15g
sulphosalicylic acid in 250ml of water). The
analysis was performed according to the method
of Moore, Spackman, and Stein [60] on a
Biochrom 30™  Amino acid  Analyser
(Biochrom.co.uk). Acquisition and data handling
were done with  Thermo  Scientific™
Chromeleon™ 7.2 Chromatography Data System
software (ThermoFisher Scientific).

Sugar measurements

To analyse sugar profiles, 250ul of the medium
sample or 100ul of a standard mix (50mg of D-
(+)-glucose in 50ml of water) was mixed with
100ul of internal standard (50mg phenyl-b-D-
glucopyranoside in 50ml of water mixed with 1
ml of chloroform). Glucose analysis was
performed as described by Jansen et al. [61] on a
Trace GCMS (Thermo Fisher Scientific).
Acquisition and integrations were done with
Xcalibur™software (ThermoFisher Scientific).

Phytanic acid measurement.
Phytanic acid levels were measured as described
previously [62].

Model curation
Our model is based on a previously published
FAD-curated version of Recon 3D [20]. Current

representation of phytanic acid metabolism was
analysed and compared with current knowledge
[4,63]. Missing reactions in omega-oxidation of
phytanic acid and follow-up peroxisomal beta-
oxidation of its products were added to the
reconstruction.  Additionally,  invalid  or
duplicated reactions (created by merge of
different metabolic reconstructions to create
Recon 2 model [8]) were removed. The curated
model was saved as Recon3D FAD X. For
detailed information on all the changes to the
model, see Supplementary Table 1 [fix, del].

M odel constrains

We examined all exchange/demand reactions to
determine the model constraints. Since drug
metabolism introduced by Sahoo et al. [64] is out
of the scope of our research, we decided to block
the import/export reactions for drugs and their
metabolites.  Additionally, —we identified
redundant demand and sink reactions that
duplicate some exchange/demand reactions or
allow sink reaction for a metabolite whose
metabolism has been fully reconstructed and
does not create a dead-end pathway. Last, we
closed all import reactions besides those that
transported compounds present in the culture
media, water, and oxygen. All the changes can be
examined in the Supplementary Table 1
[constraints].

Additionally, ‘biomass_reaction” minimum flux
was set to 0.1 mmol.gDW™h?, to mimic the
essential cell maintenance (protein synthesis,
DNA and RNA synthesis etc.), unless stated
otherwise, as in [65]. Other constraints used only
in specific simulations are indicated where
applicable.

Fibroblast-specific gene database

A database containing information about the
expression levels of metabolic genes (genes
present in the metabolic reconstruction Recon
3D_FAD) and proteins in human fibroblasts was
first generated based on the results from our
transcriptomics and proteomics experiments.
Additionally, we added information present in
the Human Protein Atlas [27,66], OMIM [29]
fibroblast-specific information published along
with the first Recon 2 model [8], and UniProt
[67] databases. Experimental data from human
fibroblast gene expression levels by Matsumoto
et al. [28] was also included. Usage of fibroblasts
in diagnostics of specific gene defects was also
examined. In the end, a binary decision was
made about fibroblast-specific genes — 1 if there
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was evidence for a gene/protein to be present in
human fibroblasts, 0 for genes classified as
inactive in fibroblasts. Database, including the
final decision, is available as a Supplementary
Table 2.

Fibroblast-specific model generation

A list of reactions depending on the genes
marked as active was used as a core set for the
FASTCORE algorithm [30] implemented in The
COBRA Toolbox v3.0 [68]. Next, reactions
dependent on the inactive genes were removed,
and fastcc algorithm [30,68] was used to
generate a flux, consistent fibroblast-specific
model. The final model, named
‘fibroblast_CTRL’ is available in our Github
folder.

Model analysis

Refsum simulations

Phytanoyl-CoA hydroxylase deficiency (Refsum
disease) was simulated as a single gene deletion
(PHYH, HGNC:8940). Additionally, w-oxidation
(‘CYP450phyt”  reaction) and o-oxidation
(‘PHYHXx’, reaction) pathways maximum rates
were constrained to 20.2176 and 48.7656
mmol-gDW™h™ respectively, to reflect those
described in the literature [69,70]. Lastly, the
‘EX_phyt(e)’ reaction upper boundary was set to
-0.1 mmol-gDW™h™ to force the model to utilise
phytanic acid at a minimum rate of 0.1
mmol-gDW™h for the simulations resembling
fibroblasts with phytol added to the medium.

