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Abstract—Single-cell (scSeq) and single-nucleus sequencing
(snSeq) are powerful tools to investigate cancer genomics at
single cell resolution. Multiple studies have recently illuminated
intratumoral heterogeneity in glioblastoma, however, the
majority focused on molecular complexity of tumor -cells,
without considering unexplored host cell types that contribute
to the microenvironment around tumor. To address the
glioblastoma microenvironment composition and potential
tumor-host interactions, we performed deep coverage
sequencing of freshly resected primary GBM patient tissue
without implementing any tumor enrichment strategies. The
sequencing resulted in 902 cells and 1186 nuclei, respectively,
passing quality control and with low mitochondrial gene
percentage. We customized reference transcriptome by listing
gene transcript loci as exons to take into account immature
RNA, which greatly improved the alignment rate for single-
nucleus data. We applied Cell Ranger pipelines (Version 3.0.2)
and Seurat package (Version 2.3.1) and discovered 10 clusters
in both scSeq and snSeq. Pathway analysis of each cluster
signature in scSeq data along with known GBM
microenvironment cell signatures revealed glioma tumor
population along with surrounding microglia/macrophages,
astrocytes, pericytes, oligodendrocytes, T cells and endothelial
cells. The analysis of snSeq was able to capture the majority of
cell types from patient tissues (tumor and microenvironment
cells), but interestingly presented different cell type composition
in microenvironment cell types such as microglia/macrophages.
Integrating single-cell and single-nucleus transcriptomic data
using canonical correlation analysis facilitated a comparison of
snSeq and scSeq, contrasting depiction for certain cell types (e.g.
NKX6-2 gene in Oligodendrocytes). Differential analysis of
pathways between tumor and microenvironment cells unveiled
potentially rewired pathways such as double strand break
repair pathway. Our results demonstrate the cellular diversity
of brain tumor microenvironment and lay a foundation to
further investigate the individual tumor and host cell
transcriptomes that are influenced not only by their cell identity
but also by their interaction with surrounding
microenvironment.
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I. INTRODUCTION

Single-cell (scSeq) and single-nucleus sequencing
(snSeq) has shed light on cancer genomics at single cell
resolution including the central nervous system (CNS) [1, 2].
Although bulk tumor sequencing can extend our
understanding of the cellular states and functions of tumor
cells, bulk measurements mix the signal of the diverse cells
within each tumor and sometimes along with its
microenvironment cells, thus masking potential vital
differences and only providing convoluted insight into tumor
cell development and tumor microenvironment (TME)
influences. Single-cell (scSeq) and single-nucleus
sequencing (snSeq) can help tackle these limitations of bulk
sequencing and are powerful tools to investigate brain tumor
and its microenvironment genomics at unprecedented single
cell resolution.

Cancer could be regarded as a complex, heterogeneous
and evolutionary process. Intra-tumor heterogeneity (ITH),
both at genetic and transcriptomic levels, is one of the
hallmarks of brain cancer and contributes to therapy
resistance [3]. Single-cell RNA-seq provides the opportunity
to generate the detailed transcriptomic cell profiling required
to address such tumor heterogeneity. Underlying molecular
biology and chemistry of single-cell library preparation have
improved considerably from the initial proof-of-principle
studies [4, 5]. Accompanying the enormous progress of
multiple molecular layers of single-cell sequencing
technologies, computational methods and bioinformatic
algorithms have also been developed to best process and
interpret the single-cell data for normalization, feature
selection, differential gene expression analysis, clustering
and trajectory analysis [6, 7]

Despite the tremendous advances, certain limitations and
challenges still exist in single-cell sequencing. First, current
single cell approaches still require live cells and are
incompatible with frozen archival samples, which complicates
studies when tissue availability is unpredictable or the studies
involve multi-institute collaboration.  Second, single cell
protocols might be biased toward particular cell types, since
dissociation method may destroy sensitive cells while failing
to separate cells that are surrounded by brain extracellular
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matrix [8]. Finally, the enzymatic and mechanical
dissociation processes used to isolate single cells has been
shown to influence the transcriptomic profile of the cells and
could introduce stress-related transcriptional artifacts [9].

