

1 **TITLE**

2 **Distinct features of human myeloid cell cytokine response profiles identify neutrophil
3 activation by cytokines as a prognostic feature during tuberculosis and cancer¹**

4

5 **RUNNING TITLE**

6 Myeloid cell cytokine signatures as prognostic features

7

8 Joseph C. Devlin^{*,†}, Erin E. Zwack[†], Mei San Tang[†], Zhi Li^{||}, David Fenyo^{¶,||}, Victor J. Torres[†],
9 Kelly V. Ruggles^{*,‡,§} and P'ng Loke[†]

10 *Sackler Institute, Department of Medicine, New York University School of Medicine, New York,
11 NY, USA; †Department of Microbiology, New York University School of Medicine, New York,
12 NY 10016, USA; ‡Division of Translational Medicine, Department of Medicine and Department
13 of Microbiology, New York University School of Medicine, New York, NY, USA; §Applied
14 Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA;
15 ¶Department for Biochemistry and Molecular Pharmacology, NYU Langone Health, New York,
16 NY 10016, USA; ||Institute for Systems Genetics, NYU Langone Health, New York, NY 10016,
17 USA

18 J.C.D. and E.E.Z contributed equally to this study.

19

20 **Corresponding Authors:**

21 P'ng Loke | 430 East 29th St | (212) 263-8161 | Fax: (212) 263-8116 | Png.Loke@nyulangone.org

22 Kelly Ruggles | 227 East 30th St | (212) 263-3642 | Kelly.Ruggles@nyulangone.org

23 Victor Torres | 430 East 29th St | (212) 263-9232 | Victor.Torres@nyulangone.org

24

25 **ABSTRACT**

26 Myeloid cells are a vital component of innate immunity and comprise of monocytes,
27 macrophages, dendritic cells and granulocytes. How myeloid cell lineage affects activation states
28 in response to cytokines remains poorly understood. The cytokine environment and cellular
29 infiltrate during an inflammatory response may contain prognostic features that could predict
30 disease outcome. Here we analyzed the transcriptional responses of human monocytes,
31 macrophages, dendritic cells and neutrophils in response to stimulation by IFN- γ , IFN- β , IFN- λ ,
32 IL-4, IL-13 and IL-10 cytokines, to better understand the heterogeneity of activation states in
33 inflammatory conditions. This generated a myeloid cell cytokine specific response matrix that
34 can infer representation of myeloid cells and the cytokine environment they encounter during
35 infection and in tumors. Neutrophils were highly responsive to type 1 and type 2 cytokine
36 stimulation but did not respond to IL-10. We identified transcripts specific to IFN- β stimulation,
37 whereas other IFN signature genes were upregulated by both IFN- γ and IFN- β . When we used
38 our matrix to deconvolute blood profiles from tuberculosis patients, the IFN- β specific
39 neutrophil signature was reduced in TB patients with active disease whereas the shared response
40 to IFN- γ and IFN- β in neutrophils was increased. When applied to glioma patients, transcripts of
41 neutrophils exposed to IL-4 or IL-13 and monocyte responses to IFN- γ or IFN- β emerged as
42 opposing predictors of patient survival. Hence, by dissecting how different myeloid cells respond
43 to cytokine activation, we can delineate biological roles for myeloid cells in different cytokine
44 environments during disease processes, especially during infection and tumor progression.

45

46 INTRODUCTION

47 While there has been rapid recent progress in understanding the ontogeny of myeloid
48 cells, including monocytes, macrophages, dendritic cells and granulocytes in recent years, the
49 heterogeneity of activation states between these different cell types remains poorly understood.
50 Single cell RNA seq technologies of inflamed tissues has begun to provide an appreciation for
51 the heterogeneity of activation states for different myeloid cells, however these cells typically
52 encounter a complex mixture of cytokines in their tissue microenvironment. The overall status
53 of immune cells in a particular tissue or in blood circulation in disease conditions is an important
54 indicator of disease state. Transcriptional profiles of immune cells have thus been used to define
55 gene expression signatures that could potentially guide personalized clinical decision-making
56 through patient stratification and evaluation of disease-associated gene expression changes.
57 However, in most cases, transcriptional profiles are generated from bulk tissues or whole blood,
58 masking changes in the transcriptomic composition of specific cell types. Recently,
59 computational approaches have been developed to infer leukocyte compositions in bulk tissue
60 transcriptomes based on cell-type specific reference gene expression signatures (1). One such
61 study found that the ratio of tumor-associated neutrophils and plasma cell signatures was
62 predictive of survival for various solid tumors (2). While this strategy enables the deconvolution
63 of immune cell types infiltrating different tissues, the environmental conditions they encounter as
64 they infiltrate the tissues is not yet known.

65 Identifying specific transcriptional programs in myeloid cells may facilitate the discovery
66 of biomarkers and targets for therapies for a variety of diseases. Both granulocytic myeloid cells
67 (e.g. neutrophils, eosinophils and basophils) and monocytic myeloid cells are important innate
68 immune components of the inflammatory infiltrate, being almost universally present in any
69 disease condition. They are all critical not just for protection against pathogens but also for tissue
70 remodeling and maintenance of tissue homeostasis. The same differentiation processes that guide
71 the physiologically necessary function of these cells are also responsible for the pathological
72 accumulation of these cells under certain inflammatory conditions. For example, myeloid
73 derived suppressor cells (MDSCs) can play pathological roles in cancer, as well as other
74 inflammatory settings where they accumulate and differentiate (3).

75 The cytokine environment is a critical determinant of immune cell activation phenotypes
76 and the response of diverse immune cells to the different cytokines is not well understood.

77 Further, cell types respond differentially to various cytokine stimulation conditions to express
78 distinct transcriptional signatures. This may be due to differences in chromatin state and cytokine
79 receptor expression levels that determine, for example, how macrophages and dendritic cells
80 respond to IL-10 stimulation as compared to IFN- γ stimulation (4, 5). While there have been
81 experimental studies whereby transcriptional response has been assessed in specific immune cell
82 types following exposure to assorted cytokines, we are not aware of a systematic comparison of
83 diverse myeloid cell types in response to a wide variety of different cytokine stimulation
84 conditions. Here, we compare the transcriptional response of primary human macrophages,
85 dendritic cells, monocytes and neutrophils to stimulation with a cytokine panel consisting of IL-
86 4, IL-10, IL-13, IFN- γ , IFN- β , and IFN- λ . These signatures were then used to infer the signature
87 of specific immune cell types responding to specific cytokine environments from bulk
88 transcriptomic data. This method allows us to infer not only the type of immune cells present in a
89 bulk tissue or blood but also the cytokine environment which they are likely encountering. We
90 have successfully identified 12 myeloid cell-cytokine stimulation signatures and correlated both
91 *Mycobacterium tuberculosis* infection status and glioma cancer outcome with these specific
92 signatures.

93

94

95 **MATERIALS AND METHODS**

96 **Cell Isolation and Differentiation Protocol**

97 Primary human polymorphonuclear neutrophils (PMNs) and peripheral blood mononuclear cells
98 (PBMCs) from anonymous, healthy donors (New York Blood Center) were isolated by Ficoll
99 gradient separation as previously described (6). CD14⁺ monocytes were then isolated from the
100 PBMC fraction by positive selection. In brief: PBMCs were resuspended in MACS buffer (PBS
101 + 0.05% BSA + 2 mM EDTA) at a concentration of 1x10⁸ PBMCs per 950 µL. 50 µL of CD14⁺
102 microbeads (Miltenyi Biotec) were added for every 1x10⁸ PBMCs. Cells were incubated for 20
103 minutes at 4°C, washed, and filtered through a cell strainer. The cells were run on an AutoMACS
104 Pro (Miltenyi Biotec) using the ‘Posselds’ program. Monocytes were used directly after sorting.
105 Monocyte-derived dendritic cells (DCs), and Monocyte-derived macrophages were differentiated
106 from CD14⁺ monocytes by culturing the cells for 4 days at 37°C and 5% CO₂ in RPMI medium
107 supplemented with 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 µg/mL streptomycin
108 with either 110 U/mL granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine;
109 Sanofi) and 282 U/mL interleukin-4 (IL-4) (Affymetrix, eBioscience) for DCs or 280 U/mL GM-
110 CSF for macrophages. Media was replenished with fresh cytokine on day 2.

111

112 **Cell Stimulation Protocol**

113 Differentiated cells were resuspended in clear RPMI + 10% FBS. 1x10⁵ cells were added to each
114 stimulation well. Stimulation comprised of buffer control (PBS + 0.01% Glycerol), 500 U/mL
115 IFN-β1a (Carrier Free; R&D Systems), 10 ng/mL IFN-γ (Carrier Free, R&D Systems), IFN-λ2
116 (Carrier Free, R&D Systems), 1000 IU/mL IL-4 (Carrier Free, Life Technologies), 100 IU/mL
117 IL-10 (Carrier Free, Life Technologies), and 100 IU/mL IL-13 (Carrier Free, R&D Systems).
118 Plates were spun for 5 minutes at 1200 rpm and incubated for 4 hours at 37°C and 5% CO₂. Cells
119 were then washed with PBS. Cells were resuspended in RLT buffer (Qiagen) and vortexed for 1
120 minute before being placed at -80°C. RNA for each donor was then isolated with the RNeasy
121 Plus Mini Kit (Qiagen) following the protocol with on column DNase Digestion (Qiagen).

122

123 **Gene Expression Analysis**

124 Libraries were generated for each donor using the CelSeq2 protocol (7) and were sequenced on
125 Illumina Hi-Seq. Reads were mapped by Bowtie2.3.1 (8) to the hg38 reference genome and

126 uniquely mapped indices (UMI) determined by HTSeq-counts (9). Differential expression
127 analysis was performed in R (v3.5.1) using DESeq2 (10). Compared to buffer controls,
128 differentially expressed genes were considered significant with Log2 fold change greater than 2
129 and adjusted p-value less than 0.05.

