

The proton pump inhibitor omeprazole does not promote *Clostridioides difficile* colonization in a murine model

Sarah Tomkovich¹, Nicholas A. Lesniak¹, Yuan Li¹, Lucas Bishop¹, Madison J. Fitzgerald¹, Patrick D. Schloss^{1†}

† To whom correspondence should be addressed: pschloss@umich.edu

1 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109

1 **Abstract**

2 Proton pump inhibitor (PPI) use has been associated with microbiota alterations and susceptibility
3 to *Clostridioides difficile* infections (CDIs) in humans. We assessed how PPI treatment alters the
4 fecal microbiota and whether treatment promotes CDIs in a mouse model. Mice receiving a PPI
5 treatment were gavaged with 40 mg/kg of omeprazole during a 7-day pretreatment phase, the day
6 of *C. difficile* challenge, and the following 9 days. We found that mice treated with omeprazole were
7 not colonized by *C. difficile*. When omeprazole treatment was combined with a single clindamycin
8 treatment, one cage of mice remained resistant to *C. difficile* colonization, while the other cage
9 was colonized. Treating mice with only clindamycin followed by challenge resulted in *C. difficile*
10 colonization. 16S rRNA gene sequencing analysis revealed that omeprazole had minimal impact
11 on the structure of the murine microbiota throughout the 16 days of omeprazole exposure. These
12 results suggest omeprazole treatment alone is not sufficient to disrupt microbiota resistance to *C.*
13 *difficile* infection in mice that are normally resistant in the absence of antibiotic treatment.

14 **Importance**

15 Antibiotics are the primary risk factor for *Clostridioides difficile* infections (CDIs), but other factors
16 may also increase a person's risk. In epidemiological studies, proton pump inhibitor (PPI) use
17 has been associated with CDI incidence and recurrence. PPIs have also been associated with
18 alterations in the human intestinal microbiota in observational and interventional studies. We
19 evaluated the effects of the PPI omeprazole on the structure of the murine intestinal microbiota
20 and its ability to disrupt colonization resistance to *C. difficile*. We found omeprazole treatment had
21 minimal impact on the murine fecal microbiota and did not promote *C. difficile* colonization. Further
22 studies are needed to determine whether other factors contribute to the association between PPIs
23 and CDIs seen in humans or whether aspects of murine physiology may limit its utility to test these
24 types of hypotheses.

25 Antibiotics have a large impact on the intestinal microbiome and are a primary risk factor for
26 developing *Clostridioides difficile* infections (CDIs) (1). It is less clear whether other human
27 medications that impact the microbiota also influence *C. difficile* colonization resistance. Multiple
28 epidemiological studies have suggested an association between proton pump inhibitor (PPI) use
29 and incidence or recurrence of CDIs (2–5). There have also been a number of large cohort
30 studies and interventional clinical trials that demonstrated specific alterations in the intestinal
31 microbiome were associated with PPI use (4, 6). PPI-associated microbiota changes have been
32 attributed to the ability of PPIs to increase stomach acid pH which may promote the survival of
33 oral and pathogenic bacteria (4, 6). In human fecal samples, PPI use results in increases in
34 *Enterococcaceae*, *Lactobacillaceae*, *Micrococcaceae*, *Staphylococcaceae* and *Streptococcaceae*
35 and decreases in *Ruminococcaceae* (6–9). Several of these taxa have also been associated with
36 *C. difficile* colonization in humans (10).

37 Unfortunately, the studies suggesting a link between PPIs and *C. difficile* were retrospective and
38 did not evaluate changes in the microbiome (2, 3, 5). Thus, it is unclear whether the gastrointestinal
39 microbiome changes associated with PPI use explain the association between PPIs and CDIs.
40 Additionally, epidemiological studies have a limited capacity to address potential confounders and
41 comorbidities in patients that were on PPIs and developed CDIs or recurrent CDIs (2, 5). Here,
42 we evaluated the impact of daily PPI treatment with omeprazole on the murine microbiome and
43 susceptibility to *C. difficile* colonization in relation to clindamycin, an antibiotic that perturbs the
44 microbiome enough to allow *C. difficile* to colonize but is mild enough that *C. difficile* is cleared
45 within 10 days (11).

46 **Murine fecal microbiomes were minimally affected by omeprazole treatment.** To test whether
47 omeprazole treatment alters the microbiome and promotes susceptibility to CDIs, we gavaged
48 mice with 40 mg/kg of omeprazole for 7 days before *C. difficile* challenge (Figure 1A). A principle
49 coordinates analysis (PCoA) of the Bray-Curtis distances over the initial 7 days of treatment revealed
50 the bacterial communities of omeprazole-treated mice remained relatively unchanged (Figure 1B).
51 We observed no significant changes in the relative abundance of those taxa previously shown to
52 respond to PPI treatment throughout the course of the 16-day experiment (Figure 1C-D, S1). We
53 also observed no significant changes in relative abundances at the family and genus level over the

54 course of the experiment for the omeprazole-treated mice (all corrected P-values > 0.36). These
55 results demonstrated that the omeprazole treatment alone had a minimal impact on the murine
56 fecal bacterial community after 7 days of pretreatment.

57 **Omeprazole treatment did not promote susceptibility to *C. difficile* infection in mice.** Next,
58 we examined whether omeprazole treatment altered susceptibility to *C. difficile* infection in mice.
59 After omeprazole treatment or clindamycin treatment, mice were challenged with 10^3 *C. difficile*
60 630 spores. Although *C. difficile* colonized the clindamycin-treated mice, it did not colonize
61 the omeprazole-treated mice (Figure 2A). Interestingly, only 1 cage of mice that received both
62 omeprazole and clindamycin were colonized, while the other cage of mice were resistant (Figure
63 2A). The greatest shifts in bacterial communities occurred in the clindamycin-treated mice (Figure
64 2B, S2). Regardless of whether the mice became colonized, all of the mice had cleared *C. difficile*
65 within 5 days (Figure 2A), suggesting that omeprazole did not affect the rate of clearance. Our
66 results suggest that omeprazole treatment had no effect on bacterial community resistance to
67 *C. difficile* colonization in mice. Instead most of the differences between the 3 treatment groups
68 appeared to be driven by clindamycin administration (Figure 2C, S2). These findings demonstrated
69 that high dose omeprazole treatment did not promote susceptibility to *C. difficile* colonization.

70 **Conclusions.** The PPI omeprazole did not meaningfully impact the structure of the gut microbiota
71 and did not promote *C. difficile* infection in mice. Our findings that omeprazole treatment had minimal
72 impact on the fecal microbiome were comparable to another PPI mouse study that indicated the
73 PPI lansoprazole had more of an effect on the small intestinal microbiota compared to the fecal
74 microbiota (12). The same group demonstrated lansoprazole treatment increased the stomach
75 pH in mice (12), which may improve survival of bacteria passing through the stomach. We did
76 not find significant changes in the relative abundances of the taxa observed to be significantly
77 impacted by PPI use in human studies. However, 3 of the human-associated taxa were absent or
78 at low abundance in our mice. Interestingly, other groups examining fecal microbiota communities
79 before and after PPI administration to healthy cats and infants with gastroesophageal reflux disease,
80 found PPIs have minimal effects on fecal bacterial community structures, although there were a
81 few significant changes in specific genera (13, 14). One limitation of our study is that there were
82 only 4-5 mice per group, which may have limited our ability to identify PPI-induced changes in

83 specific bacteria genera. Although our fecal microbiota findings are comparable to what has been
84 shown in another mouse study (12), whether PPI-induced changes in specific bacterial abundances
85 observed in humans play a role in CDIs remains to be determined.

