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ABSTRACT 

Refsum disease is an inborn error of metabolism 
that is characterised by a defect in peroxisomal 
α-oxidation of the branched-chain fatty acid 
phytanic acid. The disorder presents with late-
onset progressive retinitis pigmentosa and 
polyneuropathy and can be diagnosed 
biochemically by elevated levels of phytanic acid 
in plasma and tissues of patients. To date, no 
cure exists for Refsum disease, but phytanic acid 
levels in patients can be reduced by 
plasmapheresis and a strict diet. 
In this study, we reconstructed a fibroblast-
specific genome-scale model based on the 

recently published, FAD-curated model, based 
on Recon3D reconstruction. We used 
transcriptomics (available via GEO database with 
identifier GSE138379), metabolomics, and 
proteomics data (available via ProteomeXchange 
with identifier PXD015518), which we obtained 
from healthy controls and Refsum disease patient 
fibroblasts incubated with phytol, a precursor of 
phytanic acid.  
Our model correctly represents the metabolism 
of phytanic acid and displays fibroblast-specific 
metabolic functions. Using this model, we 
investigated the metabolic phenotype of Refsum 
disease at the genome-scale, and we studied the 
effect of phytanic acid on cell metabolism. We 
identified 53 metabolites that were predicted to 
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discriminate between Healthy and Refsum 
disease patients, several of which with a link to 
amino acid metabolism. Ultimately, these 
insights in metabolic changes may provide leads 
for pathophysiology and therapy. 

1. Introduction 

Peroxisomes are organelles that, among other 
functions, are crucial for cellular lipid 
metabolism. They perform both anabolic and 
catabolic processes, including the α- and β-
oxidation of very-long-chain fatty acids, 
dicarboxylic acids, and methyl-branched-chain 
fatty acids [1]. Furthermore, peroxisomes are 
involved in the biosynthesis of ether 
phospholipids, including plasmalogens, bile 
acids, and essential polyunsaturated fatty acids 
such as docosahexaenoic acid [2].  

Refsum disease is an inborn error of metabolism 
(IEM) that is caused by biallelic mutations in the 
gene encoding phytanoyl-CoA 2-hydroxylase 
(PHYH), resulting in defective α-oxidation of the 
branched-chain fatty acid phytanic acid 
(3,7,11,15-tetramethylhexadecanoic acid) [3]. 
Phytanic acid contains a 3-methyl group and is 
therefore not a substrate for peroxisomal β-
oxidation. Consequently, phytanic acid first 
needs to undergo α-oxidation, thereby producing 
pristanic acid, which then can be further 
degraded by β-oxidation [2]. An alternative 
metabolic pathway for the breakdown of 
phytanic acid is ω-oxidation, which takes place 
in the endoplasmic reticulum [4]. The end 
product of ω-oxidation of phytanic acid is 3-
methyladipic acid (3-MAA), and ω-oxidation has 
been described to be upregulated in patients with 
Refsum disease [5]. Refsum disease was first 
described in 1945 and is clinically characterised 
by progressive retinitis pigmentosa, 
polyneuropathy, cerebellar ataxia, and deafness 
[5]. Biochemically, Refsum disease is diagnosed 
by elevated levels of phytanic acid in plasma and 
tissues. Phytanic acid solely derives from the 
diet, and patients with Refsum disease are mostly 
diagnosed in late childhood [3,5]. To date, 
patient management focuses on the reduction of 
phytanic acid levels by plasmapheresis and a 
strict diet to reduce the intake of dairy-derived 
fat [6].  

Recently, computational models have become 
valuable tools to study the complex behaviour of 

metabolic networks. One type of computational 
models is genome-scale models of metabolism, 
which contain all currently known stoichiometric 
information of metabolic reactions, together with 
enzyme and pathway annotation [7]. These 
models can further be constrained and validated 
by incorporation of different types of data, 
including mRNA and metabolite profiles, as well 
as biochemical and phenotypic information [8]. 
To date, the most comprehensive human models 
are Recon 3D [9]  and HMR 2.0 [10], which are 
consensus metabolic reconstructions that were 
built to describe all known metabolic reactions 
within the human body. Besides, a few tissue- 
and cell-type-specific models have been 
developed by incorporating tissue- or cell-
specific transcriptomics and proteomics data. 
These models can be used to predict possible 
ranges of metabolic fluxes for all enzymes in the 
network. Flux ranges in diseased and control 
models can be compared to discover functional 
changes in the metabolic network. These may be 
used as biomarkers or give insight into the 
biochemical origin of disease symptoms [11–15]. 

In the last decade, a paradigm shift occurred in 
the field of IEMs. Today, IEMs are no longer 
viewed according to the “one gene, one disease” 
paradigm as proposed more than 100 years ago, 
but recognised to be complex diseases [16]. 
However, only few studies using systems biology 
and multi-omics approaches that are widely used 
for complex diseases have been published for 
IEMs [8,9,14,17–22].  

In this study, we aim to investigate the metabolic 
phenotype of Refsum disease at the genome-
scale, and to study the effect of phytanic acid on 
cell metabolism. Cultured fibroblasts contain 
most metabolic functions present in the human 
body, and biochemical and functional studies in 
cultured skin fibroblasts are important tools for 
the diagnosis of patients with a peroxisomal 
disorder [23]. Therefore, we reconstructed a 
fibroblast-specific genome-scale model based on 
fibroblast specific transcriptomics, 
metabolomics, and proteomics data, and starting 
from the recently published Recon3D-based 
model. We obtained these data from healthy 
controls and Refsum disease patient fibroblasts 
incubated with phytol, a precursor of phytanic 
acid. Since flavoproteins play a crucial role in 
lipid metabolism, we integrated our recently 
curated set of FAD-related reactions [20]. The 
resulting model reflects the in vivo situation in 
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fibroblasts and demonstrates the physiological 
effects of a defective α-oxidation. Ultimately, 
such insights in metabolic changes may provide 
leads for pathophysiology and therapy. 