130

131 **Self-Organizing Map and Outlier Analysis**

132 Self-organizing map (SOM) analysis (11) was performed on the list of 571 differentially
133 expressed genes using the R statistical programming language. SOM analysis was performed
134 individually for each cell type with the R package Kohonen (12) at default parameters.
135 According to 16 identified SOM clusters outlier analysis was performed to identify specific gene
136 expression patterns. A gene was considered an outlier with an expression level 1.5 times greater
137 than the median expression level across all conditions in at least two out of the three donors (13).
138 131 of 571 genes were found to meet these criteria in 12 of the possible 16 cell type and
139 stimulation conditions.

140

141 **Cell type deconvolution through CIBERSORT**

142 Source code for the CIBERSORT deconvolution algorithm, <https://cibersort.stanford.edu/>, was
143 obtained from the developers and implemented in the R statistical programming language (14)
144 All input bulk datasets were obtained as normalized count tables when available. If not
145 normalized datasets were scaled and quantile normalized according to the default CIBERSORT
146 functions. Our MCCS basis matrix was supplied as the average normalized expression level
147 across the three donors for our 131-gene set. The basis matrices for immunoStates (15) and
148 LM22 (1) were obtained from the respective publications. CIBERSORT was run according to
149 default parameters in all cases with 100 permutations.

150

151 ***M. tuberculosis* sample collection and normalization**

152 Conducting a literature search for all available TB infection studies with publicly available data
153 yielded 8 microarray and 5 RNA-Seq studies, with the following accession numbers; GSE19491,
154 GSE28623, GSE37250, GSE39939, GSE39940, GSE40553, GSE41055, GSE56153,
155 GSE101705, GSE107995, GSE79362, GSE89403, GSE94438 (16–28) . See **Table S2** for full

156 sample details. Microarray studies were obtained as scaled expression values as downloaded
157 from GEO. RNA-Seq studies were obtained as edgeR (29) normalized count tables.

158

159 **LASSO modeling and feature selection for patient survival in primary gliomas**

160 RSEM normalized count tables for all primary glioma samples available in the TCGA database
161 were obtained through the TCGA2STAT R package (30). Additional sample metadata was also
162 obtained from Ceccarelli et al. (31). Samples were randomly split into a training set and a test set
163 with an 80/20 split depending on the vital status at the 2-year or 5-year model. Additionally,
164 survival status was balanced as much as possible between the test and train sets to improve
165 model predictions. In the 2-year model there were 264 samples (133 alive, 131 deceased) in the
166 training set and 66 (32 alive, 34 deceased) samples in the test set. And in the 5-year model there
167 were 358 samples (168 alive, 190 deceased) in the training set and 90 (56 alive, 34 deceased)
168 samples in the test set. Prior to modeling the samples were scaled with min-max normalization
169 by normalizing the gene expression levels for each sample between 0 and 1. The sample
170 breakdowns were subject to a logistic least absolute shrinkage and selection operator (LASSO)
171 model with 7-fold cross validation repeated 10 times using the R package caret (32). Area under
172 the receiver operator curve (AUC) and precision recall curves were used to assess model
173 performance by the default functions in caret (32). Additionally, feature importance was assessed
174 by the caret importance function, varImp, which measures the regression coefficients for each
175 gene supplied to the model.

176

177 **Availability of data and material**

178 Gene expression data is deposited in GEO under the accession number GSE131990. The TB
179 infection studies of publicly available data includes 8 microarray and 5 RNA-Seq studies, with
180 the following GEO accession numbers; GSE19491, GSE28623, GSE37250, GSE39939,
181 GSE39940, GSE40553, GSE41055, GSE56153, GSE101705, GSE107995, GSE79362,
182 GSE89403, GSE94438 (16–28). RSEM normalized count tables for all primary glioma samples
183 are available in the TCGA database (<https://portal.gdc.cancer.gov/>) and were obtained through
184 the TCGA2STAT R package (30). Additional sample metadata was also obtained from
185 Ceccarelli et al. (31).

186 **RESULTS**

187 **Myeloid cells respond to cytokine stimulation with cell type specific transcriptional profiles.**

188 In order to better understand how different human myeloid cells respond to activation by
189 different types of cytokines, we set out to compare the transcriptional profiles attained through
190 RNA-Seq of monocytes, neutrophils, macrophages and dendritic cells from the same healthy
191 donors in response to stimulation by type 1 cytokines (IFN- γ , IFN- β and IFN- λ), type 2
192 cytokines (IL-4 and IL-13) and the regulatory cytokine IL-10. Neutrophils and monocytes were
193 stimulated directly after isolation from blood leukopaks whereas macrophages and dendritic cells
194 were stimulated after a 4-day differentiation period from the isolated monocytes (**Fig. 1A**). RNA
195 was isolated 4 hours after stimulation for each of the four different cell types and stimulation
196 conditions including an unstimulated buffer control for each cell type. Donor to donor
197 differences had a much smaller effect on transcriptional profiles than differences between cell
198 types (**Fig. S1**). We next identified genes that were significantly upregulated in individual
199 cytokine stimulations relative to the unstimulated condition for each cell type. For example, with
200 macrophages, we identified a total set of 341 genes that were significantly upregulated, log2 fold
201 change greater than 2 and FDR less than 0.05, by at least one cytokine relative to the
202 unstimulated control samples. Monocytes upregulated 197 genes; dendritic cells upregulated 199
203 genes; and neutrophils were highly responsive and upregulated 274 genes in response to cytokine
204 stimulation (**Fig. 1C**). We then combined all of these lists for a total of 571 genes that are
205 upregulated by at least one cytokine in at least one myeloid cell type. Principle component
206 analysis (PCA) based on these genes indicated that each cell type engages a distinct
207 transcriptional programming for each cytokine stimulation (**Fig. 1B**). 35% of the explained
208 variation along the first principle component was strongly associated with cell type identity.
209 Within each myeloid cell type, it is clear that type 2 cytokines IL-4 and IL-13 triggered shared
210 transcriptional programs, whereas the type 1 cytokines IFN- β and IFN- γ triggered a similar set of
211 upregulated genes (**Fig. 1C**). An IL-10 induced signature was observed in macrophages,
212 dendritic cells and monocytes but completely absent in neutrophils. Interestingly, neutrophils had
213 a robust response to other cytokines including a small subset of genes induced by IFN- λ , which
214 was not observed in the other cell types (**Fig. 1C**).

215 With this set of 571 cytokine upregulated genes on myeloid cells, we considered if shared
216 cytokine specific responses would dominate over cell-type specific responses to stimulation.

217 Unsupervised clustering and correlation analysis of transcriptional responses showed a clear
218 distinction between stimulations of different cell types. Macrophages and dendritic cells had a
219 more closely correlated response while neutrophils and monocytes were more closely correlated
220 in their response signature (**Fig. 2A**). Although type 1 (especially IFN- γ and IFN- β) and type 2
221 (IL-4 and IL-13) cytokine specific responses mainly clustered together within each cell type, this
222 was not sufficient to override the correlation between cell type specific responses. These results
223 indicated that for the most part, the cell type is a larger determinant of whether a gene is
224 upregulated after stimulation than the cytokine. The only exception was a strong correlation
225 between macrophages and dendritic cells stimulated by IFN- β (**Fig. 2A**).

226 To obtain finer resolution on how the different cell types share responses to cytokine
227 stimulation, we looked for overlaps in differentially expressed genes between cell types. This
228 revealed that 81 of the 571 genes were upregulated in all four cell types (**Fig. 2B**), which was
229 primarily driven by a shared response to IFN- β stimulation (**Fig. 2C**). However, 342 of the other
230 upregulated genes were specific to a single cell type (**Fig. 2B**), and further segregation by
231 cytokine stimulation confirmed that the major transcriptional response to each cytokine was
232 unique to a particular cell type (**Fig. 2C-H**). For example, IL-10 induced 47 genes that were
233 specific to monocytes, 9 to macrophages and 8 to dendritic cells while having almost no effect
234 on neutrophils (**Fig. 2H**). Alternatively, neutrophils induced 49 and 50 genes uniquely after IL-4
235 (**Fig. 2F**) and IL-13 (**Fig. 2G**) stimulation while the other cell types were generally less
236 responsive. Neutrophils also had a robust cell type specific response to IFN- γ (31 genes, **Fig. 2D**)
237 and IFN- β stimulation (56 genes, **Fig. 2C**). Overall, these results indicated that the cytokine
238 driven transcriptional responses in different myeloid cell types are highly cell type specific, apart
239 from a core response to IFN- β stimulation (and to a lesser extent IFN- γ) that is shared by all cell
240 types.

241

242 **Identification of a myeloid cell cytokine specific transcriptional signature**

243 We next identified specific transcriptional signatures that define a particular cell type and
244 stimulation pair. Through self-organizing map (SOM) analysis (11) we identified clusters of
245 similar gene expression between cytokines in an unbiased manner. For each cell type the full list
246 of differentially expressed genes were sub-clustered into stimulation specific signatures. This
247 analysis divided the gene expression pattern of neutrophils into four sub-clusters corresponding

248 to genes induced only by IFN- β (cluster 1), by both IFN- β and IFN- γ (cluster 2), by both IL-13
249 and IL-4 (cluster 4) and by IFN- λ (cluster 3) (**Fig. 3A, B**). For macrophages, five clusters were
250 identified corresponding to genes upregulated by only IFN- β (cluster 2), both IFN- β and IFN- γ
251 (cluster 1), both IL-13 and IL-4 (cluster 5), IL-10 (cluster 3) and one cluster which could not be
252 clearly assigned (**Fig. S2A, B**). In dendritic cells, four clusters were identified corresponding to
253 genes upregulated under IFN- β alone (cluster 1), IFN- β and IFN- γ combined (cluster 4), IL10
254 (cluster 2) and one cluster could not be assigned because two few genes were present (**Fig. S2C,**
255 **D**). For monocytes, four clusters were identified corresponding to genes upregulated only by
256 IFN- β (cluster 1), both IFN- β and IFN- γ (cluster 3), IL-13 and IL-4 (cluster 4) and IL-10 (cluster
257 2) (**Fig. S2E, F**). Altogether, 12 cell type and stimulation specific expression patterns could be
258 identified by SOM analysis. Importantly, not all cell types and stimulation signatures were robust
259 enough to be clearly isolated.

