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Coincidental spike discharge amongst distributed groups of neurons is thought to 

provide an efficient mechanism for encoding percepts, actions and cognitive processes1–

3. Short timescale coactivity can indeed bind neurons with similar tuning, giving rise to 

robust representations congruent with those of the participating neurons4–6. 

Alternatively, coactivity may also play a role in information processing through 

encoding variables not represented by individual neurons. While this type of emergent 

coactivity-based coding has been described for physically well-defined variables, 

including percepts and actions7–10, its role in encoding abstract cognitive variables 

remains unknown. Coactivity-based representation could provide a flexible code in 

dynamic environments, where animals must regularly learn short-lived behavioural 

contingencies. Here, we tested this possibility by training mice to discriminate two new 

behavioural contingencies every day, while monitoring and manipulating neural 

ensembles in the hippocampal CA1. We found that, while the spiking of neurons within 

their place fields is organised into congruent coactivity patterns representing discrete 

locations during unsupervised exploration of the learning enclosure, additional neurons 

synchronised their activity into spatially-untuned patterns that discriminated opposing 

learning contingencies. This contingency discrimination was an emergent property of 

millisecond timescale coactivity rather than the tuning of individual neurons, and 

predicted trial-by-trial memory performance. Moreover, optogenetic suppression of 

plastic inputs from the upstream left CA3 region during learning selectively impaired 

the computation of contingency-discriminating, but not space-representing CA1 

coactivity patterns. This manipulation, but not silencing the more stable right CA3 

inputs, impaired memory of the contingency discrimination. Thus, the computation of 

an emergent, coactivity-based discrimination code necessitates plastic synapses and 

supports dynamic, two-contingency memory. 

To study the role of emergent coding in dynamic memory, we established a behavioural 

paradigm in which we trained mice to acquire two new stimulus-response-outcome 

associations (behavioural contingencies X and Y; Fig. 1a) within one newly encountered 

spatial configuration every day. At the start of each day, a learning enclosure was defined by 

a new spatial topology and position of two sets of LED wall-displays and two liquid 

dispensers (Fig. 1b and Supplementary Fig. 1). Mice initially explored the learning enclosure 

with each set of LEDs active in turn, as well as another (control) enclosure without any 

explicit task (Fig. 1c and Supplementary Fig. 1a). Next, we loaded both dispensers with either 
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a rewarding (sucrose) or aversive (quinine) solution such that the identity of the drops to be 

simultaneously delivered at each port was non-matching, contingent upon the active LEDs, 

and signalled by the same auditory tone across both contingencies (Fig. 1a,b). Animals 

experienced alternating blocks of X and Y contingency trials, with one LED set active in a 

given block (Fig. 1c). Mice rapidly developed an efficient approach response to preferentially 

collect the drop at the correct (sucrose) dispenser over the incorrect (quinine) dispenser, and 

therefore demonstrated successful learning of the two LED-defined contingencies (Fig. 1d,e 

and Supplementary Fig. 1b). Memory of the learned contingencies was subsequently tested in 

a probe session, where the tone was presented without drop delivery, while pseudo-randomly 

switching between the two sets of LEDs (Fig. 1c) wherein mice continued to prefer the 

correct dispenser (Fig. 1f and Supplementary Fig. 1c). Thus, mice successfully learned to 

discriminate two new task contingencies each day, providing a paradigm to study the neural 

substrates of flexible memory in dynamic environments. 

 

We monitored hippocampal CA1 neuronal ensembles throughout the exploration, learning 

and probe stages to investigate whether an emergent coactivity code develops in our two-

contingency discrimination task. The short (25ms) timescale coactivity patterns11 detected in 

the learning enclosure (Fig, 2a) differed significantly from those extracted in the control 

enclosure (Fig. 2b), showing their spatial context-selective expression. In addition, we 

isolated learning enclosure coactivity patterns that were as highly selective for each 

contingency (i.e., X versus Y) as they were for the enclosure (Fig. 2b,c). To investigate the 

functional significance of such patterns, we compared them to a matched group of patterns 

with high between-contingency similarity (Fig. 2b,c). We refer to these learning-enclosure 

patterns of neuronal coactivity as contingency-discriminating and contingency-invariant 

patterns, respectively. Neurons that contributed the most to coactivity patterns are henceforth 

referred to as “member” neurons. Strikingly, member neurons of contingency-discriminating 

patterns were not individually contingency selective (Fig. 2d). Moreover, such coactivity-

based discrimination could not be explained by differences in temporal firing properties of 

individual member neurons between contingencies (Supplementary Fig. 2a-c). Contingency-

discrimination was instead seen at the level of temporal correlations between spike trains of 

such neurons (Supplementary Fig. 2d,e). Thus, we identify an emergent, neural coactivity-

based discrimination of behavioural contingencies in the hippocampal CA1 during flexible 

learning. 
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We next asked whether contingency-discriminating coactivity patterns are related to task 

performance. When we tracked the strength of each pattern over time (Fig. 2a) we found that 

contingency-invariant patterns began increasing in strength during the initial exploration of 

the new learning enclosure on each day, before animals experienced task contingencies; their 

strength further increased and subsequently plateaued during learning (Fig. 2e). Conversely, 

contingency-discriminating coactivity was stable during exploration but increased as animals 

learned task contingencies (Fig. 2e). Coactivity pattern strengthening during learning 

reflected increased coincidental spiking rather than member neuron firing rate changes 

