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ABSTRACT

Myeloid cells are a vital component of innate immunity and comprise of monocytes,
macrophages, dendritic cells and granulocytes. How myeloid cell lineage affects activation states
in response to cytokines remains poorly understood. The cytokine environment and cellular
infiltrate during an inflammatory response may contain prognostic features that could predict
disease outcome. Here we analyzed the transcriptional responses of human monocytes,
macrophages, dendritic cells and neutrophils in response to stimulation by IFN-y, IFN-, IFN-A,
IL-4, IL-13 and IL-10 cytokines, to better understand the heterogeneity of activation states in
inflammatory conditions. This generated a myeloid cell cytokine specific response matrix that
can infer representation of myeloid cells and the cytokine environment they encounter during
infection and in tumors. Neutrophils were highly responsive to type 1 and type 2 cytokine
stimulation but did not respond to IL-10. We identified transcripts specific to IFN- stimulation,
whereas other IFN signature genes were upregulated by both IFN-y and IFN-. When we used
our matrix to deconvolute blood profiles from tuberculosis patients, the IFN-[3 specific
neutrophil signature was reduced in TB patients with active disease whereas the shared response
to IFN-y and IFN-p in neutrophils was increased. When applied to glioma patients, transcripts of
neutrophils exposed to IL-4 or IL-13 and monocyte responses to IFN-y or IFN-B emerged as
opposing predictors of patient survival. Hence, by dissecting how different myeloid cells respond
to cytokine activation, we can delineate biological roles for myeloid cells in different cytokine

environments during disease processes, especially during infection and tumor progression.
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INTRODUCTION

While there has been rapid recent progress in understanding the ontogeny of myeloid
cells, including monocytes, macrophages, dendritic cells and granulocytes in recent years, the
heterogeneity of activation states between these different cell types remains poorly understood.
Single cell RNA seq technologies of inflamed tissues has begun to provide an appreciation for
the heterogeneity of activation states for different myeloid cells, however these cells typically
encounter a complex mixture of cytokines in their tissue microenvironment. The overall status
of immune cells in a particular tissue or in blood circulation in disease conditions is an important
indicator of disease state. Transcriptional profiles of immune cells have thus been used to define
gene expression signatures that could potentially guide personalized clinical decision-making
through patient stratification and evaluation of disease-associated gene expression changes.
However, in most cases, transcriptional profiles are generated from bulk tissues or whole blood,
masking changes in the transcriptomic composition of specific cell types. Recently,
computational approaches have been developed to infer leukocyte compositions in bulk tissue
transcriptomes based on cell-type specific reference gene expression signatures (1). One such
study found that the ratio of tumor-associated neutrophils and plasma cell signatures was
predictive of survival for various solid tumors (2). While this strategy enables the deconvolution
of immune cell types infiltrating different tissues, the environmental conditions they encounter as
they infiltrate the tissues is not yet known.

Identifying specific transcriptional programs in myeloid cells may facilitate the discovery
of biomarkers and targets for therapies for a variety of diseases. Both granulocytic myeloid cells
(e.g. neutrophils, eosinophils and basophils) and monocytic myeloid cells are important innate
immune components of the inflammatory infiltrate, being almost universally present in any
disease condition. They are all critical not just for protection against pathogens but also for tissue
remodeling and maintenance of tissue homeostasis. The same differentiation processes that guide
the physiologically necessary function of these cells are also responsible for the pathological
accumulation of these cells under certain inflammatory conditions. For example, myeloid
derived suppressor cells (MDSCs) can play pathological roles in cancer, as well as other
inflammatory settings where they accumulate and differentiate (3).

The cytokine environment is a critical determinant of immune cell activation phenotypes

and the response of diverse immune cells to the different cytokines is not well understood.
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Further, cell types respond differentially to various cytokine stimulation conditions to express
distinct transcriptional signatures. This may be due to differences in chromatin state and cytokine
receptor expression levels that determine, for example, how macrophages and dendritic cells
respond to IL-10 stimulation as compared to IFN-y stimulation (4, 5). While there have been
experimental studies whereby transcriptional response has been assessed in specific immune cell
types following exposure to assorted cytokines, we are not aware of a systematic comparison of
diverse myeloid cell types in response to a wide variety of different cytokine stimulation
conditions. Here, we compare the transcriptional response of primary human macrophages,
dendritic cells, monocytes and neutrophils to stimulation with a cytokine panel consisting of IL-
4, 1L-10, IL-13, IFN-y, IFN-B, and IFN-A. These signatures were then used to infer the signature
of specific immune cell types responding to specific cytokine environments from bulk
transcriptomic data. This method allows us to infer not only the type of immune cells present in a
bulk tissue or blood but also the cytokine environment which they are likely encountering. We
have successfully identified 12 myeloid cell-cytokine stimulation signatures and correlated both
Mycobacterium tuberculosis infection status and glioma cancer outcome with these specific

signatures.
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95 MATERIALS AND METHODS