Hence, single nuclei isolation has evolved as an alternative
method for various transcriptomic studies, especially when
studying highly interconnected tissues, such as glioblastoma
multiforme (GBM). Single nucleus sequencing is free of both
RNA degradation and artificial transcriptional stress
responses, as it circumvents enzymatic dissociation for
nuclear isolation, and therefore maintains transcriptome
integrity. Studies of mouse visual cortex cells demonstrated
that only small differences lie between total cellular and
nuclear transcriptome [9]. snSeq could provide wider sample
applicability (fresh and archival), reduced dissociation bias
and comparable gene detection compared to scSeq.

Besides the genetic, transcriptomic and epigenetic
heterogeneity among tumor clones, heterogeneity among
tumor-infiltrating cells in the microenvironment also plays
essential roles in tumor evolution, invasion, immune response,
metastasis, and resistances to various therapies [10]. In
addition to tumor cells themselves, brain tumors are also
infiltrated with other cells such as endothelial cells, pericytes,
fibroblasts, and immune cells. Thorough understanding of the
composition, interactions, and dynamics of cancer ecosystems
is key to understanding tumor fitness, evolution, and the
emergence of  therapy resistance. = Computational
deconvolution approaches could help infer the mixed cellular
composition of brain tumors along with its microenvironment,
but such analyses are limited to a few known cell types and
sensitive to parameter estimation due to its inference nature
[11, 12]. Moreover, in silico deconvolution often requires
characterization of pure known cell types and is not always
available. Single-cell and nucleus sequencing represent a
monumental technological leap, since it allows precise
dissection of the complex ecosystems of tumors while
capturing rare cell types.

In this study, we performed deep coverage bulk, single
cell, and single nucleus sequencing of freshly resected primary
GBM patient tissue without implementing any tumor
enrichment strategies. It enables us to investigate the
feasibility of snSeq, compare the single cell with single
nucleus data and probe into the glioblastoma
microenvironment composition and potential tumor-host
interactions.

II. METHODS

A. Single cell isolation and sequencing

Single cell RNA-Seq libraries from the fresh sample was
prepared using GemCode single Cell 3 Gel Bead and
Chromium™ Single Cell 3' Library Kit (10x Genomics, CA)
as per manufacturers protocol. The library was then
sequenced with Illumina NextSeq system. We aimed to
sequence ~2,000 cells per sample and to achieve sequencing
depth of 100,000 reads per cell. Quantification of cDNA

libraries was performed using Qubit dSDNA HS Assay Kit
(Life Technologies).

B. Single nucleus isolation and sequencing

Brain tissue samples were partially minced and frozen in
DMSO solution before nuclei extraction and library
preparation. The brain tissue was centrifuged at 300 g for 2-
3 mins and colored DMSO was carefully discarded. The
pellet was washed with 1 mL of PBS + 1% BSA pH 7.4 and
centrifuged at 300 g for 2-3 min. The pellet was resuspended
in 1.5 mL of HB buffer (Combine 1.5 mL of NIM2 buffer
with 150 uL of 1% NP40, 15 uL of SuperaseIN RNAase
inhibitor, 15 uL of RNaseIN inhibitor, and 10 uL DNase I
stock solution) and then transferred to glass homogenization
tube using cut tip. The sample was minced with 5-7 strokes
of Loose Pestle (A) and 10-15 strokes of Tight Pestle (B). The
sample was then incubated on ice for 10 mins before filtered
through a 40-um cell strainer. After Centrifuging for 8 min at
300 g, the pellet was resuspended in 1 mL of chilled PBS +
1% BSA pH 7.4 and pipetting up and down 10 times was
conducted to homogenize the sample. The sample was
filtered through a 20-um cell strainer and then centrifuged for
8 mins at 300 g. 20 uL of NucGreen dye along with 600 uL
of PBS + 1% BSA pH 7.4 buffer were added to the sample,
and shake to mix, and briefly spin down.