To sample the solution space of generated
models, ACHR algorithm [33] implemented in
the COBRA Toolbox 3.0 [68] was used.
Randomly selected 10000 sampled points were
saved with from the total of 50000 sampled
points with a 500 step size.

Calculation of maximum ATP yield per carbon
source

To calculate the maximum ATP yield per carbon
source, we adapted the method developed by
Swainston et al. [38]. Shortly, all uptake rates of
nutrients were set to 0, except for a set of
reactions defined collectively as a minimal
medium (Ca®*, CI', Fe**, Fe**, H*, H,0, K*, Na*,
NH, SO,%, Pi, Riboflavin) for which the
uptake/export fluxes rates were set to -1000 and
1000 mmol-gDW™-hr™ respectively. For each of
the specified carbon sources, the uptake flux was
set to -1 mmol-gDW™hr™ forcing the model to
consume it at a fixed rate. The demand reaction
for ATP, ‘DM _atp_c_' was used as an objective
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function flux, which should be maximised in the
optimisation process. The oxygen intake flux was
set to 'EX_02(e)' -1000 mmol-gDW™hr* to
maintain aerobic conditions. If the model was
unable to breakdown specified carbon source to
ATP, the steady-state flux could not be reached
(infeasible solution).

Statistical analysis of model predictions

Flux distribution of each exchange reaction was
compared between the control (CTRL) and
Refsum’s (RD) to find the most changed
metabolite fluxes. To this end, we tested
normality and variance of the distributions using
Single sample Kolmogorov-Smirnov goodness-
of-fit hypothesis test and Two-sample F test for
equal variances, respectively. Depending on the
outcome Student’s t-test (for normally distributed
samples with equal or unequal variance) or
Wilcoxon ranks sum test (for non-normally
distributed samples with unequal variance) were
used to determine whether the differences
between the control (CTRL) and Refsum’s (RD)
models were significant. Bonferroni-Holm
correction for multiple comparisons was used to
calculate the adjusted p-values (FDR).
Significance thresholds were set at FDR < 0.05
and log,(FC) > 1.3.

Software

Model curation and all simulations were carried
out with MatLab R2019a (MathWorks Inc.,
Natick, MA) using the Gurobi8.1 (Gurobi
Optimization Inc., Houston TX) linear
programming solver and the COBRA 3.0 toolbox
[68].

Data availability

The mass spectrometry proteomics data have
been deposited to the ProteomeXchange
Consortium via the PRIDE [71] partner
repository ~ with  the dataset identifier
PXD015518.

The RNAseq data have been deposited to the
GEO database [72] with the identifier
GSE138379.
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TABLES

Table 1. Model perfor mance in the metabolic tasks test. A subset of tasks relevant for fibroblast metabolism
selected. For a full list of all tested tasks, see Supplementary Table 5.