96  Cell Isolation and Differentiation Protocol

97  Primary human polymorphonuclear neutrophils (PMNSs) and peripheral blood mononuclear cells

98 (PBMCs) from anonymous, healthy donors (New York Blood Center) were isolated by Ficoll

99  gradient separation as previously described (6). CD14+ monocytes were then isolated from the
100 PBMC fraction by positive selection. In brief: PBMCs were resuspended in MACS buffer (PBS
101  +0.05% BSA +2 mM EDTA) at a concentration of 1x10s PBMCs per 950 pL. 50 pL of CD14+
102  microbeads (Miltenyi Biotec) were added for every 1x10s PBMCs. Cells were incubated for 20
103  minutes at 4°C, washed, and filtered through a cell strainer. The cells were run on an AutoMACS
104  Pro (Miltenyi Biotec) using the ‘Posselds’ program. Monocytes were used directly after sorting.
105 Monocyte-derived dendritic cells (DCs), and Monocyte-derived macrophages were differentiated
106  from CD14+ monocytes by culturing the cells for 4 days at 37°C and 5% CO2 in RPMI medium
107  supplemented with 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 pug/mL streptomycin
108  with either 110 U/mL granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine;
109  Sanofi) and 282 U/mL interleukin-4 (IL-4) (Affymetrix, eBioscience) for DCs or 280 U/mL GM-
110  CSF for macrophages. Media was replenished with fresh cytokine on day 2.
111
112 Cell Stimulation Protocol
113  Differentiated cells were resuspended in clear RPMI + 10% FBS. 1x10s cells were added to each
114  stimulation well. Stimulations comprised of buffer control (PBS + 0.01% Glycerol), 500 U/mL
115  IFN-Bla (Carrier Free; R&D Systems), 10 ng/mL IFN-y (Carrier Free, R&D Systems), IFN-A2
116  (Carrier Free, R&D Systems), 1000 IU/mL IL-4 (Carrier Free, Life Technologies), 100 IU/mL
117  IL-10 (Carrier Free, Life Technologies), and 100 IU/mL IL-13 (Carrier Free, R&D Systems).
118  Plates were spun for 5 minutes at 1200 rpm and incubated for 4 hours at 37°C and 5% CO:2. Cells
119  were then washed with PBS. Cells were resuspended in RLT buffer (Qiagen) and vortexed for 1
120  minute before being placed at -80°C. RNA for each donor was then isolated with the RNeasy
121 Plus Mini Kit (Qiagen) following the protocol with on column DNAse Digestion (Qiagen).
122
123 Gene Expression Analysis
124  Libraries were generated for each donor using the CelSeqg2 protocol (7) and were sequenced on

125  Hlumina Hi-Seq. Reads were mapped by Bowtie2.3.1 (8) to the hg38 reference genome and
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uniquely mapped indices (UMI) determined by HTSeq-counts (9). Differential expression
analysis was performed in R (v3.5.1) using DESeq2 (10). Compared to buffer controls,
differentially expressed genes were considered significant with Log2 fold change greater than 2
and adjusted p-value less than 0.05.

Self-Organizing Map and Outlier Analysis

Self-organizing map (SOM) analysis (11) was performed on the list of 571 differentially
expressed genes using the R statistical programming language. SOM analysis was performed
individually for each cell type with the R package Kohonen (12) at default parameters.
According to 16 identified SOM clusters outlier analysis was performed to identify specific gene
expression patterns. A gene was considered an outlier with an expression level 1.5 times greater
than the median expression level across all conditions in at least two out of the three donors (13).
131 of 571 genes were found to meet these criteria in 12 of the possible 16 cell type and

stimulation conditions.

Cell type deconvolution through CIBERSORT

Source code for the CIBERSORT deconvolution algorithm, https://cibersort.stanford.edu/, was
obtained from the developers and implemented in the R statistical programming language (14)
All input bulk datasets were obtained as normalized count tables when available. If not
normalized datasets were scaled and quantile normalized according to the default CIBERSORT
functions. Our MCCS basis matrix was supplied as the average normalized expression level
across the three donors for our 131-gene set. The basis matrices for immunoStates (15) and
LM22 (1) were obtained from the respective publications. CIBERSORT was run according to

default parameters in all cases with 100 permutations.

