

1

2 Horizontally acquired quorum sensing regulators recruited by the PhoP regulatory
3 network expand host-adaptation repertoire in the phytopathogen *Pectobacterium*
4 *carotovorum*

5

6 SHORT TITLE:

7 “Regulatory interplay between PhoP and horizontally transferred quorum sensing regulators”

8

9 Daniel Bellieny-Rabelo[¶], Ntombikayise Precious Nkomo[¶], Divine Yufetar Shyntum, and Lucy
10 Novungayo Moleleki^{*}

11

12 ¹Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, 0002, South Africa

13 ² Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, 0002, South Africa

14

15 ¶ These authors contributed equally to this work

16 * Corresponding author. Email: lucy.moleki@up.ac.za (LNM)

17

18 ABSTRACT

19 In this study, we examine the impact of transcriptional network rearrangements driven by horizontal gene
20 acquisition in PhoP and SlyA regulons using as a case study the phytopathosystem comprised of potato
21 tubers and the soft rot pathogen *Pectobacterium carotovorum* subsp. *brasiliense* (*Pcb1692*). By comparing
22 those two networks with that of PecS obtained from the closely related *Dickeya dadantii*, we found that: (a)
23 24-31% of the genes regulated at late infection are genus-specific (GS) (based on *Pectobacterium* and
24 *Dickeya* genera), and that (b) of these, 28.1-44.4% were predicted with high confidence as horizontal gene
25 transfer (HGT) candidates. Further, genome simulation and statistical analyses corroborated the bias in late
26 infection regulons towards the transcriptional control of candidate GS-HGT genes by PhoP, SlyA, and PecS,
27 highlighting the prominence of network rearrangements in these late infection regulons. The evidence
28 further supports the circumscription of two horizontally acquired quorum sensing regulators (*carR* and
29 *expR1*) by the PhoP network. By recruiting *carR* and *expR1*, the PhoP network also impacts certain host
30 adaptation- and bacterial competition-related systems, seemingly in a quorum sensing-dependent manner,
31 such as the type VI secretion system, carbapenem biosynthesis, and plant cell walls degrading enzymes
32 (PCWDE) such as cellulases and pectate lyases. Conversely, polygalacturonases and the type III secretion
33 system (T3SS) exhibit a transcriptional pattern that suggests quorum sensing-independent regulation by the
34 PhoP network. This includes a yet uncharacterized novel phage-related gene family within the T3SS gene
35 cluster that has been recently acquired by two *Pectobacterium* species. The evidence further suggests a
36 PhoP-dependent regulation of carbapenem and PCWDE-encoding genes based on the synthesized products'
37 optimum pH. The PhoP network also controls *slyA* expression *in planta*, which seems to impact the
38 carbohydrate metabolism regulation, especially at early infection when 69.6% of the SlyA-regulated genes
39 from that category also require PhoP to achieve normal expression levels.

40 AUTHOR SUMMARY

41 Exchanging genetic material through horizontal transfer is a critical mechanism that drives bacteria to
42 efficiently adapt to host defenses. In this report, we demonstrate that a specific plant pathogenic species
43 (from the *Pectobacterium* genus) successfully integrated a population density-based behaviour system
44 (quorum sensing) acquired through horizontal transfer into a resident stress-response gene regulatory
45 network controlled by the PhoP protein. Evidence found here underscores that subsets of bacterial
46 weaponry critical for colonization, typically known to respond to quorum sensing, are also controlled by
47 PhoP. Some of these traits include different types of enzymes that can efficiently break plant cell walls
48 depending on the environmental acidity level. Thus, we hypothesize that PhoP ability to elicit regulatory
49 responses based on acidity and nutrient availability fluctuations may have strongly impacted the fixation of
50 its regulatory connection with quorum sensing. In addition, another global gene regulator known as SlyA was
51 found under the PhoP regulatory network. The SlyA regulator controls a series of carbohydrate metabolism-
52 related traits, which also seem to be regulated by PhoP. By centralizing quorum sensing and *slyA* under PhoP
53 scrutiny, *Pectobacterium* cells added an advantageous layer of control over those two networks that
54 potentially enhances colonization efficiency.

55

56 INTRODUCTION

57 Highly specialized colonization traits are constantly selected in phytopathogenic gram-negative bacteria in
58 order to overcome severe obstacles imposed by plant apoplasts. The apoplastic space comprises a nutrient-
59 poor milieu that harbors an extensive inventory of toxic and defense-related molecules, such as plant
60 antimicrobial peptides, reactive oxygen species, and plant organic compounds (1, 2). In addition, the
61 apoplastic space is generally acidic (ranging between pH 4.5-6.5) due to the presence of organic acids such as
62 malic and citric acids, which also enforces the anti-growth strategy against pathogenic invasions (3). In this
63 context, a crucial regulatory system in bacteria, which is frequently associated with response to acidic stress,
64 is the PhoQ/PhoP two-component system (4). This response-based system is highly conserved and widely
65 studied across bacterial lineages because of its prominent role as a global transcriptional regulator.

66 The simultaneous flow of transcription/translation in bacterial cells inhabiting such competitive
67 environments requires highly optimized regulatory mechanisms to ensure accurate responses during
68 colonization. Thus, in order to cope with frequent gene gains and losses that result mainly from horizontal
69 transfer events, bacterial regulatory circuits must efficiently accommodate newly acquired genes (5).

70 Horizontal gene transfer is perceived as a critical driving force in the evolution of bacterial genomes, from
71 which a number of pathogenicity themes emerge, including some secretion systems and prophages (6, 7).
72 Hence, it is not surprising that the influence of important virulence regulators such as SlyA (8) or PecS (9)
73 over regions incorporated through HGT have been previously reported. Both SlyA and PecS belong to the
74 MarR family of transcriptional regulators, which encompasses a range of genes involved in virulence and
75 antibiotic resistance control (10-12).

76 Among gram-negative bacteria, one specific group commonly referred to as soft rot Pectobacteriaceae (SRP)
77 (13, 14) (formerly known as soft rot Enterobacteriaceae), has increasingly gained attention over the last few
78 decades as causative agents of wilt/blackleg diseases in economically important crops worldwide (15, 16).
79 This group is most prominently represented by *Pectobacterium* and *Dickeya* genera. The SRPs are

80 opportunistic gram-negative pathogens capable of producing distinctively high amounts of pectinolytic
81 enzymes compared to other pectolytic bacteria (e.g. *Clostridium* spp., *Bacillus* spp., *Pseudomonas* spp.) (17).
82 These plant cell wall degrading enzymes encompass a variety of families that concertedly promote disease
83 through tissue maceration (18). While some PCWDE classes exhibit close to neutral or high optimum pH,
84 such as cellulases, pectate and pectin lyases (Cel; Pel; Pnl), others function at low optimum pH, namely
85 polygalacturonases (Peh) (19, 20). In this sense, the expression of different groups of PCWDEs tends to be
86 regulated according to the pH within the plant tissue, which is acidic in the apoplast at first, then becomes
87 progressively basic as the disease progresses (17). In this context, one of the best-characterized mechanism
88 of PCWDE regulation in SRP pathogens is the quorum-sensing (QS) (21). This is a crucial regulatory circuit
89 controlling population density-based behaviour in SRP, as well as in a large spectrum of bacteria (22, 23).
90 Quorum sensing networks in gram-negative bacteria rely on recognition of autoinducer molecules, such as
91 acyl-homoserine lactones (AHL) and other products synthesized using S-adenosylmethionine, by specialized
92 receptors such as ExpR/LuxR homologs (24, 25). The complexed form, ExpR/LuxR-autoinducer, is then able
93 to bind specific DNA regions in order to participate in transcriptional regulation (26). One of the regions
94 regulated by the ExpR-autoinducer complex is the *rsmA* promoter region. Thereafter, the transcriptional
95 repression of *rsmA* prevents RsmA-induced inactivation of PCWDE (27). In addition to PCWDEs, QS has been
96 shown to regulate other traits involved in virulence and interbacterial competition, such as the carbapenem
97 antibiotic (*car* genes) and the type III and VI secretion systems (T6SS) in *Pectobacterium* spp. (21, 28).
98 In the present report, we investigate the impact of transcriptional network rearrangements in two global
99 transcriptional regulators (PhoP and SlyA) over the *in planta* regulation of crucial host adaptation- and
100 fitness-oriented systems. Since regulatory network rearrangement events have the potential to give rise to
101 phenotypic differences in pathogenesis development among these organisms, understanding these
102 processes is crucial to unveiling how these networks shape pathogenicity in different lineages.

103 **RESULTS**

104 RNA-Seq mapping and the reach of PhoP and SlyA regulons *in planta*

105 In order to examine both PhoP and SlyA regulatory networks *in planta*, we engineered *Pcb1692ΔslyA* and
106 *Pcb1692ΔphoP* mutants using the lambda recombination technique (see ‘Methods’ for details). The integrity
107 of the mutants and complement strains were confirmed by PCR analyses (S1 Fig and S2 Fig) as well as by
108 DNA sequencing. Additionally, *in vitro* growth assay demonstrated that the deletion of either *Pcb1692ΔphoP*
109 or *Pcb1692ΔslyA* genes did not impair the growth of the mutant strains (S3 Fig and S4 Fig). Next, the global
110 impact caused by *phoP* or *slyA* deletion in the *Pcb1692* genome towards *in planta* transcriptional profiles
111 were analyzed in original whole-transcriptome data sets comprising ~124 million RNA-Seq reads (Table 1). By
112 comparing significant gene expression changes between wild-type and either *Pcb1692ΔslyA* or
113 *Pcb1692ΔphoP* mutants, we infer transcriptional regulation affected by these regulatory networks (see
114 ‘Methods’ for details). Additional validation by qRT-PCR of the differentially expressed genes of particular
115 interest for this study was also conducted (S5 Fig). The samples selected for this study depicted two stages of
116 plant infection: 12- and 24-hours post-infection (hpi) denoted here as early (EI) and late infection (LI),
117 respectively. The dataset exhibited good quality, as 89.2% (~111 million) of the reads were mapped on the
118 *Pcb1692* reference genome (Table 1). Of these, 88.9% (~98 million reads) were uniquely mapped on the
119 reference genome. Transcriptional variations between wild-type *Pcb1692* and mutant strains during
120 infection enabled collective identification of 511 genes affected (up-/down-regulation; see ‘Methods’ for
121 details) by both PhoP and SlyA regulatory networks in the two time points (S1 Table).

122 **Table 1: Mapping summary of RNA-Seq reads from mutant strains on *Pcb1692* reference genome**

Stage	Unmapped Reads	Multiple Matches	Uniquely Mapped Reads	% Uniquely Mapped	Total Mapped reads	% Total Mapped	Raw Reads
							Inputs
Wt-12hpi	2 103 480	1 579 707	14 658 939	90,3	16 238 646	88,5	18 342 126
Wt-24hpi	1 791 915	2 172 838	14 593 401	87,0	16 766 239	90,3	18 558 153
ΔslyA-12hpi	1 879 481	1 480 426	15 456 620	91,3	16 937 046	90,0	18 816 527

ΔslyA-24hpi	1 992 419	1 680 424	14 492 035	89,6	16 172 459	89,0	18 164 877
ΔphoP-12hpi	3 209 188	2 089 563	19 522 450	90,3	21 612 013	87,1	24 821 201
ΔphoP-24hpi	2 439 081	3 301 011	20 079 180	85,9	23 380 191	90,6	25 819 271
Total	13 415 563	12 303 969	98 802 624	88,9	111 106 593	89,2	124 522 155

*hpi - hours post-infection

123

124 From the PhoP regulon, we detected a 30.7% reduction in the total network size between early and late
125 infection (Figure 1A). This phenomenon could result from a variety of non-mutually exclusive events, among
126 which the most predictable would be: (a) increased number of active transcriptional regulators at 24 hpi
127 competing with PhoP for promoter regions binding, (b) PhoP dephosphorylation by PhoQ following the
128 absence of triggering conditions, or (c) decreased transcription of the *phoP* gene. Thus, to further inspect
129 this shift in PhoP network sizes between EI and LI, we set out to evaluate the transcriptional variation of the
130 *phoP* gene *in planta* by *Pcb1692* wild type. First, *Pcb1692* was inoculated into potato tubers and samples
131 were harvested at 8, 12, 16, 20 and 24 hpi. Next, qRT-PCR was used to analyze the expression of the *phoP*
132 gene in those samples. The results showed that the relative expression of *phoP* gene nearly doubled
133 between 8 and 12 hpi (Figure 1B). This increase was followed by a significant decrease (p-value = 0.042)
134 between 12 and 16 hpi. After keeping a constant expression level between 16 and 20 hpi, *Pcb1692* cells
135 drastically decrease *phoP* gene expression at 24 hpi (p-value = 0.004). This converges with the shrinkage
136 observed in the network size. Hence, since PhoP is frequently associated with transcriptional responses to
137 acidic environments and low Mg²⁺ concentration, the elevated *phoP* transcription in the early stages of
138 infection is arguably a direct response to the nutrient poor environment found in the apoplast. Conversely,
139 after a certain time point between 20 and 24 hpi, *phoP* transcription decreases, which is consistent with the
140 reduced cellular demand for this regulator following environmental alkalization due to progressive host cell
141 lysis.

142 Determining the genus-specific content in PhoP, SlyA, and PecS *in planta* regulons

143 Next, the prevalence of distinctive traits (genus-specific) was inspected within the full extent of

144 transcriptionally regulated genes by three global regulators frequently associated with virulence and/or

145 stress responses, namely: PhoP and SlyA in *Pcb1692*, and PecS in *Dickeya dadantii* strain 3937 (*Ddad3937*).

146 To achieve that, we analyzed 6 distinct regulons obtained from those 3 global regulators in two different

147 stages (i.e. early and late) of plant infection. Hence, this analysis focus on three early infection regulons, i.e.

148 PhoP-, SlyA- and PecS-El, along with three late infection regulons, i.e. PhoP-, SlyA-, and PecS-LI. This includes

149 (a) a publicly available whole-transcriptome data set which utilized *Ddad3937ΔpecS* mutant strain (9), along

150 with (b) two original data sets featuring *Pcb1692ΔslyA* and *Pcb1692ΔphoP* strains (NCBI Accession:

151 PRJNA565562). The identification of distinctive systems between the two genera was achieved by predicting

152 genus-specific genes in *Pectobacterium* and *Dickeya* genera based on protein sequence orthology. This

153 analysis was underpinned by an extensive correlational database previously generated including 39 and 61

154 strains from *Dickeya* and *Pectobacterium* genera respectively (6). By using this database, we inquired for

155 each gene in a given strain, how many orthologs could be detected in other strains within the genus, as well

156 as in the opposing genus. Those gene products for which no orthologous counterparts exist in the opposing

157 genus were considered, given the scope of this study, as GS in the SRP context, i.e. *Pectobacterium*-exclusive

158 or *Dickeya*-exclusive.

159 Next, the presence of GS protein-coding genes was surveyed within each of the *in planta* regulons. The

160 preliminary aim was to measure the relative presence of GS genes in these regulons in specific infection

161 stages. Our screening revealed that across the three early infection regulons (from PhoP, SlyA, and PecS), 15-

162 29% of the regulated genes are GS. Interestingly, at late infection, two out of three regulons (except for SlyA)

163 exhibited increased relative GS content, ranging between 25-31% (Figure 1A). Notably, the PecS regulons

164 exhibited the most drastic shift in the GS content proportion between EI (15%) and LI (31%). Furthermore, by

165 comparing the GS gene sets of SlyA and PhoP regulons from *Pcb1692*, the presence of GS genes that are

166 exclusive to individual regulons (regulon-exclusive) was more conspicuous in those of late infection. Thus, in

167 PhoP and SlyA data sets, 44-50% (24/57; 14/28) of the GS genes regulated at LI are regulon-exclusive (Figure
168 1C). Conversely, 16-40% of the GS (3/19; 30/77) were regulon-exclusive among EI samples. This analysis
169 revealed that at late infection, PhoP, SlyA (in *Pcb1692*) and PecS (in *Ddad3937*) tend to mobilize transcription
170 of an equal or greater proportion of GS genes compared to early infection. Additionally, it also showed that
171 PhoP and SlyA exhibit bigger relative amount of GS regulon-exclusive genes at late infection in comparison to
172 early infection.

173 In the SlyA-EI data set, the only GS gene displaying increased expression was a MarR transcriptional
174 regulator homolog to *deoR* (*PCBA_RS02575*), which is frequently associated with repression of carbohydrate
175 metabolism (Figure 1D). Additionally, a *rpiR* homolog, which comprises another important player in the
176 regulation of carbohydrate metabolism was also found under SlyA network exclusively at late infection,
177 further corroborating SlyA role as a relevant player in cellular carbohydrate regulation. Interestingly, both
178 *deoR* and *rpiR* homologs in *Pcb1692* are regulon-exclusive respectively from SlyA-EI and SlyA-LI. This
179 indicates a particular demand for the transcriptional regulation of certain carbohydrates metabolism-related
180 systems controlled by these regulators in specific stages of infection.

181 Moreover, two *Pectobacterium*-exclusive genes respectively encoding a polygalacturonase (Peh) and an
182 endoglucanase/cellulase (Cel) were found within PhoP *in planta* regulons (Figure 1D). Converging with the
183 evidence for the transcriptional regulation of those PCWDE encoding genes, especially by PhoP, we also
184 found two QS regulators under PhoP control, namely *expR1* and *carR* (Figure 1D). These QS regulators are GS
185 genes in *Pectobacterium* genomes. While ExpR1 is often, but not exclusively, associated with transcriptional
186 regulation of pectinolytic enzymes (21, 29), CarR is associated with regulation of the carbapenem antibiotic
187 biosynthesis (28). The presence of *luxR/expR* homologs within the PhoP network might be directly linked to
188 the presence of two bacterial secretion systems. This type of association may directly impact fitness which
189 will be inspected in a subsequent section.

