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Abstract—Single-cell (scSeq) and single-nucleus sequencing 
(snSeq) are powerful tools to investigate cancer genomics at 
single cell resolution. Multiple studies have recently illuminated 
intratumoral heterogeneity in glioblastoma, however, the 
majority focused on molecular complexity of tumor cells, 
without considering unexplored host cell types that contribute 
to the microenvironment around tumor. To address the 
glioblastoma microenvironment composition and potential 
tumor-host interactions, we performed deep coverage 
sequencing of freshly resected primary GBM patient tissue 
without implementing any tumor enrichment strategies. The 
sequencing resulted in 902 cells and 1186 nuclei, respectively, 
passing quality control and with low mitochondrial gene 
percentage. We customized reference transcriptome by listing 
gene transcript loci as exons to take into account immature 
RNA, which greatly improved the alignment rate for single-
nucleus data. We applied Cell Ranger pipelines (Version 3.0.2) 
and Seurat package (Version 2.3.1) and discovered 10 clusters 
in both scSeq and snSeq. Pathway analysis of each cluster 
signature in scSeq data along with known GBM 
microenvironment cell signatures revealed glioma tumor 
population along with surrounding microglia/macrophages, 
astrocytes, pericytes, oligodendrocytes, T cells and endothelial 
cells. The analysis of snSeq was able to capture the majority of 
cell types from patient tissues (tumor and microenvironment 
cells), but interestingly presented different cell type composition 
in microenvironment cell types such as microglia/macrophages. 
Integrating single-cell and single-nucleus transcriptomic data 
using canonical correlation analysis facilitated a comparison of 
snSeq and scSeq, contrasting depiction for certain cell types (e.g. 
NKX6-2 gene in Oligodendrocytes).  Differential analysis of 
pathways between tumor and microenvironment cells unveiled 
potentially rewired pathways such as double strand break 
repair pathway. Our results demonstrate the cellular diversity 
of brain tumor microenvironment and lay a foundation to 
further investigate the individual tumor and host cell 
transcriptomes that are influenced not only by their cell identity 
but also by their interaction with surrounding 
microenvironment. 
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I. INTRODUCTION 
      Single-cell (scSeq) and single-nucleus sequencing 
(snSeq) has shed light on cancer genomics at single cell 
resolution including the central nervous system (CNS) [1, 2]. 
Although bulk tumor sequencing can extend our 
understanding of the cellular states and functions of tumor 
cells, bulk measurements mix the signal of the diverse cells 
within each tumor and sometimes along with its 
microenvironment cells, thus masking potential vital 
differences and only providing convoluted insight into tumor 
cell development and tumor microenvironment (TME) 
influences.  Single-cell (scSeq) and single-nucleus 
sequencing (snSeq) can help tackle these limitations of bulk 
sequencing and are powerful tools to investigate brain tumor 
and its microenvironment genomics at unprecedented single 
cell resolution. 
      Cancer could be regarded as a complex, heterogeneous 
and evolutionary process. Intra-tumor heterogeneity (ITH), 
both at genetic and transcriptomic levels, is one of the 
hallmarks of brain cancer and contributes to therapy 
resistance [3].  Single-cell RNA-seq provides the opportunity 
to generate the detailed transcriptomic cell profiling required 
to address such tumor heterogeneity. Underlying molecular 
biology and chemistry of single-cell library preparation have 
improved considerably from the initial proof-of-principle 
studies [4, 5]. Accompanying the enormous progress of 
multiple molecular layers of single-cell sequencing 
technologies, computational methods and bioinformatic 
algorithms have also been developed to best process and 
interpret the single-cell data for normalization, feature 
selection, differential gene expression analysis, clustering 
and trajectory analysis [6, 7] 
      Despite the tremendous advances, certain limitations and 
challenges still exist in single-cell sequencing. First, current 
single cell approaches still require live cells and are 
incompatible with frozen archival samples, which complicates 
studies when tissue availability is unpredictable or the studies 
involve multi-institute collaboration.   Second, single cell 
protocols might be biased toward particular cell types, since 
dissociation method may destroy sensitive cells while failing 
to separate cells that are surrounded by brain extracellular Funding: NVIDIA Compute the Cure for Cancer Foundation.  
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matrix [8].  Finally, the enzymatic and mechanical 
dissociation processes used to isolate single cells has been 
shown to influence the transcriptomic profile of the cells and 
could introduce stress-related transcriptional artifacts [9]. 
      Hence, single nuclei isolation has evolved as an alternative 
method for various transcriptomic studies, especially when 
studying highly interconnected tissues, such as glioblastoma 
multiforme (GBM). Single nucleus sequencing is free of both 
RNA degradation and artificial transcriptional stress 
responses, as it circumvents enzymatic dissociation for 
nuclear isolation, and therefore maintains transcriptome 
integrity.  Studies of mouse visual cortex cells demonstrated 
that only small differences lie between total cellular and 
nuclear transcriptome [9]. snSeq could provide wider sample 
applicability (fresh and archival), reduced dissociation bias 
and comparable gene detection compared to scSeq. 
 Besides the genetic, transcriptomic and epigenetic 
heterogeneity among tumor clones, heterogeneity among 
tumor-infiltrating cells in the microenvironment also plays 
essential roles in tumor evolution, invasion, immune response, 
metastasis, and resistances to various therapies [10]. In 
addition to tumor cells themselves, brain tumors are also 
infiltrated with other cells such as endothelial cells, pericytes, 
fibroblasts, and immune cells. Thorough understanding of the 
composition, interactions, and dynamics of cancer ecosystems 
is key to understanding tumor fitness, evolution, and the 
emergence of therapy resistance. Computational 
deconvolution approaches could help infer the mixed cellular 
composition of brain tumors along with its microenvironment, 
but such analyses are limited to a few known cell types and 
sensitive to parameter estimation due to its inference nature 
[11, 12]. Moreover, in silico deconvolution often requires 
characterization of pure known cell types and is not always 
available. Single-cell and nucleus sequencing represent a 
monumental technological leap, since it allows precise 
dissection of the complex ecosystems of tumors while 
capturing rare cell types. 