M. tuberculosis sample collection and normalization

Conducting a literature search for all available TB infection studies with publicly available data
yielded 8 microarray and 5 RNA-Seq studies, with the following accession numbers; GSE19491,
GSE28623, GSE37250, GSE39939, GSE39940, GSE40553, GSE41055, GSE56153,
GSE101705, GSE107995, GSE79362, GSE89403, GSE94438 (16-28) . See Table S2 for full
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sample details. Microarray studies were obtained as scaled expression values as downloaded

from GEO. RNA-Seq studies were obtained as edgeR (29) normalized count tables.

LASSO modeling and feature selection for patient survival in primary gliomas

RSEM normalized count tables for all primary glioma samples available in the TCGA database
were obtained through the TCGA2STAT R package (30). Additional sample metadata was also
obtained from Ceccarelli et al. (31). Samples were randomly split into a training set and a test set
with an 80/20 split depending on the vital status at the 2-year or 5-year model. Additionally,
survival status was balanced as much as possible between the test and train sets to improve
model predictions. In the 2-year model there were 264 samples (133 alive, 131 deceased) in the
training set and 66 (32 alive, 34 deceased) samples in the test set. And in the 5-year model there
were 358 samples (168 alive, 190 deceased) in the training set and 90 (56 alive, 34 deceased)
samples in the test set. Prior to modeling the samples were scaled with min-max normalization
by normalizing the gene expression levels for each sample between 0 and 1. The sample
breakdowns were subject to a logistic least absolute shrinkage and selection operator (LASSO)
model with 7-fold cross validation repeated 10 times using the R package caret (32). Area under
the receiver operator curve (AUC) and precision recall curves were used to assess model
performance by the default functions in caret (32). Additionally, feature importance was assessed
by the caret importance function, varlmp, which measures the regression coefficients for each

gene supplied to the model.

Availability of data and material

Gene expression data is deposited in GEO under the accession number GSE131990. The TB
infection studies of publicly available data includes 8 microarray and 5 RNA-Seq studies, with
the following GEO accession numbers; GSE19491, GSE28623, GSE37250, GSE39939,
GSE39940, GSE40553, GSE41055, GSE56153, GSE101705, GSE107995, GSE79362,
GSEB89403, GSE94438 (16-28). RSEM normalized count tables for all primary glioma samples
are available in the TCGA database (https://portal.gdc.cancer.gov/) and were obtained through
the TCGA2STAT R package (30). Additional sample metadata was also obtained from
Ceccarelli et al. (31).
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RESULTS
Myeloid cells respond to cytokine stimulation with cell type specific transcriptional profiles.
In order to better understand how different human myeloid cells respond to activation by
different types of cytokines, we set out to compare the transcriptional profiles attained through
RNA-Seq of monocytes, neutrophils, macrophages and dendritic cells from the same healthy
donors in response to stimulation by type 1 cytokines (IFN-y, IFN-B and IFN-1), type 2
cytokines (IL-4 and 1L-13) and the regulatory cytokine IL-10. Neutrophils and monocytes were
stimulated directly after isolation from blood leukopaks whereas macrophages and dendritic cells
were stimulated after a 4-day differentiation period from the isolated monocytes (Fig. 1A). RNA
was isolated 4 hours after stimulation for each of the four different cell types and stimulation
conditions including an unstimulated buffer control for each cell type. Donor to donor
differences had a much smaller effect on transcriptional profiles than differences between cell
types (Fig. S1). We next identified genes that were significantly upregulated in individual
cytokine stimulations relative to the unstimulated condition for each cell type. For example, with
macrophages, we identified a total set of 341 genes that were significantly upregulated, log2 fold
change greater than 2 and FDR less than 0.05, by at least one cytokine relative to the
unstimulated control samples. Monocytes upregulated 197 genes; dendritic cells upregulated 199
genes; and neutrophils were highly responsive and upregulated 274 genes in response to cytokine
stimulation (Fig. 1C). We then combined all of these lists for a total of 571 genes that are
upregulated by at least one cytokine in at least one myeloid cell type. Principle component
analysis (PCA) based on these genes indicated that each cell type engages a distinct
transcriptional programming for each cytokine stimulation (Fig. 1B). 35% of the explained
variation along the first principle component was strongly associated with cell type identity.
Within each myeloid cell type, it is clear that type 2 cytokines IL-4 and IL-13 triggered shared
transcriptional programs, whereas the type 1 cytokines IFN-B and IFN-y triggered a similar set of
upregulated genes (Fig. 1C). An IL-10 induced signature was observed in macrophages,
dendritic cells and monocytes but completely absent in neutrophils. Interestingly, neutrophils had
a robust response to other cytokines including a small subset of genes induced by IFN-A, which
was not observed in the other cell types (Fig. 1C).