(Supplementary Fig. 2f-i). Importantly, we found that the reinstatement of contingency-

discriminating patterns during memory retrieval was predictive of trial-by-trial performance; 

these patterns were stronger before correct, compared to incorrect, behavioural responses to 

tone presentation (Fig. 2f). This contingency-selective pattern reinstatement was not related 

to a firing rate bias of member neurons or animal running speed (Supplementary Fig. 2j,k). 

Conversely, the activation strength of contingency-invariant patterns was not related to 

memory performance (Fig. 2f). These findings suggest that, while contingency-invariant 

patterns are rapidly computed in the hippocampal CA1 at the onset of unsupervised 

exploration of a novel environment, spiking activity is further organised to form additional 

patterns which are sensitive to the learning contingencies experienced in that environment 

and predictive of behavioural performance. 

 

During exploration of a novel environment, the coincidental spike discharge of CA1 neurons 

with spatially-overlapping firing fields gives rise to spatially tuned coactivity5,12. To test 

whether hippocampal CA1 follows such an inside-the-field (i.e. infield) firing association 

rule during contingency learning, we computed spatial maps both from the activation 

timecourses of the detected patterns, and from the spike trains of each of their member 

neurons (Fig. 3a and Supplementary Fig. 3). Contingency-discriminating coactivity was 

markedly less spatially coherent than that of contingency-invariant patterns (Fig. 3a,b). This 

was concomitant with less spatially coherent firing of contingency-discriminating pattern 

members relative to their contingency-invariant counterparts (Supplementary Fig. 4a,b). 

Moreover, individual firing member fields within the same contingency-discriminating 

pattern were less spatially congruent than those of a given contingency-invariant pattern (Fig. 
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3a,c; Supplementary Fig. 3). This was unrelated to differences in temporal correlation 

amongst members’ spike trains (Supplementary Fig. 4c). In fact, while contingency-invariant 

coactivity was spatially biased towards the place fields of member neurons, this bias was 

significantly weaker for contingency-discriminating patterns (Fig 3d,e). Thus, while 

congruent, contingency-invariant coactivity patterns represent space, contingency-

discriminating coactivity is spatially untuned, consistent with a specialisation in representing 

ongoing behavioural contingency regardless of the animal’s location. 

 

Finally, we asked what circuit mechanisms support the organisation of CA1 spiking into task-

related coactivity patterns during contingency learning. CA1 coactivity could rely on the 

recurrently connected upstream CA3 area13,14. Moreover, we previously found robust 

synaptic plasticity of left, but not right, CA3 (CA3L) inputs to CA115,16. Converging evidence 

implicates such synaptic plasticity in mediating associative learning17,18. We hypothesised 

that plastic CA3L inputs are instrumental in the gradual development of contingency-

discriminating CA1 coactivity patterns during learning. To test this hypothesis, we 

transduced CA3L pyramidal neurons of Grik4-cre mice with the yellow light-driven proton 

pump Archaerhodopsin-3.0 (Fig. 4a,b); implantation of tetrodes and optic fibres further 

allowed simultaneous monitoring of, and light delivery to, CA1 neuronal ensembles. Light 

delivery to CA3L axons in CA1 during learning markedly reduced the power of theta-nested 

slow-gamma, but not mid-gamma, oscillations in CA1 (Fig. 4c, Supplementary Fig. 5a,b), 

consistent with the suggestion that CA1 slow-gamma oscillations report incoming CA3 

inputs19–21. Yet, selectively suppressing CA3L→CA1 input preserved both the average firing 

rate of CA1 pyramidal neurons and the proportion of CA1 neurons assigned to coactivity 

patterns (Supplementary Fig. 5c,d). Importantly however, CA3L→CA1 input suppression 

shifted the distribution of CA1 between-contingency coactivity pattern similarity, and 

coactivity strength, towards contingency-invariance (Fig. 4d, Supplementary Fig. 5e). 

Moreover, CA3L→CA1 input suppression biased coincidental spike discharge towards 

member place fields (Fig. 4e), consistent with a loss of the spatially incongruent coactivity 

that characterises contingency-discriminating patterns. At the behavioural level, suppressing 

CA3L→CA1 inputs during learning had no effect on ongoing learning performance 

(Supplementary Fig. 5f) but impaired memory during the subsequent probe, selectively when 

mice had to flexibly retrieve two contingencies (Fig. 4f), but not when retrieving only one 

contingency (Supplementary Fig. 5g). Moreover, flexible memory retrieval was preserved 

after suppressing the more stable inputs from the right hemisphere (CA3R→CA1 inputs; 
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Supplementary Fig. 5h-j). Together, these findings show that plastic CA3L inputs support the 

organisation of CA1 spiking into contingency-discriminating coactivity patterns and 

associated two-contingency memory. 