190 Horizontal acquisitions in the genus-specific contents and their regulation by PhoP, SlyA and PecS

191 While the presence of GS genes across the six regulons was observed, their origin was still unclear. The GS
192 genes observed here may have emerged through different processes such as (a) gene loss in the neighboring
193 lineage, (b) intra-lineage functional divergence following gene duplication, or (c) gene acquisition via HGT.

194 Hence, aiming to evaluate the prevalence of transcriptional network rearrangement processes, especially in
195 *Pcb1692* networks, we set out to predict HGT candidates using parametric methods. As per previous
196 observations (30), we chose a gene-based method (GC content at third-codon position - GC3) and a window-
197 based method (dinucleotide frequencies - DINT_KL) to evaluate sequence composition bias in *Pcb1692* and
198 *Ddad3937* genes (see 'Methods' for details). These predictions will be further compared to the orthology-
199 based prediction of genus-specific genes as an additional layer of evidence.

200 By examining the entire set of GS genes in *Pcb1692* (846 genes) we found that respectively 43.8 and 22.7%
201 were predicted as HGT candidates by GC3 or DINT_KL methods. Importantly, 55.2% of the high-confidence
202 HGT candidates, meaning those supported by both GC3 and DINT_KL, in *Pcb1692* belong to the GS gene set.

203 On the other hand, in *Ddad3937* 37.8% of the high-confidence HGT candidates are GS genes. This
204 preliminary inquiry revealed that the GS content in *Pcb1692* seems to include a larger portion of horizontally
205 acquired genes compared to *Ddad3937*. Furthermore, the inspection of PecS *in planta* regulons at early and
206 late infection in *Ddad3937* revealed that respectively 6.6% and 44.4% of the GS genes are high-confidence
207 HGT candidates. On the other hand, by examining PhoP and SlyA *in planta* regulons in *Pcb1692*, the high-
208 confidence candidates within the GS genes accounted respectively for 24.7% and 10.5% at early infection,
209 and 28.1% and 28.6% at late infection. In this context, the genus-specific HGT candidate (GS-HGT) genes
210 most likely arise from recent gene acquisitions in a given genus. Hence, this preliminary analysis supports
211 that the regulation of some distinctive traits observed among *Pectobacterium* and *Dickeya* genera involves
212 recent rearrangements in PhoP, SlyA and PecS regulatory networks driven by HGT.

213 Thereafter, in order to inspect whether these regulatory networks are biased towards or against controlling
214 GS-HGT candidate genes, we conducted a statistical enrichment analysis. The results from Fisher's exact

215 tests showed that, for the three LI regulons analyzed (from PhoP, SlyA, and PecS), there is an
216 overrepresentation of GS-HGT genes (Figure 2A). Curiously, the PecS-EI regulon exhibits a negative
217 correlation with GS-HGT genes. Next, we aimed to further confirm these results using a different approach.
218 Computational simulations were performed to shuffle the genomes from each organism (i.e. *Pcb1692* and
219 *Ddad3937*) generating ‘pseudo-genomes’. This strategy aims to empirically evaluate the frequency to which
220 GS-HGT genes should be expected by chance in these regulons and compare this with the real data. For each
221 of the six regulons analyzed, this experiment generated 10,000 shuffled pseudo-genomes (see ‘Methods’ for
222 details). The results corroborated, by empirical means, what statistical analysis had previously established
223 (Figure 2B). Overall, these analyses showed that transient shifts, in this case, due to temporal variation, in
224 regulon profiles can alter their bias towards the presence of recently acquired genes. Although at late
225 infection all regulons exhibited a consistent bias towards the regulation of GS-HGT genes, none of them
226 displayed similar bias at early infection. Contrarily, the PecS network seemed to avoid transcriptional
227 interactions with GS-HGT genes at early infection. Overall, this evidence suggests a particular requirement
228 for expression of distinctive traits seemingly acquired through HGT in these organisms at the late stages of
229 infection.

230 Host adaptation and regulatory systems acquired by PhoP and SlyA networks

231 Highly conserved genes among the SRPs such as *phoP* (PCBA_RS01290; *DDA3937_RS11500*) or *pecS*
232 (PCBA_RS02985; *DDA3937_RS20885*) exhibited similar overall sequence composition to their resident
233 genomes (*Ddad3937* or *Pcb1692*) (Figure 3A and B; S2 Table). Unlike these two regulators, *slyA*
234 (PCBA_RS02460; *DDA3937_RS12595*) homologs consistently exhibited deviant GC3 indexes compared to the
235 two resident genomes analyzed, although in terms of dinucleotide frequencies a significant distance was not
236 observed. Thus, considering the conservation of *slyA* across all SRP genomes, it is likely that this gene
237 acquisition occurred at least in the last common ancestor between *Pectobacterium* and *Dickeya* genera.
238 Next, we observed that the SlyA-regulated GS transcriptional regulator *deoR1* (PCBA_RS02575) had no
239 support from HGT prediction. This indicates that this gene was likely lost in the *Dickeya* lineage, whereas

240 most of the *Pectobacterium* retained it. In contrast, two other SlyA-regulated genes involved in the
241 transcriptional regulation of carbohydrate metabolism, i.e. *rpiR* (*PCBA_RS22175*) and an SIS domain-
242 encoding (*PCBA_RS22170*), were predicted as HGT candidates with high confidence. This may indicate that
243 the *Pectobacterium* genus benefits from increasing the regulatory complexity of carbohydrate metabolism
244 either through gene gain or by simply keeping ancestral transcriptional regulators in the lineage. This notion
245 is further corroborated by the enrichment of genes associated with carbohydrate metabolism in the SlyA-El
246 regulon (S6 Figure).

247 As for quorum sensing regulators, the *expR2/virR* homologs showed stronger support for horizontal
248 acquisition in *Ddad3937* (*DDA3937_RS20730*), supported by both GC3 and DINT_KL, than in *Pcb1692*
249 (*PCBA_RS20280*), which could indicate that *Pectobacterium* and *Dickeya* lineages acquired *expR2*
250 independently (Figure 3A and B). This hypothesis will be further discussed in a subsequent section.
251 Moreover, the *Pectobacterium*-exclusive PhoP-regulated transcriptional regulator *expR1* (*PCBA_RS15665*)
252 was strongly supported as a horizontal acquisition by both parametric methods in *Pcb1692* (Figure 3C). This
253 result is further corroborated by a similar profile observed in the *Pcb1692* *expl* gene (*PCBA_RS15660*).
254 Furthermore, the carbapenem biosynthesis transcriptional regulator *carR* (*PCBA_RS04390*) is another GS
255 gene in *Pcb1692* that has been successfully supported as an HGT candidate with high confidence (Figure 3C).
256 In addition, not only *carR* apparently has been horizontally transferred into the *Pcb1692* genome, but it is
257 the only gene in the carbapenem biosynthesis gene cluster supported by both parametric methods for HGT
258 prediction (S2 Table). *carR* is also the only GS gene in the *car* gene cluster (S1 Table). These results strongly
259 suggest that *carR* was acquired by *Pcb1692* independently (probably at a later stage) from *carA/B/C/D/E/F*
260 genes. Also, the presence of two QS regulators (*expR1* and *carR*) along with two conspicuous genomic
261 regions encoding bacterial secretion systems (i.e. T3- and T6SS) under PhoP regulation in *Pcb1692* may be
262 correlated. Hence, we conducted an in-depth investigation of the PhoP-dependent regulation of these
263 secretion systems and the phenotypic outcomes that this regulatory association may give rise to.

264 PhoP-dependent regulation of secretion systems and their effects on virulence and fitness

265 The PhoP-dependent regulation of *Pectobacterium*-exclusive QS regulators, along with type III and VI

266 secretion systems prompted us to measure both the ability of *Pcb1692ΔphoP* to (a) outcompete other SRP *in*

267 *planta*, and (b) cause tissue maceration in potato tubers. The *Pcb1692ΔslyA* was also included for

268 comparative means. Therefore, we first performed *in planta* bacterial competition assays in order to

269 determine the relative contribution of PhoP in bacterial competition. For this experiment, *Ddad3937* was

270 selected because it is a well-studied niche competitor of *Pcb1692* in potato tubers. The growth of *Ddad3937*

271 when co-inoculated *in planta* with *Pcb1692ΔphoP* displayed a five-fold reduction (CFU/ml), as opposed to a

272 three-fold reduction when co-inoculated with *Pcb1692* wild-type (Figure 4A). Conversely, the *Pcb1692ΔslyA*

273 strains inhibition against *Ddad3937* exhibited no significant difference when compared to that of the wild-

274 type *Pcb1692*. The results imply a direct outcome of the overexpression of competition-related mechanisms

275 following *phoP* deletion. Arguably, one of the major players in this increased *in planta* competition

276 aggressiveness might be the extensive array of 24 T6SS-related genes overexpressed in the absence of PhoP.

277 Next, both *Pcb1692ΔslyA* and *Pcb1692ΔphoP* strains had their virulence against potato tubers examined by

278 measuring the extent of maceration in early and late infection. The results showed that despite the positive

279 regulation of T6SS- and PCWDE-encoding genes in the *Pcb1692ΔphoP*, this strain was attenuated in virulence

280 similar to the *Pcb1692ΔslyA* with no statistically significant difference between them (Figure 4B). In

281 comparison to the bacterial competition assay, tissue maceration comprises a complex phenotype that

282 encompasses a wide range of necessary factors. Thus, the transcriptional disruption of a large array of genes

283 in the four regulons (PhoP-, SlyA-El, PhoP, SlyA-LI), ranging between 66-318 protein-coding genes may be

284 responsible for the attenuated tissue maceration in these mutants (S1 Table).

285 Aiming to inspect the possible PhoP-regulated mechanisms involved in this increased *in planta* growth

286 inhibition by *Pcb1692* over *Ddad3937*, we will next lay emphasis on secretion systems regulation. The T6SS is

287 a protein complex assembled through both bacterial membranes featuring a contractile sheath and an

288 injectisome-like structure composed by haemolysin co-regulated proteins (Hcp) that delivers specialized

289 effectors into target cells (31). Both T6 structural- and effector-encoding genes were found under PhoP
290 regulation, totalling 24 T6SS-related genes consistently overexpressed upon *phoP* deletion across the early
291 and late infection (S1.1 and S1.2 Tables). By comparing evidence found from PhoP network in *Pcb1692* with
292 those from previously reported analyses on a QS-mutant strain of *P. atrosepticum* (*Pa1043*) during infection
293 on potato tubers (21), some important observations were made. For this analysis, the fundamental
294 difference between the two mutant strains, i.e. *Pcb1692ΔphoP* and *Pa1043Δexpl*, is that the *expR1* regulator
295 is overexpressed in the first and repressed in the second. In the *Pa1043Δexpl* strain, 23 T6SS genes exhibited
296 a strong transcriptional decrease in *Pa1043* upon the disruption of *expl/expR1* (Figure 4C). Contrarily,
297 *Pcb1692* overexpresses *expR1* along with 24 T6SS genes in the absence of *phoP*. This pattern shows a direct
298 interference of QS disruption over the transcriptional modulation of T6SS genes in *Pa1043*. Additionally, it
299 strongly suggests that the PhoP-dependent regulation of the T6SS gene cluster in *Pcb1692* could primarily
300 depend on the *expR1* regulator.

301 Moreover, we analyzed the T3SS regulation in the two mutants (Figure 4C). Curiously, both *phoP* and *expl*
302 mutants exhibited a similar pattern of extensive down-regulation of the T3SS genes. In *Pcb1692*, the PhoP
303 transcriptional impact encompasses 23 genes. Of these, 12 have detectable orthologs in *Pa1043* under the
304 transcriptional influence of QS. In this context, since *expR1* homologs are regulated in opposite directions in
305 each mutant, the PhoP network in *Pcb1692* seemingly regulates several elements from the T3SS in a QS-
306 independent manner.

307 Characterizing new gene families within the T3SS operon in *Pectobacterium*

308 During the secretion systems regulation analyses, we found two GS PhoP-regulated genes unannotated by
309 BlastP-based methods within a T3SS-encoding cluster in *Pcb1692* (*PCBA_RS14220*; *PCBA_RS14230*). By
310 examining the sequences from their products, we found no detectable functional domains that could
311 indicate their role. Hence, aiming to classify these unannotated genes, we implemented sensitive sequence
312 comparison techniques (see ‘Methods’ for details) in order to examine their primary structure and search for

313 conserved motifs. This analysis led to the identification of one novel motif in each protein, which are
314 associated respectively to (a) bacterial Ig-like (Big) and cadherin domains, and (b) hrp-related chaperones.

315 After extensive iterative searches against the UniprotKB online database via the Hmmer search tool (32), and
316 sequence alignment inspections, we gathered respectively 538 and 429 similar sequence sets to the Big-
317 associated and the hrp-related. The Big-associated motif, found in PCBA_RS14230, exhibits highly conserved
318 Tyr and Leu residues respectively in the second, and prior to the first β -sheets, which may represent core
319 residues in their structure (Figure 5A). This conserved motif was found primarily in sequences exhibiting no
320 companion domains, similar to those from Pectobacterium genomes. Representative genes encoding this
321 exact architecture are most common in Gammaproteobacteria, encompassing diverse lifestyles such as
322 animal and plant pathogens (e.g. Vibrio and Pectobacterium genera), or insect gut symbionts (e.g. Gilliamella
323 genus). Additionally, Alpha- and Betaproteobacteria also carry genes encoding the same architecture,
324 including organisms from Burkholderia and Mesorhizobium genera (Figure 5B). Aside from the instances in
325 which these Big-associated motifs are found solo in a given sequence, they are even more frequently found
326 in long (~1000 amino acids) proteins constituted by numerous domain repeats. These repeats often include
327 combinations of Cadherin and/or Big domains (Pfam: PF00028; PF02369), along with the novel Big-
328 associated. These families are known for their typical association with phage-like structures and have been
329 linked to carbohydrates recognition in the cell surface enabling phage adsorption (33), which will be further
330 discussed below.

331 In the second unannotated gene product (PCBA_RS14220) we found a conserved $\alpha_2\beta_4$ structure, which was
332 underpinned by 429 similar sequences gathered during the iterative searches described above (Figure 5B).
333 Approximately 45% of the significant hits found were annotated as HrpV, which form chaperone
334 heterodimers with HrpG to regulate T3SS expression (34). Importantly, besides this newly found $\alpha_2\beta_4$ motif,
335 no other annotated domains could be detected in any of those 429 HrpV-like sequences. Next, we
336 investigated the structural conservation of those sequences using HHpred (35), which detected similarities
337 with type III chaperones, such as those from SchA, or CesT (Protein data bank: 4G6T, 5Z38). Thus, although

338 the primary structure does not match any currently annotated domain, the $\alpha_2\beta_4$ fold found in these
339 sequences were recognized as being similar to type III chaperone-related by HHpred. The impossibility of
340 annotating the HrpV sequence via Blastp-based methods may be a consequence of extensive sequence
341 variations occurred in different organisms. This notion is supported by our orthology analysis, which has split
342 the HrpV sequences from *Pectobacterium* (represented in 50/61 genomes) and *Dickeya* (represented in
343 39/39 genomes) into two separate groups (S3 Table). Nonetheless, the hidden Markov model (hmm) profile
344 consolidated in this analysis (see 'Methods' for details) was successfully detected in both groups.

345 Next, we inspected gene neighborhoods of *hrpV* and the Big-associated (*bigA*) genes across SRP genomes. As
346 expected, the 89 *hrpV* genes from both orthologs groups, i.e. OG_3591 (*Pectobacterium*) and OG_3957
347 (*Dickeya*), are consistently surrounded by T3SS-related genes (S4 Table). However, this pattern is not
348 observed in *bigA* orthologs. Gene neighborhood screening of seven out of ten genomes carrying *bigA*
349 orthologs (three genomes were not suitable for the analysis due to incompleteness of genome assembly)
350 revealed three different types of neighborhoods. Four *Pcb* strains and one strain of *P. carotovorum* exhibit
351 *bigA* homologs within T3SS gene clusters (Figure 5C). In one strain of *P. atrosepticum* the *bigA* homolog is
352 adjacent to phage elements including homologs of the transcriptional repressor *rstR1*, the DNA primase
353 *dnaG*, and the site-specific recombinase *xerD*. The strains of *P. carotovorum* subsp. *carotovorum* have their
354 *bigA* homolog surrounded by unannotated genes and 'orphan' genes that could not be clustered with any
355 other sequences from SRP during the orthology analysis. Furthermore, the newly identified Big-associated
356 gene *bigA* described above was predicted as a horizontally transferred gene (Figure 3C). By inspecting the
357 surrounding genes within the *Pcb1692* T3SS cluster, the *bigA* gene is the only that exhibits full support from
358 the HGT prediction (Figure 3C and S2 Table). This result suggests that *bigA* acquisition is posterior to the
359 consolidation of the T3SS in the *Pcb1692* genome, which is consistent with the above genus-specific
360 prediction for *bigA*. Together these results elucidated the presence of HrpV and the HGT candidate *bigA*
361 under PhoP regulation. Moreover, the *in planta* transcriptional regulation of a known T3SS regulatory
362 element (i.e. *hrpV*) by PhoP points to an additional layer of control over T3SS, which will be addressed in the
363 'Discussion' section.

364 **DISCUSSION**

365 The influence of lineage-specific rearrangements in the PhoP and SlyA regulatory networks on host-
366 adaptation

367 It has been reiterated that the birth of novel functions in prokaryotes is mainly driven by HGT, instead of by
368 duplication and divergence (36, 37). For instance, it has been estimated that in representatives of both

369 *Escherichia* and *Salmonella* genera, more than 98% of protein family expansions arise from HGT (37).