M etabolic task Activein fibroblasts Fibroblast
Bile acid metabolism NO NO
Pyrimidine degradation NO NO
Glutamine to citrulline conversion NO NO
Melatonin synthesis NO NO
Urea cycle NO NO
Glutamine conversion to a-ketoglutarate YES YES
ATP production via electron transport chain YES YES
Mitochondrial f-oxidation YES YES
Peroxisomal B-oxidation YES YES
Peroxisomal a-oxidation YES YES
w-oxidation of phytanic acid YES YES
All 419 generic metabolic tasks 208
FIGURES
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Figure 1. Developing a fibr oblast-specific model. A) Schematic overview of relevant metabolic pathways for
phytanic acid metabolism. Abbreviations: CoA, coenzyme A; PHYH, phytanoyl-CoA hydroxylase; 4,8-DMN-
CoA, 4,8-dimethylnonanoyl-CoA. B) Schematic representation of the experimental setup. Control (CTRL) and
Refsum disease (RD) fibroblasts were incubated with or without phytol, the precursor of phytanic acid, for the
indicated time points. All cells were seeded and harvested under the same conditions. C) Schematic overview of
the steps to obtain a fibroblast-specific model based on constraints of the Recon3D_FAD_x model.
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Figure 2. Model predictions of ATP yields from a single carbon sour ce. Assessment of carbon
source utilisation on minimal media based on the ATP production from single-carbon source,
including Recon3D_FAD, curated Recon3D_FAD for phytanic acid metabolism (Recon3D_FAD_x),
the fibroblast-specific model for control (fibroblast CTRL) and diseased conditions (fibroblast_RD).
Grey shades in the heat-maps reflect the relative net ATP production ranging from no (white) to high
(black), and very high ATP production (dark red). Crossed-out fields symbolise model inability to
metabolise a carbon source (infeasible solution) on minimal media.
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Figure 3. Simulation of phytanic acid metabolism. Missing reactions for phytanic acid metabolism,
including a- and w-oxidation, were added to the Recon3D_FAD model. The curated, fibroblast-
specific model shows differences in metabolic fluxes of phytanic acid through the available pathways
under normal (control, CTRL) and diseased conditions (Refsum disease, RD). Insert shows maximised
fluxes, including blocked a- oxidation in PHYH conditions. Predictions are shown as box-and-whisker
(min-max) plots (main figure), or bar plots (insert).
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Figure 4. M etabolic characterisation of fibroblastscultured in vitro. Model validation using
experimental data of A) phytanic acid, B+C)) amino acid measurements. A) Phytanic acid
concentrations were determined in pellets from cultured cells after incubation for 96 hours. Phytanic
acid levels are increased in cells incubated with phytol. Per condition, mean per group and 95%
confidence interval per group are indicated. Significant differences between the groups were
determined by One-way ANOVA (*** p-value < 0.001). B) Significantly changed uptake and
secretion rates of amino acids between healthy and RD fibroblasts exposed to phytol for 96 hours.
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Amino acid concentrations were determined in the medium of the cells 96-hour incubation with
phytol. Rates were calculated based on the fresh medium measurements. Significant differences
between the groups were determined using a t-test with a two-stage linear step-up procedure of
Benjamini, Krieger and Yekutieli, with Q=1%, to correct for the multiple testing (** g-value <0.01,
*** g-value < 0.001). Rates of uptake and secretion of other amino acids are shown in Figure S3. C)
Amino acid concentrations were determined in the medium of the cells after incubation at indicated
time points. Results for other amino acids are shown in Figure S4. D)
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Figure5. Changes at the level of secretion and uptake reactions between healthy and Refsum models
forced to take up phytanic acid. A-E) Secretion /uptake fluxes distributions of metabolites with the
most significant differences between Control (CTRL+phyt, grey) and Refsum disease (RD+phyt,
black) models forced to take up phytanate selected based on the log2(FC)>1.3 and FDR < 0.05.
Statistical differences were analysed using Wilcoxon rank-sum test; FDR values were calculated using
Bonferroni-Holm correction.
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Figure S1. A+B) Volcano plots depicting A) the transcriptomics data, and B) proteomics data derived
from fibroblasts incubated with phytol for 96 hours. Genes and proteins, resp., with significant
differences in expression between the diseases (Refsum disease) and control groups are indicated with
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coloured dots. Gene names are shown for genes and proteins, resp., indicated with green dots. Blue
dots represent metabolic genes, as included in the Recon3D model, that were expressed differentially
at the significance level below 0.001, and their expression levels were changed by minimum 1-fold.
C+D) Principal Component Analysis for C) transcriptomics data, and D) proteomics data. E)
Correlation plot showing log 2 average abundance of all proteins (x-axis) and genes (y-axis) that were
included in the Recon 3D model.
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Figure S2. M odel predictions of ATP yieldsfrom a single carbon source. Assessment of carbon
source utilisation on minimal media supplemented with glutathione and pantothenic acid based on the
ATP production from single-carbon source, including Recon3D_FAD, curated Recon3D_FAD for
phytanic acid metabolism (Recon3D_FAD_x), the fibroblast-specific model for control

(fibroblast_ CTRL) and diseased conditions (fibroblast_RD). Grey shades in the heat-maps reflect the
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relative net ATP production ranging from no (white) to high (black), and very high ATP production
(dark red).
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Figure S3. Additional data on amino acid uptake and secretion rates in the fibroblast CTRL and RD
cultures exposed to phytol for 96 hours. Rates were calculated based on the fresh medium
measurements.
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Figure $4. Additional experimental data of A) amino acids and B) glucose determinations in the
medium of the cells after incubation at indicated time points. For details, see Fig. 3C. C) Protein
concentrations of cell pellets after incubation at indicated time points. D) Growth curves of attached
cells for the indicated time points (left panel), and statistical analysis of the total area under the curve
per cell line after 7 days of incubation (right panel). Data are shown as bar plots.
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