260 Following identification of these 12 unique expression clusters, we performed outlier
261 analysis (13) to further filter the expression cluster gene list to only include genes highly specific
262 for the cell type and cytokine stimulation conditions identified by SOM analysis. Genes such as
263 *RBBP6* and *ASF1B* were considered outliers for monocytes responding to IFN- β and IFN- γ and
264 neutrophils responding to IL-4 and IL-13 respectively (**Fig. S3**), due to their highly specific and
265 consistent expression pattern in these cell type stimulation conditions across all three donors.
266 This evaluation identified 131 genes that reflected the 12 myeloid cell cytokine stimulation
267 conditions that were clearly distinguishable (**Fig. 3C, S4 and Table S1**). These genes represent a
268 high confidence marker gene set for myeloid cells under stimulation of various cytokines. We
269 refer to this as a myeloid cell cytokine specific (MCCS) signature.

270

271 **Deconvolution of transcriptional signatures from *M. tuberculosis* Infection.**

272 To determine the utility of our MCCS signature matrix, we first examined whole-blood
273 transcriptomes from 13 clinical cohorts infected with *M. tuberculosis*, which were publicly
274 available (**Table S2**). Previous studies have described a neutrophil driven type 1 IFN-inducible
275 signature increased in patients with active disease compared to healthy and latently infected
276 individuals (16), hence we were interested in the role of neutrophil specific cytokine responses in
277 this context. More recently, circulating natural killer cells were also reported to increase in
278 abundance during tuberculosis latency but decreased back to baseline during active disease (33).

279 We compiled 8 available human whole blood microarray and 5 RNA-Seq datasets relevant to
280 active tuberculosis infections in GEO and analyzed the two sets independently. We focused our
281 analyses on the differences between healthy (microarray $n = 88$, RNA-Seq $n = 365$), latently
282 infected (microarray $n = 376$, RNA-Seq $n = 117$) and active disease individuals (microarray $n =$
283 547, RNA-Seq $n = 306$) as described in **Table S2**. We first utilized the original LM22 basis
284 matrix from CIBERSORT (<https://cibersort.stanford.edu>)(1) and the more recent ‘immunoStates’
285 matrix (15) to infer leukocyte representation by support vector regression through CIBERSORT.
286 The original LM22 basis matrix identifies 22 human hematopoietic cell phenotypes from
287 peripheral blood and *in vitro* culture conditions while immunoStates identifies 20 immune cell
288 types from over 6,000 samples during different disease states. Using these matrices, we were
289 able to confirm that CD56bright NK cells (immunoStates) were increased in abundance for
290 latently infected individuals both in the microarray and RNA-Seq datasets (**Fig. 4A**). While the
291 signature of resting NK cells (LM22) also showed this response (**Fig. S5E**) in the microarray
292 dataset, the RNA-Seq dataset showed a slightly different pattern (**Fig. S5F**). This finding is
293 consistent with immunoStates being an improved basis matrix compared to LM22 and confirmed
294 that our compiled datasets could reproduce previously published findings (33).

295 When we examined the inferred abundance of neutrophils, we found that the LM22
296 matrix indicated an increased abundance of neutrophils in actively infected individuals from the
297 microarray dataset (**Fig. S5E**), but also suggested that neutrophils were more abundant in latently
298 infected individuals compared to healthy individuals from the RNA-Seq dataset (**Fig. S5F**). In
299 contrast, the immunoStates matrix inferred greater abundance of neutrophils during active
300 disease from the RNA-Seq dataset (**Fig. S5D**) with decreased abundance of neutrophils during
301 latent infection in the microarray dataset (**Fig. S5C**). When we applied our MCCS matrix on
302 these datasets, we found that there was a clear increase in actively infected individuals for
303 neutrophil response genes that were inducible by both IFN- γ and IFN- β (**Fig. 4C**). Surprisingly,
304 genes that were only inducible by IFN- β in neutrophils were reduced in expression during active
305 infection compared to latent infection (**Fig. 4B**). This was consistent for both microarray and
306 RNA-Seq datasets. Although a role for IFN- β during active tuberculosis infection has now been
307 well established (16), these results were surprising in that they point to a requirement for both
308 IFN- γ and IFN- β in driving the IFN-inducible signature of neutrophils during active
309 tuberculosis. Alternatively, it is perhaps impossible to truly determine if the IFN-inducible

310 signature of neutrophils is the result of type 1 or type 2 IFNs since they induce a similar set of
311 genes (34). Notably, when we examined other myeloid cell responses, we found that there was a
312 consistent reduction of the IL-4/IL-13 signatures from both monocytes (**Fig. 4D**) and
313 macrophages (**Fig. S5A,B**) during active infection, relative to healthy and latently infected
314 individuals. Hence, in addition to providing further insights into the IFN-inducible neutrophil
315 signature during human tuberculosis, our MCCS matrix implicates a suppression of type-2
316 cytokine (IL-4 and IL-13) responses in monocytes and macrophages during active infection.
317 Additionally, there was an increased abundance of dendritic cells (DCs) expressing IFN- γ and
318 IFN- β inducible genes during active infection (**Fig. S5A,B**). From these results, we were able to
319 gain additional biological insight into the cytokine responses of myeloid cells during different
320 stages of tuberculosis infection.

321

322 **Interleukin-stimulated Neutrophil Signature Indicates Poor Survival in Glioma.**

323 Recently, infiltrating and circulating myeloid cells have been tied to survival and likelihood of
324 response to immunotherapy in the context of human gliomas (35, 36). A significant portion of
325 the cellular mass in primary glioma samples is infiltrating immune cells such as tumor-associated
326 macrophages (TAMs), whose levels correlate with tumor grade and severity, and other myeloid
327 subsets (37). Additionally, over 600 primary glioma tumors have been profiled by the Cancer
328 Genome Atlas (TCGA) (31) by a variety of sequencing methods including RNA-Seq with
329 detailed clinical outcome information. Applying statistical deconvolution based on our curated
330 MCCS signature, we found a strong but reciprocal relationship to survival for neutrophils
331 responding to IL-4 and IL-13 stimulation, and monocytes responding to IFN- β and IFN- γ
332 stimulation. Monocyte IFN responses were predictive of favorable survival, whereas tumors with
333 high neutrophil IL-4/IL-13 responses exhibited reduced patient survival (**Fig. 5A and S6**).

334 We next considered a more direct approach to assess the utility of our MCCS signature to
335 predict survival of patients with glioma. We trained least absolute shrinkage and selection
336 operator (LASSO) models on our 131-gene MCCS signature, the original LM22 (1) basis matrix
337 and the immunoStates (15) basis matrix separately to classify 2 and 5-year survival predictions.
338 Our model demonstrated robust survival prediction with an area under the ROC curve (AUC)
339 between 0.85 (5-year) and 0.89 (2-year) on our test set while the LM22 and immunoStates
340 signatures were lower (immunoStates AUC = 0.868 at 2 years and 0.763 at 5 years, LM22 AUC

341 = 0.828 at 2 years and 0.788 at 5 years) (**Fig 5B and S7**). Evaluation of the gene importance for
342 survival predictions in our MCCS matrix at 5 years indicates that the top genes were derived
343 from the IL-4/IL-13-stimulated neutrophils and IFN- β and IFN- γ -stimulated monocytes (**Fig.**
344 **5C**), confirming the CIBERSORT proportion estimates and survival curves shown in **Figure 5A**.
345 In addition to the cell type and stimulation condition we were also interested in the relationships
346 between the genes most predictive of long-term survival. Correlation analysis of the top features
347 with strong predictive power, as measured by feature importance (See methods) indicated two
348 distinct expression profiles (**Fig 5D**). Furthermore, primary glioma samples from TCGA have
349 been previously profiled to identify somatic mutations and molecular markers (31) indicative of
350 survival. One such marker is the gene encoding isocitrate dehydrogenase (IDH), which when
351 mutated is known to be associated with increased patient survival in both low and high-grade
352 gliomas (38). Based on pairwise gene expression correlation analysis of the 40 most predictive
353 gene features from our model, we identified two clusters which were found to significantly differ
354 in their gene expression between glioma samples with a mutated or wild type IDH gene (**Fig**
355 **5D**). Specifically, on average cluster 1 genes had higher expression in samples with wild type
356 IDH status while cluster 2 genes have significantly higher expression in samples with a mutated
357 IDH gene. This indicated that our set of genes were not only predictive of survival but also
358 strongly associated with known molecular markers for primary gliomas.

359 Given the strength of the importance measures for several of the top features we also
360 measured survival outcomes based on gene expression levels with a cox regression for *ASF1B*,
361 *PLSCR1*, *SLC1A4* and *GRIN3A* and found significant associations between these expression-
362 based models and survival (**Fig. 5E**). *ASF1B* and *PLSCR1* gene expression were indicative of
363 poorer survival outcomes while *SLC1A4* and *GRIN3A* expression were indicative of more
364 favorable outcomes (**Fig 5D, E**). Further, *ASF1B*, a strong indicator of glioma prognosis, was
365 derived from the neutrophil signature in response to IL-13 and IL-4 suggesting a more complex
366 role for neutrophils in the tumor microenvironment. Interestingly, expression of *SLC1A4*,
367 identified as part of the IL-4 and IL-13 stimulated macrophage signature, was indicative of better
368 survival (**Fig 5E**) raising additional questions about the role of TAMs in primary glioma
369 samples. Altogether, our MCCS signature matrix was able successfully predict patient survival
370 from gene expression in primary glioma samples corresponding to specific neutrophil-associated
371 gene signatures and other myeloid cell signatures.