370 Moreover, even gene copy increments in bacterial genomes can often be a consequence of HGT, rather than
371 duplication events (7, 38). As a consequence, the fixation of newly acquired genes requires that existing

372 regulatory circuits reshape accordingly, allowing those new elements to fit properly into specific

373 transcriptional programs. This often results in the recruitment of new genes into existing transcriptional

374 networks (5). As our results showed, PhoP, SlyA, and PecS exhibited a consistent bias towards the regulation

375 of GS-HGT candidate genes at late plant infection. This indicates that transcriptional mobilization of recently

376 acquired genes by these regulators may play a particularly important role in the late stages of infection in

377 these organisms. These findings may even point to a broader trend, in which these distinctive traits are

378 preferentially recruited in late stages of the soft rot disease. At this point in time, with the increasing

379 availability of nutrients in consequence of plant cell lysis (14), the demand for mobilization of distinctive

380 traits in closely related lineages could be specifically focused on interspecies competition.

381 The participation of PhoP in the regulation of GS genes was also reported in the *Salmonella* genus, as ~50%

382 of the genes found under PhoP regulation has no orthologous counterparts outside this group (39). This

383 evidence is in accordance with the overrepresentation of GS genes found under PhoP control in *Pcb1692*. It

384 also reinforces the PhoP tendency towards regulating GS loci, despite the contrasting lifestyles between

385 most *Salmonella* and *Pectobacterium* representatives. A similar pattern has been reported in *Yersinia pestis*

386 and *Y. enterocolitica* within the RovA regulatory network (40). That report uncovered horizontally acquired

387 genes within the RovA regulon, including genes associated with disease development (40). The *rovA* gene

388 belongs to the MarR family of regulators, from which the best-characterized members – i.e. RovA and SlyA –

389 have been linked to direct binding site competition with the histone-like nucleoid structuring regulator (H-
390 NS) (41, 42). The H-NS role in the repression of horizontally acquired regions is widely characterized in gram-
391 negative bacteria, as it typically works through the recognition of AT-rich regions (43, 44). These
392 observations converge with the results presented here as 32.8 and 47% of all genes regulated by SlyA
393 respectively at early or late infection were successfully predicted, by at least one parametric method, as HGT
394 candidates.

395 Of particular importance, our results shed light on the relevance of transcriptional network rearrangement
396 processes for PhoP network expansion, which includes the acquisition of other transcriptional regulators
397 such as *carR*, *expR1*. The evidence found here for the horizontal acquisition of *carR* and *expR1* is in
398 accordance with previous phylogeny-based predictions of *luxL/luxR* horizontal transfer within the
399 *Proteobacteria* phylum (45), as well as between gram-negative and -positive bacteria (46). These two
400 regulatory connections, i.e. *phoP-carR* and *phoP-expR*, represent an important innovation in the SRP group
401 that impacts the regulation of several host adaptation-related systems in *Pcb1692*, and possibly other
402 species in the *Pectobacterium* genus.

403 *deoR1* and *rpiR* transcription factors and the prominent role of SlyA in carbohydrate metabolism
404 regulation

405 As previously highlighted, the transcriptional regulator *deoR1* homologs spread across 53 out of 61
406 *Pectobacterium* genomes, whereas the *Dickeya* lineage apparently lost this gene. DeoR-type regulators have
407 been recognized for a long time as transcriptional repressors of carbohydrate metabolism-related genes (47,
408 48). In the gram-positive soil-borne bacterium *Corynebacterium glutamicum*, the DeoR-type regulator SugR
409 was shown to repress the transcription of phosphoenolpyruvate-dependent phosphotransferase system
410 genes, such as *ptsG*, *ptsS* and *ptsF* (49). Also, another DeoR family member termed UlaR was identified as a
411 repressor of the l-ascorbate gene cluster (*ula*) in *E. coli*; this repressor was shown to release the *ula*
412 promoter region upon binding to the l-ascorbate-6-phosphate molecule (50). These reports are strikingly
413 supported by our data set, in which upon the overexpression of *deoR1* in the *slyA* mutant, 20/23 genes

414 annotated in the ‘Carbohydrate metabolism’ KEGG term (09101) are consistently down-regulated at early
415 infection (Figure 6). These observations suggest that SlyA may directly or indirectly repress the *deoR1*
416 homolog in the wild-type *Pcb1692*, which in turn may release DeoR1 from repressing an array of
417 carbohydrate metabolism-associated genes. Importantly, 69.6% (16/23) of the carbohydrate metabolism-
418 related genes repressed in SlyA-EI, were also repressed in the PhoP-EI regulon (Figure 6 and S1.1 and S1.3
419 Tables). Thus, since *Pcb1692ΔphoP* and *Pcb1692ΔslyA* mutant strains exhibit opposite patterns of *slyA*
420 regulation, the evidence indicates that normal expression levels of both *phoP* and *slyA* are required for the
421 expression of these carbohydrate metabolism-associated genes *in planta*.

422 Converging with this observation, the GS-HGT candidate *PCBA_RS22175* seem to encode a RpiR
423 transcriptional regulator homolog. This gene is regulated by SlyA exclusively at late infection, indicating a
424 particular demand for the transcription of this recently acquired *rpiR* homolog at this stage. The *rpiR* gene
425 family is frequently associated with carbohydrate utilization regulation (51, 52). Specifically, the original
426 characterization of the *rpiR* gene in *E. coli* by Sorensen and Hove-Jensen (53) revealed its repressive effect
427 over the ribose phosphate isomerase B (*rpiB*) transcription. The *rpiB* interconverts ribulose 5-phosphate and
428 ribose 5-phosphate and is necessary for the utilization of ribose as a carbon source (54). In our data set, this
429 notion is supported by the down-regulation of *rpiB* and concomitant up-regulation of *rpiR* in the SlyA late
430 infection regulon *in planta* (Figure 6 and S1.4 Table). Besides *rpiR*, another HGT candidate gene encoding the
431 SIS domain (Pfam: PF01380) was found in the SlyA-LI network (*PCBA_RS22170*). The SIS domains can be
432 found solo in protein sequences, such as in GmhA (55), or accompanied by other domains (56). Interestingly,
433 the *Pcb1692* gene *PCBA_RS22170* encodes a solo SIS domain, whereas its neighbour *rpiR* homolog
434 *PCBA_RS22175* encodes a solo HTH_6 (Pfam: PF01418). The fact that in 95% (2542/2677) of the *rpiR*
435 homologs (eggNOG: COG1737) (57) contain both the DNA-binding domain HTH_6 and the SIS domain,
436 suggests that these two entries (i.e. *PCBA_RS22170* and *PCBA_RS22175*) may be in fact a single gene in
437 *Pcb1692*. Together, the evidence sustains that SlyA acquired a novel regulatory system that controls an
438 important step of the pentose phosphate pathway through network rearrangement.

439 PhoP/QS interplay *in planta* in *Pcb1692*: Transcriptional regulation of carbapenem biosynthesis and
440 PCWDE encoding genes

441 Two out of three quorum sensing regulator homologs from the *Pcb1692* genome were found under PhoP
442 transcriptional regulation: *expR1* and *carR*. The absent *expR* homolog in the PhoP regulons is the *expR2/virR*
443 gene, which has been shown to regulate several virulence themes, such as iron uptake, motility, and
444 expression of PCWDEs in *P. atrosepticum* (58, 59). The mechanistic synergy between ExpR1 and 2 has been
445 previously described by Sjöblom, Brader (29), in which both regulators are implicated in the control of
446 virulence-related genes in *Pectobacterium*. In that study, they also observed ExpR2 capability of sensing a
447 broader range of autoinducer (AI) molecules when compared to ExpR1 (29). Notably, QS has been previously
448 reported to be controlled by other global regulators. For example, both in *Pseudomonas syringae* (60) and in
449 *Pcb1692* (61), the relationship between the ferric-uptake regulator (Fur) and the QS system was determined
450 through contrasting concentrations of N-acylhomoserine-lactone produced by the *fur* mutant and wild-type
451 strains. Also, the regulation of QS by PhoQ/PhoP observed in *P. fluorescens* seems to be affected by the Mg²⁺
452 concentration level in the medium (62).

453 The biosynthesis of the carbapenem antibiotic is one of the important QS-subordinate systems. CarR-
454 dependent QS regulation in *Pectobacterium carotovorum* subsp. *carotovorum* relies on the presence of N-(3-
455 oxohexanoyl)-L-homoserine lactone (OHHL) ligand (28). Interestingly, the stability of both carbapenem and
456 the OHHL molecules are affected by pH variations (63, 64). In this context, the PhoPQ two-component
457 system ability to respond to pH variations (65, 66) may (at least partially) explain the success of recruiting
458 *carR* and other *car* genes into the PhoP regulatory network. Thus, in the absence of *phoP*, *carR* and five other
459 *car* genes are overexpressed *in planta*, which by inference, means that PhoP network suppresses their
460 transcription *in planta* in the wild-type. Hence, PhoP activation, arguably as a consequence of milieu
461 acidification, is able to prevent carbapenem biosynthesis under pH conditions that are unfavourable for the
462 antibiotic stability (Figure 6).

463 A similar logic might as well apply to the PhoP regulation of *expR1* and several PCWDEs. Indeed, we observed
464 a marked contrast in PhoP regulation pattern over distinct PCWDE classes exhibiting (a) neutral/alkaline
465 optimum pH (~6.8-8) such as pectate/pectin lyases and cellulases (19, 20), and (b) acidic optimum pH (~6)
466 such as polygalacturonases (Figure 6) (67). This regulatory pattern does not correspond to the unidirectional
467 regulation of PCWDE-encoding genes through the QS-RsmA system, which has been repeatedly reported in
468 the *Pectobacterium* genus (16, 27). Thus, the fact that PhoP network coerces the expression of different sets
469 of PCWDEs in opposite directions at the same stage implies that the QS-RsmA cascade is not the only
470 regulatory mechanism controlling those genes in *Pcb1692*. Therefore, although at first glance our results
471 suggest a direct PhoP-ExpR1-RsmA-PCWDE regulatory hierarchy, an additional fine-tuning step enforced
472 either directly or indirectly by PhoP seems to provide an alternative control system over PCWDE
473 transcription. Moreover, this alternative pathway seems to be RsmA-independent, which follows a
474 previously proposed model of QS regulation (29), since neither *rsmB* or *rsmA* are influenced by PhoP
475 absence in *Pcb1692*. In this context, the regulation of PCWDE by PhoP in *Dickeya dadantii* has been
476 previously reported. However, PhoP seemed to cause a unidirectional impact over pectate lyases and
477 polygalacturonases (4) conversely to what was observed in *Pcb1692*. Such contrast should not be surprising,
478 since the *Dickeya* spp. lacks the *expR1* QS element, which may be an important part of the PhoP-dependent
479 regulation of PCWDE in *Pcb1692*. Thus, the different patterns found in these two genera may occur as a
480 result of the PhoP-ExpR1 interplay in the regulation of PCWDE that seems to take place in *Pectobacterium*
481 and not in *Dickeya* spp.

482 Intriguingly, gene-neighborhood analyses revealed that the *expR1* position in *Pectobacterium* genomes is
483 locked upstream of *expl*, which is the exact same pattern observed in the *expR2/virR* homologs across the
484 *Dickeya* genus (Figure 7A). In terms of conservation, the *expR2/virR* can be found in 100% of the SRP strains
485 analyzed, and in *Pectobacterium* genomes, it is mostly surrounded by membrane transport systems and
486 other transcriptional regulators. Whereas the third homolog *carR*, exists only in 21 out of 61 *Pectobacterium*
487 strains analyzed, and it is consistently adjacent to the carbapenem biosynthetic cluster in the genus, as
488 previously reported by Shyntum, Nkomo (68) (Figure 7A). This agrees with a recent estimate that ~76% of

489 ExpR/LuxR genes exist in genomes without an adjacent *Expl/LuxI* homolog (25). Also, according to the HGT
490 predictions, the acquisition of *expR1* and *carR* by *Pcb1692* appears to have occurred through horizontal
491 transfer in the *Pectobacterium* lineage. Although some species such as *P. parmentieri* and *P. wasabiae* lost
492 the entire carbapenem biosynthesis cluster as previously communicated by Shyntum, Nkomo (68), the *expR1*
493 remains prevalent in the *Pectobacterium* genus. Thus, the evidence suggests that each of the three
494 *expR/luxR* homologs found in *Dickeya* or *Pectobacterium* genera have been acquired horizontally in an
495 independent fashion. Furthermore, horizontal acquisition of *expR/luxR* homologs has been predicted to
496 occur either as a regulatory cassette that includes *expl/luxI*, or individually (45, 69). This notion converges
497 with the results observed in (a) *expR2/virR* or *carR* found in *Pectobacterium* genomes, in which individual
498 acquisition is the most parsimonious assumption, and (b) *expR2/virR* in *Dickeya* or *expR1* in *Pectobacterium*
499 genomes, which most likely were acquired as a regulatory cassette (Figure 7A).

500 Based on previous reports on how QS regulators modulate either PCWDE (21, 70) or carbapenem
501 biosynthesis (28, 71) in SRPs, the possible PhoP-QS interplay can be inferred in our results. Hence, for
502 pectate lyases (Pel), cellulases (Cel) and the *car* genes, the observed regulation of QS by PhoP agrees with
503 those from previous reports, which reinforces the idea of QS regulatory mediation for those genes (Figure
504 7B). Conversely, since two polygalacturonase-encoding genes exhibit the opposite transcriptional behavior,
505 they may be controlled by a QS-independent mechanism under the PhoP network. This raises the possibility
506 of a cascade within the PhoP network providing additional pH-dependent control over the transcription of
507 some PCWDE, including *Pectobacterium*-exclusive PCWDEs, which seems to override QS regulation.

508 The PhoP interplay with QS in the transcriptional regulation of T3SS and T6SS

509 The role of T3SS in pathogenicity has been widely explored in a range of taxa, including some from the SRP
510 group. In *Pectobacterium atrosepticum*, a significant reduction in virulence towards potatoes was observed
511 in mutant strains lacking both T3SS structural genes *hrcC* and *hrcV* (72). In that same study, Holeva, Bell (72)
512 also observed that upon the deletion of either the T3SS-related effector *dspE* or the helper gene *hrpN*,
513 virulence was also reduced. Among the 14 T3SS-related genes found under PhoP network control in *Pcb1692*

514 at early infection, *hrcC*, *hrcV*, and *hrpN* are present (S1.1 Table). This correspondence implies that the results
515 observed in our virulence assays, in which *Pcb1692* Δ *phoP* exhibited attenuated virulence compared to the
516 wild-type, was (at least partially) impacted by the repression of those T3SS-related genes.

517 The transcriptional regulation of T3SS involves complex coordination by several regulatory systems, and
518 some have been reported in different bacterial lineages. This includes the QS system (21), as well as other
519 regulators such as SlyA (73), PhoP (74), PecS (9), and Fur (75). Specifically in *Salmonella enterica*, the T3SS
520 termed Spi/Ssa was observably under indirect PhoP control through the SsrB/SpiR system (74, 76).

521 Otherwise, within the SRP group, previous efforts have concluded that PhoP deletion in *Ddad3937* has no
522 impact over the regulation of T3SS under *in vitro* conditions (77). In contrast with this observation, our
523 results show a wide impact exerted *in planta* by PhoP on T3SS transcription. These contrasting results should
524 be expected since *in vitro* and *in planta* observations present major differences. This contrast indicates that
525 PhoP regulation over T3SS transcription might depend on specific cues that cannot be met *in vitro*. However,
526 since PhoP-T3SS regulatory link has not been assessed *in planta* in *Ddad3937* so far, which would allow a
527 direct comparison with the results observed in *Pcb1692*, there is not enough data currently available to
528 predict if: (a) The PhoP-dependent regulation of T3SS *in planta* is orthologous among *Pcb1692* and
529 *Ddad3937*, or (b) if this mechanism evolved at some point within the Pectobacterium lineage. Nonetheless,
530 the PhoP control over T3SS transcription *in planta* observed in *Pcb1692* had not been reported in
531 phytopathogens so far. Moreover, our SlyA regulon analysis also shows that contrarily to what was reported
532 in *Ddad3937* by Zou, Zeng (73), *Pcb1692* does not rely on SlyA to control T3SS transcription.

533 Unlike T3SS, the T6SS role in plant colonization processes is not deeply understood in phytopathogens and
534 specifically within the SRP group. Yet, it has been reported that T6SS, similarly to T3SS, is under the
535 regulatory control of QS, as observed in *Pseudomonas aeruginosa* (78), and in the *P. atrosepticum* mutant
536 strain lacking the *expl* gene (21). The T6SS has been functionally implicated in both host defense
537 manipulation and interbacterial competition. However, these two functionalities are not characteristic of
538 any of the five T6SS phylogenetic clades recently reported, and thus cannot be used to separate T6SS

539 phylogenetic groups (79). As an example, the ability of a T6SS-related Hcp protein to facilitate tumorigenesis
540 in potatoes has been reported in the phytopathogenic *Agrobacterium tumefaciens* DC58 (80). In the same
541 species, the homologous T6SS was later implicated in intra- and interspecies competition *in planta* (81).
542 Furthermore, T6SS has been specifically reported as an decisive asset in interspecies competition *in planta*
543 for *Pcb1692* (68). In agreement with previous reports, our results from *in planta* bacterial competition
544 indicate that the increased transcription of T6SS in consequence of *phoP* deletion in *Pcb1692* may be an
545 important factor to boost competitive advantage against closely related competitors (Figure 4A and C).

546 The observed influence of QS over T6SS transcription in *P. atrosepticum* spans through 23 genes, which
547 exhibited decreased transcription intensity upon QS disruption (21). Similarly, T3SS transcription was also
548 impacted by the disruption of QS, as 21 genes were consistently repressed (21). We verified that in the
549 absence of PhoP, the QS receptor *expR1* is overexpressed, and so are several T6SS-related genes, which
550 strongly suggests that QS mediates the PhoP regulation over T6SS during infection. Indeed, this hypothesis is
551 supported by Liu, Coulthurst (21) results in *P. atrosepticum*, in which T6SS transcription decreases as the QS
552 system is disrupted (Figure 7B). On the other hand, since T3SS exhibits the opposite regulatory pattern,
553 similar to the one observed in *P. atrosepticum* following QS disruption, it is likely that PhoP does not depend
554 on QS to regulate the T3SS. Hence, PhoP must be able to override QS regulation of T3SS-encoding genes and
555 control their expression. This could result either from PhoP directly binding to their promoter regions or
556 through an alternative QS-independent regulatory cascade.