 In this study, we performed deep coverage bulk, single 
cell, and single nucleus sequencing of freshly resected primary 
GBM patient tissue without implementing any tumor 
enrichment strategies. It enables us to investigate the 
feasibility of snSeq, compare the single cell with single 
nucleus data and probe into the glioblastoma 
microenvironment composition and potential tumor-host 
interactions. 

II. METHODS 

A. Single cell isolation and sequencing 
      Single cell RNA-Seq libraries from the fresh sample was 
prepared using GemCode single Cell 3’ Gel Bead and 
Chromium™ Single Cell 3' Library Kit (10x Genomics, CA) 
as per manufacturers protocol. The library was then 
sequenced with Illumina NextSeq system. We aimed to 
sequence ~2,000 cells per sample and to achieve sequencing 
depth of 100,000 reads per cell. Quantification of cDNA 

libraries was performed using Qubit dsDNA HS Assay Kit 
(Life Technologies). 

B. Single nucleus isolation and sequencing 
      Brain tissue samples were partially minced and frozen in 
DMSO solution before nuclei extraction and library 
preparation. The brain tissue was centrifuged at 300 g for 2-
3 mins and colored DMSO was carefully discarded. The 
pellet was washed with 1 mL of PBS + 1% BSA pH 7.4 and 
centrifuged at 300 g for 2-3 min. The pellet was resuspended 
in 1.5 mL of HB buffer (Combine 1.5 mL of NIM2 buffer 
with 150 uL of 1% NP40, 15 uL of SuperaseIN RNAase 
inhibitor, 15 uL of RNaseIN inhibitor, and 10 uL DNase I 
stock solution) and then transferred to glass homogenization 
tube using cut tip. The sample was minced with 5-7 strokes 
of Loose Pestle (A) and 10-15 strokes of Tight Pestle (B). The 
sample was then incubated on ice for 10 mins before filtered 
through a 40-um cell strainer. After Centrifuging for 8 min at 
300 g, the pellet was resuspended in 1 mL of chilled PBS + 
1% BSA pH 7.4 and pipetting up and down 10 times was 
conducted to homogenize the sample. The sample was 
filtered through a 20-um cell strainer and then centrifuged for 
8 mins at 300 g. 20 uL of NucGreen dye along with 600 uL 
of PBS + 1% BSA pH 7.4 buffer were added to the sample, 
and shake to mix, and briefly spin down. 
      FACS sorting was performed using SH800 Flow 
Cytometry Apparatus with the following steps: 1) Set sample 
pressure to 6 and adjust temperature in sample and flow cell 
chambers to 4°C prior to start. 2) First record populations for 
non-stained sample and compare to stained sample to 
determine the location of the nuclei population under FITC 
vs SSC parameters. 3) Sort nuclei into 150 uL PBS + 1% BSA 
or into 3’ and 5’ library preparation master mixes until sample 
depletion (or until desired nuclei count for sequencing). RNA 
was subsequently extracted with the help of DNase I in 
RNase-free water. Quality check resulting RNA using High 
Sensitivity RNA TapeStation and followed immediately by 
the 10x Genomics Single Cell Protocol to generate 
sequencing library. 

