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ABSTRACT 25 

Myeloid cells are a vital component of innate immunity and comprise of monocytes, 26 

macrophages, dendritic cells and granulocytes. How myeloid cell lineage affects activation states 27 

in response to cytokines remains poorly understood. The cytokine environment and cellular 28 

infiltrate during an inflammatory response may contain prognostic features that could predict 29 

disease outcome. Here we analyzed the transcriptional responses of human monocytes, 30 

macrophages, dendritic cells and neutrophils in response to stimulation by IFN-, IFN- IFN-, 31 

IL-4, IL-13 and IL-10 cytokines, to better understand the heterogeneity of activation states in 32 

inflammatory conditions. This generated a myeloid cell cytokine specific response matrix that 33 

can infer representation of myeloid cells and the cytokine environment they encounter during 34 

infection and in tumors. Neutrophils were highly responsive to type 1 and type 2 cytokine 35 

stimulation but did not respond to IL-10. We identified transcripts specific to IFN- stimulation, 36 

whereas other IFN signature genes were upregulated by both IFN- and IFN-. When we used 37 

our matrix to deconvolute blood profiles from tuberculosis patients, the IFN- specific 38 

neutrophil signature was reduced in TB patients with active disease whereas the shared response 39 

to IFN- and IFN- in neutrophils was increased. When applied to glioma patients, transcripts of 40 

neutrophils exposed to IL-4 or IL-13 and monocyte responses to IFN- or IFN- emerged as 41 

opposing predictors of patient survival. Hence, by dissecting how different myeloid cells respond 42 

to cytokine activation, we can delineate biological roles for myeloid cells in different cytokine 43 

environments during disease processes, especially during infection and tumor progression. 44 

  45 
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INTRODUCTION 46 

 While there has been rapid recent progress in understanding the ontogeny of myeloid 47 

cells, including monocytes, macrophages, dendritic cells and granulocytes in recent years, the 48 

heterogeneity of activation states between these different cell types remains poorly understood. 49 

Single cell RNA seq technologies of inflamed tissues has begun to provide an appreciation for 50 

the heterogeneity of activation states for different myeloid cells, however these cells typically 51 

encounter a complex mixture of cytokines in their tissue microenvironment.  The overall status 52 

of immune cells in a particular tissue or in blood circulation in disease conditions is an important 53 

indicator of disease state. Transcriptional profiles of immune cells have thus been used to define 54 

gene expression signatures that could potentially guide personalized clinical decision-making 55 

through patient stratification and evaluation of disease-associated gene expression changes.  56 

However, in most cases, transcriptional profiles are generated from bulk tissues or whole blood, 57 

masking changes in the transcriptomic composition of specific cell types. Recently, 58 

computational approaches have been developed to infer leukocyte compositions in bulk tissue 59 

transcriptomes based on cell-type specific reference gene expression signatures (1). One such 60 

study found that the ratio of tumor-associated neutrophils and plasma cell signatures was 61 

predictive of survival for various solid tumors (2). While this strategy enables the deconvolution 62 

of immune cell types infiltrating different tissues, the environmental conditions they encounter as 63 

they infiltrate the tissues is not yet known. 64 

Identifying specific transcriptional programs in myeloid cells may facilitate the discovery 65 

of biomarkers and targets for therapies for a variety of diseases. Both granulocytic myeloid cells 66 

(e.g. neutrophils, eosinophils and basophils) and monocytic myeloid cells are important innate 67 

immune components of the inflammatory infiltrate, being almost universally present in any 68 

disease condition. They are all critical not just for protection against pathogens but also for tissue 69 

remodeling and maintenance of tissue homeostasis. The same differentiation processes that guide 70 

the physiologically necessary function of these cells are also responsible for the pathological 71 

accumulation of these cells under certain inflammatory conditions. For example, myeloid 72 

derived suppressor cells (MDSCs) can play pathological roles in cancer, as well as other 73 

inflammatory settings where they accumulate and differentiate (3). 74 

The cytokine environment is a critical determinant of immune cell activation phenotypes 75 

and the response of diverse immune cells to the different cytokines is not well understood. 76 
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Further, cell types respond differentially to various cytokine stimulation conditions to express 77 

distinct transcriptional signatures. This may be due to differences in chromatin state and cytokine 78 

receptor expression levels that determine, for example, how macrophages and dendritic cells 79 

respond to IL-10 stimulation as compared to IFN-γ stimulation (4, 5). While there have been 80 

experimental studies whereby transcriptional response has been assessed in specific immune cell 81 

types following exposure to assorted cytokines, we are not aware of a systematic comparison of 82 

diverse myeloid cell types in response to a wide variety of different cytokine stimulation 83 

conditions. Here, we compare the transcriptional response of primary human macrophages, 84 

dendritic cells, monocytes and neutrophils to stimulation with a cytokine panel consisting of IL-85 