557 **New T3SS-related families and the transcriptional regulation of the *hrp* gene cluster by PhoP**

558 The bacterial Ig-like domains are highly promiscuous entities that have been described in structures of (a)
559 adhesins, such as invasins and intimins (82, 83), (b) phage-tail proteins (84), and (c) bacterial surface
560 glycohydrolases (85). The presence of Big-encoding genes in bacteria has been associated with horizontal
561 transfers as a result of its frequent presence in phage genomes (85), which was strongly corroborated by our
562 HGT prediction. Although the precise function of Big domains remains elusive, several lines of evidence point
563 to a role in surface carbohydrates recognition (84, 85). Indeed, from the “guilt by association” standpoint,

564 this could be the case for these newly found BigA proteins, since they are located in a region where T3SS-
565 related products are typically encoded. Also, the analyses conducted in this study support the posterior
566 horizontal acquisition of the bigA gene in the *Pcb1692* independently from the rest of the T3SS gene cluster.
567 The other newly found motif in T3SS-related proteins from *Pcb1692* is comprised of an $\alpha_2\beta_4$ structure which
568 was found to be similar to that of bacterial HrpV. Curiously, this motif has been identified before in *Erwinia*
569 *amylovora*, although it has not been deposited in any public domain databases (34). HrpV is known as a
570 negative regulator of the *hrp/hrc* gene cluster in *P. syringae* (86). One of the important protein interactions
571 involving HrpV is the ability to bind HrpS. This interaction forms the HrpV-HrpS complex, which blocks the
572 formation of HrpR-HrpS heterohexamers, subsequently hindering HrpS ability to bind and activate the
573 *hrp/hrc* promoter (87, 88). This negative regulation imposed by HrpV was shown to be attenuated by its
574 interaction with HrpG, which then generates a double-negative regulatory circuit controlling the expression
575 of T3SS elements (89). We also found that none of the other transcriptional regulators of the T3SS region
576 (i.e. *hrpG*, *hrpS*, *hrpR*, and *hrpL*) are affected by *phoP* deletion, and yet 23 *hrp/hrc* genes exhibit differential
577 expression in the *PhoP* mutant strain. Thus, the expected result of having the main repressor of *hrp/hrc* (i.e.
578 *hrpV*) transcription repressed, should be the increased expression of several genes in this region. However,
579 the opposite was observed, as 23 T3SS genes are consistently repressed across early and late infection
580 stages. These observations imply that an alternative regulatory mechanism employed by the *PhoP* network
581 is able to coordinate the expression of those 23 *hrp/hrc* genes, one that is independent of HrpG/S/R/L. As
582 previously discussed, QS does not seem to be the mechanism responsible for this regulation, based on the
583 results from *PhoP* regulon analyses combined with past observations (21). This means that *PhoP* is either
584 directly or indirectly involved in the regulation of T3SS, apparently independently from Hrp-borne regulators
585 or the QS system. Indeed, this hypothesis adds complexity to the topic if taken together with the conclusions
586 reported by Bijlsma and Groisman (74) in *Salmonella enterica*, in which *PhoP* is responsible for the post-
587 transcriptional regulation of a T3SS gene cluster.

588 By elucidating the mechanisms of network expansion through transcriptional rearrangement in an important
589 phytopathosystem, we found a wide range of host adaptation- and environmental fitness-related traits
590 being co-opted by SlyA and especially by PhoP. Here we uncover the success of the centralizing strategy that
591 recruited carbohydrate metabolism regulation along with virulence-related systems controlled by QS in
592 *Pcb1692* into the stress-response regulator PhoP. This seems to provide optimized control over specific
593 systems that may be sensitive to certain environmental conditions that can be recognized by PhoQ/PhoP
594 two-component system.

595 MATERIAL AND METHODS

596 Growth conditions and construction of *Pectobacterium carotovorum* subsp. *brasiliense* PBR1692
597 mutant strains

598 The strains and plasmids used are listed in Table 2. Luria-Bertani (LB) broth and agar plates were used for
599 growing all bacterial strains at 37°C. Different antibiotics were used to supplement the media: kanamycin
600 (50µg/ml), ampicillin (100µg/ml) (Sigma Aldrich) when needed. All reagents were used according to the
601 manufacturer's instructions. Then, in order to generate the mutant strains, the ASAP database BLASTN tool
602 was used to identify the *Pcb1692 phoP* and *slyA* genes (*PCBA_RS01290* and *PCBA_RS02460*). Both
603 *Pcb1692ΔphoP* and *Pcb1692ΔslyA* mutants were generated using a strategy developed by Datsenko and
604 Wanner (90). Briefly, the up and downstream regions flanking the target genes (approx.1000bp) were
605 amplified using specific primers (Table 3) using polymerase chain reaction (PCR). Kanamycin resistance gene
606 cassette was amplified from pKD4 plasmid. The resulting upstream, kanamycin cassette and the downstream
607 fragments were fused using primers denoted in Table 3 as previously described by Shyntum, Nkomo (68).
608 The fused PCR product was purified and electroporated into electrocompetent *Pcb1692* cells with pkD20.
609 The resulting transformants were selected on nutrient agar supplemented with 50µg/ml kanamycin. HiFi
610 HotStart PCR Kit (KAPA system) was used in all PCR reactions. The PCR conditions were set as follows: initial
611 denaturation at 95°C for 3 min, followed by 25 cycles of denaturing at 98°C for 30s, annealing at 60-65°C

612 (depending on the primer set), extension at 72°C for 2 min and a final extension at 72° for 2 min. The
613 *Pcb1692ΔphoP* and *Pcb1692ΔslyA* mutant strains was verified by PCR analyses and nucleotide sequencing.

614 **Table 2 List of bacterial strains and plasmids used in this study**

Bacterial strains	Description	Sources
<i>Pectobacterium carotovorum</i> subsp. <i>brasiliense</i> PBR1692 (<i>Pcb1692</i>)	Initially isolated from potato in Brazil, sequenced strain	Professor A. Charkowski, Wisconsin University (91)
<i>Pcb1692ΔphoP-pphoP</i>	<i>Pcb1692ΔphoP</i> expressing the <i>phoP</i> gene from the p-JET-T plasmid; Amp ^r	This study
<i>Pcb1692ΔphoP</i>	<i>P. carotovorum</i> ssp. <i>brasiliense</i> 1692 <i>phoP</i> , Kan ^r	This study
<i>Pcb1692ΔslyA</i>	<i>P. carotovorum</i> ssp. <i>brasiliense</i> 1692 <i>slyA</i> , Kan ^r	This study
<i>Pcb1692ΔslyA-pslyA</i>	<i>Pcb1692ΔslyA</i> expressing the <i>slyA</i> gene from the p-JET-T plasmid; Amp ^r	This study
<i>Dickeya dadantii</i> 3937	<i>Pelargonium capitatum</i> , Comoros, sequenced	(92)
Plasmids		
pKD4	Plasmid containing a Kan ^r cassette	(90)
pJET1.2/blunt	Bacterial cloning vector containing the <i>phoP</i> gene insert, Amp ^r	Thermofischer

	Bacterial cloning vector containing the <i>slyA</i> gene insert, Amp ^r	
pJET- <i>phoP</i>	Bacterial expression vector expressing <i>phoP</i> gene, Amp ^r	This study
pJET- <i>slyA</i>	Bacterial expression vector expressing <i>slyA</i> gene, Amp ^r	This study
pKD20	Temperature sensitive replication ori (repA101ts); encodes lambda Red genes (exo, bet, gam)	(90)

615

616 **Table 3: PCR Primers used in this study**

Primer name	Primer sequence 5' to 3'	Length (bp)	Source
<i>PhoP</i> primers			
<i>phoPTest-F</i>	GCAAGATTAATGGTGCCGTCGG	22	This study
<i>phoPTest-R</i>	CAGAGCGCACGCTGGCCCGATG	22	This study
<i>phoPF</i>	CTGGGTATCAACTGGAACCCGT	22	This study
<i>phoPR</i>	GCCGGTTCGCAATGCACGTAACG	23	This study
<i>KanF</i>	GCGATCGGGATTCTGGTCGTTGTAGGCTGGAGCTGC	38	This study
<i>phoPKanR</i>	GCAGCTCCAGCCTACACAAACGACCAGAATCCGCATCGC	38	This study
<i>phoPKanF</i>	CTAAGGAGGATATTCATATGTTGATCCCCCTTCAGGCTC	39	This study
<i>KanR</i>	GAGCCTGAAGGGGGATCAACATATGAATATCCTCCTTAG	39	This study
<i>ComphoPF</i>	CCGTTCTCAAACCCGAACGTGAC	23	This study
<i>ComphoPR</i>	GCGAGAAGGGCAGCTTCTTATCG	23	This study
<i>SlyA</i> Primers			

<i>slyATest-F</i>	GTCAACGCCAGCGCGATATG	21	This study
<i>slyATest-R</i>	CTGGTGCCGGACATTACGCC	20	This study
<i>slyA-F</i>	GCGCATGCCAGGATTGGGTATAG	20	This study
<i>slyA-R</i>	GTGGCATGCTACACTGAGCC	20	This study
<i>KanF</i>	GCTAACATAAGGAGGGTTGTAGGCTGGAGCTGCTTCG	41	This study
<i>slyAKanR</i>	CGAACAGCTCCAGCCTACACAACCCCTCCTATTGTTAGC	41	This study
<i>slyAKF</i>	GGAACCTCGGAATAGGAACTAAGGAGGATATTATGCG	40	This study
<i>KanR</i>	CGCATATGAATATCCTCCTAGTTCTATTCCGAAGTTCC	40	This study
<i>Comp-F</i>	CAGCAGAGTCCCGTCAGCCAT	21	This study
<i>Comp-R</i>	GCGGCGATCGTCACAACGAATAAT	24	This study
qPCR primers			
<i>gyrAF</i>	TGGTGACCGCGTGTACCAT	20	This study
<i>gyrAR</i>	GCAGAGAACAGCATCGCTTC	20	This study
<i>tssEF</i>	GGCGATCCGACAGTGTATCT	20	This study
<i>tssER</i>	TTGAAAGAGGCAACCTGCTC	20	This study
<i>tssCF</i>	AAGAACAGGTTCAGGCAGGA	20	This study
<i>tssCR</i>	CTGCTGCATTACCGCTATCA	20	This study
<i>PCBA_RS01470F</i>	ACTGAGCTGGTTCTGAAGC	20	This study
<i>PCBA_RS01470R</i>	GATGATTACGTCCCGACCT	20	This study
<i>PCBA_RS01475F</i>	AATGCGCTCCATCACTCCAA	20	This study
<i>PCBA_RS01475R</i>	CTGAGTTCCCGTTGGACGA	20	This study
<i>PCBA_RS02065F</i>	TATCCAGCGTTGCAGTGGTT	20	This study
<i>PCBA_RS02065R</i>	CACCGCCATCTCATCCTCTC	20	This study
<i>deoR1F</i>	CAGATCCCCCTGCGTGATAC	20	This study
<i>deoR1R</i>	GGTCACCAATACGAATGCGC	20	This study
<i>PCBA_RS09330F</i>	CTGGCAGTCGATAGCAACCA	20	This study
<i>PCBA_RS09330R</i>	GGATGGCTGGAACCACTCTC	20	This study
<i>pehAF</i>	CACGCTGGCATATCGATGC	20	This study

<i>pehAR</i>	ACTACTCCTCCGGGGTACAC	20	This study
<i>expR1F</i>	TGGAAGGCGATGCTGTTGAT	20	This study
<i>expR1R</i>	GCTACTGCTGGTCTGCTGA	20	This study
<i>carR-F</i>	AGAACTGAGGACGGTAGCCT	20	This study
<i>carR-R</i>	GAAGAGCTGCTGGAACTGGT	20	This study
<i>pehNF</i>	CCGATTCTCTGGTTGCTGGT	20	This study
<i>pehNR</i>	TGGCCGGAAGAGACTTCAC	20	This study

617 Complementation of *phoP* and *slyA* mutants

618 The p-JET1.2/blunt cloning vector was used for the complementation of mutant strains. The *phoP* and *slyA*
619 genes from *Pcb1692* including ~500 nucleotides downstream sequence containing the putative promoter
620 sequence were amplified by PCR using complementation primers listed in Table 3. The corresponding
621 fragments were excised from an agarose gel and purified using the Thermo Scientific Gel Extraction Kit
622 according to the manufacturer's instructions. The fragments were each cloned into p-JET-T to generate pJET-
623 *phoP* and pJET-*slyA* (Table 2). These plasmids were electroporated into electrocompetent *Pcb1692* Δ *phoP*
624 and *Pcb1692* Δ *slyA* mutant strains, transformants (*Pcb1692* Δ *phoP*-*pphoP*; *Pcb1692* Δ *slyA*-*pslyA*) selected on
625 agar plates supplemented with 100 μ g/ml Ampicillin and the cloned *phoP* and *slyA* confirmed using PCR and
626 sequencing.

627 Tissue maceration assay and total RNA extraction from potato tubers

628 *Solanum tuberosum* (cv. Mondial, a susceptible cultivar) potato tubers were sterilized with 10% sodium
629 hypochlorite, rinsed twice with double distilled water, air-dried and then stabbed with a sterile pipette to
630 1cm depth. A 10- μ l aliquot of the bacterial cells with OD₆₀₀ equivalent to 1 (*Pcb1692* wild-type,
631 *Pcb1692* Δ *phoP*, and *Pcb1692* Δ *phoP*-*pphoP*) were pipetted into generated holes. As a control, 10 mM MgSO₄
632 was inoculated into potato tubers. Holes were sealed with petroleum jelly. Potato tubers were then placed
633 in moist plastic containers and incubated for 12 and 24 hours at 25°C. The macerated tissue was scooped
634 and weighed 12 and 24h post-inoculation to quantify the extent of tuber maceration caused by (*Pcb1692*

635 wild-type, *Pcb1692ΔphoP* and *Pcb1692ΔslyA* mutant, and *Pcb1692ΔphoP-pphoP* and *Pcb1692ΔslyA-pslyA*
636 complemented mutant). This experiment was performed in triplicates, three independent times.

637 For RNA extraction, potato tubers inoculated with *Pcb1692* wild-type, *Pcb1692ΔphoP*, and *Pcb1692ΔslyA*
638 were incubated at 25°C with high humidity in plastic containers for 12 and 24 hours maximum. Sampling was
639 done at 12 and 24 hpi by scooping out macerated tissue. Macerated potato tissue from each inoculated site
640 was scooped out and homogenized in double-distilled water. Bacterial cells were recovered by grinding the
641 scooped macerated potato tissues in 20 ml of double-distilled water using autoclaved pestle and mortar.
642 Starch material was removed by centrifuging the ground tissues at 10000 rpm for 1 minute. The supernatant
643 was removed and transferred into new sterilized 50ml Falcon tubes containing RNA stabilization buffer
644 (Qiagen, Hilden, Germany). The experiments were performed using three biological replicates, with three
645 tubers per replicate.

646 **Determination of total RNA quality**

647 The concentration and purity of each extracted total RNA sample were evaluated using spectrophotometric
648 analysis (NanoDrop® ND-1000; NanoDrop® Technologies, Wilmington, DE) at a ratio of 230/260 nm. The
649 integrity of the RNA was further confirmed using 1% (w/v) agarose gel electrophoresis using 1% TAE buffer
650 at 100 volts for 30 minutes, visualized and image developed using Gel Doc EZ system (Bio-Rad Laboratories,
651 Berkeley, California, USA). Using Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.), total RNA samples'
652 concentration, RIN and 28S/18S ratio were determined.

653 **RNA sequencing, Reads mapping, differential expression analysis and genome-wide functional
654 annotation**

655 RNA samples were sequenced in the Novogene facility (823 Anchorage Place, Chula Vista, CA 91914, USA)
656 using an Illumina NovaSeq 6000 machine. The raw data sets are publicly available on the Sequence Read
657 Archive (<https://www.ncbi.nlm.nih.gov/sra>) hosted by NCBI under the accession number PRJNA565562.
658 Reads sequencing quality analysis was carried out by utilizing *fastqc* software

659 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc>). Low-quality segments were then trimmed by
660 Trimmomatic v 0.36 (93). Trimmed reads were next supplied to *hisat2* v 2.1.0 (94) that performed reads
661 alignment to the reference genome of *Pcb1692* (GCF_000173135.1) obtained from the NCBI database
662 (<https://www.ncbi.nlm.nih.gov>). The number of aligned reads was subsequently computed by *featureCounts*
663 package (95) and differential expression was analyzed by utilizing the EdgeR package (96), both within the R
664 environment (<https://www.r-project.org/>). Genes exhibiting transcriptional variation of log2 fold change > 1
665 (up-regulation), or < -1 (down-regulation), with FDR < 0.05 were assigned as differentially expressed. Mutant
666 samples relative to the wild-type comparisons were done (wild-type *Pcb1692* X *Pcb1692ΔphoP* at 12 and 24
667 hpi. *Pcb1692*) sequences were functionally annotated by using the eggNOG-mapper tool (97). The
668 annotation provided by eggNOG was next used to retrieve higher annotation levels in the KEGG-library
669 hierarchy (KEGG B and A) (98) through custom scripts written in Perl language (<https://www.perl.org/>).
670 Enrichment of KEGG terms was determined by one-tailed Fisher exact test and subsequent p-value
671 adjustment by FDR (q-value < 0.05) was performed by custom R scripts using *Pcb1692* genome as
672 background dataset. An additional level of annotation was provided by conserved domains inspection on the
673 protein sequences carried out using HMMER3 (99) and the Pfam database (100). Venn diagrams were
674 created using InteractiVenn online tool (101).