C. Single cell/nucleus analysis and statistics 
      Raw sequencing data were preprocessed using 
CellRanger 3.0.2. In brief, Cellranger mkfastq module was 
applied to generate fastq files by demultiplexing Chromium-
prepared sequencing samples based on their barcodes. Those 
fastq files were then input to cellranger count to generate 
UMI count data at a single-cell resolution. Further single-cell 
data analysis was conducted using R package Seurat. In brief, 
we applied initial normalization where UMI counts for each 
cell were scaled by total expression and a factor equal to the 
median counts of all genes. Data regression was performed 
using the ScaleData function with nUMI, mitochondrial read 
percentage as confounding factors. 
      Cells expressing more than 6500 genes were filtered out 
for potential cell aggregates. Cells with a percentage of 
mitochondrial genes expression > 0.1 were also filtered out 
for probable dead cells. These expression values were log 
transformed before further downstream analyses. Principle 
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component analysis, variable gene identification, Shared 
Nearest Neighbor (SNN) clustering analysis, and t-
distributed stochastic nearest neighbor embedding (tSNE) 
visualization were then performed. In details, the first 10 
principle components were used for clustering analysis and 
clusters were visualized with tSNE mapping.  Signature 
markers for each specific cluster were identified with 
function FindAllMarkers against all remaining cells. Top 100 
significant markers with largest average log fold change were 
retained as signature for each cluster. 
      We determined the brain cell types in each of the cluster 
by evaluating those makers along with the expression of 
known signatures genes for brain cell types including 
astrocytes, oligodendrocytes, microglia, pericytes, 
macrophages, T cells and endothelial cells [13, 14]. 
Pseudotime trajectory analysis was conducted using R 
package monocle (version 2.8.0) with author recommended 
default settings [6]. Genes used for trajectory ordering were 
taken from the dispersion genes with normalization log2 
mean expression > 0.1. DDRTree method was used for 
dimension reduction and cell ordering along the single-cell 
trajectories.  
      Gene set variation analysis (GSVA) [15] was performed 
to determine the activities of GBM molecular subtype [16] 
signatures in each cell’s transcriptome data.  Cells with 
highest subtype signature GSVA score were classified to the 
corresponding subtype.  All statistical tests and figures were 
generated using various packages in R 3.6.1. 

D. Evaluation of Differential Dependency (EDDY) analysis 
      Evaluation of Differential DependencY (EDDY) [18] is a 
statistical gene set test method to detect differential genetic 
dependencies between conditions in order to better 
understand underlying molecular features and their 
mechanisms. Specifically, EDDY evaluates the probability 
distributions of dependency gene networks, which is different 
from differential expression of individual genes or correlation 
changes of individual gene-gene interactions (See Figure 5a 
for overview of the algorithm).  When compared to Gene Set 
Co-expression Analysis (GSCA), EDDY generates lower 
false positives, where GSCA identifies differentially co-
expressed gene sets by analyzing pair-wise gene-gene 
interactions. The Java implementation of EDDY is freely 
available to noncommercial users at  
http://biocomputing.tgen.org/software/EDDY. 
      In this study, we employed EDDY-GPU1, that is the GPU 
version of EDDY, as the number of cells becomes too big for 
the Java version of EDDY.  We explored intra-tumoral 
heterogeneity of the tumor on the scRNA-seq data, by first 
identifying subpopulation of tumor cells and other non-tumor 
cells from its surrounding, i.e. microenvironment and 
analyzing differential gene dependencies across those 
subpopulations.  The program was run on high-performance 
GPU clusters (NVIDIA Tesla P100) at PVAMU’s Advanced 
Computing Lab. 