4, IL-10, IL-13, IFN-γ, IFN-β, and IFN-. These signatures were then used to infer the signature 86 

of specific immune cell types responding to specific cytokine environments from bulk 87 

transcriptomic data. This method allows us to infer not only the type of immune cells present in a 88 

bulk tissue or blood but also the cytokine environment which they are likely encountering. We 89 

have successfully identified 12 myeloid cell-cytokine stimulation signatures and correlated both 90 

Mycobacterium tuberculosis infection status and glioma cancer outcome with these specific 91 

signatures. 92 

 93 

  94 
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MATERIALS AND METHODS 95 

Cell Isolation and Differentiation Protocol 96 

Primary human polymorphonuclear neutrophils (PMNs) and peripheral blood mononuclear cells 97 

(PBMCs) from anonymous, healthy donors (New York Blood Center) were isolated by Ficoll 98 

gradient separation as previously described (6). CD14+ monocytes were then isolated from the 99 

PBMC fraction by positive selection. In brief: PBMCs were resuspended in MACS buffer (PBS 100 

+ 0.05% BSA + 2 mM EDTA) at a concentration of 1x108 PBMCs per 950 L. 50 L of CD14+ 101 

microbeads (Miltenyi Biotec) were added for every 1x108 PBMCs. Cells were incubated for 20 102 

minutes at 4C, washed, and filtered through a cell strainer. The cells were run on an AutoMACS 103 

Pro (Miltenyi Biotec) using the ‘Posselds’ program. Monocytes were used directly after sorting. 104 

Monocyte-derived dendritic cells (DCs), and Monocyte-derived macrophages were differentiated 105 

from CD14+ monocytes by culturing the cells for 4 days at 37C and 5% CO2 in RPMI medium 106 

supplemented with 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 g/mL streptomycin 107 

with either 110 U/mL granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine; 108 

Sanofi) and 282 U/mL interleukin-4 (IL-4) (Affymetrix, eBioscience) for DCs or 280 U/mL GM-109 

CSF for macrophages. Media was replenished with fresh cytokine on day 2.  110 

 111 

Cell Stimulation Protocol 112 

Differentiated cells were resuspended in clear RPMI + 10% FBS. 1x105 cells were added to each 113 

stimulation well. Stimulations comprised of buffer control (PBS + 0.01% Glycerol), 500 U/mL 114 

IFN-1a (Carrier Free; R&D Systems), 10 ng/mL IFN- (Carrier Free, R&D Systems), IFN-2 115 

(Carrier Free, R&D Systems), 1000 IU/mL IL-4 (Carrier Free, Life Technologies), 100 IU/mL 116 

IL-10 (Carrier Free, Life Technologies), and 100 IU/mL IL-13 (Carrier Free, R&D Systems). 117 

Plates were spun for 5 minutes at 1200 rpm and incubated for 4 hours at 37C and 5% CO2. Cells 118 

were then washed with PBS. Cells were resuspended in RLT buffer (Qiagen) and vortexed for 1 119 

minute before being placed at -80C. RNA for each donor was then isolated with the RNeasy 120 

Plus Mini Kit (Qiagen) following the protocol with on column DNAse Digestion (Qiagen).  121 

 122 

Gene Expression Analysis 123 

Libraries were generated for each donor using the CelSeq2 protocol (7) and were sequenced on 124 

Illumina Hi-Seq. Reads were mapped by Bowtie2.3.1 (8) to the hg38 reference genome and 125 
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uniquely mapped indices (UMI) determined by HTSeq-counts (9). Differential expression 126 

analysis was performed in R (v3.5.1) using DESeq2 (10). Compared to buffer controls, 127 

differentially expressed genes were considered significant with Log2 fold change greater than 2 128 

and adjusted p-value less than 0.05. 129 

 130 

Self-Organizing Map and Outlier Analysis 131 

Self-organizing map (SOM) analysis (11) was performed on the list of 571 differentially 132 

expressed genes using the R statistical programming language. SOM analysis was performed 133 

individually for each cell type with the R package Kohonen (12) at default parameters. 134 

According to 16 identified SOM clusters outlier analysis was performed to identify specific gene 135 

expression patterns. A gene was considered an outlier with an expression level 1.5 times greater 136 

than the median expression level across all conditions in at least two out of the three donors (13). 137 

131 of 571 genes were found to meet these criteria in 12 of the possible 16 cell type and 138 

stimulation conditions. 139 

 140 

Cell type deconvolution through CIBERSORT 141 

Source code for the CIBERSORT deconvolution algorithm, https://cibersort.stanford.edu/, was 142 

obtained from the developers and implemented in the R statistical programming language (14) 143 

All input bulk datasets were obtained as normalized count tables when available. If not 144 

normalized datasets were scaled and quantile normalized according to the default CIBERSORT 145 

functions. Our MCCS basis matrix was supplied as the average normalized expression level 146 

across the three donors for our 131-gene set. The basis matrices for immunoStates (15) and 147 