372

373

374 **DISCUSSION**

375 In this study, we first assessed the transcriptional response of 4 different human myeloid cell
376 types to stimulation with a panel of cytokines. This enabled us to assemble a set of gene
377 signatures for myeloid cell type–cytokine specific response genes, which we could then assess
378 for biological and clinical relevance. Although limited to neutrophils, monocytes, macrophages
379 and dendritic cells currently, the signature matrix provides the cellular context these cells
380 experience during cytokine stimulation. This approach could be expanded to include additional
381 cell types as well as additional stimulation conditions to provide even more granular context.
382 Hence, controlled *in-vitro* assays could be quite relevant towards interpreting the expression
383 profiles *in vivo* for primary human blood and tissue samples. This approach can thus be applied
384 towards existing bulk transcriptomics data available in GEO, for example from GTEx and
385 TCGA.

386 In the context of *M. tuberculosis* infection the importance of an interferon-inducible gene
387 signature is well documented (39). The first seminal study, which also profiled purified cell
388 populations had indicated that this signature was driven by neutrophils and both IFN- γ and type
389 I interferon signaling (16). Our findings here are consistent with that initial report, since actively
390 infected individuals were enriched for neutrophil response genes that are inducible by both IFN-
391 γ and IFN- β (Fig. 4C). However, we found that neutrophil genes inducible by IFN- β alone are
392 reduced in actively infected individuals indicating that IFN- γ may be more dominant than type 1
393 interferons in driving the interferon-inducible signature of neutrophils during active tuberculosis.
394 This is in contrast to a recent report showing that *IFNG* (which encodes IFN- γ)
395 and *TBX21* (which encodes the transcription factor T-bet) are downregulated in patients with
396 active TB (17). Hence, the ratio of type 1 interferon vs IFN- γ inducible genes in neutrophils
397 needs to be better clarified in future studies. Since the goal of our study was to explore the
398 biological context of myeloid cells responding to cytokine stimulation, rather than to identify the
399 ideal gene signature for discriminating active TB from latent TB, we have not performed deeper
400 characterization of heterogeneity in the multiple datasets that we compiled from TB patients.

401 The relationship between neutrophil responses to IL-4 and IL-13 stimulation with glioma
402 survival was of particular interest. Previous reports from helminth infected mice have described a
403 distinct transcriptional response to type 2 cytokines in neutrophils (40) and the concept of N2
404 neutrophils in the tumor microenvironment has also been proposed (41, 42). However, the

405 transcriptional responses of human neutrophils to stimulation by IL-4 and IL-13 has not been
406 well established. Instead, TGF- β has been implicated in N2 polarization (43), which was not
407 examined as part of our analysis. Our results demonstrate not only that human neutrophils
408 respond to IL-4 and IL-13 stimulation with a very distinct transcriptional signature but also that
409 this signature can be detected in tumor samples and is associated with survival outcomes for
410 glioma in particular. Therefore, we provide some of the best evidence thus far that type-2
411 cytokine associated neutrophil activation may play an important role in tumor progression.

412 An important limitation of our study is that transcripts that were found to be associated
413 with specific myeloid cell type-cytokine stimulation combinations could also be expressed by
414 other immune or non-immune cells. While we are inferring or interpreting some of these results
415 in the context of myeloid cell responses, the same transcripts could be induced by other cell
416 types in response to other cytokines we have not examined. Future studies should expand upon
417 this preliminary assessment of 4 myeloid cell types and 6 cytokine combinations, to include
418 multiple immune and non-immune cell types and additional cytokines or other micro
419 environmental stimuli. Additionally, we have not assessed combinations of cytokines at varying
420 concentrations. In an inflamed environment, a combination of different cytokines at different
421 concentrations will have synergistic or inhibitory effects on different cell populations.

422 Recently, approaches have been developed to utilize single-cell transcriptomics data for
423 deconvolution of bulk transcriptomic data. While this approach could in principle assess
424 hundreds or thousands of cell states in bulk transcriptomic data, the reference collection sample
425 set for the scRNA-Seq profiles may not provide easily interpretable data on the cytokine
426 environment of the bulk tissue. We are currently working towards combining specific cytokine
427 stimulation conditions and scRNA-Seq to determine if we can assemble a cytokine specific
428 matrix for hundreds or thousands of single cell states.

429 We present here the concept of combining transcriptional profiles from *in vitro*
430 stimulated immune cells with different cytokines, together with algorithms such as CIBERSORT
431 (1) to infer the cytokine and immune cell environment within an inflamed tissue. We also
432 provide a myeloid cell cytokine signature matrix that can be used by the community to help
433 assess immune cell composition in complex samples. This approach has the potential to provide
434 additional biological insights into the ever-expanding collections of transcriptional profiling

435 datasets associated with different diseases, potentially leading to improvements in diagnosis and
436 therapeutic strategies during infection and tumor progression.

437

438

439 **ACKNOWLEDGEMENTS**

440 We would like to thank Evelien T. M. Berends for help setting up the primary human myeloid cell
441 system in the Torres lab. We would like to acknowledge The Genome Technology Center, a shared
442 resource partially supported by the Cancer Center Support Grant P30CA016087 at the Laura and
443 Isaac Perlmutter Cancer Center, for preparing and sequencing the RNA libraries. We would also
444 like to thank Dr. Matija Snuderl for his guidance and expertise in gliomas.

445

446 **REFERENCES**

- 447 1. Newman, A. M., C. L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, C. D. Hoang, M. Diehn, and A. A. Alizadeh. 2015. Robust enumeration of cell subsets from tissue expression profiles. *Nature Methods* 12: 453–457.
- 448 2. Gentles, A. J., A. M. Newman, C. L. Liu, S. V. Bratman, W. Feng, D. Kim, V. S. Nair, Y. Xu, A. Khuong, C. D. Hoang, M. Diehn, R. B. West, S. K. Plevritis, and A. A. Alizadeh. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. *Nature Medicine* 21: 938–945.
- 449 3. Veglia, F., M. Perego, and D. Gabrilovich. 2018. Myeloid-derived suppressor cells coming of age. *Nature Immunology* 19: 108.
- 450 4. Simon, J. M., J. P. Davis, S. E. Lee, M. R. Schaner, G. R. Gipson, M. Weiser, R. B. Sartor, H. H. Herfarth, R. Rahbar, T. S. Sadiq, M. J. Koruda, D. P. McGovern, J. D. Lieb, K. L. Mohlke, T. S. Furey, and S. Z. Sheikh. 2016. Alterations to chromatin in intestinal macrophages link IL-10 deficiency to inappropriate inflammatory responses. *European Journal of Immunology* 46: 1912–1925.
- 451 5. Mostafavi, S., H. Yoshida, D. Moodley, H. LeBoit , K. Rothamel, T. Raj, C. J. Ye, N. Chevrier, S.-Y. Zhang, T. Feng, M. Lee, J.-L. Casanova, J. D. Clark, M. Hegen, J.-B. Telliez, N. Hacohen, P. L. De Jager, A. Regev, D. Mathis, and C. Benoist. 2016. Parsing the Interferon Transcriptional Network and Its Disease Associations. *Cell* 164: 564–578.
- 452 6. Reyes-Robles, T., A. Lubkin, F. Alonzo, D. B. Lacy, and V. J. Torres. 2016. Exploiting dominant-negative toxins to combat *Staphylococcus aureus* pathogenesis. *EMBO reports* 17: 428–440.
- 453 7. Hashimshony, T., N. Senderovich, G. Avital, A. Klochendler, Y. de Leeuw, L. Anavy, D. Gennert, S. Li, K. J. Livak, O. Rozenblatt-Rosen, Y. Dor, A. Regev, and I. Yanai. 2016. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. *Genome Biology* 17: 77.
- 454 8. Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 9: 357–359.
- 455 9. HTSeq—a Python framework to work with high-throughput sequencing data | Bioinformatics | Oxford Academic. .
- 456 10. Love, M. I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* 15: 550.

477 11. Kohonen, T. 1990. The self-organizing map. *Proceedings of the IEEE* 78: 1464–1480.

478 12. Wehrens, R., and J. Kruisselbrink. 2018. Flexible Self-Organizing Maps in kohonen 3.0.

479 *Journal of Statistical Software* 87: 1–18.

480 13. Mertins, P., D. R. Mani, K. V. Ruggles, M. A. Gillette, K. R. Clauser, P. Wang, X. Wang, J.

481 W. Qiao, S. Cao, F. Petralia, E. Kawaler, F. Mundt, K. Krug, Z. Tu, J. T. Lei, M. L. Gatza, M.

482 Wilkerson, C. M. Perou, V. Yellapantula, K. Huang, C. Lin, M. D. McLellan, P. Yan, S. R.

483 Davies, R. R. Townsend, S. J. Skates, J. Wang, B. Zhang, C. R. Kinsinger, M. Mesri, H.

484 Rodriguez, L. Ding, A. G. Paulovich, D. Fenyö, M. J. Ellis, S. A. Carr, and Nci Cptac. 2016.

485 Proteogenomics connects somatic mutations to signalling in breast cancer. *Nature* 534: 55–62.

486 14. R Core Team. 2018. *R: A language and environment for statistical computing. R Foundation*

487 *for Statistical Computing.*, Vienna, Austria.

488 15. Vallania, F., A. Tam, S. Lofgren, S. Schaffert, T. D. Azad, E. Bongen, W. Haynes, M. Alsup,

489 M. Alonso, M. Davis, E. Engleman, and P. Khatri. 2018. Leveraging heterogeneity across

490 multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and

491 technical biases. *Nature Communications* 9: 4735.

