bioRxiv preprint doi: https://doi.org/10.1101/775817; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Sequence analysis

UMI-VarCal: a new UMI-based variant caller that
efficiently improves low-frequency variant
detection in paired-end sequencing NGS libraries

Vincent Sater '*, Pierre-Julien Viailly 23, Thierry Lecroq ', Elise
Prieur-Gaston !, Elodie Bohers 23, Mathieu Viennot 23, Philippe Ruminy 23,
Héléne Dauchel 23, Pierre Vera 2 and Fabrice Jardin 23

"Normandie Univ, UNIROUEN, LITIS EA 4108, 76000 Rouen, France and
2Department of Pathology, Centre Henri Becquerel, Rouen, 76000, France and
3INSERM U1245, University of Normandie UNIROUEN, Rouen, 76000, France.

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Next Generation Sequencing (NGS) has become the go-to standard method for the detection
of Single Nucleotide Variants (SNV) in tumor cells. The use of such technologies requires a PCR
amplification step and a sequencing step, steps in which artifacts are introduced at very low frequencies.
These artifacts are often confused with true low-frequency variants that can be found in tumor cells and
cell-free DNA. The recent use of Unique Molecular Identifiers (UMI) in targeted sequencing protocols has
offered a trustworthy approach to filter out artifactual variants and accurately call low frequency variants.
However, the integration of UMI analysis in the variant calling process led to developing tools that are
significantly slower and more memory consuming than raw-reads-based variant callers.

Results: We present UMI-VarCal, a UMI-based variant caller for targeted sequencing data with better
sensitivity compared to other variant callers. Being developed with performance in mind, UMI-VarCal
stands out from the crowd by being one of the few variant callers that don’t rely on SAMtools to do their
pileup. Instead, at its core runs an innovative homemade pileup algorithm specifically designed to treat the
UMI tags in the reads. After the pileup, a Poisson statistical test is applied at every position to determine
if the frequency of the variant is significantly higher than the background error noise. Finally, an analysis
of UMI tags is performed, a strand bias and a homopolymer length filter are applied to achieve better
accuracy. We illustrate the results obtained using UMI-VarCal through the sequencing of tumor samples
and we show how UMI-VarCal is both faster and more sensitive than other publicly available solutions.
Availability: The entire pipeline is available at https://gitlab.com/vincent-sater/umi-varcal-master under
MIT license.

Contact: vincent.sater@gmail.com

1 Introduction

Old traditional sequencing technologies have showed their limits and were
rapidly replaced by next generation sequencing (NGS) for the detection
of genomic aberrations like single nucleotide variants (SNV) and copy

© The Author xxxx.

number variations (CNV). However, the use of such technologies requires
extracted genomic DNA to be fragmented to produce DNA fragments.
These fragments constitute the DNA library that has to be massively
amplified in order to produce enough fragments and cover all the targeted
regions. These fragments are finally sequenced by a NGS sequencer to
generate reads. Nowadays, research centers rely heavily on next generation

1

“maindocument” — 2019/9/19 — page 1 — #1

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/775817; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

V. Sater et al.

sequencers like Illumina or Thermo Fisher as their use produces very high
coverage over targeted genomic regions, therefore allowing low-frequency
variants to be accurately detected. In fact, the detection of low-frequency
variants is a crucial step for cancer diagnosis. It is a very active area
of research as it allows to personalize the treatment according to the
found mutations. Unfortunately, low-frequency variants can be very easily
confused with DNA polymerase errors produced during the amplification
step as well as sequencing errors produced during the sequencing step.
This has led to the rise of new sequencing protocols that rely on unique
molecular identifiers (UMI) to correct the technical artifacts. The UMI
implementation in such protocols was shown to be very effective in many
published studies (Schmitt ef al. (2012), Kukita et al. (2015), Newman
et al. (2016), Young et al. (2016) and Bar et al. (2017)). UMIs are short
arbitrary oligonucleotides sequences that are attached to the library of
DNA fragments by ligation prior to the amplification step. The fact that
UMISs are arbitrary sequences allows for every fragment to have a unique
short oligonucleotide sequence attached to it, forming a unique tag for
each fragment. These UMIs or unique tags are then amplified with their
respective fragments and their sequences can be figured out from the reads
through sequencing.

At the moment, three UMI-based variant callers are publicly available:
DeepSNVMiner Andrews et al. (2016), MAGERI Shugay et al. (2017) and
smCounter2 Xu et al. (2019). These tools all apply the same approach that
tries to correct technical artifacts by performing a majority vote within a
UMI family, since theoretically, reads that have the same UMI tag should
be identical. By doing that, they build a consensus read for each UMI
family and then they apply a statistical method (like Beta distribution) to
model background error rates at each position and apply standard filters
to call final variants. In order to call variants, raw-reads-based variant
callers and UMI-based variant callers use SAMtools Li et al. (2009) to
perform the pileup step. The pileup step generates a count of insertions,
deletions and substitutions at each covered position in the BAM/SAM file.
The advantage of SAMtools' pileup is that it is very efficient in terms of
execution time and memory consumption. This allows for raw-reads-based
variant callers to be relatively fast when compared to UMI-based variant
callers. On the other hand, SAMtools does not take UMI tags into account
so using it in a UMI-based variant caller significantly increases execution
time. Only MAGERI does not use SAMtools pileup in its pipeline. By
doing that, the tool is significantly slower and more memory consuming
than all the other approaches, therefore justifying why other variant callers
use it.