LM22 (1) were obtained from the respective publications. CIBERSORT was run according to 148 

default parameters in all cases with 100 permutations. 149 

 150 

M. tuberculosis sample collection and normalization 151 

Conducting a literature search for all available TB infection studies with publicly available data 152 

yielded 8 microarray and 5 RNA-Seq studies, with the following accession numbers; GSE19491, 153 

GSE28623, GSE37250, GSE39939, GSE39940, GSE40553, GSE41055, GSE56153, 154 

GSE101705, GSE107995, GSE79362, GSE89403, GSE94438 (16–28) . See Table S2 for full 155 
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sample details. Microarray studies were obtained as scaled expression values as downloaded 156 

from GEO. RNA-Seq studies were obtained as edgeR (29) normalized count tables. 157 

 158 

LASSO modeling and feature selection for patient survival in primary gliomas 159 

RSEM normalized count tables for all primary glioma samples available in the TCGA database 160 

were obtained through the TCGA2STAT R package (30). Additional sample metadata was also 161 

obtained from Ceccarelli et al. (31). Samples were randomly split into a training set and a test set 162 

with an 80/20 split depending on the vital status at the 2-year or 5-year model. Additionally, 163 

survival status was balanced as much as possible between the test and train sets to improve 164 

model predictions. In the 2-year model there were 264 samples (133 alive, 131 deceased) in the 165 

training set and 66 (32 alive, 34 deceased) samples in the test set. And in the 5-year model there 166 

were 358 samples (168 alive, 190 deceased) in the training set and 90 (56 alive, 34 deceased) 167 

samples in the test set. Prior to modeling the samples were scaled with min-max normalization 168 

by normalizing the gene expression levels for each sample between 0 and 1. The sample 169 

breakdowns were subject to a logistic least absolute shrinkage and selection operator (LASSO) 170 

model with 7-fold cross validation repeated 10 times using the R package caret (32). Area under 171 

the receiver operator curve (AUC) and precision recall curves were used to assess model 172 

performance by the default functions in caret (32). Additionally, feature importance was assessed 173 

by the caret importance function, varImp, which measures the regression coefficients for each 174 

gene supplied to the model. 175 

 176 

Availability of data and material 177 

Gene expression data is deposited in GEO under the accession number GSE131990. The TB 178 

infection studies of publicly available data includes 8 microarray and 5 RNA-Seq studies, with 179 

the following GEO accession numbers; GSE19491, GSE28623, GSE37250, GSE39939, 180 

GSE39940, GSE40553, GSE41055, GSE56153, GSE101705, GSE107995, GSE79362, 181 

GSE89403, GSE94438 (16–28). RSEM normalized count tables for all primary glioma samples 182 

are available in the TCGA database (https://portal.gdc.cancer.gov/) and were obtained through 183 

the TCGA2STAT R package (30). Additional sample metadata was also obtained from 184 

Ceccarelli et al. (31).  185 
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RESULTS 186 

Myeloid cells respond to cytokine stimulation with cell type specific transcriptional profiles. 187 

In order to better understand how different human myeloid cells respond to activation by 188 

different types of cytokines, we set out to compare the transcriptional profiles attained through 189 

RNA-Seq of monocytes, neutrophils, macrophages and dendritic cells from the same healthy 190 

donors in response to stimulation by type 1 cytokines (IFN-γ, IFN-β and IFN-), type 2 191 

cytokines (IL-4 and IL-13) and the regulatory cytokine IL-10. Neutrophils and monocytes were 192 

stimulated directly after isolation from blood leukopaks whereas macrophages and dendritic cells 193 

were stimulated after a 4-day differentiation period from the isolated monocytes (Fig. 1A).  RNA 194 

was isolated 4 hours after stimulation for each of the four different cell types and stimulation 195 

conditions including an unstimulated buffer control for each cell type. Donor to donor 196 

differences had a much smaller effect on transcriptional profiles than differences between cell 197 

types (Fig. S1). We next identified genes that were significantly upregulated in individual 198 

cytokine stimulations relative to the unstimulated condition for each cell type. For example, with 199 

macrophages, we identified a total set of 341 genes that were significantly upregulated, log2 fold 200 

change greater than 2 and FDR less than 0.05, by at least one cytokine relative to the 201 

unstimulated control samples. Monocytes upregulated 197 genes; dendritic cells upregulated 199 202 

genes; and neutrophils were highly responsive and upregulated 274 genes in response to cytokine 203 

stimulation (Fig. 1C). We then combined all of these lists for a total of 571 genes that are 204 

upregulated by at least one cytokine in at least one myeloid cell type. Principle component 205 

analysis (PCA) based on these genes indicated that each cell type engages a distinct 206 

transcriptional programming for each cytokine stimulation (Fig. 1B). 35% of the explained 207 

variation along the first principle component was strongly associated with cell type identity. 208 