FACS sorting was performed using SH800 Flow
Cytometry Apparatus with the following steps: 1) Set sample
pressure to 6 and adjust temperature in sample and flow cell
chambers to 4°C prior to start. 2) First record populations for
non-stained sample and compare to stained sample to
determine the location of the nuclei population under FITC
vs SSC parameters. 3) Sort nuclei into 150 uL PBS + 1% BSA
orinto 3’ and 5’ library preparation master mixes until sample
depletion (or until desired nuclei count for sequencing). RNA
was subsequently extracted with the help of DNase I in
RNase-free water. Quality check resulting RNA using High
Sensitivity RNA TapeStation and followed immediately by
the 10x Genomics Single Cell Protocol to generate
sequencing library.

C. Single cell/nucleus analysis and statistics

Raw sequencing data were preprocessed using
CellRanger 3.0.2. In brief, Cellranger mkfastq module was
applied to generate fastq files by demultiplexing Chromium-
prepared sequencing samples based on their barcodes. Those
fastq files were then input to cellranger count to generate
UMI count data at a single-cell resolution. Further single-cell
data analysis was conducted using R package Seurat. In brief,
we applied initial normalization where UMI counts for each
cell were scaled by total expression and a factor equal to the
median counts of all genes. Data regression was performed
using the ScaleData function with nUMI, mitochondrial read
percentage as confounding factors.

Cells expressing more than 6500 genes were filtered out
for potential cell aggregates. Cells with a percentage of
mitochondrial genes expression > 0.1 were also filtered out
for probable dead cells. These expression values were log
transformed before further downstream analyses. Principle


https://doi.org/10.1101/775197
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/775197; this version posted September 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

component analysis, variable gene identification, Shared
Nearest Neighbor (SNN) clustering analysis, and t-
distributed stochastic nearest neighbor embedding (tSNE)
visualization were then performed. In details, the first 10
principle components were used for clustering analysis and
clusters were visualized with tSNE mapping. Signature
markers for each specific cluster were identified with
function FindAllMarkers against all remaining cells. Top 100
significant markers with largest average log fold change were
retained as signature for each cluster.

We determined the brain cell types in each of the cluster
by evaluating those makers along with the expression of
known signatures genes for brain cell types including
astrocytes,  oligodendrocytes,  microglia,  pericytes,
macrophages, T cells and endothelial cells [13, 14].
Pseudotime trajectory analysis was conducted using R
package monocle (version 2.8.0) with author recommended
default settings [6]. Genes used for trajectory ordering were
taken from the dispersion genes with normalization log2
mean expression > 0.1. DDRTree method was used for
dimension reduction and cell ordering along the single-cell
trajectories.

Gene set variation analysis (GSVA) [15] was performed
to determine the activities of GBM molecular subtype [16]
signatures in each cell’s transcriptome data. Cells with
highest subtype signature GSVA score were classified to the
corresponding subtype. All statistical tests and figures were
generated using various packages in R 3.6.1.

D. Evaluation of Differential Dependency (EDDY) analysis

Evaluation of Differential DependencY (EDDY) [18] isa
statistical gene set test method to detect differential genetic
dependencies between conditions in order to better
understand underlying molecular features and their
mechanisms. Specifically, EDDY evaluates the probability
distributions of dependency gene networks, which is different
from differential expression of individual genes or correlation
changes of individual gene-gene interactions (See Figure 5a
for overview of the algorithm). When compared to Gene Set
Co-expression Analysis (GSCA), EDDY generates lower
false positives, where GSCA identifies differentially co-
expressed gene sets by analyzing pair-wise gene-gene
interactions. The Java implementation of EDDY is freely
available to noncommercial users at
http://biocomputing.tgen.org/software/EDDY.

In this study, we employed EDDY-GPU!, that is the GPU
version of EDDY, as the number of cells becomes too big for
the Java version of EDDY. We explored intra-tumoral
heterogeneity of the tumor on the scRNA-seq data, by first
identifying subpopulation of tumor cells and other non-tumor
cells from its surrounding, i.e. microenvironment and
analyzing differential gene dependencies across those
subpopulations. The program was run on high-performance
GPU clusters (NVIDIA Tesla P100) at PVAMU’s Advanced
Computing Lab.