With this set of 571 cytokine upregulated genes on myeloid cells, we considered if shared

cytokine specific responses would dominate over cell-type specific responses to stimulation.
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Unsupervised clustering and correlation analysis of transcriptional responses showed a clear
distinction between stimulations of different cell types. Macrophages and dendritic cells had a
more closely correlated response while neutrophils and monocytes were more closely correlated
in their response signature (Fig. 2A). Although type 1 (especially IFN-y and IFN-B) and type 2
(IL-4 and IL-13) cytokine specific responses mainly clustered together within each cell type, this
was not sufficient to override the correlation between cell type specific responses. These results
indicated that for the most part, the cell type is a larger determinant of whether a gene is
upregulated after stimulation than the cytokine. The only exception was a strong correlation
between macrophages and dendritic cells stimulated by IFN-B (Fig. 2A).

To obtain finer resolution on how the different cell types share responses to cytokine
stimulation, we looked for overlaps in differentially expressed genes between cell types. This
revealed that 81 of the 571 genes were upregulated in all four cell types (Fig. 2B), which was
primarily driven by a shared response to IFN-f stimulation (Fig. 2C). However, 342 of the other
upregulated genes were specific to a single cell type (Fig. 2B), and further segregation by
cytokine stimulation confirmed that the major transcriptional response to each cytokine was
unique to a particular cell type (Fig. 2C-H). For example, IL-10 induced 47 genes that were
specific to monocytes, 9 to macrophages and 8 to dendritic cells while having almost no effect
on neutrophils (Fig. 2H). Alternatively, neutrophils induced 49 and 50 genes uniquely after IL-4
(Fig. 2F) and 1L-13 (Fig. 2G) stimulation while the other cell types were generally less
responsive. Neutrophils also had a robust cell type specific response to IFN-y (31 genes, Fig. 2D)
and IFN-p stimulation (56 genes, Fig. 2C). Overall, these results indicated that the cytokine
driven transcriptional responses in different myeloid cell types are highly cell type specific, apart

from a core response to IFN-f stimulation (and to a lesser extent IFN-y) that is shared by all cell

types.

Identification of a myeloid cell cytokine specific transcriptional signature

We next identified specific transcriptional signatures that define a particular cell type and
stimulation pair. Through self-organizing map (SOM) analysis (11) we identified clusters of
similar gene expression between cytokines in an unbiased manner. For each cell type the full list
of differentially expressed genes were sub-clustered into stimulation specific signatures. This

analysis divided the gene expression pattern of neutrophils into four sub-clusters corresponding
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to genes induced only by IFN-B (cluster 1), by both IFN-B and IFN-y (cluster 2), by both 1L-13
and IL-4 (cluster 4) and by IFN-A (cluster 3) (Fig. 3A, B). For macrophages, five clusters were
identified corresponding to genes upregulated by only IFN-B (cluster 2), both IFN-f3 and IFN-y
(cluster 1), both 1L-13 and IL-4 (cluster 5), IL-10 (cluster 3) and one cluster which could not be
clearly assigned (Fig. S2A, B). In dendritic cells, four clusters were identified corresponding to
genes upregulated under IFN-p alone (cluster 1), IFN-B and IFN-y combined (cluster 4), IL10
(cluster 2) and one cluster could not be assigned because two few genes were present (Fig. S2C,
D). For monocytes, four clusters were identified corresponding to genes upregulated only by
IFN-B (cluster 1), both IFN-f and IFN-y (cluster 3), IL-13 and IL-4 (cluster 4) and IL-10 (cluster
2) (Fig. S2E, F). Altogether, 12 cell type and stimulation specific expression patterns could be
identified by SOM analysis. Importantly, not all cell types and stimulation signatures were robust
enough to be clearly isolated.