Within each myeloid cell type, it is clear that type 2 cytokines IL-4 and IL-13 triggered shared 209 

transcriptional programs, whereas the type 1 cytokines IFN-β and IFN-γ triggered a similar set of 210 

upregulated genes (Fig. 1C). An IL-10 induced signature was observed in macrophages, 211 

dendritic cells and monocytes but completely absent in neutrophils. Interestingly, neutrophils had 212 

a robust response to other cytokines including a small subset of genes induced by IFN-, which 213 

was not observed in the other cell types (Fig. 1C).  214 

 With this set of 571 cytokine upregulated genes on myeloid cells, we considered if shared 215 

cytokine specific responses would dominate over cell-type specific responses to stimulation. 216 
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Unsupervised clustering and correlation analysis of transcriptional responses showed a clear 217 

distinction between stimulations of different cell types. Macrophages and dendritic cells had a 218 

more closely correlated response while neutrophils and monocytes were more closely correlated 219 

in their response signature (Fig. 2A). Although type 1 (especially IFN-γ and IFN-β) and type 2 220 

(IL-4 and IL-13) cytokine specific responses mainly clustered together within each cell type, this 221 

was not sufficient to override the correlation between cell type specific responses. These results 222 

indicated that for the most part, the cell type is a larger determinant of whether a gene is 223 

upregulated after stimulation than the cytokine. The only exception was a strong correlation 224 

between macrophages and dendritic cells stimulated by IFN-β (Fig. 2A).  225 

 To obtain finer resolution on how the different cell types share responses to cytokine 226 

stimulation, we looked for overlaps in differentially expressed genes between cell types. This 227 

revealed that 81 of the 571 genes were upregulated in all four cell types (Fig. 2B), which was 228 

primarily driven by a shared response to IFN-β stimulation (Fig. 2C).  However, 342 of the other 229 

upregulated genes were specific to a single cell type (Fig. 2B), and further segregation by 230 

cytokine stimulation confirmed that the major transcriptional response to each cytokine was 231 

unique to a particular cell type (Fig. 2C-H). For example, IL-10 induced 47 genes that were 232 

specific to monocytes, 9 to macrophages and 8 to dendritic cells while having almost no effect 233 

on neutrophils (Fig. 2H). Alternatively, neutrophils induced 49 and 50 genes uniquely after IL-4 234 

(Fig. 2F) and IL-13 (Fig. 2G) stimulation while the other cell types were generally less 235 

responsive. Neutrophils also had a robust cell type specific response to IFN-γ (31 genes, Fig. 2D) 236 

and IFN-β stimulation (56 genes, Fig. 2C). Overall, these results indicated that the cytokine 237 

driven transcriptional responses in different myeloid cell types are highly cell type specific, apart 238 

from a core response to IFN-β stimulation (and to a lesser extent IFN-γ) that is shared by all cell 239 

types.   240 

 241 

Identification of a myeloid cell cytokine specific transcriptional signature 242 

We next identified specific transcriptional signatures that define a particular cell type and 243 

stimulation pair. Through self-organizing map (SOM) analysis (11) we identified clusters of 244 

similar gene expression between cytokines in an unbiased manner. For each cell type the full list 245 

of differentially expressed genes were sub-clustered into stimulation specific signatures. This 246 

analysis divided the gene expression pattern of neutrophils into four sub-clusters corresponding 247 
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to genes induced only by IFN-β (cluster 1), by both IFN-β and IFN-γ (cluster 2), by both IL-13 248 

and IL-4 (cluster 4) and by IFN- (cluster 3) (Fig. 3A, B). For macrophages, five clusters were 249 

identified corresponding to genes upregulated by only IFN-β (cluster 2), both IFN-β and IFN-γ 250 

(cluster 1), both IL-13 and IL-4 (cluster 5), IL-10 (cluster 3) and one cluster which could not be 251 

clearly assigned (Fig. S2A, B). In dendritic cells, four clusters were identified corresponding to 252 

genes upregulated under IFN-β alone (cluster 1), IFN-β and IFN-γ combined (cluster 4), IL10 253 

(cluster 2) and one cluster could not be assigned because two few genes were present (Fig. S2C, 254 

D). For monocytes, four clusters were identified corresponding to genes upregulated only by 255 

IFN-β (cluster 1), both IFN-β and IFN-γ (cluster 3), IL-13 and IL-4 (cluster 4) and IL-10 (cluster 256 

2) (Fig. S2E, F). Altogether, 12 cell type and stimulation specific expression patterns could be 257 

identified by SOM analysis. Importantly, not all cell types and stimulation signatures were robust 258 

enough to be clearly isolated.  259 

Following identification of these 12 unique expression clusters, we performed outlier 260 

analysis (13) to further filter the expression cluster gene list to only include genes highly specific 261 

for the cell type and cytokine stimulation conditions identified by SOM analysis. Genes such as 262 