 

Our findings identify a role for emergent, coactivity-based neural discrimination of 

behavioural contingencies in flexible memory-guided behaviour. The necessity of plastic 

inputs for discrimination at both the behavioural and neural levels reported here suggests an 

instrumental role for synaptic plasticity in the development of neural coactivity patterns that 

disambiguate new behavioural contingencies. This coding scheme could allow an efficient 

use of plasticity, generating a dynamic, coactivity-based discrimination of newly encountered 

contingencies every day, without committing individual neurons to represent such short-lived 

cognitive variables. A key prediction from this coding scheme is that downstream receiver 

neurons decode incoming information, represented as an emergent property of the collective 

activity of multiple neurons, by disambiguating relevant patterns of millisecond coincidence 

from the myriad of other inputs they receive3. In contrast, coactivity amongst congruent 

neurons would provide information redundancy for robust transmission to downstream 

neurons. Such redundancy could serve stable representation of the statistical regularities that 

define the background environment22. These contrasting coding schemes therefore provide 

distinct constraints on hippocampal communication with target regions involved in executive 

and motor functions. Altogether, our findings open new perspectives for future studies 

involving simultaneous ensemble recordings from the hippocampus and downstream target 

circuits to elucidate information decoding mechanisms. 
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Figure Legends 

Figure 1. Mice perform flexibly on a one-day-two-contingency memory task 

a) The two-learning-contingency layout. A tone signalled that both outcome dispensers 

deliver a liquid drop, the identity of which (sucrose versus quinine) depends on the active 

LED display. b) Schematic of an example learning enclosure. c) The three-stage task 

structure. Tone-defined trials occurred in Learning and Probe sessions, with the liquid drop 

outcomes only delivered during Learning. d) Example animal paths during trials in 

contingency X and contingency Y (correct path: black; incorrect path: red), overlaid on the 

overall animal path (grey) for one learning session. Black and blue/red circles represent path 

starting and correct/incorrect ending points, respectively. e) Behavioural preference for 

contingency-defined correct dispensers during Exploration and Learning (n=42 days from 13 

mice). f) Behavioural performance during memory probe test, showing that animals preferred 

the correct dispenser during tone in each alternating contingency.  

Figure 2. Emergent CA1 coactivity patterns discriminate task contingencies 

a) Example CA1 coactivity patterns detected in the learning enclosure and represented as 

weight vectors (left) where the weight of each neuron in a given vector indicates the 

contribution of that neuron spiking to the coactivity defining that pattern11; neurons with a 

weight above 2 standard deviations of a given normalised vector were defined as member 

neurons (coloured) of that pattern. Projecting such vectors on neuron spike trains (right raster 

plot) monitored in any task session allowed tracking the timecourse of each pattern’s strength 

(e.g., light-blue peaks represent coactivity strength of the left most pattern, with the member 

neuron spiking shown in light-blue on the raster plot). b) Example similarity matrices of 

patterns detected in the learning enclosure with contingency Y, compared to patterns detected 

in subsequent sessions with the same (within contingency; left panel) or the other (between 

contingency; middle panel) contingency, or to patterns detected in the control enclosure 

(between enclosure; right panel). Overall pattern weight vector cosine similarities: within-

contingency=0.72±0.01; between-contingency=0.66±0.01; between-enclosure=0.40±0.01; 

ANOVA with post-hoc Tukey-HSD test: P<0.001 for all comparisons; n=140 and 144 total 

patterns extracted in contingencies X and Y respectively; 5.0±0.3 total neurons per pattern. c) 

Across-condition similarity for contingency-discriminating and contingency-invariant 

patterns. Data Analysis with Bootstrap-coupled Estimation (DABEST22 plots are used from 

here onwards to plot data against a mean (or paired mean) difference between the two 

conditions (right y-axis) and to compare this difference against zero using the bootstrapping 

generated 95% confidence intervals (black error-bar). A kernel density estimate (shaded area) 

of the bootstrapping-generated resampled distribution is overlaid on the error-bar for clarity. 

d) Average firing rate of contingency-discriminating and contingency-invariant member 

neurons. e) Time-course of pattern strength. Dashed lines represent strength in Control 

enclosure. f) Pattern strength during probe trials, but before animal’s choice.  

Figure 3. Contingency-discriminating CA1 patterns are spatially discontiguous and 

incongruent with their member neurons 

a) Example coactivity pattern strength maps (left) and corresponding firing rate maps (right) 

of member neurons for a contingency-invariant (top row) and a contingency-discriminating 

(bottom row) pattern. b) Contingency-discriminating coactivity is less spatially coherent than 
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that of contingency-invariant patterns. c) Member neuron firing fields are less spatially 

overlapping for contingency-discriminating than contingency-invariant patterns. d) Example 

coverage traces (grey) with overlaid spiking activity (dots) of a member of a contingency-

invariant (left) and one of a contingency-discriminating (right) coactivity pattern. Spikes 

during a co-activation event of a given pattern are marked in blue (contingency-invariant) or 

orange (contingency-discriminating), while the remaining spikes are marked in green. Spatial 

firing field indicated by the green shading. e) Infield versus outfield co-activation score for 

member neurons of contingency-invariant and discriminating patterns. 