492 16. Berry, M. P. R., C. M. Graham, F. W. McNab, Z. Xu, S. A. A. Bloch, T. Oni, K. A.

493 Wilkinson, R. Banchereau, J. Skinner, R. J. Wilkinson, C. Quinn, D. Blankenship, R. Dhawan, J.

494 J. Cush, A. Mejias, O. Ramilo, O. M. Kon, V. Pascual, J. Banchereau, D. Chaussabel, and A.

495 O'Garra. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in

496 human tuberculosis. *Nature* 466: 973–977.

497 17. Singhania, A., R. Verma, C. M. Graham, J. Lee, T. Tran, M. Richardson, P. Lecine, P.

498 Leissner, M. P. R. Berry, R. J. Wilkinson, K. Kaiser, M. Rodrigue, G. Woltmann, P. Haldar, and

499 A. O'Garra. 2018. A modular transcriptional signature identifies phenotypic heterogeneity of

500 human tuberculosis infection. *Nat Commun* 9: 2308.

501 18. Elliott, T. O. J. P., O. Owolabi, S. Donkor, B. Kampmann, P. C. Hill, T. H. M. Ottenhoff, M.

502 C. Haks, S. H. E. Kaufmann, J. Maertzdorf, and J. S. Sutherland. 2015. Dysregulation of

503 Apoptosis Is a Risk Factor for Tuberculosis Disease Progression. *J. Infect. Dis.* 212: 1469–1479.

504 19. Maertzdorf, J., M. Ota, D. Repsilber, H. J. Mollenkopf, J. Weiner, P. C. Hill, and S. H. E.

505 Kaufmann. 2011. Functional correlations of pathogenesis-driven gene expression signatures in

506 tuberculosis. *PLoS ONE* 6: e26938.

507 20. Kaforou, M., V. J. Wright, T. Oni, N. French, S. T. Anderson, N. Bangani, C. M. Banwell, A.
508 J. Brent, A. C. Crampin, H. M. Dockrell, B. Eley, R. S. Heyderman, M. L. Hibberd, F. Kern, P.
509 R. Langford, L. Ling, M. Mendelson, T. H. Ottenhoff, F. Zgambo, R. J. Wilkinson, L. J. Coin,
510 and M. Levin. 2013. Detection of tuberculosis in HIV-infected and -uninfected African adults
511 using whole blood RNA expression signatures: a case-control study. *PLoS Med.* 10: e1001538.
512 21. Anderson, S. T., M. Kaforou, A. J. Brent, V. J. Wright, C. M. Banwell, G. Chagaluka, A. C.
513 Crampin, H. M. Dockrell, N. French, M. S. Hamilton, M. L. Hibberd, F. Kern, P. R. Langford, L.
514 Ling, R. Mlotha, T. H. M. Ottenhoff, S. Pienaar, V. Pillay, J. A. G. Scott, H. Twahir, R. J.
515 Wilkinson, L. J. Coin, R. S. Heyderman, M. Levin, and B. Eley. 2014. Diagnosis of childhood
516 tuberculosis and host RNA expression in Africa. *N. Engl. J. Med.* 370: 1712–1723.
517 22. Bloom, C. I., C. M. Graham, M. P. R. Berry, K. A. Wilkinson, T. Oni, F. Rozakeas, Z. Xu, J.
518 Rossello-Urgell, D. Chaussabel, J. Banchereau, V. Pascual, M. Lipman, R. J. Wilkinson, and A.
519 O'Garra. 2012. Detectable changes in the blood transcriptome are present after two weeks of
520 antituberculosis therapy. *PLoS ONE* 7: e46191.
521 23. Verhagen, L. M., A. Zomer, M. Maes, J. A. Villalba, B. Del Nogal, M. Eleveld, S. A. van
522 Hijum, J. H. de Waard, and P. W. Hermans. 2013. A predictive signature gene set for
523 discriminating active from latent tuberculosis in Warao Amerindian children. *BMC Genomics*
524 14: 74.
525 24. Ottenhoff, T. H. M., R. H. Dass, N. Yang, M. M. Zhang, H. E. E. Wong, E. Sahiratmadja, C.
526 C. Khor, B. Alisjahbana, R. van Crevel, S. Marzuki, M. Seielstad, E. van de Vosse, and M. L.
527 Hibberd. 2012. Genome-wide expression profiling identifies type 1 interferon response pathways
528 in active tuberculosis. *PLoS ONE* 7: e45839.
529 25. Leong, S., Y. Zhao, N. M. Joseph, N. S. Hochberg, S. Sarkar, J. Pleskunas, D. Hom, S.
530 Lakshminarayanan, C. R. Horsburgh, G. Roy, J. J. Ellner, W. E. Johnson, and P. Salgame. 2018.
531 Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent
532 infection in individuals from south India. *Tuberculosis (Edinb)* 109: 41–51.
533 26. Zak, D. E., A. Penn-Nicholson, T. J. Scriba, E. Thompson, S. Suliman, L. M. Amon, H.
534 Mahomed, M. Erasmus, W. Whitney, G. D. Hussey, D. Abrahams, F. Kafaar, T. Hawkridge, S.
535 Verver, E. J. Hughes, M. Ota, J. Sutherland, R. Howe, H. M. Dockrell, W. H. Boom, B. Thiel, T.
536 H. M. Ottenhoff, H. Mayanja-Kizza, A. C. Crampin, K. Downing, M. Hatherill, J. Valvo, S.
537 Shankar, S. K. Parida, S. H. E. Kaufmann, G. Walzl, A. Aderem, W. A. Hanekom, and ACS and

538 GC6-74 cohort study groups. 2016. A blood RNA signature for tuberculosis disease risk: a
539 prospective cohort study. *Lancet* 387: 2312–2322.

540 27. Thompson, E. G., Y. Du, S. T. Malherbe, S. Shankar, J. Braun, J. Valvo, K. Ronacher, G.
541 Tromp, D. L. Tabb, D. Alland, S. Shenai, L. E. Via, J. Warwick, A. Aderem, T. J. Scriba, J.
542 Winter, G. Walzl, D. E. Zak, and Catalysis TB–Biomarker Consortium. 2017. Host blood RNA
543 signatures predict the outcome of tuberculosis treatment. *Tuberculosis (Edinb)* 107: 48–58.

544 28. Suliman, S., E. Thompson, J. Sutherland, J. Weiner Rd, M. O. C. Ota, S. Shankar, A. Penn-
545 Nicholson, B. Thiel, M. Erasmus, J. Maertzdorf, F. J. Duffy, P. C. Hill, E. J. Hughes, K. Stanley,
546 K. Downing, M. L. Fisher, J. Valvo, S. K. Parida, G. van der Spuy, G. Tromp, I. M. O. Adetifa,
547 S. Donkor, R. Howe, H. Mayanja-Kizza, W. H. Boom, H. Dockrell, T. H. M. Ottenhoff, M.
548 Hatherill, A. Aderem, W. A. Hanekom, T. J. Scriba, S. H. Kaufmann, D. E. Zak, G. Walzl, and
549 GC6-74 and ACS cohort study groups. 2018. Four-gene Pan-African Blood Signature Predicts
550 Progression to Tuberculosis. *Am. J. Respir. Crit. Care Med.* .

551 29. Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. edgeR: a Bioconductor package
552 for differential expression analysis of digital gene expression data. *Bioinformatics* 26: 139–140.

553 30. Wan, Y.-W., G. I. Allen, and Z. Liu. 2016. TCGA2STAT: simple TCGA data access for
554 integrated statistical analysis in R. *Bioinformatics* 32: 952–954.

555 31. Ceccarelli, M., F. P. Barthel, T. M. Malta, T. S. Sabedot, S. R. Salama, B. A. Murray, O.
556 Morozova, Y. Newton, A. Radenbaugh, S. M. Pagnotta, S. Anjum, J. Wang, G. Manyam, P.
557 Zoppoli, S. Ling, A. A. Rao, M. Grifford, A. D. Cherniack, H. Zhang, L. Poisson, C. G. Carlotti,
558 D. P. da C. Tirapelli, A. Rao, T. Mikkelsen, C. C. Lau, W. K. A. Yung, R. Rabadan, J. Huse, D.
559 J. Brat, N. L. Lehman, J. S. Barnholtz-Sloan, S. Zheng, K. Hess, G. Rao, M. Meyerson, R.
560 Beroukhim, L. Cooper, R. Akbani, M. Wrensch, D. Haussler, K. D. Aldape, P. W. Laird, D. H.
561 Gutmann, S. Anjum, H. Arachchi, J. T. Auman, M. Balasundaram, S. Balu, G. Barnett, S.
562 Baylin, S. Bell, C. Benz, N. Bir, K. L. Black, T. Bodenheimer, L. Boice, M. S. Bootwalla, J.
563 Bowen, C. A. Bristow, Y. S. N. Butterfield, Q.-R. Chen, L. Chin, J. Cho, E. Chuah, S.
564 Chudamani, S. G. Coetzee, M. L. Cohen, H. Colman, M. Couce, F. D'Angelo, T. Davidsen, A.
565 Davis, J. A. Demchok, K. Devine, L. Ding, R. Duell, J. B. Elder, J. M. Eschbacher, A.
566 Fehrenbach, M. Ferguson, S. Frazer, G. Fuller, J. Fulop, S. B. Gabriel, L. Garofano, J. M.
567 Gastier-Foster, N. Gehlenborg, M. Gerken, G. Getz, C. Giannini, W. J. Gibson, A. Hadjipanayis,
568 D. N. Hayes, D. I. Heiman, B. Hermes, J. Hilty, K. A. Hoadley, A. P. Hoyle, M. Huang, S. R.