RBBP6 and ASF1B were considered outliers for monocytes responding to IFN-β and IFN-γ and 263 

neutrophils responding to IL-4 and IL-13 respectively (Fig. S3), due to their highly specific and 264 

consistent expression pattern in these cell type stimulation conditions across all three donors. 265 

This evaluation identified 131 genes that reflected the 12 myeloid cell cytokine stimulation 266 

conditions that were clearly distinguishable (Fig. 3C, S4 and Table S1). These genes represent a 267 

high confidence marker gene set for myeloid cells under stimulation of various cytokines. We 268 

refer to this as a myeloid cell cytokine specific (MCCS) signature.  269 

 270 

Deconvolution of transcriptional signatures from M. tuberculosis Infection. 271 

To determine the utility of our MCCS signature matrix, we first examined whole-blood 272 

transcriptomes from 13 clinical cohorts infected with M. tuberculosis, which were publicly 273 

available (Table S2). Previous studies have described a neutrophil driven type 1 IFN-inducible 274 

signature increased in patients with active disease compared to healthy and latently infected 275 

individuals (16), hence we were interested in the role of neutrophil specific cytokine responses in 276 

this context. More recently, circulating natural killer cells were also reported to increase in 277 

abundance during tuberculosis latency but decreased back to baseline during active disease (33). 278 
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We compiled 8 available human whole blood microarray and 5 RNA-Seq datasets relevant to 279 

active tuberculosis infections in GEO and analyzed the two sets independently. We focused our 280 

analyses on the differences between healthy (microarray n = 88, RNA-Seq n = 365), latently 281 

infected (microarray n = 376, RNA-Seq n = 117) and active disease individuals (microarray n = 282 

547, RNA-Seq n = 306) as described in Table S2. We first utilized the original LM22 basis 283 

matrix from CIBERSORT (https://cibersort.stanford.edu)(1) and the more recent ‘immunoStates’ 284 

matrix (15) to infer leukocyte representation by support vector regression through CIBERSORT. 285 

The original LM22 basis matrix identifies 22 human hematopoietic cell phenotypes from 286 

peripheral blood and in vitro culture conditions while immunoStates identifies 20 immune cell 287 

types from over 6,000 samples during different disease states. Using these matrices, we were 288 

able to confirm that CD56bright NK cells (immunoStates) were increased in abundance for 289 

latently infected individuals both in the microarray and RNA-Seq datasets (Fig. 4A). While the 290 

signature of resting NK cells (LM22) also showed this response (Fig. S5E) in the microarray 291 

dataset, the RNA-Seq dataset showed a slightly different pattern (Fig. S5F). This finding is 292 

consistent with immunoStates being an improved basis matrix compared to LM22 and confirmed 293 

that our compiled datasets could reproduce previously published findings (33).  294 

When we examined the inferred abundance of neutrophils, we found that the LM22 295 

matrix indicated an increased abundance of neutrophils in actively infected individuals from the 296 

microarray dataset (Fig. S5E), but also suggested that neutrophils were more abundant in latently 297 

infected individuals compared to healthy individuals from the RNA-Seq dataset (Fig. S5F). In 298 

contrast, the immunoStates matrix inferred greater abundance of neutrophils during active 299 

disease from the RNA-Seq dataset (Fig. S5D) with decreased abundance of neutrophils during 300 

latent infection in the microarray dataset (Fig. S5C). When we applied our MCCS matrix on 301 

these datasets, we found that there was a clear increase in actively infected individuals for 302 

neutrophil response genes that were inducible by both IFN- γ and IFN- β (Fig. 4C). Surprisingly, 303 

genes that were only inducible by IFN- β in neutrophils were reduced in expression during active 304 

infection compared to latent infection (Fig. 4B). This was consistent for both microarray and 305 

RNA-Seq datasets. Although a role for IFN- β during active tuberculosis infection has now been 306 

well established (16), these results were surprising in that they point to a requirement for both 307 

IFN-γ and IFN- β in driving the IFN-inducible signature of neutrophils during active 308 

tuberculosis. Alternatively, it is perhaps impossible to truly determine if the IFN-inducible 309 
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signature of neutrophils is the result of type 1 or type 2 IFNs since they induce a similar set of 310 

genes (34). Notably, when we examined other myeloid cell responses, we found that there was a 311 

consistent reduction of the IL-4/IL-13 signatures from both monocytes (Fig. 4D) and 312 

macrophages (Fig. S5A,B) during active infection, relative to healthy and latently infected 313 

individuals. Hence, in addition to providing further insights into the IFN-inducible neutrophil 314 

signature during human tuberculosis, our MCCS matrix implicates a suppression of type-2 315 

cytokine (IL-4 and IL-13) responses in monocytes and macrophages during active infection. 316 