! https://github.com/dolchan/eddy-gpu

III. RESULTS

A. Study design

GBM patient tumor along with its microenvironment was
collected and divided into three parts. Two samples were
flash frozen and stored for further process (including bulk and
single nucleus sequencing), the third one was immediately
dissociated and used to generate single cell library using 10X
Genomics platform. Fig. 1 shows the scheme of the study
design. The three sequencing technologies on the same
patient tumor facilitate the comparisons among those
approaches as well as the comprehensive understanding of
the tumor biology.
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Fig. 1. Scheme of study design

B. Mapping the Transcriptional Landscape of glioblastoma
patient tumor using single cell sequencing

To address the glioblastoma microenvironment
composition and potential tumor-host interactions, we
generated scSeq libraries of freshly resected primary GBM
patient tissue without implementing any tumor cell
enrichment strategies. Single cell sequencing libraries were
prepared using 10X Chromium Gemcode machine and
sequenced on Illumina NextSeq 500. Preliminary data
analysis showed transcriptomic profile of 902 single cells at
the deep coverage of 176,000 reads per cell from frozen GBM
patient tissue. This run was of high quality with 2,663 median
genes per cell and low mitochondrial gene percentage
(median < 5%).

Single cell sequencing data were analyzed using the Cell
Ranger analysis pipelines and Seurat packages. We identified
10 clusters with a recommended resolution parameter 0.6 and
employed the TSNEPlot function to generate a visual
representation of the clusters using T-distributed Stochastic
Neighbor Embedding (tSNE) (Fig. 2a). Pathway analysis of
each cluster signature along with known GBM
microenvironment cell signatures revealed annotated brain
cell types: Tumor cells (Ki67 +ve and Ki67-ve), Astrocytes,
Oligodendrocytes, Antigen Presenting Cells (Macrophages
and Microglia), Endothelial cells, Pericytes, T cells, and
Erythrocytes (Fig. 2c). Expression of key signature genes
related to specific cell types were visualized in Fig. 2b. Top
three most differentially expressed genes in each identified
cluster as compare to all other clusters are also shown here in
the form of heatmap Fig. 3b (top). With the help of
pseudotime analysis, the GBM brain cells was ordered along
a trajectory, and cells at different states at one branching
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points were identified. Cluster 0&3 (tumor cells) were found
at one end of the trajectory, and then followed the path of
other microenvironment cell to the other end of cluster 1
(microglia/macrophages) (data not shown).

a. P b.
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Tumor cells MicrogliaMacrophages

Astrocytes Neuronal/Undefined

1SNE,
Oligodendrocytes T-cells

Fig. 2. a. tSNE map of patient cells by clusters in scSeq: each
dot represents individual cell and colors correspond to
clusters. b. Oligo2 is highly expressed and localized in cluster
0, indicating tumor cell type. Other known signatures: AQP4
(astrocytes; C2), AIFl (Microglia/Macrophages; Cl),
ELAVL4 (Neuronal/Undefined; C3), CLDNS5
(Oligodendrocytes; C5) and CD3D (T cells; C9). c. Clusters
were annotated by their signatures and known cell type
markers.

C. Single nucleus analysis and comparison to single cell
data

To characterize the differences between nuclei and whole
cells and the ability to detect cell types, snSeq library was
prepared using aforementioned method targeting 2,000 cells
and deep coverage sequencing was performed on Illumina
NextSeq 500. Nuclei extraction protocol for human brain
tissue were tested and modified to achieve good quality
library and final protocol was described in method section.
The CellRanger software was utilized to align the reads based
on STAR aligner and quantify gene expression. By default,
CellRanger quantifies expression for mature messenger RNA
(mRNA) by counting reads aligned to exons as annotated in
the human genome reference. However, the snSeq profiles
nuclear precursor mRNA (pre-mRNA), which include
transcripts that have not finished RNA splicing to be
transformed into a mature messenger RNA. Intronic reads
may also reflect cell type specific features, such as retained
introns or alternative isoforms. To capture all the information
in the pre-mRNA, we aligned the reads to a custom “pre-
mRNA” reference that includes the intron region information.
In this way, the intronic reads from pre-mRNA are included
in the UMI counts for each gene and barcode. We aligned and
quantified gene expression using both mature and pre-mRNA
references, and these reads were further cleaned, QCed and
compared.