Figure 4. CA3L inputs are necessary for contingency-discriminating CA1 coactivity and 

dynamic two-contingency memory 

a) CA3L→CA1 optogenetic silencing protocol. CA3L neurons were transduced with 

Archaerhodopsin 3.0 in Grik4-Cre mice (n=5) and their axonal projections in the CA1 

targeted bilaterally during learning with yellow 561nm-light delivery from implanted optic 

fibres; 12 tetrodes monitored CA1 neurons. b) (Top) Expression of Archaerhodopsin3.0-YFP 

in the somata of CA3L neurons and their axons in CA1 bilaterally; DAPI-stained nuclei. 

Higher-magnification images of YFP-expressing CA3 neurons (bottom left) and their axons 

in the contralateral CA1 (bottom right). Scale bars (top=100µm, bottom=10µm). Stratum: Or, 

Oriens; Pyr, Pyramidale; Rad, Radiatum; LM, Lacunosum Moleculare. c) Light delivery to 

Arch3.0-expressing CA3L axons reduced the power of theta-nested slow, but not mid, gamma 

oscillations in CA1 (inset: example trace showing consecutive theta cycles nesting strong mid 

(~50-90 Hz) and slow (~25-40 Hz) gamma oscillations respectively. Raw trace and theta 

component as black and magenta traces, respectively; scale bar=100 ms). d) CA3L→CA1 

input suppression shifted the between-contingency similarity of CA1 patterns towards 

contingency invariance. n=54 and 57 patterns detected in contingency X and contingency Y 

respectively on days with CA3L→CA1 input suppression (light ON days); 4.9±0.3 total 

neurons per pattern. e) Infield versus outfield co-activation score for member neurons of all 

patterns during CA3L→CA1 input suppression (light ON) versus light OFF days. f) 

CA3L→CA1 input suppression during learning impaired subsequent probe trial performance. 

Error bars, mean±S.E.M except when used with DABEST plots, where they represent 

mean±95% confidence intervals  
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Supplementary Figure 1 

Enclosure set ups across distinct behavioural days. Animal coverage represented in grey. a) 

Example coverage paths for pre-learning exploration of learning enclosures. b) Example 

animal paths during learning trials in contingency X and contingency Y. c) Example animal 

paths during probe trials in contingency X and contingency Y. Paths of the animal during 

trials (correct path: black; incorrect path: red) are overlaid onto overall coverage (grey) for a 

single learning session. Black circles represent path starting points; blue and red circles 

represent correct and incorrect end points respectively. 

Supplementary Figure 2 

a) Inter-spike intervals, b) Z-scored firing rates during tone and drop delivery, and c) spike-

phase coherence to theta oscillations of contingency-discriminating pattern member neurons 

in the same contingency (i.e. the contingency in which the patterns were detected) and the 

opposite contingency; colour coded orange and grey respectively. d) Mean temporal 

correlations amongst members of the same contingency-invariant and e) contingency-

discriminating patterns in the same contingency and the opposite contingency. f,g) Mean 

firing rates and h,i) temporal correlations (Pearson r values) amongst each member neuron of 

a pattern and other members in the same pattern between learning and exploration. Firing 

rates of contingency-discriminating pattern member neurons remained indistinguishable 

between exploration and learning, while mean temporal correlations were higher in learning 

compared to exploration sessions. A similar result was seen for contingency-invariant pattern 

members (i.e. no change in rate but an increase in temporal correlation between exploration 

and learning). j) Contingency-discriminating pattern member firing rate is not higher before 

correct vs incorrect probe trials. k) Mouse running speed before correct and incorrect trials 

Supplementary Figure 3 

Example pattern activation maps and corresponding place maps of pattern member neurons 

for contingency-invariant (left) and contingency-discriminating (right) coactivity patterns.  

Supplementary Figure 4 

a) Spatial coherence of contingency-invariant is higher than that of contingency-

discriminating pattern members in the learning and b) in the control enclosures. c) Spatial 

similarity of contingency-discriminating pattern members is lower than that of contingency-

invariant pattern members regardless of the degree of temporal correlation between the 

member neurons. Two-way ANOVA with post-hoc Tukey-HSD test: main effect of pattern 

type (F=99.2, P<0.001) and temporal correlation (F=4.41, P=0.005). Pattern type: temporal 

correlation interaction (F=0.825, P=0.466). 