In this article, we present UMI-VarCal, a somatic single nucleotide
variant and indel caller for UMI-based targeted paired-end sequencing
protocols. UMI-VarCal stands out from the crowd by being one of the
few variant callers that don’t rely on SAMtools to do their pileup. Instead,
thanks to an innovative homemade pileup algorithm specifically designed
to treat the UMI tags present in the reads, UMI-VarCal is faster than
both raw-reads-based and UMI-based variant callers. To test our tool,
we compare it against two of the best raw-reads-based variant callers that
only need the tumor sample to call variants, SINVICT Kockan et al. (2017)
and outLyzer Muller et al. (2016) and specifically designed to detect low-
frequency variants. We also demonstrate that it can be as - if not more
- sensitive as other UMI-based variant callers by comparing it against
DeepSNVMiner.

2 Materials and methods
2.1 Samples

The Centre Henri Becquerel in Rouen designed a targeted sequencing
panel for Diffuse Large B cell Lymphoma (DLBCL) analysis. This panel
is designed to identify genomic abnormalities within a list of 36 genes

“ UMI-VarCal extract UMI-VarCal call =)
al
raw_BAM/SAM UMi-extracted_ variants.vcf
BAM/SAM
1
M05045:12:0-D2THB:1:1102 M05045:12:0-D2THB:1:1102_GACTACA
GACTACACAGACATAGCATACGACT. CAGACATAGCATACGACT.

MO05045:12:0-D2THB:1:1584 M05045:12:0-D2THB:1:1584_CGTGACG
CGTGACGAGGAGATAGAGATAAGA... AGGAGATAGAGATAAGA..
M05045:12:0-D2THB:1:1495 M05045:12:0-D2THB:1:1495_ACTACGT
ACTACGTTTTAGAGACCATATAGAAT. TTTAGAGACCATATAGAAT.

MI sequence
ad sequence

Fig. 1. Software input: UMI-VarCal can handle raw and UMI-extracted BAM or SAM
files. If raw files are provided, the dedicated UMI extraction tool must be run prior to the
calling tool. UMI tags are extracted from the read sequence and added to the end of the
read ID. If BAM files are provided, they will be converted into SAM format. The variant
calling tool can only start when the UMI-extracted SAM file is ready.

that are most commonly impacted in this type of lymphoma. The panel
was made specifically for QIAseq chemistry in order to introduce UMI
during the construction of the library. For the list of genes used in the
panel and the number of targeted regions per gene, the reader can refer to
the supplementary table S1. In order to test UMI-VarCal against the three
variant callers DeepSNVMiner, SINVICT and outLyzer, we randomly
selected 3 samples from a very large number of patients whose DNA
were sequenced at the Centre Henri Becquerel and all suffering from
DLBCL. Sample 1 and sample 3 are frozen biopsies extracted from 2
different patients at the Centre Henri Becquerel while sample 2 is a DNA
extracted from a cell line. The selected samples have a corresponding
histopathologic review and the quality of the DNA was checked to be
adequate for sequencing.

2.2 Software input

In order to run UMI-VarCal, three files are required: the paired-end
SAM/BAM aligned file, the BED file containing the coordinates of the
targeted genomic regions and a reference genome FASTA file with BWA
index files. For ease of use, UMI-VarCal can accept BAM files as well
as SAM files as input. We developed UMI-VarCal as a standalone variant
caller that doesn’t require any external tools to run. However, if the input
is given under BAM format, SAMtools will be called in order to convert
the BAM file into SAM format. Also, we integrated a UMI extraction
tool in the software meaning that it can handle raw BAM/SAM files as
well as UMI-extracted alignment files (Figure 1). Our tool can accept a
fourth file under the PILEUP format. This file is only optional. In fact,
when running UMI-VarCal on a sample, a PILEUP file is automatically
produced. Giving this file to the software at execution will allow it to skip
the pileup generation step (refer to section 2.3.1 for details) and load the
old pileup instead. Being the step that takes most of the execution time,
skipping it and loading the PILEUP file will make the user gain significant
time.

2.3 Workflow

2.3.1 Pileup

The first step of the workflow is to generate the pileup. A pileup consists
of the total count of match, substitution, insertion and deletion events
at each position covered by the BED file. In fact, after filtering all the
reads with low quality values, UMI-VarCal loops through every pair of
reads and counts how many times each event was observed. Since each
read is associated with a UMI tag, it means that every observed event

“maindocument” — 2019/9/19 — page 2 — #2

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

UMI-VarCal: an efficient UMI-based variant caller

bioRxiv preprint doi: https://doi.org/10.1101/775817; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

at each position can be tagged with the corresponding UMI. After going
through all the reads, this step will generate the complete list of A, C, G,
T, insertion and deletion counts as well as their corresponding UMI tags at
each position and for each chromosome. Also, this is when our algorithm
estimates background error noise for each position. After completing the
pileup, UMI-VarCal will automatically generate a PILEUP file with all
the necessary informations. This file can be used if the user wishes to
launch a new analysis of the same sample but with different variant calling
parameters since changing these don’t affect the pileup but only the variants
called. In fact, this allows the analysis to complete faster since loading the
pileup is very much faster that regenerating it.