2. Results 

Model curation and generating a fibroblast-
specific model  
For this study, we used an updated version of the 
Recon 3D model in which flavoprotein-related 
metabolism was curated [20]. This addition was 
essential for this study because many enzymes in 
fatty acid metabolism are flavoproteins, which 
carry FAD as a cofactor. Furthermore, a known 
alternative route for phytanic acid degradation, 
ω-oxidation, was not accounted for in Recon 3D. 
In this pathway, phytanic acid is first converted 
into ω-hydroxy-phytanic acid, followed by 
oxidation to the corresponding dicarboxylic acid 
(ω-carboxyphytanic acid; see Fig. 1A). After 
activation to their CoA-esters, dicarboxylic acids 
have been shown to enter the peroxisome via 
ABCD3 [24], and are then degraded via 
peroxisomal β-oxidation [25]. It is assumed that 
ω-carboxyphytanic acid follows the same 
pathway as an unbranched long-chain 
dicarboxylic acid. The final product of phytanic 
acid breakdown via ω-oxidation is 3-MAA, 
which has been identified in urine from patients 
with Refsum disease [26].  
To optimise the model, we added 25 reactions 
involved in the ω-oxidation and the subsequent 
β-oxidation of phytanic acid. Furthermore, 17 
reactions involved in phytanic acid metabolism 
were deleted, because they were duplicates of 
other reactions in the model. Lastly, we 
examined the import/export reaction boundaries 
and blocked the flux of several drug metabolism 
pathways, such as those of statins, ibuprofen, 
paracetamol, and antibiotics. These pathways 
were not relevant for this study but could play a 
role in the model outcome. All changes to the 
model are summarized in Supplementary Table 
1. The resulting curated model was called 
Recon3D_X_c and is available in on GitHub 
(https://github.com/WegrzynAB/Papers).  
To create a fibroblast-specific model, we 
generated a fibroblast dataset related to the 
metabolic genes included in the model. To this 
end, we cultured human primary control 
fibroblasts (n=6) and Refsum disease patient-
derived fibroblasts with a defect in α-oxidation 
(n=5) under standardised conditions, and 

harvested cells after 96 h to isolate RNA and 
protein. The cells were either incubated with 
phytol, a precursor of phytanic acid, or with the 
solvent ethanol (Fig. 1B). Our primary dataset 
consisted of the data obtained from 
transcriptomics (RNAseq) and proteomics (shot-
gun) measurements. In the principal component 
analysis (PCA), no separation was seen between 
the groups of fibroblasts (Fig. S1C and D). 
Differential analysis of the transcriptomics and 
proteomics data revealed only 12 differentially 
expressed genes and 18 proteins between the 
control fibroblasts and fibroblasts defective in α-
oxidation (Fig. S1). All differentially expressed 
genes and 15 proteins were upregulated in the 
Refsum group relative to controls, while no 
genes and only three proteins were 
downregulated. These upregulated genes and 
proteins were primarily involved in cell cycle 
control and structure (Supplementary Table 4). 
When we tested the correlation between protein 
and RNA levels in the subset of genes that were 
included in our database, six proteins that were 
detected in the shot-gun proteomics were not 
present in the transcriptomics data, even though 
protein and RNA fractions were obtained from 
the same sample (Fig. S1C). To complement our 
own data, we therefore included publicly 
available information of tissue-specific gene and 
protein expression levels present in the Human 
Protein Atlas (Uhlen et al. 2015, 
www.proteinatlas.org), published transcriptomics 
and proteomics data obtained from fibroblasts 
[28], OMIM information [29], fibroblast-specific 
information published along with the Recon 2 
model [8], and information on metabolic assays 
that are used for diagnostic approaches in 
fibroblasts (Supplementary Table 2). To generate 
the fibroblast-specific model, the activity of 
metabolic reactions was constrained in a two-
step manner (Fig. 1C). First, all genes involved 
in metabolic pathways that were not detected in 
our transcriptomics data with < 10 raw counts 
were initially marked as ‘inactive’ (0 in a 
Boolean vector). Secondly, all these genes were 
manually cross-examined with our generated 
database to determine whether the gene was 
expressed in fibroblasts (either on RNA or 
protein level). If expressed in skin fibroblasts, the 
gene was changed to ‘active’ (1 in a Boolean 
vector). Finally, the FASTCORE algorithm [30] 
was used to create a flux consistent fibroblast-
specific network. This procedure resulted in the 
final model, ‘fibroblast_CTRL’, which was used 
for further analysis. 
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Model characterisation 
First, we tested whether the fibroblast-specific 
model showed physiological resemblance to 
fibroblasts in vivo. To this end, we used a set of 
metabolic tasks defined by Thiele et al. [8] and 
focused explicitly at the metabolic tasks known 
to be crucial for fibroblast metabolism, i.e. the 
conversion of glutamine to α-ketoglutarate [31]), 
or which are known to be absent in fibroblasts, 
i.e. bile acid metabolism [32]. The fibroblast-
specific model completed 208 out of all 419 
generic tasks (Supplementary Table 5), 
demonstrating that the fibroblast model 
adequately reflects general human metabolism. 
Additionally, specific reactions known to be 
present or absent in fibroblasts were also 
accurately predicted (Table 1), including 
diagnostically relevant genes (Supplementary 
Table 5). 

Subsequently, we simulated the capacity of the 
fibroblast-specific model to produce ATP from 
phytanic acid as the single carbon source under 
aerobic conditions in a minimal medium 
(consisting of only ions, oxygen, water, and 
riboflavin). ATP utilisation is explicitly defined 
in the model and is corrected for ATP 
investments required for ATP synthesis, such as 
reactions involved in cofactor synthesis, 
metabolite transport, and substrate activation. 
The ATP utilisation flux was used as an 
objective function of which the value was 
maximised in the steady-state calculation. Since 
the flux through the ATP utilisation reaction 
equals that of ATP production after subtraction 
of ATP costs at steady state, it reflects the net 
ATP production from a single carbon source (in 
this case phytanic acid). In contrast to the initial 
Recon 3D_FAD model, the curated model 
(Recon3D_FAD_X) and the fibroblast-specific 
model (fibroblast_CTRL) showed a net ATP 
production flux of 68.5 and 61.65 mmol · g DW-1 
· h-1, respectively, at a forced phytanic acid 
uptake flux of 1 mmol · g DW-1 · h-1. 