                                                           
1 https://github.com/dolchan/eddy-gpu 

III. RESULTS 

A. Study design 
      GBM patient tumor along with its microenvironment was 
collected and divided into three parts. Two samples were 
flash frozen and stored for further process (including bulk and 
single nucleus sequencing), the third one was immediately 
dissociated and used to generate single cell library using 10X 
Genomics platform. Fig. 1 shows the scheme of the study 
design. The three sequencing technologies on the same 
patient tumor facilitate the comparisons among those 
approaches as well as the comprehensive understanding of 
the tumor biology.  

 
Fig. 1. Scheme of study design 

B. Mapping the Transcriptional Landscape of glioblastoma 
patient tumor using single cell sequencing 

      To address the glioblastoma microenvironment 
composition and potential tumor-host interactions, we 
generated scSeq libraries of freshly resected primary GBM 
patient tissue without implementing any tumor cell 
enrichment strategies. Single cell sequencing libraries were 
prepared using 10X Chromium Gemcode machine and 
sequenced on Illumina NextSeq 500. Preliminary data 
analysis showed transcriptomic profile of 902 single cells at 
the deep coverage of 176,000 reads per cell from frozen GBM 
patient tissue. This run was of high quality with 2,663 median 
genes per cell and low mitochondrial gene percentage 
(median < 5%). 
      Single cell sequencing data were analyzed using the Cell 
Ranger analysis pipelines and Seurat packages. We identified 
10 clusters with a recommended resolution parameter 0.6 and 
employed the TSNEPlot function to generate a visual 
representation of the clusters using T-distributed Stochastic 
Neighbor Embedding (tSNE) (Fig. 2a). Pathway analysis of 
each cluster signature along with known GBM 
microenvironment cell signatures revealed annotated brain 
cell types: Tumor cells (Ki67 +ve and Ki67-ve), Astrocytes, 
Oligodendrocytes, Antigen Presenting Cells (Macrophages 
and Microglia), Endothelial cells, Pericytes, T cells, and 
Erythrocytes (Fig. 2c).  Expression of key signature genes 
related to specific cell types were visualized in Fig. 2b. Top 
three most differentially expressed genes in each identified 
cluster as compare to all other clusters are also shown here in 
the form of heatmap Fig. 3b (top). With the help of 
pseudotime analysis, the GBM brain cells was ordered along 
a trajectory, and cells at different states at one branching 
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points were identified. Cluster 0&3 (tumor cells) were found 
at one end of the trajectory, and then followed the path of 
other microenvironment cell to the other end of cluster 1 
(microglia/macrophages) (data not shown). 

 
Fig. 2. a. tSNE map of patient cells by clusters in scSeq: each 
dot represents individual cell and colors correspond to 
clusters. b. Oligo2 is highly expressed and localized in cluster 
0, indicating tumor cell type. Other known signatures: AQP4 
(astrocytes; C2), AIF1 (Microglia/Macrophages; C1), 
ELAVL4 (Neuronal/Undefined; C3), CLDN5 
(Oligodendrocytes; C5) and CD3D (T cells; C9). c. Clusters 
were annotated by their signatures and known cell type 
markers. 

C. Single nucleus analysis and comparison to single cell 
data 

      To characterize the differences between nuclei and whole 
cells and the ability to detect cell types, snSeq library was 
prepared using aforementioned method targeting 2,000 cells 
and deep coverage sequencing was performed on Illumina 
NextSeq 500. Nuclei extraction protocol for human brain 
tissue were tested and modified to achieve good quality 
library and final protocol was described in method section. 
The CellRanger software was utilized to align the reads based 
on STAR aligner and quantify gene expression. By default, 
CellRanger quantifies expression for mature messenger RNA 
(mRNA) by counting reads aligned to exons as annotated in 
the human genome reference. However, the snSeq profiles 
nuclear precursor mRNA (pre-mRNA), which include 
transcripts that have not finished RNA splicing to be 
transformed into a mature messenger RNA. Intronic reads 
may also reflect cell type specific features, such as retained 
introns or alternative isoforms. To capture all the information 
in the pre-mRNA, we aligned the reads to a custom “pre-
mRNA” reference that includes the intron region information. 
In this way, the intronic reads from pre-mRNA are included 
in the UMI counts for each gene and barcode. We aligned and 
quantified gene expression using both mature and pre-mRNA 
references, and these reads were further cleaned, QCed and 
compared. 
      We observed that when we aligned the reads to pre-
mRNA reference, the number of genes called per nucleus 
increase significantly. For example, when using pre-mRNA 