2.3.2 Estimating the background error rate

In order to distinguish between real variants and technical artifacts (DNA
polymerase and sequencing errors), the background error rate must be
estimated. We already know that the background error rate is not constant
and can vary at different positions so we can assume that each position
has a specific error rate. In order to estimate site-specific error rates, some
variant callers require a matched normal sample along with the tumor
sample to make the analysis, while others use many control samples to
model the error noise and provide the variant calling tool with the built-in
model. While the first approach is definitely the best to estimate the error
rate, matched normal samples are very hard to get, especially for cell-free
DNA samples. Estimating the model on a number of control samples is
a good approach that is capable of filtering many technical artifacts but
has the limitation of being specific to the panel sequencing protocol and
therefore, cannot be used across different panels. That’s why UMI-VarCal
uses base quality scores at each position to estimate the corresponding
base error probabilities.

Since each sequenced base is associated with a quality score, we can use
it to determine the base error probability for each position by calculating
the average mean quality score. Assuming that X; represents the total
number of reads n covering the position ¢ as X; = {:pq}, xf, o,z }, and
that Q; represents the quality scores of the bases at the position ¢ for each
readas Q; = {q%1 , qf, ..., q'}, we can easily calculate the average quality
score of the position ¢ by

@)

In fact, a quality score is a prediction of the probability of an error in base
calling so the g; that we calculated above reflects the sequencing quality or
the base error probability at the position. Using the mean average gscore,
we can compute the base error probability €; at each position ¢ by

—-q;
€ =10T10 (2)

2.3.3 Searching for candidate positions

The generated pileup contains the counts of A, C, G, T, insertions and
deletions for all the positions covered in the BED file. UMI-VarCal loops
through all these positions and applies at each one a Poisson test to
determine if the alternative allele can be distinguished from the background
error. We supposed that the presence of a variant is a rare event that could
be treated as a hypothesis testing problem, where the null hypothesis (Ho)
is that the alternative allele (substitutions, deletions and insertions) cannot
be separated from background errors and the alternative hypothesis (H1)
is that the alternative allele can be distinguished from background errors
and could actually represnt a true variant. At a position ¢, we define d; as
the depth at position 4, €; as its base error probability and k; as the total
number of the alternative allele observations at position ¢. Under (Hop),
k; follows a Poisson distribution (\;) where A; is the number of errors

expected to be found at a position 7. We can simply calculate \; by

At a position ¢, we can then calculate the p-value that represents the
probability of observing more than \; errors as follows

ki

plkis) =1-

Jj=0

e N)\Z
T “

When we are conducting multiple hypothesis tests, we have an
increased probability of false positives meaning that if we perform the
same test multiple times, the chances of calling a null result as significant
become higher. The false positive rate (FPR) refers to the number of false
positives we expect when we perform a hypothesis test. So if we set the
type 1 error probability (alpha) at 0.05, we can ensure that at worse, the
percentage of false positives in all the tests we performed will be at 5%..
For example, if we test 10 000 positions and control the FPR at 0.05 (5%),
on average 500 false variants (10000 x 0.05) will be called significant.
This method poses a problem when we are conducting multiple tests as it
becomes too permissive and we do not want to have such a great number
of false positives. Typically, multiple comparison procedures control the
false discovery rate (FDR) by trying to identify the most significant features
and trying to filter out as much false positives as possible at the same time.
UMI-VarCal applies the Benjamini-Hochberg procedure Benjamini and
Hochberg (1995) in order to decrease the FDR, thus significantly reducing
the number of total false positives. After applying the FDR correction to
the p-values, we obtain the corresponding g-values. If the g-value is > «a,
we can accept the null hypothesis and filter out the position as it means that
the alternative allele observed at this position is most probably a technical
artifact. Even with the FDR correction, the Poisson modeling applied to
this situation maintains a relatively high sensitivity leaving us with a non
negligible number of false positives. This is mainly due to the fact that the
test does not take into consideration the strand bias nor the surrounding
context of the variant. Therefore, in order to reduce the number of false
positives, we apply three post-processing procedures as described below.

2.3.4 UMI analysis
‘When we apply the Poisson test to each position covered by the BED file,
three scenarios are possible:

1. no alternative allele is found at the position: the position is filtered out

2. the g-value of the test is > « which means that the alternative allele is
probably a technical artifact and therefore, the position is filtered out

3. the g-value of the test is < o which means that the alternative allele is
most probably a true variant

In this last case only, a UMI analysis is applied. This step consists mainly
of separating the list of all unique UMI tags found at a position into three
different lists:

1. ref_umi: alist of all unique UMI tags found on the reads with the
reference allele

2. alt_umi: a list of all unique UMI tags found on the reads with the
alternative allele

3. noise_umi: a list of all unique UMI tags found on the reads with
neither the reference nor the alternative allele

Theoretically, if a variant is a true variant, it had to be found on the initial
DNA fragment. So when we tag the DNA fragment with a unique UMI, we
are also tagging the variant with the same unique UMI. After amplification,
the DNA fragment is amplified and will produce thousands of reads, all