Furthermore, we created a Refsum disease model 
(fibroblast_RD) by setting the flux through the 
phytanoyl-CoA-hydroxylase (PHYH, 
HGNC:8940) reaction to 0. The fibroblast_RD 
model was able to metabolise phytanoyl-CoA in 
minimal medium conditions (Fig. 2, 
Supplementary Table 3), albeit at a much lower 
flux than control (38.8 mmol · g DW-1 · h-1). 
These results implied that ω-oxidation of 
phytanic acid and the subsequent β-oxidation in 

the peroxisomes are less efficient in the ATP 
production and could require a richer growth 
media supplemented with glutathione (Figure S2, 
uptake flux for glutathione was set at 1 mmol · g 
DW-1 · h-1). Supplementation of glutathione to 
the minimum media allowed all studied models 
to break down phytanic acid, albeit with very 
strong differences in the total ATP yields. The 
net ATP production flux of 46.50 mmol · g DW-1 
· h-1 and 86.46 mmol · g DW-1 · h-1 was shown for 
the initial Recon 3D_FAD model and the 
fibroblast_RD model respectively, while much 
higher net ATP production flux of 116.5 mmol · 
g DW-1 · h-1, and 109.3 mmol · g DW-1 · h-1 was 
seen for the Recon3D_FAD_X, and the 
fibroblast_CTRL models (Fig S2). Similarly, we 
analysed the amino-acid catabolism in the 
models. All amino acids could be catabolised to 
yield ATP in the Recon3D_FAD_X model. 
However, the fibroblast-specific models were 
unable to metabolise asparagine, histidine, and 
threonine, as well as nearly no ATP yield from 
phenylalanine and tyrosine. Furthermore, net 
ATP production from tryptophan was lower in 
fibroblast-specific compared to the generic 
model (Fig. 2). In the minimum media 
supplemented with glutathione and pantothenic 
acid all amino acids were broken down; 
however, asparagine, histidine, phenylalanine, 
threonine, and tyrosine were showing a strong 
decrease in the ATP yield in the fibroblast 
models compared to the generic models (Fig S2). 

To investigate the effect of a defective α-
oxidation on the flux distribution in the curated, 
fibroblast-specific model, we used the 
fibroblast_RD model to sample the steady-state 
solution space using the ACHR algorithm [33]. 
Since genome-scale models typically have 
multiple steady-state solutions, in this procedure, 
the solution space reflects the flux ranges found 
for each reaction when sampling many steady-
state solutions (see Methods for details). To be 
able to compare the results of this analysis with 
the data from the in vitro fibroblast studies, rich 
media were used. As expected, the total flux of 
phytanic acid uptake into the cell was decreased 
in the fibroblast_RD model when compared to 
the fibroblast_CTRL model. Because of the 
simulated deletion of the PHYH gene, α-
oxidation was abolished entirely in the 
fibroblast_RD model, whereas it was active in 
the fibroblast_CTRL model (Fig. 3). Pathways 
involved in ω-oxidation, however, were active in 
both models (Fig. 3). Interestingly, both pathway 
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fluxes were significantly smaller than their 
maximum rates as obtained from the simulation 
wherein the maximum flux of an α- or ω- 
oxidation pathways were used as objective 
functions (Fig. 3, insert). 

Metabolic characterisation of fibroblasts 
cultured in vitro  
To qualitatively validate our model predictions, 
we obtained fibroblast-specific metabolomics 
data. Similar to the transcriptomics and 
proteomics experiments, we cultured human 
primary control fibroblasts (n=6) and Refsum 
disease patient-derived fibroblasts (n=5) under 
standardised conditions, and collected cell 
culture medium and cells every 24h for four 
consecutive days. The cells were incubated with 
phytol, or with the solvent ethanol (Fig. 1B). 
First, we measured the levels of total phytanic 
acid in cells incubated with or without phytol for 
96h. The addition of phytol resulted in increased 
levels of phytanic acid when compared to 
untreated cells. This was expected, as phytol is 
converted to phytanic acid once taken up into the 
cell [34]. In addition, phytanic acid levels were 
increased in fibroblasts with a defect in α-
oxidation when compared to control fibroblasts 
when phytol was added to the medium (Fig. 2C), 
reflecting impaired oxidation of phytanic acid.  

Furthermore, we measured amino acid profiles in 
the cell culture medium. We observed no 
significant changes between the control and 
Refsum disease groups (Fig. 4B and Fig. S4A) at 
measured time points. However, a few changes 
were seen in the rates of uptake or secretion of 
amino acids (Fig. 4C, and Fig S3).  Notably, 
citrulline and sarcosine have shown to change the 
directionality in the two groups. While citrulline 
is secreted, and sarcosine consumed in the 
healthy fibroblasts exposed to phytol for 96 
hours, this situation is reversed in RD fibroblasts. 
Furthermore, uptake of asparagine is decreased 
in the RD fibroblasts compared to the healthy 
ones (Fig. 4C). Other amino acids show some 
minor differences in their uptake or secretion 
rates; however, those are not significant (Fig. 
S3). 

Finally, glucose levels (Fig. S2B), cellular 
protein levels (Fig. S2C), and cell content (Fig. 
S2D) were similar between the control 
fibroblasts and the RD fibroblasts with a defect 
in α-oxidation after 96 hours of cell culture. 