569 Jefferys, C. D. Jones, S. J. M. Jones, Z. Ju, A. Kastl, A. Kendler, J. Kim, R. Kucherlapati, P. H.
570 Lai, M. S. Lawrence, S. Lee, K. M. Leraas, T. M. Lichtenberg, P. Lin, Y. Liu, J. Liu, J. Y.
571 Ljubimova, Y. Lu, Y. Ma, D. T. Maglinte, H. S. Mahadeshwar, M. A. Marra, M. McGraw, C.
572 McPherson, S. Meng, P. A. Mieczkowski, C. R. Miller, G. B. Mills, R. A. Moore, L. E. Mose, A.
573 J. Mungall, R. Naresh, T. Naska, L. Neder, M. S. Noble, A. Noss, B. P. O'Neill, Q. T. Ostrom,
574 C. Palmer, A. Pantazi, M. Parfenov, P. J. Park, J. S. Parker, C. M. Perou, C. R. Pierson, T. Pihl,
575 A. Protopopov, A. Radenbaugh, N. C. Ramirez, W. K. Rathmell, X. Ren, J. Roach, A. G.
576 Robertson, G. Saksena, J. E. Schein, S. E. Schumacher, J. Seidman, K. Senecal, S. Seth, H. Shen,
577 Y. Shi, J. Shih, K. Shimmel, H. Sicotte, S. Sifri, T. Silva, J. V. Simons, R. Singh, T. Skelly, A. E.
578 Sloan, H. J. Sofia, M. G. Soloway, X. Song, C. Sougnez, C. Souza, S. M. Staugaitis, H. Sun, C.
579 Sun, D. Tan, J. Tang, Y. Tang, L. Thorne, F. A. Trevisan, T. Triche, D. J. Van Den Berg, U.
580 Veluvolu, D. Voet, Y. Wan, Z. Wang, R. Warnick, J. N. Weinstein, D. J. Weisenberger, M. D.
581 Wilkerson, F. Williams, L. Wise, Y. Wolinsky, J. Wu, A. W. Xu, L. Yang, L. Yang, T. I. Zack,
582 J. C. Zenklusen, J. Zhang, W. Zhang, J. Zhang, E. Zmuda, H. Noushmehr, A. Iavarone, and R. G.
583 W. Verhaak. 2016. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of
584 Progression in Diffuse Glioma. *Cell* 164: 550–563.
585 32. Kuhn, M. 2008. Building Predictive Models in R Using the caret Package. *Journal of*
586 *Statistical Software* 28: 1–26.
587 33. A multi-cohort study of the immune factors associated with M. tuberculosis infection
588 outcomes | Nature. .
589 34. McNab, F., K. Mayer-Barber, A. Sher, A. Wack, and A. O'Garra. 2015. Type I interferons in
590 infectious disease. *Nat Rev Immunol* 15: 87–103.
591 35. Kamran, N., P. Kadiyala, M. Saxena, M. Candolfi, Y. Li, M. A. Moreno-Ayala, N. Raja, D.
592 Shah, P. R. Lowenstein, and M. G. Castro. 2017. Immunosuppressive Myeloid Cells' Blockade
593 in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy.
594 *Mol Ther* 25: 232–248.
595 36. Matteo Massara, P. Persico, O. Bonavita, V. Mollica Poeta, M. Locati, M. Simonelli, and R.
596 Bonecchi. 2017. Neutrophils in Gliomas. *Front Immunol* 8.
597 37. Glass, R., and M. Synowitz. 2014. CNS macrophages and peripheral myeloid cells in brain
598 tumours. *Acta Neuropathol.* 128: 347–362.

599 38. Cohen, A., S. Holmen, and H. Colman. 2013. IDH1 and IDH2 Mutations in Gliomas. *Curr*
600 *Neurol Neurosci Rep* 13: 345.

601 39. Singhania, A., R. J. Wilkinson, M. Rodrigue, P. Haldar, and A. O'Garra. 2018. The value of
602 transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis.
603 *Nature Immunology* 19: 1159.

604 40. Chen, F., W. Wu, A. Millman, J. F. Craft, E. Chen, N. Patel, J. L. Boucher, J. F. Urban Jr, C.
605 C. Kim, and W. C. Gause. 2014. Neutrophils prime a long-lived effector macrophage phenotype
606 that mediates accelerated helminth expulsion. *Nature Immunology* 15: 938–946.

607 41. Powell, D. R., and A. Huttenlocher. 2016. Neutrophils in the Tumor Microenvironment.
608 *Trends in Immunology* 37: 41–52.

609 42. Mantovani, A. 2009. The Yin-Yang of Tumor-Associated Neutrophils. *Cancer Cell* 16: 173–
610 174.

611 43. Fridlender, Z. G., J. Sun, S. Kim, V. Kapoor, G. Cheng, L. Ling, G. S. Worthen, and S. M.
612 Albelda. 2009. Polarization of Tumor-Associated Neutrophil Phenotype by TGF- β : “N1” versus
613 “N2” TAN. *Cancer Cell* 16: 183–194.

614

615

616 **FOOTNOTES**

617 **FUNDING**

618 Research in the V.J.T. lab and P.L lab is supported in part by the National Institutes of Health
619 under award numbers AI099394, AI121244, AI105129, AI130945, AI133977, DK103788,
620 HL084312 and the Department of Defense (W81XWH-16-1-0256). E.E.Z. was supported by an
621 NIAID-supported institutional research training grant on Infectious Disease & Basic
622 Microbiological Mechanisms T32AI007180. The NYU Langone Health Genome Technology
623 Center is a shared resource partially supported by the Laura and Isaac Perlmutter Cancer Center,
624 Cancer Center Support Grant P30CA016087. V.J.T. is a Burroughs Wellcome Fund Investigator
625 in the Pathogenesis of Infectious Diseases. The funders had no role in study design, data collection
626 and interpretation, or the decision to submit the work for publication.

627

628 **FIGURE LEGENDS**

629 **Figure 1. Transcriptional profiling indicates myeloid cell lineages respond strongly to**
630 **cytokine stimulation.** (A) Schematic of experimental workflow. Four different lineages of
631 myeloid cells were isolated (PMNs and Monocytes) and differentiated (Macrophages and
632 Dendritic Cells) from the same leukopaks from 3 healthy human donors. The cells were
633 stimulated with a panel of six cytokines, as listed, and profiled for gene expression. (B) Principle
634 component analysis of 571 genes determined by differential expression analysis compared to
635 buffer condition. (C) Heatmaps of log2 fold change of differentially expressed genes in each cell
636 type. Genes were considered significant with Log2 fold change greater than 2 and adjusted p-
637 value less than 0.05 in at least stimulation.

638

639 **Figure 2. Myeloid cell lineages respond to cytokine stimulation in a cell-type specific**
640 **manner.** (A) Hierarchical clustering of pairwise spearman correlation analysis for the 571
641 differentially expressed genes. (B) Venn diagrams of 571 genes determined by differential
642 expression in each cell type. 81 of 571 differential genes are shared between all four cell types
643 while 139 (macrophages, red), 64 (monocytes, green), 108 (neutrophils, purple) and 31 (dendritic
644 cells, blue) genes are found to be differentially expressed in only one cell type. (C-H) Venn
645 diagrams for the number of genes significant in each individual cytokine stimulation determined
646 by differential expression in each cell type. The genes listed next to each Venn diagram are the
647 top two differentially expressed genes for each cell type (B), cell type and stimulation (C-H) or
648 the top genes conserved across all four cell types, circled (B-D).

649

650 **Figure 3. Signature gene expression patterns can be identified in many of the cell types and**
651 **stimulation conditions.** (A) Principle component analysis from self-organizing map (SOM)
652 assignments of gene expression patterns in neutrophils (B). Mapping of SOM clusters by
653 cytokine stimulation. (C) Heatmap indicating the scaled expression levels of selected genes
654 generated from outlier analysis between the three donor samples and between the group
655 assignments derived from SOM analysis. The top gene for each signature is listed.