Following identification of these 12 unique expression clusters, we performed outlier
analysis (13) to further filter the expression cluster gene list to only include genes highly specific
for the cell type and cytokine stimulation conditions identified by SOM analysis. Genes such as
RBBP6 and ASF1B were considered outliers for monocytes responding to IFN-f and IFN-y and
neutrophils responding to IL-4 and IL-13 respectively (Fig. S3), due to their highly specific and
consistent expression pattern in these cell type stimulation conditions across all three donors.
This evaluation identified 131 genes that reflected the 12 myeloid cell cytokine stimulation
conditions that were clearly distinguishable (Fig. 3C, S4 and Table S1). These genes represent a
high confidence marker gene set for myeloid cells under stimulation of various cytokines. We

refer to this as a myeloid cell cytokine specific (MCCS) signature.

Deconvolution of transcriptional signatures from M. tuberculosis Infection.

To determine the utility of our MCCS signature matrix, we first examined whole-blood
transcriptomes from 13 clinical cohorts infected with M. tuberculosis, which were publicly
available (Table S2). Previous studies have described a neutrophil driven type 1 IFN-inducible
signature increased in patients with active disease compared to healthy and latently infected
individuals (16), hence we were interested in the role of neutrophil specific cytokine responses in
this context. More recently, circulating natural killer cells were also reported to increase in

abundance during tuberculosis latency but decreased back to baseline during active disease (33).
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279  We compiled 8 available human whole blood microarray and 5 RNA-Seq datasets relevant to
280 active tuberculosis infections in GEO and analyzed the two sets independently. We focused our
281  analyses on the differences between healthy (microarray n = 88, RNA-Seq n = 365), latently

282 infected (microarray n = 376, RNA-Seq n = 117) and active disease individuals (microarray n =
283 547, RNA-Seq n = 306) as described in Table S2. We first utilized the original LM22 basis

284  matrix from CIBERSORT (https://cibersort.stanford.edu)(1) and the more recent ‘immunoStates’
285  matrix (15) to infer leukocyte representation by support vector regression through CIBERSORT.
286  The original LM22 basis matrix identifies 22 human hematopoietic cell phenotypes from

287  peripheral blood and in vitro culture conditions while immunoStates identifies 20 immune cell
288  types from over 6,000 samples during different disease states. Using these matrices, we were
289  able to confirm that CD56bright NK cells (immunoStates) were increased in abundance for

290 latently infected individuals both in the microarray and RNA-Seq datasets (Fig. 4A). While the
291  signature of resting NK cells (LM22) also showed this response (Fig. S5E) in the microarray
292  dataset, the RNA-Seq dataset showed a slightly different pattern (Fig. S5F). This finding is

293  consistent with immunoStates being an improved basis matrix compared to LM22 and confirmed
294  that our compiled datasets could reproduce previously published findings (33).

295 When we examined the inferred abundance of neutrophils, we found that the LM22

296  matrix indicated an increased abundance of neutrophils in actively infected individuals from the
297  microarray dataset (Fig. S5E), but also suggested that neutrophils were more abundant in latently
298 infected individuals compared to healthy individuals from the RNA-Seq dataset (Fig. S5F). In
299  contrast, the immunoStates matrix inferred greater abundance of neutrophils during active

300 disease from the RNA-Seq dataset (Fig. S5D) with decreased abundance of neutrophils during
301 latent infection in the microarray dataset (Fig. S5C). When we applied our MCCS matrix on

302 these datasets, we found that there was a clear increase in actively infected individuals for

303  neutrophil response genes that were inducible by both IFN- y and IFN- B (Fig. 4C). Surprisingly,
304  genes that were only inducible by IFN- B in neutrophils were reduced in expression during active
305 infection compared to latent infection (Fig. 4B). This was consistent for both microarray and
306 RNA-Seq datasets. Although a role for IFN- 3 during active tuberculosis infection has now been
307 well established (16), these results were surprising in that they point to a requirement for both
308 IFN-y and IFN- B in driving the IFN-inducible signature of neutrophils during active

309 tuberculosis. Alternatively, it is perhaps impossible to truly determine if the IFN-inducible

10
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signature of neutrophils is the result of type 1 or type 2 IFNs since they induce a similar set of
genes (34). Notably, when we examined other myeloid cell responses, we found that there was a
consistent reduction of the IL-4/IL-13 signatures from both monocytes (Fig. 4D) and
macrophages (Fig. S5A,B) during active infection, relative to healthy and latently infected
individuals. Hence, in addition to providing further insights into the IFN-inducible neutrophil
signature during human tuberculosis, our MCCS matrix implicates a suppression of type-2
cytokine (IL-4 and IL-13) responses in monocytes and macrophages during active infection.
Additionally, there was an increased abundance of dendritic cells (DCs) expressing IFN- y and
IFN-B inducible genes during active infection (Fig. S5A,B). From these results, we were able to
gain additional biological insight into the cytokine responses of myeloid cells during different

stages of tuberculosis infection.