Predicting physiological effects of defective α-
oxidation 
To investigate other flux changes in the 
fibroblast_RD model when compared to the 
fibroblast_CTRL model, we explored the steady-
state flux distribution obtained by the sampling 
of the solution space in the model. We studied 
changes in the flux ranges of the exchange 
reactions between control and disease models 
after forcing a minimum uptake of phytanic acid 
0.1 mmol · g DW-1 · h-1) in the models. Shlomi et 
al. [19] proposed that if the secretion flux 
through the exchange reaction is high, it may 
lead to a high metabolite concentration outside of 
the cell. In contrast, if uptake is more prevalent, 
then the extracellular concentration is expected 
to be lower under the studied conditions. 
Exchange reactions in the model define the 
model boundaries. They allow some metabolites 
to be imported in or secreted from the cell, 
enabling the model to reach a steady-state. The 
two models responded differently to the forced 
phytanic acid uptake flux (Fig 5). The mean 
value of the phytanic acid flux was reduced by 
85% in the fibroblast_RD model when compared 
to the fibroblast_CTRL model, and secretion of 
pristanic acid was absent in the RD model (Fig. 
5A). The export reaction of 3-MAA, which is the 
end product of subsequent ω- and β-oxidation of 
phytanic acid (Fig 4B and Fig 1A), did not show 
a significant change in its mean flux, while 2,6-
dimethylheptanoyl carnitine, one of the end 
products of canonical degradation pathway of 
phytanic acid, showed 100% decrease of the flux 
rate in RD. Besides these known metabolites 
associated with a defect in α-oxidation, we 
identified 49 other boundary metabolites that 
were significantly changed (FDR < 0.05 and 
log2FC > 1.3) between the fibroblast_RD and the 
fibroblast_CTRL models (Supplementary Table 
6). Of these, 24 flux changes were predicted to 
lead to higher extracellular concentrations in the 
absence of PHYH activity, including L-alanine 
and 3-mercaptolactate-cysteine disulphide (Fig. 
5C), caproic acid (Fig. 5D), 2-hydroxybutyrate, 
and malonyl carnitine, and several di and 
tripeptides (Supplementary Table 6). On the 
other hand, 27 distribution flux changes were 
predicted to result in reduced extracellular 
concentrations in Refsum disease fibroblasts, 
such as lactate (Fig. 5C), N-acetyl-asparagine, L-
citrulline (Supplementary Table 6) and several 
di- and tri-peptides (Fig. 5E, and Supplementary 
Table 6). These changes depend either on the 
lower/higher uptake rate or on a lower/higher 
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secretion rate (Fig. 5C-E). Interestingly, the rate 
of secretion of citrulline in our in vitro study 
showed a significant decrease (Fig. 4C) 
confirming one of our model predictions. 

3. Discussion 

In this study, we present a fibroblast-specific 
metabolic model for Refsum disease. Using 
transcriptomics and proteomics data, we 
developed a cell-specific metabolic network 
based on Recon 3D_FAD [20]. Cell-type-
specific metabolic models have been reported 
earlier [13,14,17,21,22,35], and are essential 
tools to study specific research questions. We 
studied the effect of phytanic acid loading on the 
metabolic fluxes in a fibroblast-specific model 
for Refsum disease, which is characterised by a 
defect in α-oxidation. Phytanic acid is a natural 
ligand of peroxisome proliferator receptor α 
(PPARα) [3,4]. Furthermore, elevated levels of 
phytanic acid have been reported to induce 
lipotoxicity in the brain [36]. Many of these 
findings, however, derive from in vitro 
experiments. The consequences of phytanic acid 
accumulation have also been studied in a mouse 
model of Refsum disease, which resembles the 
clinical symptoms of patients [3,37]. Notably, 
these mice showed no disease phenotype when 
fed a regular diet, but only developed the 
phenotype resembling Refsum disease when 
challenged with a phytol-enriched diet [37]. 
Studies in humans, however, are scarce due to 
limited options for invasive studies. 
Computational modelling of human cells or 
tissues is meant to fill this gap partly. In our 
study, we curated the existing genome-scale 
model by including pathway information for ω-
oxidation and following β-oxidation of phytanic 
acid and constrained the model to obtain a 
fibroblast-specific model based on generated data 
as well as existing databases. The reconstruction 
of metabolic networks is an iterative process, and 
updates will assure better accuracy and 
prediction of the human metabolic model [38].  

Using the curated model, we aimed to get an 
insight into metabolic changes that may provide 
leads for pathophysiology and biomarkers. 
Genome-scale metabolic-models have been 
described to be useful tools for these aims [8–
10,14,19–22,35]. In our fibroblast-specific model 
resembling Refsum disease, the flux of phytanic 
acid uptake was significantly reduced, reflecting 

the accumulation of phytanic acid in the body, a 
known biomarker for Refsum disease [3]. On the 
other hand, the average 3-MAA secretion rate 
was not changed between the models. Our results 
show that it is more desirable for metabolism to 
lower the phytanic acid uptake rather than 
increase the ω- oxidation. However, an average 
sampled flux of 3-MAA secretion was 60 times 
lower than its maximum theoretical yield (Fig. 3, 
Fig.5B) showing that the ω-oxidation pathway 
can be further upregulated, if the uptake of 
phytanic acid is increased reports that ω-
oxidation was upregulated, as described in 
patients with peroxisomal disorders, 
complementing partially peroxisomal α- and β-
oxidation [4,39].  

Besides the changes in the known biomarkers, 
the model predicted aberrant flux distributions, 
leading to accumulation or reduction of 
extracellular metabolites in the Refsum fibroblast 
model when compared to the healthy model. 
Interestingly, di and tripeptides were predicted to 
be changing significantly between the patient and 
healthy models (Fig. 5F). Biologically active 
peptides [40] have been found to play important 
roles in the metabolic functions, including 
intercellular signal transmission [41] and neuron 
signal transmission [42,43]. Furthermore, 
specific peptides are involved in the processes 
that lead to disease development, and their 
presence could indicate specific diseases, i.e., 
serve as disease biomarkers [44–47]. However, 
the power of the prediction and the value of these 
metabolic changes in relation to the pathogenesis 
of phytanic acid in patients with Refsum disease 
requires further analysis. If validated, our 
predictions could lead to potential therapeutic 
strategies to intervene with the accumulation of 
phytanic acid in these patients. The upregulation 
of ω-oxidation as an escape route for the 
breakdown of phytanic acid, and also very-long-
chain fatty acids, has been studied in vitro for 
diseases such as Refsum disease and X-linked 
adrenoleukodystrophy (ALD) [3,39]. The 
activation of the cytochrome P450 family (CYP) 
4A enzymes, which are known to induce ω-
oxidation, has indeed been an attractive target for 
therapeutic interventions. However, until now, 
studies using compounds or drugs to upregulate 
ω-oxidation via CYP4A have not been 
performed successfully [48]. Our model predicts 
(Fig. 2 and Fig. S2) that increase in the 
glutathione levels could not only protect the cells 
from the oxidative stress postulated to play a role 
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in Refsum disease [49] but potentially also 
support the phytanic acid breakdown via the ω-
oxidation pathway. However, the clinical value 
of our predictions remains to be evaluated. 
Fortunately, as mentioned before, a mouse model 
of Refsum disease exists in which a systemic 
whole-body effect of phytanic acid accumulation 
has been studied [37]. Since mice, similarly to 
humans express ω�hydroxylases from the CYP4 
family, the studies of phytanic acid ω-oxidation 
rates could be performed with either glutathione-
enriched diet, or in combination with previously 
proposed CYP4 inducers: fibrates and statins[4], 
to determine the clinical potential of our finding.  