86 Although several *C. difficile* mouse model studies have shown that PPIs have an effect on CDIs
87 with or without additional antibiotic treatment (15–17), there were insufficient controls to attribute
88 the effect solely to PPI treatment. One group administered 0.5 mg/kg of the PPI lansoprazole daily
89 for 2 weeks to mice and then challenged with *C. difficile* demonstrated that PPI treatment alone
90 resulted in detectable *C. difficile* in the stool 1 week after challenge, however there was detectable
91 *C. difficile* in mice not treated with antibiotics (15, 16). The other mouse study demonstrated
92 antibiotic/esomeprazole-treated mice developed more severe CDIs compared to antibiotic-treated
93 mice, but the researchers did not have a group treated with just esomeprazole for comparison
94 (17). We tested the same high 40 mg/kg PPI dose and expanded pre-treatment to 7 days before
95 challenge to test the impact of omeprazole treatment alone on our CDI mouse model. Additionally,
96 we have previously demonstrated that mice from our breeding colony are resistant to *C. difficile* 630
97 colonization without antibiotic treatment (18), ensuring there was not already partial susceptibility
98 to *C. difficile* before treatment. The additional controls in our study allowed us to assess the
99 contribution of omeprazole alone to *C. difficile* susceptibility in mice.

100 Our study also extended previous work examining PPIs and *C. difficile* in mice by incorporating the
101 contribution of the intestinal microbiota. We found omeprazole had no significant impact on bacterial
102 taxa within the murine intestinal microbiota over the 16-day experiment. In contrast to previous
103 work with PPIs (15–17), omeprazole did not alter *C. difficile* colonization resistance in mice. 16S
104 rRNA sequencing suggested that *Streptococcus* and *Enterococcus* are rare genera in our C57BL/6
105 mouse colony. These two genera could be important contributors to the associations between PPIs
106 and CDIs in humans, and could be a contributing factor to our observation that PPI treatment had
107 no effect on *C. difficile* colonization in our CDI mouse model. While the intestinal microbiomes
108 of both humans and mice are dominated by the *Bacteroidetes* and *Firmicutes* phyla, there are
109 significant differences in the relative abundances of genera that are present and some genera
110 are unique to each mammal (19), differences that may partly explain our results. Gastrointestinal
111 physiological differences, particularly the higher stomach pH in mice (pH 3-4) compared to humans
112 (pH 1) (19) could also explain why omeprazole had a limited impact on the murine microbiome. The

113 microbiota and physiological differences between humans and mice may limit the usefulness of
114 employing mouse models to study the impact of PPIs on the microbiota and CDIs.
115 Beyond microbiome differences, factors such as age, body mass index, comorbidities, and use
116 of other medications in human studies may also be contributing to the association between PPIs
117 and CDI incidence or recurrence. The type of *C. difficile* strain type could also be an important
118 contributing factor, however our study was limited in that we only tested *C. difficile* 630 (ribotype
119 012). This study addressed the impact of PPIs with or without antibiotics on a murine model of CDI,
120 and found PPIs did not promote *C. difficile* colonization. The epidemiological evidence linking PPIs
121 to CDIs is primarily from observational studies, which makes determining causality and whether
122 other risk factors play a role challenging (20). Future studies are needed to determine whether age,
123 other comorbidities and bacterial strains that are less common in mice can increase the risk of
124 CDIs or recurrent CDIs when combined with PPI treatment.

125 **Acknowledgements**

126 This research was supported by NIH grant U01AI12455. We would also like to thank the Unit
127 for Laboratory Animal Medicine at the University of Michigan for maintaining our mouse colony
128 and providing the infrastructure and support for performing our mouse experiments. The authors
129 are also thankful to members of the Schloss lab for helpful discussions throughout the process of
130 designing the experiment, analyzing the results, crafting the figures, and drafting of the manuscript.

131 **Materials and Methods**

132 **Animals.** All mouse experiments were performed with 7- to 12-week-old C57BL/6 male and
133 female mice. Each experimental group of mice was split between 2 cages with 2-3 mice housed
134 per cage and male and female mice housed separately. All animal experiments were approved
135 by the University of Michigan Animal Care and Use Committee (IACUC) under protocol number
136 PRO00006983.

137 **Drug treatments.** Omeprazole (Sigma Aldrich) was prepared in a vehicle solution of 40%
138 polyethylene glycol 400 (Sigma-Aldrich) in phosphate buffered saline. Omeprazole was prepared
139 from 20 mg/mL frozen aliquots and diluted to an 8 mg/mL prior to gavage. All mice received 40
140 mg/kg omeprazole (a dose previously used in mouse experiments (17)) or vehicle solution once
141 per day through the duration of the experiment with treatment starting 7 days before *C. difficile*
142 challenge (Figure 1A). Although the omeprazole dose administered to mice is higher than the
143 recommended dose for humans, omeprazole has a shorter half-life in mice compared to humans
144 (21) and lacks an enteric coating (22). One day prior to *C. difficile* challenge, 2 groups of mice
145 received an intraperitoneal injection of 10 mg/kg clindamycin or sterile saline vehicle (11). All drugs
146 were filter sterilized through a 0.22 micron syringe filter before administration to animals.

147 ***C. difficile* infection model.** Mice were challenged with *C. difficile* 630 seven days after the start
148 of omeprazole treatment and one day after clindamycin treatment. Mice were challenged with 10^3
149 spores in ultrapure distilled water as described previously (11). Stool samples were collected for
150 16S rRNA sequencing or *C. difficile* CFU quantification throughout the duration of the experiments
151 at the indicated timepoints (Figure 1A). Samples for 16S rRNA sequencing were flash frozen in
152 liquid nitrogen and stored at -80 °C until DNA extraction, while samples for CFU quantification were
153 transferred into an anaerobic chamber and serially diluted in PBS. Diluted samples were plated
154 on TCCFA (taurocholate, cycloserine, cefoxitin, fructose agar) plates and incubated at 37 °C for 24
155 hours under anaerobic conditions to quantify *C. difficile* CFU.

156 **16S rRNA gene sequencing.** DNA for 16S rRNA gene sequencing was extracted from 10-50 mg
157 fecal pellet from each mouse using the DNeasy Powersoil HTP 96 Kit (Qiagen) and an EpMotion
158 5075 automated pipetting system (Eppendorf). The 16S rRNA sequencing library was prepared

159 as described previously (23). In brief, the ZymoBIOMICS™ Microbial Community DNA Standard
160 (Zymo, CA, USA) was used as a mock community (24) and water was used as a negative control.
161 The V4 hypervariable region of the 16S rRNA gene was amplified with Accuprime Pfx DNA
162 polymerase (Thermo Fisher Scientific) using previously described custom barcoded primers (23).
163 The 16S rRNA amplicon library was sequenced with the MiSeq (Illumina). Amplicons were cleaned
164 up and normalized with the SequalPrep Normalization Plate Kit (ThermoFisher Scientific) and
165 pooled amplicons were quantified with the KAPA library quantification kit (KAPA Biosystems).