Additionally, there was an increased abundance of dendritic cells (DCs) expressing IFN- γ and 317 

IFN-β inducible genes during active infection (Fig. S5A,B). From these results, we were able to 318 

gain additional biological insight into the cytokine responses of myeloid cells during different 319 

stages of tuberculosis infection.  320 

 321 

Interleukin-stimulated Neutrophil Signature Indicates Poor Survival in Glioma. 322 

Recently, infiltrating and circulating myeloid cells have been tied to survival and likelihood of 323 

response to immunotherapy in the context of human gliomas (35, 36). A significant portion of 324 

the cellular mass in primary glioma samples is infiltrating immune cells such as tumor-associated 325 

macrophages (TAMs), whose levels correlate with tumor grade and severity, and other myeloid 326 

subsets (37). Additionally, over 600 primary glioma tumors have been profiled by the Cancer 327 

Genome Atlas (TCGA) (31) by a variety of sequencing methods including RNA-Seq with 328 

detailed clinical outcome information. Applying statistical deconvolution based on our curated 329 

MCCS signature, we found a strong but reciprocal relationship to survival for neutrophils 330 

responding to IL-4 and IL-13 stimulation, and monocytes responding to IFN-β and IFN-γ 331 

stimulation. Monocyte IFN responses were predictive of favorable survival, whereas tumors with 332 

high neutrophil IL-4/IL-13 responses exhibited reduced patient survival (Fig. 5A and S6).  333 

We next considered a more direct approach to assess the utility of our MCCS signature to 334 

predict survival of patients with glioma. We trained least absolute shrinkage and selection 335 

operator (LASSO) models on our 131-gene MCCS signature, the original LM22 (1) basis matrix 336 

and the immunoStates (15) basis matrix separately to classify 2 and 5-year survival predictions. 337 

Our model demonstrated robust survival prediction with an area under the ROC curve (AUC) 338 

between 0.85 (5-year) and 0.89 (2-year) on our test set while the LM22 and immunoStates 339 

signatures were lower (immunoStates AUC = 0.868 at 2 years and 0.763 at 5 years, LM22 AUC 340 
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= 0.828 at 2 years and 0.788 at 5 years) (Fig 5B and S7). Evaluation of the gene importance for 341 

survival predictions in our MCCS matrix at 5 years indicates that the top genes were derived 342 

from the IL-4/IL-13-stimulated neutrophils and IFN-β and IFN-γ-stimulated monocytes (Fig. 343 

5C), confirming the CIBERSORT proportion estimates and survival curves shown in Figure 5A. 344 

In addition to the cell type and stimulation condition we were also interested in the relationships 345 

between the genes most predictive of long-term survival. Correlation analysis of the top features 346 

with strong predictive power, as measured by feature importance (See methods) indicated two 347 

distinct expression profiles (Fig 5D). Furthermore, primary glioma samples from TCGA have 348 

been previously profiled to identify somatic mutations and molecular markers (31) indicative of 349 

survival. One such marker is the gene encoding isocitrate dehydrogenase (IDH), which when 350 

mutated is known to be associated with increased patient survival in both low and high-grade 351 

gliomas (38). Based on pairwise gene expression correlation analysis of the 40 most predictive 352 

gene features from our model, we identified two clusters which were found to significantly differ 353 

in their gene expression between glioma samples with a mutated or wild type IDH gene (Fig 354 

5D). Specifically, on average cluster 1 genes had higher expression in samples with wild type 355 

IDH status while cluster 2 genes have significantly higher expression in samples with a mutated 356 

IDH gene. This indicated that our set of genes were not only predictive of survival but also 357 

strongly associated with known molecular markers for primary gliomas. 358 

Given the strength of the importance measures for several of the top features we also 359 

measured survival outcomes based on gene expression levels with a cox regression for ASF1B, 360 

PLSCR1, SLC1A4 and GRIN3A and found significant associations between these expression-361 

based models and survival (Fig. 5E). ASF1B and PLSCR1 gene expression were indicative of 362 

poorer survival outcomes while SLC1A4 and GRIN3A expression were indicative of more 363 

favorable outcomes (Fig 5D, E). Further, ASF1B, a strong indicator of glioma prognosis, was 364 

derived from the neutrophil signature in response to IL-13 and IL-4 suggesting a more complex 365 

role for neutrophils in the tumor microenvironment. Interestingly, expression of SLC1A4, 366 

identified as part of the IL-4 and IL-13 stimulated macrophage signature, was indicative of better 367 

survival (Fig 5E) raising additional questions about the role of TAMs in primary glioma 368 

samples. Altogether, our MCCS signature matrix was able successfully predict patient survival 369 

from gene expression in primary glioma samples corresponding to specific neutrophil-associated 370 

gene signatures and other myeloid cell signatures. 371 
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DISCUSSION 374 