“maindocument” — 2019/9/19 — page 3 — #3

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/775817; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

V. Sater et al.

ileul -'
plleup ‘ BAM/SAM

potential_variants

chr [positon| _counts

-

£

oston] caunts

apply Poisson test

appYy Torsson &Y
keep if g-value
<= alpha

UMI analysi

keep if n_concordant
>= min_concordant

4

(= n
O
O
=
O
O

A o=x sl This UMI is concordant
=
= X
== ¢
O
[=2$ ® reference
o J X variant 1
- - A variant 2
- © UMl tag 1
- == UMI tag 2
-
-
-

(B) - sammmmmall This UMI is discordant
-
-
-
-
-
-

XpXX00b0O0X@XX

Fig. 2. The difference between a discordant UMI and a concordant UML. (A) All the reads
with the same green UMI tag present variant A: the green UMI tag is concordant. (B) The
black UMI tag is found on 13 reads. Of the 13 reads, 6 present variant A, 5 present the
reference allele and 2 present variant B. Since not all the reads have the same variant, we
conclude that the black UMI tag is discordant.

carrying the same UMI as well as the same alternative allele. This means
that at a specific position, if the alternative allele represents a true variant,
all the reads that have the same UMI tag must present the same alternative
allele. If that’s the case, the UMI is called concordant (Figure 2A). On
the other hand, if some of the reads with the same UMI tag present the
reference or a noise allele, the UMI is called discordant (Figure 2B). Each
concordant UMI tag characterizes a single DNA fragment. Using the three
lists re f_umi, alt_umi and noise_umi, we can calculate the number of
concordant and discordant UMI tags for each variant. The more concordant
UMI tags a variant has, the more DNA fragments it was present on initially.
UMI-VarCal uses a concordant UMI tags threshold in order to filter out
variants with too little concordant UMI counts. This UMI-based filter
guarantees that the variants that pass through are not technical artifacts.
These variants are called potential variants as they haven’t passed through
all the post-processing steps yet.

2.3.5 Strand bias filtering

This is the second filter and it is only applicable for potential variants
(variants that have passed the Poisson test and the UMI analysis process).
It was proven by Guo et al. (2012a) that a high strand bias (SB) could point
out to a potential high false-positive rate, especially in Illumina short-read
sequencing data. In this step, our strand bias filter calculates the strand
bias score for each potential variant and, with the use of a threshold, aims
to filter out all strand biased variants. Guo et al., 2012 compared three
different methods to calculate the strand bias score (the traditional SB
score, the GATK-SB score and the SB Fisher score) and demonstrated
that the traditional SB calculation and the Fisher score can capture false
positives better than the GATK-SB method. In addition, the traditional
method used by Guo et al. (2012b) to detect false positives in variants from
mitochondrial DNA samples showed very good results with a threshold of
1.0. UMI-VarCal uses the traditional SB calculation method (Equation 5)
and applies the threshold of 1.0 in order to filter out the highest number
of false positives among potential variants without being restrictive. We
define R 7 and R, as the forward and reverse strands allele counts of the
major allele, and Vi and V;- as the forward and reverse strands allele counts
of the alternative allele.

| mptvy — kv |
Rf—‘er Ry+Vy (5)
v FVr
Ry+Rr+Vy+Vy

SB =

candidate
positions

o,
o
c

o

strand bias filter
keep if SB <=
max_strand_bias

siion :‘Ms

filter o [oomton]| oo output VCF ‘
===

keep if hp <= Vet

filtered_potential_variants ~Max_hp_length

final_variants results.vcf

Fig. 3. UMI-VarCal workflow: UMI-Varcal starts by building a pileup from the BAM/SAM
file provided. The pileup consists on A,C,G,T, insertion and deletion counts for each
postilion covered by the alignment file. Since we know that not all positions contains
mutations, UMI-VarCal starts looping through the pileup and applying a Poisson test at
each position to filter out positions that don’t - seem to - contain variants. To each of these
candidate positions, an UMI analysis is carried out. At this step, one of 2 conditions are
required in order to keep the variant. If the UMI analysis is successful, the potential variant
must go through a strand bias filter to make sure that it isn’t strand biased. If it passes that
test, a final homopolymer region length filter is applied to make sure that the alternative
allele is not due to the variant’s presence in a long homopolymer region. If the alternative
allele passes all these filters, it will be called and present in the final VCF file.

2.3.6 Filtering variants in homopolymer regions

Both pyrosequencing and ion semiconductor sequencing have difficulties
to call correctly the bases situated in long homopolymer-containing
regions. The uncertainty is due to the fact that the repeating identical
nucleotides have to be incorporated during the same synthesis cycle. Ivady
et al. (2018) demonstrated that the base calling accuracy suffers greatly
as the length of the homopolymer region increases (> identical 4 bases).
SomaticSniper Larson et al. (2012) is a variant calling tool that applies a
homopolymer length filter in order to remove variants that occur in long
homopolymer regions as this would mean that they are most probably
artifacts due to sequencing errors. UMI-VarCal uses the same filter to
remove variants found in a homopolymer region with a length > 7.