as a reference, we observed a 18.3% increase in the number 
of the median UMI counts per nuclei (3118 vs 3689) and an 
86.9% increase for the median genes per nuclei (1976 to 
3693). Also, the percentage of reads mapped confidently to 
transcriptome (pre-mRNA reference) increased from 18.3% 
to 55.2%. Those results demonstrated that intronic region 
annotation is required for accurate gene quantification and 
downstream cell type identification from snSeq. 
      Although gene dropouts were higher in nuclei than in 
cells (mean genes detected 2663 cell vs 1976 nuclei), We 
could identify similar cell types using nuclei data as 
compared to whole cells (Fig. 3a). Rare cell types (<5% of 
population, including Pericytes and T cells) were not detected 
in nuclei data. This could be due to single nucleus library 
preparation, amplification stage efficiency, or detection 
power of sample size [17]. Overall, tumor cells were the 
largest portion and comprised of more than 50% of whole 
brain tissue in both single cell and nucleus data (Fig. 3c). This 
result demonstrated that using single nuclei to study brain 
tumor was relatively unbiased and could identify the major 
cell types. Integrating single-cell and single-nucleus 
transcriptomic data using canonical correlation analysis 
facilitated a comparison of snSeq and scSeq, contrasting 
depiction for certain cell types. For example, NKX6-2 gene 
expression was only detected in Oligodendrocytes in single 
cell data while not in single nucleus data. 
      In general, we observed comparable cell types identified 
with nuclei and cells and matched cluster proportions were 
mostly consistent, except that microglia/macrophage cells 
were less-represented among nuclei data (Fig. 3c). This could 
be due to GBM heterogeneity or nuclear content varies 
among cell types and for certain specific cell type, though 
previous study advocated that nuclear profiling is likely to be 
less cell type biased than scSeq [9]. 

 
Fig. 3. a. tSNE map with annotated clusters in snSeq. b. 
Cluster signatures: Heatmap showing top three most 
differentially expressed genes (DEG) across each cluster as 
compared to all other clusters (top: scSeq; bottom: snSeq). c. 
cell type distribution in a patient tumor. 
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D. Molecular subtypes of glioblastoma tumor cells 
      To investigate the GBM heterogeneity at single cell 
resolution, Gene Set Variation Analysis (GSVA) was applied 
to determine the glioblastoma molecular subtype gene 
signature [16] score and each single cell/nucleus was 
classified according to their highest signature score. As 
shown in Fig. 4, both single cell and nucleus data indicated 
that the tumor (center cluster) is mostly comprised of 
mesenchymal type, which is consistent with bulk RNAseq 
data (data not shown). Those heterogenous cells of minor 
classical and proneural subtype appear closer in dimensional 
space to other microenvironment cells, indicating more 
similar transcriptome to surrounding cells compared to other 
majority tumor cells. This result illustrated the tumor-host 
interactions and bidirectional influence of tumor 
microenvironment.   

 
Fig. 4. a. Single cell data: glioma tumor cells were classified 
to molecular subtypes. Dotted line indicates center region of 
majority mesenchymal subtype. b. Single nucleus data. 

E. Differential Dependency Analysis (EDDY) between 
tumor and microenvironment cells 

      Considering complex molecular mechanisms and 
heterogeneity of cancer, the discovery of biomarkers and 
subtype-specific drug targets must be based on network-
driven activities of a gene set rather than individual genes. 
Such insight requires an understanding of gene 
interdependence rather than merely the more commonly 
utilized analyses of simple differential gene expression 
among comparative sets. We’ve applied EDDY-GPU as 
described previously to identify pathways enriched with 
differential dependencies in tumor and microenvironments, 
assisted by existing prior knowledge of gene interactions 
(Fig. 5a).  
      Due to technological limit of current single cell RNA 
sequencing platform, the transcriptomic profile of each cell 
tends to be sparse, and our initial data showed 83.4% sparsity. 
In order to make the data more amenable for downstream 
analysis, including EDDY analysis, we averaged the detected 
transcript expression in each cell with its 3-nearest neighbors. 
This strategy greatly reduced the sparsity percentage from 
83.4% to 64.9%. The merged data was then used to explore 
rewired pathways between different cell types and subtypes 
of GBM. 
      Tumor vs. Non-Tumor cells: We performed EDDY 
analysis of scSeq data from GBM patient, first by comparing 
tumor cells against non-tumor cells identified in the analysis 