Interleukin-stimulated Neutrophil Signature Indicates Poor Survival in Glioma.

Recently, infiltrating and circulating myeloid cells have been tied to survival and likelihood of
response to immunotherapy in the context of human gliomas (35, 36). A significant portion of
the cellular mass in primary glioma samples is infiltrating immune cells such as tumor-associated
macrophages (TAMSs), whose levels correlate with tumor grade and severity, and other myeloid
subsets (37). Additionally, over 600 primary glioma tumors have been profiled by the Cancer
Genome Atlas (TCGA) (31) by a variety of sequencing methods including RNA-Seq with
detailed clinical outcome information. Applying statistical deconvolution based on our curated
MCCS signature, we found a strong but reciprocal relationship to survival for neutrophils
responding to IL-4 and IL-13 stimulation, and monocytes responding to IFN-f and IFN-y
stimulation. Monocyte IFN responses were predictive of favorable survival, whereas tumors with
high neutrophil 1L-4/1L-13 responses exhibited reduced patient survival (Fig. 5A and S6).

We next considered a more direct approach to assess the utility of our MCCS signature to
predict survival of patients with glioma. We trained least absolute shrinkage and selection
operator (LASSO) models on our 131-gene MCCS signature, the original LM22 (1) basis matrix
and the immunoStates (15) basis matrix separately to classify 2 and 5-year survival predictions.
Our model demonstrated robust survival prediction with an area under the ROC curve (AUC)
between 0.85 (5-year) and 0.89 (2-year) on our test set while the LM22 and immunoStates
signatures were lower (immunoStates AUC = 0.868 at 2 years and 0.763 at 5 years, LM22 AUC
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=0.828 at 2 years and 0.788 at 5 years) (Fig 5B and S7). Evaluation of the gene importance for
survival predictions in our MCCS matrix at 5 years indicates that the top genes were derived
from the IL-4/1L-13-stimulated neutrophils and IFN- and IFN-y-stimulated monocytes (Fig.
5C), confirming the CIBERSORT proportion estimates and survival curves shown in Figure 5A.
In addition to the cell type and stimulation condition we were also interested in the relationships
between the genes most predictive of long-term survival. Correlation analysis of the top features
with strong predictive power, as measured by feature importance (See methods) indicated two
distinct expression profiles (Fig 5D). Furthermore, primary glioma samples from TCGA have
been previously profiled to identify somatic mutations and molecular markers (31) indicative of
survival. One such marker is the gene encoding isocitrate dehydrogenase (IDH), which when
mutated is known to be associated with increased patient survival in both low and high-grade
gliomas (38). Based on pairwise gene expression correlation analysis of the 40 most predictive
gene features from our model, we identified two clusters which were found to significantly differ
in their gene expression between glioma samples with a mutated or wild type IDH gene (Fig
5D). Specifically, on average cluster 1 genes had higher expression in samples with wild type
IDH status while cluster 2 genes have significantly higher expression in samples with a mutated
IDH gene. This indicated that our set of genes were not only predictive of survival but also
strongly associated with known molecular markers for primary gliomas.

Given the strength of the importance measures for several of the top features we also
measured survival outcomes based on gene expression levels with a cox regression for ASF1B,
PLSCR1, SLC1A4 and GRIN3A and found significant associations between these expression-
based models and survival (Fig. 5E). ASF1B and PLSCRL1 gene expression were indicative of
poorer survival outcomes while SLC1A4 and GRIN3A expression were indicative of more
favorable outcomes (Fig 5D, E). Further, ASF1B, a strong indicator of glioma prognosis, was
derived from the neutrophil signature in response to IL-13 and IL-4 suggesting a more complex
role for neutrophils in the tumor microenvironment. Interestingly, expression of SLC1A4,
identified as part of the IL-4 and IL-13 stimulated macrophage signature, was indicative of better
survival (Fig 5E) raising additional questions about the role of TAMSs in primary glioma
samples. Altogether, our MCCS signature matrix was able successfully predict patient survival
from gene expression in primary glioma samples corresponding to specific neutrophil-associated

gene signatures and other myeloid cell signatures.
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DISCUSSION