We observed that when we aligned the reads to pre-
mRNA reference, the number of genes called per nucleus
increase significantly. For example, when using pre-mRNA

as a reference, we observed a 18.3% increase in the number
of the median UMI counts per nuclei (3118 vs 3689) and an
86.9% increase for the median genes per nuclei (1976 to
3693). Also, the percentage of reads mapped confidently to
transcriptome (pre-mRNA reference) increased from 18.3%
to 55.2%. Those results demonstrated that intronic region
annotation is required for accurate gene quantification and
downstream cell type identification from snSeq.

Although gene dropouts were higher in nuclei than in
cells (mean genes detected 2663 cell vs 1976 nuclei), We
could identify similar cell types using nuclei data as
compared to whole cells (Fig. 3a). Rare cell types (<5% of
population, including Pericytes and T cells) were not detected
in nuclei data. This could be due to single nucleus library
preparation, amplification stage efficiency, or detection
power of sample size [17]. Overall, tumor cells were the
largest portion and comprised of more than 50% of whole
brain tissue in both single cell and nucleus data (Fig. 3¢). This
result demonstrated that using single nuclei to study brain
tumor was relatively unbiased and could identify the major
cell types. Integrating single-cell and single-nucleus
transcriptomic data using canonical correlation analysis
facilitated a comparison of snSeq and scSeq, contrasting
depiction for certain cell types. For example, NKX6-2 gene
expression was only detected in Oligodendrocytes in single
cell data while not in single nucleus data.

In general, we observed comparable cell types identified
with nuclei and cells and matched cluster proportions were
mostly consistent, except that microglia/macrophage cells
were less-represented among nuclei data (Fig. 3c). This could
be due to GBM heterogeneity or nuclear content varies
among cell types and for certain specific cell type, though
previous study advocated that nuclear profiling is likely to be
less cell type biased than scSeq [9].

| | ‘ﬂ ‘
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Fig. 3. a. tSNE map with annotated clusters in snSeq b.
Cluster signatures: Heatmap showing top three most
differentially expressed genes (DEG) across each cluster as
compared to all other clusters (top: scSeq; bottom: snSeq). c.
cell type distribution in a patient tumor.
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D. Molecular subtypes of glioblastoma tumor cells

To investigate the GBM heterogeneity at single cell
resolution, Gene Set Variation Analysis (GSVA) was applied
to determine the glioblastoma molecular subtype gene
signature [16] score and each single cell/nucleus was
classified according to their highest signature score. As
shown in Fig. 4, both single cell and nucleus data indicated
that the tumor (center cluster) is mostly comprised of
mesenchymal type, which is consistent with bulk RNAseq
data (data not shown). Those heterogenous cells of minor
classical and proneural subtype appear closer in dimensional
space to other microenvironment cells, indicating more
similar transcriptome to surrounding cells compared to other
majority tumor cells. This result illustrated the tumor-host
interactions and  bidirectional influence of tumor
microenvironment.
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Fig. 4. a. Single cell data: glioma tumor cells were classified
to molecular subtypes. Dotted line indicates center region of
majority mesenchymal subtype. b. Single nucleus data.

E. Differential Dependency Analysis (EDDY) between
tumor and microenvironment cells

Considering complex molecular mechanisms and
heterogeneity of cancer, the discovery of biomarkers and
subtype-specific drug targets must be based on network-
driven activities of a gene set rather than individual genes.
Such insight requires an understanding of gene
interdependence rather than merely the more commonly
utilized analyses of simple differential gene expression
among comparative sets. We’ve applied EDDY-GPU as
described previously to identify pathways enriched with
differential dependencies in tumor and microenvironments,
assisted by existing prior knowledge of gene interactions
(Fig. 5a).