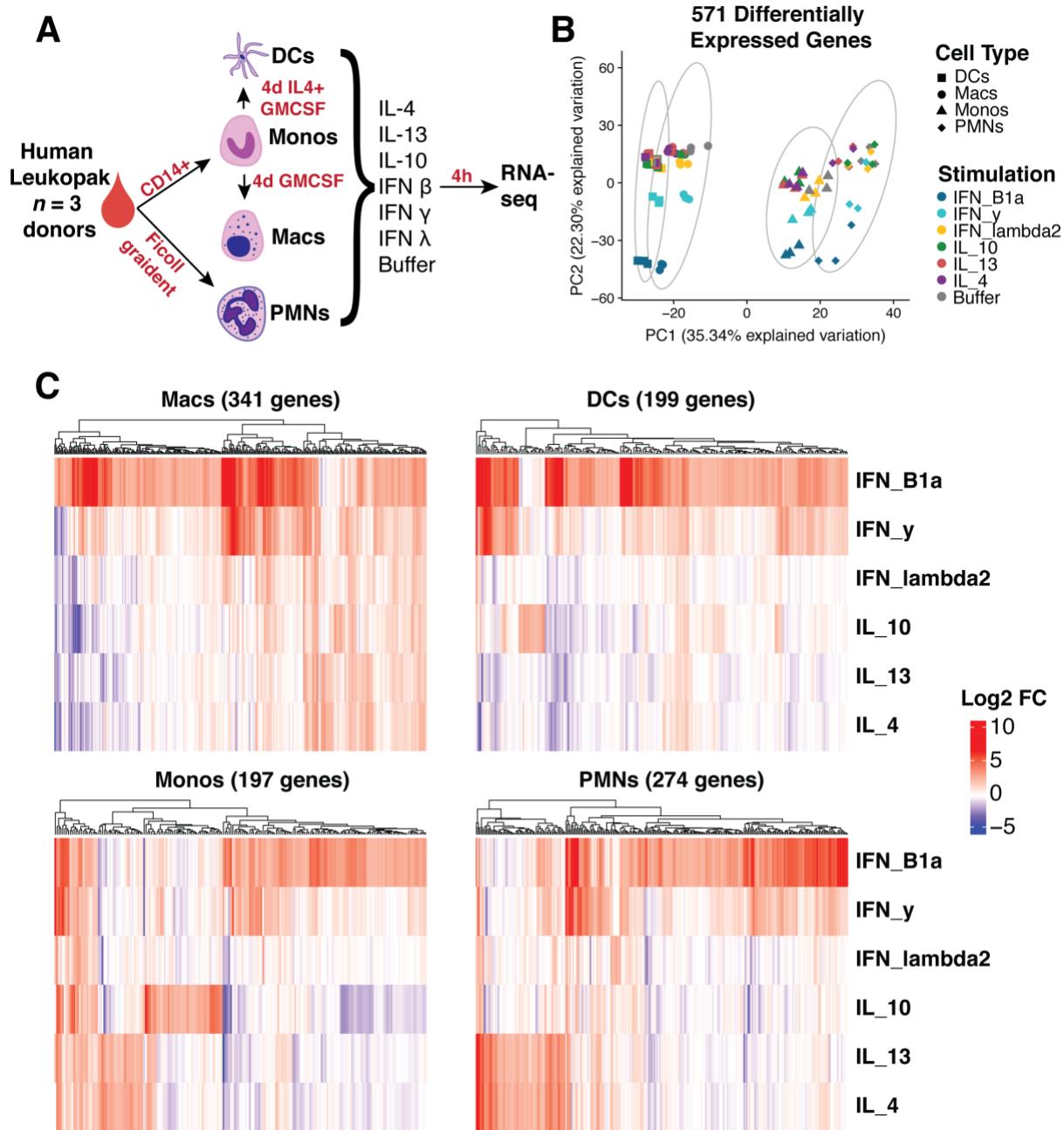
656

657 **Figure 4. Statistical deconvolution of bulk expression profiles indicates role of interferon-**
658 **induced neutrophil response in *M. tuberculosis* infection.** (A-D) Proportion estimates for

659 neutrophils, Monocytes and natural killer (NK) cells from CIBERSORT with our MCCS
660 signature matrix (B-D) and immunoStates (A) for 8 microarray datasets and 5 RNA-Seq datasets
661 (Table S2). (E) Scaled expression of 20 genes found in our neutrophil-interferon signatures are
662 shown for the RNA-Seq and microarray samples as well as the disease status of the sample.
663 Significance was determined by Kruskal-Wallis rank sum test with p -value $< 0.05 = *$, p -value $<$
664 $0.01 = **$ and p -value $< 0.001 = ***$. Sample sizes for each disease state and data type are as
665 follows; healthy (microarray $n = 88$, RNA-Seq $n = 365$), latently infected (microarray $n = 376$,
666 RNA-Seq $n = 117$) and active disease individuals (microarray $n = 547$, RNA-Seq $n = 306$).
667

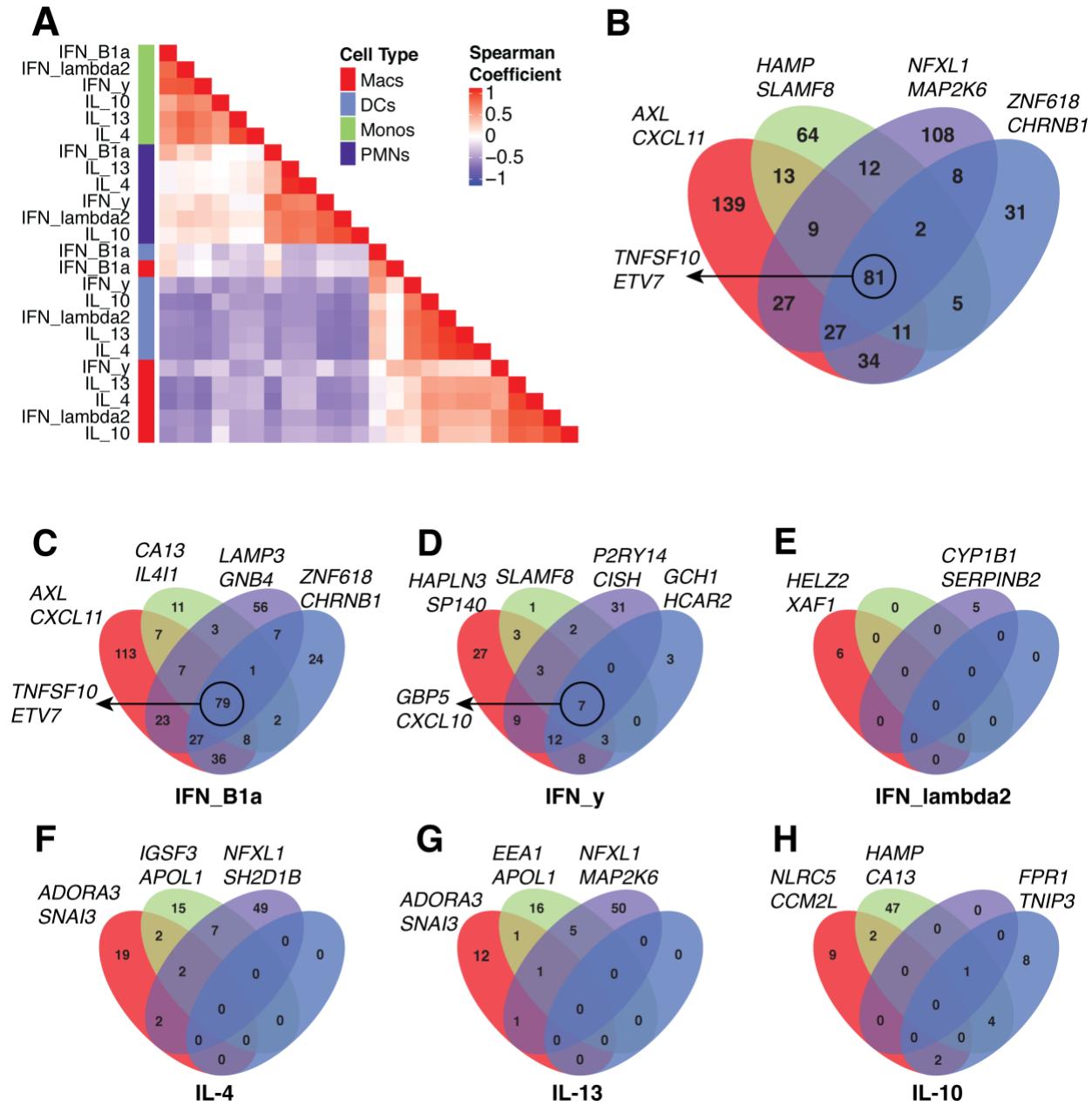
668 **Figure 5. Myeloid signatures under stimulation are indicative of survival in glioma.** (A)
669 Survival analysis of statistically deconvolved bulk RNA-Seq data from 671 glioma tumor
670 samples for individuals with low proportion estimates (red) or high proportion estimates (blue)
671 for Neutrophils responding to IL4 and IL13 (PMNs_IL4_IL13) and for Monocytes responding to
672 IFN- γ and IFN- β (Monos_IFN_B1a_IFN_y). (B) The power of our myeloid gene signature was
673 determined by area under the curve measures for LASSO models at 2 and 5-year increments
674 trained on our 131-cytokine stimulated myeloid gene signature with 7-fold cross validation. A
675 dashed diagonal line indicates an AUC of 0.5 for a random prediction model. (C) As measured
676 by model importance (see methods) the top 20 features derived from the 5-year prediction model
677 are shown. (D) Hierarchical clustering of pairwise spearman correlation analysis of 40 of the
678 most predictive features derived from our 5-year model. Gene expression clusters were then
679 mapped by genotype for a wild-type or mutated IDH gene locus, a molecular marker of gliomas.
680 (E) Survival analysis based on individual genes from cluster 1 (ASF1B and PLSCR1) and cluster
681 2 (SLC1A4 and GRINA3A) using a cox regression model of gene expression in the TCGA
682 samples profiled.
683