In this study, we first assessed the transcriptional response of 4 different human myeloid cell
types to stimulation with a panel of cytokines. This enabled us to assemble a set of gene
signatures for myeloid cell type—cytokine specific response genes, which we could then assess
for biological and clinical relevance. Although limited to neutrophils, monocytes, macrophages
and dendritic cells currently, the signature matrix provides the cellular context these cells
experience during cytokine stimulation. This approach could be expanded to include additional
cell types as well as additional stimulation conditions to provide even more granular context.
Hence, controlled in-vitro assays could be quite relevant towards interpreting the expression
profiles in vivo for primary human blood and tissue samples. This approach can thus be applied
towards existing bulk transcriptomics data available in GEO, for example from GTeX and
TCGA.

In the context of M. tuberculosis infection the importance of an interferon-inducible gene
signature is well documented (39). The first seminal study, which also profiled purified cell
populations had indicated that this signature was driven by neutrophils and both IFN-y and type
| interferon signaling (16). Our findings here are consistent with that initial report, since actively
infected individuals were enriched for neutrophil response genes that are inducible by both IFN-
v and IFN-pB (Fig. 4C). However, we found that neutrophil genes inducible by IFN-B alone are
reduced in actively infected individuals indicating that IFN-y may be more dominant than type 1
interferons in driving the interferon-inducible signature of neutrophils during active tuberculosis.
This is in contrast to a recent report showing that IFNG (which encodes IFN-y)
and TBX21 (which encodes the transcription factor T-bet) are downregulated in patients with
active TB (17). Hence, the ratio of type 1 interferon vs IFN-y inducible genes in neutrophils
needs to be better clarified in future studies. Since the goal of our study was to explore the
biological context of myeloid cells responding to cytokine stimulation, rather than to identify the
ideal gene signature for discriminating active TB from latent TB, we have not performed deeper
characterization of heterogeneity in the multiple datasets that we compiled from TB patients.

The relationship between neutrophil responses to IL-4 and IL-13 stimulation with glioma
survival was of particular interest. Previous reports from helminth infected mice have described a
distinct transcriptional response to type 2 cytokines in neutrophils (40) and the concept of N2

neutrophils in the tumor microenvironment has also been proposed (41, 42). However, the
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transcriptional responses of human neutrophils to stimulation by IL-4 and IL-13 has not been
well established. Instead, TGF-B has been implicated in N2 polarization (43), which was not
examined as part of our analysis. Our results demonstrate not only that human neutrophils
respond to IL-4 and IL-13 stimulation with a very distinct transcriptional signature but also that
this signature can be detected in tumor samples and is associated with survival outcomes for
glioma in particular. Therefore, we provide some of the best evidence thus far that type-2
cytokine associated neutrophil activation may play an important role in tumor progression.

An important limitation of our study is that transcripts that were found to be associated
with specific myeloid cell type-cytokine stimulation combinations could also be expressed by
other immune or non-immune cells. While we are inferring or interpreting some of these results
in the context of myeloid cell responses, the same transcripts could be induced by other cell
types in response to other cytokines we have not examined. Future studies should expand upon
this preliminary assessment of 4 myeloid cell types and 6 cytokine combinations, to include
multiple immune and non-immune cell types and additional cytokines or other micro
environmental stimuli. Additionally, we have not assessed combinations of cytokines at varying
concentrations. In an inflamed environment, a combination of different cytokines at different
concentrations will have synergistic or inhibitory effects on different cell populations.

Recently, approaches have been developed to utilize single-cell transcriptomics data for
deconvolution of bulk transcriptomic data. While this approach could in principle assess
hundreds or thousands of cell states in bulk transcriptomic data, the reference collection sample
set for the SCRNA-Seq profiles may not provide easily interpretable data on the cytokine
environment of the bulk tissue. We are currently working towards combining specific cytokine
stimulation conditions and sSCRNA-Seq to determine if we can assemble a cytokine specific
matrix for hundreds or thousands of single cell states.