In this study, we first assessed the transcriptional response of 4 different human myeloid cell 375 

types to stimulation with a panel of cytokines. This enabled us to assemble a set of gene 376 

signatures for myeloid cell type–cytokine specific response genes, which we could then assess 377 

for biological and clinical relevance. Although limited to neutrophils, monocytes, macrophages 378 

and dendritic cells currently, the signature matrix provides the cellular context these cells 379 

experience during cytokine stimulation. This approach could be expanded to include additional 380 

cell types as well as additional stimulation conditions to provide even more granular context. 381 

Hence, controlled in-vitro assays could be quite relevant towards interpreting the expression 382 

profiles in vivo for primary human blood and tissue samples. This approach can thus be applied 383 

towards existing bulk transcriptomics data available in GEO, for example from GTeX and 384 

TCGA.  385 

In the context of M. tuberculosis infection the importance of an interferon-inducible gene 386 

signature is well documented (39). The first seminal study, which also profiled purified cell 387 

populations had indicated that this signature was driven by neutrophils and both IFN-γ and type 388 

I interferon signaling (16). Our findings here are consistent with that initial report, since actively 389 

infected individuals were enriched for neutrophil response genes that are inducible by both IFN- 390 

γ and IFN-β (Fig. 4C). However, we found that neutrophil genes inducible by IFN-β alone are 391 

reduced in actively infected individuals indicating that IFN-γ may be more dominant than type 1 392 

interferons in driving the interferon-inducible signature of neutrophils during active tuberculosis. 393 

This is in contrast to a recent report showing that IFNG (which encodes IFN-γ) 394 

and TBX21 (which encodes the transcription factor T-bet) are downregulated in patients with 395 

active TB (17). Hence, the ratio of type 1 interferon vs IFN-γ inducible genes in neutrophils 396 

needs to be better clarified in future studies.  Since the goal of our study was to explore the 397 

biological context of myeloid cells responding to cytokine stimulation, rather than to identify the 398 

ideal gene signature for discriminating active TB from latent TB, we have not performed deeper 399 

characterization of heterogeneity in the multiple datasets that we compiled from TB patients.  400 

The relationship between neutrophil responses to IL-4 and IL-13 stimulation with glioma 401 

survival was of particular interest. Previous reports from helminth infected mice have described a 402 

distinct transcriptional response to type 2 cytokines in neutrophils (40)  and the concept of N2 403 

neutrophils in the tumor microenvironment has also been proposed (41, 42). However, the 404 
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transcriptional responses of human neutrophils to stimulation by IL-4 and IL-13 has not been 405 

well established. Instead, TGF-β  has been implicated in N2 polarization (43), which was not 406 

examined as part of our analysis. Our results demonstrate not only that human neutrophils 407 

respond to IL-4 and IL-13 stimulation with a very distinct transcriptional signature but also that 408 

this signature can be detected in tumor samples and is associated with survival outcomes for 409 

glioma in particular. Therefore, we provide some of the best evidence thus far that type-2 410 

cytokine associated neutrophil activation may play an important role in tumor progression.  411 

An important limitation of our study is that transcripts that were found to be associated 412 

with specific myeloid cell type-cytokine stimulation combinations could also be expressed by 413 

other immune or non-immune cells. While we are inferring or interpreting some of these results 414 

in the context of myeloid cell responses, the same transcripts could be induced by other cell 415 

types in response to other cytokines we have not examined. Future studies should expand upon 416 

this preliminary assessment of 4 myeloid cell types and 6 cytokine combinations, to include 417 

multiple immune and non-immune cell types and additional cytokines or other micro 418 

environmental stimuli. Additionally, we have not assessed combinations of cytokines at varying 419 

concentrations. In an inflamed environment, a combination of different cytokines at different 420 

concentrations will have synergistic or inhibitory effects on different cell populations.  421 

Recently, approaches have been developed to utilize single-cell transcriptomics data for 422 

deconvolution of bulk transcriptomic data. While this approach could in principle assess 423 

hundreds or thousands of cell states in bulk transcriptomic data, the reference collection sample 424 

set for the scRNA-Seq profiles may not provide easily interpretable data on the cytokine 425 

environment of the bulk tissue. We are currently working towards combining specific cytokine 426 

stimulation conditions and scRNA-Seq to determine if we can assemble a cytokine specific 427 

matrix for hundreds or thousands of single cell states.  428 

We present here the concept of combining transcriptional profiles from in vitro 429 

stimulated immune cells with different cytokines, together with algorithms such as CIBERSORT 430 

(1) to infer the cytokine and immune cell environment within an inflamed tissue. We also 431 

provide a myeloid cell cytokine signature matrix that can be used by the community to help 432 

assess immune cell composition in complex samples. This approach has the potential to provide 433 

additional biological insights into the ever-expanding collections of transcriptional profiling 434 
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datasets associated with different diseases, potentially leading to improvements in diagnosis and 435 

therapeutic strategies during infection and tumor progression. 436 

 437 

  438 
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FIGURE LEGENDS 628 

Figure 1. Transcriptional profiling indicates myeloid cell lineages respond strongly to 629 

cytokine stimulation. (A) Schematic of experimental workflow. Four different lineages of 630 

myeloid cells were isolated (PMNs and Monocytes) and differentiated (Macrophages and 631 