Due to technological limit of current single cell RNA
sequencing platform, the transcriptomic profile of each cell
tends to be sparse, and our initial data showed 83.4% sparsity.
In order to make the data more amenable for downstream
analysis, including EDDY analysis, we averaged the detected
transcript expression in each cell with its 3-nearest neighbors.
This strategy greatly reduced the sparsity percentage from
83.4% to 64.9%. The merged data was then used to explore
rewired pathways between different cell types and subtypes
of GBM.

Tumor vs. Non-Tumor cells: We performed EDDY
analysis of scSeq data from GBM patient, first by comparing
tumor cells against non-tumor cells identified in the analysis

described above, then, by comparing MES subtype of tumor
cells and non-MES tumor cells. Before performing EDDY
analyses, the raw counts of scSeq data were binarized, by
converting non-zero counts to 1 and zero counts to 0. The
threshold of zero was chosen considering the sparsity of raw
counts in scSeq data.
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Fig. 5 a. Interrogation of gene sets (pathways) for differential
dependencies between tumor and microenvironment cells. b.
Pathways rewired between GBM tumor cells and non-tumor
cells.

Comparing the two groups of 419 tumor cells and 317
non-tumor cells, EDDY yielded 3 pathways enriched with
differential dependency (Fig. 5b). The full results are also
available at https://ccsb.pvamu.edu/eddy/NVIDIA/TvsNT/.
Interestingly, EDDY analysis demonstrated differential
dependency in DNA double strand break repair pathway (fig.
5¢), which may play critical role in response to standard of
care therapy, that is TMZ + Radiation. It will be interesting
to study the roles of essentiality and specificity mediators
identified by EDDY in mediating the tumor cell response and
non-tumor cell response to standard of care therapy to
identify potentially novel targets for improving the efficacy
of standard of care therapy.

GBM Mesenchymal vs. Non-Mesenchymal: Using known
molecular markers of GBM Mesenchymal subtype (50 genes)
[16], we found most of our tumor cells be mesenchymal
subtype (427 cells out of 491 tumor cells). Comparison
between MES and non-MES tumor cells resulted in 14
pathways enriched with differential dependency. The full
results are available online at
https://ccsb.pvamu.edu/eddy/NVIDIA/MESvsRest. TGF




beta has been shown to induce mesenchymal phenotype and
tumor cell invasion in GBM [19]. EDDY analysis identified
differential dependency in TGF beta receptor signaling (fig.
5d) in mesenchymal vs non-mesenchymal GBM cells. As
part of future work, we would like to functionally perturb
essentiality mediators of the TGF beta receptor signaling
identified by EDDY and assess molecular subtype
distribution of tumor cells. In addition to TGF beta receptor
signaling pathway, lysosome vesicle biogenesis and gap
junction degradation pathway also show differential
dependency between mesenchymal and non-mesenchymal
tumor cells, and may play important role in invasive behavior
of mesenchymal glioma cells.

IV. CONCLUSION

In conclusion, our findings indicate that single cell
sequencing provides a valuable resource that can improve our
understanding of the glioblastoma tumor along with its
microenvironment. We also showed that single nucleus
sequencing could be successfully applied to capture the
majority cell types from GBM patient tissues (including both
tumor and microenvironment cells), but with slightly
different capture efficiency as compared to single cell
sequencing. In general, deep snSeq is well suited for large-
scale surveys of cellular diversity in brain tissue as it provides
similar resolution for cell type detection to scSeq. Higher
resolution of tumor subtype analysis revealed mixed subtype
population, with heterogenous minor subtype cells tend to
cluster closer to microenvironment cells compared to
majority tumor cells, suggesting tumor host interactions. In
addition, EDDY analysis revealed differential pathway
dependencies  between GBM  tumor cells and
microenvironment cells. Our analysis provides a general
framework to decipher brain tumor cell genotypes and the
composition of the TME. Our results demonstrate the cellular
diversity of brain tumor microenvironment and lay a
foundation to further investigate the individual tumor and
host cell transcriptomes that are influenced not only by their
cell identity but also by their interaction with surrounding
microenvironment.
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