675 Genus-specific contents, enrichment in specific regulons and genome simulations
676 The framework used to identify orthologs among strains from *Pectobacterium* and *Dickeya* spp. genomes
677 was previously described (6). Briefly, genomic and proteomic information were acquired from the NCBI
678 online database relative respectively to 61 and 39 *Pectobacterium* and *Dickeya* strains. All protein sequences
679 were clustered by implementing the OrthoMCL pipeline (102). Next, the presence of representatives from
680 each genus was analyzed throughout the 10 635 orthologous groups using custom Perl scripts. Those gene
681 products that (a) belong to clusters populated exclusively with sequences from one of the genera, or (b)
682 orphans (not clustered), are then considered genus-specific. In order to evaluate the possibility of
683 overrepresentation of GS genes within individual regulons, we used both statistical analysis and

684 computational simulations. Statistical verification was performed in R environment (<https://www.r-project.org/>) was based on a two-tailed Fisher exact test to assess the correlation between GS occurrence in
685 a given regulon, using the respective strain genome as background. Further, the computational simulations
686 were performed in order to generate 10 000 shuffled copies of the respective genomes (*Pcb1692* or
687 *Ddad3937* pseudo-genomes) for each regulon comparison. These comparisons were conducted as follows:
688 for a single regulon, gene positions relative to each regulated gene were retrieved. Next, these exact
689 positions were checked in each of the 10 000 pseudo-genomes for the occurrence of GS genes. The total
690 number of GS genes found in this assessment for each pseudo-genome is computed and compared to the
691 real data.

693 **Gene expression analysis through qRT-PCR**

694 To validate the differential expression analysis of genes from the RNA-seq data, a qRT-PCR analysis was
695 performed using 6 randomly selected genes. RNA samples used in the qRT-PCR analysis were the same as
696 those used in RNA sequencing and were prepared using RNeasy mini kit (Qiagen, Hilden, Germany)
697 according to the manufacturer's instructions. The first-strand cDNA was reverse transcribed from 5 µg of
698 total RNA with the SuperScript IV First-Strand Synthesis System (Invitrogen). Quantitative real-time PCR
699 (qRT-PCR) was performed using QuantStudio™ 12K Flex Real-Time PCR System (Applied Biosystems™).
700 Primers used in this study are listed in (Table 2), the following cycling parameters were used: 95°C for 3 min
701 followed by 40 cycles of 95°C for 60s, 55°C for 45s and 72°C for 60s, followed by 72°C for 7 min; *ffh* and *gyrA*
702 (house-keeping gene control) were used to normalize gene expression. The gene expression levels of the
703 following genes were analysed: *pehA* (*PCBA_RS10070*), *pehN* (*PCBA_RS15410*), *expR1* (*PCBA_RS15665*), *carR*
704 (*PCBA_RS04390*), *deoR1* (*PCBA_RS02575*), *tssE* (*PCBA_RS11165*), *tssC* (*PCBA_RS11175*), and four PTS
705 permeases (*PCBA_RS01475*; *PCBA_RS01470*; *PCBA_RS02065*; *09330*). The same method was applied to
706 measure the expression levels of *phoP* gene in *Pcb1692* wild-type. Overnight cultures of the wild-type were
707 inoculated into sterile potato tubers and extracted every 4 hours for a period of 24 hours (see materials and

708 methods “Tissue maceration and total RNA extraction”). For statistical analysis of relative gene expression,
709 the CT method was used (103). T-test was used to determine statistical significance (p-value <0.05).

710 **In planta competition assays in potato tubers**

711 Competition assays were performed in potato tubers as described by Axelrood *et al.*, 1998 (104). In
712 summary, *Solanum tuberosum* (cv. Mondial, a susceptible cultivar) tubers were sterilized with 10% sodium
713 hypochlorite, rinsed twice with double distilled water, air-dried and then stabbed with a sterile pipette to
714 1cm depth. Overnight bacterial cultures of (*Pcb1692* wild-type, *Pcb1692ΔphoP*, *Pcb1692ΔphoP-pphP* and
715 *Dickeya dadantii* with OD₃₀₀ equivalent to 0.3) mixed in a 1:1 ratio and inoculated into surface sterilized
716 potato tubers. Holes were sealed with petroleum jelly. Potato tubers were then placed in moist plastic
717 containers and incubated for 24 hours at 25°C. Macerated tuber tissue was scooped out and the CFU/ml of
718 surviving targeted bacteria determined by serial dilutions on LB supplemented with gentamycin (15µg/ml).
719 The number of colonies observed was then converted to CFU/ml. This experiment was performed in
720 triplicates, three independent times.

721 **Sequence analysis and protein domains characterization**

722 Orthologous sequences of unannotated proteins (Big-associated and HrpV) from SRP strains were aligned
723 using Clustal Omega (105). The resulting alignments were then used in iterative searches against the
724 UniprotKB database (www.uniprot.org) through Hmmer search (32). The aligned results from the iterative
725 searches were manually curated through Jalview alignment viewer (106), and the conserved areas in the
726 alignments were selected. Next, those selected conserved blocks were analyzed for secondary structure
727 prediction and programmatic gap removals by Jpred (107). The resulting concise alignments were submitted
728 to HHpred (35) in order to identify appropriate templates for structure modelling. This strategy managed to
729 retrieve several PDB structures to be used as templates. These templates were selected for subsequent
730 modelling according to the predicted probability (>40%). For the Big-associated sequences, the following
731 PDB entries were selected: 5K8G, 4N58, 4G75, 4FZL, 5K8G, 4FZM, and 2XMX; and 4G6T, 3KXY, 5Z38, 3EPU,

732 4GF3, 1JYA, 1S28, 5WEZ, 4JMF, and 1XKP selected for the HrpV. The models were predicted by Modeller
733 (108), and visualization of these models generated through PyMOL (109).

734 Horizontal gene transfer prediction and regulatory network analyses

735 Parametric methods are aimed to evaluate sequence composition bias in genes or genomic regions and
736 measure their distance to the overall trend observed in the respective genome. These methods are
737 especially powerful when applied in recent HGT candidates predictions contrarily to phylogenetic methods
738 (110). Predictions were made with the support of two different methods, namely: GC content at the third
739 codon position (GC3) and dinucleotide frequencies (DINT). The methods choice was adapted based on the
740 conclusions drawn in the benchmark conducted by Becq, Churlaud (30). Genome-wide prediction of GC3
741 indexes of *Pcb1692* and *Ddad3937* coding sequences was made through the codonW tool
742 <http://codonw.sourceforge.net/>). Dinucleotide frequency analyses were performed using the
743 *fasta2kmercontent* script from the CGAT package (111). The Kullback-Leibler (KL) distance (112) was used to
744 measure the difference between dinucleotide frequencies of individual coding genes and the respective
745 genomes (averaged value of all coding sequences). KL distance is calculated according to the formula:

$$746 KLD[p(g)||p(G)] = \sum_i^N p(g_i) \log \frac{p(g_i)}{p(G_i)}$$

747 In which $p(g)$ is the probability distribution of dinucleotide frequencies in an individual coding gene, and
748 $p(G)$ is the probability distribution of averaged dinucleotide frequencies from all coding genes in that same
749 genome. KLD values were computed in R statistical environment. These two metrics (GC3 and DINT_KL) are
750 then combined with the information on the genus-specificity of genes previously collected from orthologous
751 clustering in order to predict HGT candidates. The above-threshold genes that were also genus-specific
752 according to the previous analysis are predicted as HGT candidates. Gene networks were analyzed using
753 Cytoscape (113). And the heatmap generated with Gitools (114).

754 ACKNOWLEDGEMENTS

755 We thank Dr. Collins K. Tanui (former PhD candidate at the Department of Biochemistry Genetics and
756 Microbiology) for the assistance in RNA extractions.

757 REFERENCES

- 758 1. García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuela P. Plant defense peptides. *Peptide*
759 *Science*. 1998;47(6):479-91.
- 760 2. Alamillo JM, García-Olmedo F. Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity,
761 in the response of *Arabidopsis thaliana* to the bacterial pathogen *Pseudomonas syringae*. *The Plant Journal*.
762 2001;25(5):529-40.
- 763 3. Grignon C, Sentenac a. pH and ionic conditions in the apoplast. *Annual review of plant biology*.
764 1991;42(1):103-28.
- 765 4. Llama-Palacios A, Lopez-Solanilla E, Poza-Carrion C, Garcia-Olmedo F, Rodriguez-Palenzuela P. The
766 *Erwinia chrysanthemi* phoP-phoQ operon plays an important role in growth at low pH, virulence and
767 bacterial survival in plant tissue. *Mol Microbiol*. 2003;49(2):347-57.
- 768 5. Perez JC, Groisman EA. Evolution of transcriptional regulatory circuits in bacteria. *Cell*.
769 2009;138(2):233-44.
- 770 6. Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. Transcriptome and
771 comparative genomics analyses reveal new functional insights on key determinants of pathogenesis and
772 interbacterial competition in *Pectobacterium* and *Dickeya* spp. *Appl Environ Microbiol*. 2019;85(2):e02050-
773 18.
- 774 7. Eme L, Doolittle WF. Microbial Evolution: Xenology (Apparently) Trumps Paralogy. *Curr Biol*.
775 2016;26(22):R1181-R3.
- 776 8. Haque MM, Kabir MS, Aini LQ, Hirata H, Tsuyumu S. SlyA, a MarR family transcriptional regulator, is
777 essential for virulence in *Dickeya dadantii* 3937. *J Bacteriol*. 2009;191(17):5409-18.
- 778 9. Pedron J, Chapelle E, Alunni B, Van Gijsegem F. Transcriptome analysis of the *Dickeya dadantii* PecS
779 regulon during the early stages of interaction with *Arabidopsis thaliana*. *Mol Plant Pathol*. 2017.
- 780 10. Alekshun MN, Kim YS, Levy SB. Mutational analysis of MarR, the negative regulator of marRAB
781 expression in *Escherichia coli*, suggests the presence of two regions required for DNA binding. *Mol Microbiol*.
782 2000;35(6):1394-404.
- 783 11. Hommais F, Oger-Desfeux C, Van Gijsegem F, Castang S, Ligori S, Expert D, et al. PecS is a global
784 regulator of the symptomatic phase in the phytopathogenic bacterium *Erwinia chrysanthemi* 3937. *Journal*
785 of *bacteriology*. 2008;190(22):7508-22.
- 786 12. Zhou JN, Zhang HB, Lv MF, Chen YF, Liao LS, Cheng YY, et al. SlyA regulates phytotoxin production
787 and virulence in *Dickeya zeae* EC1. *Mol Plant Pathol*. 2016;17(9):1398-408.
- 788 13. Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome-based phylogeny and taxonomy of the
789 'Enterobacteriales': proposal for *Enterobacteriales* ord. nov. divided into the families *Enterobacteriaceae*,
790 *Erwiniaceae* fam. nov., *Pectobacteriaceae* fam. nov., *Yersiniaceae* fam. nov., *Hafniaceae* fam. nov.,
791 *Morganellaceae* fam. nov., and *Budviciaceae* fam. nov. *International journal of systematic and evolutionary*
792 *microbiology*. 2016;66(12):5575-99.
- 793 14. Charkowski AO. The Changing Face of Bacterial Soft-Rot Diseases. *Annu Rev Phytopathol*.
794 2018;56:269-88.
- 795 15. Moleleki LN, Pretorius RG, Tanui CK, Mosina G, Theron J. A quorum sensing-defective mutant of
796 *Pectobacterium carotovorum* ssp. *brasiliense* 1692 is attenuated in virulence and unable to occlude xylem
797 tissue of susceptible potato plant stems. *Mol Plant Pathol*. 2017;18(1):32-44.
- 798 16. Charkowski A, Blanco C, Condemine G, Expert D, Franzia T, Hayes C, et al. The role of secretion
799 systems and small molecules in soft-rot *Enterobacteriaceae* pathogenicity. *Annu Rev Phytopathol*.
800 2012;50:425-49.

801 17. Pérombelon M. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. *Plant*
802 *Pathology*. 2002;51(1):1-12.

803 18. Toth IK, Bell KS, Holeva MC, Birch PR. Soft rot erwiniae: from genes to genomes. *Mol Plant Pathol.*
804 2003;4(1):17-30.

805 19. Collmer A, Keen NT. The role of pectic enzymes in plant pathogenesis. *Annual review of*
806 *phytopathology*. 1986;24(1):383-409.

807 20. Saarilahti HT, Henrissat B, Palva ET. CelS: a novel endoglucanase identified from *Erwinia carotovora*
808 subsp. *carotovora*. *Gene*. 1990;90(1):9-14.

809 21. Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, et al. Quorum sensing
810 coordinates brute force and stealth modes of infection in the plant pathogen *Pectobacterium atrosepticum*.
811 *PLoS Pathog*. 2008;4(6):e1000093.

812 22. Valente RS, Nadal-Jimenez P, Carvalho AFP, Vieira FJD, Xavier KB. Signal Integration in Quorum
813 Sensing Enables Cross-Species Induction of Virulence in *Pectobacterium wasabiae*. *MBio*. 2017;8(3).

814 23. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. *Annu Rev Cell Dev*
815 *Biol*. 2005;21:319-46.

816 24. Barnard AM, Salmond GP. Quorum sensing in *Erwinia* species. *Anal Bioanal Chem*. 2007;387(2):415-
817 23.

818 25. Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. *Nat Rev*
819 *Microbiol*. 2016;14(9):576-88.

820 26. Andersson RA, Eriksson AR, Heikinheimo R, Mae A, Pirhonen M, Koiv V, et al. Quorum sensing in the
821 plant pathogen *Erwinia carotovora* subsp. *carotovora*: the role of expR(Ecc). *Mol Plant Microbe Interact*.
822 2000;13(4):384-93.

823 27. Chatterjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK. Inactivation of rsmA leads to overproduction
824 of extracellular pectinases, cellulases, and proteases in *Erwinia carotovora* subsp. *carotovora* in the absence
825 of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. *Appl Environ*
826 *Microbiol*. 1995;61(5):1959-67.

827 28. Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP. N-acyl homoserine
828 lactone binding to the CarR receptor determines quorum-sensing specificity in *Erwinia*. *EMBO J*.
829 2000;19(4):631-41.

830 29. Sjoblom S, Brader G, Koch G, Palva ET. Cooperation of two distinct ExpR regulators controls quorum
831 sensing specificity and virulence in the plant pathogen *Erwinia carotovora*. *Mol Microbiol*. 2006;60(6):1474-
832 89.

833 30. Becq J, Churlaud C, Deschavanne P. A benchmark of parametric methods for horizontal transfers
834 detection. *PLoS One*. 2010;5(4):e9989.

835 31. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, et al. Identification of a
836 conserved bacterial protein secretion system in *Vibrio cholerae* using the *Dictyostelium* host model system.
837 *Proceedings of the National Academy of Sciences of the United States of America*. 2006;103(5):1528-33.

838 32. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. *Nucleic*
839 *Acids Res*. 2018;46(W1):W200-W4.

840 33. Fraser JS, Maxwell KL, Davidson AR. Immunoglobulin-like domains on bacteriophage: weapons of
841 modest damage? *Curr Opin Microbiol*. 2007;10(4):382-7.

842 34. Gazi AD, Charova S, Aivaliotis M, Panopoulos NJ, Kokkinidis M. HrpG and HrpV proteins from the
843 Type III secretion system of *Erwinia amylovora* form a stable heterodimer. *FEMS Microbiol Lett*.
844 2015;362(1):1-8.

845 35. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, et al. A Completely Reimplemented
846 MPI Bioinformatics Toolkit with a New HHpred Server at its Core. *J Mol Biol*. 2018;430(15):2237-43.

847 36. Koonin EV. The Turbulent Network Dynamics of Microbial Evolution and the Statistical Tree of Life. *J*
848 *Mol Evol*. 2015;80(5-6):244-50.

849 37. Treangen TJ, Rocha EP. Horizontal transfer, not duplication, drives the expansion of protein families
850 in prokaryotes. *PLoS Genet*. 2011;7(1):e1001284.

851 38. Hehemann JH, Arevalo P, Datta MS, Yu X, Corzett CH, Henschel A, et al. Adaptive radiation by waves
852 of gene transfer leads to fine-scale resource partitioning in marine microbes. *Nat Commun.* 2016;7:12860.

853 39. Perez JC, Shin D, Zwir I, Latifi T, Hadley TJ, Groisman EA. Evolution of a bacterial regulon controlling
854 virulence and Mg(2+) homeostasis. *PLoS Genet.* 2009;5(3):e1000428.

855 40. Cathelyn JS, Ellison DW, Hinchliffe SJ, Wren BW, Miller VL. The RovA regulons of *Yersinia*
856 *enterocolitica* and *Yersinia pestis* are distinct: evidence that many RovA-regulated genes were acquired more
857 recently than the core genome. *Mol Microbiol.* 2007;66(1):189-205.

858 41. Heroven AK, Nagel G, Tran HJ, Parr S, Dersch P. RovA is autoregulated and antagonizes H-NS-
859 mediated silencing of invasin and rovA expression in *Yersinia pseudotuberculosis*. *Molecular microbiology.*
860 2004;53(3):871-88.

861 42. Wyborn NR, Stapleton MR, Norte VA, Roberts RE, Grafton J, Green J. Regulation of *Escherichia coli*
862 hemolysin E expression by H-NS and *Salmonella* SlyA. *J Bacteriol.* 2004;186(6):1620-8.

863 43. Gordon BR, Li Y, Cote A, Weirauch MT, Ding P, Hughes TR, et al. Structural basis for recognition of
864 AT-rich DNA by unrelated xenogeneic silencing proteins. *Proceedings of the National Academy of Sciences of*
865 *the United States of America.* 2011;108(26):10690-5.

866 44. Oshima T, Ishikawa S, Kurokawa K, Aiba H, Ogasawara N. *Escherichia coli* histone-like protein H-NS
867 preferentially binds to horizontally acquired DNA in association with RNA polymerase. *DNA Res.*
868 2006;13(4):141-53.