Supplementary Figure 5 

a) Example trace containing theta-nested mid and slow gamma oscillations (top; raw trace 

and theta component as black and magenta traces, respectively) along with its time-frequency 

representation (bottom) b) Example of the selective effect of CA3L→CA1 input suppression 

on the slow but not the mid gamma oscillations. Shown are Hilbert-spectra as a function of 

ongoing theta phase for pre, during and post light stimuli in a representative session. Theta 

cycles were subsampled to maintain instantaneous speed distributions across panels.  c) 

Firing rate of CA1 principal neurons is unaltered by light delivery (right, example raster plot 

during light ON period for one recording day) d) The ratio of detected coactivity patterns to 

CA1 principal neurons is unaltered by CA3L→CA1 input suppression. e) The strength of 

coactivity patterns detected in the CA1 under CA3L→CA1 input suppression is markedly less 
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sensitive to contingencies compared to light OFF days. f) CA3L→CA1 input suppression 

does not impair performance during learning trials. Mean correct dispenser preference; Light 

OFF: 0.87±0.10 (n= 42), Light ON: 0.87±0.10 (n=14); Unpaired two-sided t-test: P=0.98. g) 

Silencing CA3L inputs to CA1 does not impair memory performance when each LED set 

signals the same contingency throughout all learning sessions (“Control days”). h) Schematic 

of CA3R→CA1 optogenetic silencing protocol. CA3R neurons were transduced with 

Archaerhodopsin 3.0 in Grik4-Cre mice (n=3) and their axonal projections in the CA1 

targeted bilaterally during learning trials with yellow 561nm-light delivery from implanted 

optic fibres. i) Suppression of CA3R→CA1 input also reduces the power of theta-nested slow 

gamma, but not mid gamma, oscillations. Three-way ANOVA with post-hoc Tukey-HSD 

test: Main effect of gamma type (F=9.59, P=0.003), light delivery (F=90.96, P <0.001), but 

no main effect of hemisphere (F=0.302, P=0.584) on normalised gamma power. Gamma 

type:light interaction (F=11.26, P=0.001). Post-hoc Tukey-HSD tests revealed that light had a 

significant effect on slow gamma power (P<0.001) but not mid gamma power (P=0.212), that 

this effect was significant for both hemispheres (P<0.001 for both left and right CA3→CA1 

input suppression), and that normalised gamma power was indistinguishable with suppression 

of CA3 inputs from both hemispheres (P=0.721). j) CA3R→CA1 input suppression does not 

impair performance in probe trials. 

Error bars, mean ± s. e. m. except when used with DABEST plots, where they represent mean 

± 95% confidence intervals. 

*** P<0.001, ** P<0.01, * P<0.05 
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Methods 

Animals. We used male adult C57BL/6J mice (Charles River Laboratories; n = 3) and Grik4-

cre mice24 (The Jackson Laboratory; n = 10). Animals were pre-selected based on their 

comprehensive coverage of a novel open field and approach to a sucrose-baited dispenser 

within this open field. Animals had free access to water in a dedicated housing facility with a 

12/12 h light/dark cycle (lights on at 07:00h). Animals were housed with their littermates up 

until the start of the experiment. Food was available ad libitum before the experiments (see 

below), and water available ad libitum throughout. All experiments involving mice were 

conducted according to the UK Animals (Scientific Procedures) Act 1986 under personal and 

project licenses issued by the Home Office following ethical review. 

Surgical procedures. All surgical procedures were performed under deep anaesthesia using 

isoflurane (0.5-2%) and oxygen (2 l/min), with analgesia provided before (0.1 mg/kg 

vetergesic) and after (5 mg/kg metacam) surgery. For optogenetic manipulations, AAV5-

EF1a-DIO-Arch3.0-YFP viral vector injections (2×500nl) were performed unilaterally in the 

dorsal CA3 on either the left or right hemispheres (CA3L or CA3R) of hemizygous Grik4-cre 

mice using stereotaxic coordinates (site 1: −1.7 mm anteroposterior, ±1.5 mm lateral and −2.1 

mm ventral from bregma; site 2: −2.3 mm anteroposterior, ±2.3 mm lateral and −2.3 mm 

ventral from bregma). The viral vector was delivered at a rate of 100 nl min−1 using a glass 

micropipette. For electrophysiological recordings, mice were subsequently implanted with a 

microdrive with 12-14 independently movable tetrodes (combined with two optic fibres for 

optogenetic manipulations; Doric Lenses) targeting the dorsal CA1 bilaterally25. 

Behaviour. After the recovery period of at least one week following the surgical implantation 

procedure, mice were familiarised daily to the experimental paradigm, including handling, 

connection to the recording system and exploration of open fields. Mice were maintained at 

90-95% of their free-feeding bodyweight. Animals were made familiar with exploring an 

open field (“control enclosure”) and trained in three phases. Pre-training phase 1 involved 

conditioning mice to collect transiently available sucrose drops from a single dispenser 

following a ten second tone. Sucrose was initially available for 20 seconds before the drop 

was automatically aspirated by the dispenser. Over multiple training sessions, this was 

gradually reduced in 5 second intervals every time the mouse successfully obtained sucrose 

three times consecutively, until a 5 second availability period was reached. To encourage full 

coverage across the open field, and discourage persistence at the sucrose dispenser, tones 

were only delivered after the mouse had moved away from the dispenser to explore the open 

field. Training continued until mice successfully obtained reward on more than 80% of trials, 

while exploring the open field; this typically required 5-7 training days. All mice actively 

covered the open-field enclosures and approached the dispensers upon tone presentation. 