166 **16S rRNA gene sequence analysis.** mothur (v1.40.5) was used for all sequence processing steps
167 (25) using a previously published protocol (23). In brief, forward and reverse reads for each sample
168 were combined and low-quality sequences and chimeras were removed. Duplicate sequences were
169 merged, before taxonomy assignment using a modified version (v16) of the Ribosomal Database
170 Project reference database (v11.5) with an 80% cutoff. Operational taxonomic units (OTUs) were
171 assigned with the opticlus clustering algorithm using a 97% similarity threshold. To adjust for
172 uneven sequencing across samples, all samples were rarefied to 3,000 sequences, 1,000 times.
173 PCoAs were generated based on Bray-Curtis distance. R (v.3.5.1) was used to generate figures
174 and perform statistical analysis.

175 **Statistical Analysis.** To test for differences in relative abundances in families and genera across
176 our 3 different treatment groups at different timepoints (Clindamycin, Clindamycin + Omeprazole,
177 and Omeprazole on Day -7, 0, 2, and 9) or within the Omeprazole treatment group across 3
178 timepoints (Day -7, 0, and 9), we used a Kruskal-Wallis test with a Benjamini-Hochberg correction
179 for multiple comparisons.

180 **Code availability.** The code for all sequence processing and analysis steps as well as a
181 Rmarkdown version of this manuscript is available at https://github.com/SchlossLab/Tomkovich_PPI_mSphere_2019.

183 **Data availability.** The 16S rRNA sequencing data have been deposited in the NCBI Sequence
184 Read Archive (Accession no. PRJNA554866).

185 **References**

186 1. Schubert AM, Sinani H, Schloss PD. 2015. Antibiotic-induced alterations of the murine gut
187 microbiota and subsequent effects on colonization resistance against *Clostridium difficile*. *mBio* 6.

188 2. Tariq R, Singh S, Gupta A, Pardi DS, Khanna S. 2017. Association of gastric acid suppression
189 with recurrent *Clostridium difficile* infection: A systematic review and meta-analysis. *JAMA internal*
190 *medicine* 177:784–791.

191 3. Nehra AK, Alexander JA, Loftus CG, Nehra V. 2018. Proton pump inhibitors: Review of emerging
192 concerns, pp. 240–246. *In Mayo clinic proceedings*. Elsevier.

193 4. Naito Y, Kashiwagi K, Takagi T, Andoh A, Inoue R. 2018. Intestinal dysbiosis secondary to
194 proton-pump inhibitor use. *Digestion* 97:195–204.

195 5. Elias E, Targownik LE. 2019. The clinician's guide to proton pump inhibitor related adverse
196 events. *Drugs* 79:715–731.

197 6. Imhann F, Vila AV, Bonder MJ, Manosalva AGL, Koonen DP, Fu J, Wijmenga C, Zhernakova A,
198 Weersma RK. 2017. The influence of proton pump inhibitors and other commonly used medication
199 on the gut microbiota. *Gut Microbes* 8:351–358.

200 7. Imhann F, Bonder MJ, Vila AV, Fu J, Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA,
201 Cenit MC, Harmsen HJM, Dijkstra G, Franke L, Xavier RJ, Jonkers D, Wijmenga C, Weersma RK,
202 Zhernakova A. 2015. Proton pump inhibitors affect the gut microbiome. *Gut* 65:740–748.

203 8. Freedberg DE, Toussaint NC, Chen SP, Ratner AJ, Whittier S, Wang TC, Wang HH, Abrams
204 JA. 2015. Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: A
205 crossover trial. *Gastroenterology* 149:883–885.e9.

206 9. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez
207 KC, Dose H, Mori H, others. 2018. Extensive impact of non-antibiotic drugs on human gut bacteria.
208 *Nature* 555:623.

209 10. Schubert AM, Rogers MAM, Ring C, Mogle J, Petrosino JP, Young VB, Aronoff DM, Schloss

210 PD. 2014. Microbiome data distinguish patients with *Clostridium difficile* infection and non-*C.*
211 *difficile*-associated diarrhea from healthy controls. *mBio* 5.

212 11. Jenior ML, Leslie JL, Young VB, Schloss PD. 2018. *Clostridium difficile* alters the structure and
213 metabolism of distinct cecal microbiomes during initial infection to promote sustained colonization.
214 *mSphere* 3.

215 12. Yasutomi E, Hoshi N, Adachi S, Otsuka T, Kong L, Ku Y, Yamairi H, Inoue J, Ishida T, Watanabe
216 D, Ooi M, Yoshida M, Tsukimi T, Fukuda S, Azuma T. 2018. Proton pump inhibitors increase the
217 susceptibility of mice to oral infection with enteropathogenic bacteria. *Digestive Diseases and*
218 *Sciences* 63:881–889.

219 13. Schmid SM, Suchodolski JS, Price JM, Tolbert MK. 2018. Omeprazole minimally alters the
220 fecal microbial community in six cats: A pilot study. *Frontiers in Veterinary Science* 5.

221 14. Castellani C, Singer G, Kashofer K, Huber-Zeyringer A, Flucher C, Kaiser M, Till H. 2017. The
222 influence of proton pump inhibitors on the fecal microbiome of infants with gastroesophageal refluxA
223 prospective longitudinal interventional study. *Frontiers in Cellular and Infection Microbiology* 7.

224 15. Kaur S, Vaishnavi C, Prasad KK, Ray P, Kochhar R. 2007. Comparative role of antibiotic
225 and proton pump inhibitor in experimental *Clostridium difficile* infection in mice. *Microbiology and*
226 *Immunology* 51:1209–1214.

227 16. Kaur S, Vaishnavi C, Prasad KK, Ray P, Kochhar R. 2011. Effect of lactobacillus acidophilus &
228 epidermal growth factor on experimentally induced *Clostridium difficile* infection. *The Indian journal*
229 *of medical research* 133:434.

230 17. Hung Y-P, Ko W-C, Chou P-H, Chen Y-H, Lin H-J, Liu Y-H, Tsai H-W, Lee J-C, Tsai P-J. 2015.
231 Proton-pump inhibitor exposure aggravates *Clostridium difficile*-associated colitis: Evidence from a
232 mouse model. *The Journal of infectious diseases* 212:654–663.