2.4 Implementation

The overall workflow (Figure 3) is comprised of Python modules that
are called by a main Python script. All the modules are compiled in
Cython to achieve better overall performance. UMI-VarCal is available
for Python version 2 and 3. UMI-VarCal doesn’t rely on any external
program to launch. It only requires SAMtools if the input file is provided
under BAM format.The extraction tool and the variant calling tool are
executed through a UNIX command line interface. All the parameters
and thresholds (minimum base quality, minimum read quality, minimum
mapping quality, type 1 error rate alpha, minimum number of concordant
UMI tags, maximum strand bias and maximum homopolymer region
length) are customizable in order to allow the user total control over his
results.

2.5 Software output
By default, UMI-VarCal automatically produces three files:

1. A standard VCF file containing all the variants that passed the tests
and were successfully reported. For each variant, allele frequency,
alternative allele observation count, total read depth, homopolymer
length, variant type and confidence are provided. A confidence
level is provided for each variant and is computed based on the
variant’s strand bias, homopolymer region length, g-value and the

“maindocument” — 2019/9/19 — page 4 — #4

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

UMI-VarCal: an efficient UMI-based variant caller

bioRxiv preprint doi: https://doi.org/10.1101/775817; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

DeepSNVMiner

Fig. 4. Venn diagram of variants found by UMI-VarCal, DeepSNVMiner, SiNVICT and
outLyzer in Sample 1

concordant/discordant ratio). Five levels are possible ranging from
low to certain (low < average < high < strong < certain).

2. A VARIANTS file containing all the variants that were successfully
reported. This file contains the same variants of the VCF file, in
addition to detailed metrics for each variant.

3. A binary PILEUP file that corresponds to the entire pileup dumped.
This file can be used to skip the pileup regeneration and load the pileup
directly if the analysis was already done on the sample.

3 Results

At this moment, three UMI-based variant callers are publicly available:
DeepSNVMiner, MAGERI and smCounter2. smCounter? is relatively
fast but has a theoretical detection limit of only 0.5%. MAGERI has a
theoretical detection limit of 0.1% but is very slow and consumes a lot
of memory (in our tests, it took 1 hour of execution time and a minimum
of 200 GB of RAM to analyze one sample). Finally, DeepSNVMiner
presents the advantage of having the same detection limit as MAGERI
(0.1%) and is way more efficient in terms of execution time and memory
consumption. To demonstrate our tool superiority over other available tools
in terms of variant detection as well as performance, we compared it against
DeepSNVMiner and also against two of the best raw-reads-based variant
callers, outLyzer and SiNVICT that are designed specifically to detect
low-frequency variants. In the following, we will compare the detection
performance of the 4 variant callers on three different samples.

3.1 Variant detection comparison

3.1.1 Sample 1

In total, 464 variants were found (all the variants are detailed in
Supplementary Table S2) (Figure 4). UMI-VarCal accounts for 145
variants, while DeepSN'VMiner, outLyzer and SINVICT detected 257, 144
and 63 variants respectively. Among these 145 variants, 29 are also found
by all the other three tools and 63 were found by at least one other variant
caller. 214 variants were only found by DeepSNVMiner: 139/214 didn’t
pass the Poisson test, 60/214 didn’t pass the UMI analysis test, 4/214 are
most probably strand biased and 1/214 is in a long homopolymer region.
75 variants were found only by outLyzer: 3/75 didn’t pass the Poisson test,
64/75 didn’t pass the UMI analysis test, 3/75 are most probably strand

DeepSNVMiner

11

Fig. 5. Venn diagram of variants found by UMI-VarCal, DeepSNVMiner, SiNVICT and
outLyzer in Sample 2

biased and 5/75 are in a long homopolymer region. 15 variants were found
only by SiNVICT: 3/15 didn’t pass the Poisson test, 7/15 didn’t pass the
UMI analysis test and 5/15 are detected in positions that are not covered
by the provided BED file. 10 variants were found by both SINVICT and
outLyzer: all 10 variants are in a long homopolymer region. 4 variants
were detected by both DeepSNVMiner and outLyzer: all four variants
didn’t pass the UMI analysis test and one of them is also most probably
strand biased. 1 variant was found by DeepSNVMiner, SINVICT and
outLyzer: this variant is in a very long homopolymer region (length =
16). 82 variants were detected only by UMI-VarCal: 74/82 (90.2%) have
a frequency below 1% and 28/82 (34.1%) have a frequency below 0.5%.
UMI-VarCal detected 8 variants at a frequency < 0.4% but no variant was
detected under the 0.3% frequency. Also, only 1/82 (1.2%) had a low level
of confidence while 73/82 (89%) had at least a high confidence level.