Next, for phase 2 of pre-training, mice experienced two pairs of wall-mounted LED displays 

and two identical dispensers in a novel spatial configuration of the learning enclosure each 

day. One dispenser delivered sucrose and the other quinine, with both drops simultaneously 

available for 5 seconds at the offset of a 10 second tone. The identity of the dispenser 

delivering each liquid was predicted by the currently illuminated, wall-mounted LED set, 

which defined a given contingency (X or Y). On a given phase 2 day, mice initially explored 

the control enclosure for one session, followed by the learning enclosure for two sessions, 

with a different LED display illuminated in each learning enclosure exploration session. 

Subsequently, a total of 6 learning sessions (3 of each contingency) were conducted in a 
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pseudorandom order (e.g. XYYXYX or XYXYYX), with 15 tones (thus 15 trials) in each 

session. Sessions of the same contingency were never presented 3 times in a row. Sucrose 

and quinine were delivered simultaneously after 80% of the tones in each session, with the 

remaining 20% of tones being non-reinforced (no sucrose or quinine delivered). After at least 

3 days (and up to 7 days) of training on phase 2, animals reached an average performance of 

80% correct choices or more on a given phase 2 day and thus were ready for the training 

phase. All behavioural and electrophysiological data quantified here are from this training 

phase. Here, the procedure was almost identical to phase 2 except that only two sessions of 

each contingency were presented in alternation (XYXY) in a novel configuration of the 

enclosure each day; and a memory probe test was carried out one hour after the final learning 

session of the day. In the probe session, 24 trials were delivered under extinction (i.e. non-

reinforced trials where neither sucrose nor quinine was available after the tone). 12 trials 

were presented in each LED-defined contingency, with pseudorandom transitions between X 

and Y LEDs while the animal was in the learning enclosure, with the restriction that either 2 

or 5 trials would be delivered in succession while a given LED was on. On “Control days”, 

we tested learning and retrieval of a single behavioural contingency throughout all sessions. 

Here, task structure was identical to one-day learning except that the same dispensers 

delivered sucrose or quinine regardless of the currently illuminated LED display. In all cases, 

correct and incorrect trials were defined by which dispenser the animals approached during 

the 5 second period of reward delivery in learning trials, or during the period from the start of 

the tone up to 10 seconds after the tone during the probe. If more than one dispenser was 

approached during the probe, the first dispenser visited was used for scoring. Behavioural 

preference for correct (sucrose-delivering) and incorrect (quinine delivering) dispensers 

during learning and probe sessions (Fig. 1e,f) was calculated as the difference between 

correct and incorrect trials divided by the sum of the two trial types. A similar behavioural 

preference score was calculated for the exploration session, on the basis of visits to a 

dispenser instead of trials (since there were no trials during exploration; Fig. 1e).  

In vivo ensemble recordings and light delivery. On the morning of each recording day, 

optimal positioning within the CA1 pyramidal layer was carried out using the local field 

potential (LFP) signals obtained from each tetrode25 in search of multi-unit spiking activity. 

Tetrodes were then left in position for ~1.5h before commencing recordings. Tetrodes were 

raised at the end of each recording day to avoid possible mechanical damage overnight. 

Optical interrogation was performed during learning using a diode-pumped solid-state laser 

(Laser 2000, Ringstead) that delivers yellow light (561nm; ~5-7 mW output power) to the 

optic fibres implanted bilaterally above the CA1 pyramidal cell layer in order to suppress 

CA3→CA1 inputs in Arch3.0-expressing Grik4-cre mice. Mice were accustomed to light 

delivery before training. During training, light was delivered for 3 minute periods, 5 times per 

learning session, with a 2 minute light OFF gap between each light delivery. Trials occurred 

only during light ON epochs, and at least 1 minute after the light came on to allow sufficient 

time for axonal suppression26.  

Multichannel data acquisition. Amplification, multiplexing and digitisation of the signals 

from the electrodes was carried out using a single integrated circuit located on the head of the 

animal (RHD2164, Intan Technologies; gain x1000). The amplified and filtered (0.09Hz to 

7.60kHz) electrophysiological signals were digitised at 20kHz and saved to disk along with 

the synchronisation signals from the position tracking and laser activation, as well as digital 

pulses reporting on tone presentation, sucrose and quinine delivery, drop removal, LED 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2019. ; https://doi.org/10.1101/776195doi: bioRxiv preprint 

https://doi.org/10.1101/776195
http://creativecommons.org/licenses/by-nc-nd/4.0/


display illumination, and licking events at each dispenser (detected as a break in an infrared 

beam across each dispenser’s drop delivery port). To track the location of the animal, three 

LED clusters were attached to the electrode casing and captured at 25 frames per second by 

an overhead colour camera. The signal was transmitted offline and aligned with the registered 

analogue tracking position and the aforementioned digital pulse timestamps. 