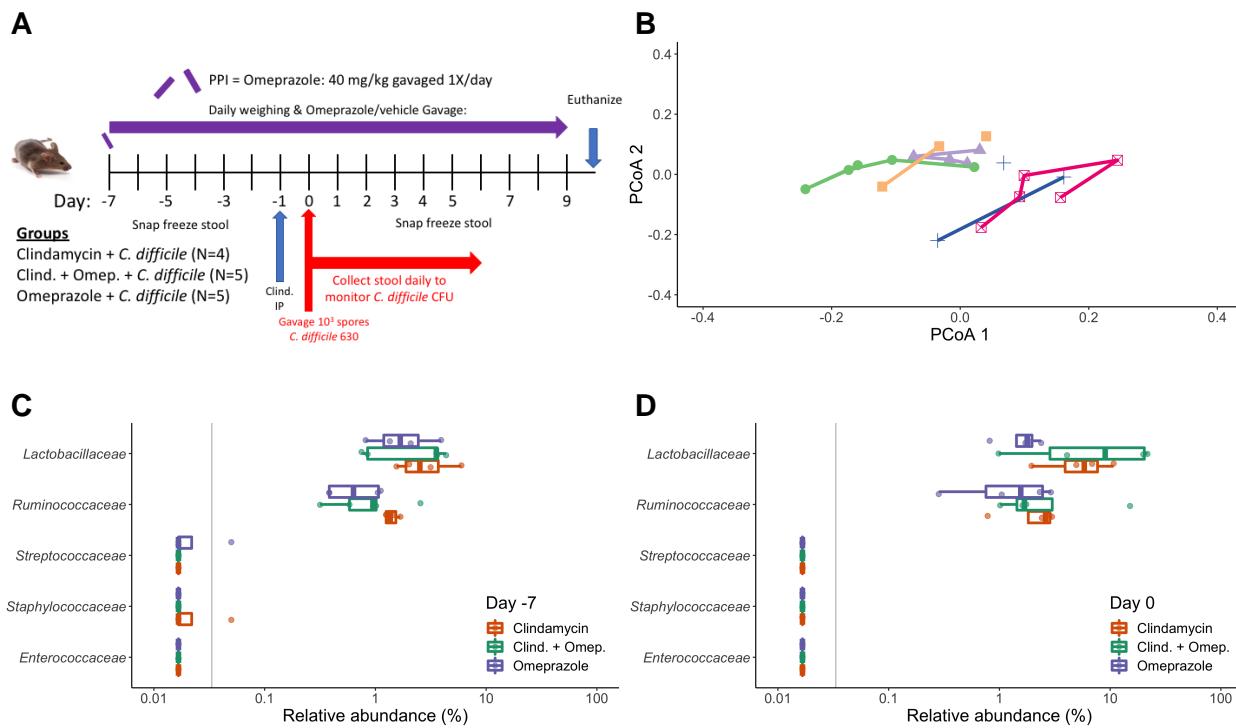
233 18. Jenior ML, Leslie JL, Young VB, Schloss PD. 2017. *Clostridium difficile* colonizes alternative

234 nutrient niches during infection across distinct murine gut microbiomes. *mSystems* 2.

235 19. Hugenholz F, Vos WM de. 2018. Mouse models for human intestinal microbiota research: A
236 critical evaluation. *Cellular and Molecular Life Sciences* 75:149–160.

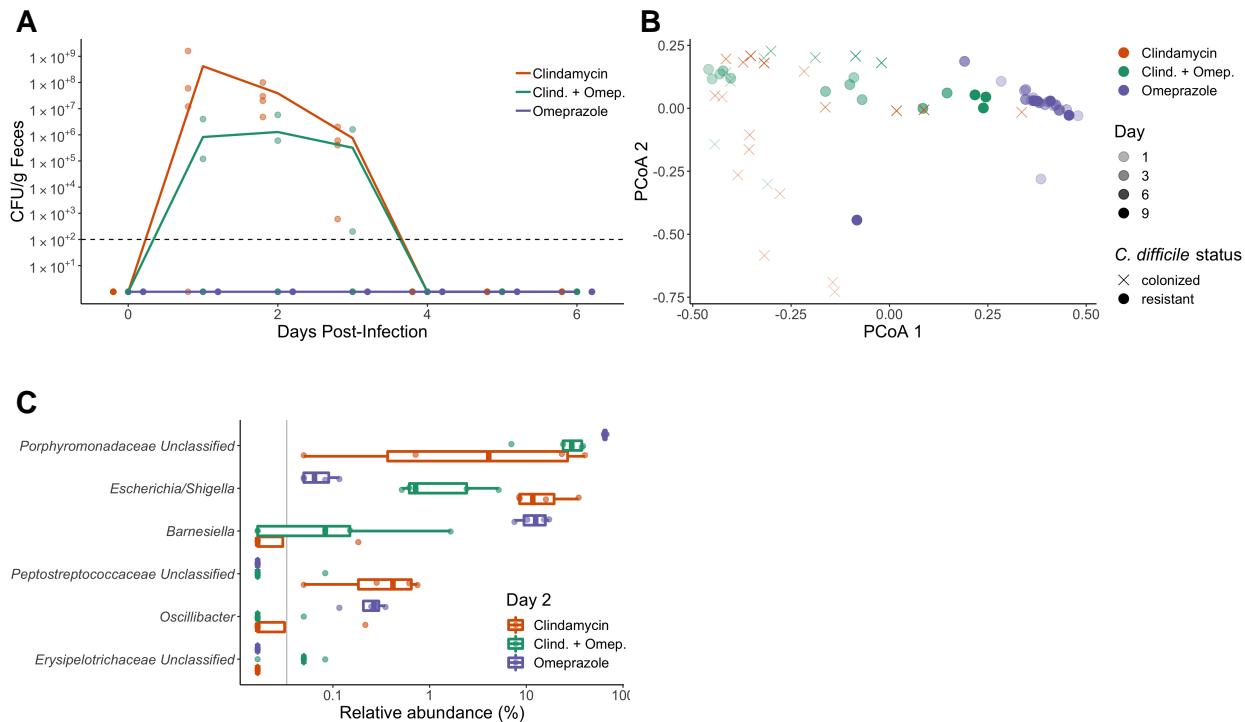
237 20. Eze P, Balsells E, Kyaw MH, Nair H. 2017. Risk factors for *Clostridium difficile* infections – an
238 overview of the evidence base and challenges in data synthesis. *Journal of Global Health* 7.

239 21. Regårdh C-G, Gabrielsson M, Hoffman K-J, Löfberg I, Skånberg I. 1985. Pharmacokinetics
240 and metabolism of omeprazole in animals and man - an overview. *Scandinavian Journal of
241 Gastroenterology* 20:79–94.