869 45. Gray KM, Garey JR. The evolution of bacterial LuxL and LuxR quorum sensing regulators.
870 *Microbiology.* 2001;147(Pt 8):2379-87.

871 46. Rajput A, Kumar M. In silico analyses of conservational, functional and phylogenetic distribution of
872 the LuxL and LuxR homologs in Gram-positive bacteria. *Sci Rep.* 2017;7(1):6969.

873 47. Mortensen L, Dandanell G, Hammer K. Purification and characterization of the deoR repressor of
874 *Escherichia coli*. *EMBO J.* 1989;8(1):325-31.

875 48. Zeng X, Saxild HH, Switzer RL. Purification and characterization of the DeoR repressor of *Bacillus*
876 *subtilis*. *J Bacteriol.* 2000;182(7):1916-22.

877 49. Engels V, Wendisch VF. The DeoR-type regulator SugR represses expression of ptsG in
878 *Corynebacterium glutamicum*. *J Bacteriol.* 2007;189(8):2955-66.

879 50. Garces F, Fernandez FJ, Gomez AM, Perez-Luque R, Campos E, Prohens R, et al. Quaternary
880 structural transitions in the DeoR-type repressor UlaR control transcriptional readout from the L-ascorbate
881 utilization regulon in *Escherichia coli*. *Biochemistry.* 2008;47(44):11424-33.

882 51. Aleksandrak-Piekarczyk T, Szatraj K, Kosiorek K. GlaR (YugA)-a novel RpiR-family transcription
883 activator of the Leloir pathway of galactose utilization in *Lactococcus lactis* IL1403. *Microbiologyopen.*
884 2019;8(5):e00714.

885 52. Khoroshkin MS, Leyn SA, Van Sinderen D, Rodionov DA. Transcriptional Regulation of Carbohydrate
886 Utilization Pathways in the *Bifidobacterium* Genus. *Front Microbiol.* 2016;7:120.

887 53. Sorensen KI, Hove-Jensen B. Ribose catabolism of *Escherichia coli*: characterization of the rpiB gene
888 encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB
889 expression. *J Bacteriol.* 1996;178(4):1003-11.

890 54. Skinner A, Cooper R. The regulation of ribose-5-phosphate isomerisation in *Escherichia coli* K12. *FEBS*
891 *letters.* 1971;12(5):293-6.

892 55. Brooke JS, Valvano MA. Biosynthesis of inner core lipopolysaccharide in enteric bacteria
893 identification and characterization of a conserved phosphoheptose isomerase. *Journal of Biological*
894 *Chemistry.* 1996;271(7):3608-14.

895 56. Bateman A. The SIS domain: a phosphosugar-binding domain. *Trends Biochem Sci.* 1999;24(3):94-5.

896 57. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a
897 hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral
898 sequences. *Nucleic acids research.* 2015;44(D1):D286-D93.

899 58. Burr T, Barnard AM, Corbett MJ, Pemberton CL, Simpson NJ, Salmond GP. Identification of the
900 central quorum sensing regulator of virulence in the enteric phytopathogen, *Erwinia carotovora*: the VirR
901 repressor. *Mol Microbiol.* 2006;59(1):113-25.

902 59. Monson R, Burr T, Carlton T, Liu H, Hedley P, Toth I, et al. Identification of genes in the VirR regulon
903 of *Pectobacterium atrosepticum* and characterization of their roles in quorum sensing-dependent virulence.
904 *Environ Microbiol*. 2013;15(3):687-701.

905 60. Cha JY, Lee JS, Oh JI, Choi JW, Baik HS. Functional analysis of the role of Fur in the virulence of
906 *Pseudomonas syringae* pv. *tabaci* 11528: Fur controls expression of genes involved in quorum-sensing.
907 *Biochem Biophys Res Commun*. 2008;366(2):281-7.

908 61. Tanui CK, Shyntum DY, Priem SL, Theron J, Moleleki LN. Influence of the ferric uptake regulator (Fur)
909 protein on pathogenicity in *Pectobacterium carotovorum* subsp. *brasiliense*. *PLoS One*.
910 2017;12(5):e0177647.

911 62. Yan Q, Gao W, Wu XG, Zhang LQ. Regulation of the Pcol/PcoR quorum-sensing system in
912 *Pseudomonas fluorescens* 2P24 by the PhoP/PhoQ two-component system. *Microbiology*. 2009;155(Pt
913 1):124-33.

914 63. Byers JT, Lucas C, Salmond GP, Welch M. Nonenzymatic turnover of an *Erwinia carotovora* quorum-
915 sensing signaling molecule. *J Bacteriol*. 2002;184(4):1163-71.

916 64. Parker WL, Rathnum ML, Wells JS, Jr., Trejo WH, Principe PA, Sykes RB. SQ 27,860, a simple
917 carbapenem produced by species of *Serratia* and *Erwinia*. *J Antibiot (Tokyo)*. 1982;35(6):653-60.

918 65. Choi J, Groisman EA. Acidic pH sensing in the bacterial cytoplasm is required for *Salmonella*
919 virulence. *Mol Microbiol*. 2016;101(6):1024-38.

920 66. Gunn JS, Richards SM. Recognition and integration of multiple environmental signals by the bacterial
921 sensor kinase PhoQ. *Cell Host Microbe*. 2007;1(3):163-5.

922 67. Cooper VJ, Salmond GP. Molecular analysis of the major cellulase (CelV) of *Erwinia carotovora*:
923 evidence for an evolutionary "mix-and-match" of enzyme domains. *Mol Gen Genet*. 1993;241(3-4):341-50.

924 68. Shyntum DY, Nkomo N, Gricia AR, Shigange NL, Bellieny-Rabelo D, Moleleki LN. The impact of type VI
925 secretion system, bacteriocins and antibiotics on competition amongst Soft-Rot Enterobacteriaceae:
926 Regulation of carbapenem biosynthesis by iron and the transcriptional regulator Fur. *bioRxiv*. 2018:497016.

927 69. Lerat E, Moran NA. The evolutionary history of quorum-sensing systems in bacteria. *Mol Biol Evol*.
928 2004;21(5):903-13.

929 70. Pemberton CL, Whitehead NA, Sebaihia M, Bell KS, Hyman LJ, Harris SJ, et al. Novel quorum-sensing-
930 controlled genes in *Erwinia carotovora* subsp. *carotovora*: identification of a fungal elicitor homologue in a
931 soft-rotting bacterium. *Mol Plant Microbe Interact*. 2005;18(4):343-53.

932 71. McGowan S, Sebaihia M, Jones S, Yu B, Bainton N, Chan PF, et al. Carbapenem antibiotic production
933 in *Erwinia carotovora* is regulated by CarR, a homologue of the LuxR transcriptional activator. *Microbiology*.
934 1995;141 (Pt 3):541-50.

935 72. Holeva MC, Bell KS, Hyman LJ, Avrova AO, Whisson SC, Birch PR, et al. Use of a pooled transposon
936 mutation grid to demonstrate roles in disease development for *Erwinia carotovora* subsp. *atroseptica*
937 putative type III secreted effector (DspE/A) and helper (HrpN) proteins. *Molecular plant-microbe*
938 interactions. 2004;17(9):943-50.

939 73. Zou L, Zeng Q, Lin H, Gyaneshwar P, Chen G, Yang CH. SlyA regulates type III secretion system (T3SS)
940 genes in parallel with the T3SS master regulator HrpL in *Dickeya dadantii* 3937. *Appl Environ Microbiol*.
941 2012;78(8):2888-95.

942 74. Blijlsma JJ, Groisman EA. The PhoP/PhoQ system controls the intramacrophage type three secretion
943 system of *Salmonella enterica*. *Mol Microbiol*. 2005;57(1):85-96.

944 75. Ellermeier JR, Slauch JM. Fur regulates expression of the *Salmonella* pathogenicity island 1 type III
945 secretion system through Hld. *J Bacteriol*. 2008;190(2):476-86.

946 76. Cordero-Alba M, Bernal-Bayard J, Ramos-Morales F. SrfJ, a *Salmonella* type III secretion system
947 effector regulated by PhoP, RcsB, and IolR. *J Bacteriol*. 2012;194(16):4226-36.

948 77. Haque MM, Hirata H, Tsuyumu S. Role of PhoP-PhoQ two-component system in pellicle formation,
949 virulence and survival in harsh environments of *Dickeya dadantii* 3937. *Journal of general plant pathology*.
950 2012;78(3):176-89.

951 78. Sana TG, Hachani A, Bucior I, Soscia C, Garvis S, Termine E, et al. The second type VI secretion system
952 of *Pseudomonas aeruginosa* strain PAO1 is regulated by quorum sensing and Fur and modulates
953 internalization in epithelial cells. *J Biol Chem.* 2012;287(32):27095-105.

954 79. Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria.
955 *Environmental Microbiology.* 2018;20(1):1-15.

956 80. Wu HY, Chung PC, Shih HW, Wen SR, Lai EM. Secretome analysis uncovers an Hcp-family protein
957 secreted via a type VI secretion system in *Agrobacterium tumefaciens*. *J Bacteriol.* 2008;190(8):2841-50.

958 81. Ma L-S, Hachani A, Lin J-S, Filloux A, Lai E-M. *Agrobacterium tumefaciens* deploys a superfamily of
959 type VI secretion DNase effectors as weapons for interbacterial competition in planta. *Cell host & microbe.*
960 2014;16(1):94-104.

961 82. Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G, et al. Structure of the cell-adhesion
962 fragment of intimin from enteropathogenic *Escherichia coli*. *Nat Struct Biol.* 1999;6(4):313-8.

963 83. Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, et al. Crystal structure of
964 enteropathogenic *Escherichia coli* intimin-receptor complex. *Nature.* 2000;405(6790):1073-7.

965 84. Pell LG, Gasmu-Seabrook GM, Morais M, Neudecker P, Kanelis V, Bona D, et al. The solution structure
966 of the C-terminal Ig-like domain of the bacteriophage lambda tail tube protein. *J Mol Biol.* 2010;403(3):468-
967 79.

968 85. Fraser JS, Yu Z, Maxwell KL, Davidson AR. Ig-like domains on bacteriophages: a tale of promiscuity
969 and deceit. *J Mol Biol.* 2006;359(2):496-507.

970 86. Preston G, Deng WL, Huang HC, Collmer A. Negative regulation of *hrp* genes in *Pseudomonas*
971 *syringae* by *HrpV*. *J Bacteriol.* 1998;180(17):4532-7.

972 87. Jovanovic M, James EH, Burrows PC, Rego FG, Buck M, Schumacher J. Regulation of the co-evolved
973 *HrpR* and *HrpS* AAA+ proteins required for *Pseudomonas syringae* pathogenicity. *Nat Commun.* 2011;2:177.

974 88. Jovanovic M, Waite C, James E, Synn N, Simpson T, Kotta-Loizou I, et al. Functional Characterization
975 of Key Residues in Regulatory Proteins *HrpG* and *HrpV* of *Pseudomonas syringae* pv. *tomato* DC3000. *Mol*
976 *Plant Microbe Interact.* 2017;30(8):656-65.

977 89. Wei CF, Deng WL, Huang HC. A chaperone-like *HrpG* protein acts as a suppressor of *HrpV* in
978 regulation of the *Pseudomonas syringae* pv. *syringae* type III secretion system. *Mol Microbiol.*
979 2005;57(2):520-36.

980 90. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using
981 PCR products. *Proceedings of the National Academy of Sciences.* 2000;97(12):6640-5.

982 91. Duarte V, De Boer S, Ward L, Oliveira A. Characterization of atypical *Erwinia carotovora* strains
983 causing blackleg of potato in Brazil. *Journal of Applied Microbiology.* 2004;96(3):535-45.

984 92. Samson R, Legendre J, Christen R, Fischer Le Saux M., Achouak W., Gardan L. Transfer of
985 *Pectobacterium chrysanthemi* (Burkholder et al. 1953) Brenner et al. 1973 and *Brenneria paradisiaca* to the
986 genus *Dickeya* gen. nov. as *Dickeya chrysanthemi* comb. nov. and *Dickeya paradisiaca* comb. nov. and
987 delineation of four novel species, *Dickeya dadantii* sp. nov., and *Dickeya dianthicola* sp. nov., *Dickeya*
988 *dieffenbachiae* sp. nov., and *Dickeya zeae* sp. nov. *International Journal of Systematic Evolution and*
989 *Microbiology.* 2005.

990 93. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
991 *Bioinformatics.* 2014;30(15):2114-20.

992 94. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. *Nat*
993 *Methods.* 2015;12(4):357-60.

994 95. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence
995 reads to genomic features. *Bioinformatics.* 2014;30(7):923-30.

996 96. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression
997 analysis of digital gene expression data. *Bioinformatics.* 2010;26(1):139-40.

998 97. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide
999 functional annotation through orthology assignment by eggNOG-mapper. *Molecular biology and evolution.*
000 2017;34(8):2115-22.

.001 98. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research.
.002 2000;28(1):27-30.

.003 99. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER web server: 2015
.004 update. Nucleic Acids Res. 2015;43(W1):W30-8.

.005 100. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The Pfam protein families database.
.006 Nucleic Acids Res. 2010;38(Database issue):D211-22.

.007 101. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the
.008 analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169.

.009 102. Li L, Stoeckert CJ, Jr., Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes.
.010 Genome Res. 2003;13(9):2178-89.

.011 103. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR
.012 and the 2- $\Delta\Delta CT$ method. Methods. 2001;25(4):402-8.

.013 104. Axelrood PE, Rella M, Schroth MN. Role of antibiosis in competition of *Erwinia* strains in potato
.014 infection courts. Appl Environ Microbiol. 1988;54(5):1222-9.

.015 105. Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences.
.016 Protein Sci. 2018;27(1):135-45.

.017 106. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence
.018 alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189-91.

.019 107. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server.
.020 Nucleic acids research. 2015;43(W1):W389-W94.

.021 108. Eswar N, Eramian D, Webb B, Shen MY, Sali A. Protein structure modeling with MODELLER. Methods
.022 Mol Biol. 2008;426:145-59.

.023 109. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.

.024 110. Ravenhall M, Škunca N, Lassalle F, Dessimoz C. Inferring horizontal gene transfer. PLoS
.025 computational biology. 2015;11(5):e1004095.

.026 111. Sims D, Ponting CP, Heger A. CGAT: a model for immersive personalized training in computational
.027 genomics. Brief Funct Genomics. 2016;15(1):32-7.

.028 112. Kullback S, Leibler RA. On information and sufficiency. The annals of mathematical statistics.
.029 1951;22(1):79-86.

.030 113. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software
.031 environment for integrated models of biomolecular interaction networks. Genome research.
.032 2003;13(11):2498-504.

.033 114. Perez-Llamas C, Lopez-Bigas N. Gitools: analysis and visualisation of genomic data using interactive
.034 heat-maps. PloS one. 2011;6(5):e19541.

.035

.036 SUPPORTING INFORMATION CAPTIONS

.037 **S1.1 Table.** PhoP in planta regulon obtained from whole-transcriptome data set obtained at early infection
.038 (12 hours post-infection on potato tubers)

.039 **S1.2 Table.** PhoP in planta regulon obtained from whole-transcriptome data set obtained at late infection
.040 (24 hours post-infection on potato tubers)

.041 **S1.3 Table.** SlyA in planta regulon obtained from whole-transcriptome data set obtained at early infection

.042 (12 hours post-infection on potato tubers)

.043 **S1.4 Table.** SlyA in planta regulon obtained from whole-transcriptome data set obtained at late infection (24

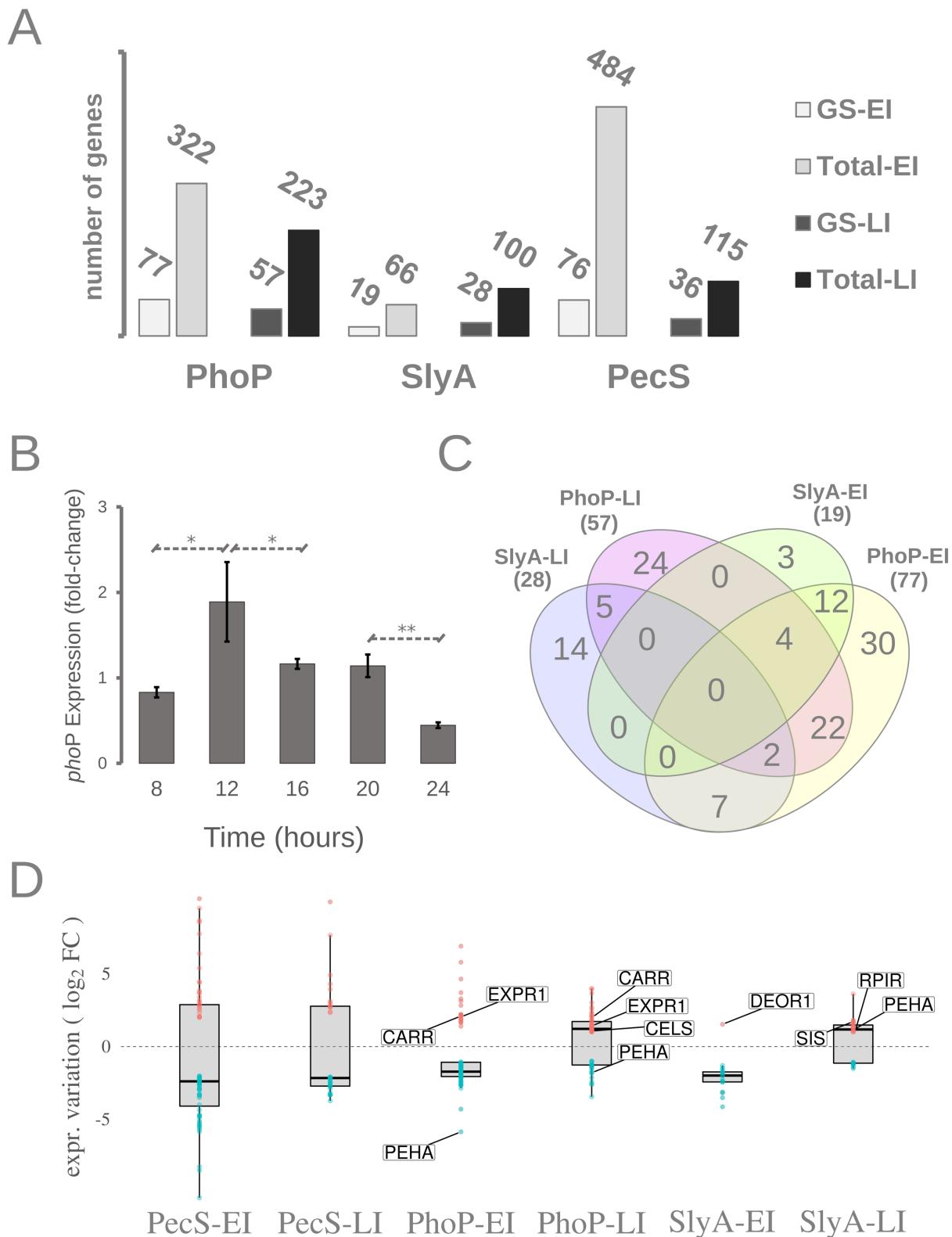
.044 hours post-infection on potato tubers)

.045 **S2 Table.** HGT prediction of genes of interest in *Pcb1692* and *Ddad3937* based on two parametric methods

.046 (dinucleotide frequencies and GC3 content)

.047 **S3 Table.** Genome-wide detection of two newly discovered motifs in HrpV (GLLR) and Big-associated

.048 (GWYN) in 100 SRP genomes through HMMER scan


.049 **S4 Table.** Gene-neighborhood of hrpV-containing genes in 89 SRP genomes represented by domain

.050 architectures predicted by HMMER3

.051 **S1 Appendix.** Supporting material including S1-S5 Figures.