Spike detection and unit isolation. The electrophysiological signal was subsequently band-

pass filtered (800Hz to 5kHz) and single extracellular discharges were detected through 

thresholding the RMS power spectrum using a 0.2ms sliding window. Detected spikes of the 

individual electrodes were combined for each tetrode. To isolate spikes which putatively 

belong to the same neuron, spike waveforms were first up-sampled to 40kHz and aligned to 

their maximal trough. Principal component analysis was applied to these waveforms ±0.5ms 

from the trough to extract the first 3-4 principal components per channel, such that each 

individual spike was represented by 12 waveform parameters. An automatic clustering 

program (KlustaKwik, http://klusta-team.github.io) was run on this principal component 

space and the resulting clusters were manually recombined and further isolated based on 

cloud shape in the principal component space, cross-channel spike waveforms, auto-

correlation and cross-correlation histograms. A fully-automated clustering was further 

performed using Kilosort (https://github.com/cortex-lab/KiloSort) via the SpikeForest sorting 

framework (https://github.com/flatironinstitute/spikeforest), with units then automatically 

curated using metrics derived from the waveforms and spike times, and verified by the 

operator. All sessions recorded on the same day were concatenated and clustered together. A 

cluster was only used for further analysis if it showed: stable cross-channel spike waveforms, 

a clear refractory period in its auto-correlation histogram, well-defined cluster boundaries and 

an absence of refractory period in its cross-correlation histograms with the other clusters. We 

isolated 997 principal neurons (731 in light OFF days and 266 in light ON days). 

Neuronal pattern isolation and tracking. Firing patterns of co-active CA1 principal cells 

were detected using an unsupervised statistical framework based on independent component 

analysis11. Spikes discharged by each neuron were counted in 25ms time bins and 

standardised (z-scored, i.e., the activity of each neuron was set to have null mean and unitary 

variance), to avoid a priori bias toward neurons with higher firing rates. The neuronal 

population activity was represented by a matrix in which each element represents the z-

scored spike count of a given neuron within a given time bin. We extracted coactivity 

patterns from this matrix in a two-step procedure. First, the number of significant co-

activation patterns embedded within the neuronal population was estimated as the number of 

principal components of the activity matrix with variances above a threshold derived from an 

analytical probability function for uncorrelated data. Second, we applied independent 

component analysis to extract the coactivity patterns from projection of the data into the 

subspace spanned by the significant principal components (i.e., each coactivity pattern was 

captured by an independent component). Pattern detection was performed using active 

periods (speed > 2 cm/s) separately during the entire last session of contingency X, 

contingency Y (i.e. X2 and Y2) or the exploration session of the control enclosure as 

appropriate. To assess the enclosure- or contingency-specificity of coactivity patterns, we 

compared all patterns detected across enclosures or contingencies, respectively. The 

similarity of two coactivity patterns was quantified using the absolute value of the cosine 

similarity of their normalised weight vectors. To quantify the degree of similarity between 

patterns detected in any two sessions, we identified the maximum similarity between a given 
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coactivity pattern in one session and all patterns detected in the other. Contingency-

discriminating patterns were defined as those for which maximum between-contingency 

similarity was below the 90th percentile of the between-enclosure similarity distribution. A 

matched group of patterns at the top end of the between-contingency similarity distribution 

were used as “contingency-invariant” patterns for comparison. Subsequently, all patterns that 

had a within-contingency maximum similarity below the 90th percentile of the between-

enclosure similarity distribution were excluded from further analysis. Since detected weight 

vectors were asymmetrical (Fig 2a) the direction where weights were highest was assigned 

positive weights, and principal CA1 neurons whose weight was positive and exceeded 2 

standard deviations from the mean were identified as pattern ‘members’. In total, the analyses 

shown in Figures 2 and 3 included 67 contingency-discriminating patterns (159 member 

neurons), 51 contingency-invariant patterns (134 member neurons); all patterns detected in 

light OFF and light ON days were used in Figure 4.  

The activation strength of each coactivity pattern at time t (Fig. 2a, Supplementary Fig. 2a) 

was computed as:   

𝐴𝑡 = 𝑍𝑡
𝑇𝑃𝑍𝑡 

Where Zt is a vector carrying the z-scored rate of each neuron at time t, P is the projection 

matrix (outer product) of the corresponding independent component, and T is the transpose 

operator. At is therefore the squared projection of Zt onto the component that represents the 

coactivity pattern. This projection represents the similarity between the independent 

component and the population rate at a given time bin of 25 ms. The main diagonal of P was 

set to zero before calculating At, in order to eliminate the contribution of single neurons to the 

coactivity pattern strength. The resulting value of At reflected expression strength of a 

particular coactivity pattern and was used in subsequent calculations of coactivity pattern 

emergence and spatial tuning. To determine whether pattern expression strength predicted 

probe performance, we calculated each pattern’s strength during the period of tone 

presentation but before the animal approached either dispenser, and averaged these values 

during theta cycles across epochs preceding correct or incorrect choices. The same 

calculation was performed for member neuron firing rates. Significant co-activation events 

(Figures 3 and 4) were defined as time points when co-activation strength was more than 2 

standard deviations above the mean for the learning session in which the patterns were 

detected. 