described above, then, by comparing MES subtype of tumor 
cells and non-MES tumor cells.  Before performing EDDY 
analyses, the raw counts of scSeq data were binarized, by 
converting non-zero counts to 1 and zero counts to 0.   The 
threshold of zero was chosen considering the sparsity of raw 
counts in scSeq data. 
 
 

a.  
 

b.  

            
 c.                           d.                
Fig. 5 a. Interrogation of gene sets (pathways) for differential 
dependencies between tumor and microenvironment cells. b. 
Pathways rewired between GBM tumor cells and non-tumor 
cells. 
      Comparing the two groups of 419 tumor cells and 317 
non-tumor cells, EDDY yielded 3 pathways enriched with 
differential dependency (Fig. 5b). The full results are also 
available at https://ccsb.pvamu.edu/eddy/NVIDIA/TvsNT/. 
Interestingly, EDDY analysis demonstrated differential 
dependency in DNA double strand break repair pathway (fig. 
5c), which may play critical role in response to standard of 
care therapy, that is TMZ + Radiation. It will be interesting 
to study the roles of essentiality and specificity mediators 
identified by EDDY in mediating the tumor cell response and 
non-tumor cell response to standard of care therapy to 
identify potentially novel targets for improving the efficacy 
of standard of care therapy.    
      GBM Mesenchymal vs. Non-Mesenchymal: Using known 
molecular markers of GBM Mesenchymal subtype (50 genes) 
[16], we found most of our tumor cells be mesenchymal 
subtype (427 cells out of 491 tumor cells).  Comparison 
between MES and non-MES tumor cells resulted in 14 
pathways enriched with differential dependency. The full 
results are available online at 
https://ccsb.pvamu.edu/eddy/NVIDIA/MESvsRest. TGF 
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beta has been shown to induce mesenchymal phenotype and 
tumor cell invasion in GBM [19]. EDDY analysis identified 
differential dependency in TGF beta receptor signaling (fig. 
5d) in mesenchymal vs non-mesenchymal GBM cells. As 
part of future work, we would like to functionally perturb 
essentiality mediators of the TGF beta receptor signaling 
identified by EDDY and assess molecular subtype 
distribution of tumor cells. In addition to TGF beta receptor 
signaling pathway, lysosome vesicle biogenesis and gap 
junction degradation pathway also show differential 
dependency between mesenchymal and non-mesenchymal 
tumor cells, and may play important role in invasive behavior 
of mesenchymal glioma cells.    

IV. CONCLUSION 
      In conclusion, our findings indicate that single cell 
sequencing provides a valuable resource that can improve our 
understanding of the glioblastoma tumor along with its 
microenvironment. We also showed that single nucleus 
sequencing could be successfully applied to capture the 
majority cell types from GBM patient tissues (including both 
tumor and microenvironment cells), but with slightly 
different capture efficiency as compared to single cell 
sequencing. In general, deep snSeq is well suited for large-
scale surveys of cellular diversity in brain tissue as it provides 
similar resolution for cell type detection to scSeq. Higher 
resolution of tumor subtype analysis revealed mixed subtype 
population, with heterogenous minor subtype cells tend to 
cluster closer to microenvironment cells compared to 
majority tumor cells, suggesting tumor host interactions. In 
addition, EDDY analysis revealed differential pathway 
dependencies between GBM tumor cells and 
microenvironment cells. Our analysis provides a general 
framework to decipher brain tumor cell genotypes and the 
composition of the TME. Our results demonstrate the cellular 
diversity of brain tumor microenvironment and lay a 
foundation to further investigate the individual tumor and 
host cell transcriptomes that are influenced not only by their 
cell identity but also by their interaction with surrounding 
microenvironment.  
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