.052

FIGURES

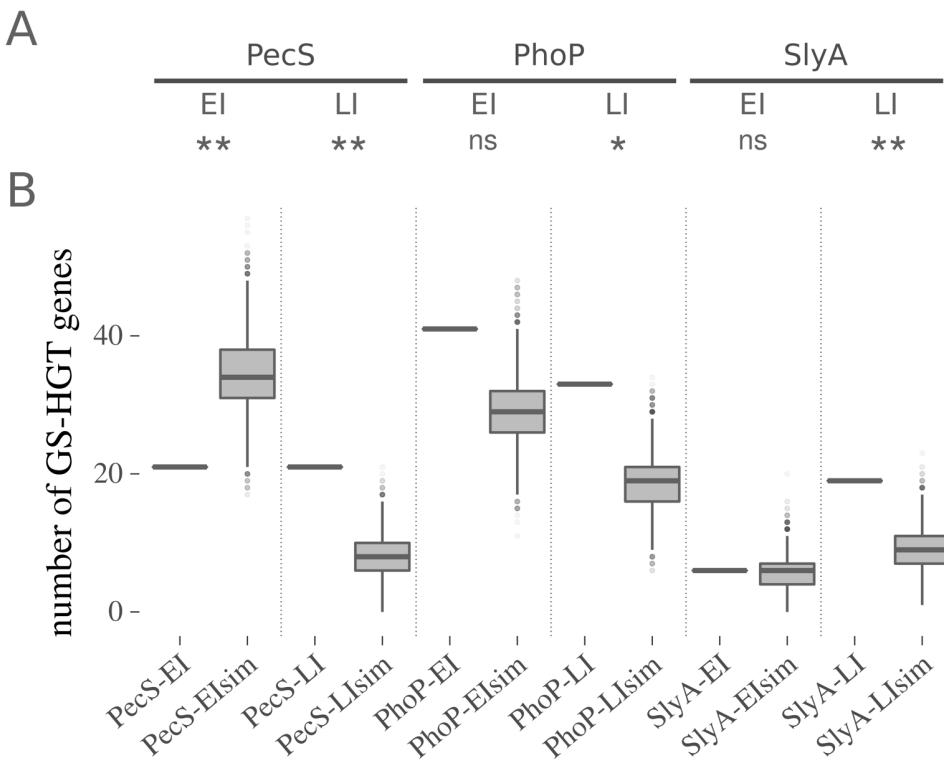
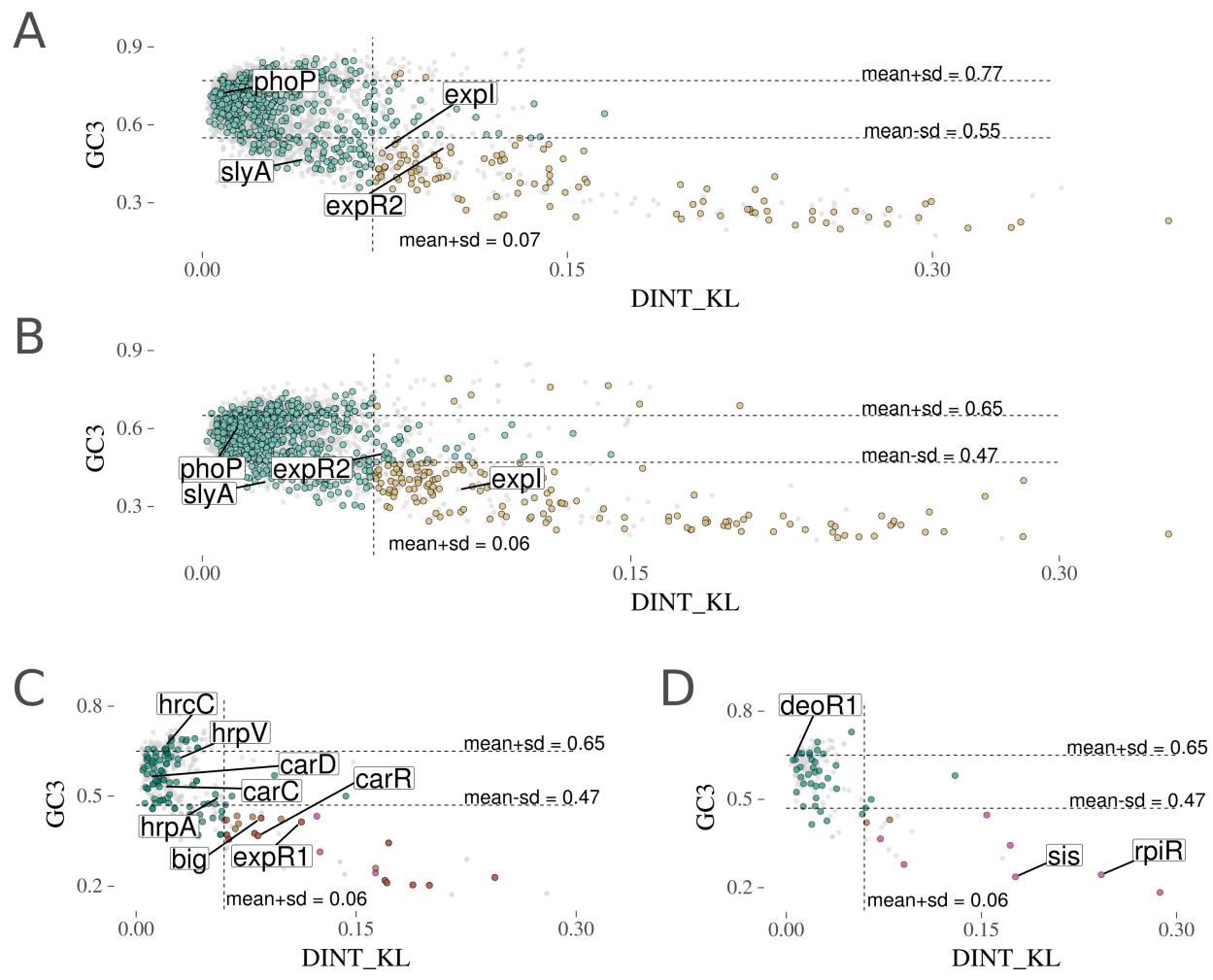

.053

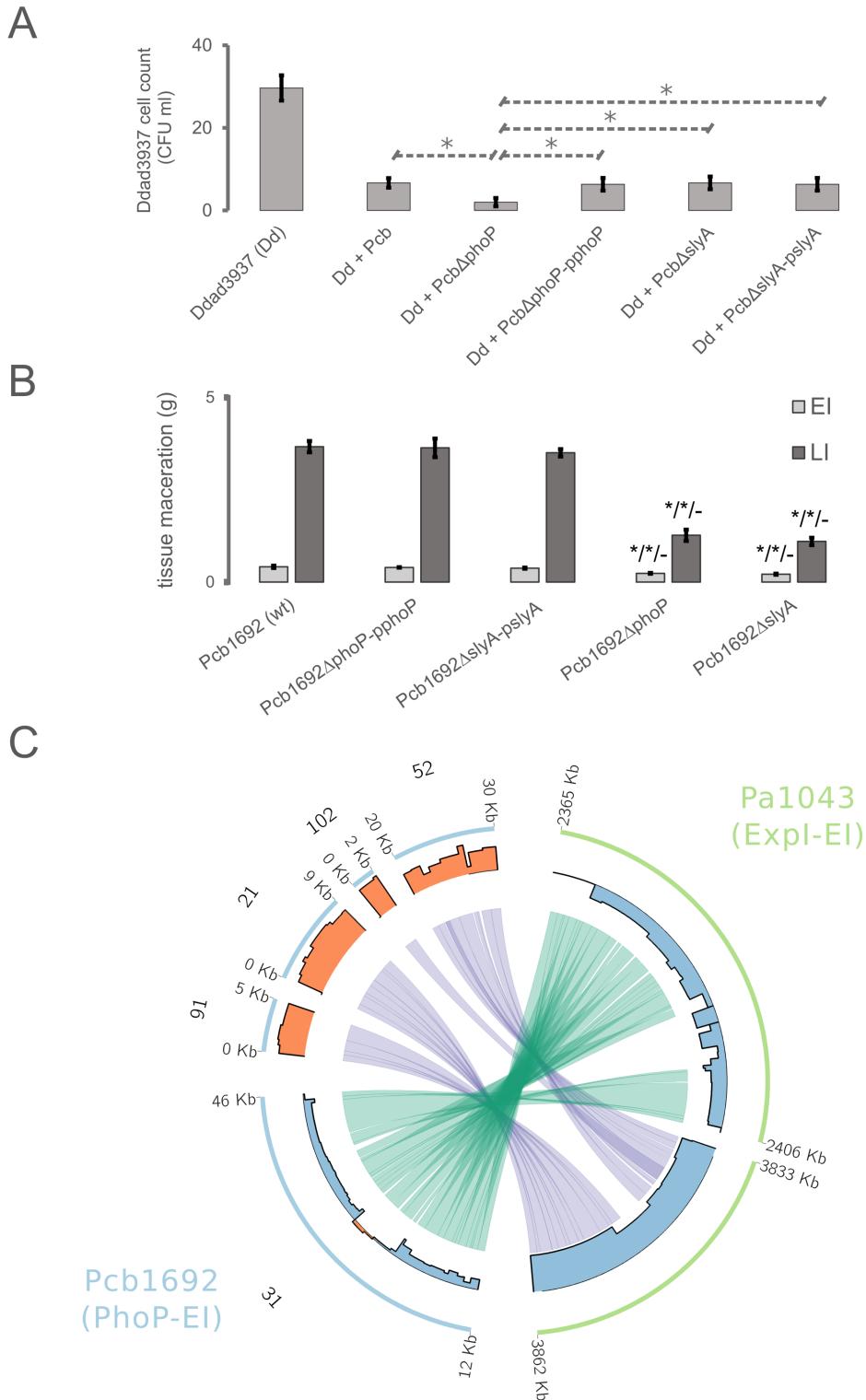
Figure 1 - Genome-wide regulatory impact of three global regulators in *Pcb1692* and *Ddad3937* and the

.054

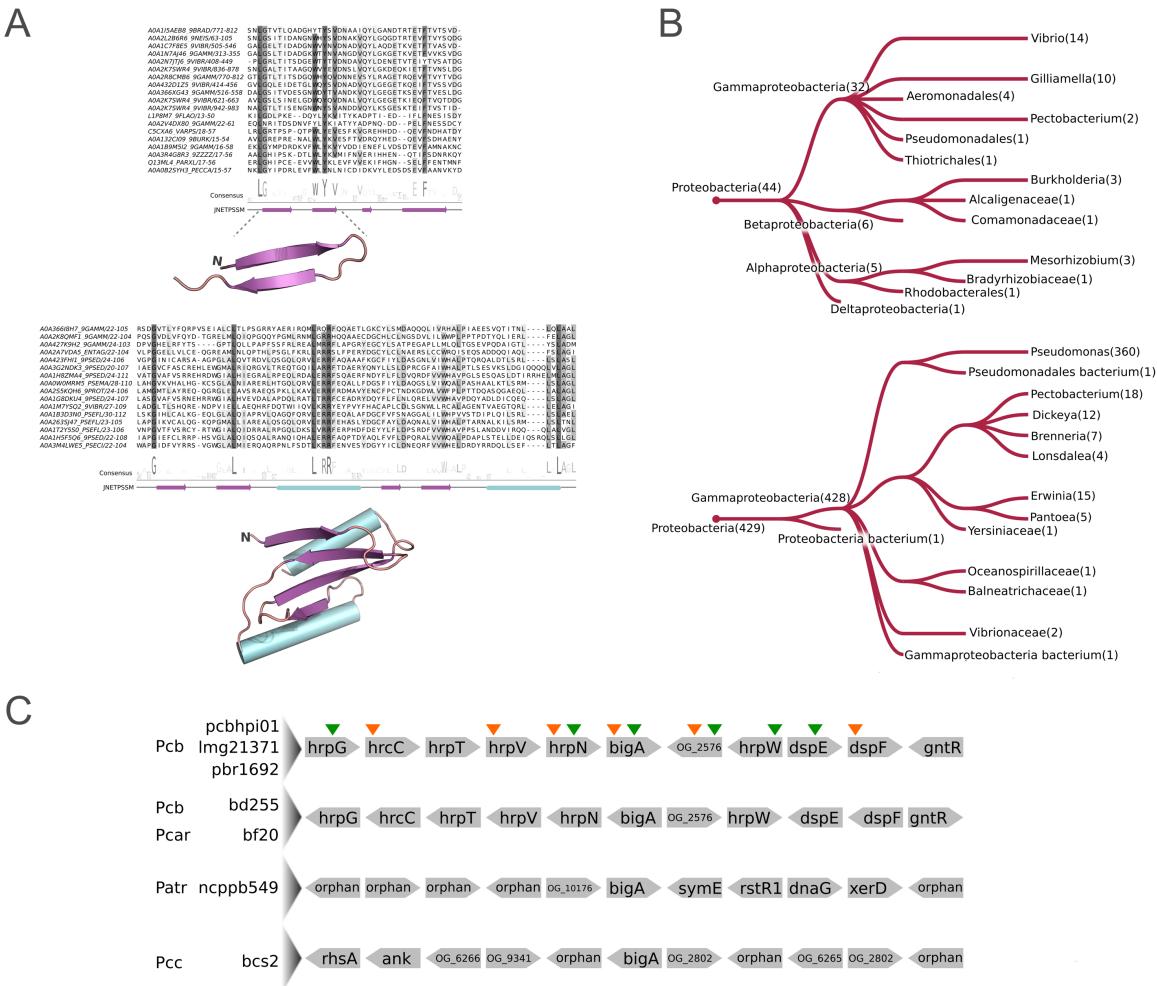
transcriptional levels of *phoP* regulator during plant infection. (A) Genus-specific (GS) versus the total gene


.055 (Total) amounts in PhoP, SlyA and PecS regulons *in planta* both at early and late infection (EI; LI) are
.056 represented in the bar plot. PhoP and SlyA regulons were extracted from *Pcb1692* infection samples. PecS
.057 regulons were extracted from *Ddad3937* samples. **(B)** Transcriptional levels of the *phoP* gene measured by
.058 qRT-PCR in four-hour intervals in potato tubers infected by *Pcb1692* across the first 24 hpi. Consecutive time
.059 points were tested for statistically significant (t-test) differences in their expression levels. Significant results
.060 are marked with asterisks in the graph (* for $P < 0.05$; ** for $P < 0.005$). **(C)** Venn diagrams depicting genus-
.061 specific genes found in PhoP and SlyA *in planta* regulons at EI and LI assessed in *Pcb1692*. The total number
.062 of genus-specific genes found within each regulon is highlighted under each regulon label. **(D)** Gene
.063 transcriptional variations (log2 fold change) are depicted specifically for genus-specific genes. Transcriptional
.064 variation data was extracted from PhoP, SlyA and PecS regulons either at early or late infection (EI; LI). The
.065 box plots are overlaid with dot plots, in which each dot represents a single gene expression value. In PhoP
.066 and SlyA regulons, specific genes are labelled as follows: polygalacturonase A (PEHA – *PCBA_RS10070*),
.067 cellulase S (CELS – *PCBA_RS08365*), quorum sensing regulators (CARR – *PCBA_RS04390*; EXPR1 –
.068 *PCBA_RS15665*), transcriptional regulators (DEOR1 – *PCBA_RS02575*; RPIR – *PCBA_RS22175*), and SIS-
.069 encoding gene (*PCBA_RS22170*).