4. Materials and Methods 
Cell culture 
Skin fibroblast cell lines from six controls and 
five patients with genetically confirmed Refsum 
disease were used. All cell lines were 
anonymised. Fibroblasts were cultured in 75-cm2 
flasks for transcriptomics and proteomics 
analysis, and in 25-cm2 flasks for metabolomics 
experiments. Cells were cultured in Ham’s F-10 
medium with L-glutamine, supplemented with 
10% foetal calf serum (Invitrogen, Carlsbad, CA, 
USA), 25 mM Hepes, 100 U/mL penicillin and 
100 µg/mL streptomycin and 250 µg/mL 
amphotericin in a humidified atmosphere of 5% 
CO2 at 37 �C. Cells were seeded on the same 
day and incubated for the indicated time points 
(Fig. 1B). Cells were incubated with 25 uM 
phytol, dissolved in ethanol, or ethanol as the 
vehicle. Cells were harvested by trypsinisation 
(0.5% trypsin-EDTA, Invitrogen) and washed 
once with phosphate-buffered saline and twice 
with 0.9% NaCl, followed by centrifugation at 4 
�C (16100 x g for 5 min) to obtain cell pellets. 
For metabolomics experiments, the cell culture 
medium was collected before harvesting. Cell 
pellets and medium samples were stored at -80 
�C until analysis. 

RNA & protein Isolation for RNAseq and 
Shotgun proteomics measurements 
RNA and protein were isolated from the cell 
pellets from the T75 cultures using TRIzolTM 
Reagent (ThermoFisher Scientific) using supplier 
protocol for RNA and protein extraction. RNA 
pellets were dissolved in 50uL of RNase free 
water, and RNA concentrations were measured 
using NanoDropTM 2000 Spectrophotometer 
(ThermoFisher Scientific). Protein pellets were 
dissolved in 200 uL 5% SDS solution and protein 
concentrations were determined using Pierce™ 

BCA Protein Assay Kit (ThermoFisher 
Scientific). 

RNAseq 
Sample Preparation and sequencing 
First quality check of and RNA quantification of 
the samples was performed by capillary 
electrophoresis using the LabChip GX (Perkin 
Elmer). Non-degraded RNA-samples were 
selected for subsequent sequencing analysis. 
Sequence libraries were generated using the 
Nextflex Rapid Illumina Directional RNA-Seq 
Library Prep Kit (Bioo Scientific) using the 
Sciclone NGS Liquid Handler (Perkin Elmer). 
The obtained cDNA fragment libraries were 
sequenced on an Illumina Nextseq500 using 
default parameters (single read 1x75bp) in pools 
of multiple samples, producing on average 4 
million reads per sample. 

Gene expression quantification 
The trimmed fastQ files were aligned to build 
human_g1k_v37 Ensemble [50] release 75 
reference genome using hisat/0.1.5-beta-goolf-
1.7.20 [51] with default settings. Before gene 
quantification, SAMtools/1.2-goolf-1.7.20 [52]  
was used to sort the aligned reads. The gene-
level quantification was performed by HTSeq-
count: HTSeq/0.6.1p1 [53] using --mode=union, 
with Ensembl release 75 [50] was used as a gene 
annotation database.  

Calculate QC metrics on raw and aligned data 
Quality control (QC) metrics are calculated for 
the raw sequencing data. This is done using the 
tool FastQC (FastQC/0.11.3-Java-1.7.0_80) [54]. 
QC metrics are calculated for the aligned reads 
using Picard-tools (picard/1.130-Java-1.7.0_80) 
[55] CollectRnaSeqMetrics, MarkDuplicates, 
CollectInsertSize- Metrics and SAMtools/1.2-
goolf-1.7.20 flagstat. 

Shotgun proteomics 
In-gel digestion and strong cation-exchange 
(SCX) fractionation 
Protein samples were mixed with LDS loading 
buffer (NuPAGE) at a concentration of 3.4 µg 
total protein. The sample was run briefly into a 
precast 4-12% Bis-Tris gels (Novex, ran for 
maximally 5 min at 100 V). The gel was stained 
with Biosafe Coomassie G-250 stain (Biorad), 
and after destaining with milliQ-H2O, the band 
containing all proteins was excised from the gel. 
The gel band was sliced into small pieces, 
washed subsequently with 30% and 50% v/v 
acetonitrile in 100 mM ammonium bicarbonate 
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(dissolved in milliQ-H2O), each incubated at RT 
for 30 min while mixing (500 rpm) and lastly 
with 100% acetonitrile for 5 min, before drying 
the gel pieces in an oven at 37 °C. The proteins 
were reduced with 20 μL ten mM dithiothreitol 
(in 100 mM ammonium bicarbonate dissolved in 
milliQ-H2O, 30 min, 55 °C) and alkylated with 
20 μL 55 mM iodoacetamide (in 100 mM 
ammonium bicarbonate dissolved in milliQ-H20, 
30 min, in the dark at RT). The gel pieces were 
washed with 50% v/v acetonitrile in 100 mM 
ammonium bicarbonate (dissolved in milliQ-
H2O) for 30 min while mixing (500 rpm) and 
dried in an oven at 37 °C) before overnight 
digestion with 20 μL trypsin (1:100 g/g, 
sequencing grade modified trypsin V5111, 
Promega) at 37 °C. The next day, the residual 
liquid was collected before elution of the proteins 
from the gel pieces with 20 µL 75% v/v 
acetonitrile plus 5% v/v formic acid (incubation 
20 min at RT, mixing 500 rpm). The elution 
fraction was combined with the residual liquid 
and was dried under vacuum and resuspended in 
30 μL of 20% v/v acetonitrile plus 0.4% v/v 
formic acid (dissolved in milliQ-H2O) for SCX 
fractionation. Samples were loaded onto an SCX 
StageTips (20 μL tip StageTip, Thermo 
Scientific) according to the manufacturer’s 
instructions, except that the elution solvent (500 
mM ammonium acetate in 20% v/v acetonitrile, 
dissolved in milliQ-H2O) plus 0.4% v/v formic 
acid was used instead of the 1M NaCl solution in 
this protocol during initialization. After loading 
and washing of the peptides according to the 
protocol, the peptides were eluted in three 
separate fractions by stepwise elutions (30 μL 
each) of 25 mM, 150 mM and 500 mM 
ammonium acetate in 20% v/v acetonitrile 
(dissolved in milliQ-H2O). The collected flow-
through was polled with the last elution fraction. 
The elution fractions were dried under vacuum 
and resuspended in 8 μL 0.1% v/v formic acid 
(dissolved in milliQ-H2O). 