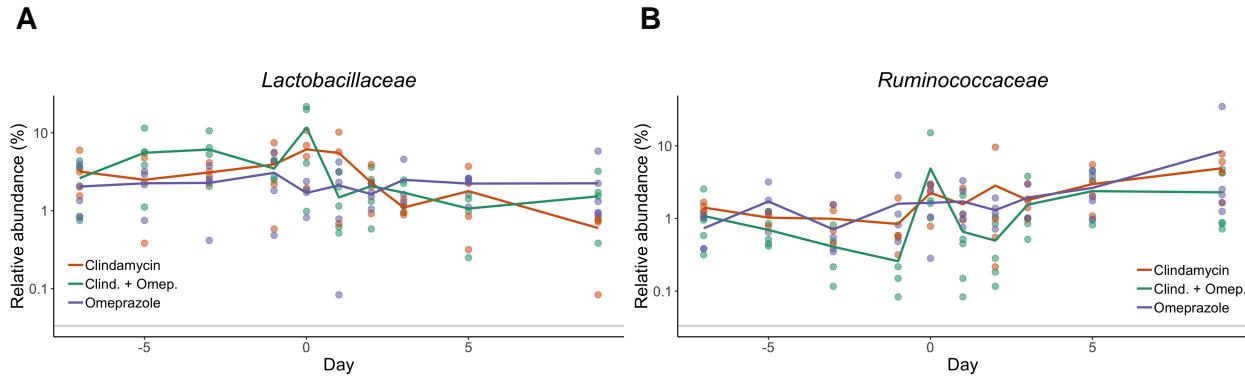

242 22. Llorente C, Jepsen P, Inamine T, Wang L, Bluemel S, Wang HJ, Loomba R, Bajaj JS, Schubert
243 ML, Sikaroodi M, Gillevet PM, Xu J, Kisseleva T, Ho SB, DePew J, Du X, Sørensen HT, Vilstrup H,
244 Nelson KE, Brenner DA, Fouts DE, Schnabl B. 2017. Gastric acid suppression promotes alcoholic
245 liver disease by inducing overgrowth of intestinal enterococcus. *Nature Communications* 8.

246 23. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a
247 dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the
248 MiSeq illumina sequencing platform. *Applied and Environmental Microbiology* 79:5112–5120.

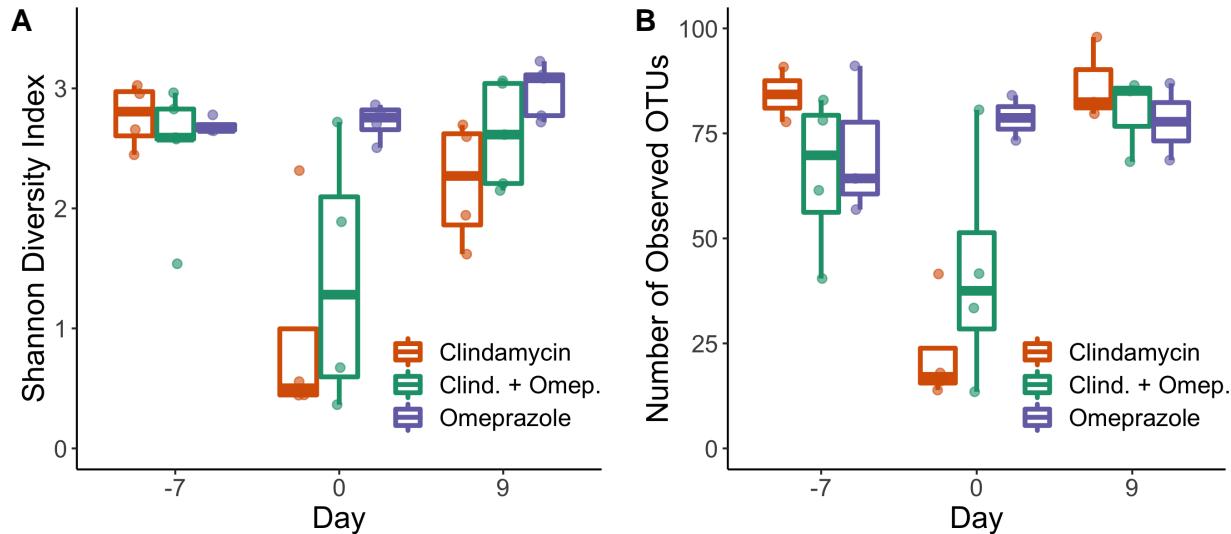
249 24. Sze MA, Schloss PD. 2019. The impact of DNA polymerase and number of rounds of
250 amplification in PCR on 16S rRNA gene sequence data. *mSphere* 4.


251 25. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
252 Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF.
253 2009. Introducing mothur: Open-source, platform-independent, community-supported software
254 for describing and comparing microbial communities. *Applied and Environmental Microbiology*
255 75:7537–7541.

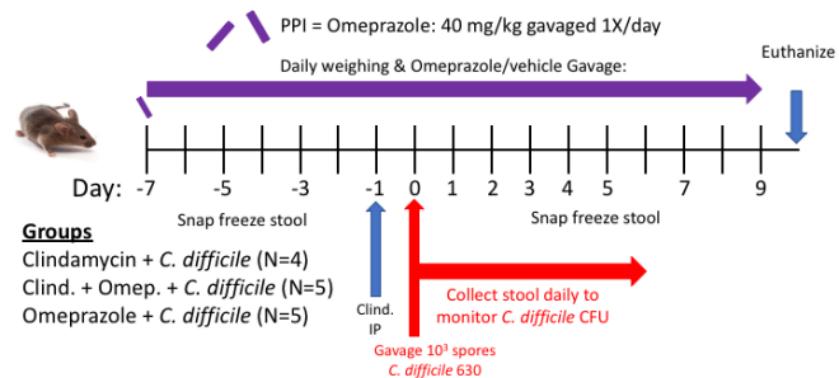
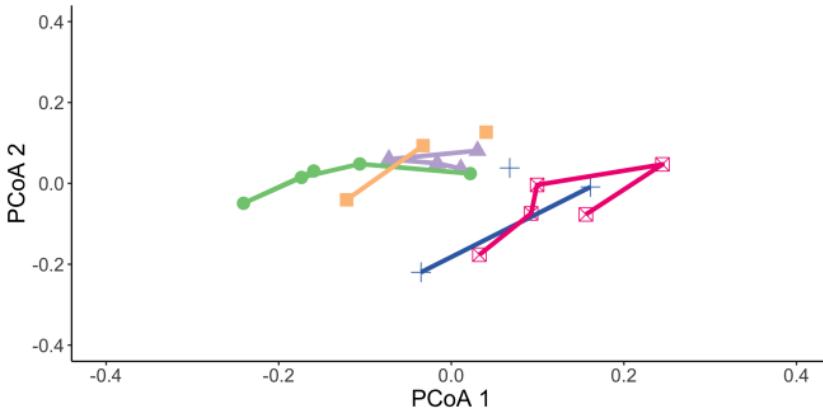
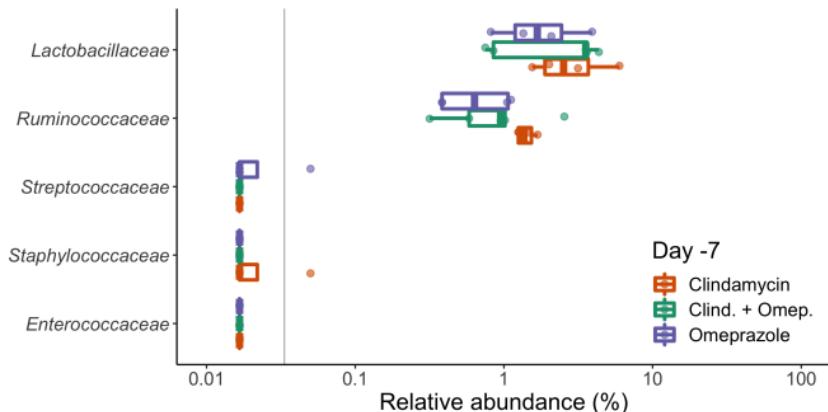
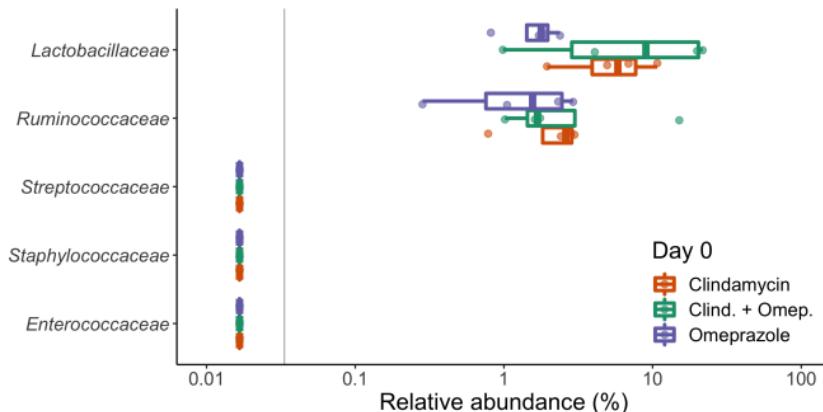
256 **Figures**