 

Spatial maps. The recording arena was divided into bins of 1.5×1.5 cm to generate spike 

count maps (number of spikes fired in each bin) for each unit, or pattern strength map for 

each co-activation pattern, and an occupancy map (time spent by the animal in each bin). 

Rates and occupancy were calculated only during active periods (i.e. speed > 2 cm/s) and 

bins visited less than a total of 5 times per session were excluded from subsequent analysis. 

All maps were then smoothed by convolution with a two-dimensional Gaussian kernel of s.d. 

equal to two bin widths. Finally, spatial rate maps were generated by normalising the 

smoothed spike count maps by the smoothed occupancy map. Spatial coherence reflects the 

similarity of the firing rate in adjacent bins, and is the z-transform of the Pearson correlation 

(across all bins) between the rate in a bin and the smoothed rate of the same bin27. The same 

calculation was used on coactivity pattern strength to calculate pattern spatial coherence. 
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Spatial similarity between maps of member neurons, or co-activation patterns, was calculated 

as the Pearson correlation coefficient from the direct comparison of the spatial bins between 

the smoothed place rate maps. To determine the degree to which pattern coactivations were 

biased relative to members’ firing fields, we calculated an infield coactivation score for each 

member as the spatial density of coactivations inside the member neuron’s firing field (spatial 

bins within 70% of the peak firing rate bin) minus the outside-the-field coactivation density 

divided by the sum of those two values.  

LFP analyses. Raw local field potentials (LFPs) were down-sampled from 20kHz to 1250 Hz 

(order 8 Chebyshev type I filter was applied prior to decimation to avoid aliasing) and then 

decomposed using Empirical Mode Decomposition (EMD28). In order to avoid mode mixing, 

we used the mask sift EMD procedure29, with sinusoidal masks with the following 

frequencies: 350, 200, 70, 40, 30 and 7 Hz, which captured mid, slow gamma and theta 

oscillations as isolated components. To determine individual theta cycles and theta phase, we 

first detected peaks and troughs of theta with absolute values higher than low-frequency 

component (sum of all components with main frequencies below the theta signal) envelope; 

then a theta cycle was defined by pairs of supra-threshold troughs separated at least by 71ms 

(∼14 Hz) and no more than 200ms (5 Hz) that surrounded a supra-threshold peak. Theta 

phase was calculated by linear interpolating neighbouring theta troughs, zero crossings and 

peaks. For nested-gamma analysis (Fig. 4c and Supplementary Fig. 5a,b,i), instantaneous 

envelopes and frequencies were calculated by means of the normalised-Hilbert transform28,30. 

For the time course analysis shown in Fig. 4c and Supplementary Fig. 5i, we adopted a 

bootstrap procedure to keep their speed distribution of each time bin virtually equal. For each 

experiment, we used 60 to 30-second pre-laser stimulus windows as a reference for speed 

distribution. More specifically, we calculated the histogram (linearly-spaced speed bins from 

2 to 30 cm/s) of instantaneous speed values for each theta cycle within that reference 

window; then a bootstrap consisted of (1) subsampling theta cycles from that reference time 

window by randomly choosing 75% of the cycles in each speed bin (i.e., maintaining the 

original speed histogram proportions); (2) from all remaining time windows, for each theta 

cycle in the reference window we randomly chose a cycle with matched speed (no more than 

2.5% away from the reference cycle). One hundred of such bootstraps were computed for 

each tetrode, then all tetrodes of each experiment were averaged. Figures show the mean 

across recording days.  

Anatomical and histological analysis. All mice were anaesthetised with pentobarbital 

following completion of the experiments and transcardially perfused with PBS followed by 

4% PFA / 0.1% glutaraldehyde in PBS solution. Brains were extracted and kept in 4% PFA 

for at least 24 h before slicing. Coronal sections (50 μm thick) were then made and stored in 

PBS-azide combined with DAPI to stain neuronal somata. All sections were mounted in 

Vectashield (Vector Laboratories, Cat. No. H-1000) and images of native eYFP fluorescence 

and DAPI fluorescence were captured with a LSM 710 (Zeiss) confocal microscope using 

ZEN software (Zeiss). 

Statistical analyses. Error bars, mean±S.E.M except when used with DABEST plots, where 

they represent mean ± 95% confidence intervals. Ns refer to recording days for behavioural 

preference figures and theta-nested gamma analysis. For multi-unit data, Ns refer to 

coactivity patterns, coactivity pattern members or all principal neurons as indicated. All P 

values were calculated using a two-sided t-test, or ANOVA followed by a post hoc Tukey's 
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HSD test for multiple comparisons; unless specified otherwise. Data Analysis with Bootstrap-

coupled Estimation (DABEST23 plots are used throughout the manuscript to plot data against 

a mean (or paired mean) difference between the two conditions (right y-axis) and compare 

this difference against zero using the bootstrapping generated 95% confidence intervals 

(error-bar).  
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