We present here the concept of combining transcriptional profiles from in vitro
stimulated immune cells with different cytokines, together with algorithms such as CIBERSORT
(1) to infer the cytokine and immune cell environment within an inflamed tissue. We also
provide a myeloid cell cytokine signature matrix that can be used by the community to help
assess immune cell composition in complex samples. This approach has the potential to provide

additional biological insights into the ever-expanding collections of transcriptional profiling
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435  datasets associated with different diseases, potentially leading to improvements in diagnosis and
436  therapeutic strategies during infection and tumor progression.
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FIGURE LEGENDS

Figure 1. Transcriptional profiling indicates myeloid cell lineages respond strongly to
cytokine stimulation. (A) Schematic of experimental workflow. Four different lineages of
myeloid cells were isolated (PMNs and Monocytes) and differentiated (Macrophages and
Dendritic Cells) from the same leukopaks from 3 healthy human donors. The cells were
stimulated with a panel of six cytokines, as listed, and profiled for gene expression. (B) Principle
component analysis of 571 genes determined by differential expression analysis compared to
buffer condition. (C) Heatmaps of log2 fold change of differentially expressed genes in each cell
type. Genes were considered significant with Log2 fold change greater than 2 and adjusted p-

value less than 0.05 in at least stimulation.

Figure 2. Myeloid cell lineages respond to cytokine stimulation in a cell-type specific
manner. (A) Hierarchical clustering of pairwise spearman correlation analysis for the 571
differentially expressed genes. (B) Venn diagrams of 571 genes determined by differential
expression in each cell type. 81 of 571 differential genes are shared between all four cell types
while 139 (macrophages, red), 64 (monocytes, green), 108 (neutrophils, purple) and 31 (dendritic
cells, blue) genes are found to be differentially expressed in only one cell type. (C-H) Venn
diagrams for the number of genes significant in each individual cytokine stimulation determined
by differential expression in each cell type. The genes listed next to each Venn diagram are the
top two differentially expressed genes for each cell type (B), cell type and stimulation (C-H) or

the top genes conserved across all four cell types, circled (B-D).

Figure 3. Signature gene expression patterns can be identified in many of the cell types and
stimulation conditions. (A) Principle component analysis from self-organizing map (SOM)
assignments of gene expression patterns in neutrophils (B). Mapping of SOM clusters by
cytokine stimulation. (C) Heatmap indicating the scaled expression levels of selected genes
generated from outlier analysis between the three donor samples and between the group

assignments derived from SOM analysis. The top gene for each signature is listed.

Figure 4. Statistical deconvolution of bulk expression profiles indicates role of interferon-

induced neutrophil response in M. tuberculosis infection. (A-D) Proportion estimates for
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659  neutrophils, Monocytes and natural killer (NK) cells from CIBERSORT with our MCCS

660  signature matrix (B-D) and immunoStates (A) for 8 microarray datasets and 5 RNA-Seq datasets
661 (Table S2). (E) Scaled expression of 20 genes found in our neutrophil-interferon signatures are
662  shown for the RNA-Seq and microarray samples as well as the disease status of the sample.

663  Significance was determined by Kruskal-Wallis rank sum test with p-value < 0.05 = *, p-value <
664  0.01 =**and p-value < 0.001 = ***, Sample sizes for each disease state and data type are as
665  follows; healthy (microarray n = 88, RNA-Seq n = 365), latently infected (microarray n = 376,
666 RNA-Seqn = 117) and active disease individuals (microarray n = 547, RNA-Seq n = 306).

667

668  Figure 5. Myeloid signatures under stimulation are indicative of survival in glioma. (A)
669  Survival analysis of statistically deconvolved bulk RNA-Seq data from 671 glioma tumor

670  samples for individuals with low proportion estimates (red) or high proportion estimates (blue)
671  for Neutrophils responding to IL4 and IL13 (PMNs_IL4 1L13) and for Monocytes responding to
672  IFN- vy and IFN- 3 (Monos_IFN_Bla_IFN_y). (B) The power of our myeloid gene signature was
673  determined by area under the curve measures for LASSO models at 2 and 5-year increments

674  trained on our 131-cytokine stimulated myeloid gene signature with 7-fold cross validation. A
675  dashed diagonal line indicates an AUC of 0.5 for a random prediction model. (C) As measured
676 by model importance (see methods) the top 20 features derived from the 5-year prediction model
677  are shown. (D) Hierarchical clustering of pairwise spearman correlation analysis of 40 of the
678  most predictive features derived from our 5-year model. Gene expression clusters were then

679  mapped by genotype for a wild-type or mutated IDH gene locus, a molecular marker of gliomas.
680  (E) Survival analysis based on individual genes from cluster 1 (ASF1B and PLSCR1) and cluster
681 2 (SLC1A4 and GRINAS3A) using a cox regression model of gene expression in the TCGA

682  samples profiled.

683
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