3.1.2 Sample 2

In total, 308 variants were found (all the variants are detailed in
Supplementary Table S3) (Figure 5). UMI-VarCal accounts for 105
variants, while DeepSNVMiner, outLyzer and SiNVICT detected 150,
127 and 71 variants respectively. Among these 105 variants, 28 are also
found by all the other three tools and 60 were found by at least one other
variant caller. 114 variants were only found by DeepSNVMiner: 63/114
didn’t pass the Poisson test, 48/114 didn’t pass the UMI analysis test and
3/114 are most probably strand biased. 58 variants were found only by
outLyzer: 5/58 didn’t pass the Poisson test, 46/58 didn’t pass the UMI
analysis test, 2/58 are most probably strand biased and 5/58 are in a long
homopolymer region. 16 variants were found only by SiNVICT: 2/16
didn’t pass the Poisson test, 7/16 didn’t pass the UMI analysis test, 1/16 is
inalong homopolymer region and 6/16 are detected in positions that are not
covered by the provided BED file. 11 variants were found by both SINVICT
and outLyzer: 10/11 variants are in a long homopolymer region and one
have 0 concordant UMI tags and therefore didn’t pass the UMI analysis
test. 2 variants were detected by both DeepSNVMiner and outLyzer: both
of them didn’t pass the UMI analysis test and one of them is also most
probably strand biased. 1 variant was found by DeepSNVMiner, SINVICT
and outLyzer: this variant is in a long homopolymer region (length = 8)
and has 0 concordant UMI tags. 45 variants were detected only by UMI-
VarCal: 39/45 (86.7%) have a frequency below 1% and 13/45 (28.9%) have
a frequency below 0.5%. UMI-VarCal detected 3 variants at a frequency

“maindocument” — 2019/9/19 — page 5 — #5

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/775817; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

V. Sater et al.

DeepSNVMiner

10

Fig. 6. Venn diagram of variants found by UMI-VarCal, DeepSNVMiner, SiNVICT and
outLyzer in Sample 3

< 0.4% but no variant was detected under the 0.3% frequency. Also, none
of the 45 variants had a low level of confidence while 37/45 (82.2%) had
at least a high confidence level.

3.1.3 Sample 3

In total, 318 variants were found (all the variants are detailed in
Supplementary Table S4) (Figure 6). UMI-VarCal accounts for 125
variants, while DeepSNVMiner, outLyzer and SiNVICT detected 172,
108 and 54 variants respectively. Among these 145 variants, 30 are also
found by all the other three tools and 83 were found by at least one other
variant caller. 124 variants were only found by DeepSNVMiner: 88/124
didn’t pass the Poisson test and 36/124 didn’t pass the UMI analysis test.
51 variants were found only by outLyzer: 45/51 didn’t pass the UMI
analysis test, 1/51 are most probably strand biased and 5/51 are in a long
homopolymer region. 7 variants were found only by SINVICT: 3/7 didn’t
pass the UMI analysis test, 1/7 is in a long homopolymer region and 4/7
are detected in positions that are not covered by the provided BED file.
10 variants were found by both SINVICT and outLyzer: 9/10 variants are
in a long homopolymer region and one is most probably strand biased. 1
variant was detected by both DeepSNVMiner and outLyzer: this variant
didn’t pass the UMI analysis test. 62 variants were detected only by UMI-
VarCal: 51/62 (82.3%) have a frequency below 1% and 10/62 (16.1%) have
a frequency below 0.5%. UMI-VarCal detected 2 variants at a frequency
< 0.4% but no variant was detected under the 0.3% frequency. Also, none
of the 62 variants had a low level of confidence while 55/62 (88.7%) had
at least a high confidence level.

3.2 Performance comparison

In order to compare the performance of UMI-VarCal with the other three
variant callers, we artificially created 5 different samples with increasing
size (1, 2, 3, 5 and 10 million reads). This will allow to compare not only
the performance of the tools but also to have a look at how the performance
varies with sample size. All these tests are performed on a one core CPU
running at 2.20 GHz. All measurements were done 3 times and the average
was used for the comparison (Figure 7). To analyze 1 million reads, UMI-
VarCal is the fastest with 62 seconds to complete the analysis. It is followed
by SiNVICT that takes 138 seconds and outLyzer with 228 seconds. The
slowest tool is DeepSNVMiner as it takes 1107 seconds to complete its

2000

1500

1000

Time (seconds)

500

Size (million reads)

— - DeepSNVMiner == outLyzer —— UMI-VarCal ---- SiNVICT

Fig. 7. Performance comparison between UMI-VarCal, DeepSNVMiner, SiNVICT and
outLyzer

analysis. For the 2 million reads analysis, the ranks don’t change as UMI-
VarCal is still the fastest of the four tools and DeepSNVMiner the slowest.
The analysis of 3 million reads is the fastest on UMI-VarCal and the slowest
on DeepSNVMiner as well. However, outLyzer sets the better time versus
SiINVICT as the latter’s performance seeming to suffer when increasing
sample size. The ranks don’t change at the 5 million reads mark as UMI-
VarCal sill outperforms the three other variant callers and DeepSNVMiner
being the slowest. Finally, the analysis of the 10-million-read sample is
the fastest again on UMI-VarCal taking only 580 seconds to complete.
outLyzer is closely behind and completes the analysis 38 seconds after (618
seconds). SINVICT maintains the third place as it takes 1200 seconds to
finish its analysis. DeepSNVMiner is still last with it taking 1553 seconds
to have the final results ready. We note that both UMI-VarCal and outLyzer
can be executed on multiple cores which can significantly decrease running
time, especially on very large samples. In terms of memory consumption,
UMI-VarCal is not very demanding. Memory consumption is not only
impacted by the number of the reads but also by other factors such as the
amplification factor of the sample and the maximum sequencing depth.
Therefore, measuring the variation of memory consumtion with sample
size is not significant. In our tests on the 3 DNA samples we selected,
UMI-VarCal needed approximately 3 GB of RAM.