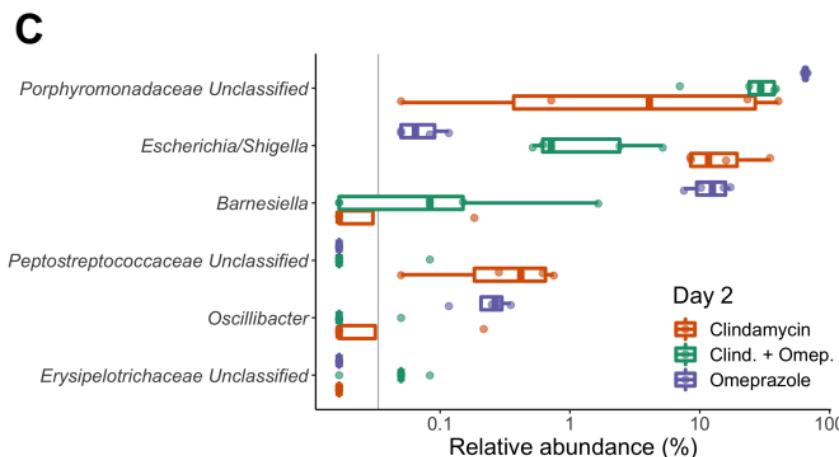
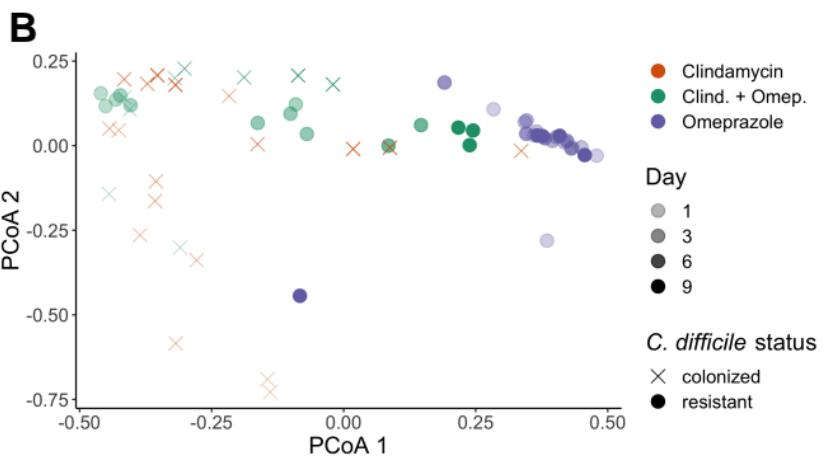
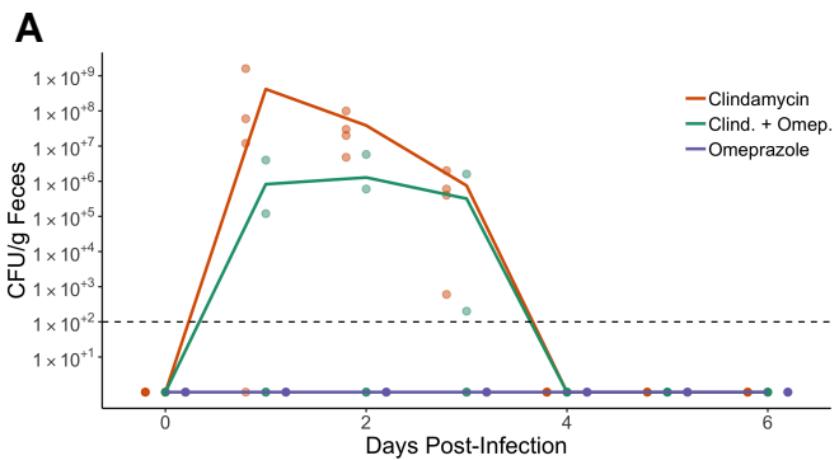