LC-MS analysis 
Discovery mass spectrometric analyses were 
performed on a quadrupole orbitrap mass 
spectrometer equipped with a nano-electrospray 
ion source (Orbitrap Q Exactive Plus, Thermo 
Scientific). Chromatographic separation of the 
peptides was performed by liquid 
chromatography (LC) on a nano-HPLC system 
(Ultimate 3000, Dionex) using a nano-LC 
column (Acclaim PepMapC100 C18, 75 µm x 50 
cm, 2 µm, 100 Å, Dionex, buffer A: 0.1% v/v 

formic acid, dissolved in milliQ-H2O, buffer B: 
0.1% v/v formic acid, dissolved in acetonitrile). 
In general, 6 µL was injected using the µL-
pickup method with buffer A as a transport liquid 
from a cooled autosampler (5 ˚C) and loaded 
onto a trap column (µPrecolumn cartridge, 
Acclaim PepMap100 C18, 5 µm, 100 Å, 300 
µmx5 mm, Dionex). Peptides were separated on 
the nano-LC column using a linear gradient from 
2-40% buffer B in 117 min at a flow rate of 200 
nL/min. The mass spectrometer was operated in 
positive ion mode and data-dependent acquisition 
mode (DDA) using a top-10 method. MS spectra 
were acquired at a resolution of 70.000 at m/z 
200 over a scan range of 300 to 1650 m/z with an 
AGC target of 3e6 ions and a maximum injection 
time of 50 ms. Peptide fragmentation was 
performed with higher energy collision 
dissociation (HCD) using normalised collision 
energy (NCE) of 27. The intensity threshold for 
ions selection was set at 2.0 e4 with a charge 
exclusion of 1≤ and ≥7. The MS/MS spectra 
were acquired at a resolution of 17.500 at m/z 
200, an AGC target of 1e5 ions and a maximum 
injection time of 50 ms and the isolation window 
set to 1.6 m/z 

LC-MS data analysis 
LC-MS raw data were processed with MaxQuant 
(version 1.5.2.8) [56]. Peptide and protein 
identification was carried out with Andromeda 
against a human SwissProt database 
(www.uniprot.org, downloaded November 10, 
2016, 20,161 entries) and a contaminant database 
(298 entries). The searches were performed using 
the following parameters: precursor mass 
tolerance was set to 10 ppm, and fragment mass 
tolerance was set to 20 ppm. For peptide 
identification two miss cleavages were allowed, a 
carbamidomethylation on cysteine residues as a 
static modification and oxidation of methionine 
residues as a variable modification. Peptides and 
proteins were identified with an FDR of 1%. For 
protein identification, at least one unique peptide 
had to be detected, and the match between runs 
option was enabled. Proteins were quantified 
with the MaxLFQ algorithm [57] considering 
unique peptides and a minimum ratio count of 
one. Results were exported as tab-separated *.txt 
for further data analysis. 

Differential analysis of transcriptomics and 
proteomics 
Differential gene/protein expression analysis 
based on the negative binomial distribution was 
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performed using DESeq2 [58]. Genes for which 
summed across all samples raw counts were 
higher than 20 were analysed. Protein intensities 
were transformed to integers and analysed 
similarly to the transcriptomics data.   

Cell growth 
Fibroblasts were seeded in 96-well plate with a 
density of 2000cells/well and cultured in 200uL 
of medium for seven days. xCELLigence system 
(ACEA Biosciences Inc.) was used to monitor 
cells attachment and growth in real-time [59]. 
Areas under the curve were calculated using 
Prism7 (GraphPad Software).  

Metabolomics 
Determination of protein concentration in cell 
pellets 
Cell pellets were sonicated in 250uL of water. 
Protein concentration was determined using the 
Pierce™ BCA Protein Assay Kit (ThermoFisher 
Scientific).  

Amino-acid profile 
To analyse the amino-acid profile of medium 
from cell cultures 100uL of the medium sample 
was mixed with 100uL of internal standard 
(12mg of norleucine mixed with 15g 
sulphosalicylic acid in 250ml of water). The 
analysis was performed according to the method 
of Moore, Spackman, and Stein [60] on a 
Biochrom 30™ Amino acid Analyser 
(Biochrom.co.uk). Acquisition and data handling 
were done with Thermo Scientific™ 
Chromeleon™ 7.2 Chromatography Data System 
software (ThermoFisher Scientific). 

Sugar measurements 
To analyse sugar profiles, 250ul of the medium 
sample or 100ul of a standard mix (50mg of D-
(+)-glucose in 50ml of water) was mixed with 
100ul of internal standard (50mg phenyl-b-D-
glucopyranoside in 50ml of water mixed with 1 
ml of chloroform). Glucose analysis was 
performed as described by Jansen et al.  [61] on a 
Trace GCMS (Thermo Fisher Scientific). 
Acquisition and integrations were done with 
Xcalibur™software (ThermoFisher Scientific). 

Phytanic acid measurement.  
Phytanic acid levels were measured as described 
previously [62]. 

Model curation 
Our model is based on a previously published 
FAD-curated version of Recon 3D [20]. Current 

representation of phytanic acid metabolism was 
analysed and compared with current knowledge 
[4,63]. Missing reactions in omega-oxidation of 
phytanic acid and follow-up peroxisomal beta-
oxidation of its products were added to the 
reconstruction. Additionally, invalid or 
duplicated reactions (created by merge of 
different metabolic reconstructions to create 
Recon 2 model [8]) were removed. The curated 
model was saved as Recon3D_FAD_X. For 
detailed information on all the changes to the 
model, see Supplementary Table 1 [fix, del].  