4 Discussion

Detecting somatic mutations with low allelic frequency is a challenge but
is primordial in cancer studies in order to characterize tumor heterogeneity.
Many raw-reads-based variant callers are available and do a good job in
detecting most variants within a sample. Some of them however need
a matched normal sample in order to perform the analysis: this can be
problematic as these samples are difficult to find and might not existin some
applications. Other tools like SINVICT and outLyzer do an outstanding
job actually at detecting variants with frequencies as low as 0.5% but
at the cost of having a high number of false positives: it is expected as
these tools don’t integrate a UMI analysis and thus cannot efficiently filter
out false positives. UMI-based variant callers don’t have this problem
since they perform a UMI analysis that allows them to filter out most false
positives. MAGERI showed some very good results in the publication with
a theoretical detection limit of 0.1% but suffers in terms of performance as
it consumes a lot of memory and is very slow. Another UMI-based variant
caller is smCounter2 that has good performance but a detection limit of
only 0.5%. DeepSNVMiner is a UMI-based variant caller that presents a
theoretical detection limit of 0.1% and is relatively fast, compared to other

“maindocument” — 2019/9/19 — page 6 — #6

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

UMI-VarCal: an efficient UMI-based variant caller

bioRxiv preprint doi: https://doi.org/10.1101/775817; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

UMI-based variant callers. It starts by generating an initial list of variants
using SAMtools calmd and then selects only those that have strong UMI
support. However, in our tests, it seems to generate a lot of false positives
since it doesn’t contain a strand bias filter nor ahomopolymer region length
filter.

UMI-VarCal was able to perform better than the 3 other variant callers.
It could easily detect the true variants found by the others and filter out the
false positives due to its multi-step post-processing filters (UMI analysis
filter, strand bias filter and homopolymer length filter). In addition, it was
able to detect a high number of low-frequency variants (AF < 1%) not
found by other tools, of which 85% (on average) have at least a high level
of confidence. In terms of execution time, we must admit that it is somewhat
unfair to compare a UMI-based variant caller such as DeepSNVMiner to
raw-reads-based variant callers. In our comparison, we showed not only
that our tool can easily outperform an UMI-based variant caller but can
only beat one of the fastest raw-reads based variant callers, outLyzer.

5 Conclusion

Here, we present UMI-VarCal: a standalone UMI-based variant caller
developed to achieve more accurate low-frequency variant detection in
paired-end sequencing NGS libraries. Also, thanks to a new pileup
algorithm specifically designed to integrate the UMI tags in the reads,
it is able to achieve excellent performance, in terms of both execution time
and memory consumption, making it one of the fastest - if not the fastest -
variant callers out there. In addition of its outstanding performance, UMI-
VarCal is capable of detecting a large number of variants with frequencies
as low as 0.3% that were completely missed out by the other tools. Among
these variants, approximately 85% have at least a high confidence level
meaning that they are most likely true variants. UMI-VarCal was built
to allow total control for the user over his analysis since all the filters’
parameters are customizable. This makes this tool adequate and available
to a large number of clinical and research applications.

Funding

This work was partly funded by the University of Rouen Normandie and
Vincent Sater is funded by a PhD fellowship from the Région Normandie.

References

Andrews, T. D., Jeelall, Y., Talaulikar, D., Goodnow, C. C., and Field, M. A. (2016).
DeepSNVMiner: a sequence analysis tool to detect emergent, rare mutations in
subsets of cell populations. PeerJ, 4.

Bar, D. Z., Arlt, M. F, Brazier, J. F, Norris, W. E., Campbell, S. E., Chines, P.,
Larrieu, D., Jackson, S. P., Collins, F. S., Glover, T. W., and Gordon, L. B. (2017).
A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford
progeria syndrome. J Med Genet, 54(3), 212-216.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society: Series B (Methodological), 57(1), 289-300.

Guo, Y., Li, J.,, Li, C.-I., Long, J., Samuels, D. C., and Shyr, Y. (2012a). The effect
of strand bias in Illumina short-read sequencing data. BMC Genomics, 13, 666.
Guo, Y., Cai, Q., Samuels, D. C., Ye, F.,, Long, J., Li, C.-I., Winther, J. F., Tawn, E. J.,
Stovall, M., Lihteenmiki, P., Malia, N., Levy, S., Shaffer, C., Shyr, Y., Shu, X.-o.,
and Boice, J. D. (2012b). The use of Next Generation Sequencing Technology to
Study the Effect of Radiation Therapy on Mitochondrial DNA Mutation. Mutat

Res, 744(2), 154-160.

Ivddy, G., Madar, L., Dzsudzsdk, E., Koczok, K., Kappelmayer, J., Krulisova,
V., Macek, M., Horvith, A., and Balogh, I. (2018). Analytical parameters and
validation of homopolymer detection in a pyrosequencing-based next generation
sequencing system. BMC Genomics, 19.