257

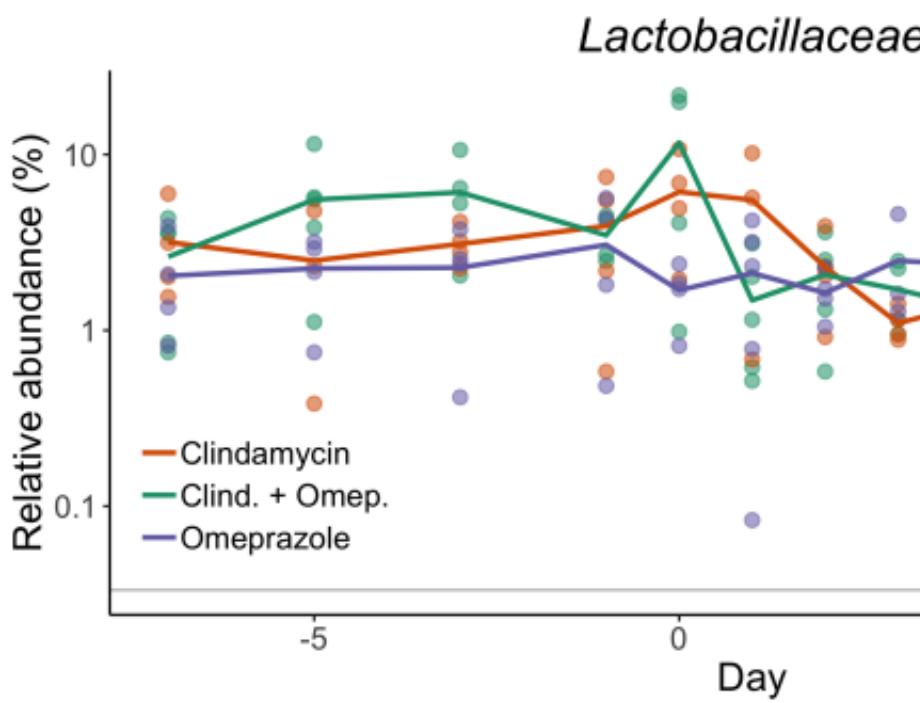
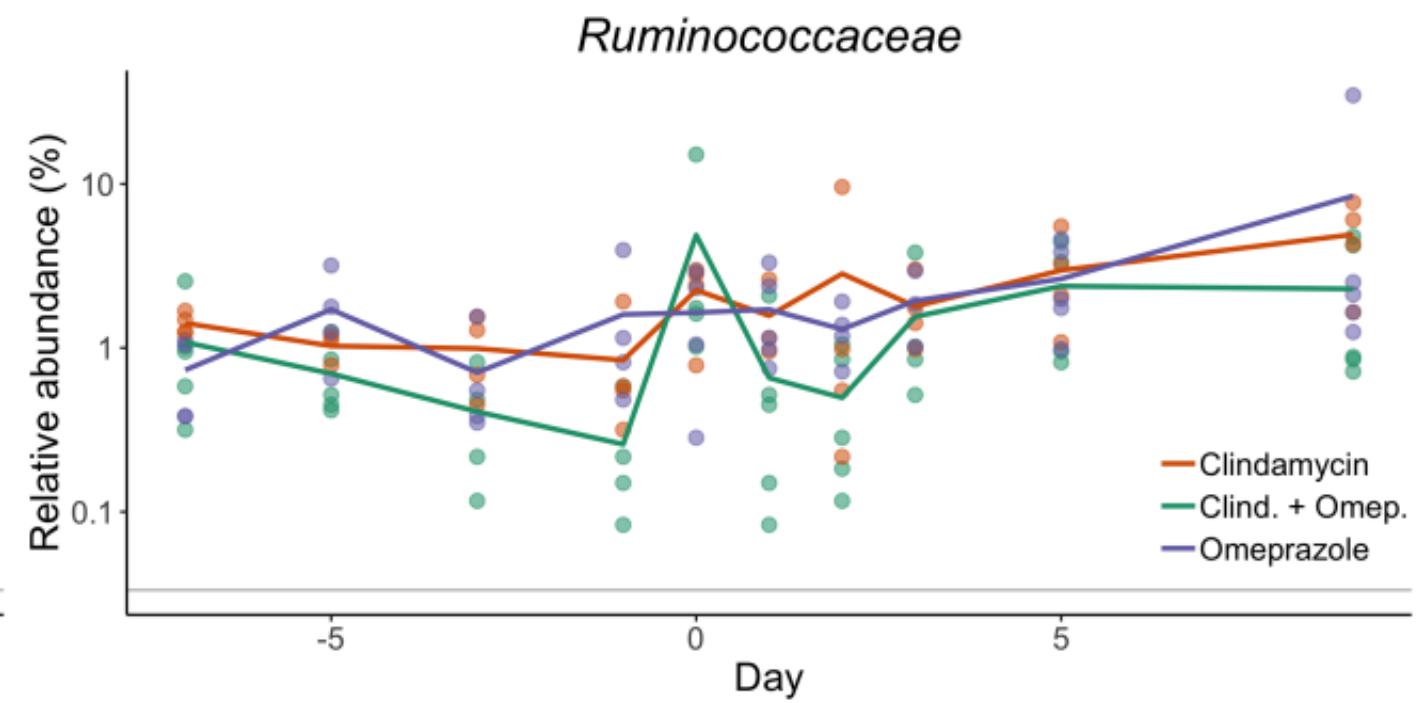
258 **Figure 1. Omeprazole treatment had minimal impact on the murine fecal microbiota.** A.
259 Mouse experiment timeline and logistics. The PPI omeprazole was administered throughout the
260 duration of the experiment. Clindamycin was administered 1 day before *C. difficile* challenge on
261 Day 0. Stools for 16S rRNA sequencing analysis were collected on the days that are labeled (Day
262 -7, -5, -3, -1, 0, 1, 2, 3, 4, 5, 7, 9). *C. difficile* CFU in the stool was quantified daily through 6
263 days post-infection by anaerobic culture. B. Principal Coordinates Analysis (PCoA) of Bray-Curtis
264 distances from stool samples of mice in the omeprazole treatment group during the initial 7 days of
265 the experiment. Each color represents stool samples from the same mouse and lines connect
266 sequentially collected samples. C-D. Relative abundances of families previously associated with
267 PPI use in humans at the start of the experiment (C) and after 7 days of omeprazole treatment (D).
268 Each circle represents an individual mouse. There were no significant differences across treatment
269 groups for any of the identified families in the sequence data at day -7 (all P-values > 0.448) and
270 day 0 (all P-values > 0.137), analyzed by Kruskal-Wallis test with a Benjamini-Hochberg correction
271 for multiple comparisons. For C-D, the grey vertical line indicates the limit of detection.