Model constrains 
We examined all exchange/demand reactions to 
determine the model constraints. Since drug 
metabolism introduced by Sahoo et al. [64] is out 
of the scope of our research, we decided to block 
the import/export reactions for drugs and their 
metabolites. Additionally, we identified 
redundant demand and sink reactions that 
duplicate some exchange/demand reactions or 
allow sink reaction for a metabolite whose 
metabolism has been fully reconstructed and 
does not create a dead-end pathway.  Last, we 
closed all import reactions besides those that 
transported compounds present in the culture 
media, water, and oxygen. All the changes can be 
examined in the Supplementary Table 1 
[constraints].  
Additionally, ‘biomass_reaction’ minimum flux 
was set to 0.1 mmol·gDW-1·h-1, to mimic the 
essential cell maintenance (protein synthesis, 
DNA and RNA synthesis etc.), unless stated 
otherwise, as in [65]. Other constraints used only 
in specific simulations are indicated where 
applicable. 

Fibroblast-specific gene database 
A database containing information about the 
expression levels of metabolic genes (genes 
present in the metabolic reconstruction Recon 
3D_FAD) and proteins in human fibroblasts was 
first generated based on the results from our 
transcriptomics and proteomics experiments. 
Additionally, we added information present in 
the Human Protein Atlas [27,66], OMIM [29] 
fibroblast-specific information published along 
with the first Recon 2 model [8], and UniProt 
[67] databases. Experimental data from human 
fibroblast gene expression levels by Matsumoto 
et al. [28] was also included. Usage of fibroblasts 
in diagnostics of specific gene defects was also 
examined. In the end, a binary decision was 
made about fibroblast-specific genes – 1 if there 
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was evidence for a gene/protein to be present in 
human fibroblasts, 0 for genes classified as 
inactive in fibroblasts. Database, including the 
final decision, is available as a Supplementary 
Table 2. 

Fibroblast-specific model generation 
A list of reactions depending on the genes 
marked as active was used as a core set for the 
FASTCORE algorithm [30] implemented in The 
COBRA Toolbox v3.0 [68]. Next, reactions 
dependent on the inactive genes were removed, 
and fastcc algorithm [30,68] was used to 
generate a flux, consistent fibroblast-specific 
model. The final model, named 
‘fibroblast_CTRL’ is available in our Github 
folder.  

Model analysis 
Refsum simulations 
Phytanoyl-CoA hydroxylase deficiency (Refsum 
disease) was simulated as a single gene deletion 
(PHYH, HGNC:8940). Additionally, ω-oxidation 
(‘CYP450phyt’ reaction) and α-oxidation 
(‘PHYHx’, reaction) pathways maximum rates 
were constrained to 20.2176 and 48.7656 
mmol·gDW-1·h-1 respectively, to reflect those 
described in the literature [69,70]. Lastly, the 
‘EX_phyt(e)’ reaction upper boundary was set to 
-0.1 mmol·gDW-1·h-1 to force the model to utilise 
phytanic acid at a minimum rate of 0.1 
mmol·gDW-1·h-1 for the simulations resembling 
fibroblasts with phytol added to the medium.  
To sample the solution space of generated 
models, ACHR algorithm [33] implemented in 
the COBRA Toolbox 3.0 [68] was used. 
Randomly selected 10000 sampled points were 
saved with from the total of 50000 sampled 
points with a 500 step size. 

Calculation of maximum ATP yield per carbon 
source 
To calculate the maximum ATP yield per carbon 
source, we adapted the method developed by 
Swainston et al. [38]. Shortly, all uptake rates of 
nutrients were set to 0, except for a set of 
reactions defined collectively as a minimal 
medium (Ca2+, Cl-, Fe2+, Fe3+, H+, H2O, K+, Na+, 
NH4 SO4

2-, Pi, Riboflavin) for which the 
uptake/export fluxes rates were set to -1000 and 
1000 mmol⋅gDW-1⋅hr-1 respectively. For each of 
the specified carbon sources, the uptake flux was 
set to -1 mmol⋅gDW-1⋅hr-1 forcing the model to 
consume it at a fixed rate. The demand reaction 
for ATP, ‘DM_atp_c_' was used as an objective 

function flux, which should be maximised in the 
optimisation process. The oxygen intake flux was 
set to 'EX_o2(e)' -1000 mmol⋅gDW-1⋅hr-1 to 
maintain aerobic conditions. If the model was 
unable to breakdown specified carbon source to 
ATP, the steady-state flux could not be reached 
(infeasible solution).   

Statistical analysis of model predictions 
Flux distribution of each exchange reaction was 
compared between the control (CTRL) and 
Refsum’s (RD) to find the most changed 
metabolite fluxes. To this end, we tested 
normality and variance of the distributions using 
Single sample Kolmogorov-Smirnov goodness-
of-fit hypothesis test and Two-sample F test for 
equal variances, respectively. Depending on the 
outcome Student’s t-test (for normally distributed 
samples with equal or unequal variance) or 
Wilcoxon ranks sum test (for non-normally 
distributed samples with unequal variance) were 
used to determine whether the differences 
between the control (CTRL) and Refsum’s (RD) 
models were significant. Bonferroni-Holm 
correction for multiple comparisons was used to 
calculate the adjusted p-values (FDR). 
Significance thresholds were set at FDR < 0.05 
and log2(FC) > 1.3 .  

Software 
Model curation and all simulations were carried 
out with MatLab R2019a (MathWorks Inc., 
Natick, MA) using the Gurobi8.1 (Gurobi 
Optimization Inc., Houston TX) linear 
programming solver and the COBRA 3.0 toolbox 
[68]. 

Data availability 
The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange 
Consortium via the PRIDE [71] partner 
repository with the dataset identifier 
PXD015518. 
The RNAseq data have been deposited to the 
GEO database [72] with the identifier 
GSE138379. 
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TABLES 

Table 1. Model performance in the metabolic tasks test. A subset of tasks relevant for fibroblast metabolism 
selected. For a full list of all tested tasks, see Supplementary Table 5.  