Kockan, C., Hach, F, Sarrafi, 1., Bell, R. H., McConeghy, B., Beja, K., Haegert,
A., Wyatt, A. W,, Volik, S. V., Chi, K. N, Collins, C. C., and Sahinalp, S. C.

(2017). SINVICT: ultra-sensitive detection of single nucleotide variants and indels
in circulating tumour DNA. Bioinformatics, 33(1), 26-34.

Kukita, Y., Matoba, R., Uchida, J., Hamakawa, T., Doki, Y., Imamura, F., and Kato,
K. (2015). High-fidelity target sequencing of individual molecules identified using
barcode sequences: de novo detection and absolute quantitation of mutations in
plasma cell-free DNA from cancer patients. DNA Res, 22(4), 269-277.

Larson, D. E., Harris, C. C., Chen, K., Koboldt, D. C., Abbott, T. E., Dooling, D. J.,
Ley, T. J., Mardis, E. R., Wilson, R. K., and Ding, L. (2012). SomaticSniper:
identification of somatic point mutations in whole genome sequencing data.
Bioinformatics, 28(3), 311-317.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMotools. Bioinformatics, 25(16), 2078-2079.

Muller, E., Goardon, N., Brault, B., Rousselin, A., Paimparay, G., Legros, A.,
Fouillet, R., Bruet, O., Tranchant, A., Domin, F., San, C., Quesnelle, C., Frebourg,
T., Ricou, A., Krieger, S., Vaur, D., and Castera, L. (2016). OutLyzer: software
for extracting low-allele-frequency tumor mutations from sequencing background
noise in clinical practice. Oncotarget, 7(48), 79485-79493.

Newman, A. M., Lovejoy, A. F., Klass, D. M., Kurtz, D. M., Chabon, J. J., Scherer,
F, Stehr, H., Liu, C. L., Bratman, S. V., Say, C., Zhou, L., Carter, J. N., West,
R. B., Sledge, G. W., Shrager, J. B., Loo, B. W., Neal, J. W., Wakelee, H. A.,
Diehn, M., and Alizadeh, A. A. (2016). Integrated digital error suppression for
improved detection of circulating tumor DNA. Nat Biotechnol, 34(5), 547-555.

Schmitt, M. W., Kennedy, S. R., Salk, J. J., Fox, E. J., Hiatt, J. B., and Loeb, L. A.
(2012). Detection of ultra-rare mutations by next-generation sequencing. Proc
Natl Acad Sci U S A, 109(36), 14508-14513.

Shugay, M., Zaretsky, A. R., Shagin, D. A., Shagina, I. A., Volchenkov, I. A.,
Shelenkov, A. A., Lebedin, M. Y., Bagaev, D. V., Lukyanov, S., and Chudakov,
D. M. (2017). MAGERI: Computational pipeline for molecular-barcoded targeted
resequencing. PLoS Comput Biol, 13(5).

Xu, C., Gu, X., Padmanabhan, R., Wu, Z., Peng, Q., DiCarlo, J., and Wang, Y. (2019).
smCounter2: an accurate low-frequency variant caller for targeted sequencing data
with unique molecular identifiers. Bioinformatics, 35(8), 1299-1309.

Young, A. L., Challen, G. A., Birmann, B. M., and Druley, T. E. (2016). Clonal
haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy
adults. Nat Commun, 7.

“maindocument” — 2019/9/19 — page 7 — #7

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

‘A’ UMI-VarCal extract . “ UMI-VarCal call

raw BAM/SAM U Ml-extracted_

- BAM/SAM
M05045:12:0-D2THB:1:1102 MO05045:12:0-D2THB:1:1102_G
GACTACACAGACATAGCATACGACT... CAGACATAGCATACGACT...
M05045:12:0-D2THB:1:1584 » MO05045:12:0-D2THB:1:1584_C
CGTGACGAGGAGATAGAGATAAGA... AGGAGATAGAGATAAGA...
M05045:12:0-D2THB:1:1495 » MO05045:12:0-D2THB:1:1495_A
ACTACGTTTTAGAGACCATATAGAAT... TTTAGAGACCATATAGAAT...

® UMI sequence
® read sequence

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

This UMI is concordant
This UMI is discordant

I | N

XXX XK XK XXX XXOXOOAOO XX AKX

noooooonoooooo WWRERRRRERRNR

(A)
(B)

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

pileup

counts

o
g
2.
£
=)

——|apply Poisson test
_—

IV (T

postion

counts

UMI analysis

‘ ' BAM/SAM

potenti

chr

positi

a
3

keep if q-value

keep if n_concordanf

filtered_potential_variants max_hp_length

final_variants

— <= alpha —— »= min_concordant
— candidate
e positions
ileu ; .
plieup strand bias filter
keep if SB <=
max_strand_bias
chr | position counts
e R homopolymer filter [x| eosfion] counts output VCF (
—[— keep if hp <= [—[— »

res

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

UMI-VarCal DeepSNVMiner

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

UMI-VarCal DeepSNVMiner

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

UMI-VarCal DeepSNVMiner

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

Time (seconds)

2000

1500

1000

500

=+ DeepSNVMiner

2

Size (million reads)

== outLyzer

=— UMI-VarCal

=== SINVICT

https://doi.org/10.1101/775817
http://creativecommons.org/licenses/by-nc/4.0/