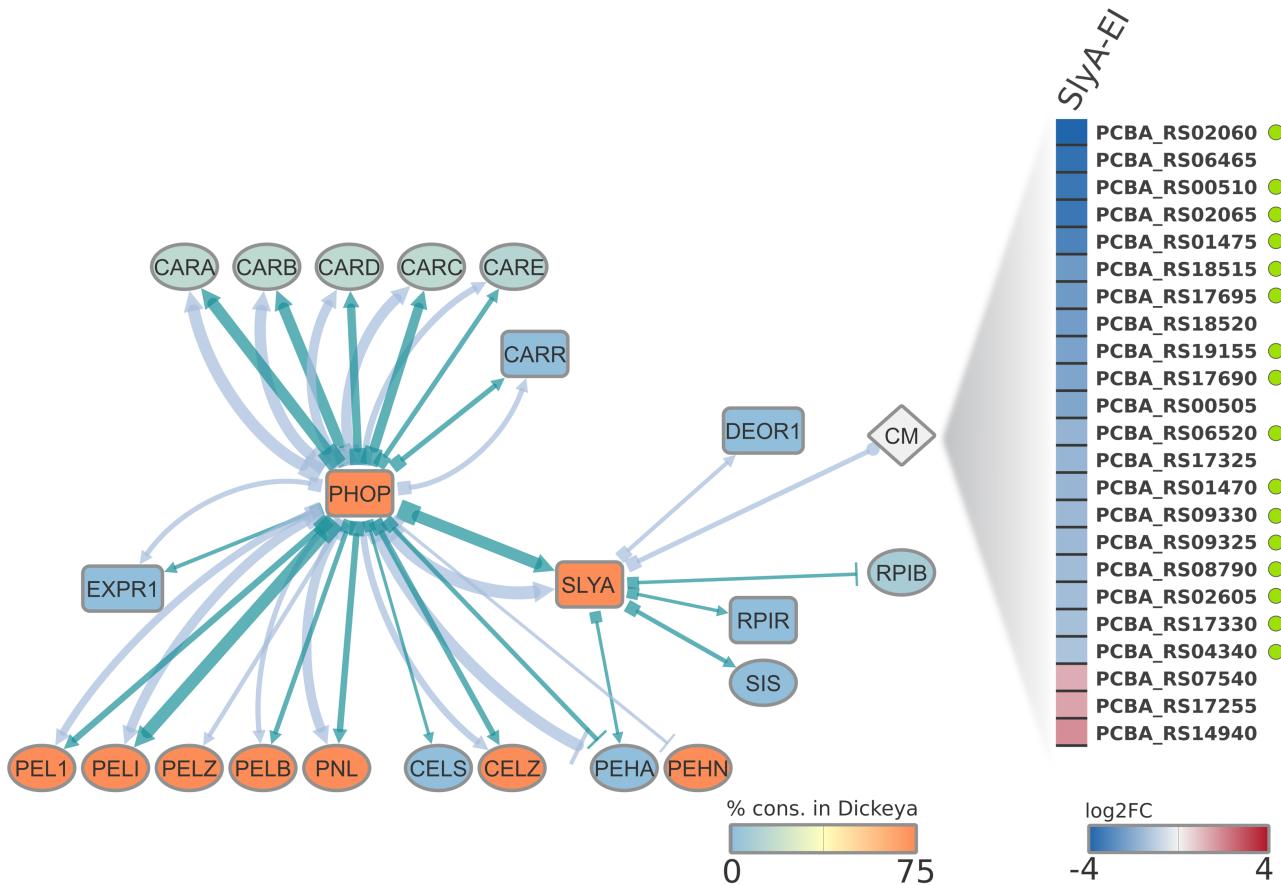
.070 **Figure 2 - Overrepresentation of genus-specific HGT candidate genes in PhoP, SlyA and PecS regulons in**


.071 ***Pcb1692* and *Ddad3937*.** (A) The significance of genus-specific HGT candidate (GS-HGT) genes occurrence in
.072 each regulon was analyzed through two-tailed Fisher exact tests using the respective *spp.* genomes as
.073 background set (* for $P < 0.05$; ** for $P < 0.01$; ns for $P > 0.05$). (B) Each section of the plot (separated by
.074 dotted lines) represents the comparison between (a) the actual number of GS-HGT genes found in each
.075 regulon as a single horizontal line, and (b) the distribution of GS-HGT gene amounts found in each of the
.076 10 000 computationally shuffled versions of the respective regulons (see 'Methods' for details). The
.077 simulated data sets are labelled with the 'Sim' postfix in the graph.

.078

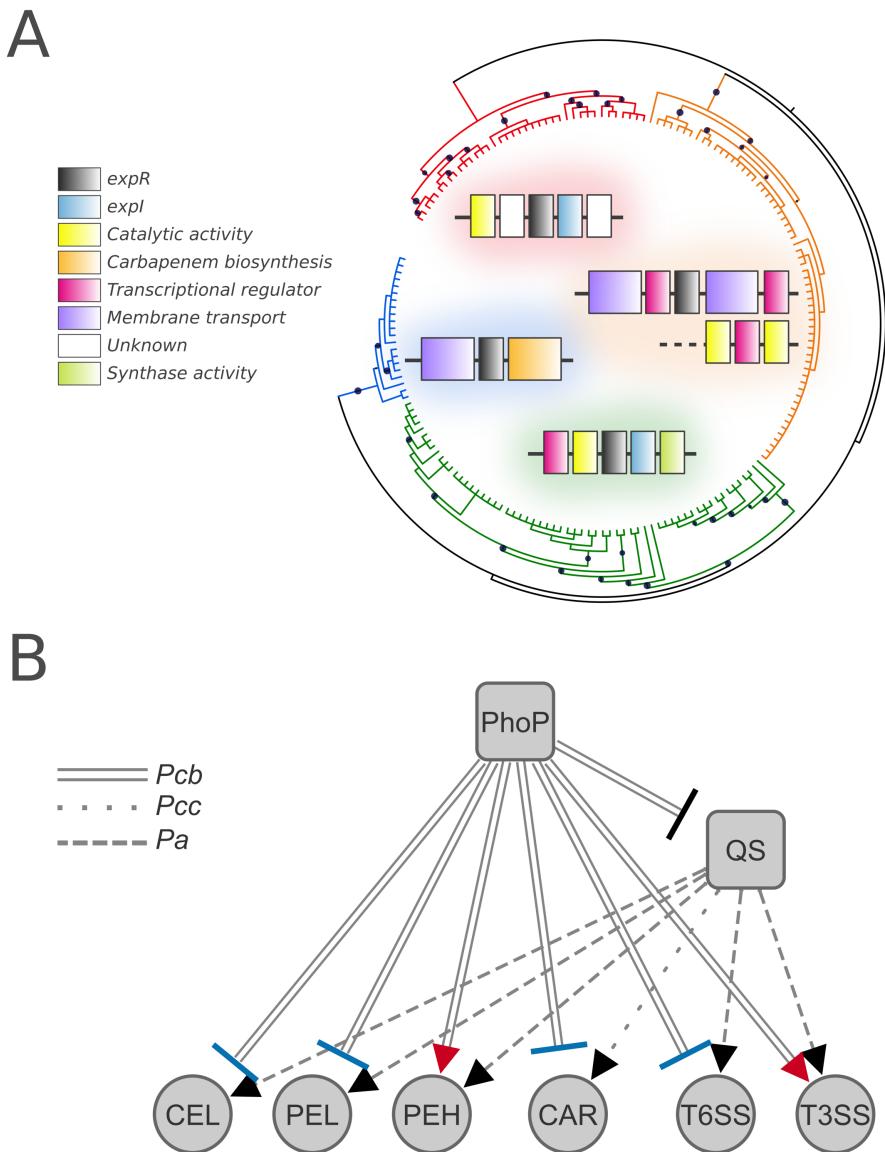

.079 **Figure 3 - Horizontal gene transfer predictions for genus-specific genes in *Ddad3937* and *Pcb1692*.** (A) Two methods measuring sequence composition bias are represented for each gene in the *Ddad3937* genome as follows: GC content at the third codon position index (GC3) in the y-axis, and the Kullback-Leibler distance of dinucleotide frequency distributions (DINT_KL) relative to the *Ddad3937* genome in the x-axis. The coding sequences from *Ddad3937* comprise the background set colored in grey. From this set, specific genes are colored according to both (a) the orthologous conservation in SRP genomes and (b) distance to the *Ddad3937* genome in both GC3 and DINT_KL metrics. Those genes exhibiting above-threshold ($\text{mean} \pm \text{SD}$) values ('above-threshold') are represented in light brown if they are genus-specific (orthologs found in *Dickeya* but not in *Pectobacterium* genomes). Those genes exhibiting below-threshold values in either GC3 or DINT_KL ('below-threshold') are represented in green. Four genes of interest in this study are labelled as follows: *phoP* (*DDA3837_RS11500*), *slyA* (*DDA3937_RS12595*), *expR2* (*DDA3937_RS20730*), and *expl*

.091 (DDA3937_RS20725). **(B)** The graph follows the same representation described in (A). All the analyses
.092 presented above for *Ddad3937* and the *Dickeya* genus are mirrored for *Pcb1692* and the *Pectobacterium*
.093 genus in 'B'. Different functional classes are labelled as follows: Transcriptional regulators - *phoP*
.094 (*PCBA_RS01290*), *slyA* (*PCBA_RS02460*), *expR2* (*PCBA_RS20280*), and *exp1* (*PCBA_RS15660*). **(C)** The entire
.095 set of genes regulated *in planta* (at early or late infection) by *PhoP* in *Pcb1692* comprise the background set
.096 colored in grey. Genus-specific genes are highlighted in (a) green if below-threshold, (b) light brown if above-
.097 threshold and regulated at early infection, (c) pink if above-threshold and regulated at late infection, or (d)
.098 dark brown if above-threshold and regulated at both early and late infection. Genes from different *Pcb1692*
.099 operons are labelled as follows: type III secretion operon - *hrpA* (*PCBA_RS14175*), *hrcC* (*PCBA_RS14210*),
.100 *hrpV* (*PCBA_RS14220*), *bigA* (*PCBA_RS14230*); carbapenem biosynthesis-associated - *carR* (*PCBA_RS04390*),
.101 *carD* (*PCBA_RS04370*), *carC* (*PCBA_RS04375*); and the transcriptional regulator *expR1* (*PCBA_RS15665*). **(D)**
.102 The graph follows the same representation described in (C) depicting *SlyA* regulons (early and late infection)
.103 in *Pcb1692*. Genes associated with carbohydrate metabolism regulation are labelled as follows: the gene
.104 labelled 'sis' which encodes a SIS-containing product (*PCBA_RS22170*), *rpiR* (*PCBA_RS22175*),
.105 (*PCBA_RS22170*) *deoR1* (*PCBA_RS02575*).


.106 **Figure 4 - *In planta* bacterial competition and virulence of *Pcb*1692 strains and the transcriptional variation**
.107 **of type III and VI secretion systems in *phoP* and *expl* mutants respectively in *Pcb*1692 and *Pa*1043. (A)** The
.108 graph depicts the survival of *Dickeya dadantii* strain 3937 (*Ddad*3937) in potato tubers when co-inoculated
.109 with different strains of *Pectobacterium carotovorum* subsp. *brasiliense* strain PBR1692 (*Pcb*): *Pcb* Δ *phoP*,

.110 *PcbΔslyA* (mutants) *Pcb* (wild-type), *PcbΔphoP-pphoP*, *PcbΔslyA-pslyA* (complemented mutant strains)
.111 measured in colony-forming units (CFU/ml). Significant differences between different samples were analyzed
.112 using Student's t-test (* for $P < 0.05$). **(B)** The weighed macerated tissue from potato tubers infected with
.113 *Pcb1692* strains was measured and the mass is expressed in grams (g). The strains analyzed are represented
.114 as follows: *Pcb1692* wild-type (wt); *Pcb1692* *phoP* mutant (*Pcb1692ΔphoP*); *Pcb1692* *slyA* mutant
.115 (*Pcb1692ΔslyA*); *Pcb1692* *phoP* mutant complemented with *phoP* (*Pcb1692ΔpphoP*); *Pcb1692* *slyA* mutant
.116 complemented with *slyA* (*Pcb1692ΔpslyA*). Above the mutant's measurement bars, the sequence of three
.117 Student's t-test results is depicted in which the mutants' macerated masses are compared respectively with
.118 that of (i) wild-type, (ii) respective complement and (III) the other mutant (*Pcb1692ΔphoP* is compared to
.119 *Pcb1692ΔslyA* and vice versa). **(C)** Genomic regions from *Pcb1692* (light-blue) and *P. atrosepticum* strain
.120 scri1043 (*Pa1043*) (light-green) are represented in circular ideograms. Coordinates of 5' and 3' ends of each
.121 genomic region are displayed in kilobases (kb). In the *Pcb1692* ideograms, respective contig numbers are
.122 labelled outside of the ideogram. In the inner radius, the bar plot indicates, for each region, the
.123 transcriptional variation level (log2 fold change) found in each transcriptome study (either (21) for *Pa1043*,
.124 or this study for *Pcb1692*). The bars are colored to highlight up-regulation (orange) or down-regulation
.125 (blue). The inner links binding genomic regions represent the homologous range of type VI (purple) and III
.126 (green) secretion systems conserved between *Pcb1692* and *Pa1043* genomes.
.127

.128 **Figure 5 - Multiple sequence alignments, structural scaffolds and phyletic distributions of two conserved**
.129 **motifs in type III secretion system-related putative effectors found in *Pcb1692*. (A)** The degree of
.130 conservation of each amino acid column is highlighted in increasingly darker shades of grey. Below each
.131 alignment, the amino acids logo depicts the amino acid consensus among the representative sequences.
.132 Next, secondary structure predictions are displayed in both linear and folded (obtained through sequence
.133 modelling) configurations. Purple arrows represent β -sheets, and cyan cylinders represent α -helices. **(B)**
.134 Taxonomic groups in which the Big-associated (top) and HrpV-borne (bottom) motifs are found in sequences
.135 exhibiting the same domain architecture as in *Pcb1692* are depicted in the phylogenetic trees. Taxonomic
.136 distributions were assessed through Hmmsearch online tool (32). The branches are labelled with the
.137 correspondent number of genes found in the group. **(C)** Genomic architectures of seven *Pectobacterium*
.138 strains are represented depicting five genes up and downstream in *bigA* gene neighborhoods. Gene names
.139 were annotated according to sequence searches on eggNOG database where applicable. Sequences


.140 unannotated by eggNOG are either represented by their respective orthologous group labels (see 'Methods'
.141 for details) or regarded as 'orphans' in case no orthologous sequences were identified across the SRP
.142 genomes. Different species are abbreviated on the left as follows: Pcb (*P. carotovorum* subsp. *brasiliense*),
.143 Pcar (*P. carotovorum*), Patr (*P. atrosepticum*), Pcc (*P. carotovorum* subsp. *carotovorum*). Species names are
.144 adjacent to strain names. Arrows above the top architecture indicate up-/down-regulation (up- or down-
.145 arrow respectively) of the respective genes by PhoP in *Pcb*1692 (strain pbr1692) either at early infection
.146 (orange), or late infection (green) on potato tubers.

.147 **Figure 6 - Regulatory interplay between PhoP, SlyA and QS systems in *Pcb1692*.** Three subsets of host
.148 adaptation and/or virulence themes were extracted from both PhoP and SlyA *in planta* regulons.
.149 Transcriptional regulator genes in the network are highlighted in square shapes. The diamond shape
.150 represents an array of genes annotated by the KEGG term 09101 'Carbohydrate metabolism' (CM). Each
.151 node is colored according to the relative presence in the *Dickeya* genus according to the color scale at the
.152 bottom of the network. The target link shape depicts the link relationship between source and target nodes:
.153 up-regulation (arrow), down-regulation (perpendicular line), or mixed (circular shape). The source link shape
.154 is represented as square to indicate "in the absence of", which is the direct inference based on the RNA-Seq
.155 experiment performed using the two mutants (*Pcb1692ΔphoP* and *Pcb1692ΔslyA*). Increasingly thicker links
.156 in the network represent higher $|\log_2 \text{fold change}|$ values. Light-blue and dark-green links respectively
.157 indicate regulation at early and late infection by one of the two analyzed regulators (PhoP or SlyA). On the
.158 right side of the network, a one-column heatmap depicts the differential expression ($\log_2 \text{fold change}$) in
.159 genes associated with carbohydrate metabolism regulated by SlyA at early infection. Genes are represented

.160 by the respective locus tags according to the NCBI database. Green circles adjacent to individual genes

.161 highlight those for which PhoP-dependent regulation at early infection was also found.

.162 **Figure 7 – Evolution of ExpR sub-families in distinct genomic contexts in SRP and the summary of PhoP-QS**

.163 **interplay in *Pcb1692*. (A)** The phylogenetic reconstruction of the autoinducer recognition module found in

.164 the ExpR/LuxR homologs from *Pectobacterium* and *Dickeya* was inferred by approximately-maximum-

.165 likelihood. The tree is represented in unscaled branches with bootstrap values displayed as black circles. The

.166 different ExpR/LuxR orthologous groups previously predicted through OrthoMCL, all of which were clustered

.167 exclusively with sequences from the same genus, are highlighted in colors as follows: ExpR2/VirR from

.168 *Dickeya* (red) and *Pectobacterium* (orange) genera; ExpR1 (green) and CarR (blue) from *Pectobacterium*. For

.169 each group, the dominant gene-neighborhoods found across the genus is depicted with the corresponding

.170 clade color in the background. **(B)** The summary network is displayed based on indirect inference from the

.171 RNA-Seq: if a given gene/system is repressed in the absence of PhoP, then this gene/system is activated in
.172 the presence of PhoP. Blue and red target shapes in the network links respectively represent
.173 correspondence and conflict between (i) the observed regulation by PhoP in *Pcb1692* and (ii) the quorum
.174 sensing (QS) regulation *in planta* reported in other *Pectobacterium* species. Regulated pathogenicity themes
.175 are abbreviated as follows: cellulases (CEL), pectate/pectin lyases (PEL), polygalacturonases (PEH),
.176 carbapenem biosynthesis (CAR), type VI and III secretion systems (T6SS and T3SS respectively), quorum
.177 sensing regulators (QS). Link patterns represent the species from which the inference is based on
.178 *Pectobacterium carotovorum* subsp. *carotovorum* (Pcc), *Pectobacterium atrosepticum* (Pba) and *Pcb1692*
.179 (Pcb).
.180