Dendritic Cells) from the same leukopaks from 3 healthy human donors. The cells were 632 

stimulated with a panel of six cytokines, as listed, and profiled for gene expression. (B) Principle 633 

component analysis of 571 genes determined by differential expression analysis compared to 634 

buffer condition. (C) Heatmaps of log2 fold change of differentially expressed genes in each cell 635 

type. Genes were considered significant with Log2 fold change greater than 2 and adjusted p-636 

value less than 0.05 in at least stimulation. 637 

 638 

Figure 2. Myeloid cell lineages respond to cytokine stimulation in a cell-type specific 639 

manner. (A) Hierarchical clustering of pairwise spearman correlation analysis for the 571 640 

differentially expressed genes. (B) Venn diagrams of 571 genes determined by differential 641 

expression in each cell type. 81 of 571 differential genes are shared between all four cell types 642 

while 139 (macrophages, red), 64 (monocytes, green), 108 (neutrophils, purple) and 31 (dendritic 643 

cells, blue) genes are found to be differentially expressed in only one cell type. (C-H) Venn 644 

diagrams for the number of genes significant in each individual cytokine stimulation determined 645 

by differential expression in each cell type. The genes listed next to each Venn diagram are the 646 

top two differentially expressed genes for each cell type (B), cell type and stimulation (C-H) or 647 

the top genes conserved across all four cell types, circled (B-D). 648 

 649 

Figure 3. Signature gene expression patterns can be identified in many of the cell types and 650 

stimulation conditions. (A) Principle component analysis from self-organizing map (SOM) 651 

assignments of gene expression patterns in neutrophils (B). Mapping of SOM clusters by 652 

cytokine stimulation. (C) Heatmap indicating the scaled expression levels of selected genes 653 

generated from outlier analysis between the three donor samples and between the group 654 

assignments derived from SOM analysis. The top gene for each signature is listed. 655 

 656 

Figure 4. Statistical deconvolution of bulk expression profiles indicates role of interferon-657 

induced neutrophil response in M. tuberculosis infection. (A-D) Proportion estimates for 658 
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neutrophils, Monocytes and natural killer (NK) cells from CIBERSORT with our MCCS 659 

signature matrix (B-D) and immunoStates (A) for 8 microarray datasets and 5 RNA-Seq datasets 660 

(Table S2). (E) Scaled expression of 20 genes found in our neutrophil-interferon signatures are 661 

shown for the RNA-Seq and microarray samples as well as the disease status of the sample. 662 

Significance was determined by Kruskal-Wallis rank sum test with p-value < 0.05 = *, p-value < 663 

0.01 = ** and p-value < 0.001 = ***. Sample sizes for each disease state and data type are as 664 

follows; healthy (microarray n = 88, RNA-Seq n = 365), latently infected (microarray n = 376, 665 

RNA-Seq n = 117) and active disease individuals (microarray n = 547, RNA-Seq n = 306). 666 

 667 

Figure 5. Myeloid signatures under stimulation are indicative of survival in glioma. (A) 668 

Survival analysis of statistically deconvolved bulk RNA-Seq data from 671 glioma tumor 669 

samples for individuals with low proportion estimates (red) or high proportion estimates (blue) 670 

for Neutrophils responding to IL4 and IL13 (PMNs_IL4_IL13) and for Monocytes responding to 671 

IFN- γ and IFN- β (Monos_IFN_B1a_IFN_y). (B) The power of our myeloid gene signature was 672 

determined by area under the curve measures for LASSO models at 2 and 5-year increments 673 

trained on our 131-cytokine stimulated myeloid gene signature with 7-fold cross validation. A 674 

dashed diagonal line indicates an AUC of 0.5 for a random prediction model. (C) As measured 675 

by model importance (see methods) the top 20 features derived from the 5-year prediction model 676 

are shown. (D) Hierarchical clustering of pairwise spearman correlation analysis of 40 of the 677 

most predictive features derived from our 5-year model. Gene expression clusters were then 678 

mapped by genotype for a wild-type or mutated IDH gene locus, a molecular marker of gliomas. 679 

(E) Survival analysis based on individual genes from cluster 1 (ASF1B and PLSCR1) and cluster 680 

2 (SLC1A4 and GRINA3A) using a cox regression model of gene expression in the TCGA 681 

samples profiled. 682 
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FIGURES 684 

 685 

Figure 1. 686 
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Figure 2. 688 
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Figure 3. 691 
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Figure 4. 693 
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Figure 5. 695 
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