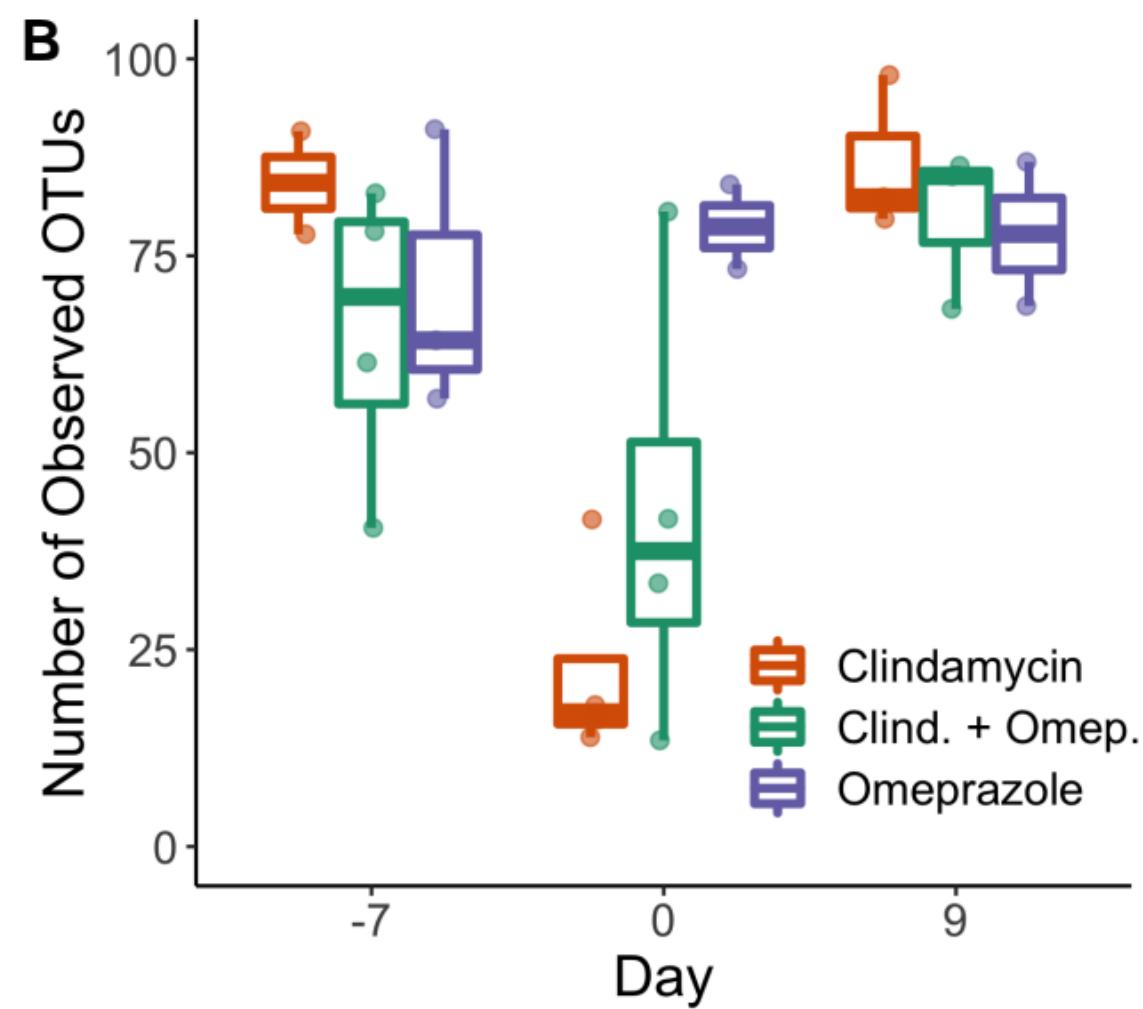
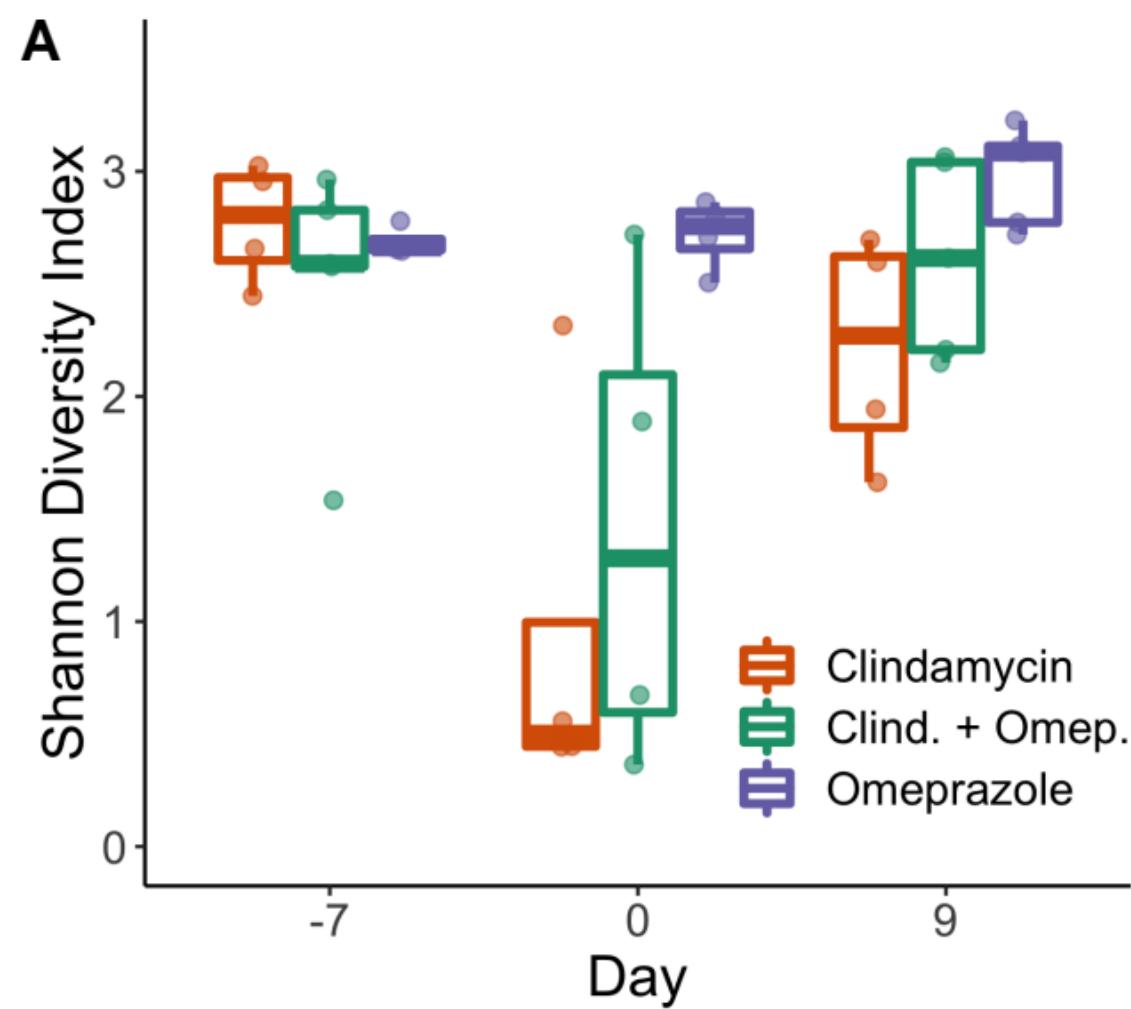

272

273 **Figure 2. Omeprazole treatment alone does not promote CDIs in mice. A.** *C. difficile* CFUs/g
 274 stool measured each day post *C. difficile* challenge for clindamycin, clindamycin/omeprazole, and
 275 omeprazole-treated mice. Lines represent the mean CFU/g for each treatment group while points
 276 represent CFU/g for individual mice within each group. The black dashed line indicates the limit
 277 of detection. **B.** PCoA of Bray-Curtis distances from stool samples collected after antibiotic
 278 treatment (last 9 days of the experiment). Transparency of the symbol corresponds to treatment day.
 279 Symbols represent the *C. difficile* colonization status of the mice measured 2 days post-infection.
 280 Circles represent resistant mice (*C. difficile* was undetectable in stool samples), while X-shapes
 281 represent mice that were colonized with *C. difficile*, although all mice cleared *C. difficile* within 5
 282 days of infection. Omeprazole treated fecal samples primarily cluster together throughout the
 283 experiment. **C.** Genera that vary the most across treatment groups for stool samples collected
 284 from mice 2 days post-infection. Data were analyzed by Kruskal-Wallis test, and no P-values were
 285 significant after Benjamini-Hochberg correction for multiple comparisons (all P-values > 0.092).
 286 The grey vertical line indicates the limit of detection.





287




288 **Figure S1. Families within omeprazole treated mice fluctuate over time with no overall trend**
289 **in either direction.** Relative abundance over time for *Lactobacillaceae* (A) and *Ruminococcaceae*
290 (B), 2 of the PPI-associated families from human PPI studies across all 3 treatment groups. Each
291 point represents the relative abundance for an individual mouse stool sample, while the lines
292 represent the mean relative abundances for each treatment group of mice. The grey horizontal
293 lines indicate the limit of detection.



294

295 **Figure S2. Microbiota diversity and richness decrease with antibiotic treatment but remain**
296 **relatively constant with omeprazole treatment.** Boxplots of the Shannon Diversity Index values
297 (A) and number of observed OTUs (B) for each group of mice over 3 timepoints (Day -7, 0, and 9).
298 Each circle represents the value for a stool sample from an individual mouse.

A**B****C****D**

A**B**