684 **FIGURES**



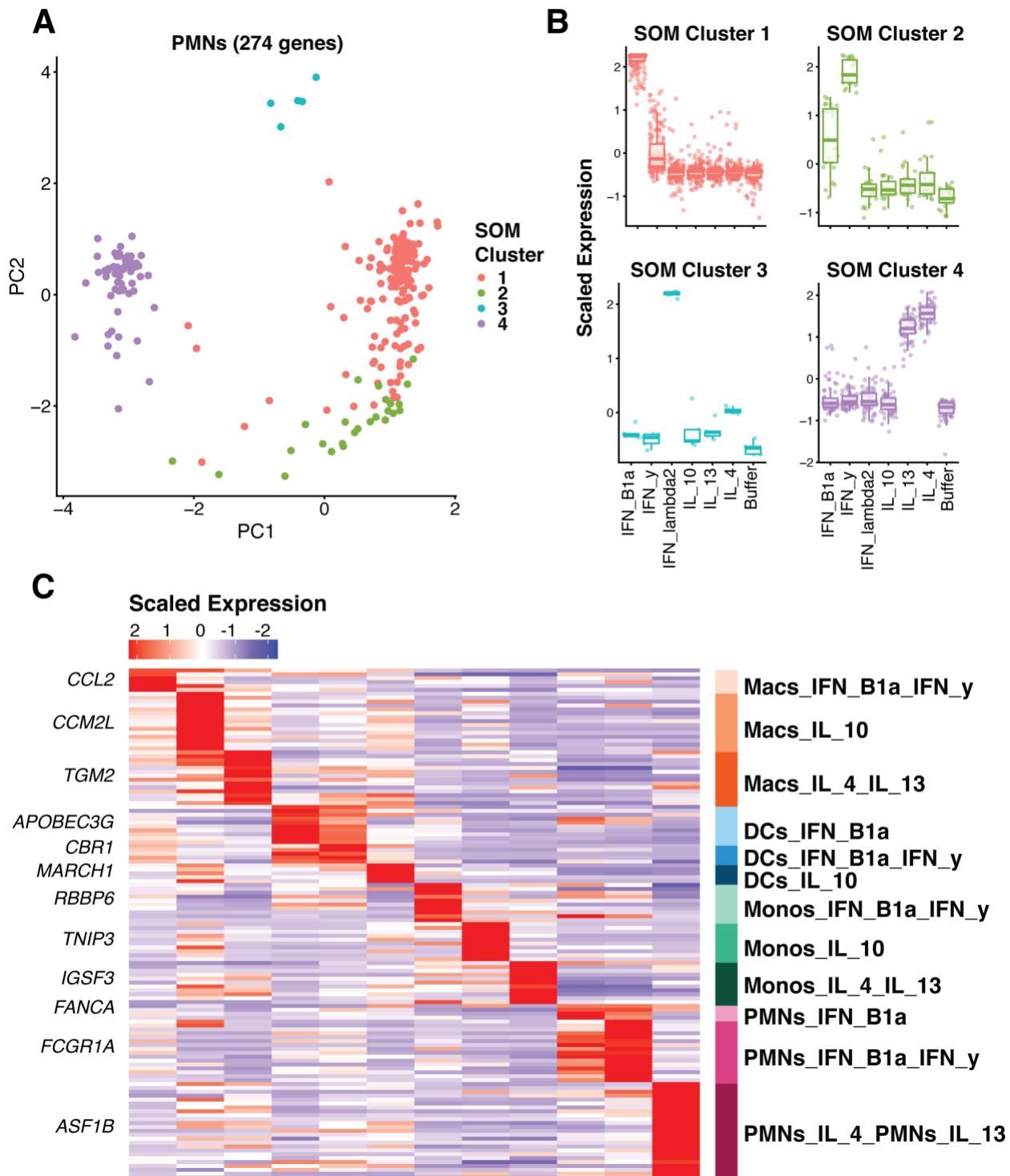
685

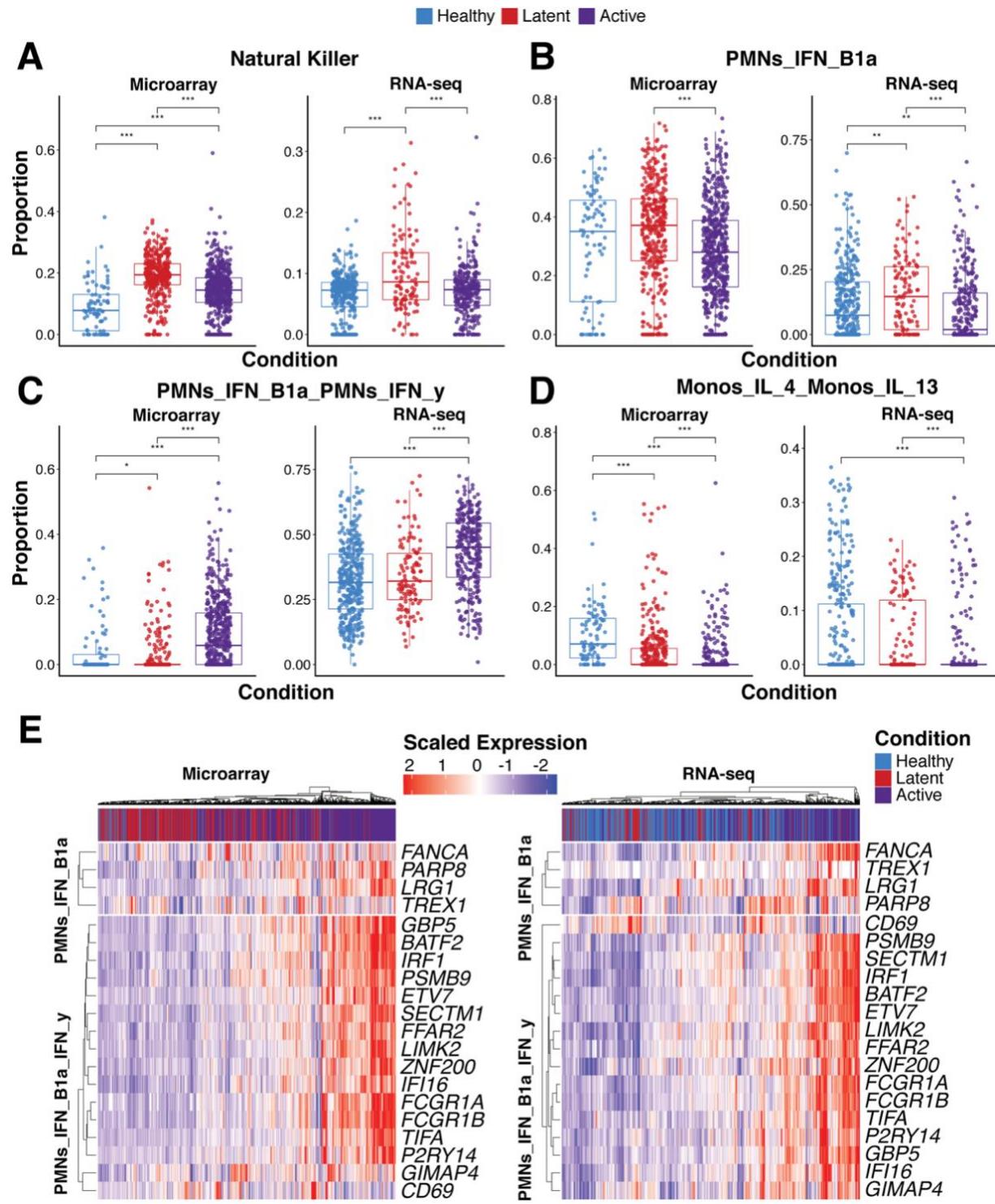
686 **Figure 1.**



688 **Figure 2.**

689

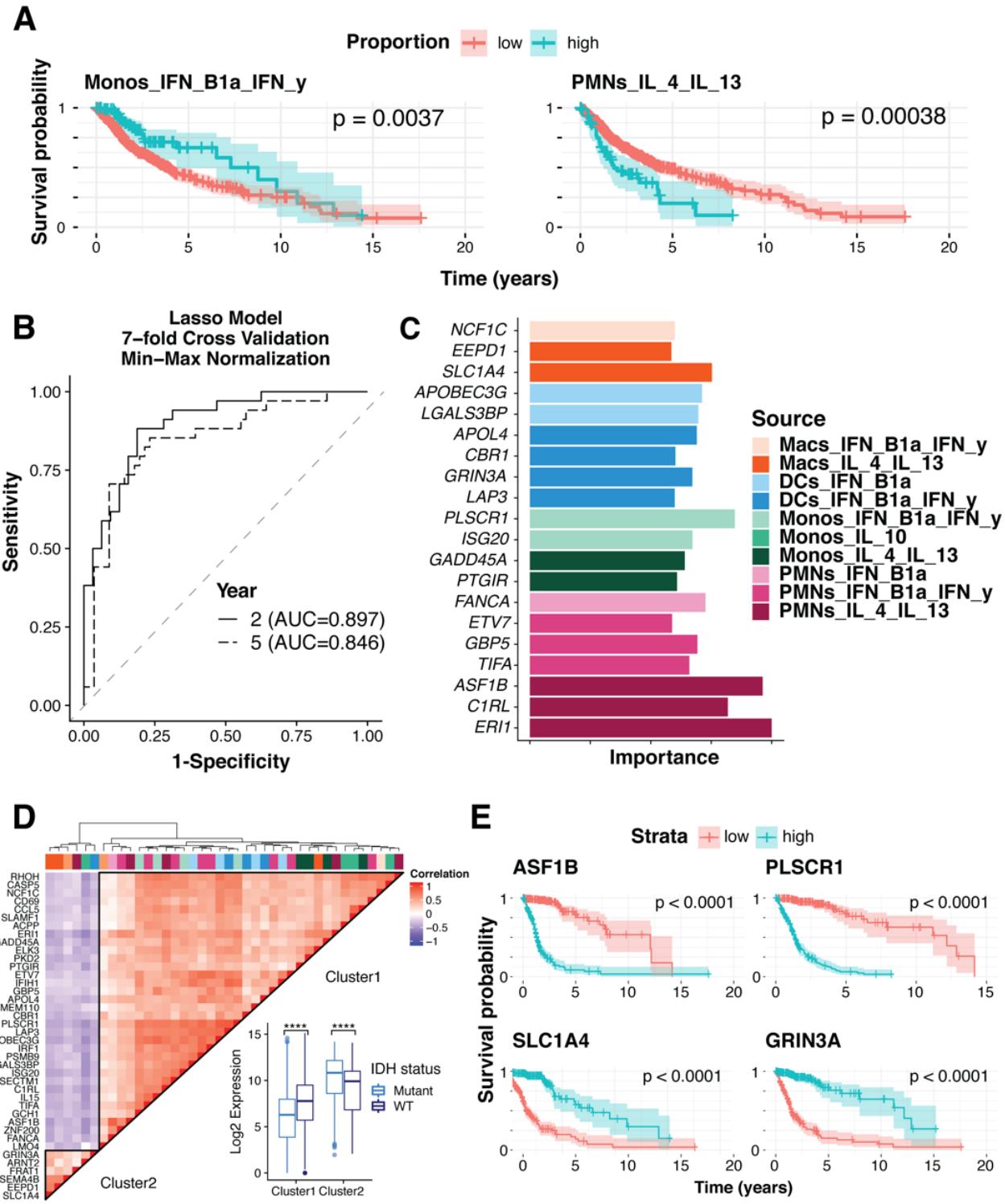




692

693 **Figure 4.**

694



695 **Figure 5.**