Metabolic task Active in fibroblasts Fibroblast 
model  Bile acid metabolism NO NO 

Pyrimidine degradation NO NO 
Glutamine to citrulline conversion NO NO 
Melatonin synthesis NO NO 
Urea cycle NO NO 
Glutamine conversion to α-ketoglutarate YES YES 

ATP production via electron transport chain YES YES 
Mitochondrial β-oxidation YES YES 
Peroxisomal β-oxidation YES YES 
Peroxisomal α-oxidation YES YES 
ω-oxidation of phytanic acid YES YES 

All 419 generic metabolic tasks  208 
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Figure 1. Developing a fibroblast-specific model. A) Schematic overview of relevant metabolic pathways for 
phytanic acid metabolism. Abbreviations: CoA, coenzyme A; PHYH, phytanoyl-CoA hydroxylase; 4,8-DMN-
CoA, 4,8-dimethylnonanoyl-CoA. B) Schematic representation of the experimental setup. Control (CTRL) and 
Refsum disease (RD) fibroblasts were incubated with or without phytol, the precursor of phytanic acid, for the 
indicated time points. All cells were seeded and harvested under the same conditions. C) Schematic overview of 
the steps to obtain a fibroblast-specific model based on constraints of the Recon3D_FAD_x model.   
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Figure 2. Model predictions of ATP yields from a single carbon source. Assessment of carbon 
source utilisation on minimal media based on the ATP production from single-carbon source, 
including Recon3D_FAD, curated Recon3D_FAD for phytanic acid metabolism (Recon3D_FAD_x), 
the fibroblast-specific model for control (fibroblast_CTRL) and diseased conditions (fibroblast_RD). 
Grey shades in the heat-maps reflect the relative net ATP production ranging from no (white) to high 
(black), and very high ATP production (dark red). Crossed-out fields symbolise model inability to 
metabolise a carbon source (infeasible solution) on minimal media.  
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Figure 3. Simulation of phytanic acid metabolism. Missing reactions for phytanic acid metabolism, 
including α- and ω-oxidation, were added to the Recon3D_FAD model. The curated, fibroblast-
specific model shows differences in metabolic fluxes of phytanic acid through the available pathways 
under normal (control, CTRL) and diseased conditions (Refsum disease, RD). Insert shows maximised 
fluxes, including blocked α- oxidation in PHYH conditions. Predictions are shown as box-and-whisker 
(min-max) plots (main figure), or bar plots (insert).  
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Figure 4. Metabolic characterisation of fibroblasts cultured in vitro.  Model validation using 
experimental data of A) phytanic acid, B+C)) amino acid measurements. A) Phytanic acid 
concentrations were determined in pellets from cultured cells after incubation for 96 hours. Phytanic 
acid levels are increased in cells incubated with phytol. Per condition, mean per group and 95% 
confidence interval per group are indicated. Significant differences between the groups were 
determined by One-way ANOVA (*** p-value < 0.001). B) Significantly changed uptake and 
secretion rates of amino acids between healthy and RD fibroblasts exposed to phytol for 96 hours. 
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Amino acid concentrations were determined in the medium of the cells 96-hour incubation with 
phytol. Rates were calculated based on the fresh medium measurements. Significant differences 
between the groups were determined using a t-test with a two-stage linear step-up procedure of 
Benjamini, Krieger and Yekutieli, with Q=1%, to correct for the multiple testing (** q-value <0.01, 
*** q-value < 0.001). Rates of uptake and secretion of other amino acids are shown in Figure S3. C) 
Amino acid concentrations were determined in the medium of the cells after incubation at indicated 
time points. Results for other amino acids are shown in Figure S4. D)  
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Figure 5. Changes at the level of secretion and uptake reactions between healthy and Refsum models 
forced to take up phytanic acid. A-E) Secretion /uptake fluxes distributions of metabolites with the 
most significant differences between Control (CTRL+phyt, grey) and Refsum disease (RD+phyt, 
black) models forced to take up phytanate selected based on the log2(FC)>1.3 and FDR < 0.05. 
Statistical differences were analysed using Wilcoxon rank-sum test; FDR values were calculated using 
Bonferroni-Holm correction. 
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Figure S1. A+B) Volcano plots depicting A) the transcriptomics data, and B) proteomics data derived 
from fibroblasts incubated with phytol for 96 hours. Genes and proteins, resp., with significant 
differences in expression between the diseases (Refsum disease) and control groups are indicated with 
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coloured dots. Gene names are shown for genes and proteins, resp., indicated with green dots. Blue 
dots represent metabolic genes, as included in the Recon3D model, that were expressed differentially 
at the significance level below 0.001, and their expression levels were changed by minimum 1-fold. 
C+D) Principal Component Analysis for C) transcriptomics data, and D) proteomics data. E) 
Correlation plot showing log 2 average abundance of all proteins (x-axis) and genes (y-axis) that were 
included in the Recon 3D model.     

 

Figure S2. Model predictions of ATP yields from a single carbon source. Assessment of carbon 
source utilisation on minimal media supplemented with glutathione and pantothenic acid based on the 
ATP production from single-carbon source, including Recon3D_FAD, curated Recon3D_FAD for 
phytanic acid metabolism (Recon3D_FAD_x), the fibroblast-specific model for control 
(fibroblast_CTRL) and diseased conditions (fibroblast_RD). Grey shades in the heat-maps reflect the 
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relative net ATP production ranging from no (white) to high (black), and very high ATP production 
(dark red). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/776575doi: bioRxiv preprint 

https://doi.org/10.1101/776575
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 

Figure S3. Additional data on amino acid uptake and secretion rates in the fibroblast CTRL and RD 
cultures exposed to phytol for 96 hours. Rates were calculated based on the fresh medium 
measurements. 
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Figure S4.  Additional experimental data of A) amino acids and B) glucose determinations in the 
medium of the cells after incubation at indicated time points. For details, see Fig. 3C. C) Protein 
concentrations of cell pellets after incubation at indicated time points. D) Growth curves of attached 
cells for the indicated time points (left panel), and statistical analysis of the total area under the curve 
per cell line after 7 days of incubation (right panel). Data are shown as bar plots.  
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